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ABSTRACT 

Flax fibers have been observed to have specific mechanical properties on par with E-Glass. 

However, lack of knowledge on their mechanical behaviour as well as the absence of practical 

modeling tools have impeded the flax fiber from being used in structural applications. In this thesis, 

compressive mechanical testing was performed Flax/Epoxy laminates in order to capture and 

quantify the flax composite’s non-linear behaviour with emphasis on damage and plasticity 

evolutions. A continuum damage mechanics-based on the standard Mesoscale Damage Theory 

(MDM) developed previously by Ladeveze and LeDantec was developed to include compressive 

damage and plasticity evolutions.  The model parameters were derived from experimental data and 

optimized using open-source algorithms. Validations have been performed on Flax/Epoxy and E-

Glass/Polyester laminate composites in compression, as well as E-glass/Epoxy in tension. The 

model successfully predicts the composite’s mechanical behaviour, and offers a robust predictive 

tool capable of aiding engineers and designers in the development of load-bearing natural fiber 

composites. 
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Chapter 1: Introduction and Background 

 With a continuously increasing demand for materials with high specific strengths and low 

weight, continuous fiber-reinforced composites have become a popular choice in major industries 

such as automotive, aerospace, and marine engineering. Carbon and Glass fibers are the most 

popular and versatile continuous-fibers used for composite reinforcement [1-3]. Their use in 

industry has been enjoying a continuously steady growth. It is projected that these fibers will 

continue prospering at exponential rates for the foreseeable future [1, 2]. However, energy-

intensive manufacturing, non-renewability, and poor recyclability have created an interest in 

sustainable bio-based alternatives such as natural fibers with a lesser manufacturing cost and 

environmental impact. There are three main categories of natural fiber sources: 1) mineral 

(asbestos group), 2) animal (silk, wool, hair, etc), 3) plant (flax, hemp, jute, sisal, coconut, etc.). 

Considering the fact that mineral-based fibers can cause serious health conditions such Asbestosis 

and a large variety of cancers (esophagus, lung, chest, abdomen, kidney etc.) [4], they have to be 

avoided in mass-manufacturing operations involving any human contact. Animal fibers are 

generally neutral to human health, however their high price to mechanical performance ratio is 

unpractical for structural applications [4]. Therefore, only plant-based fibers currently offer a 

source of cost-effective and renewable fibers with sufficiently high mechanical properties for 

structural applications.  

1.1   Motivation 

 There are several advantages and disadvantages associated with natural fibers composites 

(NFCs) compared to synthetic fibers, some of them are listed below [5, 6]: 

Advantages Disadvantages 

• Lower density • Lower ultimate strengths 

• Lower manufacturing cost 

• Easier manufacturing 

• Inconsistent geometry and wide scatter 

of mechanical properties 

• Less lifecycle environmental damage • Prone to natural decomposition 

• Sustainable 

• Good energy absorption properties 

• High water absorption  

• Sensitive to operating temperatures 
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 Several plant fibers have been found to have specific mechanical properties comparable to 

Glass fibers, while having a significantly lower manufacturing cost per unit weight. From the 

works of Zsriros [7], flax has been identified to compare most favorably with E-glass in terms of 

cost and mechanical performance, while its manufacturing non-renewable energy consumption per 

unit weight is 4 times less (11.7 MJ/kg for flax and 45MJ/kg for E-glass [8]). 

Plant fibers are renewable, CO2 neutral, recyclable, and easier to process when compared to 

synthetic fibers [9, 10]. Figure 1-1 [8] presents a radial graph comparing the environmental impact 

per unit weight of flax fibers intended for composite applications versus glass fibers. 

 

Figure 1-1: Environmental impacts from 1kg fiber production, Flax vs Glass [8] 

Table 1-1:  Flax vs E-Glass performance and cost comparison [4, 5] 

Material Specific Strength 

 (MPa/gcm3)  

Specific Modulus 

(GPa/gcm3) 

Material Cost  

($/lb) 

Cost per ksi of 

tensile strength 

($/ksi) 

Cost per ksi of 

flexural  

modulus ($/ksi) 

Flax 1300 20 -70 0.60 0.15 0.003 

E-glass 1350 30 1.2 0.17 0.003 



 3  
 

The hybrid analysis method breaks down environmental damage into environmental indicators 

such as climate change, acidification, depletion, and non-renewable energy consumption. It can be 

seen from figure 1-1 that flax production (dash line) is favorable to the environment in all 

categories except for land use. Noting that land use itself is not strictly-speaking an environmental 

concern, and it merely indicates that for mass production of fibre, flax as a crop requires large 

cultivation areas in comparison to the area occupied by a glass-fibre manufacturing plant. Large 

cultivation areas result in a negative global warming indicator for flax. Unlike synthetic fiber 

production where CO2 is a biproduct, flax production consumes CO2 from the environment via 

photosynthesis and therefore reduces the overall quantity of greenhouse gases.  

 A quick survey on flax use reveals that flax composites are becoming increasingly popular 

for a variety of applications in major industries: 

Automotive 

A common automotive application of Flax is car doors panelling where flax short fibers 

are blended with a thermoplastic matrix such as polypropylene. The yielded blend is then 

compression molded into the final composite parts. Other typical applications of flax fibers include 

window pillars, package trays, and trunk liners [11].  Recently, CARBIO developed a carbon-flax 

hybrid structures for automotive applications. Mixing carbon and flax at a 50/50 ratio, results in 

laminates that are 15% cheaper, 7% lower weight, and have 58% higher vibration damping while 

maintaining an equal bending stiffness when compared with carbon-only laminates [12].  

Moreover, Faurecia Flaxpreg won the European 2015 JEC semi-products award for a very long 

flax reinforced sandwich composite. Applied as structural trim parts (trunk load floor or passenger 

compartment structural floor), it offers excellent mechanical properties and a 35% weight 

reduction compared to traditional petro-based glass mats [13].   

Consumer Products 

Flax can be used in compression molding, injection molding, hand lay-ups, and other 

hybrid technologies [14]. This versatility allows flax fiber composites to become consumer 

products such as luggage, musical instruments, furniture, racquets, snowboards, canoes, paddle 

boats, and hockey sticks. Moreover, Flax has been used for more specific applications, such as 

improving the impact performance of the UK-based ‘Urban One’ bamboo composite bicycle. 

Using flax over carbon fiber, resulted in a stiff yet quiet and vibrationless frame [14]. 
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Infrastructure 

Flax has found use in commercial construction as well. Blending Flax into eco-friendly 

binders results in alternative panel materials to typical wood-based materials such as plywood. 

Flax can be blended into concrete and stucco, and flax-based insulation is gaining popularity 

throughout Europe. In 2010, a 100% biodegradable vertical windmill composed of flax fabric and 

PolyLactic Acid (PLA) matrix won the JEC innovations award in the category of wind energy 

[15]. Later in 2014, University of Stuttgart manufactured flax-reinforced blades for rooftop wind 

turbines; aiming at improving the reliability of wind turbines, while simultaneously reducing the 

production cost [16].  

Limitations 

 As seen from the above examples, Flax is making a strong entrance into modern 

manufacturing industries. Recent publications and ongoing research identify natural fibers as a 

cost-effective and environmentally beneficial substitute to synthetic fibers. However, the use of 

flax composites for load bearing applications is still at its infancy stage, and only some ongoing 

research projects are currently laying the ground for flax composites to be used in structural 

components. Major industries have been avoiding using NFCs for load-bearing applications due 

on one hand to their susceptibility to water moisture, and on the other hand to the lack of data on 

the mechanical performance of NFCs, particularly in compression and reliable and practical 

modeling tools capable of simulating NFC behaviour. 

Unlike conventional composites reinforced with Glass or Carbon fibers, require further research 

on their mechanical properties and their long term damage and fatigue behaviour is required to 

advance knowledge on NFCs. Considering the fact that natural fiber-reinforced composites present 

an attractive alternative to high-performance glass-reinforced composites, the research embodied 

in this research aims to expand the body of knowledge on NFCs and their use for structural 

applications. This thesis focuses on characterising and modeling the compressive mechanical 

response of Flax/Epoxy composite laminates with emphasis on damage and plasticity evolutions.  
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1.2   Thesis Outline 

 This thesis report provides a deep understanding of the mechanical behaviour of 

Flax/Epoxy composite laminates. It also describes in details the development and implementation 

of a Modified Mesoscale Damage Model capable of capturing the non-linear behaviour observed 

in natural fiber composites.  

Chapter 1 describes the context and the scope of this research work. Chapter 2 is a critical review 

on the current knowledge on flax fibers and flax-reinforced composites. Key areas covered in 

Chapter 2 include the mechanical properties of NFCs, damage mechanisms, and modeling theories. 

This chapter is concluded with a clear statement of the main objectives as well as key sub-

objectives. Chapter 3 focuses on the methodology used to achieve the objectives highlighted in 

Chapter 2. This Chapter covers the manufacturing, testing, and characterization of Flax/Epoxy 

behaviour under compressive loads. In Chapter 4, we present the theoretical background on the 

modified damage model, along with the model’s parameters identification and implementation. 

Chapter 5 is dedicated to validations, results, and deep discussion of our main findings. In the final 

Chapter (6), we draw some conclusions and possible future works.  

Supplementary material regarding calculations and software code are found are provided in the 

appendices, followed by the list of references.  
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Chapter 2: Literature Review 

2.1   Flax Fiber 

 Originating in Mediterranean regions of Europe, Flax (Linum usitatissimum) is one of the 

first crops domesticated by man. Its extensive cultivation dates to ancient Egyptians, who used 

flax fibers to produce fine linens [17 – 19]. Commercial production started in the 1800s, as flax 

moved west to North America. However, the invention of the cotton gin in 1973 (a machine that 

easily separating cotton fiber from seed) brought a decline to flax production; and cotton became 

the dominant plant used for clothing-fabric production [19].    

This chapter will cover the available literature in regards to flax fiber and flax composite 

mechanical properties, damage theories, and the overall objectives of this thesis. 

2.1.1 Structure and Mechanical Properties 

Unlike synthetic fibers, flax fibers are composed of complex hierarchical structures as seen 

in Figure 2-1a [20, 21]. Bast fiber bundles are 1m long and 1-3 mm in diameter. They are composed 

10 - 40 polyhedron-shaped elementary fibers held together by a pectin (glue-like) interface 

compose the so-called technical fiber. Elementary fibers are single plant cells consisting of a 

primary cell wall, secondary cell wall which surround the hollow lumen [20, 21].  

 

 

Figure 2-1: Flax stem to fiber diagram and b) elementary fiber structure [20, 21] 
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Looking at the elementary fiber schematic presented in Figure 2-1b, the bulk of the 

elementary fiber are crystalline cellulose micro-fibrils (circa 70%) bundled into meso-fibrils. 

Located in the S2 fiber-cell layer, the microfibrils spiral at a 10-degree orientation around the 

elementary fiber lumen. The microfibrils themselves are composed of non-branched glucose 

molecules, firmly held together by hydrogen bonds which also gives the fibers a hydrophilic 

nature.  

Under tensile loading, flax fibers were observed to experience stiffening as well as 

plasticity [22 – 26]. Bayle et al [22] performed cyclic tensile testing and noticed that the 

microfibrils re-arrange towards the longitudinal axis with each cycle, approaching a 00 orientation 

without returning to their original 100 orientation upon unloading. This microfibril reorientation 

within the S2 layer is responsible for the observed change in the elastic modulus (stiffening with 

an increased elastic modulus by 60-80%) as well as the permanent fiber deformation (plasticity 

beyond 3% strain). This trend of increasing stiffening and plastic deformation is not unique to flax 

fibers; it has been observed in other natural fibers containing a similar S2 layer such as hemp [26]. 

When the flax fibers are loaded in compression, kink bands seen in Figure 2-2a are 

irreversibly produced during plant growth and/or decortication (fiber extraction procedure). They 

severely degrade the fibers’ mechanical properties, and most often they present the fibers’ weakest 

regions [22, 26] (Figure 2-2b [20]). Bos & Donald [20] have used a modified loop test and 

observed that under compressive loads, plastic deformations occur via the development of kink 

bands which lead to primary cell wall failure in buckling. Similar results were found by Bos et al. 

[27] for hand-isolated (i.e., defect free) elementary fibers.  

Depending on the study, Flax fibers have been observed to have a wide spread of 

mechanical properties as reported by Mahboob et al. [27]. This is mainly due to variations in fiber 

origin, moisture level, specimen length, heterogeneous fiber geometry, and fiber imperfections [22 

– 25]. In compression, very few scarce compressive data on flax fibers have been theoretically 

back-calculated from composite data, while others estimated via modified loop tests as done by 

Bos & Donald [20]. Even though the compressive strengths reported promises desirable 

mechanical characteristics, the scarcity of data reduces confidence in flax fibre compressive 

applications. This further solidifies the need of compressive research to be conducted on flax. 
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Figure 2-2: Flax fiber a) kink [22] b) transverse cracking initiating at a kink band [20] 

2.2   Flax Composites  

Natural fibers generally have a poor interfacial adhesion strength with synthetic polymers 

such as generic unsaturated polyester thermosets mainly due to the fiber’s hydrophilic nature (i.e. 

susceptibility to water absorption). High performance epoxies, on the other hand, have been shown 

to have good adhesion strength and are a viable matrix material for NFCs [28]. Unlike conventional 

material such as metals and polymers, composites fail due to a combination of multiple failure 

mechanisms working independently or in a coupled way. Moreover, first failure does not 

necessarily mean final failure. A component may experience multiple micro-level failures from 

several independent or coupled mechanisms before becoming unfit to carry its design load. 

Therefore, a profound understand of both damage and its progression is required in order to be 

able to predict the composite’s behaviour.  

2.2.1  Damage Mechanics of Flax Composites in Compression 

  Local failures are referred to as damage, and their physical representations are local 

discontinuities. Damage evolution is defined as the development of additional local discontinuities 

under increasing loads, resulting in irreversible changes in the material, and degradation of 

material properties up to the eventual failure of load-carrying capabilities [29, 30]. Composite 

damage mechanisms act on two basic scales: macro and micro. 

2.2.1.1 Macroscale level 

These failure mechanisms are at the lamina and laminate levels. In tension, NFCs generally have 

non-linear and ductile properties, similar to the individual fibers. In compression, the matrix acts 

(a) (b) 



 9  
 

as a support to the fibbers, therefore the compressive NFC lamina strength becomes a function of 

both fiber and matrix properties. Here, the fiber-matrix adhesion strength prevents matrix rapture, 

and the matrix strength prevents fiber backing [31]. On the laminate level, residual stresses in 

between layers of different fiber orientations may cause delamination, where one or more layers 

buckle separately from the remainder of the composite. 

2.2.1.2 Microscale level 

Bos et al. [26] observed that matrix cracks were not observed to be a critical failure mechanism on 

this scale, therefore micro-scale failures are solely attributed to fibers. As previously mentioned, 

circumferential kink bands drastically reduce the fiber’s compressive properties. Even though the 

primary cell wall does not actually crack in compression, failure does occur around the kink bands.  

Within the S2 layer, Bos et al. [26] described microfibrils coming apart much like a steel cable 

subjected to compressive loads. Therefore, the failure mechanism at this level is identified as inter-

microfibril adhesion failure. Typical failure mechanisms of fibrous composite materials include 

delamination, debonding, matrix rupture, and fiber rupture pull out as shown in Fig. 2-3. 

  

Figure 2-3: Failure modes of fibrous composite materials [32] 

2.3   Damage Theories 

Accurately modeling mechanical behaviour of NFCs requires the selection of a physics-

based theory capable of capturing damage and plasticity initiation, evolution, and failure criteria. 

As previously mentioned, fibrous composites tend to fail due to a combination of multiple local 

failures. Since failures mechanisms were identified on both micro and macroscales, a successful 

damage theory should encompass constitutive equations on a scale between micro and macro, also 

known as the Mesoscale. There are several failure prediction approaches for composite laminates, 

however the most popular theories are: Failure Criterion, Progressive Failure Analysis, Fracture 
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Mechanics, and Continuum Damage Mechanics. The following section will discuss their strengths, 

weaknesses, and asses their suitability for NFC modeling. 

2.3.1 Failure criterion 

The Failure criterion approach is rather conservative, simple, straight forward, and widely 

used in engineering applications. The simplest form being the Maximum Stress/Strain criteria; 

which compares the current material stress/strain state with a pre-defined maximum limits [30]. 

This non-interactive approach is on the macroscopic scale, and does not consider individual stress 

or strain components. Well known interactive failure criteria include Tsai-Hill, Tsai-Wu, and 

Hashin criteria are the most popular choices in fibrous composite failure predictions. However, 

they are not based on the physics of damage and failure mechanisms.  They are, rather based on 

semi-empirical relationships that correlate, to some degree, analytical predictions with 

experimental observations via interactive equations [29]. 

2.3.2 Progressive Failure Analysis 

This method degrades a composite’s material properties (typically stiffness matrix 

components) once a failure criterion is locally satisfied. The essence of this method is modeling 

sudden brittle failure by forcing appropriate stiffness matrix components to zero, once a certain 

failure criterion is met. Following which, stresses in the laminate are recalculated with the new 

stiffness matrix [30]. The main advantage of this approach is the ease of numerical 

implementation. However, there are two major disadvantages: (i) sudden stiffness reduction may 

lead to convergence issues, (ii) it does not consider effects of stress concentrations around material 

imperfections or sudden geometry discontinuities [28]. 

2.3.3 Fracture Mechanics 

The focus of Fracture mechanics is to simulate crack propagation, and consequently, asses 

and quantify the conditions under which the material can fail due to dominant crack enlargement 

[31, 33]. This macroscopic-scale approach is well documented and many established numerical 

procedures exist for a variety of composite materials. The main drawback of fracture mechanics, 

is that it requires an initial crack or defect to be present. Therefore, this approach cannot simulate 

damage initiation, only its evolution. Moreover, it focuses on one dominant crack, and does not 

consider the propagation and interactions of multiple small cracks [33]. 
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2.3.4 Continuum Damage Mechanics (CDM) 

Continuum Damage Mechanics (CDM) methods are developed to predict material damage 

initiation, progression, and failure conditions. Such methods make use of continuously evolving 

internal state variables and their associated thermodynamic forces to quantify damage[34]. 

Damage is considered irreversible, and one method of expressing its evolution is through terms of 

progressive deterioration of stiffness resulting in nonlinear and inelastic response as well as 

permanent strain formation. These CMD methods quantify the damage evolution at the microscale 

level, by modeling macroscale effects such as permanent strain accumulation and stiffness 

degradation. Due to the formulation’s irreversible nature, nonlinear techniques must be employed 

for such approaches [27].  

 Considering the above discussed failure theories, it is easily noticeable that CDM-based 

methods provide the most comprehensive and robust mechanical response models for composite 

materials exhibiting nonlinear behaviour such as observed in NFCs. Moreover, it is one of the few 

theories capable of predicting damage initiation, evolution, and failure conditions which are crucial 

in designing load-bearing components. 

2.4 Standard Mesoscale Damage Theory (MDT) 

The standard Mesoscale Damage Theory proposed by Ladeveze & Le Dantec [34] is one the 

most popular, robust, and versatile CDM-based theories. The Model is founded on the principle of 

irreversible thermodynamics, where a local material state is expressed in terms of state variable 

and associated thermodynamic forces.  

The MDT assumes that a damaged material’s mechanical response at any load state can be 

expressed in terms of degraded elastic moduli (damage) and accumulated permanent strains 

(plasticity). Since this model does not depend on time derivatives of state variables, it implies that 

any damage or plasticity evolution is a succession of a previously established equilibrium state.  

In general, the theory considers the laminate as a composition of two elementary components: 

layers of composites and the interface separating them. Damage states are allowed to vary from 

layer to layers, however it is considered to be uniform throughout each individual lamina. The 

forms of damage evolution laws are considered material-dependent, since they are a reflection of 

the material’s basic material properties and dominant damage mechanisms. The theory does not 

quantify individual damage mechanisms, but rather uses experimental observations to characterize 
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the cumulative damage evolution.  Therefore, it is phenomenological in nature and has been 

successfully applied to polymeric, ceramic, and metallic composites reinforced with short fibers, 

long fiber, or fabric.  

Ladveze and Le Dantec [34] theory as it is currently formulated, however, cannot be applied 

to flax-reinforced composite laminates in compression. The theory is only suitable for brittle 

synthetic fibers such as Carbon, and explicitly mention that no fiber-direction or transverse-

direction damage or plasticity occur in compression. This in not true for flax composites, where 

compressive damage and plasticity occur and evolve with the formation of circumferential kick 

bands. Furthermore, the theory was developed considering a linear-evolving damage and plasticity 

equations in compression. The same linear evolution trends may not be necessarily true for flax 

composite under compressive loads. Moreover, it should be mentioned that in this model, 

experimental stiffness degradation is observed in compression, and is expressed using only a 

material specific constant which linearly correlates the compressive stiffness loss to the applied 

compressive stress. This indeed is an incomplete formulation to describe the damage and plasticity 

of flax composites, as neither damage nor plasticity are individually characterized or quantified in 

compression. 

In order to successfully model the compressive behaviour of flax composite laminates, the 

standard MDT must be revisited and adopted to accurately predict the complex behaviour of flax 

composites. This can be done by developing new constitutive equations for damage and plasticity 

that encompass the experimental observations as it was shown in the work performed by Mahboob 

et al. [32] where new damage and plasticity equations were developed to capture the mechanical 

response of flax composite laminates under tensile loads.  

  

2.5   Thesis Objectives 

 Based on the literature review presented in this chapter, it is easily seen that flax-reinforced 

composites are impeded from mainstream structural applications due to a lack of two key aspects:  

knowledge on material behaviour in compression, and robust and practical modeling tools able to 

capture the complex behaviour of flax composites. Therefore, the first objective of this thesis is to 

contribute to expand the body of knowledge on flax composites, specifically we intend to fill the 

gap in the literature on the compressive mechanical behaviour of flax composites. The second 
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objective is to develop a physics-based predictive toll capable of capturing the non-linear 

mechanical behaviour exhibited by flax composites.  

 In order to achieve the main objectives, the following sub- objectives should be met: 

1. Manufacturing of flax test specimens of various fiber orientations.  

Great care must be taken in this step, to ensure that test specimens manufactured through 

hand layup and compression moulding techniques achieve comparable mechanical 

properties to the ones reported in published studies. 

2. Testing of Flax specimens. 

Quasi-static mechanical compressive tests must be performed on flax composites. Since 

raw data has a significant amount of noise associated with it, especially in compression, it 

must be cleaned of excessive noise prior to analysis. 

3. Analyzing test data and categorizing material behaviour trends. 

Experimental data must be analyzed according to standard procedures, in order to yield 

flax-specific material behaviour trends. 

4.  Modification of the mesoscale model and implementation 

The mesoscale model must be modified to encompass the material behaviour trends 

observed in experimental tests. 

5.  Model parameter identification 

Several model parameters are required to be identified. Some are possible to derive from 

experimental data, while others must be obtained using optimization techniques. 

6.  Validation of the modified mesoscale model. 

Finally, the model must be validated on other types of composites, to ensure its accuracy 

and reliability. 

The successful achievement of the above-mentioned goals, will provide engineers a practical tool 

to design components with confidence in flax-reinforced composites. This will in turn accelerate 

the development of NFCs for load bearing applications.  
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Chapter 3: Manufacturing, Quasi-Static Testing, and Observations 

3.1 Manufacturing of Test Specimens 

There are several manufacturing techniques for composite materials such as resin transfer 

moulding, vacuum infusion, pultrusion, etc. The procedure used in this study to fabricate the 

Flax/Epoxy specimens was compression moulding. This technique is relatively simple and cost 

effective. 

 Unidirectional (UD) flax fabrics were used for composite plates manufacturing, due to the 

ease of cutting specimens with a variety of fiber orientations (Fig. 3-1). Flax fabrics FlaxPly® 

treated to an area-weight ratio of 150 g/cm2 by a patented sizing and drying process (US Patent 

No. 8080288) were purchased from Lineo NV, Belgium. The bulk of the fabric consists of warp 

(0 deg) yarns held together by periodic weft (90 deg) yarns at a ratio of 40:3; as seen in Figure 3-1. 

Noting that test results have shown that weft yarns presence has negligible influence on the 

composite’s mechanical properties. Each strand of yarn is a bundle of elementary fibers twisted to 

an average rate of 5 turns/cm. 

         

Figure 3-1: Dry flax fiber used in specimen manufacturing 

As it was mentioned, natural fibers have adhesion problems with most polymer-based 

matrices due to the fiber’s hydrophilic properties. Since this research is intended to manufacture 

flax composites to be used in structural applications, therefore we have chosen a matrix with 

superior mechanical properties.  It is high performance, hot curing thermoset resin supplied by 
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Huntsman Corp. It consists of Araldite® LY564 epoxy resin, and Aradur® 22962 hardener at a 

weight ratio of 4:1 respectively. 

The following steps summarize the manufacturing procedure used in this study: 

1. 16 layers of fabric were cut to a size of 13.5”x13.5“, and stacked into four basic sequences 

[0]16, [90]16, [±45]4𝑆, [±67.5]4𝑆. 

2. Very good adhesion was ensured by fully soaking Flax fabrics into the Epoxy resin  

3. The mould was prepared by lining the edges of 15”x15” aluminum plates with a double 

layer of thick silicone. This ensured that the excess resin would escape through the silicone 

edges. 

4. Heat-resistant peel-plies were placed on each face of the plate, to ensure clean composite 

extraction post curing. 

5. Flax impregnated sheets were placed in the mould with the desired fiber orientation, and 

the matrix was poured on the fabric at intervals. 

6. A fine brush was used to evenly spread the matrix and ensure uniform impregnation. 

7. The mould was placed into a heated press ( Figure 3-2b) for consolidation. 

8. The curing temperature cycles were set as per the manufacturer recommendations (i.e., LY 

564/22962 epoxy system datasheet specifications): 15min at 120C, followed by 2 hours at 

150C (Figure 3-3).  
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Figure 3-2: a) Hot platen press stacking sequence; b) Carver Inc. self-containing press with 

heating/cooling platens and programmable controller  

 

 

Figure 3-3: Flax composite curing cycle 
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3.2   Quasi-Static Compressive Testing 

3.2.1 Test Specimen Preparation 

 The geometry of the flax/epoxy specimens used manufactured according to ASTM 

D6641/D6641M guidelines [35].  Specimens with dimensions 250mm x 25mm x 4mm were cut 

from 16-layer manufactured plates using a 0.35mm diamond-edged saw (SMART CUT™, UKAM 

Industrial Superhead Tools, Valencia, CA, USA), and egde-ground to a flat finish. Then the 

specimens were tabbed using 64mm x 25mm x 3mm tapered Aluminium tabs (Figure 3-4a) to avoid 

sllipage between the grips and the specimens during testing,  and also to ensure that fractures 

occured in the gauge mid section of the specimens. For comparison purposes, specimens made of 

Epoxy only (Figure 3-4b) were manufactured by curing the matrix resin into dog-bone shapes 

following ASTM D695-15 standards [36].  

 

Figure 3-4: Test specimen geometry a) composite and b) matrix-only 

 

3.2.2 Testing Methodology 

In order to investigate damage and plasticity evolutions, repeated loading and unloading 

cycles were applied to the specimens with progressively increasing maximum loads up to complete 

failure.  

Figure 3-5a illustrates the testing procedure used in this study. It is worth noting that the 

hysteretic response curves (stress vs strain) is approximated as linearly elastic (blue dash line). 

Due to the progressively increasing maximum load of each cycle, the elastic modulus degrades 

with each cycle, which allows for the characterize the material’s damage and plasticity evolutions. 

The tests were conducted at room temperature using a servo-hydraulic test frame (MTS 322, Eden 

Prairie, MN, USA) at a displacement rate of 2 mm/min. Strain measurements were taken using a 

Digital Image Correlation (DIC) setup supplied by Correlated Solutions (Irmo, SC, USA). 

(a) (b) 
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Specimen faces were painted with a random distribution of fine black and white speckles as seen 

in Figure 3-5b. The DIC camera tracks the location of each speckle in the 2D plane, while the 3D 

effects of specimen bulging were minimized by placing the camera at a significantly far distance. 

Vic 3DTM software was used to convert the speckle displacement into strain measurements. The 

complete testing setup used in this study is shown in  Figure 3-6. 

 

  

Figure 3-5: a) Testing procedure illustration, b) Test specimen with speckle pattern 
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Figure 3-6: Testing procedure: a) Specimen in load cell   b) Test setup  c) test scheme 
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Chapter 4: Modified Mesoscale Damage Theory  

4.1   Modified Mesoscale Damage Theory (MMDT) 

 From the experimental data obtained from this study and the literature as well, it is clear 

that flax fiber composite laminates exhibit a non-linear behaviour in the fiber direction. The 

standard Mesoscale Damage Theory (MDT) proposed by Ladeveze & Le Dantec [34] cannot 

predict this non-linear behaviour because the model assumes that both fiber and matrix fail in a 

brittle fashion along the fiber axis. Furthermore, the model does not consider damage or plasticity 

development in compression. It simply quantifies compressive stiffness loss using a material-

specific constant. Therefore, the model must be revisited in order to capture the fiber-direction, 

shear, and transverse compressive damage and plasticity evolutions. The following sections 

explain in details the standard mesoscale damage theory, and the modifications applied to it in 

order to account for the damage and plasticity exhibited by the flax fibers.  

4.1.1 Damage 

The MDT theory describes the damage evolution between the undamaged state of the 

material and macroscopic crack initiation. Consider a damaged solid within a finite volume 

element as shown in Figure 4-1.  S is defined here as the total area of the section volume element 

and 𝑆𝐷 is the total area of defects, normal to 𝑛⃗⃗. According to Lemaitre & Chaboche [33] damage 

D is defined as the ratio of crack and/or void area 𝑆𝐷 to the total area S.  

                                                                          𝐷 =
𝑆𝐷

𝑆
                                         (4.1) 

While the effective area of resistance 𝑆̃ in presence of damage, is defined as follows: 

                 𝑆̃ = 𝑆 − 𝑆𝐷 = 𝑆(1 − 𝐷)                (4.2) 
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Figure 4-1: Damaged volume element 

4.1.2 Effective Stress 

Stress for unidirectional loadings is usually expressed as the ratio of force over area; i.e. 

𝜎 =
𝐹

𝑆
 . However, due to the presence of damage, the area available to resist an applied force is 

reduced. Therefore, the effective stress 𝜎̃ of laminate in a state of plane stress is defined as [30]: 

                                                     {𝜎̃} = 𝜎 {
𝑆𝐷

𝑆
} = [

𝜎̃11
𝜎̃22
𝜎̃12

] =

{
 
 

 
 

 

𝜎11

1−𝐷11
𝜎22

1−𝐷22
𝜎12

1−𝐷12}
 
 

 
 

                         (4.3) 

where  𝐷11, 𝐷22, 𝐷12 are the damage state parameters ranging from 0 (undamaged material) to 1 

(complete damage).  

At this point, it is important to note that the system of equations described by (4.3) are independent 

of the sign of the applied stress, meaning that there is no distinction between tension and 

compression. As it will be shown in the validation section, the modified theory presented here can 

be applied to both tensile and compressive loading cases. The original Ladeveze and LeDantec 

formulations [34] as well as the ones presented in the Herakovich text [30] do not account for 

damage evolution under compressive loads. We have modified the majority of the constitutive 

equations presented in [34] to account for the damage and plasticity evolutions in flax composites. 

4.1.3 Effective Strain 

The Principal of Strain Equivalence states that “any deformation behaviour, whether 

uniaxial or multiaxial, of a damaged material is expressed by the constitutive laws of the virgin 
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material in which the usual stress is replaced by the “effective stress” [33]. Thus, the elastic 

constitutive equations for a damaged orthotropic material in plane stress are presented by 

Herakovich [30] and modified to be non-sign dependant and capable of capturing damage in both 

tensile and compressive cases:  

𝜀11
𝐸 =

〈𝜎11〉+

𝐸11
0 (1−𝐷11)

+
〈𝜎11〉−

𝐸11
0 −

𝜈12
0

𝐸11
0 𝜎22 → 𝜀11

𝐸 =
𝜎11

𝐸11
0 (1−𝐷11)

−
𝜈12
0

𝐸11
0 𝜎22  

𝜀22
𝐸 =

〈𝜎22〉+

𝐸22
0 (1−𝐷22)

+
〈𝜎22〉−

𝐸22
0 −

𝜈12
0

𝐸11
0 𝜎11 → 𝜀22

𝐸 =
𝜎22

𝐸22
0 (1−𝐷22)

−
𝜈12
0

𝐸11
0 𝜎11  

                            𝜀12
𝐸 =

𝜎12

2𝐺12
0 (1−𝐷12)

                  

where  

〈𝑎〉+ = 𝑎 𝑖𝑓  𝑎 ≥ 0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 〈𝑎〉+ = 0 

〈𝑎〉− = 𝑎 𝑖𝑓  𝑎 ≤ 0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 〈𝑎〉− = 0 

4.1.4 Quantifying Damage 

From our recently published experimental results on flax composite laminates [27], it was 

shown that the flax specimens have an orthotropic behaviour under both tensile and compressive 

loading. It was also shown that the ratio of Poisson ratio over the elastic modulus remained 

constant during damage evolution: 

𝜈12
𝐸11

=
𝜈12
0

𝐸11
0 =

𝜈21
0

𝐸22
0  

The damaged elastic moduli can be expressed in terms of damage parameters (𝐷𝑖) and the 

undamaged moduli (𝐸𝑖
0) as follows [33]:  

      𝐸11 = 𝐸11
0 (1 − 𝐷11)  

                              𝐸22 = 𝐸22
0 (1 − 𝐷22)                 

                                                    𝐺12 = 𝐺12
0 (1 − 𝐷12)  

 

 

(4.4) 

(4.5) 

(4.6) 
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From (4.6), we can express the damage in the principal directions of the lamina as follows:  

𝐷11 = 1 −
𝐸11

𝐸11
0  

                                                                   𝐷22 = 1 −
𝐸22

𝐸22
0                  

                                                         𝐷12 = 1 −
𝐺12

𝐺12
0  

To quantify the damage and track its evolution,  compressive load-unload tests as shown in Figure 

3-5a, will be performed at each load cycle. 

4.1.5 Thermodynamic Forces 

The foundation of the Mesoscale Damage Theory lies in expressing a damaged layer’s 

mean value of strain energy density 𝐸𝐷 in terms of effective stresses. Based on the Gibbs Free 

Energy equation, Herakovich [30] expressed the strain energy density function as follows: 

2𝐸𝐷 =
〈𝜎11〉+

2

𝐸1
0(1−𝐷11)

+
〈𝜎11〉−

2

𝐸1
0 − 2

𝜈12
0

𝐸1
0 𝜎11𝜎22 +

〈𝜎22〉+
2

𝐸2
0(1−𝐷22)

+
〈𝜎22〉−

2

𝐸2
0 +

𝜎12
2

𝐺12
0 (1−𝐷12)

  

Mahboob et al. [32] have adopted equation (4.8) to a volumetric element (i.e., 3D configuration) 

resulting in the following equation:  

 2𝐸𝐷 =
〈𝜎11〉+

2

𝐸11
0 (1−𝐷11)

+
〈𝜎11〉−

2

𝐸11
0 − 2

𝜈12

𝐸11
𝜎11𝜎22 − 2

𝜈13

𝐸11
𝜎11𝜎33 +

〈𝜎22〉+
2

𝐸22
0 (1−𝐷22)

+
〈𝜎22〉−

2

𝐸22
0 −

                         − 2
𝜈32

𝐸33
𝜎22𝜎33 +

𝜎33
2

𝐸33
+

𝜎12
2

𝐺12
0 (1−𝐷12)

+
𝜎13
2

𝐺13
+
𝜎23
2

𝐺23
  

A detailed derivation of equation (4.9) can be found in [29]. 

In order to have an expression encompassing both tensile and compressive loads, the sign 

dependency was removed from equation (4.9), and the final mean strain energy density function 

used for flax composite compressive modeling is expressed as follows:  

              2𝐸𝐷 =
𝜎11
2

𝐸11
0 (1−𝐷11)

− 2
𝜈12

𝐸11
𝜎11𝜎22 − 2

𝜈13

𝐸11
𝜎11𝜎33 +

𝜎22
2

𝐸22
0 (1−𝐷22)

− 2
𝜈32

𝐸33
𝜎22𝜎33 + 

                         +
𝜎33
2

𝐸33
+

𝜎12
2

𝐺12
0 (1−𝐷12)

+
𝜎13
2

𝐺13
+
𝜎23
2

𝐺23
+
𝜎33
2

𝐸33
+

𝜎12
2

𝐺12
0 (1−𝐷12)

+
𝜎13
2

𝐺13
+
𝜎23
2

𝐺23
 s 

The thermodynamic forces 𝑌𝑖 (a.k.a. damage energy release rates), associated with the 

internal damage variables 𝐷𝑖, are defined by Lemaitre and Chaboche [33] in terms of mean value 

(3.7) 

(4.8) 

(4.9) 

(4.10) 
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of the strain energy density 𝐸𝐷, at a current state of stress and damage. These forces govern the 

damage development in a way that a certain damage threshold must be exceeded for an additional 

damage to occur. These thermodynamic forces are expressed in [29, 30, 34] as partial time 

derivatives of the mean energy strain density function, with respect to the corresponding damage. 

Again, the sign dependence was removed as seen in previous equations: 

 

𝑌11 =
𝛿𝐸𝐷

𝛿𝐷11
|
𝜎̃,𝐷22,𝐷12=𝑐𝑜𝑛𝑠𝑡

  =
〈𝜎11〉+

2

2𝐸11
0 (1−𝐷11)2

→
𝜎11
2

2𝐸11
0 (1−𝐷11)2

  

𝑌22 =
𝛿𝐸𝐷

𝛿𝐷22
|
𝜎̃,𝐷11,𝐷12=𝑐𝑜𝑛𝑠𝑡

 =
〈𝜎22〉+

2

2𝐸22
0 (1−𝐷22)2

→
𝜎22
2

2𝐸22
0 (1−𝐷22)2

  

                                        𝑌12   =
𝛿𝐸𝐷

𝛿𝐷12
|
𝜎̃,𝐷11,𝐷22=𝑐𝑜𝑛𝑠𝑡

=
𝜎12
2

2𝐺12
0 (1−𝐷12)2

   

 

4.1.6 Damage Evolution 

The form of Damage Evolution laws proposed by Ladeveze & Le Dantec [34] are material 

dependent, and have been shown effective for orthotropic material, such as fibrous composites. As 

previously stated, standard MDT formulations assume that the material behaves in an elastic and 

brittle manner along the fiber direction, meaning that there is no damage evolution in the fiber 

direction, and that the material is damage free up to complete failure. Since the degradation of the 

elastic molus has been observed in flax-fiber composites, one of the major modifications done on 

Ladeveze & LeDantec model was to completely decouple the damage in fiber-direction and 

plasticity evolution from the shear and transverse directions. Thus, similar to the formulation seen 

in [29], the fiber direction and the shear-transverse direction damage development equations are 

completely decoupled as follows:   

𝑌𝑓 = √𝑌11  (√𝑀𝑃𝑎)    𝐹𝑖𝑏𝑒𝑟 𝑑𝑎𝑚𝑎𝑔𝑒 𝑎𝑛𝑑 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 

𝑌𝑡𝑠 = √𝑌12 + 𝑏𝑡𝑠𝑌22  (√𝑀𝑃𝑎)   𝑀𝑎𝑡𝑟𝑖𝑥 𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 & 𝑓𝑖𝑏𝑒𝑟 − 𝑚𝑎𝑡𝑟𝑖𝑥 𝑑𝑒𝑏𝑜𝑛𝑑𝑖𝑛𝑔 

(4.12) 

(4.11) 
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 where subscripts f and ts represent fiber and transverse & shear directions respectively, while the 

coupling parameter 𝑏𝑡𝑠 expresses the shear and transverse coupling effects on the fiber-matrix 

debonding.  

 From experimental observations (Section 5.2.2.1 ), it can be seen that the damage in 00 

direction (fibers oriented in the longitudinal direction) is a linear function and can be expressed in 

terms of damage function as follows: 

                             Ф𝐷11 =
𝑌𝑓−𝑌𝑓

0

𝑌𝑓
𝐶 − 𝐷11                                           ≤ 0,         𝜀11 < 𝜀11

𝑚𝑎𝑥 

For the transverse specimens (900 fiber-oriented samples), the damage evolution equation that 

best fitted the experimental values has an exponential trend. However, a linear damage evolution 

has proven to also provide a sufficiently good fit. Therefore, and for the sake of practicality, a 

linear fit was used for transverse damage evolution, which also has advantages regarding 

computational simplicity.  

                          Ф𝐷22 =
𝑌𝑡𝑠−𝑌𝑡

0

𝑌𝑡
𝐶 − 𝐷22                                          ≤ 0,         𝑌22 < 𝑌22

𝑚𝑎𝑥 

And, for shear damage evolution was observed to be linear and formulated similar to the 

transverse case: 

                          Ф𝐷12 =
𝑌𝑡𝑠−𝑌𝑠

0

𝑌𝑠
𝐶 − 𝐷12                                          ≤ 0,         𝑌12 < 𝑌12

𝑚𝑎𝑥  

In the above equations (4.13-4.15), Ф𝐷𝑖𝑗
 is the damage function of the corresponding damage 𝐷𝑖𝑗; 

while, 𝑌𝑓
0, 𝑌𝑓

𝐶 , 𝑌𝑡
0, 𝑌𝑡

𝐶 , 𝑌𝑠
0, 𝑌𝑠

𝐶 , 𝑌22
𝑚𝑎𝑥, and 𝑌12

𝑚𝑎𝑥 are material-specific parameters to be determined 

experimentally.  

4.1.7 Inelastic Strain 

 Most engineering materials exhibit a linearly-elastic response up to a certain yield limit 

𝜎𝑦. Once loaded beyond this limit, there will be inelastic or permanent strains 𝜀𝑖𝑗
𝑝

 present upon 

complete unloading. Though some hysteresis is present in the material response, the 

unloading/reloading behaviour may be expressed as linearly elastic as seen in Figure 4-2, where 

𝐸0 is the undamaged modulus. 

(4.13) 

(4.14) 

(4.15) 
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Figure 4-2: Damaged material inelastic response 

The classical formulation for plasticity was also adopted in the modified model proposed 

in this study. The total strains are decomposed into elastic 𝜀𝑒 and plastic 𝜀𝑝 strains. The elastic 

domain function 𝑓(𝜎̃𝑖𝑗, 𝑝) depends on the effective stress 𝜎̃𝑖𝑗 and the accumulated strain (𝑝).  

The accumulated plastic strain 𝑝 is composed of two components, one for shear, and the 

second for transverse plastic strains (𝑝𝑡𝑠 = 𝜀𝑡
𝑃̃ + 𝜀𝑠𝑃̃).  

The strain rates components (𝜀𝑖̇𝑗
𝑒 + 𝜀𝑖̇𝑗

𝑝
) are normal to the elastic domain function are as 

illustrated in Figure 4-3a, for a loading in the (𝜎̃12 − 𝜎̃22) stress space. Noting that the effective 

inelastic strain rates are defined for all 3 the orthotropic directions as follows [29]:  

   𝜀𝑖̇𝑗
𝑝̃ = 𝜀𝑖̇𝑗

𝑝 (1 − 𝐷𝑖𝑗),    for    𝑖, 𝑗 ∈ {1,2} 

As strain hardening occurs, it is assumed that the initial elastic domain labeled as 𝑓(𝑝̃ = 0) evolves 

according to an isotopic power law into the plastic domain 𝑓(𝑝̃ > 0) as illustrated in Figure 4-3b.  

The elastic domain function can be written as: 

𝑓 = 𝜎̃11 + 𝑅(𝑝̃) − 𝑅0 – fiber direction 

𝑓 = √𝜎̃12
2 + 𝐴𝑡𝑠𝜎̃22

2 + 𝑅(𝑝) − 𝑅0 – shear-transverse 

where, 𝑅(𝑝̃) is the power law hardening function, 𝑅0 represents the initial threshold value for 

𝑅(𝑝̃ = 0), and 𝐴𝑡𝑠 is the material coupling constant. 

(4.16) 

(4.17) 
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Again, from the experimental observations in (Section 5.2.2),  it can be seen that plasticity for both  

longitudinal and shear-transverse directions evolves according to a power law. Thus, we can 

express the hardening function by setting equation (4.17) as follows: 

𝑅(𝑝̃) + 𝑅0 =
𝜎11

1−𝐷11
= (𝛽𝑝𝛼 − 𝑅0)𝑓 – longitudinal or fiber direction 

𝑅(𝑝̃) + 𝑅0 = √
𝜎12
2

(1−𝐷12)2
+

𝐴𝑡𝑠𝜎22
2

(1−𝐷22)2
= (𝛽𝑝𝛼 − 𝑅0)𝑡𝑠 – shear transverse 

where 𝐴𝑡𝑠 is a coupling parameter and 𝛼  and 𝛽 are material parameters. 

 

Figure 4-3: a) Shear-transverse elastic domain function, b) power-law shaped shear-

transverse elastic domain evolution 

Most reinforcing fibers exhibit linear-elastic response. Thus, the effects of plasticity are 

generally associated with the matrix. This however, is not the case for flax composites. The 

inelastic Flax/Epoxy response is similarly formulated as  the damage, using a set of elastic domain 

functions {Ф𝒑} [29]: 

Ф𝑓
𝑝 = 𝜎̃𝑓

𝑒𝑞 − ℎ𝑓(𝑝𝑓) − 𝜎𝑓
0        ≤ 0,      𝑝𝑓 ≥ 0 

Ф𝑡𝑠
𝑝 = 𝜎̃𝑡𝑠

𝑒𝑞 − ℎ𝑡𝑠(𝑝̃𝑡𝑠) − 𝜎𝑡𝑠
0     ≤ 0,     𝑝𝑡𝑠 ≥ 0 

where, 

Ф𝑓
𝑝
 is inelastic behaviour function in the fiber direction, Ф𝑡𝑠

𝑝
 is the inelastic behaviour function in 

the transverse-shear direction, 𝜎𝑓
0, 𝜎𝑡𝑠

0  are plasticity initiation thresholds for fiber and shear-

transverse directions respectively, and ℎ𝑓(𝑝𝑓) & ℎ𝑡𝑠(𝑝̃𝑡𝑠) are the hardening functions which 

a) b) 

(4.18) 

(4.20) 

(4.19) 

(4.21) 
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dependent on the fiber-direction and shear-transverse accumulated effective inelastic strains 

𝑝𝑓  and 𝑝𝑡𝑠.  

In the case of Flax composites, both hardening functions fit the shape of power curves, therefore 

the hardening function can be expressed as follows:  

ℎ𝑓(𝑝𝑓) = 𝛽𝑓(𝑝̃𝑓)
𝛼𝑓

 

ℎ𝑡𝑠(𝑝𝑡𝑠) = 𝛽𝑡𝑠(𝑝̃𝑡𝑠)
𝛼𝑡𝑠 

Here the material parameters 𝛼 and  𝛽 have different values for fiber and shear-transverse 

directions.  

Lastly, are equivalent stress-based scalars 𝜎̃𝑓
𝑒𝑞

 and 𝜎̃𝑡𝑠
𝑒𝑞

 that influence plasticity in their 

corresponding directions are expressed as follows:  

𝜎̃𝑓
𝑒𝑞 =

𝜎11
1 − 𝐷11

 

𝜎̃𝑡𝑠
𝑒𝑞 = √

𝜎12
2

(1 − 𝐷12)2
+

𝐴𝑡𝑠𝜎22
2

(1 − 𝐷22)2
 

4.2   Parameter Identification 

 In total, this model uses twenty-one material-specific parameters. Some represent the 

material basic properties including elastic moduli, poison’s ratios, maximum strains, and onset of 

damage and plasticity threshold, usually determined directly from experimental data. These basic 

parameters are then fed to the mathematical model. The other parameters related to damage and 

plasticity evolution equations were estimated by the modified mesoscale damage model. Out of 

the twenty-one parameters, only two of them the shear-transverse coupling parameters 𝑏 and 𝐴𝑡𝑠 

could not be derived. They were obtained using trial-error methods.  In the sections below, we will 

describe the procedure used to determine the MMDM Flax/Epoxy compressive parameters. 

4.2.1 Microscopic Image Analysis 

 Conventional methods used for material constituent fractions evaluations such as specified 

by ASTM D3171 [37] involve matrix digestion in acids or incineration. These techniques are not 

suitable for natural fibers, since the fibers will degrade along with the matrix. Therefore, our 

(4.22) 

(4.24) 

(4.23) 

(4.25) 
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research team directed by Dr. Bougherara has implemented an alternative technique using 

Microscopic Image Analysis in order to determine fiber, matrix, and void fractions in a composite. 

This technique was also used by Phillips et al. [38] and El Sawi et al [39] to determine crack/void 

density in flax-fiber composites.  

 The following steps summarize the microscopic image analysis procedure: 

• Samples (up to 6) of size 25x25 mm were cut from manufactured plates at random 

locations. 

• ASTM E2015 [40] standard procedures were used in sample preparation for 

microstructural analysis. 

• Grayscale microscopic images were taken via SEM (using JEOL JSM-6380, Tokyo, 

Japan). 

• Open source software ImageJ was used to determine the area fractions by binarizing 

images to distinguish features of interest, and using a threshold to isolate cracks as seen in 

Figure 4-5, repainted with permission from [27]. It was assumed that the area fractions are 

representative of the volume fractions.  

The constituent fractions were found to be 50.97% (± 3.92%), and 3.35% (± 2.62%) for Flax fiber 

and voids/cracks respectfully.  

 

Figure 4-4: Grayscale SEM and binarized SEM 
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Figure 4-5: Grayscale SEM and binarized/thresholded SEM for crack isolation 

 

4.2.2 Derivation from Experimental Data 

The following procedure describes in detail the derivation of model parameters from 

experimental data. This approach was previously used by Knipprath [41] for carbon fiber binder 

yearn composites. Applying MDT in reverse, allows one to derive most parameters from four 

distinct fiber orientations: 00, 900, ±450, and  67.50. It should be noted that experientially derived 

parameters are meant for linear multi-ply models such as Classical Laminate Theory, and in this 

study, they served as a good initial guess for the global optimizer. Detailed sample calculations 

can be found in Appendix A. 

4.2.2.1 Fiber Direction (00) 

Several specimens subjected to monotonic as well as load/unload conditions were used to 

calculate material parameters. The initial undamaged elastic modulus is found from the initial 

(linear) segment of the stress/strain curve for each specimen. The actual undamaged elastic 

modulus is taken as the average of the specimen-specific undamaged elastic moduli: 

𝐸11
0 (𝑛) = (

𝜎11
′′ − 𝜎11

′

𝜀11
′′ − 𝜀11

′ )
𝑛

 

𝐸11
0 = ∑

𝐸11
0 (𝑛)

5

𝑛=5

𝑛=1

 

(4.26) 

(4.27) 
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The undamaged Poisson’s ratio is found in three steps: 1) the Poisson’s ratio is found for each load 

increment of each test, 2) the median Poisson’s ratio of each test is calculated, 3) the overall 

undamaged Poisson’s ratio is the average of the five means: 

    𝑚𝑒𝑎𝑛 𝜈12
0 (𝑛) = 𝑚𝑒𝑎𝑛 [− (

𝜀𝑦

𝜀𝑥
)
𝑖
] ,   𝑤ℎ𝑒𝑟𝑒 𝑖 ≤ 0,   𝑖 𝜖 𝑍  

𝜈12
0 = ∑

𝜈12
0 (𝑛)

5

𝑛=5

𝑛=1

 

Each specimen failed at slightly different stresses, therefore, the ultimate stresses and strains are 

calculated as the average of the largest absolute stress or strain value recorded for each specimen: 

𝜎11
𝑢 =

∑ min(𝜎11(𝑛))
𝑛=5
𝑛=1

5
   𝜀11

𝑢 =
∑ min(𝜀11(𝑛))
𝑛=5
𝑛=1

5
   𝜀22

𝑢 =
∑ max(𝜀22(𝑛))
𝑛=5
𝑛=1

5
 

Note that remaining parameters derived for this fiber orientation make use of data collected only 

from the load/unload tests. Points of interest are isolated for the upper and lower limits of the cycle 

seen in  

Figure 3-5. Effectively, these pivot points are the locations where the slope of the stress-strain 

curve changes its sign. These points were used to calculated the 𝑅𝑖𝑠𝑒 and 𝑅𝑢𝑛 of the stress-strain 

curve for each loop.  

𝑅𝑖𝑠𝑒𝑖 = (𝜎
𝑈 − 𝜎𝐿)𝑖    &    𝑅𝑢𝑛𝑖 = (𝜀𝑈 − 𝜀𝐿)𝑖 

where superscripts 𝑈, 𝐿, 𝐷, 𝑝, 𝑎𝑛𝑑 0 stand for Upper, Lower, Damaged, plastic, and undamaged 

respectfully.  

Referring to Figure 3-5, the 𝑅𝑖𝑠𝑒 and 𝑅𝑢𝑛 of each loop were used to calculate the cycle-specific 

elastic moduli and the apparent plastic strains:  

            𝐸𝑖
𝐷 =

𝑅𝑖𝑠𝑒𝑖

𝑅𝑢𝑛𝑖
                 (4.32) 

      𝜀𝑖
𝑝 = (𝜀𝐿 − (

𝜎𝐿

𝐸𝐷
))

𝑖

     (4.33) 

Damage in principal directions was calculated using the damaged and undamaged elastic moduli. 

Following which, the thermodynamic damage energy release rates were calculated:  

(4.28) 

(4.29) 

(4.30) 

(4.31) 



 35  
 

𝐷𝑖 = 1 −
𝐸𝑖
𝐷

𝐸𝑖
0  

𝑌11 =
𝜎11
2

2𝐸11
0 (1 − 𝐷11)2

  

Plotting the root of the thermodynamic force (√𝑌11) against the cumulative damage, yields the 

evolution shape of damage. This is seen in Section 5.2.2.1; where data from all applicable 

specimens was used to determine the overall fibre-direction damage evolution in compression. 

In order to determine the plasticity evolution, shear integrity (𝛺) for each point of interest was 

calculated, which was further used to find incremental and accumulated effective equivalent plastic 

strains as follows:  

𝛺𝑖 = (1 − 𝐷𝐿)𝑖 

(∆𝑝)𝑖 = ∆𝜀𝐿
𝑝 = −

1

2

(𝜀𝐿
𝑝

𝑖+1
− 𝜀𝐿

𝑝

𝑖
)

𝛺𝑖+1 + 𝛺𝑖
  

𝑝𝑖 = 𝑝𝑖−1 + (∆𝑝)𝑖 

The experimental equivalent stress yield function points (𝑓𝑖) were calculated as follows:  

𝑓𝑖 = (𝑅𝑖 + 𝑅0) = −
𝜎𝐿𝑖
𝛺𝑖

 

Next, the yield function vs accumulated plastic strain was plotted, and a power function was fitted 

to the data: 

𝑅𝑖 = 𝛽 ∗ (𝑝𝑖)
𝛼 

Finally, the error between the experimental and predicted yield function points was calculated as 

follows:  

𝑒𝑟𝑟𝑜𝑟 =
(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙)2

(𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙)2
 

Excel’s ‘Solver’ function was used to reduce the total amount of error for all increments, yielding 

the initial guess for the material parameters 𝛼 and 𝛽. 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 
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4.2.2.2 Transverse Direction ( 900)  

The transverse fiber-direction tests were performed in the same manner as the longitudinal 

tests, on the same number of specimens. Therefore, the transverse undamaged elastic modulus, 

Poisson’s ratio, ultimate stresses, and ultimate strains were calculated using the same procedures 

as seen in the fiber-direction section.  

4.2.2.3 Cross-ply Orientation (± 450) 

In order to derive parameters of interest for this cross-ply fiber orientation, the coefficient 

B [33] must first be calculated. It is important to note that the equation for the expression of B 

contains the shear modulus 𝐺12 as an input. Theoretically, the shear modulus should be identical 

in tension and compression.  However,  as reported by Mahboob [27, 29], there is a slight 

difference in their magnitude. This can be explained by considering that tensile tests are more 

reliable due sometimes to the premature buckling of the specimens tested in compressions, which 

in turn reduces the accuracy of the calculated compressive shear modulus. Therefore, the tensile 

shear modulus of ± 450 flax composites computed by Mahboob [27, 29] was used as an input in 

the following calculations. Moreover, results derived with the tensile and compressive shear 

moduli were compared, and no visible significant differences were observed.  

Note that the following calculations are for ply-level parameters.  

𝐵 =

[
 
 
 
 (𝑚2(2𝑚2 − 1) +

4𝑚2𝑛2𝐺12
𝑇

𝐸22
(
𝐸22
𝐸11

𝜈12 + 1))

4𝑚2𝑛2𝐺12
𝑇

𝐸22
(
𝐸22
𝐸11

+ 2
𝐸22
𝐸11

𝜈12 + 1) + (2𝑚2 − 1)(𝑚2 − 𝑛2)
]
 
 
 
 

 

 

where 𝑚 = 𝑐𝑜𝑠𝜃   &   𝑛 = 𝑠𝑖𝑛𝜃 

Next, another parameter denoted as k [32] was derived as follows:  

𝑘 = −
1

2𝑚𝑛
(𝐵(1 − 2𝑚2) + 𝑚2 = −0.5 

Points of interest were isolated as previously done for the 00 orientation. Following which, 

stresses and strains in principal material coordinates for each increment are found as follows; 

keeping in mind that parameters B, k, m, and n are constant for this fiber orientation [30]:  

𝜎11𝑖 = 𝐵𝜎𝑥𝑖      𝜎22𝑖 = 𝐵𝜎𝑦𝑖      𝜏12𝑖 = 𝑘𝜎𝑥𝑖 

(4.42) 

(4.43) 
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𝜀11 = 𝑚
2𝜀𝑥 + 𝑛

2𝜀𝑦    𝜀22 = 𝑛
2𝜀𝑥 +𝑚

2𝜀𝑦    𝜀12 = −𝑛𝑚(𝜀𝑥 − 𝜀𝑦)    𝛾12 = 2𝜀12 

Rises, runs, damaged elastic and shear moduli, and apparent plastic strains for this fiber orientation 

were calculated as previously seen in the 00 section. Next, these values are used to find the 

principal direction damages, and the thermodynamic force conjugate of damage:  

𝐷11𝑖 = 1 −
𝐸11
𝐷
𝑖

𝐸11
0       &      𝐷22𝑖 = 1 −

𝐸22
𝐷
𝑖

𝐸22
0       &      𝐷12𝑖 = 1 −

𝐺12
𝐷
𝑖

𝐺12
0  

𝑌12𝑖 =
𝜏11
2
𝑖

2𝐺12
0 (𝛾)(1 − 𝐷12𝑖(𝛾))

2 

where 𝐺12
0 (𝛾) and 𝐷12(𝛾) are shear modulus and shear damage calculated form 𝛾 rather than 𝜀. 

Plastic strain and damage is further used to calculate the thermodynamic coupling parameter 𝐴𝑡𝑠:  

(𝐴𝑡𝑠)𝑖 =
(𝜀22
𝑝

𝑖
− 𝜀22

𝑝

𝑖−1
)𝜏12𝑖(1 − 𝐷22𝑖)

2

(𝛾12
𝑝

𝑖
− 𝛾12

𝑝

𝑖−1
)𝜎22𝑖(1 − 𝐷12𝑖)

2 

where 𝑖 denotes the number of the point of interest. 

And the average value for 𝐴𝑡𝑠 for this test was taken:  

𝐴𝑡𝑠 =
∑ 𝑎2𝑖
𝑖=5
𝑖=1

5
 

Note that the following calculations are in regard to laminate level parameters; where stresses and 

strains are not undergoing transformations seen in Eqs. 4.44 and 4.45. Therefore, subscripts such 

as 11 & 22 are replaced with 𝐿 & 𝑇 (Longitudinal & Transverse) to avoid confusion: 

Points of interest were singled out from stress-strain data for upper and lower cycle sections. Their 

rises and runs were found as follows:  

𝑅𝑖𝑠𝑒𝐿𝑖 = (𝜎𝑥
𝑈 − 𝜎𝑥

𝐿)𝑖      𝑅𝑢𝑛𝐿𝑖 = (𝜀𝑥
𝑈 − 𝜀𝑥

𝐿)𝑖      𝑅𝑢𝑛𝑇𝑖 = (𝜀𝑦
𝑈 − 𝜀𝑦

𝐿)
𝑖
 

Damaged elastic moduli, plastic strains, damage, thermodynamic damage energy release rates, 

shear integrity, effective equivalent plastic strain, equivalent stress yield function points, 

parameters 𝛼 and 𝛽, and the error were fund as previously seen in Eqs. 4.32-4.41, but with the 

corresponding subscripts 𝐿 & 𝑇.  

(4.44) 

(3.45) 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

(4.50) 
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4.2.2.4 ± 67. 50 Orientation 

Ply level: 

The same approach was used as in the calculation of the ± 450 case, up to the 

thermodynamic force conjugates; noting that the maximum value of √𝑌22 is √𝑌22
𝑈  .  

In contrast to the ±450 calculations, additional thermodynamic conjugate 𝑍(𝜀) was required to be 

calculated; which was further used to calculate the transverse-shear coupling constant b, and the 

parameter 𝑌𝑡𝑠:  

𝑍12𝑖(𝜀
𝑒) =

1

2
𝐸12
0 (𝑅𝑢𝑛 𝛾12)

2
𝑖
   𝑎𝑛𝑑    𝑍22𝑖(𝜀

𝑒) =
1

2
𝐸22
0 (𝜈12

0 𝑅𝑢𝑛11𝑖 + 𝑅𝑢𝑛22𝑖)
2
 

𝑏𝑡𝑠𝑖 =

((𝐷12 𝑖(𝛾12) ∗√𝑌12
𝑐 +√𝑌12

0 )
2

− 𝑍12𝑖(𝜀
𝑒))

𝑍22𝑖(𝜀
𝑒)

 

𝑌𝑡𝑠 = √𝑌12 + 𝑏𝑡𝑠𝑌22 

Where the parameter 𝑏 is taken as the average value of 𝑏𝑖 

Laminate level: 

Points of interest, damaged elastic moduli, plastic strain, damage, thermodynamic force, 

shear integrity, plastic strain, and power law predictions were calculated similarly to the ±450 

laminate section. 

4.2.3 Parameter Sensitivity Analysis 

A sensitivity analysis was conducted in order to better understand the impact of each 

parameter on damage and plasticity, for each type of fiber direction specimens. There are many 

possible approaches at performing sensitivity analysis, and they heavily depend on the nature of 

the problem as well as the extent of available time and effort. Hamby [45] performed an extensive 

comparison of sensitivity analysis techniques. It was concluded that for our case, a simple one-at-

a-time sensitivity measure would provide sufficient information for a relatively low cost of time 

and effort. The main concept of this method is to vary one parameter at a time and keep the 

remainder at a constant value. At the end, the sensitivity of the parameter is computed by 

comparing the output of the varied parameter with the output of the base case. The base case uses 

(4.51) 

(4.52) 

(4.53) 
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variable values derived from experimental data, and non-derivable values (coupling constants) 

were taken as a random guess, that provided a sufficiently good fit.  

A total of fourteen variables were tested (Table 4-1) for four distinct fiber configurations, 

resulting in fifty-six  varied cases and four base cases analyzed. Most variables were increased to 

a value of 360% of the base value. Few parameters identified as highly sensitive were increased to 

120%, they can be seen highlighted in Table 4-1.  

Table 4-1: Flax/Epoxy parameters  

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Designated 

Parameter 

𝑌𝑓
0 𝑌𝑓

𝐶 𝜎𝑓
0 𝛼𝑓 𝛽𝑓 𝑌𝑠

0 𝑌𝑠
𝐶  𝑌𝑡

0 𝑌𝑠
𝐶  𝑏 𝐴𝑡𝑠 𝜎𝑡𝑠

0  𝛼𝑡𝑠 𝛽
𝑡𝑠

 

 

The overall outcome is visualized in Figures 4-6 through 4-9. These figures demonstrate 

that the fibre direction parameters are independent of shear-transverse parameters, as expected. 

However, shear direction is influenced by the fiber direction parameters in both damage and 

plasticity accumulation. Moreover, it shows the complex nature of shear-transverse coupling. This 

data was used to identify the crucial parameters required to be optimized for each fiber orientation, 

and to narrow down the boundaries of highly sensitive parameters. 
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Figure 4-8: ±𝟒𝟓𝟎 a) damage and b) plasticity sensitivity 
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4.2.4 Parameters Optimization 

Mike McKerns, a researcher at Caltech since 2012, an author of several python packages, 

and a leading expert in modern optimization techniques stated: “Because of the way optimization 

algorithms are build, they don’t always behave the same… they all have a target use case in mind, 

and most are customized to that case”. This means that every problem has a unique optimizer that 

best suits it. Since the goal of this thesis was not to develop a new optimizing algorithm, the next 

best thing was to find an algorithm built for similar problems, and adopt it to this sty case. Several 

types of optimizer were explored, from simple gradient descend, to complex genetic evolution 

types. Knowing that a global and non-linear optimizer is required to solve the problem at hand, the 

selection was narrowed down to two open-source algorithms: Basin Hopping and Differential 

Evolution from scipy.optimize libraries [42]. As mentioned by McKerns, most problems require 

one to try several types of optimizers in order to zero-in on the most effective one. If the cost 

function is imagined as a 2D plane with elevated and descended features, such as any 3D map of 

a geographical region, then Basin Hopping works by taking an initial guess as the starting point 

and randomly jumping to different areas of the cost-function plane and evaluates the function’s 

value at those points; gradually converging on the location with the lowest value. This optimizer 
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experienced issues because several parameter combinations caused the iteration steps described in 

Section 4.2.2 to diverge and the optimizer would crash. An analogous to this is imagining that the 

2D cost-function plane is full cracks and voids. Not being able to predict all the parameter 

combinations that lead to divergence, meant that one could not make the optimizer omit the 

problematic areas. This lead to the conclusion that Basin Hoping was an ineffective algorithm for 

this case.   

Differential Evolution is similar to other types of genetic algorithms. It takes bounds as an 

input, and generates a series of possible parameter combinations that are within the bounds. This 

can be imagined as scattering a bunch of probes randomly distributed on the 2D cost-function 

plane. The probes with the lowest cost-function values would be used as parents for the new 

generation of probes. Here, the algorithm would mix the traits (parameters) of the most successful 

probes in order to achieve a new generation of probes containing the best desired qualities of the 

previous generation. The most promising of the new generation would get selected to become the 

parents of the next generation. This process would continue until the optimizer would converge on 

the best possible combination of parameters. For the problem at hand, this approach was found to 

be very effective, since strict parameter bounds were imposed on the optimizer, ensuring that it 

would avoid problematic combinations. 

 Since the model output and the experimental result for each specimen contained the same 

amount of discrete points, the following formula was used as a simple cost function (C.F.), 

minimizing the difference between the experimental and predicted strains for a given value of 

stress:  

𝐶. 𝐹.= ∑ [𝑎 ∗ (∑|𝜀𝐿
𝑒𝑥𝑝 − 𝜀𝐿

𝑚𝑜𝑑𝑒𝑙|

𝑖=𝑛

𝑖=1

) + (1 − 𝑎) ∗ (∑|𝜀𝑇
𝑒𝑥𝑝 − 𝜀𝑇

𝑚𝑜𝑑𝑒𝑙|

𝑖=𝑛

𝑖=1

)]

𝑖=𝑚

𝑖=1

 

where m is the number of specimens of different orientations, n is the number of discrete stress 

increments per specimen, and 𝑎 is a weight factor giving priority to a better fit in the longitudinal 

direction. 

Again, it is worth to note that the parameters identified in the prior sections are best suited for 

Classical Laminate Theory applications. Periodic Homogenization heavily relies on iterative 

techniques, therefore, an iterative parameter identification technique (such as this type of 

(4.54) 
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optimization) is better suited for this particular case. Nonetheless, parameters identified from 

experimental data were used as a good initial guess for the optimizer’s parameter bounds.  

4.3 MMDM Implementation 

This section will describe the methodology used in the numerical implementation of the 

Modified Mesoscale Damage Model. Firstly, damage and plasticity equations introduced in the 

Section 4.1 are used on each ply to calculate the local strain state for a given stress increment. 

Secondly, SMART+ algorithms [43] use iterative techniques to homogenize the strain level of 

each ply, resulting in the overall composite strain state prediction. 

4.3.1 Single-Ply 

An element at a certain stress state could be experiencing damage, plasticity, both, or none. 

Referring to Figure 4-10, suppose that one would like to calculate the strain state of a singly ply 

for a load increment ∆𝜎. Firstly, the program checks for onset of damage by computing the 

thermodynamic forces described in Section 4.1.5 ( 𝐷 > 0 ?). If no damage is found to, the elastic 

modulus of set increment remains equal to the modulus of the previous increment (𝐸𝑛 = 𝐸𝑛−1). If 

damage is found, then the elastic modulus is depredated using the calculated damage (𝐸𝑛 =

𝐸𝑛−1(1 − 𝐷)). The elastic portion of strain is calculated (∆𝜀𝑒 = 𝐸𝑛
−1∆𝜎). Next, the equivalent 

applied stress is calculated, and onset of plasticity is checked ( 𝜎̃ 𝑒𝑞 ≤  𝑅0 ?). If no plasticity is 

found, the plastic portion of strain is zero (∆𝜀𝑃 = 0). If plasticity is found, then the plastic strain 

is found using the accumulated plastic strain (∆𝑝̃). Finally, the total strain increment is the 

summation of the plastic and elastic strains (∆𝜀=∆𝜀𝑒+∆𝜀𝑝). 
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4.3.2 Multi-Ply  

Load-bearing laminates are generally composed of multiple plies of similar, different, or 

periodically repeating orientations. Laminate theory is generally used to describe the behaviour of 

multiply laminates, however this theory has drawbacks, especially in predicting non-linear 

response of composites [29]. Flax composites exhibit irrecoverable strains, stiffness degradation, 

and damage evolution; moreover, internal stresses arise due to irreversible strain mismatch in-

between the plies [29]. Therefore, a new iterative approach was applied to the multi-ply model. 

Periodic Homogenization used by Mahboob et al. [29] for tensile modeling of Flax 

composites is an advanced technique pioneered by Bensoussan et al. [44]. It allows loading in 3D 

and has been successfully implemented in modeling non-linearly composite response of shape-

memory alloys [45]. MMDT was integrated into the incrementally applied periodic 

homogenization material solver using open-source SAMRT+ (Smart Materials Algorithms and 

Research Tools [43]) scientific libraries developed by several collaborating institutions. These 

libraries were specifically designed to analyze and model heterogeneous materials, and the 

MMDM implementation was similar to previous implementations of plasticity and viscoplasticity 

models seen in [45]. A system of five non-linear equations (two plasticity conditions from yield 

Figure 4-10: Element strain states 
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functions Ф𝑓
𝑝
 & Ф𝑡𝑠

𝑝
, and three related to damage functions Ф𝐷11 , Ф𝐷22 , & Ф𝐷12) are mathematically 

treated as presented in [45]. 

 The working principle behind multi-ply modeling is illustrated in Figure 4-11. Calculating 

strain states as presented in Section 3.2.1 requires one to know the exact stress state of each ply. 

This is unknown, since the software input is the total composite stress. Therefore, the total 

composite stress is decomposed it into ply-specific stresses using a material solver. Next, ply-

specific analysis is performed as described in Section 3.2.1; however, there is a chance of strain 

mismatch due to an inaccurate initial stress decomposition.  Therefore, the resulting strains are 

returned to the SMART+ periodic homogenization algorithms which use an iterative approach to 

re-adjust the ply-specific stress increments until the resulting ply strains are equivalent. 

 

Figure 4-11: Multi-ply modeling schematic 

 

The overall modeling process can be interpreted as a dual-stage iterative procedure. The first stage 

deals with individual plies, iterating the damage and plasticity states of each ply. The second stage 

is at the laminate level, where iterations are performed on ply-specific stress components in order 

to achieve a uniform strain state within the composite. A schematic representation of the whole 

iterative process including all the calculation steps is shown in Figure 4-12. 
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.  

Figure 4-12: MMDM implementation schematic 
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Chapter 5: Model Validation and Result 
 

5.1 Model Validation on E-Glass Laminates 

In this thesis, flax composites are iontroduced as an alternative to glass-reinfoced 

composites. Therefore, compressive validation was performed on E-glass/Polyester composites of 

various fiber orientations (Figure 5-1). To furher validate the versatility of the model, the MMDM 

was also applied to E-glass/Epoxy composites in tension with various fiber oreitations (Figure 

5-2). Experimental data on the material response was extracted from the works of Amijima and 

Adachi [46]. Under both tensile and compressive loads, it was assumed that damage evolution was 

linear (even if damage itself was infintesimally small), and that all plastic evolution followed a 

power law simmilarly to the original formaulations of Ladeveze and Le Dantec [34]. It was 

observed that that the model (solid black line) succesfuly predicted the E-glass composite 

mechanical response to tensile and compressive loads, even at strains as high as 3%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: E-glass/Polyester composite compressive MMDM prediction vs experimental 

response [52] 
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5.2   Flax Composite Characteristics 

  

5.2.1 Stress-Strain Behaviour 

 From the previous works [32], it was known that Flax composites share similarities in their 

mechanical characteristics and behaviour under tensile and compressive loads. This phenomenon 

is seen in Figures 5.3 and 5.4, where red is tensile (reprinted with permission from [29]) and purple 

is compressive material response. Noting that the compressive response was reflected with respect 

to the x axis, in order to better visualize the similarities and differences in between tensile and 

compressive response.  

 It is noticeable that the magnitudes of the stress-strain plots are different, but the overall shape of 

the curves are similar. Since the theory has been shown to be effective in tensile cases, the stress-

strain similarity implies that it should be able to capture the compressive behaviour as well. In 

accordance with the observations of Bos & Donald as well as other authors [20, 22, 27], it is seen 

that the 00 fiber-oriented samples have a greater tensile than compressive strength. Here, its 

observed that Flax/Epoxy composites in compression obtain the same level of damage and 
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plasticity as the composite in tension at half the stress applied. Even though the average tensile 

undamaged elastic modulus is larger than the compressive one (31.42 GPa and 30.32 GPa 

respectfully) they fall within the same range of value considering their respective standard 

deviations. The ultimate tensile strength is twice as large as the compressive one, with values of 

286.7 MPa and 127.1 MPa respectfully. Epoxy-only specimens have been tested to have tensile 

and compressive elastic moduli of 3.03 and 3.57 GPa respectfully, while the ultimate tensile and 

compressive strengths were 67.17 and 73.99 MPa respectfully. This clearly indicates that the 

addition of Flax fiber oriented parallel to the load-axis, creates a composite with greatly increased 

elastic moduli as well as the ultimate strengths in tension and compression compared to neat epoxy. 

 For transverse-oriented fibers, the undamaged elastic moduli have similar values 

(considering measured standard deviation ~5.6 GPa), while the ultimate compressive strength is 

double that of the tensile (79.94 MPa and 33.86 MPa). The presence of transverse fibers in epoxy 

nearly doubles the elastic moduli, while the tensile strength was reduced in half and the 

compressive strength remained the same. This is a consequence of dissimilar tensile and 

compressive damage mechanisms, further discussed in the next section. An interesting observation 

is that in the transverse direction,  900 fiber-oriented samples under tension and compression 

experience close to no damage and plasticity. 

 The ± 450 reinforced specimens have a slightly larger average measured shear modulus in 

tension than in compression (2.07 GPa and 1.63 GPa); however, considering the standard 

deviations, the difference becomes negligible. The tensile shear strength was found to be slightly 

smaller than the compressive one (37.35 MPa and 43.24 MPa). The ultimate tensile and 

compressive strengths along the load-axis were measured to be 74.28 MPa and 86.47 MPa, 

indicating that the damage mechanisms are different in tension and compression. There is notably 

more damage occurring under compression, as the stress-strain curve is much less linear than in 

tension.  

 Lastly, similar trends as in 900 samples have been observed in the ± 67.50, with slightly 

higher strength and stiffness values. This is due to the fact that the fiber component parallel to the 

load axis is able to carry some additional load when compared to the transverse-only case. 
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5.2.2 Flax/Epoxy Damage and Plasticity 

 In this section, observed damage and plasticity compressive trends of Flax/Epoxy 

laminates are discussed. These observations were further used in the MMDM damage and 

plasticity constitutive equation formulations.  

5.2.2.1 00 Fiber-Oriented Flax/Epoxy 

There was a total of 7 tests performed on samples of this fiber orientation, 2 monotonic and 

5 of load-unload type. Applying the MDT in reverse as describe in [33], allows one to expose the 

composite’s damage and plasticity evolution trends. The fiber-direction damage force (𝑌𝑓) was 

plotted versus the accumulated fiber direction damage (𝐷11) as seen in  Figure 5-5a. The 

compressive damage evolution of flax composites with 00-oriented fibers is identified as 

generally-linear. Some deviation from the trend is associated with the specimen’s onset of 

buckling; which is not of concern in this thesis. Figure 5-5b shows the composite’s compressive 

plasticity evolution trend, which follows a power-shape function with a positive fractional 

exponent.  

 

Figure 5-5: Fiber-direction a) Damage and b) Plasticity evolution  

 

5.2.2.2 ±450 and ±67.50 Fiber-Oriented Flax/Epoxy 

 The same methodology as seen in the previous section was applied to samples with fiber 

directions other than 00.  Noting that the damage (𝐷𝐿) and plasticity (𝑝𝐿) trends observed are in 

reference to the load axis. Under compressive loads, ±450 and ±67.50 fiber-oriented specimens 

follow linear damage evolutions and power-shaped plasticity evolutions as seen in Figure 5-6 and 

Figure 5-7.  

(a) 



 53  
 

 

Figure 5-6: Compressive shear-direction damage evolution: a) ±𝟒𝟓𝟎, b) ±𝟔𝟕. 𝟓𝟎 

 

 

Figure 5-7: Compressive shear-direction plasticity evolution: a) ±𝟒𝟓𝟎, b) ±𝟔𝟕. 𝟓𝟎 

 

5.2.2.3 900 Fiber-Oriented Flax/Epoxy 

 900 fiber-oriented samples exhibited exponential trends for both damage and plasticity 

evolutions (Figure 5-8). This raises a substantial problem, due to MDT fundamental formulation 

of linear shear-transverse coupling, the theory intrinsically requires the transverse direction 

damage evolution to be linear and the plasticity evolution to be power-shaped. Fortunately, a linear 
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fit for damage evolution and a power-shaped plasticity evolution with a very small curvature were 

found to fit sufficiently well as seen in Figure 5-9. 

Figure 5-8: Transverse exponential a) damage evolution, b) plasticity evolution 

Figure 5-9: Transverse a) linear damage evolution, b) gradual power plasticity evolution 

  

(a) (b) 
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5.3   Flax/Epoxy Compressive Response and Simulation  

    In this study, 4 principal ply orientations were used to identify Flax/Epoxy compressive 

parameters via the optimization methods discussed in Chapter 4.  At least four monotonic and/or 

multiple-cycled progressive loading tests were performed on each fiber orientation and used in 

parameter identification; thus, the identified parameters are listed in Table 5-1. The simulated 

results can be seen in Figures 5-10 through 5-13, noting that the saw-tooth shaped load-path shows 

the cyclical and progressively increasing load applied to the samples. It is easily noticeable that 

the model excellently predicts both damage and plasticity evolution of 00 and ±67.50 orientations. 

In the case of 900, the model is capable of predicting the overall strain state of the material, but 

cannot decompose it accurately into its elastic and plastic parts. This is an outcome of the 

fundamental difference in the transverse-fiber specimen plasticity evolution. As previously 

mentioned in Section 5.2.1, transverse samples experienced exponential plasticity evolution, while 

all others experienced a power-law with a fractional exponent (between 0 and 1). The current 

shear-transverse coupling constant b cannot transform the power plasticity evolution curve into an 

exponential one for the transverse direction.  This however, is not a major concern since there are 

limited scenarios where fiber reinforcement is placed perpendicular to the load-axis. Moreover, if 

this case is encountered, the model is capable of predicting the overall strain state of transverse-

oriented composite. Lastly, for the  ±450 orientation, it is observed that the model does an 

excellent job at predicting the material strain state in the longitudinal direction, but cannot match 

the transverse experimental result. There are several possible reasons for this mismatch, due to this 

fiber orientation’s susceptibility to delamination, ply reorientation, and buckling.  Nonetheless, the 

model has shown that its overall capable to predict flax-epoxy strain states of various fiber 

orientations.  

 Lastly, it should be noted that the compressive model was fitted to the material response 

of a single sample that exhibited an average material response in comparison to other tested 

samples. Due to the nature of composite materials and the manufacturing procedures, there is a 

larger deviation in material properties compared to typical metals. Therefore, one should keep in 

mind that some deviation between a specific sample behaviour and the average material 

behaviour should be expected. 
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Table 5-1: Flax/Epoxy compressive-specific MMDM parameters 

Material Property 𝑬𝟏𝟏
𝟎  (GPa) 𝝂𝟏𝟐

𝟎  𝑬𝟐𝟐
𝟎  (GPa) 𝝂𝟐𝟏

𝟎  𝑮𝟏𝟐
𝟎  (GPa) 

 32 0.087 5.23 0.396 1.66 

Fiber Direction 𝑌𝑓
0 (√MPa) 𝑌𝑓

𝐶  𝜎𝑓
0 (MPa) 𝛼𝑓 𝛽𝑓 

 0.01 1.64 5.653 0.445 2998 

Shear Damage 𝑌12
𝑚𝑎𝑥 

(MPa) 
𝑌𝑠
0(√MPa) 𝑌𝑠

𝑐(√MPa)   

 1.26 0.001 2.32   

Transverse 

coupled damage 
𝑏 𝑌22

𝑚𝑎𝑥 (MPa) 𝑌𝑡
0(√MPa) 𝑌𝑡

𝐶(√MPa)  

 0.8 5.03 0.0128 2.65  

Transverse-Shear 

yield   & 

inelasticity 

𝐴𝑡𝑠 (MPa) 𝜎𝑡𝑠
0  𝛼𝑡𝑠 𝛽𝑡𝑠  

 0.79 10.503 0.45 1170  
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Figure 5-10: 𝟎𝟎 fiber-oriented Flax/Epoxy experimental behaviour and MMDM prediction 
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Figure 5-11: ±𝟔𝟕. 𝟓𝟎 fiber-oriented Flax/Epoxy experimental behaviour and MMDM 

prediction 

Figure 5-12: 𝟗𝟎𝟎 fiber-oriented Flax/Epoxy experimental behaviour and MMDM 

prediction 
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5.4 Limitations 

It is important to note that there are a few limitations associated with the current model; 

which need to be taken into account for real design applications. As previously mentioned, the 

samples with 900 – oriented fibers experience a plasticity evolution following a trend that is 

different from other fiber orientations. Due to the fact that shear and transverse plasticity 

evolutions are coupled within a single evolution law with a constant coupling parameter, means 

that a compromise must be established where either the transverse or the shear will lose accuracy. 

In this case, under the current formulation, the transverse strain response to compression can’t be 

accurately decomposed into its elastic and plastic components.  Nonetheless, the model does 

accurately predict the overall strain state; therefore, if the total strain rate is the only information 

required for a design task at hand, then the model can provide this information for transverse fiber-

oriented samples. 

The model can accurately predict the longitudinal strain of the ±450 fiber-oriented samples, 

and cannot do it for the transverse direction. There are several possible explanations, and the true 
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Figure 5-13: ± 𝟒𝟓 fiber-oriented Flax/Epoxy experimental behaviour and MMDM 

prediction 
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reason could be a combination of the following reasons: 1) damage mechanisms that are not 

accounted for in the constitutive equations such as inter-laminar re-orientation, severe 

delamination, and buckling. 2) DIC techniques are known to be less reliable in the direction 

perpendicular to the load axis, especially considering that the composite’s poison’s ratio varies 

severely at low stress rates before approaching a steady value at higher loads. A comprehensive 

investigation would be required in future works to determine the exact cause of this discrepancy 

Finally, the reader should be reminded that even thought he model is built for a 3D 

volumetric element, it has been applied in this thesis only in 2D. Therefore, one should keep in 

mind that the model presented here is meant for in-plane load conditions. 
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Chapter 6: Conclusion and Future Work 
 

6.1   Conclusion 

 Natural fibers such as flax, present an untapped source of environmentally friendly, 

sustainable, and cost-effective substitutes to synthetic fibers used for composite reinforcements. 

Moreover, flax fibers have been shown to have comparable mechanical properties to E-Glass, the 

most popular choice of fiber reinforcement. The impeding factor of NFC’s widespread use as load-

bearing components is due to a noticeable lack data on their mechanical behaviour in compression, 

and a lack of robust and accurate predictive tools. 

 In this paper, quasi-static compressive testing was performed on Flax/Epoxy laminates of 

four principle orientations: [0]16, [90]16, [±45]4𝑆, and [±67.5]4𝑆. Experimental data were used 

to characterize the material behaviour in compression.  It was found that Flax/Epoxy laminates 

experience linear damage and power-law plasticity evolution behaviours. This information was 

further used to modify the standard Mesoscale Damage Theory, allowing it to capture the non-

linear mechanical behaviour of Flax/Epoxy composites in compression. The modified mesoscale 

damage theory was integrated into open-source SMART+ material libraries, creating a robust and 

accurate tool capable of predicting the in-plane compressive behaviour of flax composites. This 

predictive tool was further validated on E-glass and Flax composites in compression as well as on 

E-glass/Epoxy composites in tension.  Overall, the Modified Mesoscale Damage Model was found 

to be suitable for predicting the compressive behaviour of both synthetic and natural fiber 

composites. Being able to accurately model the non-linear mechanical behaviour of NFCs, will 

allow engineers to design with confidence components and parts from natural fibers.  This will 

further promote the use of sustainable and environmentally friendly materials for structural 

applications.  

6.2 Future Work 

The MMDM has shown to be a robust tool in predicting the overall in-plane material 

response to compressive loads. Test specimens have been observed to buckle during compressive 

testing, and this phenomenon was not taken into accounted in the formulation of constitutive 

equations in the modified mesoscale damage model. In order to improve the model and fully 

capture the material behaviour up to failure, bucking effects as well as other out-of-plane effects 
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must be accounted for. The model was formulated in a way that allows the effects of temperature 

to be taken into account, however, in this study, it has only been validated for room temperature. 

Therefore, future works may include formulating buckling constitutive equations, and performing 

mechanical tests at various service temperatures, and validating the model for thermal and 

buckling effects.   

 The second recommendation for future works is to implement the model into a finite 

element design software such as ANSYS or ABAQUS, and expand its application from a single 

element to complex finite element structures. The successful completion of the above suggestions, 

will result in a sophisticated model ready for mainstream structural applications.  
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Appendix A: Sample Calculations 
 

This appendix presents sample calculations performed in order to derive the optimizer’s 

initial guess for material-specific compressive parameters. The superscript ‘c’ was dropped in 

order to reduce the congestion of scripts in the following formulas. 

For the sake of space and paper conservation, repetition will be avoided where applicable; i.e. all 

relevant calculations will be shown, while calculations that require the repeated use of the same 

formula will not be shown.  

Fiber Direction ( 𝟎𝟎)  

Damage Evolution 

The initial undamaged elastic modulus was found from the initial segment of the stress/strain curve 

using Eq. 4.26: 

𝐸11
0 (𝑛) =

𝜎11
′′ − 𝜎11

′

𝜀11
′′ − 𝜀11

′′  

Monotonic 1; i.e. (𝑚1): 

𝐸11
0 (𝑚1) =

𝜎11
′′ − 𝜎11

′

𝜀11
′′ − 𝜀11

′′ =
−13.377 + 0.392

(−42.77 + 6.111) ∗ 10−5
𝑀𝑃𝑎
𝑚𝑚
𝑚𝑚

= 35,415 𝑀𝑃𝑎 

The actual undamaged elastic modulus was taken as an average of the five tests, as seen in Eq. 

4.27: 

𝐸11
0 =∑

𝐸11
0 (𝑛)

5

𝑛=5

𝑛=1

=
35415.92 + 26038.42 + 30728.45 + 30410.12 + 29001.78

5

= 30,318.94 𝑀𝑃𝑎 

The undamaged Poisson’s ratio was found using Eq. 4.28 and 4.29, in accordance with the 

following steps: 1) the Poisson’s ratio was found for every load increment of each test, 2) the 

median value of each test was found, 3) the undamaged Poisson’s ratio was taken as the average 

of the five means. 

Monotonic 1: 

𝑚𝑒𝑎𝑛 𝜈12
0  (𝑚1) = 𝑚𝑒𝑎𝑛 [− (

𝜀𝑦

𝜀𝑥
)
𝑖

] ,   𝑤ℎ𝑒𝑟𝑒 𝑖 ≤ 0,   𝑖 𝜖 𝑍 



 63  
 

The actual Poisson’s ratio was taken as an average of the five tests: 

𝜈12
0 =∑

𝜈12
0 (𝑛)

5

𝑛=5

𝑛=1

=
0.446 + 0.353 + 0.455 + 0.380 + 0.346

5
= 0.396 

The ultimate stresses and strains were calculated as the average of the largest absolute stress/strain 

recorded for each specimen using Eq. 4.30: 

𝜎11
𝑢 =

∑ min(𝜎11(𝑛))
𝑛=5
𝑛=1

5
=
−122.36 − 133.16 − 119.99 − 131.12 − 128.95

5
= −127.11 𝑀𝑃𝑎 

𝜀𝐿𝐿
𝑢 = 𝜀11

𝑢 =
∑ min(𝜀11(𝑛))
𝑛=5
𝑛=1

5
=
−1.51 − 1.55 − 1.88 − 1.95 − 1.13

5
= −1.6% 

𝜀𝑇𝑇
𝑢 =

∑ max(𝜀𝑇𝑇(𝑛))
𝑛=5
𝑛=1

5
=
0.71 + 0.62 + 0.7 + 0.83 + 0.4

5
= 0.65% 

The following calculations relate to the load/unload experiments performed on specimens with  

00orientation, more specifically, on test 3. Similar calculations were performed on tests 4 and 5: 

Points of interest were isolated for the upper and lower limits of the cycle using Eq. 4.31:  

𝑅𝑖𝑠𝑒𝑖 = (𝜎𝑈 − 𝜎𝐿)𝑖 

𝑅𝑢𝑛𝑖 = (𝜀
𝑈 − 𝜀𝐿)𝑖 

where superscripts 𝑈, 𝐿, 𝐷, 𝑝, 𝑎𝑛𝑑 0 stand for Upper, Lower, Damaged, plastic, and undamaged 

respectively.  

Table A-0-1: 00 Points of interest, moduli rise and run 

Point Upper limit of cycle Lower limit of cycle Elastic Moduli 

 𝜎𝑥 
(𝑀𝑃𝑎) 

𝜀𝑥 ∗  10
3 

(
𝑚𝑚

𝑚𝑚
) 

𝜀𝑦 ∗

103 

(
𝑚𝑚

𝑚𝑚
) 

𝜎𝑥 
(𝑀𝑃𝑎) 

𝜀𝑥 ∗
 103 

(
𝑚𝑚

𝑚𝑚
) 

𝜀𝑦 ∗

103 

(
𝑚𝑚

𝑚𝑚
) 

𝑅𝑖𝑠𝑒11 (𝑀𝑃𝑎) 𝑅𝑢𝑛11

∗ 103  (
𝑚𝑚

𝑚𝑚
) 

𝑅𝑢𝑛22

∗ 103  (
𝑚𝑚

𝑚𝑚
) 

1 0.000 0.000 0.000 -3.249 0.000 0.086 0.000 0.000 0.000 

2 -25.646 -0.923 0.407 0.000 -0.161 0.091 -25.646 -0.762 0.316 

3 -46.208 -1.722 0.753 -0.048 -0.240 0.121 -46.160 -1.482 0.632 

4 -66.770 -2.557 1.190 -0.832 -0.375 0.171 -65.938 -2.182 1.019 

5 -77.078 -3.248 1.475 -0.832 -0.519 0.209 -76.245 -2.729 1.266 

6 -87.604 -4.057 1.847 -1.174 -0.597 0.276 -86.430 -3.460 1.571 

7 -119.988 -17.546 6.719 
      

 

The damaged elastic modulus is calculated using Eq. 4.32, and further used to find the apparent 

plastic strain: 
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𝐸𝑖
𝐷 =

𝑅𝑖𝑠𝑒𝑖
𝑅𝑢𝑛𝑖

 

𝜀𝑖
𝑝 = (𝜀𝐿 − (

𝜎𝐿

𝐸𝐷
))

𝑖

 

Damage in principal directions and thermodynamic damage energy release rates were calculated 

using Eqs. 4.34 and 4.35: 

𝐷𝑖 = 1 −
𝐸𝑖
𝐷

𝐸𝑖
0  

𝑌11 =
𝜎11
𝑈 2

2𝐸11
0 (1 − 𝐷11)2

  

Table A-0-2: 00 Elastic moduli, plastic strain, damage, and thermodynamic force 

Elastic moduli Plastic strain (apparent) Damage Thermodynamic Force 

𝑬𝟏𝟏
𝑫  (𝑴𝑷𝒂) 𝐸22

𝐷  (𝑀𝑃𝑎) 𝜀11
𝑝

∗ 104 (
𝑚𝑚

𝑚𝑚
) 

𝜀22
𝑝

∗ 104 (
𝑚𝑚

𝑚𝑚
) 

𝐷11 𝐷22 𝑌11(𝜎) (𝑀𝑃𝑎) √𝑌11(𝜎) (√𝑀𝑃𝑎) 

34338.000 98617.000 0.000 0.000 0.000 0.000 0 0 

33671.205 81078.123 -1.613 0.908 0.019 0.178 0.00996 0.099802 

31144.108 73064.935 -2.383 1.219 0.093 0.259 0.037795 0.194408 

30214.242 64710.186 -3.474 1.835 0.120 0.344 0.083846 0.289562 

27940.318 60227.295 -4.894 2.226 0.186 0.389 0.130659 0.361467 

24982.023 55015.370 -5.504 2.972 0.272 0.442 0.211123 0.459482 

 

The root of the thermodynamic force was plotted versus the accumulated damage (√𝑌11(𝜎) vs 

𝐷11). The cumulative resulting plot was used to determine the initial guess values for 𝑌𝑓
0 and 𝑌𝑓

𝐶 . 

Plasticity Evolution 

Shear integrity for each point of interest was calculated, and used to find incremental and 

accumulated effective equivalent plastic strains using Eqs. 4.36-4.38: 

𝛺𝑖 = (1 − 𝐷𝐿)𝑖 

(∆𝑝)𝑖 = ∆𝜀𝐿
𝑝 = −

1

2

(𝜀𝐿
𝑝

𝑖+1
− 𝜀𝐿

𝑝

𝑖
)

𝛺𝑖+1 + 𝛺𝑖
  

𝑝𝑖 = 𝑝𝑖−1 + (∆𝑝)𝑖 

The equivalent stress yield function points for plotting, were calculated using Eq. 4.39: 
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𝑓𝑖 = (𝑅𝑖 + 𝑅0) = −
𝜎𝐿𝑖
𝛺𝑖

 

Once the yield function vs accumulated plastic strain was plotted, a power-shaped function (Eq. 

4.40) was fitted to the data accumulated from all relevant sapless. 

𝑅𝑖 = 𝛽(𝑝𝑖)
𝛼 

The error in between the experimental and predicted yield function points was calculated as 

follows: 

𝑒𝑟𝑟𝑜𝑟 =
(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙)2

(𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙)2
 

Again, Excel’s Solver function was used to minimize the error and between the predicted and 

experimental results, yielding the initial guess values for 𝛽𝑓 and 𝛼𝑓. 

Table A-0-3: 00 Shear integrity, plastic strain, and yield function points 

Shear 

integrity 

Plastic Strain 

Increment 

Accumulated Plastic 

Strain 

Experimental points for 

yield function 

Power law 

prediction for R 

Error 

𝜴𝒊 ∆𝒑𝒊 ∗ 𝟏𝟎
𝟒 𝒑𝒊 ∗ 𝟏𝟎

𝟒 𝒇𝒊 (𝑴𝑷𝒂) 𝑹𝒊 (𝑴𝑷𝒂)  

1.000 0.000 0.000 0.000 0.000 0 

0.981 15.975 15.975 26.154 50.158 0.8424 

0.907 7.270 23.245 50.947 58.254 0.0206 

0.880 9.746 32.991 75.883 66.985 0.0137 

0.814 12.019 45.010 94.726 75.822 0.0398 

0.728 4.705 49.715 120.412 78.889 0.1189 

 

Transverse Fiber direction (𝟗𝟎𝟎) 

The transverse-fiber tests were performed in the same way as the longitudinal ones; with the same 

number of monotonic and cyclic loadings. Therefore, the transverse undamaged elastic modulus, 

Poisson’s ratio, ultimate stresses, and ultimate strains were calculated with the same procedure as 

in the fiber direction: 

Monotonic 1: 

𝐸22
0 (𝑚1) =

𝜎22
′′ − 𝜎22

′

𝜀22
′′ − 𝜀22

′′ =
−6.604 − 0

 (−1.1792 − 0) ∗ 10−3
𝑀𝑃𝑎
𝑚𝑚
𝑚𝑚

= 5600.44 𝑀𝑃𝑎   

Average transverse undamaged elastic modulus is equal to: 

𝐸22
0 =∑

𝐸22
0 (𝑛)

5

𝑛=5

𝑛=1

=
5600.44 + 5665.54 + 5237.10 + 4980.02 + 7035.93

5
=  5703.81 𝑀𝑃𝑎 
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Average transverse Poisson’s ratio: 

𝜈12
0 =∑

𝜈12
0 (𝑛)

5

𝑛=5

𝑛=1

=
0.058 + 0.077 + 0.057 + 0.079 + 0.057

5
= 0.066 

Transverse ultimate stresses and strains were calculated using the same procedure as seen in for 

the fiber direction: 

𝜎22
𝑢 =

∑ min(𝜎22(𝑛))
𝑛=5
𝑛=1

5
=
−75.23 − 72.00 − 77.1 − 75.81 − 99.5

5
= −79.94 𝑀𝑃𝑎 

𝜀𝐿𝐿
𝑢 = 𝜀22

𝑢 =
∑ min(𝜀22(𝑛))
𝑛=5
𝑛=1

5
=
−2.36 − 2.47 − 2.46 − 2.12 − 3.63

5
= −2.61% 

𝜀𝑇𝑇
𝑢 =

∑ min(𝜀𝑇𝑇(𝑛))
𝑛=5
𝑛=1

5
=
0.13 + 0.19 + 0.15 + 0.15 + 0.20

5
= 0.16% 

± 𝟒𝟓𝟎 Orientation 

Three ± 450 orientation specimens where tested. Parameter B was first calculated using Eq. 4.42, 

noting that the tension shear modulus of ± 450 flax composites presented by Mahboob [43] was 

used in this calculation: 

𝑚 = 𝑐𝑜𝑠𝜃 = 𝑐𝑜𝑠45 = 0.707 

𝑛 = 𝑠𝑖𝑛𝜃 = 0.5 

𝐵 =

[
 
 
 
 (𝑚2(2𝑚2 − 1) +

4𝑚2𝑛2𝐺12
𝑇

𝐸22
(
𝐸22
𝐸11

𝜈12 + 1))

4𝑚2𝑛2𝐺12
𝑇

𝐸22
(
𝐸22
𝐸11

+ 2
𝐸22
𝐸11

𝜈12 + 1) + (2𝑚2 − 1)(𝑚2 − 𝑛2)
]
 
 
 
 

 

𝐵 =

[
 
 
 
 (0.7072(2(0.707)2 − 1) +

4(0.707)2(0.707)22.07
5.7

(
5.7
30.320.353 + 1))

4(0.707)2(0.707)22.07
5.7

(
5.7
30.32 + 2

5.7
30.320.353 + 1) +

(2(0.707)2 − 1)((0.707)2 − (0.707)2)
]
 
 
 
 

= 0.80741 

Parameter k was found using Eq. 4.43 is equal to: 

𝑘 = −
1

2𝑚𝑛
(𝐵(1 − 2𝑚2) + 𝑚2 = −0.5 

Points of interest were isolated as previously done for the 00 orientation. Stresses and strains in 

principal material coordinates for each increment were found as seen in Eqs. 4.44 and 4.45: 
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𝜎11𝑖 = 𝐵𝜎𝑥𝑖      𝜎22𝑖 = 𝐵𝜎𝑦𝑖
      𝜏12𝑖 = 𝑘𝜎𝑥𝑖 

𝜀11 = 𝑚
2𝜀𝑥 + 𝑛

2𝜀𝑦      𝜀22 = 𝑛
2𝜀𝑥 +𝑚

2𝜀𝑦      𝜀12 = −𝑛𝑚(𝜀𝑥 − 𝜀𝑦)      𝛾12 = 2𝜀12 

The following calculations are related to test 2.  Components, and similar calculations have been 

performed for test 3: 

Table A-0-4: ± 450  Upper limit points of interest 

𝝈𝒙 
(𝑴𝑷𝒂) 

𝜺𝒙 ∗
𝟏𝟎𝟑 

(
𝒎𝒎

𝒎𝒎
) 

𝜺𝒚 ∗ 𝟏𝟎
𝟑 

(
𝒎𝒎

𝒎𝒎
) 

𝝈𝟏𝟏 
(𝑴𝑷𝒂) 

𝜺𝟏𝟏𝒙𝟏𝟎
𝟑  

(
𝒎𝒎

𝒎𝒎
) 

𝝈𝟐𝟐 
(𝑴𝑷𝒂) 

𝜺𝟐𝟐 ∗
𝟏𝟎𝟑 

(
𝒎𝒎

𝒎𝒎
) 

𝝉𝟏𝟐 
(𝑴𝑷𝒂) 

𝜺𝟏𝟐 ∗
𝟏𝟎𝟑 

(
𝒎𝒎

𝒎𝒎
) 

𝜸𝟏𝟐 ∗ 𝟏𝟎
𝟑 

(𝑴𝑷𝒂) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-23.961 -4.927 2.981 -19.346 -0.973 -4.615 -0.973 -11.981 -3.954 -7.908 

-47.088 -11.074 6.138 -38.019 -2.468 -9.069 -2.468 -23.544 -8.606 -17.212 

-58.813 -15.556 8.100 -47.486 -3.728 -11.327 -3.728 -29.407 -11.828 -23.656 

-70.291 -21.522 10.940 -56.754 -5.291 -13.537 -5.291 -35.146 -16.231 -32.461 

-76.342 -26.249 13.027 -61.639 -6.611 -14.703 -6.611 -38.171 -19.638 -39.276 

-87.709 -51.121 25.690 -70.817 -12.715 -16.892 -12.715 -43.854 -38.405 -76.811 

Table A-0-5: ± 450  Lower limit points of interest 

𝝈𝒙 ∗ 𝟏𝟎
𝟑 

(𝑴𝑷𝒂) 
𝜺𝒙 𝒙 𝟏𝟎

𝟑 

(
𝒎𝒎

𝒎𝒎
) 

𝜺𝒚𝒙𝟏𝟎
𝟑 

(
𝒎𝒎

𝒎𝒎
) 

𝝈𝟏𝟏 ∗
𝟏𝟎𝟑 
(𝑴𝑷𝒂) 

𝜺𝟏𝟏𝒙𝟏𝟎
𝟑  

(
𝒎𝒎

𝒎𝒎
) 

𝝈𝟐𝟐 ∗ 𝟏𝟎
𝟑 

(𝑴𝑷𝒂) 
𝜺𝟐𝟐𝒙𝟏𝟎

𝟑 

(
𝒎𝒎

𝒎𝒎
) 

𝝉𝟏𝟐 ∗ 𝟏𝟎
𝟑 

(𝑴𝑷𝒂) 
𝜺𝟏𝟐𝒙𝟏𝟎

𝟑 

(
𝒎𝒎

𝒎𝒎
) 

𝜸𝟏𝟐 ∗ 𝟏𝟎
𝟑 

(𝑴𝑷𝒂) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

5.874 0.000 0.000 0.005 0.000 1.131 0.000 2.937 2.937 0.000 

364.204 -0.384 -0.384 0.294 -0.020 70.142 -0.020 182.102 182.102 -0.364 

381.827 -1.744 -1.744 0.308 -0.447 73.536 -0.447 190.914 190.914 -1.296 

140.982 -2.722 -2.722 0.114 -0.524 27.152 -0.524 70.491 70.491 -2.198 

82.240 -4.652 -4.652 0.066 -1.205 15.839 -1.205 41.120 41.120 -3.447 

Rises and runs for this fiber orientation were calculated as previously seen in the 00 calculations, 

and tabulated in Table A-0-6: 

Table A-0-6 ± 450: Rises and runs for points of interest 

Fibre direction (11) Transverse direction  (22) Shear direction (12) 

Rise 

𝝈𝟏𝟏 (𝑴𝑷𝒂) 
Run 𝜀11 ∗
104 (𝑚𝑚/
𝑚𝑚)  

Rise 

𝜎22 (𝑀𝑃𝑎) 
Run 𝜀11 ∗
102 (𝑚𝑚/
𝑚𝑚 ) 

Rise 𝜏12 (𝑀𝑃𝑎) Run 𝜀12 ∗
102 (𝑚𝑚/
𝑚𝑚 ) 

Run 𝛾12 ∗
102 (𝑚𝑚/
𝑚𝑚 ) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-5.037 2.011 -33.445 -0.739 13.007 -0.380 -0.760 

-7.142 2.202 -47.425 -1.170 18.444 -0.596 -1.192 

-8.517 0.204 -56.554 -1.579 21.994 -0.791 -1.581 

-9.900 -1.383 -65.735 -2.125 25.564 -1.056 -2.112 

-10.631 -1.436 -70.586 -2.327 27.451 -1.157 -2.313 

 

The damaged elastic moduli and apparent plastic strains were calculated as preciously seen in the 

00 section, and tabulated in Table A-0-7: 
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Table A-0-7: ± 450  Damaged elastic moduli and plastic strains 

Damaged elastic moduli Plastic strain 

𝑬𝟏𝟏
𝑫 (𝑴𝑷𝒂) 𝐸22

𝐷  (𝑀𝑃𝑎) 𝐺12
𝐷 (𝜀) (𝑀𝑃𝑎) 𝐺12

𝐷 (𝛾) (𝑀𝑃𝑎) 𝜀11
𝑝

∗ 105 (
𝑚𝑚

𝑚𝑚
) 

𝜀22
𝑝

∗ 105 (
𝑚𝑚

𝑚𝑚
) 

𝜀12
𝑝

∗ 105 (
𝑚𝑚

𝑚𝑚
) 

𝛾11
𝑝

∗ 105 (
𝑚𝑚

𝑚𝑚
) 

75610.000 13486.000 4045.400 2022.700 0.000 0.000 0.000 0.000 

19893.762 4745.212 3030.682 1515.341 -0.024 -0.024 -0.097 -0.194 

15653.334 3733.753 2878.761 1439.380 -3.874 -3.874 -42.742 -85.484 

14567.626 3474.782 2810.376 1405.188 -46.835 -46.835 -136.428 -272.855 

11929.216 2845.448 2509.663 1254.831 -53.347 -53.347 -222.637 -445.275 

11414.123 2722.584 2360.138 1180.069 -121.069 -121.069 -346.468 -692.935 

 

Damage in principal directions were calculated using the damaged and undamaged elastic moduli 

as seen in Eq. 4.46. Following which, the thermodynamic damage energy release rates were 

calculated using Eq. 4.47. The results can be seen in Table A-0-8: 

𝐷𝑖 = 1 −
𝐸𝑖
𝐷

𝐸𝑖
0       𝑎𝑛𝑑      𝐷12 = 1 −

𝐺12
𝐷

𝐺12
0       𝑎𝑛𝑑      𝑌12 =

𝜏11
𝑈 2

2𝐺12
0 (𝛾)(1 − 𝐷12(𝛾))2

 

where 𝐺12
0 (𝛾) and 𝐷12(𝛾) are shear modulus and damage calculated form 𝛾 rather than 𝜀. 

Table A-0-8: ± 450  Calculated damages and thermodynamic force conjugates 

Damage Thermodynamic force conjugate of damage 

𝑫𝟏𝟏 𝑫𝟐𝟐 𝑫𝟏𝟐 (𝜺𝟏𝟐) 𝑫𝟏𝟐 (𝜸𝟏𝟐) 𝒀𝟏𝟐 (𝑴𝑷𝒂) √𝒀𝟏𝟐 (√𝑴𝑷𝒂) 

0 0 0 0 0 0 

0.7368898 0.648138 0.250833 0.250833 0.063217 0.25143 

0.7929727 0.723139 0.288387 0.288387 0.270591 0.520183 

0.807332 0.742342 0.305291 0.305291 0.442916 0.665519 

0.842227 0.789007 0.379626 0.379626 0.79337 0.890713 

0.8490395 0.798118 0.416587 0.416587 1.058164 1.028671 

 

The thermodynamic coupling parameter 𝐴𝑡𝑠 was found using Eqs. 4.48 and 4.49: 

(𝐴𝑡𝑠)𝑖 =
(𝜀22
𝑝

𝑖
− 𝜀22

𝑝

𝑖−1
)𝜏12𝑖(1 − 𝐷22𝑖)

2

(𝛾12
𝑝

𝑖
− 𝛾12

𝑝

𝑖−1
)𝜎22𝑖(1 − 𝐷12𝑖)

2 

where i denotes the number of the point of interest. 

The average value for 𝐴𝑡𝑠 for this test was taken: 

𝐴𝑡𝑠 =
∑ 𝑎2𝑖
𝑖=5
𝑖=1

5
= 0.053 

Shear integrity, effective equivalent plastic strain, and stress yield function points were calculated 

as previously shown in the 00 calculations. An exponential function was fitted to the experimental 
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data, the difference between the experimental and predicted yield function points was minimized, 

which yielded the initial guesses for 𝛽 and 𝛼 of this fiber orientation. 

Table A-0-9: ± 450  Shear integrity, plastic strain, and yield function points 

Shear 

integrity 

Plastic Strain 

Increment 

Accumulated 

Plastic Strain 

Experimental points 

for yield function 

Power law 

prediction for R 

Error 

𝜴𝒊 ∆𝑝𝑖 ∗ 10
4 𝑝𝑖 ∗ 10

4 𝑓𝑖  (𝑀𝑃𝑎) 𝑅𝑖  (𝑀𝑃𝑎)  

1.000 0.000 0.000 0.000 0.000 0 

0.749 0.017 0.017 15.992 15.585 0.0006 

0.712 6.230 6.246 33.085 39.506 0.0377 

0.695 13.175 19.422 42.329 47.228 0.0134 

0.620 11.337 30.759 56.652 50.773 0.0108 

0.583 14.907 45.666 65.427 54.031 0.0303 

 

The following calculations are related to test 2 – laminate level, and similar calculations have been 

performed for test 3. The procedure is nearly identical to that seen in 00 calculations, with the 

exception that there are calculations performed on both fiber and transverse direction. Therefore, 

calculations will be shown in detail, to avoid reader confusion. 

Points of interest where singled out from stress-strain data, for upper and lower loop sections, and 

their rise and runs were calculated using Eq. 4.50: 

𝑅𝑖𝑠𝑒𝐿𝑖 = (𝜎𝑥
𝑈 − 𝜎𝑥

𝐿)𝑖      𝑅𝑢𝑛𝐿𝑖 = (𝜀𝑥
𝑈 − 𝜀𝑥

𝐿)𝑖      𝑅𝑢𝑛𝑇𝑖 = (𝜀𝑦
𝑈 − 𝜀𝑦

𝐿)
𝑖
 

Table A-0-10: ± 450  Points of interested and their respective rise and run 

UPPER limit of cycle LOWER limit of cycle Elastic Moduli 

𝝈𝑳
𝑼(𝑴𝑷𝒂) 𝜀𝐿

𝑈

∗ 103 

(
𝑚𝑚

𝑚𝑚
) 

𝜀𝑇
𝑈 ∗ 103 

(
𝑚𝑚

𝑚𝑚
) 

𝜎𝐿
𝐿

∗ 103(𝑀𝑃𝑎) 
𝜀𝐿
𝐿 ∗ 103 

(
𝑚𝑚

𝑚𝑚
) 

𝜀𝑇
𝐿

∗ 103 

(
𝑚𝑚

𝑚𝑚
) 

Longitudinal Transverse 

𝑅𝑖𝑠𝑒𝐿 (𝑀𝑃𝑎) 𝑅𝑢𝑛𝐿
∗ 103(𝑚𝑚
/𝑚𝑚) 

𝑅𝑢𝑛𝑇
∗ 103(𝑚𝑚
/𝑚𝑚) 

0.000 0.000 0.000 0.000 

-

5592.299 -1.476 0.000 0.000 0.000 

-23.961 -4.927 2.981 5.874 0.000 0.000 -23.967 -4.927 2.981 

-47.088 -11.074 6.138 364.204 -0.384 0.344 -47.452 -10.689 5.794 

-58.813 -15.556 8.100 381.827 -1.744 0.849 -59.195 -13.812 7.251 

-70.291 -21.522 10.940 140.982 -2.722 1.674 -70.432 -18.799 9.265 

-76.342 -26.249 13.027 82.240 -4.652 2.242 -76.424 -21.597 10.785 

-87.709 -51.121 25.690    
   

 

Next, the damaged elastic moduli, plastic strain, damage, and thermodynamic damage energy 

release rates were calculated as seen earlier, with corresponding subscripts 𝐿 & 𝑇: 

𝐸𝐿
𝐷 =

𝑅𝑖𝑠𝑒𝐿
𝑅𝑢𝑛𝐿

   &   𝐸𝑇
𝐷 =

𝑅𝑖𝑠𝑒𝐿
𝑅𝑢𝑛𝑇
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(𝜀𝐿
𝑝)𝑖 = (𝜀𝐿

𝐿 − (
𝜎𝐿
𝐿

𝐸𝐿
𝐷))

𝑖

   &   (𝜀𝑇
𝑝)𝑖 = (𝜀𝑇

𝐿 − (
𝜎𝐿
𝐿

𝐸𝑇
𝐷))

𝑖

 

𝐷𝐿 = 1 −
𝐸𝐿
𝐷

𝐸𝐿
0       &      𝐷𝑇 = 1 −

𝐸𝑇
𝐷

𝐸𝑇
0  

𝑌𝐿(𝜎) =
𝜎𝐿
2

2𝐸𝐿
0(1 − 𝐷𝐿)2

    

where subscripts 𝐿 and 𝑇 stand for longitudinal and transverse directions. 

Table A-0-11: ± 450  Damaged elastic moduli, plastic strain, damage, and energy release rates 

Damaged Elastic Moduli Plastic Strain (apparent) Damage Thermodynamic damage 

energy release rate 

𝑬𝑳
𝑫 (𝑴𝑷𝒂) 𝐸𝑇

𝐷 (𝑀𝑃𝑎) 𝜀𝐿
𝑝

∗ 103 (
𝑚𝑚

𝑚𝑚
) 

𝜀𝑇
𝑝

∗ 103 (
𝑚𝑚

𝑚𝑚
) 

𝐷𝐿 𝐷𝑇 𝑌𝐿(𝜎) (𝑀𝑃𝑎) √𝑌𝐿(𝜎) (√𝑀𝑃𝑎) 

7423.300 8908.900 0.000 0.000 0.000 0.000 0.000 0.000 

4864.630 8039.020 -0.001 -0.001 0.345 0.098 0.208 0.456 

4439.185 8189.665 -0.466 0.300 0.402 0.081 0.523 0.723 

4285.644 8164.119 -1.833 0.802 0.423 0.084 0.944 0.971 

3746.534 7601.874 -2.760 1.656 0.495 0.147 1.717 1.310 

3538.698 7086.460 -4.675 2.231 0.523 0.205 2.049 1.431 

 

Shear integrity for each point of interest was calculated, and used to find incremental and 

accumulated effective equivalent plastic strains: 

𝛺𝑖 = (1 − 𝐷𝐿)𝑖 

(∆𝑝)𝑖 = ∆𝜀𝐿
𝑝 = −

1

2

(𝜀𝐿
𝑝

𝑖+1
− 𝜀𝐿

𝑝

𝑖
)

𝛺𝑖+1 + 𝛺𝑖
  

𝑝𝑖 = 𝑝𝑖−1 + (∆𝑝)𝑖 

The equivalent stress yield function points for plotting, were calculated as follows: 

𝑓𝑖 = 𝑅 + 𝑅0 = −
𝜎𝐿𝑖
𝛺𝑖

 

Once the yield function vs accumulated plastic strain was plotted, a power law curve was fitted to 

the data.  

𝑅𝑖 = 𝛽 ∗ (𝑝𝑖)
𝛼 

Following which, experimental and predicted points were compared, and their error was 

calculated: 
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𝑒𝑟𝑟𝑜𝑟 =
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

(𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙)2
 

In order to determine the parameters 𝛼 & 𝛽, Microsoft Excel’s ‘Solver’ was again used, which 

minimized the error by varying parameters 𝛼 & 𝛽 up to convergence. 

Table A-0-12: ± 450 Shear integrity, plastic strain, and yield function points 

Shear 

integrity 

Plastic Strain 

Increment 

Accumulated 

Plastic Strain 

Experimental points 

for yield function 

Power law 

prediction for R 

Error 

𝜴𝒊 ∆𝑝𝑖 ∗ 10
4 𝑝𝑖 ∗ 10

4 𝑓𝑖  (𝑀𝑃𝑎) 𝑅𝑖  (𝑀𝑃𝑎)  

1.000 0.000 0.000 0.000 0.000 0 

0.830 7.439 7.439 46.388 49.069 0.6796 

0.745 6.006 13.445 73.567 76.590 0.0365 

0.660 4.986 18.431 98.816 97.099 0.0044 

0.570 6.601 25.032 133.279 122.242 0.0084 

0.559 9.297 34.329 145.588 155.021 0.0023 

 

± 𝟔𝟕. 𝟓𝟎 Orientation 

There have been three cyclic-load type tests performed on samples of this orientation. The same 

approach was used as in the calculation of the ± 450 case: 

𝑚 = 𝑐𝑜𝑠𝜃 = 𝑐𝑜𝑠67.5 = 0.382683 

𝑛 = 𝑠𝑖𝑛𝜃 = 𝑠𝑖𝑛67.5 = 0.923879 

𝐵

=

[
 
 
 
 (0.3822(2(0.382)2 − 1) +

4(0.382)2(0.924)22.07
5.7

(
5.7
30.32 0.353 + 1))

4(0.382)2(0.924)22.07
5.7

(
5.7
30.32 + 2

5.7
30.32 0.353 + 1) +

(2(0.382)2 − 1)((0.382)2 − (0.924)2)
]
 
 
 
 

= 0.13089 

𝑘 = −
1

2𝑚𝑛
(𝐵(1 − 2𝑚2) + 𝑚2 = −0.338 

The following results are related to test 1 – components, and similar calculations have been 

performed for test 2 and 3: 

Stresses and strains in the principal material coordinate system were calculated as previously seen 

in the ±45 section. 
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Table A-0-13: ± 67.50 Upper limit points of interest 

𝝈𝒙 
(𝑴𝑷𝒂) 

𝜺𝒙 

(
𝒎𝒎

𝒎𝒎
) 

𝜺𝒚 (
𝒎𝒎

𝒎𝒎
) 𝝈𝟏𝟏 

(𝑴𝑷𝒂) 
𝜺𝟏𝟏𝒙𝟏𝟎

−𝟒  

(
𝒎𝒎

𝒎𝒎
) 

𝝈𝟐𝟐 
(𝑴𝑷𝒂) 

𝜺𝟐𝟐 

(
𝒎𝒎

𝒎𝒎
) 

𝝉𝟏𝟐 
(𝑴𝑷𝒂) 

𝜺𝟏𝟐 

(
𝒎𝒎

𝒎𝒎
) 

𝜸𝟏𝟐 
(𝑴𝑷𝒂) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-38.482 -0.010 0.002 -5.037 2.100 -33.445 -0.008 13.007 -0.004 -0.008 

-54.778 -0.016 0.003 -7.170 2.360 -47.608 -0.013 18.515 -0.007 -0.013 

-65.180 -0.021 0.004 -8.531 0.380 -56.648 -0.018 22.031 -0.009 -0.018 

-76.035 -0.029 0.005 -9.952 1.360 -66.082 -0.024 25.700 -0.012 -0.024 

-81.443 -0.033 0.005 -10.660 2.260 -70.783 -0.027 27.528 -0.014 -0.027 

-86.214 -0.037 0.006 -11.285 0.660 -74.930 -0.031 29.140 -0.015 -0.031 

 

Table A-0-14:± 67.50  Lower limit points of interest 

𝝈𝒙 (𝑴𝑷𝒂) 𝜺𝒙 𝒙 𝟏𝟎
𝟑 

(
𝒎𝒎

𝒎𝒎
) 

𝜺𝒚𝒙𝟏𝟎
𝟒 

(
𝒎𝒎

𝒎𝒎
) 

𝝈𝟏𝟏 
(𝑴𝑷𝒂) 

𝜺𝟏𝟏𝒙𝟏𝟎
𝟓  

(
𝒎𝒎

𝒎𝒎
) 

𝝈𝟐𝟐 
(𝑴𝑷𝒂) 

𝜺𝟐𝟐𝒙𝟏𝟎
𝟑 

(
𝒎𝒎

𝒎𝒎
) 

𝝉𝟏𝟐 
(𝑴𝑷𝒂) 

𝜺𝟏𝟐𝒙𝟏𝟎
𝟒 

(
𝒎𝒎

𝒎𝒎
) 

𝜸𝟏𝟐 
(𝑴𝑷𝒂) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.000 -0.813 1.490 0.000 0.860 0.000 -0.672 0.000 -3.404 -6.808 

-0.211 -1.630 2.980 -0.028 1.556 -0.183 -1.348 0.071 -6.820 -13.640 

-0.108 -2.310 4.180 -0.014 1.724 -0.094 -1.917 0.037 -9.673 -19.346 

-0.400 -3.490 6.030 -0.052 0.257 -0.348 -2.895 0.135 -14.488 -28.976 

-0.227 -5.080 7.750 -0.030 -8.268 -0.197 -4.226 0.077 -20.715 -41.430 

 

Rises and runs for this fiber orientation were calculated as previously seen in the 00 calculations, 

and tabulated in Table A-0-15: 

Table A-0-15:± 67.50  Rises and runs for points of interest 

Fibre direction (11) Transverse direction (22) Shear direction (12) 

Rise 

𝝈𝟏𝟏 (𝑴𝑷𝒂) 
Run 𝜀11 ∗

104  (
𝑚𝑚

𝑚𝑚
)  

Rise 

𝜎22 (𝑀𝑃𝑎) 
Run 𝜀11 ∗

102  (
𝑚𝑚

𝑚𝑚
) 

Rise 𝜏12 (𝑀𝑃𝑎) Run 𝜀12 ∗

102  (
𝑚𝑚

𝑚𝑚
)  

Run 𝛾12 ∗

102  (
𝑚𝑚

𝑚𝑚
) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-5.037 2.011 -33.445 -0.739 13.007 -0.380 -0.760 

-7.142 2.202 -47.425 -1.170 18.444 -0.596 -1.192 

-8.517 0.204 -56.554 -1.579 21.994 -0.791 -1.581 

-9.900 -1.383 -65.735 -2.125 25.564 -1.056 -2.112 

-10.631 -1.436 -70.586 -2.327 27.451 -1.157 -2.313 

 

The damaged elastic moduli and apparent plastic strains were calculated as preciously seen in the 

00 section, and tabulated in Table A-0-16:  

 



 73  
 

Table A-0-16:± 67.50  Damaged elastic moduli and plastic strains 

Damaged elastic moduli Plastic strain 

𝑬𝟏𝟏
𝑫

∗ 𝟏𝟎−𝟒 (𝑴𝑷𝒂) 

𝐸22
𝐷

∗ 10−3 (𝑀𝑃𝑎) 
𝐺12
𝐷 (𝜀)
∗ 10−3 (𝑀𝑃𝑎) 

𝐺12
𝐷 (𝛾)
∗ 10−3 (𝑀𝑃𝑎) 

𝜀11
𝑝

∗ 105 (
𝑚𝑚

𝑚𝑚
) 

𝜀22
𝑝

∗ 103 (
𝑚𝑚

𝑚𝑚
) 

𝜀12
𝑝

∗ 103 (
𝑚𝑚

𝑚𝑚
) 

𝛾12
𝑝

∗ 103 (
𝑚𝑚

𝑚𝑚
) 

-28.244 5.572 3.919 1.959 0.000 0.000 0.000 0.000 

-25.052 4.523 -3.425 -1.713 0.860 -0.672 -0.340 -0.681 

-32.429 4.054 -3.095 -1.548 1.471 -1.303 -0.659 -1.318 

-417.031 3.581 -2.781 -1.391 1.720 -1.891 -0.954 -1.908 

71.577 3.093 -2.421 -1.211 0.330 -2.783 -1.393 -2.786 

74.038 3.033 -2.374 -1.187 -8.228 -4.161 -2.039 -4.078 

 

Damage in the principal material directions and thermodynamic damage energy release rates were 

calculated as preciously seen in the ±450 section, and tabulated in Table A-0-17: 

Table A-0-17:± 67.50  Calculated damages and thermodynamic force conjugates 

Damage Thermodynamic force conjugate of damage 

𝑫𝟏𝟏 𝐷22 𝐷12 (𝜀12) 𝐷12 (𝛾12) 𝑌22 (𝑀𝑃𝑎) √𝑌22 (√𝑀𝑃𝑎) 𝑌12 (𝑀𝑃𝑎) √𝑌12 (√𝑀𝑃𝑎) 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.113 0.188 1.874 1.874 0.152 0.390 0.057 0.238 

-0.148 0.272 1.790 1.790 0.384 0.620 0.140 0.374 

-13.765 0.357 1.710 1.710 0.697 0.835 0.246 0.496 

3.534 0.445 1.618 1.618 1.272 1.128 0.441 0.664 

3.621 0.456 1.606 1.606 1.517 1.232 0.527 0.726 

 

Noting, that the maximum value in the √𝑌22 column is √𝑌22
𝑈 : 

max(√𝑌22) = √𝑌22
𝑈  

The thermodynamic conjugate 𝑍(𝜀), transverse-shear coupling constant b, and 𝑌̂ were calculated 

using Eqs. (4. 41-4. 43): 

𝑍12𝑖(𝜀
𝑒) =

1
2
𝐸12
0
(Run 𝛾12)

2
𝑖   𝑎𝑛𝑑    𝑍22𝑖(𝜀

𝑒) =
1
2
𝐸22
0
(𝜈12
0 𝑅𝑢𝑛11𝑖 +𝑅𝑢𝑛22𝑖)

2
 

𝑏𝑖 =

((𝐷12  𝑖(𝛾12) ∗ √𝑌12
𝑐 + √𝑌12

0 )
2

− 𝑍12𝑖(𝜀
𝑒))

𝑍22𝑖(𝜀
𝑒)

 

 𝑌̂𝑖 = (𝑌12
𝑖
+ 𝑏𝑌22

𝑖
) 
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Table A-0-18: ± 67.50  Thermodynamic conjugates and damage initiation threshold 

𝒁𝟏𝟐(𝜺
𝒆) 𝒁𝟐𝟐(𝜺

𝒆) 𝒃 𝒀̂ (𝑴𝑷𝒂) √𝒀̂ (√𝑴𝑷𝒂) 

0.000 0.000 0.000 0.000 0.000 

0.057 0.149 108.541 5.708 2.389 

0.139 0.376 39.588 14.394 3.794 

0.245 0.694 19.783 26.118 5.111 

0.437 1.264 9.695 47.634 6.902 

0.524 1.516 7.912 56.832 7.539 

 

The following calculations are related to test 1 – laminate level, and similar calculations have been 

performed for test 2 and 3: 

Points of interest, damaged elastic moduli, plastic strain, damage, thermodynamic force, shear 

integrity, plastic strain, and power law predictions were calculated as previously seen in the ±450 

section, and tabulated in tables 25 to 27: 

Table A-0-19:± 67.50  Points of interested and their respective rise and run 

UPPER limit of cycle LOWER limit of cycle 

𝝈𝑳
𝑼(𝑴𝑷𝒂) 𝜀𝐿

𝑈 ∗ 102 

(
𝑚𝑚

𝑚𝑚
) 

𝜀𝑇
𝑈 ∗ 103 

(
𝑚𝑚

𝑚𝑚
) 

𝜎𝐿
𝐿(𝑀𝑃𝑎) 𝜀𝐿

𝐿 ∗ 102 

(
𝑚𝑚

𝑚𝑚
) 

𝜀𝑇
𝐿 ∗ 104 

(
𝑚𝑚

𝑚𝑚
) 

Longitudinal Transverse 

𝑅𝑖𝑠𝑒𝐿 (𝑀𝑃𝑎) 𝑅𝑢𝑛𝐿

∗ 102 (
𝑚𝑚

𝑚𝑚
) 

𝑅𝑢𝑛𝑇

∗ 103 (
𝑚𝑚

𝑚𝑚
) 

0.000 0.000 0.000 0.000 -50.250 6.190 0.000 0.000 0.000 

-38.482 -0.978 1.924 0.000 -0.081 1.496 -38.482 -0.897 1.774 

-54.778 -1.580 2.987 -0.211 -0.163 2.981 -54.568 -1.417 2.689 

-65.180 -2.139 3.714 -0.108 -0.232 4.179 -65.072 -1.907 3.296 

-76.035 -2.912 4.838 -0.400 -0.350 6.027 -75.635 -2.563 4.235 

-81.443 -3.315 5.422 -0.227 -0.508 7.754 -81.216 -2.806 4.647 

-86.214 -3.726 6.470 
      

 

Table A-0-20:± 67.50  Damaged elastic moduli, plastic strain, damage, and energy release rates 

Damaged Elastic Moduli Plastic Strain (apparent) Damage Thermodynamic damage energy 

release rate 

𝑬𝑳
𝑫 (𝑴𝑷𝒂) 𝐸𝑇

𝐷 (𝑀𝑃𝑎) 𝜀𝐿
𝑝

∗ 103 (
𝑚𝑚

𝑚𝑚
) 

𝜀𝑇
𝑝

∗ 104 (
𝑚𝑚

𝑚𝑚
) 

𝐷𝐿 𝐷𝑇 𝑌𝐿(𝜎) (𝑀𝑃𝑎) √𝑌𝐿(𝜎) (√𝑀𝑃𝑎) 

5173.200 25553.000 0.000 0.000 0.000 0.000 0.000 0.000 

4291.497 21691.511 -0.813 1.496 0.170 0.151 0.208 0.456 

3851.988 20296.255 -1.576 3.084 0.255 0.206 0.523 0.723 

3412.273 19743.793 -2.286 4.234 0.340 0.227 0.944 0.971 

2951.267 17859.408 -3.360 6.251 0.430 0.301 1.717 1.310 

2893.939 17477.710 -5.005 7.883 0.441 0.316 2.049 1.431 
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Table A-0-21: ± 67.50  Shear integrity, plastic strain, and yield function points 

Shear 

integrity 

Plastic Strain 

Increment 

Accumulated Plastic 

Strain 

Experimental points for 

yield function 

Power law 

prediction for R 

Error 

𝜴𝒊 ∆𝑝𝑖 ∗ 10
4 𝑝𝑖 ∗ 10

4 𝑓𝑖  (𝑀𝑃𝑎) 𝑅𝑖  (𝑀𝑃𝑎)  

1.000 0.000 0.000 0.000 0.000 0 

0.830 7.439 7.439 46.388 49.069 0.0033 

0.745 6.006 13.445 73.567 76.590 0.0017 

0.660 4.986 18.431 98.816 97.099 0.0003 

0.570 6.601 25.032 133.279 122.242 0.0069 

0.559 9.297 34.329 145.588 155.021 0.0042 
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Appendix B: Sample MMDM Code 
 

# General Declarations 

%matplotlib inline 

 

import numpy as np 

import pandas as pd 

import pylab 

import matplotlib.pyplot as plt 

from simmit import smartplus as sim 

from simmit import identify as iden 

import os 

 

from scipy.optimize import basinhopping 

from scipy.optimize import differential_evolution 
 

dir = os.path.dirname(os.path.realpath('__file__')) 

 

# Differential Evolution  

def set_nlayers(x, filename="./keys/Nlayers0.dat", usecols=None): 

    values = pd.read_csv(filename, sep='[\t ]+', header=None, skiprows=1, engine='python') 

       

    if usecols == None: 

        usecols = list(range(len(values.columns))) 

         

    values[values.columns[list(usecols)]] = x 

    f = open(filename,'w')     

    f.write("Number umat save c        psi_mat theta_mat   phi_mat psi_geom

 theta_geom phi_geom  nprops nstatev  props\n") 

    values.to_csv(f, sep='\t', header=False, index=False) 

    return values 

 

def cost_func(x, *kwargs): 

    """Cost function 

     

    x is the array of inputs 

     

    1. Set NLayers with values of x 

    2. Evaluate solver 

    3. return accumulated cost 

    """ 

    set_nlayers(x, *kwargs) 

     

    umat_name = 'MIPLN' #This is the 5-character code for the periodic homogenization for multi-layered 

composite 

    nstatev = 0 #The number of scalar variables required, everything is stored in sub-phases statevs 

 

    nphases = 2 #The number of phases 
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    num_file = 0 #The num of the file that contains the subphases 

 

    psi_rve = 0. 

    theta_rve = 0. 

    phi_rve = 0. 

 

    props = np.array([nphases, num_file]) 

 

    path_data = 'data' 

    path_keys = 'keys' 

    path_results = 'results' 

 

    nconsts = 2 

    nfiles = 4 

 

    a = 0.7    # Weight factor of longitudinal direction 

 

    const_list = iden.read_constants(nconsts, nfiles) 

    path_exp = dir + '/exp_data/Compression/' 

    data_exp_list = ['0 deg Exp.dat', '45 deg Exp.dat', '30 deg Exp.dat', '15 deg Exp.dat'] 

     

    accum = 0 

 

     

    for n_simul in range(0, nfiles): 

        for const in const_list: 

            const.value = const.input_values[n_simul] 

 

        iden.copy_constants(const_list, path_keys, path_data) 

        iden.apply_constants(const_list, path_data) 

 

        outputfile = 'Comp_simul' + str(n_simul+1) + '.txt'; 

        pathfile = 'Comp_path_id_' + str(n_simul+1) + '.txt'; 

        sim.solver(umat_name, props, nstatev, psi_rve, theta_rve, phi_rve, path_data, path_results, pathfile, 

outputfile) 

         

        outputfile = path_results + '/' + 'Comp_simul' + str(n_simul+1) + '_global-0.txt'; 

        e11, e22, e33, e12, e13, e23, s11, s22, s33, s12, s13, s23 = np.loadtxt(outputfile, 

usecols=(8,9,10,11,12,13,14,15,16,17,18,19), unpack=True) 

 

        pred_11 = -e11 

        pred_22 = -e22 

        print(len(e11)) 

         

         

        exp_file = path_exp+data_exp_list[n_simul] 

        e11,e22,s11 = np.loadtxt(exp_file, usecols=(2,3,4), unpack=True) 

 

        exp_11 = -e11 

        exp_22 = -e22 

        print(len(e11)) 
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        diff_long = exp_11-pred_11 

        d_l = abs(sum(diff_long)) 

        diff_trans = exp_22 - pred_22 

        d_t = abs(sum(diff_trans)) 

 

        accum += a*(d_l)+(1-a)*(d_t)    # Cost Function 

    print(x) 

    print(accum) 

    return accum 

     

 

 

xmin = [24500, 5660, 0.077, 0.36, 1700, 0.10, 0.40, 0.22, 266] 

xmax = [24560, 5720, 0.090, 0.40, 2100, 0.30, 25.0, 0.33, 404] 

bounds = [(low, high) for low, high in zip(xmin,xmax)] 

 

 

best_x = differential_evolution(cost_func, bounds, args=("./keys/Nlayers0.dat", usecols), 

strategy='best1bin', maxiter=100000, popsize=5, mutation=(0.81,0.99), recombination=0.76, polish=True) 
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