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Abstract 

 

The issue of portfolio insurance is one of the prime concerns of the investors who want to insure their 

asset at minimum or appropriate cost. Static hedging with binary options is a popular strategy that has 

been explored in various option models (see e.g. (2; 3; 4; 7)).  In this thesis, we propose a static hedging 

algorithm for discrete time models. Our algorithm is based on a vector lattice technique. In chapter 1, 

we give the necessary background on the theory of vector lattices and the theory of options. In chapter 

2, we reveal the connection of lattice-subspaces with the minimum-cost portfolio insurance strategy. In 

chapter3, we outline our algorithm and give applications to binomial and trinomial option models. In 

chapter 4, we perform simulations and analyze the hedging errors of our algorithm for European, 

Barrier, Geometric Asian, Arithmetic Asian, and Lookback options. The study has revealed that static 

hedging could be suitable strategy for the European, Barrier, and Geometric Asian options as these 

options have shown less inclination to the rollover effect. 
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Chapter 1

Introduction

The first chapter will review the theoretical aspects of the study: Vector lattice theory followed by

option theory and stock price models.

1.1 Vector Lattices

Vector lattice theory is a branch of pure mathematics that has produced enormous applications in

Mathematical Finance and Economics. In this section, we will give the necessary background of the

theory needed for the exposition of this thesis.

Ordered Vector Spaces A vector space X equipped with a partial order 1 is an ordered vector space

if it satisfies X + Z ≥ Y + Z, and αX ≥ αY for each Z, X ≥ Y and α ≥ 0.

Upper Bound and Lower Bound Let (X ,≥) be an ordered vector space. A point X ∈ X is an

upper bound (resp. lower bound) of a subset M⊆ X ⇐⇒ Y ≤ X(resp.X ≤ Y ), for all Y ∈M.

Vector Lattices An ordered vector space (X ,≥) is said to be a vector lattice if and only if the least

upper bound of {X,Y } exists for each X,Y ∈ X . The least upper bound of {X,Y } is denoted by X ∨Y
and the greatest lower bound of {X,Y } is denoted by X ∧ Y .

The space Rm eqquiped with the pointwise order ≥ is a vector lattice. In the following we will give

some basic terminology and facts of (Rm,≥).

Pointwise Order Relation in Rm It is defined as X ≤ Y ⇐⇒ X(i) ≤ Y (i) for all X,Y ∈ Rm,

i = 1...m.

1Partially Ordered Set: A set (X ,≥) is partially ordered if ≥ is reflexive, antisymmetric, and transitive.

1



1.1. VECTOR LATTICES CHAPTER 1. INTRODUCTION

Lattice Operations and Identities in Rm For any two vectors X,Y ∈ Rm, the following identities

hold:

X ∨ Y = (max(X(1), Y (1)), max((X(2), Y (2)), . . . , max(X(m), Y (m))) (1.1)

X ∧ Y = (min(X(1), Y (1)), min(X(2), Y (2)), . . . , min(X(m), Y (m))) (1.2)

X+ = X ∨ 0 (1.3)

X− = (−X) ∨ 0 (1.4)

|X| = X ∨ (−X) (1.5)

X = X+ −X− (1.6)

|X| = X+ +X− (1.7)

The set of all positive elements of Rm is denoted by Rm+ = {X ∈ Rm | X ≥ 0}.

Subspaces of Rm A subset M⊆ Rm is a subspace of Rm if M satisfies the following conditions

1. if X and Y are two vectors in M, then X + Y is also in M

2. if t is a real number and X is in M, then tX is also in M

A base for a subspaceM is a collection of vectors {D1, . . . , Dk} in M that are linearly independent

and have the following property

X ∈M if and only if X =

k∑
i=1

λiDi, for some λi ∈ R (1.8)

The minimal subspace that contains the vectors {Z1, Z2, . . . , Zr} is denoted by span{Z1, Z2, . . . , Zr}
and is given by the following formula

span{Z1, Z2, . . . , Zr} = {
r∑
i=1

λiZi | λi ∈ R} (1.9)

Lattice Subspaces of Rm A subspaceM⊂ Rm is said to be a lattice subspace if (M,≥) is a vector

lattice on its own.

2



CHAPTER 1. INTRODUCTION 1.1. VECTOR LATTICES

Sublattices of Rm A subspace S is said to be a sublattice of Rm whenever X+ = X ∨0 ∈ S,∀ X ∈ S.

A base {Bi | i = 1, . . . , k} for a sublattice S is said to be a positive base whenever

X ∨ Y =

k∑
i=1

(λi ∨ µi)Bi, X =

k∑
i=1

λiBi, Y =

k∑
i=1

µiBi (1.10)

The minimal sublattice that contains the subspace Z is denoted by S(Z). In the following we will

give an algorithm to calculate S(Z).

For the following fix some linear independent vectors Z1, ..., Zr in Rm+ and Z = span{Z1, Z2, . . . , Zr}.
We first define Z =

∑r
j=1 Zj . That is

Z(i) =

r∑
j=1

Zj(i), ∀i ∈ {1, ..., m} (1.11)

For Z(i) > 0 we define the basic function β : {1, ...,m} → Rr+ as follows

β(i) = (
Z1(i)

Z(i)
,
Z2(i)

Z(i)
, . . . ,

Zr(i)

Z(i)
) (1.12)

The range of β is denoted as R(β) and the cardinality of R(β) is the number of elements of R(β)

denoted as cardR(β). R(β) is shown as

R(β) = {β(i) | i = 1, 2, . . . , m, Z(i) > 0} (1.13)

The subspace Z is a sublattice of Rm if and only if card R(β) = r. In this case, a positive basis

{B1, B2, . . . , Br} of Z is given by 
B1

...

Br

 = A−1


Z1

...

Zr

 (1.14)

A = [β(1), β(1), . . . , β(r)] (1.15)

Sublattice Algorithm

In the case where the input matrix Z is not a sublattice of Rm we have the following method to

generate S(Z).

1. Calculate the function β along with R(β) = {P1, P2, · · · , Pµ}, where the first r vectors are

linearly independent.

2. Then S(Z) = span{Z1, Z2, . . . , Zr, Zr+1, . . . , Zµ}, where the vectors Zr+k, k = 1, 2, . . . , µ−r
are defined as follows

Zr+k(i) = Z(i) if i ∈ Ir+k and Zr+k(i) = 0 if i 6∈ Ir+k,

3



1.2. OPTIONS AND STOCK PRICE MODELS CHAPTER 1. INTRODUCTION

where Ir+k = {i ∈ {1, 2, . . . , m} | β(i) = Pr+k} for each k = 1, 2, . . . , µ− r.

3. The positive basis of S(Z) is given by applying the formula 1.14.

Working Example : Consider the following three vectors Z1, Z2, Z3 in R5 and Z = span{Z1, Z2, Z3}.Z1

Z2

Z3

 =

1 1 0 4 1

2 3 0 0 1

1 0 1 1 1


The sum vector is Z = Z1 + Z2 + Z3 = (4, 4, 1, 5, 3) and the function β is defined as follows:

β(1) = (
1

4
,

2

4
,

1

4
),

β(2) = (
1

4
,

3

4
, 0),

β(3) = (0, 0, 1),

β(4) = (
4

5
, 0,

1

5
),

β(5) = (
1

3
,

1

3
,

1

3
),

We see that card R(β) = 5 and thus S(Z) = R5.

1.2 Options and Stock Price Models

This section presents the concept of derivatives, options, and hedging . Besides this, the section includes

Black-Scholes, and discrete times models. Let us begin with the concept of derivatives.

A derivative is a contract whose value is derived from the behavior of an underlying asset such as

stocks, currency or bond. It is assumed that they have existed for hundred of years in their primitive

form; however, rapid industrialization has resulted highly sophisticated form, and explosive increase in

its volume, use, and types. Therefore, a concept of security may have aroused in order to reduce the risk

associated with the derivatives. Hedging is one of strategies adopted to the financial market to minimize

the risk. A best example of hedging could be buying or selling of options.

1.2.1 Options

An option is a contract that one party sells to another. The holder of the option has a choice or

right to buy or sell the underlying asset at a given price( strike price) before or on the expiration date

4



CHAPTER 1. INTRODUCTION 1.2. OPTIONS AND STOCK PRICE MODELS

depending on the nature of the options. A traditional or vanilla European call and put option can be

exercised at maturity date . On the other hand, derivative like American call and put options can be

exercised at anytime during its expiration time period.

An option can be classified into path dependent and path independent. A path dependent option is

an exotic option whose value depends not only the price of the underlying asset but the entire path that

asset takes during its life. Asian, lookback, and barrier are the example of path dependent options. The

path dependent options can further be classified as soft path dependent, and hard path dependent. A

soft path dependent assumes the lowest or highest value in trading history or it could be a triggering

event such as the underlying touching a specific price. Barrier, and lookback options fall into this

category. A hard path dependent option takes into account the entire trading history of the underlying

asset. Options type in this group include Asian options. On the other hand, path independent options

do not depend on the path travelled during its period, rather its payoff solely depends on the price at

the expiration time. A prime example of this category is a European option where the price for the

buyer depends exclusively on the terminal price. This study has focused on both path dependent and

independent options. A path independent European call option and path dependents call options such

as knockout, lookback, Asian ( both geometric and Arithmetic Average) have been considered in this

study.

European Options

A European call option gives the owner the right to buy a stock at a given price at some time in

future (the maturity). It is strictly a right, but not an obligation. If the market price is below the strike,

the owner will not execute the transaction. On the other hand, if the market price is above the strike,

the owner can buy the stock at the strike and immediately sell it in the market. Thus, the payoff of a

European call option is

max(S −K, 0)

where S is stock price at maturity and K is the strike price. Similarly, a European put option gives the

owner the right to sell a stock at a given price at some time in the future.

The payoff of a European put option is

max(K − S, 0)

The figure 1.1 presents the payoff European put and call options. Beyond calls and puts, a wide

variety of other option exists. These are contracts that differ from traditional or vanilla put or call

options in their payment, structures, expiration dates, and strikes prices. In other words, exotic options

are variation of American and European option styles. In this section, we will briefly discuss the exotic

options: binary, Asian, barrier, and lookback.

5
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K

Stock Price 

P
a

y
o

ff
Call Option 

K 

Stocks 

P
a

y
o

ff

Put Options

Figure 1.1: Payoffs for European Calls and Puts .

Binary Options

The simplest exotic option is the binary or digital options. Unlike traditional call option, in which

final payout increase incrementally with each rise in the underlying asset price above the strikes, binaries

pay a finite lump-sum if the asset is above strike. In a similar manner, a buyer of binary option is paid a

finite lump-sum if the asset closes below the stated exercised price. In other words, this pays off nothing

if the asset price ends up below or above based on the nature of options.

It pays the fixed amount Q if the asset price is below the strike price, and nothing if it is above

the strike price. The payoffs for a binary call and put with initial price S, strike price K, and time to

maturity T are

C(S, K, T ) =

Q ST > K

0 ST ≤ K
(1.16)

P (S, K, T ) =

Q ST < K

0 ST ≥ K
(1.17)

Asian Options

The option that are fully path dependent and their payoffs depend on the history of random walk

of asset price via some sort of average which provides different type of cash-flow despite to the more

standard American and European options are known as Asian options. The options for both calls and

puts have two variations, fixed strike and floating strike options. The payoff of a fixed strike Asian

option is the positive difference between the average underlying price over the time period and the

predetermined fixed strike at maturity where as the payoff is the positive difference between the average

6
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underlying price over the time period and the underlying price at maturity. In this study, we will focus

on fixed strike geometric average options and arithmetic average options . The payoffs for a fixed strike

call and put with initial price S, strike price K, and time to maturity T are

C(S, K, T ) = max(0, Savg −K) (1.18)

P (S, K, T ) = max(0, K − Savg) (1.19)

where avg means geometric or arithmetic average based on their context.

Barrier Options

Barrier options are similar to plain vanilla calls and puts; however, the payoff depends whether the

underlying asset price reaches a certain level over the life time options. In other words, it only becomes

activated when underlying asset hits a present price level. In this sense, the value of the option jumps up

or down in leaps instead of changing the price in small increments. Examples of this options are foreign

exchange and equity market. These options can be classified as either knock-out options or knock-in

options. A knock-out option ceases to exist when the underlying asset price reaches a certain barrier; a

knock-in option comes into existence only when the underlying asset price reaches a barrier.In principle,

barrier option can be applied to any options. this paper analyzes knock-out barrier options that have

vanilla payoffs if the underlying asset does not hit the predetermined barrier level H. The payoffs for a

knockout call and put with initial price S, strike price K, and time to maturity T are

C(S, K, T ) =

max(0, ST −K) S < H

0 S ≥ H
(1.20)

P (S, K, T ) =

max(0, K − ST ) S > H

0 S ≤ H
(1.21)

Lookback Options

Lookback options are type of exotic options whose payoff depends on the optimal underlying asset’s

price occurring over the life of the option. The option allows the holder the advantage of knowing

history(lookback) to determine the payoff. There exists two kind of lookback options: with floating

strike and with fixed strike. Like standard European options, the option’s strike price is fixed; however,

the difference is that the price is not exercised at the maturity price. In this case, the payoff is maximum

difference between the optimal underlying asset price and the strike.

The payoff functions for the lookback call (LC) and the lookback put(LP), respectively, are given by:

C(S, K, T ) = max(0, Smax −K) (1.22)

7
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P (S, K, T ) = max(0, K − Smin) (1.23)

where as Smax is the asset’s maximum price during the life of the option, Smin is the asset’s minimum

price during the life of the option, and K is the strike price.

On the other hand, the payoff functions for the lookback call (LC) and the lookback put(LP) with

floating strike prices , respectively, are given by:

C(S, K, T )float = max(0, ST − Smin) (1.24)

P (S, K, T )float = max(0, Smax − ST ) (1.25)

where as Smax is the asset’s maximum price during the life of the option, Smin is the asset’s minimum

price during the life of the option, ST is the underlying asset’s price at maturity T . In this study, we

will discuss about the lookback call option with fixed strike price.

To sum-up, many exotic options are path- dependent while Plain-vanilla options are path independent;

their payoff only depends upon the price at maturity. In generals, America options are also path

dependent.

1.2.2 Hedging

The main purpose of options is hedging. A hedging is an investment to reduce the risk of adverse price

movement in an asset. A hedge consists of taking an offsetting position in a related security. In other

words, hedging is the strategy of reducing the sensitivity of a portfolio to the movement of an underlying

asset by taking opposite positions in different financial instruments. It is analogous to taking out an

insurance policy. In a classical hedging, put options are used for downside protection. Let’s illustrate

with an example. Sushma is an investor; her money is an index fund. She prefers the stocks market over

bonds because she knows that historical return is much greater though she has knowledge that stock

market is riskier than bond market. She is worried, but is willing to take some risk. At any chances of

losses, she wants(plans) to limit her losses to ten percent. To achieve the plan, she has two strategies.

The first one is to stop a loss order. Suppose price of Sushma’s fund is 100. If price drops below 90,

she will immediately sell it. This immediate selling is possible only under normal market condition.

However, in a crash situation, the prices drops so fast she will not able to sell her portfolio at 90; she

could lose much more. She wants insurance against it. So her another strategy will be buying a put

option with a strike price of 90 that will yield her desired protection. This simple examples illustrates

how option can be used as insurance. Insurance is just one applications of hedging with options (Chou

A. 1997) as the author explains the hedging concept in the unpublished Doctoral dissertation ’Static

Replication of Exotic Options’.

Most hedging strategies are classified as either dynamic or static hedging. Dynamic hedging requires

the hedge position to constantly be updated in response to market movements. Delta hedging is a popular

8
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dynamic hedging strategy for options that matches the option delta by constantly going long and short

on the underlying asset according to market movements. The primary drawbacks of delta hedging

include the constant need to monitor the markets and the transaction costs involved. Depending on the

movement of the stock the trader has to frequently buy and sell securities in order to avoid being under

or overhedged and will incur transaction costs causing lower returns.

Static hedging is the practice of taking a hedge position that has a similar maturity to investment

portfolio. In the context of this paper we are looking to hedge exotic with binary options that have

identical maturity. In this case, there is no need to constantly monitor the market and constantly buy

and sell assets as investors would do in a dynamic hedging strategy. The tradeoff in dynamic versus

static hedging is between accuracy and cost, as to perfectly delta hedge this would require infinitesimal

time periods between rebalancing. In this paper we outline an algorithm that determines a static

hedge for any exotic option, using binary options under binomial and trinomial tree assumptions. This

leads to situations where exotic options can have different payoffs at identical maturity prices and the

corresponding vanilla option hedge returns identical payoffs. In this case, one cannot create a perfect

hedge; however, by minimizing the error we can receive the benefits of static hedging over dynamic

hedging.

The next section will discuss about the most celebrated model in mathematical finance: the Black-

Scholes options pricing model. It has tremendous theoretical and practical implications. However, it has

some limitations.

1.2.3 Stock Price Models

Black-Scholes Model

The model is one of the most important concepts in modern financial theory. It was developed in

1973 by Fischer Black, Robert Merton, and Myron Scholes, and still has wide application and regarded

as one of the best ways of determining fair prices of options.

Basically, the Black-Scholes model requires five input variables: the strike price of an option, current

stock price S, the time to expiration T , the risk free rate r, and volatilityσ. With certain assumptions,

they derived the following European call (C) and put (P ) options :

C = SN(d1)−KN(d2) (1.26)

P = KN(−d2)− SN(−d1) (1.27)

where,

d1 =
ln( SK ) + (r − ρ+ σ2

2 (T − t)
σ
√
T − t

9
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and

d2 = d1 − σ
√
T − t

If the underlying asset pays continuously fixed dividend ρ, then the call and put options will be:

C = Se−ρ(T−t)N(d1)−Ke−ρ(T−t)N(d2) (1.28)

P = Ke−ρ(T−t)N(−d2)− Se−ρ(T−t)N(−d1) (1.29)

where N(.) is cumulative normal distribution with mean zero and standard deviation one.

There are multiple derivations of this formula. However, the most three important are differential

equation method, the binomial model , and risk neutral probability measure. The original derivations in

1973 used differential equation. In 1979, Cox, Ross, Rubinstein proposed binomial model, which has im-

portant practical application because it yields numerical solutions. Those with unfamiliar with stochastic

process or differential equations, binomial method provides a nice combinatorial interpretations of the

Black-Scholes model. Later, Phelim Boyle(1986) extended binomial model to trinomial model. The next

section will explain the binomial, and trinomial option pricing model.

Financial Mathematics or quantitative finance models the security price in terms of discrete or con-

tinuous time frame. Discrete time model assumes trades take place instantaneously, as a result its prices

depends upon finite number of states. This section focus the security price movement on discrete time

frame only.

Binomial Model

The binomial option pricing model provides a numerical methods for the valuations of options pro-

posed by Cox, Ross, and Rubenstien in 1979. The model uses a discrete rime (lattice based) model of

the price variation for an asset over time. The valuation of options is computed using a binomial tree, for

a number of time steps between the valuation and expiration dates. Each node in the lattice represents

a possible price of underlying assets at a given point in time. The working procedure involves iterative

approach, starting at each of the final nodes, and working backwards through the tree towards the first

node (valuation date). At each step, it is assumed that underlying asset will move up u or down d by

a specific factor per step of the tree. If S0 is the current price , then in the next period the price will

either be Su = uS0 or Sd = dS0, where u ≥ 1, 0 < d ≤ 1. The up and down factors which are calculated

using the volatility σ, time duration of step t (measured in years) are u = eσ
√
t , d = e−σ

√
t = 1

u . The

diagram below shows the price variation under binomial tree model.

10
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Price Variation under Binomial Tree Model

S0

dS0

uS0

d2S0

udS0

u2S0

1− p

p

p

1− p

p

1− p

Various options that are path dependent such as American options are prime examples of effective

applications of the model, which is still used today. It has similar assumptions to the Black-Scholes model,

with the binomial model providing a discrete time approximation to the continuous time processes that

the Black-Scholes equation models. It has been proved that as the number of time periods in the binomial

increases towards infinity the binomial tree approximation will converge to the Black-Scholes result with

the same parameters.

Trinomial Model

The trinomial model is an extension to the binomial model, and is considered as more advanced model.

In this model, the price increases by a factor of u with probability pu, decreases by a factor of d with the

probability pd or remains unchanged with probabilities pm = 1− pu− pd where as ud = 1. The diagram

below presents the price variation under trinomial tree model.
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Two- Step Trinomial Pricing Tree

S0

pd

pm

pu

Above trinomial tree is formulated as

S(t+ ∆t) =


S(t)u with probability pu

S(t) with probability 1 - pu − pd
S(t)d with probability pd

(1.30)

with its parameter u = eσ
√

2∆t , d = e−σ
√

2∆t, and transition probabilities pu, pd, pm

The trees provide an effective method of numerical calculation of option prices within Black-Scholes

share pricing model. The overall calculation of option price is similar to the binomial model where the

option value is calculated backwards from the final nodes according to price and probability of three

potential nodes instead of two. However, trinomial incorporates a third value: a zero change in value over

a time period. This assumption makes the model more relevant to real life situations as the underlying

asset may not change over a time period , such as a month a year. For instance, pricing exotic options

which are more complex than simple vanilla options, the trinomial model is considered more stable

and accurate. Both models are utilized in this paper in order to preform a complete evaluation of the

algorithm.

12



Chapter 2

Portfolio Insurance

In this chapter will discuss applications of the vector lattice theory to the minimum cost portfolio

insurance problem.

2.1 The problem

Generally, investors do not considered portfolio insurance as a policy, rather they take it as an invest-

ment strategy. In other words, it is a hedging strategy developed to limit the losses an investor might

face from declining stock index. In practices, Investors want to balance stocks and options on stocks to

achieve a risk free portfolio. For instance, buying an index put option is one way to create a risk free

or less risk associated portfolio. This approach allows an investor to preserve the upside gains but limit

downside risk. Therefore, they might use Portfolio insurance when the market direction is uncertain or

volatile.

The concept of portfolio insurance was originated by Hayne Leland when investors dropped out of the

market as they foreseen their investment would be at risk due to highly volatile market. Hayne Leland

and Mark Rubinstein in 1976 developed strategies to cope with this issue. Then, they began offering

a portfolio insurance service. This service provided investors to hedge against risk. For example, with

enough put options at the right price, the profit from selling the stocks can offset most or all of the losses

from a bad market swing. However, it is not free from drawback. It costs money to buy put options. If a

portfolio does not move downward, the option’s price will reduce the profit. Therefore, the stockholders

want to pay the minimum cost to buy the insurance in order to maximize the profit.

Minimum- cost portfolio insurance is an investment strategy that enables an investor to avoid losses

and capture gains of a payoff of a portfolio at minimum cost. The next section will explains under

which conditions there is an existence of the minimum-cost portfolio insurance. For more details on this

problem we refer the reader to (1).

13
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2.2 Existence results

We will denote with M the asset span and we assume that M is a subspace of Rs.

Theorem 1 The minimum-cost insured portfolio exists and is price independent for every portfolio and

at every floor if and only if the asset span is lattice-subspace of Rs. In this case, the minimum -cost

insured portfolio θk satisfies

X(θk) = X(θ) ∨M k

Proof Assume that minimum cost insured portfolio exist and is price independent . For any portfolio

η such that X(η) ≥ X(θ) ∨ k, we have that p.η ≥ p.(θ)k for every arbitrage -free price vector p. By

Lemma 2.1, X(η) ≥ X(θ)k. This implies payoff X(θ)k is the supremum of X(θ) and k in M.

For any two arbitrary payoffs y1 and y2 in , we need to show that there exists supremum y1 ∨M y2.

The simple lattice identity y1 ∨M y2 = [(y1 − y2 + k) ∨M k] + y2 − k proves that supremum exists .

Hence, M is a lattice subspace.

Conversely, if the asset span M is a lattice-subspace, then the supremum X(θ) ∨M k exists for every

portfolio (θ) and every k. Now, let the portfolio (θ)k) be such that X(θk) = X(θ) ∨M k. Then, for

every portfolio η satisfying X(η) ≥ X(θ) ∨ k, we have that X(η) ≥ X(θ)k. This inequalities implies

p.η ≥ p.(θ)k for every arbitrage-free price vector p. Consequently, the portfolio (θk) is the minimum cost

insured portfolio for every arbitrage free price. This ends the proof of the theorem.

The above theorem requires that the asset span should be lattice subspace for the existence of price-

independent minimum-cost portfolio insurance. However, there is still a question in which condition the

asset span will be a lattice subspace. The following theorem (by Abramovich-Aliprantis-Polyrakis, 1994)

reveals the requirement for the asset span M to be a lattice subspace. We will present this theorem

without proof.

Theorem 2 The asset span M is a lattice subspace of Rs if and only if there is fundamental set of

states.

Before presenting a method of finding the minimum-cost insured portfolio, we will describe a relation

of contingent claims y1, y2 ∈ Rs in a fundamental set of states F .

For a fundamental set of states F and two contingent claims y1, y2 ∈ Rs, y1 ≥F y2 if y1 dominates y2

in the fundamental states. That is , y1 ≥F y2 if y1 for every state s ∈ F .

Similarly , we write y1 =F y2 if y1, if y1 and y2 are the same in the fundamental states. Here, we will

only state the following theorem.

14
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Theorem 3 If F = {s1, s2, ...., sN is a fundamental set of states and y1, y2 are payoffs in the asset span

M, then y1 ≥ y2 if and only if y1 ≥F y2

The next theorem emphasis to the fundamental set of states for the minimum cost portfolio insurance.

It says that if there exists a fundamental set of states, then only the fundamental states are relevant for

the minimum-cost portfolio insurance .

Theorem 4 Suppose that there exists a fundamental set of states F for the asset span M. Then for

every arbitrage- free price system p and for every portfolio θ and floor k , the minimum- cost insured

portfolio θk is the unique portfolio that replicates the insured payoff X(θ) ∨ k in the fundamental states.

That is ;

X(θk) =F X(θ) ∨ k

The portfolio θk is the solution to the equation

XF (θk) =F X(θ) ∨ k

that is ,

θk = X−1
F [X(θ) ∨ k]F

Proof If there exists a fundamental set of states , then theorem 2 implies that the asset span M is a

lattice subspace. If M is a lattice subspace, then applying theorem 1, the minimum cost insured portfolio

satisfies X(θk) = X(θ) ∨M k. Now, wee need to show FX(θ) ∨ k = X(θ) ∨M k.

Let z ∈M =⇒ z =F X(θ)∨ k. We note here that XF is non-singular which implies that payoff always

exists and unique.

Let us verify z is the supremum of X(θ) and k relative to the asset span M. First, let us claim that z

is an upper bound of X(θ) and k. Indeed , since z =F X(θ)∨ k , it follows that z ≥F X(θ) and z ≥F k,

and so from theorem 3, we can infer that z ≥ X(θ) and z ≥ k in M. z is the least upper bound of X(θ)

and k in M. let y ∈ M satisfy y ≥ X(θ) and y ≥ k. Then, y ≥ X(θ) ∨ k, and hence y ≥F X(θ) ∨ k.

Consequently y ≥F z . Now, theorem 3 implies y ≥ z. Therefore, z is the supremum X(θ) ∨M k. This

completes the theorem.

Working Example We consider two securities with payoffs in three states x1 = (1, 1, 1), x2 = (1, 1, 1).

We will compute minimum-cost insured portfolio at every arbitrage- free price.[
X1

X2

]
=

[
1 1 1

0 1 2

]

15
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The matrix whose columns are the components of the vectors X1, X2y1

y2

y3

 =

1 0

1 1

1 2


Here, {y1 = (1, 0), y3 = (1, 2)} is fundamental set because

(1, 1) = 1
2 (1, 0) + 1

2 (1, 2) i.e. there exist non negative scalars 1
2 , 1

2 , such that X(s) =
∑N
j=1 α

s
ix(si)

, s /∈ F , αi ≥ 0. Therefore, M is lattice subspace. The contingent x2 ∨ 1 is not marketed since it does

not belong to asset span. We can show that minimum cost insured portfolio (1, 1
2 ) will create maximum

payoff x2 ∨M 1 = (1, 3
2 , 2).
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Chapter 3

Hedging Algorithm

In this chapter, we will present a static hedging algorithm based. Our algorithm is based on the

following elegant result of Ross.

Theorem 5 (Ross Theorem, (9)) In the discrete model, the payoff of all path independent options

coincide with the sublattice generated by 1 and ST

3.1 Static Hedging Algorithm

We will develop an algorithm that generates a portfolio of binary options written on a primary security

S that can be used to hedge statically an arbitrary option Z. We assume here that the underlying asset

price S at period t is modelled as a vector St = (St(1), ..., St(m))′ ∈ Rm, where m is the number of end

states. we will get the price vector at period t using binomial or trinomial tree model.

We also denote with 1 = (1, ..., 1︸ ︷︷ ︸
m

)′ the returns of of a riskless bond with zero interest rate.

At the terminal period t = T , Matrix of returns of returns is modeled as below:

M = [1 ST ] =


1 ST (1)

1 ST (2)
...

...

1 ST (m)

 (3.1)

A positive basis X1, ..., Xn for SM can be calculated by the sublattice algorithm explained in the

second chapter.

PBM = [X1, · · · , Xn] =


X1(1) . . . Xn(1)

...
. . .

...

X1(m) · · · Xn(m)

 (3.2)
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We denote here that Xi(j) ∈ {0, 1} for each i = 1, .., n, j = 1, ...,m and thus each Xi can be viewed

as the terminal payoff of a suitable portfolio of binary options. After calculating the positive basis we

find the best approximation of the target option with a portfolio ϑ = (θ1, ..., θn)′ of the binary options

X1, ..., Xn. The portfolio value V ϑ at the terminal period t = T is given by the following formula

V ϑ = PBM · ϑ =

n∑
j=1

θjXj (3.3)

For any Z ∈ Rm, let PSM [Z] be the orthogonal projection of Z onto SM , that is

PSM [Z] = argmin{||Z −W ||2 | W ∈ SM}, (3.4)

Then V ϑ := PSM [Z] and the portfolio ϑ can be calculated by the following formula.

ϑ = (PB′MPBM )−1 · PB′M · Z (3.5)

The corresponding hedging error is calculated as follows

RMSE = ||V ϑ − Z||2 (3.6)

3.2 Working Examples

To illustrate the algorithm, we will use the example of a geometric average fixed strike Asian call with

strike K = 55. The payoff of this option is calculated using the geometric mean of the underlying price

over time with payoff

GAC(S, K, T ) = max(0, Save −K) (3.7)

Binomial Model

50

40

30

60

70

60

90
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Z =


max(0,

3
√

50 ∗ 70 ∗ 90− 55)

max(0,
3
√

50 ∗ 70 ∗ 60− 55)

max(0,
3
√

50 ∗ 40 ∗ 60− 55)

max(0,
3
√

50 ∗ 40 ∗ 30− 55)

 =


13.04

4.44

0

0

 (3.8)

The input matrix M for the algorithm containing all the asset prices at maturity and the returns of

the risk free bonds is

M =


1 90

1 60

1 60

1 30

 (3.9)

Using the sublat.m function we calculate the corresponding positive basis for M as

PBM =


1 0 0

0 1 0

0 1 0

0 0 1

 (3.10)

SM = span{(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 0, 1)} (3.11)

Z /∈ SM (3.12)

The approximation using PBM is determined by

ϑ = (PB′MPBM )−1 · PB′M · Z (3.13)

V ϑ = PBM · ϑ (3.14)

with the resulting values

ϑ =

13.04

2.22

0.00

 (3.15)

V ϑ =


13.04

2.22

2.22

0

 (3.16)
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RMSE = 1.5698 (3.17)

Trinomial Model

The trinomial option pricing model, proposed by Phelim Boyle in 1986, is considered to be more

accurate than the binomial model. Unlike binomial model as explained in the first chapter, in this

model the price increases by a factor of u with probability pu, decreases by a factor of d with the

probability pd or remains unchanged with probabilities pm = 1−pu−pd. The fig 3.2 and diagram below

reveal how the trinomial tree generates the underlying asset price at different time periods.

0 1 2 3 4 5 6

PERIOD

TRINOMIAL

CloseHelp

Tree Visualization

Visualization

Table

Diagram

Plot

Selection

Path

Node and Childr...

Start Time End Time Path 1 Path 2

Figure 3.1: Each Node Shows Asset Price Under Trinomial Tree
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50

40

30

40

60

50

40

50

70

70

60

70

90

Z =



max(0,
3
√

50 ∗ 70 ∗ 90− 55)

max(0,
3
√

50 ∗ 70 ∗ 70− 55)

max(0,
3
√

50 ∗ 70 ∗ 60− 55)

max(0,
3
√

50 ∗ 50 ∗ 70− 55)

max(0,
3
√

50 ∗ 50 ∗ 50− 55)

max(0,
3
√

50 ∗ 50 ∗ 40− 55)

max(0,
3
√

50 ∗ 40 ∗ 60− 55)

max(0,
3
√

50 ∗ 40 ∗ 40− 55)

max(0,
3
√

50 ∗ 40 ∗ 30− 55)


=



13.04

7.57

4.44

0.93

0

0

0

0

0


(3.18)
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The input matrix M for the algorithm containing all strike prices at maturity and the returns of the

risk free bonds is

M =



1 90

1 70

1 60

1 70

1 50

1 40

1 60

1 40

1 30


(3.19)

Using the sublat.m function we calculate the corresponding positive basis for M as

PBM =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(3.20)

SM = span{(1, 0, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 1, 0, 0, 0, 0, 0), . . . , (0, 0, 0, 0, 0, 0, 0, 0, 1)} (3.21)

Z /∈ SM (3.22)

The approximation using PBM is determined by

ϑ = (PB′MPBM )−1 · PB′M · Z (3.23)

V ϑ = PBM · ϑ (3.24)

22



CHAPTER 3. HEDGING ALGORITHM 3.3. USING EUROPEAN OPTIONS

with the resulting values

ϑ =



13.04

4.25

2.22

0

0

0


(3.25)

V ϑ =



13.04

4.25

2.22

4.25

0

0

2.22

0

0


(3.26)

RMSE = 1.8827 (3.27)

3.3 Using European Options

The positive base PBM generated by the algorithm is the basis for all possible payoffs of a portfolio of

binary options on the underlying however it is also possible to replicate the same payoffs with European

options. Under the same strike price and maturity assumptions both portfolios will separate states at

the same paths and can replicate the same payoff space.

Example

To use the previous example, in the binomial case we have the target payoffs Z and the matrix M

containing all the asset prices at maturity and the returns of the risk free bonds

Z =


13.04

4.44

0

0

 (3.28)
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M =


1 90

1 60

1 60

1 30

 (3.29)

Using the sublat.m function we calculate the corresponding positive basis for M as

PBM =


1 0 0

0 1 0

0 1 0

0 0 1

 (3.30)

The estimation using PBM results in the approximation

ϑ =

13.04

2.22

0.00

 (3.31)

V ϑ =


13.04

2.22

2.22

0

 (3.32)

Now we illustrate that the same hedging portfolio V ϑ can be achieved using the returns X of a

portfolio of binary or European options. The strike prices K(i) for the options are the unique values

from the set of the midpoints between every ST (i) and ST (i+ 1). When ST (i+ 1) does not exist for the

final node we use a value of 0. The strike prices are the same for both portfolios and are

K = [75, 45, 15] (3.33)

For the portfolio of binary options we have

XB =


100 100 100

100 100 0

100 100 0

100 0 0

 (3.34)

ϑB =

0.0000

0.0222

0.1082

 (3.35)
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V ϑB =


13.04

2.22

2.22

0

 (3.36)

For the portfolio of European options we have

XE =


75 45 15

45 15 0

45 15 0

15 0 0

 (3.37)

ϑE =

0.0000

0.1480

0.4253

 (3.38)

V ϑE =


13.04

2.22

2.22

0

 (3.39)

We have shown that using either binary or European options result in the same hedge and both can

be used for this purpose. In this paper binary options are considered due to their simplicity as they

return Q ∈ {0, 100} ; however in practice European options have many additional benefits such as

increased liquidity. As the algorithm is not directly concerned with the options themselves; it is left to

the individual to determine the best way to form the hedge according to their needs.

3.4 Delta Hedging

We here present the delta hedging strategy though it has not been applied to analyze the RMSE error.

ϑDH = [ϑ1, ϑ2, . . . , ϑT−1] (3.40)

25



3.4. DELTA HEDGING CHAPTER 3. HEDGING ALGORITHM

Example

S0, 1

S1(2), 1

S2(4), 1 Z(4)

S2(3), 1 Z(3)

S1(1), 1

S2(2), 1 Z(2)

S2(1), 1 Z(1)

As we are only concerned with the final error at T and there are no restrictions on [θ1, θ2, . . . , θT−1]

we only need to calculate the final delta hedging portfolio θT−1. This is determined by going to every

ST−1(i) node and calculating the optimal portfolio to approximate the Z(i) paths from that point. Here

we show the calculation for the first portfolio at S1(1)

XS1(1) =

[
1 S2(1)

1 S2(2)

]
(3.41)

ZS1(1) =

[
Z(1)

Z(2)

]
(3.42)

Using the previous formulas to solve for theta

ϑ1(1) = (X ′S1(1) ·XS1(1))
−1 ·X ′S1(1) · ZS1(1) (3.43)

XS1(1) · ϑ1(1) ≈ ZS1(1) (3.44)

In this case this calculation would be done again at S1(2) and the combined portfolio payoffs at every

point ST (i) would form the delta hedge payoffs. The next section presents simulations of the numerical

results.
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Chapter 4

Findings and Conclusions

The final chapter simulates the numerical results, followed by conclusions and recommendations. In this

chapter, the RMSE errors have been computed and analyzed based on binomial and trinomial model

under the static hedging strategy.

4.1 Numerical Results

In this section, we will evaluate root mean square error(RMSR) between payoffs of the target option

in each terminal state and payoffs of replicating portfolio. For this objective, we will compute and an-

alyze static hedging errors for twelve months maturity period, and these errors will be used to evaluate

hedging performance. Based on the results, an appropriate hedging strategy would be recommended for

option type considered in the study. The research consists of European call options, knockout barrier

call options, lookback call option (LC), and both Geometric Asian Call(GAC) and Arithmetic Asian

call(AAC) options with twelve months maturity and rollover period N = 6, 12, 14 under the variation

of sigma and strike price. The default values for underlying tree are initial price S0 = 50, strike Price

K = 65, knockout level H = 80, and volatility = 0.35. The tables and plots below present the static

RMSE error of the underlying assets under Binomial and Trinomial model.

From tables 4. 1 and 4.2, it is observed that the RMSE of all options increase varying sigma under

default option condition. It means that hedging performance declines in the market state with high

volatility. The plot 4.1 shows that the RMSE of the options increases as the increase of rollover period .

Comparing the average errors of underlying assets, the lookback and arithmetic Asian call(AAC) options

have the highest figure as 6.0989, 6.919, 7.0489 and 2.7725, 3.2659, 3.3389 followed by GAC and knockout

as 2.4151, 2.8922, 2.9632 and 0.6961, 1.0450, 1.1803 at the respective rollover period N = 6, 12, 14 which

shows an increase in error as the path moves forward. However; the table 4.3 shows that there is no

effect on Euro call option either varying sigma or enhancing tree lengths implying perfect hedging.
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Table 4.1: Trinomial Alg RMSE at Different Paths varying σ

σ GAC σ Knockout
N = 6 N = 12 N = 14 N = 6 N = 12 N = 14

0.10 0.0000 0.0079 0.0123 0.10 0.0000 0.0638 0.0684
0.15 0.1116 0.2545 0.2744 0.15 0.4113 0.6228 0.6489
0.20 0.5873 0.8249 0.8584 0.20 0.9696 1.0132 1.2810
0.25 1.2576 1.5915 1.6398 0.25 0.9171 1.0653 1.1701
0.30 2.0477 2.4864 2.5502 0.30 1.6910 1.8679 1.5301
0.35 2.9234 3.4827 3.5651 0.35 0.0000 0.9797 0.6633
0.40 3.8764 4.5747 4.6771 0.40 0.2683 1.5806 1.1917
0.45 4.9095 5.7606 5.8883 0.45 0.7530 2.2123 1.7451
0.50 6.0228 7.0474 7.2039 0.50 1.2552 0.000 2.3247

RMSE Sum 21.7363 26.0306 26.6695 RMSE Sum 6.2655 9.4057 10.6233
Mean 2.4151 2.8922 2.9632 Mean 0.6961 1.0450 1.1803
S.D. 2.1675 2.5019 2.5526 S.D. 0.5769 0.7554 0.6658

Table 4.2: Trinomial Alg RMSE at Different Paths varying σ

σ Lookback σ AAC
N = 6 N = 12 N = 14 N = 6 N = 12 N = 14

0.10 0.2138 0.3342 0.3406 0.10 0.0000 0.0144 0.0196
0.15 1.0442 1.2694 1.3145 0.15 0.1699 0.3093 0.3291
0.20 2.2564 2.5815 2.6703 0.20 0.7089 0.9430 0.9759
0.25 3.6182 4.2366 4.2732 0.25 1.4559 1.7845 1.8317
0.30 5.3382 5.9892 6.1571 0.30 2.3342 2.7718 2.8354
0.35 7.3238 8.0202 8.1867 0.35 3.3250 3.8862 3.9693
0.40 9.3736 10.3988 10.5803 0.40 4.4173 5.1287 5.2346
0.45 11.5854 13.1431 13.3561 0.45 5.6108 6.5095 6.6429
0.50 14.1372 16.2980 16.5614 0.50 6.9310 8.0461 8.2122

RMSE Sum 54.8908 62.271 63.4402 RMSE Sum 24.953 29.3935 30.0507
Mean 6.0989 6.919 7.0489 Mean 2.7725 3.2659 3.3389
S.D. 4.8556 5.5020 5.5855 S.D. 2.4749 2.8366 2.8905

Close observation of the tables, we find that there is not only increment in the average errors but also

rise in the variation of the errors as rollover path increases. The lookback and AAC show the highest

variability in the error indicating more fluctuation in their option prices compared to the errors of GAC

and knockout call option, which means latter options have consistency in their price.

Analyzing the plots 4.1, 4.2 and the tables, varying sigma at rollover periodsN = 6, N = 14, we observe

that GAC, AAC and LC errors follow the conic paths creating more errors gap where as knockout errors

do not follow the certain rule. The sum at the respective periods of GAC, knockout, LC, AAC are

21.7363, 26.6695, and 6.2655, 10.6233, and 54.8908, 63.4402 and 24.953, 30.0507. The absolute sum error

differences are relatively high in lookback, AAC options as 8.5494 and 5.0977 and in GAC and knockout

are as 4.9332, and 4.3578. The tables reveal that for the shorter tree length (period) the options possess

28



CHAPTER 4. FINDINGS AND CONCLUSIONS 4.1. NUMERICAL RESULTS

Table 4.3: Trinomial Alg RMSE at Different Paths

σ Euro
N = 6 N = 12 N = 14

0.10 0.0000 0.0000 0.0000
0.15 0.0000 0.0000 0.0000
0.20 0.0000 0.0000 0.0000
0.25 0.0000 0.0000 0.0000
0.30 0.0000 0.0000 0.0000
0.35 0.0000 0.0000 0.0000
0.40 0.0000 0.0000 0.0000
0.45 0.0000 0.0000 0.0000
0.50 0.0000 0.0000 0.0000

RMSE Sum 0.0000 0.0000 0.0000
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Figure 4.1: RMSE errors of the options while varying σ under Trinomial model .

small absolute error difference. For instance, the options have respective absolute error difference as

0.6389,1.1276 , 1.1692, 0.6572 for the rollover periods N = 6 to 12.

These figures are relatively less compared to the errors of the period N = 6 to 14. Now, lets look upon

theirs standard deviations (sd) errors at the rollover periods N = 6, N = 14. The corresponding sd errors

are as 2.2675, 2.5526 and 0.5769, 0.6658 and 4.8556, 5.5855 and 2.4749, 2.8905 and absolute sd errors are

as 0.2851 0.0889, 0.7299, 0.4156. These figures implies that knockout and GAC have less effect of the

rollover while lookback and AAC show higher rollover influence as compared to knockout and GAC call

options. In other words, lookback and AAC call options reflect higher sensitiveness towards the rollover

while varying sigma. The plot 4.2 is an example of how the hedging errors sensitize when varying sigma

and enhancing rollover paths. In both GAC and lookback options, we see that there exists a wide gap

between rollover period N = 6, 12 where as there is very small gap between N = 12, 14. This means
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Figure 4.2: Hedging error when varying σ in the Trinomial model .

static hedging performs well relatively to the shorter period.

So far, we have discussed the rollover effect when varying sigma. Now, lets explore on the rollover

effect when varying strike prices K. Referring the tables 4.4 and 4.5, the corresponding sum errors

of assets GAC, knockout, LC and AAC at strike prices 10, 50, 100 and rollover periodN = 6 are

6.3671, 4.9795, 0.0442,and 12.9278, 2.8513, 0.0000 ,and 9.38109.3810, 3.2204, and 6.5472, 5.2465, 0.4390.

We can observe the similar pattern at roll over period N = 12, 14. This patterns reveals that the RMSE

of the underlying assets decreases varying K indicating better approximation of the options price as the

exercised prices enhance. However, the average sum error increases as the tree lengths spans showing

declining performance of the hedging when rollover period increases.

The table 4.4 and 4.5 shows that the respective sum errors at the rollover period of N = 6 and 14

of the assets GAC, knockout, LC and AAC are 37.6954, 39.675, 73.8057, 40.8337 and 43.7497, 43.6684,

83.2711, 47.5677 , and their corresponding absolute sum errors difference between the period are 6.0543,

3.9934, 9.4654, 6.734 . This shows that LC and AAC have the highest absolute sum error difference.

From the tables, we observed the corresponding mean error of the assets at rollover period N = 6 and 14

are 3.7695, 3.9675, 7.3805, 4.0833 and 4.3749, 4.3668, 8.3271, 4.7567, yielding absolute mean difference as

0.6054, 0.3993, 0.9466, 0.6734. Like absolute sum difference, the LC and AAC have the highest absolute

mean error difference. However, the absolute sd errors difference of the respective assets at the same

rollover period are 0.1356, 0.3056, 0.1563, 0.0552 showing the highest error variation in knockout and

LC. This implies these assets have more fluctuations in the price error.

Like varying sigma, there is no effect on Euro call option either varying K or increasing tree lengths.

In order to avoid the repetition of the table, the table is not included because we get all RMSE value as
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zero at the rollover periods N = 6, 12, 14.

The plot 4.3 shows the gradually decreasing errors of the underlying assets while varying K; however,

their(except euro call option) errors are relatively constant at some intervals of the strike prices. This

means RMSE errors do not change for some strike prices. The plot 4.4 reveals the rollover effect of

lookback and GAC at period N = 6, 12, 14 which tells us that small(less) errors for the small(less)

rollover period and higher errors for higher rollover period.

Now, let us analyze the rollover effect when varying strike price and sigma between the N = 6 and

N = 14. Varying sigma for the period, we observed the absolute sum error difference of the asset

GAC, knockout, LC and AAC are as 4.9332, 4.3578, 8.5494, 5.0977. On the other hand, we got the

corresponding absolute sum error difference as 6.0543, 3.9934, 9.4654, 6.734 while varying K. These

figures implies that the knockout call option accumulates less error while varying K where as GAC, LC

and AAC generate less errors while varying sigma for the same roll over period. It may be concluded that

static hedging performs well on Knockout options when strikes price increases. However, the hedging

could be appropriate for GAC, LC and AAC while varying sigma.

Varying sigma, the respective absolute mean error difference and the absolute sd error difference of

the asset GAC, knockout, LC and AAC between the period N = 6 and N = 14 are 0.5481, 0.4842,

0.95, 0.5664 and 0.3851, 0.0889, 0.7299, 0.4156. While Varying K, the corresponding absolute mean

error difference and the absolute sd error difference of the assets for the same period are 0.6054, 0.4013,

0.9446, 0.6734 and 0.1556, 0.3056, 0.1563, 0.0552. These figures shows that GAC and AAC accumulates

higher mean error difference while varying K. On the other hand, Knockout and LC collects greater

mean difference while varying sigma. Now, comparing the absolute sd error difference for same period

while varying strike price and sigma, knockout shows higher errors fluctuations while varying K where

as GAC , LC , AAC shows a greater errors fluctuations while varying sigma.

The researcher observed that Binomial model reflects the same characteristics as trinomial model. Un-

der the binomial model while varying σ, the table 4.6 and 4.7 disclose that lookback and arithmetic Asian

call(AAC) options have the highest mean errors as 3.0669,3.5122 ,3.5722 and 1.0978, 1.4274, 1.4738 fol-

lowed by GAC and knockout as 0.9422, 1.2667,1.3131 and 0.7187, 0.8164,0.5738 at the respective rollover

period N = 6, 12, 14 which shows the increase in error as the path moves forward. Comparing these

figures with trinomial model(referring table 4.1 and 4.2), we found that the lookbackand and AAC also

yield the highest mean error as 6.0989, 6.919,7.0489 and 2.7725,3.2659, 3.3389 while GAC and knockout

have mean error as 2.4151,2.8922,2.9632 and 0.6961,1.0450,1.1803 showing trinomial model accumulating

larger figure. In both model, errors increase varying sigma that implies declining hedging performance

with high volatility.
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Table 4.4: Trinomial Alg RMSE at Different Paths varying K

K GAC K Knockout
N = 6 N = 12 N = 14 N = 6 N = 12 N = 14

10 6.3671 7.0032 7.0987 10 12.9278 13.7408 13.7885
20 6.3671 7.0031 7.0986 20 10.2576 11.1080 11.0094
30 6.3462 6.9652 7.0580 30 7.6370 8.5247 8.2969
40 5.9757 6.5586 6.6465 40 5.1300 6.0427 5.7161
50 4.9795 5.5359 5.6199 50 2.8513 3.7580 3.3861
60 3.6179 4.1687 4.2518 60 0.8713 1.8072 1.4714
70 2.2820 2.8444 2.9257 70 0.0000 0.1521 0.0000
80 1.2160 1.7772 1.8568 80 0.0000 0.0000 0.0000
90 0.4997 1.0196 1.0946 90 0.0000 0.0000 0.0000
100 0.0442 0.5334 0.0991 100 0.0000 0.0000 0.0000

RMSE Sum 37.6954 43.4093 43.7497 RMSE Sum 39.675 45.1335 43.6684
Mean 3.7695 4.3409 4.3749 Mean 3.9675 4.5133 4.3668
S.D. 2.5774 2.6199 2.7130 S.D. 4.8127 5.1108 5.1183

Table 4.5: Trinomial Alg RMSE at Different Paths varying K

K Lookback K AAC
N = 6 N = 12 N = 14 N = 6 N = 12 N = 14

10 9.3810 10.0370 10.1460 10 6.5472 7.2021 7.3001
20 9.3810 10.0370 10.1460 20 6.5472 7.2021 7.3001
30 9.3810 10.0370 10.1460 30 6.5408 7.1807 7.2762
40 9.3810 10.0370 10.1460 40 6.2112 6.8107 6.9007
50 9.3810 10.0370 10.1460 50 5.2465 5.8272 5.9139
60 7.7997 8.8422 8.9402 60 3.9613 4.5324 4.6164
70 6.4318 7.4778 7.6362 70 2.7126 3.2818 3.3639
80 5.2998 6.1387 6.3797 80 1.6999 2.2523 2.3322
90 4.1490 5.0907 5.2229 90 0.9280 1.4806 1.5568
100 3.2204 4.2899 4.3621 100 0.4390 0.9372 1.0074

RMSE Sum 73.8057 82.0243 83.2711 RMSE Sum 40.8337 46.7071 47.5677
Mean 7.3805 8.2024 8.3271 Mean 4.0833 4.6707 4.7567
S.D. 2.4304 2.2855 2.2741 S.D. 2.4692 2.5154 2.5244
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Figure 4.3: Hedging error when varying K in the Trinomial model .
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Figure 4.4: Hedging error when varying K in the Trinomial model .

33



4.1. NUMERICAL RESULTS CHAPTER 4. FINDINGS AND CONCLUSIONS

Table 4.6: Binomial Alg RMSE at Different Paths

σ Lookback σ AAC
N = 6 N = 12 N = 14 N = 6 N = 12 N = 14

0.10 0.0000 0.0394 0.0575 0.10 0.0000 0.0000 0.0000
0.15 0.3290 0.4567 0.4334 0.15 0.0000 0.0019 0.0177
0.20 0.8475 1.0908 1.1230 0.20 0.0000 0.1946 0.2168
0.25 1.6141 2.0051 2.0999 0.25 0.2138 0.5700 0.6048
0.30 2.7678 3.0168 3.0772 0.30 0.7072 1.0795 1.1233
0.35 3.8193 4.1335 4.2309 0.35 1.3038 1.6770 1.7352
0.40 4.8431 5.4660 5.5271 0.40 1.9324 2.3509 2.4188
0.45 6.0277 6.9743 7.0126 0.45 2.5417 3.0883 3.1678
0.50 7.3538 8.4276 8.6339 0.50 3.1813 3.8848 3.9802

RMSE Sum 27.6023 31.6102 32.1955 RMSE Sum 9.8802 12.847 13.2646
Mean 3.0669 3.5122 3.5722 Mean 1.0978 1.4274 1.4738
S.D. 2.6194 2.9607 3.0068 S.D. 1.2100 1.4211 1.4518

Table 4.7: Binomial RMSE at Different Paths varying σ

σ GAC σ Knockout
N = 6 N = 12 N = 14 N = 6 N = 12 N = 14

0.10 0.0000 0.0000 0.0000 0.10 0.0000 0.0000 0.0000
0.15 0.0000 0.0000 0.0069 0.15 0.0000 0.1802 0.0747
0.20 0.0000 0.1485 0.1722 0.20 0.0000 0.7058 0.7593
0.25 0.1067 0.4803 0.5178 0.25 1.1601 1.2829 0.6834
0.30 0.5462 0.9429 0.9891 0.30 0.0000 0.6695 0.5224
0.35 1.0675 1.4913 1.5462 0.35 0.1827 1.7031 1.0316
0.40 1.6454 2.1004 2.1701 0.40 1.0153 2.4706 2.0335
0.45 2.2307 2.7637 2.8461 0.45 1.6990 0.0000 0.0000
0.50 2.8841 3.4738 3.5700 0.50 2.4112 0.3361 0.0595

RMSE Sum 8.4806 11.4009 11.8184 RMSE Sum 6.4683 7.3482 5.1644
Mean 0.9422 1.2667 1.3131 Mean 0.7187 0.8164 0.5738
S.D. 1.0873 1.2767 1.3087 S.D. 0.8987 0.8472 0.6672
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Table 4.8: Binomial Alg RMSE at Different Paths varying K

K Lookback K AAC
N = 6 N = 12 N = 14 N = 6 N = 12 N = 14

10 5.9072 6.2310 6.2840 10 4.4262 4.8511 4.9145
20 5.9072 6.2310 6.2840 20 4.4262 4.8511 4.9145
30 5.9072 6.2310 6.2840 30 4.4262 4.8511 4.9142
40 5.9072 6.2310 6.2840 40 4.2894 4.6714 4.7281
50 5.9072 6.2310 6.2840 50 3.3571 3.7088 3.7633
60 4.3499 4.9232 5.0382 60 1.9238 2.3134 2.3667
70 3.0171 3.5100 3.6168 70 0.6464 1.1562 1.2092
80 1.8565 2.3915 2.5027 80 0.0000 0.4496 0.5039
90 1.3751 1.7172 1.7541 90 0.0000 0.1044 0.1632
100 0.2340 1.0143 1.1399 100 0.0000 0.0000 0.0156

RMSE Sum 40.3687 44.7112 45.4717 RMSE Sum 23.4953 26.9571 27.4932
Mean 4.0368 4.4711 4.5471 Mean 2.3495 2.6957 2.7493
S.D. 2.2343 2.1206 2.1023 S.D. 2.0373 2.1189 2.1272

Table 4.9: Binomial Alg RMSE at Different Paths varying K

K GAC K Knockout
N = 6 N = 12 N = 14 N = 6 N = 12 N = 14

10 4.3690 4.7870 4.8494 10 6.8246 13.0029 9.2942
20 4.3690 4.7870 4.8494 20 5.6170 10.8425 7.7407
30 4.3690 4.7857 4.8475 30 4.4094 8.6944 6.1928
40 4.2089 4.5804 4.6366 40 3.2018 6.5708 4.6559
50 3.2354 3.5946 3.6459 50 1.9942 4.5040 3.1456
60 1.8064 2.1454 2.2012 60 0.7866 2.5708 1.7058
70 0.4081 0.9542 1.0135 70 0.0000 0.8394 0.3575
80 0.0000 0.2823 0.3365 80 0.0000 0.0000 0.0000
90 0.0000 0.0028 0.0522 90 0.0000 0.0000 0.0000
100 0.0000 0.0000 0.0000 100 0.0000 0.0000 0.0000

RMSE sum 22.7658 25.9194 26.4322 RMSE sum 22.8336 47.0248 33.0925
Mean 2.2765 2.5919 2.6432 Mean 2.2833 4.7024 3.3092
S.D 2.0289 2.1355 2.1459 S.D. 2.5879 4.8519 3.4920
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Figure 4.5: Hedging error when varying σ in the Binomial model .
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Figure 4.6: Hedging error when varying K in the Binomial model .

4.2 Conclusion and Recommendation

After evaluating and comparing the RMSE errors of call options of the underlying asset under Binomial

and Trinomial model, the study divulge that knockout and GAC have shown less inclination towards the

rollover compared to the lookback and AAC despite their growth in the mean error and error variation

while enhancing the rollover periods. Therefore, we can replicate portfolio which will yield less error

in the option pricing. The less error in the pricing will not only motivate the investor to choose an

appropriate option but also insure their portfolio at minimum cost or suitable price. The replicated
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portfolios of GAC and knockout are not necessary to delta hedge as they have shown less rollover effect

for the shorter period. This obviously saves the money and time of the investors. However, for the

wide gap (rollover periods), the hedging could not be suitable plan for GAC and knockout as it yields

the greater mean error and error variation. We can understand that the replicated portfolios and its

options price would not escape from the errors. As a result, the investor would be reluctant to invest on

the derivatives though the same period could be larger for an investor or smaller for another; it totally

depends upon the investor risk taking strategy. Based on the above discussions, we conclude that static

hedging could be appropriate strategy for the options Euro, Knockout and GAC.

The following recommendations are purposed for the future and further research plan:

1. To enhance the computational efficiency of calculating positive basis of vector sub-lattice, a profi-

cient algorithm should be developed so that we can replicate the payoffs of bigger size tree under

different time modal.

2. To provide a theoretical background to our findings

3. To generalize this study to continuous time model.
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Appendix 

Matlab Functions

1 function [pb] = sublat(V)

2 % SUBLAT Determines the vector sublattice S(V) generated by the input

3 % matrix V.

4

5 if sum(any(V<0)) > 0

6 error('Only non -negative input vectors are admissable.')

7 end

8

9 Z = sum(V);

10 x = size(V);

11 r = x(1);

12 c = x(2);

13 mtrx = zeros(c, r);

14 i = 1;

15 j = 1;

16

17 if rank(V) < r

18 error('Input vectors must be linearly independent.')

19 end

20

21 for i = 1:r

22 for j = 1:c

23 mtrx(j, i) = V(i, j)/(Z(j) + realmin);

24 end

25 end

26
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27 card = length(unique(mtrx , 'rows'));

28

29 if r == card

30 zcomb = V;

31 pb = round(mtrx.' \ V, 10);

32 pb( ~any(pb ,2), : ) = [];

33 else

34 umtrx = unique(mtrx , 'rows', 'stable ');

35 X = umtrx.';

36 tol = 1e-10;

37 if ~nnz(X)

38 Xsub =[]; idx =[];

39 end

40 [Q, R, E] = qr(X,0);

41 if ~isvector(R)

42 diagr = abs(diag(R));

43 else

44 diagr = R(1);

45 end

46 r = find(diagr >= tol*diagr (1), 1, 'last');

47 idx=sort(E(1:r));

48 Xsub=X(:,idx);

49 Xsub = Xsub.';

50 enum = [Xsub;umtrx(find(ismember (1: length(umtrx), idx)==0) ,:)];

51 I = r+1: card;

52 zk = zeros(length(I), c);

53 i = 1;

54 j = 1;

55 for i = 1: length(I)

56 iind = find(ismember(mtrx ,enum(I(i) ,:),'rows'));

57 zk(i, iind) = Z(iind);

58 end

59 zcomb = [V;zk];

60 Z2 = sum(zcomb);

61 x2 = size(zcomb);

62 r2 = x2(1);

63 c2 = x2(2);

64 mtrx2 = zeros(c2 , r2);

65 i = 1;
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66 j = 1;

67 for i = 1:r2

68 for j = 1:c2

69 mtrx2(j, i) = zcomb(i, j)/(Z2(j) + realmin);

70 end

71 end

72 A = unique(mtrx2 , 'rows', 'stable ').';

73 pb = round(inv(A) * zcomb , 10);

74 pb( ~any(pb ,2), : ) = [];

75 pb=pb~=0;

76 end

77 end

1 function [err , DHerr , target , estimate , nopt , price] = statichedge(

treetype , vary , tp , NumPeriods , defsigma , defP , defK , KO , figc)

2 % STATICHEDGE Evaluates and graphs the performace of the static hedging

3 % algorithm in either the binomial or trinomial model under user

4 % specified parameters. Requires the sublat.m function included in the

5 % associated paper.

6

7 tic

8

9 warning('off','MATLAB:singularMatrix ')

10

11 if tp == 1

12 StartDates = 'Jan -01 -2018';

13 EndDates = 'Jan -31 -2018';

14 elseif tp == 3

15 StartDates = 'Jan -01 -2018';

16 EndDates = 'Mar -31 -2018';

17 elseif tp == 6

18 StartDates = 'Jan -01 -2018';

19 EndDates = 'Jun -30 -2018';

20 elseif tp == 12

21 StartDates = 'Jan -01 -2018';

22 EndDates = 'Dec -31 -2018';

23 else

24 error('Time period not recognized ')

25 end

26
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27 if strcmp(vary ,'sigma ')

28 ts = round(linspace (0.1, 0.5, 9), 2);

29 iter = length(ts);

30 tk = repelem(defK , iter);

31 elseif strcmp(vary ,'K')

32 tk = linspace (0.2, 2, 10).*defP;

33 iter = length(tk);

34 ts = repelem(defsigma , iter);

35 else

36 error('Variable type not recognized ')

37 end

38

39 opt = {'euro' 'GAC' 'knockout '};

40

41 err = zeros(length(ts), length(opt));

42 DHerr = zeros(length(ts), length(opt));

43

44 price = zeros(1, length(opt));

45

46 ind =1;

47 for ind = 1: length(opt)

48

49 type = opt{ind};

50

51 z = 1;

52 for z = 1:iter

53 Sigma=ts(z);

54 AssetPrice = defP;

55 K = tk(z);

56 ValuationDate = StartDates;

57 Maturity = EndDates;

58 Compounding = -1;

59 Rates = 0.02;

60

61 RateSpec = intenvset('Compounding ',Compounding ,'StartDates ', StartDates

,...

62 'EndDates ', EndDates , 'Rates ', Rates ,'

ValuationDate ', ValuationDate);

63 StockSpec = stockspec(Sigma , AssetPrice);
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64

65 if strcmp(treetype ,'bin') == 1

66 CRRTimeSpec = crrtimespec(ValuationDate , Maturity , NumPeriods);

67 CRRTree = c(StockSpec , RateSpec , CRRTimeSpec);

68 tree = CRRTree.STree;

69

70 price(ind) = 0;

71

72 [x y] = size(tree);

73 Ns = zeros(1, y);

74 i=1;

75 for i = 1:y

76 Ns(i) = length(tree{i});

77 end

78

79 pstates = zeros(NumPeriods +1, NumPeriods);

80 i=1;

81 j=1;

82 for i = 2: NumPeriods +1

83 for j =1:Ns(i)

84 pstates(j, i-1) = tree{i}(j);

85 end

86 end

87

88 endprice = repelem(tree{NumPeriods +1}, diag(fliplr(pascal(NumPeriods +1)

)) ');

89

90 npaths = length(endprice);

91 combos = permn ([1 2], NumPeriods);

92 countc = length(combos);

93 pathlist = zeros(countc , NumPeriods +1);

94

95 i=1;

96 for i = 1: countc

97 PH = treepath(CRRTree.STree , combos(i, :))';

98 pathlist(i, :) = PH;

99 end

100

101 pathlist = sortrows(pathlist , fliplr ([ linspace(1, NumPeriods +1,
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NumPeriods +1)]), 'descend ');

102

103 teuro = max(0, endprice -K) ';

104

105 tGAC = max(0, geomean(pathlist ')-K)';

106 if KO > K

107 [row , col] = find(pathlist >=KO);

108 else

109 [row , col] = find(pathlist <=KO);

110 end

111

112 tknockout = max(0, endprice -K) ';

113 tknockout(unique(row)) = 0;

114

115 if strcmp(type ,'euro') == 1

116 target = teuro;

117 elseif strcmp(type ,'GAC') == 1

118 target = tGAC;

119 elseif strcmp(type ,'knockout ') == 1

120 target = tknockout;

121 else

122 error('Option type error.');

123 end

124

125 i=1;

126 uniq = unique(endprice);

127 strikes = zeros(1, length(diff(uniq)));

128 for i = 1: length(diff(uniq))

129 strikes(i) = mean([uniq(i) uniq(i+1)]);

130 end

131

132 strikes = [sort(strikes , 'descend ') endprice(end) -1];

133

134 states = length(endprice);

135

136 pb = sublat ([ones(1, length(endprice)); endprice ]);

137

138 nopt = size(pb , 1);

139
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140 theta = mldivide(pb', target);

141 estimate = pb '* theta;

142 r=sqrt(sum(( target (:)-estimate (:)).^2)/numel(target));

143 err(z, ind) = r;

144

145 elseif strcmp(treetype ,'tri') == 1

146 TimeSpec = stttimespec(ValuationDate ,Maturity ,NumPeriods);

147 STTTree = stttree(StockSpec ,RateSpec ,TimeSpec);

148 tree = STTTree.STree;

149

150 [x y] = size(tree);

151 Ns = zeros(1, y);

152 i=1;

153 for i = 1:y

154 Ns(i) = length(tree{i});

155 end

156

157 a = 1;

158 b = 1;

159 c = 1;

160 n = NumPeriods;

161 soln = [a b c];

162 storecf = cell(1, n+1);

163 storecf {1} = 1;

164 storecf {2} = soln;

165 i = 1;

166 j = 1;

167 for i = 1:n-1

168 soln = conv(soln ,[a b c]);

169 storecf{i+2} = soln;

170 end

171

172 combos = permn ([1 2 3], NumPeriods);

173 countc = length(combos);

174 pathlist = zeros(countc , NumPeriods +1);

175

176 i=1;

177 for i = 1: countc

178 PH = trintreepath(STTTree , combos(i, :))';
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179 pathlist(i, :) = PH;

180 end

181

182 endprice = pathlist(:, NumPeriods +1);

183 npaths = length(endprice);

184

185 teuro = max(0, (endprice -K) ') ';

186

187 tGAC = max(0, geomean(pathlist ')-K)';

188

189 if KO > K

190 [row , col] = find(pathlist >=KO);

191 else

192 [row , col] = find(pathlist <=KO);

193 end

194

195 tknockout = max(0, endprice -K);

196 tknockout(unique(row)) = 0;

197

198 if strcmp(type ,'euro') == 1

199 target = teuro;

200 elseif strcmp(type ,'GAC') == 1

201 target = tGAC;

202 elseif strcmp(type ,'knockout ') == 1

203 target = tknockout;

204 else

205 error('Option type not recognized ');

206 end

207

208 i=1;

209 uniq = unique(endprice);

210 strikes = zeros(1, length(diff(uniq)));

211 for i = 1: length(diff(uniq))

212 strikes(i) = mean([uniq(i) uniq(i+1)]);

213 end

214

215 strikes = [sort(strikes , 'descend ') endprice(end) -1];

216

217 states = length(endprice);
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218

219 pb = sublat ([ones(length(endprice), 1) endprice]');

220

221 nopt = size(pb , 1);

222

223 theta = mldivide(pb', target);

224 estimate = pb '* theta;

225 r=sqrt(sum(( target (:)-estimate (:)).^2)/numel(target));

226 err(z, ind) = r;

227

228 up = STTTree.Probs {1}(1);

229 neutral = STTTree.Probs {1}(2);

230 down = STTTree.Probs {1}(3);

231

232 probmat = combos;

233 probmat(probmat == 1) = up;

234 probmat(probmat == 2) = neutral;

235 probmat(probmat == 3) = down;

236

237 mprob = prod(probmat , 2);

238 exvalue = cell(1, NumPeriods +1);

239 exvalue{end} = (target .* mprob)';

240 i=1;

241 j=1;

242 for i = 1: length(exvalue)-1

243 PHval = zeros (3^( NumPeriods -i) , 1);

244 for j = 1: length(PHval)

245 PHval(j) = sum(exvalue{end -i+1}(3*j-2:3*j));

246 end

247 exvalue{end -i} = PHval;

248 end

249

250 price(ind) = exvalue {1};

251

252 i=1;

253 dhtheta = zeros(sum(storecf{NumPeriods }), 2);

254 dhport = [ones(sum(storecf{NumPeriods +1}) ,1) endprice ];

255 estimate = zeros(length(dhport), 1);

256 for i = 1: length(dhtheta)
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257 dhtheta(i, :) = mldivide(dhport ([3*i-2 3*i], :), target ([3*i-2 3*i

]))';

258 estimate (3*i-2:3*i, :) = dhport (3*i-2:3*i, :)*dhtheta(i, :) ';

259 end

260

261 r=sqrt(sum(( target (:)-estimate (:)).^2)/numel(target));

262 DHerr(z, ind) = r;

263 else

264 error('Tree type not recognized.')

265 end

266 end

267

268 figure(figc+ind)

269 if strcmp(vary ,'sigma ')

270 plot(ts, err(:, ind))

271 if strcmp(treetype ,'tri') == 1

272 hold on

273 plot(ts , DHerr(:, ind), '--')

274 end

275 xlabel('Sigma ')

276 xticks(ts)

277 elseif strcmp(vary ,'K')

278 plot(tk, err(:, ind))

279 if strcmp(treetype ,'tri') == 1

280 hold on

281 plot(tk , DHerr(:, ind), '--')

282 end

283 xlabel('Strike ')

284 xticks(tk)

285 else

286 error('Variable type not recognized ')

287 end

288

289

290 if sum(err(:, ind)) <= 0.05

291 ylim ([ -0.05 1])

292 else

293 ylim ([ -0.05 inf])

294 end
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295

296 ylabel('RMSE')

297 title(opt(ind))

298 if strcmp(treetype ,'tri') == 1

299 legend('Algorithm ', 'DeltaHedging ')

300 else

301 legend('Algorithm ')

302 end

303

304 grid on

305

306 end

307

308 warning('on','MATLAB:singularMatrix ')

309

310 toc

311 end
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