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PRICING SPARK SPREAD OPTIONS IN ELECTRICITY MARKETS

Master of Science, 2016

Shivani Sharma

Applied Mathematics
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This master’s thesis develops a pricing method for spark spread options using a Monte Carlo

method. The underlying commodities of interest, natural gas and uranium highlight the

prevalence of natural gas power and nuclear power in Canada. To characterize the dynamics

of electricity prices and capture specific features they have, two Levy models are proposed:

a jump-diffusion model and a time-changed model. Real data are used to calibrate the

models, using the daily average market prices for the last five years. We created a method

to compute the price of the derivative under realistic modelling conditions using parameters

found through the real data. Such models can be used to value the spark spread contracts

to mitigate the risk associated the contracts.
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Chapter 1

INTRODUCTION

In this chapter we will discuss the electricity market, and specifically the Ontario electricity

market. To introduce the electricity market, general terminology will be explained as well as

key components to general commodity markets . This project models an electricity market,

with an application to Ontario market.

1.1 The Ontario Electricity Market

Commodity markets have been around since the beginning of civilization. A soft commodity

market is as simple as trading wheat for something with value. This is also an example of

a storable commodity. Modelling commodity markets is a well documented topic. Storable

commodities have been traded since the existence of the market.

This thesis focuses on the commodity market of electricity, which deals with the trade

of electrical power. The electricity market has a unique attribute which vastly differentiates

it from other markets. Electricity is rarely stored, since it is difficult and expensive to do

so, and is referred to as a flow commodity since it is only useful if it is delivered during a

specific period of time.

Producers of electricity may store it indirectly, however consumers cannot buy for the

purpose of storage. Trading in this market requires the time of delivery to be a factor in
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the value of the commodity, which is specific to this market. Among all energy markets,

electricity markets pose the highest challenge, as there are many unique characteristics. In

addition to being a commodity that cannot be stored, the power network must be constantly

balanced to prevent it from collapsing. See [16]. Electricity contracts guarantee the delivery

of a specified amount of power for a specific future time, which is why electricity is traded

in an auction system for standardization. See [5]. The guarantees are of significance since

electricity is a permanent, basic necessity in today’s society. This thesis focuses on stochastic

modelling the spark spread option contracts.

A spark spread option contract is a contract in the electricity market based on the

difference between electricity and the underlying material. This thesis focuses on natural

gas and uranium as underlying commodities because of the prevalence of gas power and

nuclear power in Canada. Canada is third in terms of the size of its uranium reserves,

globally. See [10]. In addition to fluctuations in prices of uranium and natural gas, there

are other factors impacting the price of the contract, including a governing body, which

affect the price of underlying materials.

The governing body in question is the Independent Electricity System Operator (IESO),

which is one of eight independent system operators in North America. IESO governs the

operation of the electricity market and directs the operation of the bulk electrical system

in Ontario, Canada. It oversees Ontario’s wholesale electricity market and determines the

price of electricity. We will observe a price cap in Ontario’s electricity prices. The price

to the consumer is based on the average yearly cost of power, which is based on supply,
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demand, and IESO established rates. Time based pricing is to limit peak demand, which

can prevent brown outs since there is potential for demand to exceed supply. A brown out is

a drop in voltage in an electrical power supply system, whether intentional or unintentional,

with the main purpose being to prevent a black out. Intentional brownouts are used for

load reduction in an emergency, which may be for minutes or hours. Reducing peak demand

also prevents the need for new sources of power. All of these factors are taken into account

when IESO accepts a bid for power by a generating system. See [2].

1.2 Financial Electricity Contracts: A Look at the Nordic Market

In contrast, the Nordic Market operates on the Nord Pool system, containing various coun-

tries. There is no one set of rules dictating how trading for financial electricity contracts as

they are different among underlying power exchanges. The market for electricity contracts

functions without central coordination since the contracts are settled against a reference

price. The reference price is generally the spot price for that day. One example of a

trading market is the Nord Pool system which is the Nordic trading facility, it includes

Noway, Sweden, Finland, and Denmark. The exchange traded at Nord Pool are written

on the weighted average of the system price over a specified delivery period (DP), and the

contracts are traded prior to this period. See [5].

The contracts are settled against hourly day ahead prices. The underlying amount of

electrical energy can be calculated using the Nord Pool System Price equation, seen below

Underlying Energy = DP ∗ 24MWh
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where DP is the delivery period, 24 MWh is a conversion factor since the prices are hourly.

1.3 Derivative Products Based on Underlying Energy Assets

Before we discuss the derivative products, we must outline definitions of key terms. An

option is a contract which gives the buyer the right, but not a necessary obligation, to buy

or sell an underlying asset at a specific strike price or before a specific date. A Future

contract, in contrast, is a contract between two parties where there is an obligation to buy

or sell the asset at an agreed upon price today, which is the Futures price with delivery and

payment at a future point, the delivery date. Now we will discuss the derivative products

relevant to this thesis.

A European Call option must be established is a financial contract between two parties,

given to the owner. Typical contracts are calls and puts.

A call option with strike price K and maturity T is only exercised when the payoff is ”in

the money”, meaning when the difference between the spot price and strike price, is greater

than zero. Mathematically, its payoff is given by:

Payoff = max({ST −K} , 0) := {ST −K}+

where St is the spot price at time t. A put is only exercised when the payoff is ”out of the

money”.

Payoff = (K − ST )+

Electricity options are simply options where the underlying asset is electricity. The

option grants the purchaser the right, but not the obligation, to buy or sell a fixed amount of
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underlying electricity at the strike price by a maturity date. The electricity option contract

contains parts specific to electricity, such as the underlying price, fuel type, delivery location

and time, quality, volume, and others. Similar to other financial options, electricity options

may be classified as electricity calls or electricity puts.

A spark spread option is the difference between the price of power on the market and

the total production price of fuel and generation. It is the net income to an electricity

generation conglomerate as a result of purchasing the fuel, natural gas or uranium, to

produce the electricity, and subsequently selling the energy produced. The expenses to the

generator are covered within this margin in a spark spread option. The call option gives

the right, but not the obligation to the buyer to purchase the price difference between the

electricity and price of the underlying after accounting for the efficiency of the plant. The

price difference is the spark spread, and the efficiency also accounts for the emission factor.

The ones who have the right to exercise the option are the power plant operators and power

consumers, with different purposes. The power plant operators could exercise their right

to the option to hedge against market movements and low production power. The power

consumers could exercise their right to the option to guarantee stable cash flow using an

option premium.

Unlike the spark spread option where the buyer is not obligated to buy, an electricity

Future contract is a contract where one party is contractually obligated to buy from, or sell

to, the other party a fixed amount of electricity at the Future price on the delivery date

specified in the contract. This is a supply contract between a user and supplier where the
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buyer is obligated to purchase the electricity supplied, and the seller is obligated to supply

electricity.

Electricity Future contracts are highly standardized; however, they follow a payoff struc-

ture similar to electricity forwards. Electricity Futures have contract specifications stipu-

lating specific procedures, delivery conditions and locations, and trading conditions and

locations, as in most financial Future contracts. The difference between electricity Future

contracts and electricity forward contracts is the quantity of power. When the delivery

amount is substantially smaller, electricity Future contracts are used. See [20]

To hedge the variability of cash flow as a result of fluctuations in electricity price, we

use an electricity swap contract. This contract refers a quantity of power to the variable

spot price at the location of the generating institute or the consumer. A basis swap may

be used to set a fixed price at a specific location not including the delivery point of the

Futures contract. Here the buyer of the electricity basis swap must either pay or receive the

difference between the contract price, and the spot price for that location at the time of the

trade. There also exists a class of commodity linked products, such as contracts referring

to the price of raw materials and energy.

IESO, as mentioned earlier, is a crown corporation governing the electricity market in

Ontario. The power generators in Ontario bid on power contracts and IESO accepts the

bid based on power supply and demand. The value that the generators are paid is based

on the highest bidder whose power is needed to meet supply. See [2]
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1.4 Thesis Objective and Results

This thesis explores pricing spark spread contracts using the Monte Carlo Method, for

electricity contracts for natural gas and uranium in Ontario. Under novel models that

capture relevant specific features of electricity and raw primary materials such as jumps,

volatility, and seasonal sensitivity. Computing prices through the model created is more

complicated since the Future price is used in the payoff calculation, as opposed to the spot

price. The novelty of this work lies in establishing spark prices together with the use of

non-standard models. This will be further discussed in Chapter 2.

To model the dynamics of Future prices in natural gas, uranium, and electricity, we pro-

pose two models: The Jump Diffusion Model, and The Time Changed Model. A significant

application for this thesis is that we want to value the spark spread contracts to mitigate

the risk associated with the contracts.

The result of this master’s thesis is the creation of a methodology using complex Levy

models to price the spark spread contracts. The models themselves have three compo-

nents, a mean reverting component, a seasonal component, and a jump component. The

methodology includes statistical empirical analysis followed by software implementation in

MATLAB, and complete algorithms for two pricing models. The result includes novel uses

for the spark spread pricing model, and sensitivity analysis. Sensitivity analysis is used to

understand risk factors, which may be used to hedge in future applications.
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1.5 Outline

Chapter 1 discusses the electricity market in general, as well as the Ontario case. It also

introduces the concepts used and motivation behind this line of research. Chapter 2 dis-

cusses electricity price modelling. The models, algorithm, and elements used to create the

models are explained. In Chapter 3, we look at the empirical data obtained for the spark

spread contracts in Ontario and analyse the data followed by a comparison with the models

created. To conclude, Chapter 4 discusses the strengths of each of the models and where

each model prevailed and where each model was weak.
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Chapter 2

MODELLING ELECTRICITY PRICES

We are looking to find a fair price for spark spread options, which are the commodity

transactions in the electricity market based on the difference between fuel and generation

price, and electricity price. This is of interest to us since the spread fair price determines the

economic value of the underlying commodities, in this case, namely uranium and gas. See

[17]. To find the fair price for these options, we propose two models. The model evolution

will be discussed in this chapter, beginning with the prices.

The proposed models and their elements are explained as well as justification for each

process. Since this thesis highlights the use of Future prices to calculate the payoffs, the

characteristics of Future prices are emphasized. Examples of the Levy processes used in

modelling, as well as the model evolution are subsequently discussed. We introduce the two

models proposed, a multivariate jump diffusion model, and a multivariate time-changed

model with additional features such as seasonality and mean-reverting factors.

2.1 Introduction to Levy Processes

A Levy process is a stochastic process with independent, stationary increments which is

infinitely divisible. The increment in space represents the motion of a point whose successive

displacements are random and independent, and not necessarily normally distributed. A
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Lévy process can be viewed as the continuous-time analog of a random walk. A property of

the Levy process is that it follows a cadlag modification. The word cadlag comes from the

french for “continu à droite, limites à gauche”, which translates to right continuous with left

limits. There are two subclasses within Levy processes where calculations are fairly simple

which are time-changed processes and multivariate jump diffusion models. They will be

discuss in sections 2.2 and 2.3 respectively.

Definition 2.1. Given a filtration F = (Ft)t≥0, the filtration is an indexed set of information

from 0 to t, including the prices. Given a stochastic basis (Ω,A, P,F), a stochastic process

is a collection of real-valued random variables on the sample space Ω, indexed by time.

Then, (Xt)t≥0, a stochastic process, is a collection or random variables where each Xt is a

real-valued random variable on Ω.

The process X = (Xt)t≥0 is said to be a Levy process if and only if:

(1) It has Independent Increments: For any n ∈ N, 0 ≤ t1 < t2 < ... < tn <∞,

Xtk - Xtk−1
(k=1, 2,...,n) are independent random variables.

(2) It has Stationary Increments:

For any s<t, Xt - Xs is equal in distribution to Xt−s.

(3) It is Continuous

i.e. for s ≥ 0, Xt+s - Xs → 0 as t → 0 almost surely.

Well known examples of Lévy processes are Brownian motion and the Poisson process.

Other examples that will be discussed in this chapter are Inverse Gamma and Time-changed

10



processes. See [19]. Each process has a characteristic function which determines the distri-

bution of the process. The characteristic function always exists and is uniformly continuous.

It is defined below. See [12].

Definition 2.2. Defined on a stochastic basis, for a real - valued process (Xt)t≥0, φXt(θ)

as the characteristic function of the process. Therefore, for Xt:

φXt(u) = E(eiuXt), u ∈ R (2.1)

where φXt(u) is the characteristic function of the process. A characteristic exponent of

a Levy process gives the rate of exponential divergence from initial conditions. See [18].

ΨXt(u) =
1

t
log φXt(u)

2.1.1 Levy- Ito Decomposition

A Levy process can be decomposed into the sum of a Brownian motion, a linear drift and

a pure jump process which captures all jumps of the process, referred to as the Levy-Ito

Decomposition.

Xt = µt + σWt + Zt

The Levy-Ito Decomposition states that any Levy process (Xt)t≥0 can be constructed

as a sum of three independent processes. Given a Lévy triplet (µ,σ2,Π) there exist three

independent Lévy processes, which lie in the same probability space, such that:
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The parameter µ is a Brownian motion with drift which is the absolutely continuous

part of a measure and capturing the drift and diffusion; σ2 is a compound Poisson process is

the Levy measure. The process defined by X = (Xt)t≥0 is then a Lévy process with triplet

(a, σ2,Π).

2.1.2 Levy-Khintchine Formula

The Levy-Khintchine Formula gives the characteristic function, which characterizes the

distribution of a Levy process. A Levy process has three independent components: a linear

drift, a Brownian motion and a compound Poisson process. The measure Π(dx) represents

the intensity of the Poisson process with jump of size x.

These three components, and thus the Lévy–Khintchine representation, are fully determined

by the Lévy–Khintchine triplet (µ, σ2,Π). The only non-deterministic continuous Levy

process is a Brownian motion with drift.

Theorem 2.3. Levy-Khinchine Formula

If X = (Xt)t≥0 is a Levy process, then its characteristic function φXt(u) is given by

φXt(u) = exp

[(
µiu− 1

2
σ2u2 +

∫
R\{0}

(
eiux − 1− iuxI|x|<1

)
Π(dx)

)
t

]
(2.2)

where µ ∈ R, σ ≥ 0, I is the indicator function and Π is the Levy measure of X.

2.1.3 Examples of Levy Processes

Example 2.1.1. Poisson Process
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To introduce Levy Processes, we will look at one of the simplest examples, which is

a Poisson process. Let (Xt)t≥0 be a random process with finite independent stationary

increments. The increments are independent of the past, for example, if there is an average

of five jumps within an interval, not observing a jump would not increase the probability

of a jump. The Poisson analysis counts how many jumps in increments occur during the

interval [0,t]. See [19].

Definition 2.4. (Nt)t≥0 is a Poisson process if and only if:

(1) N0 = 0.

(2) (Nt)t≥0 has stationary and independent increments

(3) P (Nt = n) = e−λt
(λt)n

n! , n = 0, 1, 2,...

on interval length t and Poisson distributed with mean λt. See [1] for a proof.

Example 2.1.2. Brownian Motion

Modelling the price process using geometric Brownian motion leads to calculating the

expected value dependent on the spot price. Brownian Motion is described by the Wiener

process, which is defined below. See [19].

Definition 2.5. (Wt)t≥0 is a Wiener process or Brownian motion if and only if:

(1) W0 = 0.

(2) (Wt)t≥0 has stationary and independent increments

(3) (Wt)t≥0 is continuous
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(4) (Wt)t≥0 is normally distributed with zero mean and variance σ2; fWt(x) = 1√
2πt
e−

x2

2t ,

where fWt(x) is the probability density function of (Wt).

Example 2.1.3. Compound Poisson Process

We will be using a Compound Poisson Process to simulate a part of the Levy component

in the Jump-diffusion model. It is given by

Zt =

Nt∑
k=1

Xk +

N
(0)
t∑

k=1

X0,k (2.3)

where Xk ∼ N(µJ , (σJ)2) and X0,k ∼ N(µ0,J ,Σ0,J). The objects (Nt)t≥0 and (Nt)
(0)
t≥0

are Poisson random variables. For each k, Xk is a normal random variable, and X0,k is a

multivariate random variable simulating the common jumps between electricity and the two

underlying commodities. For the proof for a compound poisson process in a one dimensional

case, see [15].

2.2 Inverse Gaussian Random Process

The Inverse Gaussian distribution is a two parameter (a, b) continuous probability distribu-

tion on (0,∞). As b→∞ this distribution tends to a normal distribution. The parameters

will be given as IG(a,b). For our Time Changed model, the Inverse Gaussian subordinator

L
(j)
t is defined below and will be used to simulate the time- changed process, BZt . See [19].

Definition 2.6. A time-change is any non-decreasing random process (Lt)t≥0. When the

time-change has positive, independent and stationary increments, the process is referred to

as a subordinator.
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The subordinator of the time-changed process, L
(j)
t , has the probability density function:

f(x; a, b) =
( b

2πx3

) 1
2
exp
−b(x− a)2

2a2x

We sample from an IG(a,b) distribution, given the characteristic exponent ΨIG
L(j) of an

inverse Gaussian subordinator:

ΨIG

L
(j)
t

(u) = −aj(
√
−2iu+ b2j − bj) (2.4)

2.3 Future and Forward Prices

The spot price of a commodity is the price at which the commodity could be traded at any

given time in the marketplace. In contrast, a commodity’s Future price is the price of the

commodity in relation to its current spot price, time until delivery, risk-free interest rate,

and storage costs at a future date.

Electricity Futures have the same payoff structure as electricity forwards. However

electricity Futures, like other financial Futures contracts, are highly standardized in terms of

contract specifications, delivery conditions, trading locations, and settlement procedures. In

contrast, Futures prices and spot prices are different because the market is always forward-

looking. The difference in a commodity’s spot price and Future price is due to the cost of

carry and interest rates. See [5].

Definition 2.7. We define a Future contract with delivery at the time T:

The Futures price F(t,T) is the market quoted price at time t, for the delivery of the asset
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at time T.

During any time interval [t,s], the holder receives the amount F(s,T) - F(t,T).

At time T, the holder pays the spot price at time T, F(T,T) and is entitled to receive the

underlying.

For the models created, a constant interest rate is used. This is a simplification, as

stochastic models exist. Two in particular are the Hull-White One-Factor and Two-Factor

model. The Hull-White model is used to model arbitrage free Future interest rates, whereas

the Two-Factor model contains an additional disturbance term whose mean reverts to zero.

The models developed calculate the respective Future prices based on a simulated spot

price, and subsequently calculate the payoff and price of the spark spread option. The

first step is to compute the Future prices; to reach the objective, we first understand the

dynamic of Future prices.

The Future price is the price of an asset which is agreed upon in a Future contract.

The big question we are looking to answer is, ”What is the fair price for the contract?”. In

general, the Future price should be the spot price, discounted by the cost of carry for the

asset. The cost of carry is a peculiar issue in the electricity market, which will be discussed

later in this chapter. For a forward contract on an underlying asset that is tradeable, we can

define the Future price in terms of the spot price, interest, cost of carry, and any dividends

for a Future contract on an underlying asset if the asset is tradeable.

The derivatives are the raw materials used by the electricity generating systems. If those

derivatives are tradeable and a dividend exists, the Future price is given by:
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F (t, T1) = S0e
(r−q)T − ΣN

i=1Die
(r−q)(T−t), (2.5)

where:

F is the Future price to be paid at maturity (time T )

t is the current time

r is the risk-free interest rate

q is the cost-of-carry

S0 is the spot price of the asset

Di is a dividend that is guaranteed to be paid at time ti where t < ti < T .

When the interest rates are deterministic, forward and Future prices are identical. This

is because the Future price is a martingale under the risk-neutral measure, and the forward

price is a martingale under the forward measure. These two measures are equal when the

interest rate is not stochastic. When the interest rate is stochastic, there is a difference

between forward and Futures prices. We assume q = 0, Di = 0.

Selling an asset at a future date can cover a commitment by immediately buying and

carrying until maturity the commodity that is to be delivered. The cost of using the asset

is incurred, but profit from the utility of being able to trade the commodity is at maturity.

Therefore, the return of buying a commodity today (that is, at time t) and delivering it at

maturity (T1) should at least be equal to:

F (t, T1) = e−r(T1−t)E(ST1/Ft) (2.6)

The filtration Ft is the σ- algebra generated by random variables, F (t, T1) represents the
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commodity Future price and St is the commodity spot price.

2.4 Models for Pricing Electricity Contracts

The foundation of pricing the spark spread contracts is to compute Future prices for each

commodity based on the spot price. The initial task is to simulate spot prices; therefore, the

Euler-Maruyama Method is employed to solve the stochastic differential equation below.

dỸt
(j)

= dµt + dY
(j)
t (2.7)

For (Yt)t≥0 we assume a dynamic as:

Yt
(j) = αj(r −mj − Yt(j))dt+ dV

(j)
t (2.8)

where (Vt)t≥0 is a Levy process.

We solve for Y
(j)
T , for j equal to 1, 2, and 3, defined as electricity, uranium, and natural

gas respectively T is time at maturity.

Spot prices S
(j)
T = (S

(1)
T , S

(2)
T , S

(3)
T ) are given by:

S
(j)
T = S0

(j)exp(Ỹ
(j)
T ) j = 1, 2, 3 (2.9)

To model the dynamics of spot prices in electricity, natural gas, and uranium, we consider

two models which will be described below. The first model is a multivariate jump-diffusion

model and will be discussed in section 2.5. The second model is a Multivariate Time-

Changed Model discussed in section 2.6. Both models have similar components such as a
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mean-reverting nature and seasonality. In general terms, we assume a model for the log-

returns of the three processes given by the sum of deterministic seasonal component plus a

mean-reverting Levy component, dVt, as seen in equation (2.8).

For (Vt)t≥0 we have created two variants. For the Jump-diffusion model, we have

dVt = σdBt + dZt

where (Bt)t≥0) is a geometric Brownian process and (Zt)t≥0 is a multivariate compound

Poisson process. For the Time-changed model, we have

dVt = σdBZt

Thus, we have the following models for the log-returns.

The jump diffusion model under an Euler Maruyama Method (Risk Neutral) where mj

is the compensator converting discounted prices into martingales is:

Yt
(j) = αj(r −mj − Yt(j))dt+ σdBt + dZt (2.10)

for j = 1, 2, 3

The time-changed model is:

Yt
(j) = αj(r −mj − Yt(j))dt+ σdBZt (2.11)

for j = 0, 1, 2, 3

where r is the risk-free interest, αj is the mean-reverting rate, mj varies between the

two models, and µt is either the seasonal deterministic process or the linear trend. The
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deterministic function µt is defined as either one of the following equations, based on the

commodity. In section 3.9, the benefit of using

µ
(j)
t = a

(j)
0 + a

(j)
1 (t), j = 1, 2, 3

µ
(j)
t = b

(j)
0 + b

(j)
1 cos

(2π(t)

Tp

)
j = 1, 2, 3

(2.12)

where a0, a, b0, b are parameters in the model at Tp is the period in the seasonal

component.

The solution of Y
(j)
t is given by the equation below. Notice that by properly compen-

sating, it is a model in one of the possible risk neutral measures. The proof can be shown

with the Ito formula for discontinuous processes.

Proposition 2.8. Let Yt = (Y
(1)
t , Y

(2)
t , Y

(3)
t ) the process given by equation (2.7), then

Y
(j)
t = (r −mj)(1− eαjt) +

∫ t
0 e
−αj(t−s)dV

(j)
s , j = 1, 2, 3

Proof. Apply Ito Formula to fj(x, y) = xeαjy and the process (Y
(j)
t , t). Then:

Y
(j)
t eαjt =

∫ t
0 e

αjsdY
(j)
s +αj

∫ t
0 Y

(j)
s eαjsds+Σ(f(Y

(j)
s +∆Y

(j)
s , s)−f(Y

(j)
s− , s)−∆f(Y

(j)
s− , s)Dxf(Y

(j)
s− , s))

= αj(r −mj)
1
αj

(1− eαjt)− αj
∫ t

0 e
αjsds+ αj

∫ t
0 Y

(j)
s eαjsds+

∫ t
0 e

αjsdV
(j)
s

+ Σ(Y
(j)
s + ∆Y

(j)
s , s)eαjs − Y (j)

s eαjs −∆f(Y
(j)
s )Y

(j)
s eαjs

= (r −mj)(1− e−αjt) +
∫ t

0 e
−αjsdV

(j)
s

where ∆Xt = Xt −Xt−1 is the jump size at t.

Finally multiplying both sides by e−αjt leads to the result.

The Future prices at time t with delivery at T1 are F (t, T1) = (F (1)(t, T1), F (2)(t, T1), F (3)(t, T1)).

A spark is a call contract with maturity at time T , T < T1 and strike price K, written on
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the spread of the Future prices of the source and electricity, denoted by j =1. Recall the

spot price formula from (2.9). The relation between Future and spot prices in an arbitrage

argument is given by:

F (j)(t, T1) = EQ(S
(j)
T /Ft), j = 1, 2, 3. (2.13)

We analyze European spread options whose payoff at maturity T, for a strike price K,

is given by:

hura(T, T1,K) = (F (1)(T, T1)− curaF (2)(T, T1)−K)+ (2.14)

hgas(T, T1,K) = (F (1)(T, T1)− cgasF (3)(T, T1)−K)+ (2.15)

where cura and cgas are the conversion factors to relate the electricity cost with the

production cost of natural gas and nuclear power respectively. Since we are using a Monte

Carlo method, we take n is very large we are able to compute the payoff using the following

formula.

1

n

n∑
n=1

hura(T, T1,K) ' EQ[hura(T, T1,K)] (2.16)

1

n

n∑
n=1

hgas(T, T1,K) ' EQ[hgas(T, T1,K) (2.17)

Finally the fair price of the contracts at time T with strike price K will be given by the

following equations which take the expectation of the payoffs, and discount the payoff. Let

Cgas and Cura denote the price of a European spread option with payoff h(ST ) under the

model given by equations 2.19 and 2.18.

Cura(T, T1,K) = e−r(T−t)EQ[hura(T, T1,K)] (2.18)
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Cgas(T, T1,K) = e−r(T−t)EQ[hgas(T, T1,K)] (2.19)

The next proposition provides an expression for Future prices.

Proposition 2.9. Let St = (S
(1)
t , S

(2)
t , S

(3)
t ) be the process given by equation 2.9 and let

F (t, T1) be its forward price at t with maturity at T1(T < T1). It is given by:

F (j)(t, T1) = S
(j)
0 Aj(T1)Bj(t, T1)eξ

(j)
t j = 1, 2, 3 (2.20)

where:

Aj(T1) = e(r−mj)(1−e−αjT1 )+µ
(j)
T

Bj(t, T1) = e
∫ T1
t ψ

V (j) (−ieαj(T1−s))ds

ξ
(j)
t =

∫ t
0 e
−αj(T1−s)dV

(j)
s

Proof. Using proposition 2.7:

F (j)(t, T1) = EQ[S̃
(j)
T /Ft] = Aj(T1)EQ[e

∫ t
0 e

−αj(T1−s)dV
(j)
s /Ft]

= S
(j)
0 Aj(T1)e

∫ t
0 e

−αj(T1−s)dV
(j)
s EQ[e

∫ T1
t e−αj(T1−s)dV

(j)
s ]

= S
(j)
0 Aj(T1)e

∫ T1
t Ψ

V (j) (−ie−αj(T1−s)ds)eξ
(j)
t

2.5 Multivariate Jump-Diffusion Model

The methodology developed for the Jump-diffusion model simulates the process of the

model. The first step in to algorithm is the solve the stochastic differential equation (SDE)

using the Euler-Maruyama Method. The method includes a Brownian component, as well

as a Compound Poisson process. The electricity market moves different as the seasons vary,

which can be described as seasonality. A seasonal component can be added to the trajectory,
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dµt. This will be discussed in detail in Section 3.9. We assume a multidimensional jump

diffusion dynamics under the Risk Neutral Probability. Recall the Jump-diffusion model

being used is:

dỸt
(j)

= dµt + αj(r −mj − Ỹt
(j)

)dt+ σjdB
(j)
t + dZ

(j)
t (2.21)

and from Pascucci (2011), mj is a vector with components:

mj = logφZ(−i) (2.22)

See [13].

Consider the case of a bivariate model with both independent and common jumps with

Gaussian distributions, X
(j)
k ∼ N(µ

(j)
J , (σ

(j)
J )2) and X0,k ∼ N(µ0,J ,Σ0,J) . The compensator

mj for the jump diffusion process can be computed as

mj =
1

2
diag(Σ)λje

(µ
(j)
J + 1

2
(σ

(j)
J )2−1) + λ0e

(µ
(j)
0,J+ 1

2
(σjj0 )2−1), j = 1, 2, 3 (2.23)

where the matrix Σ = (σjl)j,l=1,2,3 is symmetric, positive, and definite. We use a Com-

pound Poisson Process to partially simulate the Levy component of the Jump Diffusion

Model.

Z
(j)
t =

N
(j)
t∑

k=1

X
(j)
k +

N
(0)
t∑

k=1

X
(j)
0,k (2.24)

We also define two sequences of independent and identically distributed 1x2 dimensional

random vectors (Xk) and (X0,k). The components of the first vector denoted by (X
(j)
t ),

j = 1, 2, 3 are independent with equal cumulative distribution function FX for every k.

23



The vectors X0,k = (X
(1)
0,k , X

(2)
0,k , X

(3)
0,k)’ have joint cumulative distribution function FX for

every k. The process Zt = (Z
(1)
t , Z

(2)
t , Z

(3)
t )’ is a d-variate compound Poisson process with

components where (Nt) = (N
(1)
t , N

(2)
t , N

(3)
t ) is a vector of independent poisson processes

with respective intensities λj , j = 1, 2, 3. The processes correspond to the idiosyncratic and

common jumps of the underlying assets of the interval [0,t] with jump sizes Xk , and X0,k.

See [11] for Pricing Spark Spread contracts under some classes of Levy processes (working

paper).

2.6 Multivariate Time-Changed Models

We also consider an alternative model, which is a Levy process with infinitive activity,

i.e infinitely many jumps in finite intervals. Specifically, an exponential multivariate time

changed model. We can start to model this by allowing the relationship between calendar

time and the pace of the market to be random. We call a stochastic process which models

the random clock a time changed model. See [19].

We consider an exponential multivariate time changed Levy model with subordinator,

given by a multivariate Inverse Gaussian process. The dependence between both underlying

assets is given through the Brownian components as well as the time- changed subordinator.

We also consider a drift given by mean reverting component. See [4].

Recall the Time-changed model

dỸt
(j)

= α(r −m− Ỹt
(j)

)dt+ σdBZt (2.25)
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where

Z
(j)
t = L

(0)
t + cjL

(j)
(t) j = 1, 2, 3 (2.26)

where (Lt)t≥0 = (L
(0)
t , L

(1)
t , L

(2)
t , L

(3)
t )t≥0 is a multivariate Levy process with indepen-

dent components. The compensator can be calculated

mj = ΨL0(− i
2
σ2
j ) + ΨL(j)(−

i

2
cjσ

2
j ) (2.27)

The characteristic function ΨIG
L(j) is defined as a Normal Inverse Gaussian distribution

as follows:

ΨIG
L(j)(u) = −aj(

√
−2iu+ b2j − bj (2.28)

We set Vt = σdBZt for the context of the time changed process, BZt = (B
(1)
Zt
, B

(2)
Zt
, B

(3)
Zt

), α =

(α1, α2, α3) mean-reverting coefficients, and σ = (σ1, σ2, σ3) are volatility coefficients, r =

(µ
(1)
Q , µ

(2)
Q , µ

(3)
Q ) the risk-premium measure.

Table 2.1 outlines the different characteristics of the distributions relevant to the tech-

niques created. The jump-diffusion model uses a normal distribution for simulating the

Brownian motion, and a poisson distribution in simulating the compound Poisson process.

The time-changed model uses a normal distribution for simulating the Brownian motion,

and an inverse Gaussian distribution for simulating the subordinator.

Notice a normal distribution has zero skewness, assuming symmetry, which is not re-

alistic specifically when observing the empirical pricing data. A Poisson distribution, and

inverse Gaussian distribution have non-zero, positive skewness and excess kurtosis, imply-
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Table 2.1: Variables and the Respective Parameters

Type Mean Standard Deviation Skewness Excess Kurtosis

Normal Distribution µ σ2 0 0

Poisson Distribution λ λ λ−
1
2 λ−1

Inverse Gaussian Distribution a a3

b 3(ab )
1
2

15a
b

ing heavy tails. This is relevant to pricing data because it portrays lower risk in the prices

simulated.

These characteristics provide reasoning for creating two techniques which use a super-

position of various distributions to characterize the dynamics of the empirical data.
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Chapter 3

MONTE CARLO PRICING OF SPARK SPREAD CONTRACTS:

ALGORITHM AND NUMERICAL RESULTS

In this chapter, we define the general algorithms to price spark spread options. The Monte

Carlo Method is introduced followed by a flowchart which depicts the procedure of the

pricing techniques created. The algorithm for each of the input functions is outlined: the

Brownian motion simulation, the compound Poisson process simulation, the inverse Gaus-

sian method simulation and the the Euler- Maruyama Method simulation. Each of these

algorithms is introduced prior to the Monte Carlo general pricing algorithm to portray the

procedure of the pricing technique.

The algorithms to simulate the two proposed models, a Jump-Diffusion Model and

a Time-Changed Model are then given, followed by the empirical data obtained. The

numerical results are then computed.

3.1 The Monte Carlo Method and Pricing Applications

The Monte Carlo Method functions on two foundations; the Law of Large Numbers (LLN),

and randomness. The LLN generally states that the average of the results from performing

the same experiment a large number of times n should be close to its expected value, and

usually becomes closer as n increases. See [7]. There are two laws within LLN; the Strong
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Law of Large Numbers(SLLN), and the Weak Law of Large Numbers(WLLN). The Monte

Carlo Method is convergent in both a strong and weak sense, therefore the SLLN is proposed

below.

Proposition 3.1. The Strong Law of Large Numbers. Let X1, X2, ..., Xn be an independent

identically distributed sequence of random variables where E[X1] <∞ Then,

1
n

∑∞
n=1Xn → E[X1]

as n→∞. See [21]

The randomness comes from generating suitable random numbers using different gener-

ating techniques. A random number generator must be used for this method. Both pricing

models created use various types of random numbers, each relevant to the processes used

to characterize the dynamics of prices. The Jump Diffusion Model uses a combination of

normal univariate, multivariate, and Poisson random numbers, whereas the Time Changed

Model uses random numbers from an Inverse Gaussian distribution, as well as normally

distributed random numbers.

The algorithms for each component of the two techniques proposed to price the spark

spread options are presented below. Figure 3.1 gives a breakdown of how the processes

combine to give the desired output, the Spark Spread Price. The initial step is to simulate

the processes used within each model. Three dimensional Brownian motion, a compound

Poisson process, and an inverse Gaussian subordinator are the initial simulations required.

Subsequently, the Euler - Maruyama method is used to simulate a trajectory of log return

prices, used to compute the spot price. In parallel to the Euler Maruyama function, the
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Figure 3.1: Flowchart Depicting the functions created to obtain the Spark Spread Price.

seasonality component, a characteristic function is computed, as well as a characteristic

exponent is computed. These functions are inputs into the main pricing function. Since we

propose two models to price the spark spread options, two main pricing functions exist, one

for each model. The pricing functions then use the Monte Carlo Method and simulate the

spark spread option price. To begin, the algorithms of the input functions are discussed.

Followed by the algorithm of the Euler-Maruyama method, the Monte Carlo Method, and

the Future pricing algorithm.

3.2 Algorithms of Monte Carlo Input Functions

Each process or function used in the methodology has its own respective algorithm which

acts as the foundation to the software implementation. The algorithms for Brownian motion,

compound Poisson process, inverse Gaussian process, Euler-Maruyama method, and the

Monte Carlo method are described in this section.
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3.2.1 Algorithm for Generating Brownian Motion

We begin with a three dimensional Brownian motion model, with dependent components

ΣB, µ, T, and ∆ t, which outputs a n by j matrix of the Brownian component. In general,

here is the algorithm to model the equation Xt = µt+ σWt + Zt.

Algorithm

(1) The subintervals, n, is calculated using the maturity period T, and increment ∆t as

n =
⌊
T
∆t

⌋
such that n is an integer

(2) The correlation matrix is created as

ΣB =


1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1


(3) The zero mean is given by

µ =

(
0 0 0

)T

(4) Using a multivariate random number generator the three dimensional Brownian mo-

tion is simulated with zero mean and correlation ΣB.

Figure 3.2 demonstrates a daily three dimensional Wiener process simulation for t = [0,T],

with zero mean and ΣB obtained from empirical data analysis. Each index is represented

with a different colour.
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Figure 3.2: Three Dimensional Brownian Motion Simulation

Trajectory of Brownian Motion simulated using empirical correlation matrix (See section

3.10), with zero mean, maturity T = 1 year and ∆t = 1 day.

3.2.2 Algorithm for Generating Compound Poisson Process

The next step is to model the compound Poisson process with the input parameters µj , σj ,

λj , T, and ∆ t, which outputs a n by j matrix of the compound Poisson process component.

The parameters are estimated from empirical data analysis. In general, here is the algorithm

to model the equation Z
(j)
t =

∑N
(j)
t

k=1 X
(j)
k +

∑N
(0)
t

k=1 X
(j)
0,k.
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Algorithm

(1) n is calculated using the maturity period T, and increment ∆t as n =
⌊
T
∆t

⌋
(2) N

(0)
t and N

(j)
t are simulated via a Poisson random number generator, with parameters

λ0 and λj respectively.

(3) X
(j)
k are simulated via a normal random number generator, with parameters µj and

σj .

(4) X
(j)
0,k is simulated via a multivariate normal random number generator, with parame-

ters µ as

µ =

(
µ1 µ2 µ3

)T

and σ as the covariance matrix

σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


(5) The variables are correctly summed after created, and the compound Poisson process

is simulated.

Figure 3.3 demonstrates a daily compound Poisson process simulation for t = [0,T], with

zero mean, σij = 0.01 and λ0,1,2,3 = 5. Both the independent and common jumps are

visible, which can be observed in the jumps that occur on the same days versus jumps that

are unique to the index.
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3.2.3 The Inverse Gaussian Method

The Time-Changed model proposed, uses an Inverse Gaussian subordinator. To sample

from an IG(a,b) distribution, we use the following algorithm known as the IG generator of

Michael, Schucany and Haas. See [9].

Algorithm

(1) Generate a standard Normal random number v.

(2) Set y = v2.

(3) Set x = (a/b) + y/(2b2)−
√

4ab+ y2/(2b2)

(4) Generate a uniform random number u.

(5) If u ≤ a/(a + xb), then return the number x as the IG(a, b) random number, else

return a2/(b2x) as the IG(a, b) random number L
(j)
t .

(6) Finally, we simulate Z
(j)
t where

Z
(j)
t = L0

t + cjL
(j)
t (3.1)

Figure 3.4 demonstrates an inverse Gaussian process simulation for t = [0,T], with

a = 0.001 and b = 0.01. The parameters a and b represent the mean and standard

deviation of the process, respectively. Evidently, the slope of the trajectory is varied.

A steeper slope observed throughout the interval results in a greater change in the

spot price.
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3.2.4 Euler-Maruyama Algorithm

The Euler-Maruyama Method solves the stochastic differential equation

dYt = α(r −m− Yt)dt+ dVt

The error in the approximation is O(∆t) where ∆t is the increment. This method is used

over other existing methods of approximation, such as the Milstein method or the Runge-

Kutta method for simplicity in implementation.

We obtain values for Y
(1)
end, Y

(2)
end, Y

(3)
end which are the final positions of the trajectory

simulated using this method. Subsequently we will obtain the spot prices which will be

directly used in the Future price calculations. Finally we add the seasonal component, µt.

Algorithm

(1) We begin by computing µt as in equation 3.27 or 3.26, depending on the underlying

commodity.

(2) We define dVt for each model. Recall that for the Jump diffusion method dVt is given

by dVt = σdBt + dZt and for the Time - Changed method dVt is given by dVt = dBZt

where Z
(j)
t is defined as a Levy Process given by Z

(j)
t = L0

t + cjL
(j)
t .

(3) We simulate the specific mj as given in equations 2.23 and 2.27

(4) We solve the stochastic differential equation for Yt at each time t as in equation 2.7.

(5) We solve for Ỹt = Yt + µt where Ỹt is the trajectory of seasonalized log returns.

(6) We obtain ỸT , where T is maturity, and solve (2.9) for the spot price.
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Obtaining the spot for each of index allows us to calculate the Future’s price using

expectation which is applied to the model. The model computes Future prices for each

index within a loop to obtain values of Future prices. The payoff is initially calculated

using the formulas (2.14) and (2.15). Using Monte Carlo simulation, determine the average

payoff is computed; the fair price of the contact will be the discounted payoff using formula

(2.18) and (2.19).
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Figure 3.3: Multivariate Compound Poisson Process Simulation

Compound Poisson Process simulated for electricity, uranium, and natural gas using

λ0,1,2,3 = 5, with zero mean, σij = 0.01 maturity T = 1 year and ∆t = 1 day. Both

idiosyncratic and independent jumps are present.
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Figure 3.4: Inverse Gaussian Subordinator Simulation

Inverse Gaussian subordinator simulated using a = 0.001, b = 0.01, maturity T = 1 year

and ∆t = 1 day.
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Figure 3.5: Seasonalized Log Returns for Electricity, Uranium, and Natural Gas using the

Jump-Diffusion model

Seasonalized Log Returns for Electricity, Uranium, and Natural Gas using the

Jump-Diffusion model where dVt = σdBt + dZt. The parameters used for this simulation

are λ0,1,2,3 = 1, with zero mean, σ1,2,3 = 0.01, and α = 0.01. Notice that Figures 3.5 and

3.6 look almost identical; the seasonal component (annual and weekly periods) is weak

and has very little impact on the log-return simulation with the chosen parameters.

See section 3.9 for an estimation of parameters via regression.
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Figure 3.6: Deasonalized Log Returns for Electricity, Uranium, and Natural Gas using the

Jump-Diffusion model

Deasonalized Log Returns for Electricity, Uranium, and Natural Gas using the

Jump-Diffusion model where dVt = σdBt + dZt. The parameters used for this simulation

are λ0,1,2,3 = 1, with zero mean, σ1,2,3 = 0.01, and α = 0.01. Notice that figures 3.5 and

3.6 look almost identical; the seasonal component (annual and weekly periods) is weak

and has very little impact on the log-return simulation with the chosen parameters. See

section 3.9 for an estimation of parameters via regression.
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Figure 3.7: Spot Price Simulation for Electricity, Uranium, and Natural Gas using a Jump-

Diffusion model

Spot Price Simulation for Electricity, Uranium, and Natural Gas using the Jump-Diffusion

model where dVt = σdBt + dZt. The parameters used for this simulation are λ0,1,2,3 = 1,

with zero mean, σ1,2,3 = 0.01, and α = 0.01.
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Figure 3.8: Seasonalized Log Returns for Electricity, Uranium, and Natural Gas using a

Time-Changed

Seasonalized Log Returns for Electricity, Uranium, and Natural Gas using the

Time-Changed model where dVt = dBZt . The parameters used for this simulation are

c0,1,2,3 = 1, with zero mean, σ1,2,3 = 0.01, α = 0.01, a = 0.01, and b = 0.1.
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Figure 3.9: Deseasonalized Log Returns for Electricity, Uranium, and Natural Gas using a

Time-Changed model

Deasonalized Log Returns for Electricity, Uranium, and Natural Gas using the

Time-Changed model where dVt = dBZt . The parameters used for this simulation are

c0,1,2,3 = 1, with zero mean, σ1,2,3 = 0.01, α = 0.01, a = 0.01, and b = 0.1.
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Figure 3.10: Spot Price Simulation for Electricity, Uranium, and Natural Gas using a Time-

Changed model

Spot Price Simulation for Electricity, Uranium, and Natural Gas using the Time-Changed

where dVt = dBZt . The parameters used for this simulation are c0,1,2,3 = 1, with zero

mean, σ1,2,3 = 0.01, α = 0.01, a = 0.01, and b = 0.1.
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3.3 Monte Carlo General Pricing Algorithm

The algorithm for pricing spark spread options using the Monte Carlo Simulation Method

consists of the following steps:

(1) Divide the interval (0,T) into n intervals of length ∆t, repeating the 3 simulations to

obtain the j-th simulation of the sequence of prices:

S
(j)
∆t , S

(j)
2∆t, S

(j)
3∆t, ..., S

(j)
n∆t = S

(j)
T , (3.2)

for j = 1, 2, 3

(2) Compute Future price using equation (2.20)

(3) Compute the approximation for expectation

1

n

n∑
n=1

h(S
(j)
T ) ' EQ[h(S

(j)
T )] (3.3)

where h(S
(j)
T ) = (F

(1)
T − curanF (2)

T −K)+ and h(S
(j)
T ) = (F

(1)
T − cgasF (3)

T −K)+ .

(4) Compute the approximation for the price of the option

P ' e−r(T−t)EQ[h(S
(j)
T )] (3.4)

3.4 Computing the Future Price under a Jump Diffusion Model

The algorithm designed to compute the Future price under a jump diffusion model is out-

lined below. The model contains a superposition of 3 processes: three dimensional Brownian

motion, a compound Poisson process, and a seasonality component. Recall that the Euler-

Maruyama method gives the spot price at time t, t < T (maturity).
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Algorithm

(1) Once we obtain the spot price, we find the Future price using the formulas below: j

= 1,2,3

F (j)(t, T1) = S
(j)
0 Aj(T1)Bj(t, T1)eξ

(j)
t (3.5)

Aj(T1) = e(r−mj)(1−e−αjT1 )+µ
(j)
T (3.6)

Bj(t, T1) = e
∫ T1
t ψ(−ieαj(T1−s))ds (3.7)

ξ
(j)
t =

∫ t

0
e−αj(T1−s)dV (j)

s (3.8)

(a) Computing dVs for each respective model. Recall that dVt = σdBt + dZt for the

jump-diffusion model and dVt = dBZt for the time-changed model.

(b) Evaluating e−αj(T1−s) multiplied by the increment dVs for every s.

(c) Evaluating ξ
(j)
t using the sum

∑t
0 e
−αj(T1−s)dV

(j)
s

(2) From this simulation we obtain vectors for F (1)(t, T1), F (2)(t, T1), F (3)(t, T1) where the

number of components corresponds to the number of simulated trajectories, m.

(3) Once we have obtained the Future prices, we compute the payoff using the formulas

below:

hura(t, t1,K) = (F (1)(t, T1)− curaF (2)(t, T1)−K)+ (3.9)

hgas(t, t1,K) = (F (1)(t, T1)− cgasF (3)(t, T1)−K)+ (3.10)

where hura(t, T1,K) and hgas(t, T1,K) are the payoffs for uranium and natural gas.
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(4) We then take the expectation using a mean formula:

h̄ura =
1

m

m∑
i=1

(hura(t, T1,K)) (3.11)

h̄gas =
1

m

m∑
i=1

(hgas(t, T1,K)) (3.12)

(5) And finally, we are able to retrieve a price from the simulation using a discount

equation:

Priceura = e−rT (h̄ura) (3.13)

Pricegas = e−rT (h̄gas) (3.14)
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Figure 3.11: Simulated Future Prices for Electricity, Uranium, and Natural Gas using a

Jump-Diffusion Model

Simulated Future Prices for Electricity, Uranium, and Natural Gas using a Jump-Diffusion

Model: the graphs above show the Future prices computed using the Monte Carlo Method

on a jump diffusion model with n = 1000.
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3.5 Computing the Future Price under a Time Changed Model

The algorithm designed to compute the Future price under a time-changed model is outlined

below. The model contains a superposition of 3 processes: three dimensional Brownian

motion, an inverse Gaussian subordinator, and a seasonality component. Recall that the

Euler-Maruyama method gives the spot price at time T (maturity).

Algorithm

(1) The first step is to calculate ΨL(j) with different values for a and b.

Ψ
L
(j)
t

(u) = −aj(
√
−2iu+ b2j − bj) (3.15)

(2) Then we find mj using equation (2.27)

The next step in the time changed algorithm is to simulate the inverse Gaussian

subordinator L
(j)
t for j = 0, 1, 2, 3 as mentioned in the section above. We then

compute Z
(j)
t where:

Z
(j)
t = L0

t + cjL
(j)
t (3.16)

This is where the time-changed component of the model begins. We will now simulate

a Brownian motion, however, the random process is evaluated and random times given

by Z
(j)
t . We assume independence and generate BZ1

t
, BZ2

t
, BZ3

t
.

Now we compute V
(j)
t where:

dV
(j)
t = σjdB

(j)

Z
(j)
t

(3.17)
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Now we use the Euler-Maruyama method to solve the stochastic differential equation

to obtain Yt and St.

dYt = dµt + α(r −m− Yt)dt+ σdBZt (3.18)

After obtaining dYt, which is a n x j vector, we use ỸT , which is the solution to the

equation at time T (maturity) for (2.9) to compute ST .

Parallel to computing YT and ST using Euler Maruyama and the Log returns formula,

we also compute ξ
(j)
t where:

ξ
(j)
t =

t∑
0

eα(j)(sj−t)dV (j)
s (3.19)

Once again from this simulation we obtain vectors for F (1)(t, T1), F (2)(t, T1), F (3)(t, T1)

using the Future price formula (2.20).

After obtaining the Future prices, the process is the same as the jump-diffusion model.

We compute the payoff using the formulas below:

hura(t, t1,K) = (F (1)(t, T1)− curaF (2)(t, T1)−K)+ (3.20)

hgas(t, t1,K) = (F (1)(t, T1)− cgasF (3)(t, T1)−K)+ (3.21)

where hura(t, t1,K) and hgas(t, T1,K) are the payoffs for the uranium and natural gas

underlying commodities.

We then approximate the expectation using a mean formula:

h̄ura =
1

m

m∑
i=1

(hura(t, T1,K)) (3.22)
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h̄gas =
1

m

m∑
i=1

(hgas(t, T1,K)) (3.23)

And finally, we are able to retrieve a price from the simulation using a discount

equation:

Priceura = erT (h̄ura) (3.24)

Pricegas = erT (h̄gas) (3.25)
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Figure 3.12: Simulated Future Prices for Electricity, Uranium, and Natural Gas using a

Time-Changed Model

Simulated Future Prices for Electricity, Uranium, and Natural Gas using a Time-Changed

Model: the graphs above show the future prices computed using the Monte Carlo Method

on a jump diffusion model with n = 1000.
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3.6 Empirical Data

The empirical data is composed of historic daily prices for the commodities, electricity,

uranium, and natural gas, obtained from Bloomberg for a five year period.

Table 3.1: Statistics of Empirical Data

Series Mean Median Standard Deviation Skewness Excess Kurtosis

Electricity 27.7602 25.9839 19.4909 4.7171 43.9029

Uranium 44.7978 43.2500 9.6216 0.4403 2.7754

Natural Gas 38.4660 38.6915 2.4476 -0.1354 2.0720

The statistics above are calculated from the empirical pricing data of each commodity.

Notably, the standard deviation of natural gas is 2.4476, quite lower than that of electricity

or uranium. The skewness is non-zero for all 3, as well as the excess of kurtosis. Electricity

has a high standard deviation that can be attributed to rather large jumps observed in

the electricity Future series (see Figure 3.13). The peak of the electricity price is $275,

compared to a mean of $27.76, a jump of over 1000%. In addition to high jumps, we also

observe a strong mean reversion. The excess kurtosis is also very high, which depicts a

heavy tail in the distribution, as seen in Figure 3.13.

In Table 3.2 the empirical correlation values are presented. To obtain the values, the

correlation function in MATLAB was used once the data had been aligned. Aligning the

data involved manually omitting data from the electricity price series, since that data set

is daily, whereas the underlying commodity data set was available for business days only.
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Table 3.2: Table of Empirical Correlation (ρij)

Series Electricity Uranium Natural Gas

Electricity 1 -0.0322 -0.1755

Uranium -0.0322 1 0.4646

Natural Gas -0.1755 0.4646 1

Once the data was aligned and the prices were organized by date, the correlation values

were computed via MATLAB. The term ρ(2,3) is found to be 0.465, which is logical based on

market trends. This correlation value relates the price of the two underlying commodities,

uranium and natural gas, with each other. It is coherent that the increase of one commodity

price would affect the other. The terms for ρ(1,2) and ρ(1,3) were observed to be negative

and insignificant in value.
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Figure 3.13: Empirical Pricing Series for Electricity, Uranium, and Natural Gas

Empirical Pricing Series for Electricity, Uranium, and Natural Gas: the graphs above

show the pricing data for the commodities of interest. The first graph shows the electricity

pricing data 5 years. The second graph shows the uranium pricing data for 3 years. The

third graph shows the natural gas pricing data for 2 years. High jumps and mean

reversion are observed for the electricity price series. A gradual increase in combination

with jumps and steadiness is observed in the uranium price series. A combination of and

jumps, volatility, and mean reversion are observed in the natural gas price series.
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3.7 Monte Carlo Pricing Computation

This section presents the results obtained from the methodology proposed to price spark

spread options. Three dimensional graphs have been employed to represent the impact

between the various parameters present in each model. The Monte Carlo method is used

with n = 50000 runs for each iteration of each graph. It is recognized that a higher repetition

would lead to more precise results. Table 3.3 indicates the parameters held constant when

others are being changed, unless otherwise indicated, observed in Figures 3.14 -3.29. The

assigned parameters are different from the empirical parameters since we are using broad

modelling conditions, not specific to the market for a five year period.

Table 3.3: Simulation Parameters Held Constant During Simulation

T T1 K α λ0 λ1 λ2 λ3 σ1 σ2 σ3 curan cgas

1 1.5 0 0.15 1 1 1 1 0.20 0.20 0.20 0.5 1

3.7.1 Monte Carlo Pricing under a Jump-Diffusion Model

To observe the dynamics of the prices for the spark spread contracts under a jump-diffusion

model, three dimensional graphs have been created. Figure 3.14 portrays the price of the

spark spread option for uranium versus the maturity and strike price. As the strike price

increases, the spark price decreases, as expected based on the payoff formula (2.14). As

the maturity increases, there is a slight increase in the spark price. The slight, steady

increase can be attributed to the fact that the price of the contract is based on the Future
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price. As maturity, T, increases, the the Future maturity, T1 increased as well. Figure 2.15

graphs the price of the spark spread option for natural gas versus the maturity and strike

price. The same trends as Figure 3.14 are observed, except we see more of an increase

as maturity increases. The main difference between the two simulations, for spark spread

contract prices of uranium and natural gas, is the conversion constants used, cura and cgas.

The strike price range taken for these graphs was 0,...,10, and the maturity was taken as

T = ( 0.25 0.50 0.75 1.00 1.25 ).

Figures 3.16 and 3.17 show the interaction between spark spread prices for uranium

and natural gas and the two variables associated with the compound Poisson process in

the jump diffusion model. Lambda represents the jumps that occur in prices. Recall that

this process was used as a part of the model since jumps were observed in the empirical

data. Here, the interaction is shown between the price and both the lambda quantifying

the common jump (jumps observed in all commodities) and the independent jump (jumps

observed in only the respective commodity). In both graphs as the independent lambda was

increased, an slight increase in the spark price was observed; however, very little variation

in price (within cents) can be reserved to randomness as well. The minimal increase can be

attributed to the fact that the jump size was taken as a zero mean. Although more jumps

are observed, the price sees some insignificant change because both negative and positive

jumps are observed, resulting in an expectation of zero.

Figures 3.18 and 3.19 show the heavy interaction between σelectricity, σuranium and

σelectricity, σgas. This parameter is characterized as the coefficient volatility of the Wiener
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process in the jump diffusion model. In both commodities, as the independent volatility

increased, the price of the spark spread option increased, almost linearly. As the volatility

of electricity increased at the same rate, a much slower increase of the price was observed.

As the two parameters increased together, a rapid increase was observed. This result is con-

sistent with what was expected, as the volatility commonly represents the risk associated

with the changes in that commodity’s value.

Figures 3.20 and 3.21 present the interaction between the spark spread option prices and

the values in the correlation matrix, using in the Wiener process component. A relevant

impact of these values is not observed in the given range. The range for the ρ values was

obtained through the correlation values calculated using the empirical data. Obtaining the

empirical correlation values posed a challenge, as the data available was daily for electricity

prices, business daily for uranium prices, and sparse for natural gas. The accurate values

can be found in table 3.2. The little variation observed in the graphs can be attributed to

randomness in simulation.
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Figure 3.14: Spark Prices for Uranium

Spark Prices for Uranium: The 3-D graph shows the interaction between T (Maturity of

the Spark Spread Option), K (Strike Price of the Spark Spread Option) and the Price of

the Spark Spread Option simulated through a jump-diffusion model.
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Figure 3.15: Spark Prices for Natural Gas

Spark Prices for Natural Gas: The 3-D graph shows the interaction between T (Maturity

of the Spark Spread Option), K (Strike Price of the Spark Spread Option) and the Price

of the Spark Spread Option simulated through a jump-diffusion model.
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Figure 3.16: Interaction of Spark Prices for Uranium with Lambda

Spark Prices for Uranium: The 3-D graph shows the interaction between λ0, λ2 and the

Price of the Spark Spread Option simulated through a jump-diffusion model, where λ0 = 5

and λ2 = 5
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Figure 3.17: Interaction of Spark Prices for Natural Gas with Lambda

Spark Prices for Natural Gas: The 3-D graph shows the interaction between λ0, λ2 and

the Price of the Spark Spread Option simulated through a jump-diffusion model, where

λ0 = 1, .., 5 and λ2 = 1, .., 5
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Figure 3.18: Spark Spread Prices for Uranium Interaction with σelectricity and σuranium

Spark Prices for Uranium: The 3-D graph shows the interaction between σ1, σ2 and the

Price of the Spark Spread Option simulated through a jump-diffusion model, where

σ1 = 0.05, ..., 0.25 and σ2 = 0.05, ..., 0.25
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Figure 3.19: Spark Spread Prices for Natural Gas Interaction with σelectricity and σgas

Spark Prices for Natural Gas: The 3-D graph shows the interaction between σ1, σ2 and

the Price of the Spark Spread Option simulated through a jump-diffusion model, where

σ1 = 0.05, ..., 0.25 and σ2 = 0.05, ..., 0.25
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Figure 3.20: Spark Spread Prices for Uranium Interaction with ρ12 and ρ13

Spark Prices for Uranium: The 3-D graph shows the interaction between ρ12, ρ13 and the

Price of the Spark Spread Option simulated through a jump-diffusion model, where

ρ12 = −0.20, ..., 0.20 and ρ13 = −0.10, ..., 0.10
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Figure 3.21: Spark Spread Prices for Uranium Interaction with ρ12 and ρ13

Spark Prices for Natural Gas: The 3-D graph shows the interaction between ρ12, ρ13 and

the Price of the Spark Spread Option simulated through a jump-diffusion model, where

ρ12 = −0.20, ..., 0.20 and ρ13 = −0.10, ..., 0.10
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3.8 Monte Carlo Pricing under a Time-Changed Model

To observe the dynamics of the prices for the spark spread contracts under a time changed

model, three dimensional graphs have been constructed. Figures 3.22 and 3.23 portrays the

price of the spark spread option for uranium versus the maturity and strike price. As the

strike price increases, the spark price decreases, as expected based on the payoff formula

(2.14). As the maturity increases, there is a slight increase in the spark price, as seen in

the jump diffusion model. Both graphs demonstrate a sharp increase in price, for uranium

the increase is observed when the strike price was $4 and for natural gas the increase is

observed at $6. Again, this difference may be attributed to the conversion constants used,

cura and cgas. The strike price range taken for these graphs was 0,...,10, and the maturity

was taken as T = ( 0.25 0.50 0.75 1.00 1.25 ).

Figures 3.24 and 3.25 show the interaction between the spark spread option price and

the inverse Gaussian process parameters, a and b. Recall that a represents the mean, µ and

b represents the variance, λ. In both graphs, the price is almost constant as a increases.

In Figure 3.24, a significant increase in price is observed exclusively when both a and b

are being increased. In figure 3.25, a significant price increase is observed when only b is

increased. For these simulations, a maturity of 1 year and a strike price of $0.

Figures 3.26 and 3.27 show a minimal interaction between σelectricity, σuranium and

σelectricity, σgas. This parameter is characterized as the coefficient volatility of the Wiener

process in the Time-Changed model. In both commodities, very little variation in price

is observed with the increase of either commodity’s volatility. The variation observed was
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within cents. This can be attributed to the fact that since the risk associated with both

electricity, and the underlying commodity, the change of the spark spread option price

remains somewhat constant. Recall that this option price is a difference between electricity

Future price and the underlying Future price; if both were to increase or decrease together,

the difference may remain somewhat constant.

Figures 3.28 and 3.29 present the interaction between the spark spread option prices

and the values in the correlation matrix, using in the Wiener process component. Very

similar results were obtained via the same interaction for the jump diffusion model. Again,

a relevant impact of these values is not observed in the given range. The range for the

ρ values was obtained through the correlation values calculated using the empirical data.

Obtaining the empirical correlation values posed a challenge, as the data available was

daily for electricity prices, business daily for uranium prices, and sparse for natural gas.

The accurate values can be found in Table 3.2. The little variation observed in the graphs

can be attributed to randomness in simulation.
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3.8.1 Pricing Computation Comparison between Models

To compare how each model interacts with different initial spot prices, figures 3.30 and 3.31

were created. Figure 3.30 displays the difference in spark spread price between natural gas

and uranium using a jump diffusion model and figure 3.31 displays the difference in spark

spread price between commodities using a time changed model. In addition to the initial

spot price, another difference between the spark spread prices for each commodity is the

conversion factor used. For convenience, the values used in simulation are cura = 1 and cgas

= 0.5. For the jump diffusion model, as strike price increases, an almost steady decrease in

price is observed. For the time changed model, there is a steep decrease in price when the

strike price is approximately $6. Numerically, the range of the difference is the same. The

highest difference in the spark spread price between commodities is at zero strike price and

is $2.25- $2.42 for both models. Figures 3.32 ad 3.33 portray the difference in spark spread

price for each commodity between models. For uranium, the maximum difference in price

is approximately 78 cents, observed at strike price of $5. For natural gas, the maximum

difference in price a little higher, approximately one dollar, observed at strike price of $7.

For both commodities, as the strike price is $0 or $10, very little difference between the

spark price is observed.
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Figure 3.22: Future Prices for Uranium

Spark Spread Prices for Uranium: The 3-D graph shows the interaction between T

(Maturity of the Spark Spread Option), K (Strike Price of the Spark Spread Option) and

the Price of the Spark Spread Option simulated through a time-changed model.
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Figure 3.23: Future Prices for Natural Gas

Spark Spread Prices for Natural Gas: The 3-D graph shows the interaction between T

(Maturity of the Spark Spread Option), K (Strike Price of the Spark Spread Option) and

the Price of the Spark Spread Option simulated through a time-changed model.
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Figure 3.24: Spark Spread Prices for Uranium Interaction with Inverse Gaussian variables

a, b

Spark Spread Prices for Uranium Interaction with Inverse Gaussian variables a, b. The

variable a was altered between 0.0001 and 0.001 and b were altered between 0.05 and 0.20.

The graph shows very little interaction between the spark spread price and the variables.
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Figure 3.25: Spark Spread Prices for Natural Gas Interaction with Inverse Gaussian vari-

ables a, b

Spark Spread Prices for Uranium Interaction with Inverse Gaussian variables a, b. The

variable a was altered between 0.0001 and 0.001 and b were altered between 0.05 and 0.20

The graph shows very little interaction between the spark spread price and a, and a

proportional interaction between the spark spread price and b.
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Figure 3.26: Spark Spread Prices for Uranium Interaction with σelectricity and σuranium

Spark Spread Prices for Uranium Interaction with Inverse Gaussian variables a, b. The

variable a was altered between 0.0001 and 0.001 and b were altered between 0.05 and 0.2
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Figure 3.27: Spark Spread Prices for Natural Gas Interaction with σelectricity and σgas

Spark Spread Prices for Natural Gas
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Figure 3.28: Spark Spread Prices for Uranium Interaction with ρ12 and ρ13

Spark Prices for Uranium: The 3-D graph shows the interaction between ρ12, ρ13 and the

Price of the Spark Spread Option simulated through a time changed model, where

ρ12 = −0.20, ..., 0.20 and ρ13 = −0.10, ..., 0.10
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Figure 3.29: Spark Spread Prices for Natural Gas Interaction with ρ12 and ρ13

Spark Prices for Natural Gas: The 3-D graph shows the interaction between ρ12, ρ13 and

the Price of the Spark Spread Option simulated through a time changed model, where

ρ12 = −0.20, ..., 0.20 and ρ13 = −0.10, ..., 0.10
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Figure 3.30: Difference in Spark Spread Prices when the Underlying is Uranium or Natural

Gas for a Jump Diffusion Model

Spark Spread Price Differences: The 3-D graph shows the interaction between T

(Maturity of the Spark Spread Option), K (Strike Price of the Spark Spread Option) and

the difference in the Price of the Spark Spread Option simulated through a jump diffusion

model.
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Figure 3.31: Difference in Spark Spread Prices when the Underlying is Uranium or Natural

Gas for a Time Changed Model

Spark Spread Price Differences: The 3-D graph shows the interaction between T

(Maturity of the Spark Spread Option), K (Strike Price of the Spark Spread Option) and

the difference in the Price of the Spark Spread Option simulated through a time changed

model.
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Figure 3.32: Difference in Spark Spread Prices for Uranium between a Jump Diffusion

Model and Time Changed Model

Spark Spread Price Differences: The 3-D graph shows the interaction between T

(Maturity of the Spark Spread Option), K (Strike Price of the Spark Spread Option) and

the difference in the Price of the Spark Spread Option simulated for Uranium between the

two models.
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Figure 3.33: Difference in Spark Spread Prices for Natural Gas between a Jump Diffusion

Model and Time Changed Model

Spark Spread Price Differences: The 3-D graph shows the interaction between T

(Maturity of the Spark Spread Option), K (Strike Price of the Spark Spread Option) and

the difference in the Price of the Spark Spread Option simulated for Natural Gas between

the two models.
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3.9 Regression Analysis: Estimation of Seasonal Components

We assume two types of stationary maturity to describe the j-th component in µ
(j)
t for the

log-return model. The linear trend observed in the uranium commodity is described by

µ
(j)
t = a

(j)
0 + a

(j)
1 t, j = 1, 2, 3 (3.26)

The seasonal trend observed in the electricity and natural gas commodity is described by

µ
(j)
t = b

(j)
0 + b

(j)
1 cos

(2πt

Tp

)
, j = 1, 2, 3 (3.27)

where a
(j)
0 , a

(j)
1 , b

(j)
0 , and b

(j)
1 are computed analytically through regression analysis and

can be seen in Tables 3.4 and 3.5. Tp is the period in which the seasonal trend is observed,

taken to be 1 year. The period is yearly since the seasonal changes in commodity prices

alter on an annual cycle.

A linear trend is used for uranium since the commodity price for uranium is observed to

be independent of the season or time of year. The correlation between season and price is

observed for electricity and natural gas. A simple linear regression analysis was performed

to the seasonal models using log returns of the real data using the formula. The reason two

different trends are used is due to the effort of obtaining the best data fit.

Least squares estimation is the method in regression analysis to minimize the sum of the

squares of the errors made in the residual. See [6]. A residual is the difference between the

observed value and the actual value. In this case, the observed value is the simulated spark

spread price and the actual value is given by the empirical data. See the formulas below:
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LSE =
∑

(Y
(j)
t − f(a

(j)
0 + a

(j)
1 t))2 (3.28)

LSE =
∑

(Y
(j)
t − f(b

(j)
0 + b

(j)
1 cos

(2πt

Tp

)2
(3.29)

In figures 3.22 and 3.24, a seasonal trend was used to fit the data. The slope is observed

to be a line, as opposed to a cosine wave due to the small values of the least square

estimators, b0 and b1. The best fit observed was the linear trend for uranium, due to the

coefficient of determination R2 = 0.735. A value of 1 for R2 is a perfect fit.

Table 3.4: Table of Least Square Estimators using a Seasonal Trend

Commodity b0 b1 R2

Electricity 1.3005 0.0605 0.0133

Uranium 1.6414 0.0062 0.0022

Natural Gas 1.584 -0.007 0.0392

Table 3.5: Table of Least Square Estimators using a Linear Trend

Commodity b0 b1 R2

Electricity 1.4584 -0.0004 0.0566

Uranium 1.503 0.0003 0.735

Natural Gas 1.548 0.00009 0.564
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Figure 3.34: Regression Analysis of Empirical Data for Electricity

Regression Analysis of Empirical Data for Electricity: Least square estimators were found

to be b0 = 1.3005, b1 = 0.0605 and the coefficient of determination, R = 0.0133.
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Figure 3.35: Regression Analysis of Empirical Data for Uranium

Regression Analysis of Empirical Data for Uranium: Least square estimators were found

to be b0 = 1.503, b1 = 0.0003 and the coefficient of determination, R = 0.735.
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Figure 3.36: Regression Analysis of Empirical Data for Natural Gas

Regression Analysis of Empirical Data for Natural Gas: Least square estimators were

found to be b0 = 1.584, b1 = −0.007 and the coefficient of determination, R = 0.0392.
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Chapter 4

CONCLUSIONS

The result of this master’s thesis is the creation of a methodology using complex Levy

models to price the spark spread contracts. It allows to incorporate empirical features such

as jumps, seasonality, and mean reversion. The methodology included statistical empirical

analysis followed by software implementation in MATLAB, and complete algorithms for

two pricing models. The result includes novel use for the spark spread pricing models;

sensitivity analysis and seasonal analysis. The results are best presented using three di-

mensional graphs, showing the presence, or lack of presence, of impacts of variables present

in the models and the contract. The three dimensional graphs help portray relevance of

parameters.

The challenges faced during creation of the methodology give motivation for Future

work on this topic. The empirical data of the electricity prices brought a unique challenge.

Referring to the pricing series, a large jump around day 500 is observed where the price

jumps from an average of $25 to close to $300 as show in Figure 3.13. This cannot be

characterized by the processes proposed. Increasing the number of expected jumps would

result in more jumps, and increasing the average jump size could account for the size,

however a jump of 1100% is very difficult to simulate assuming normal jump sizes.

Regression analysis was computed on the seasonal component using the empirical data.
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The yearly seasonal component was found to be irrelevant through least square estimation,

as after regression analysis.

To obtain the correlation matrix of the underlying assets, ρ, the data was matched by

date. This preceded challenges, since daily pricing data was not available for each commod-

ity. Daily pricing data was available for electricity, and business daily data was available

for uranium, however natural gas posed a challenge as there was some incompleteness in

the data set. Manual alignment of the data was performed to obtain accurate empirical

correlation values.
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Chapter 5

APPENDIX: CODE

5.1 Jump Diffusion Model

The function below is the main pricing function for the jump diffusion model. It calls

upon other functions which are sequentially listed below.

1 function [ P r i c e u ra Pr i c e ga s S 1 S 2 S 3 ] = fu t (K, T, de l ta t , lambda 0 ,

lambda 1 , lambda 2 , lambda 3 , alpha , alpha 1 , alpha 2 , alpha 3 , vol1 , vol2

, vol3 , ro12 , ro13 , ro23 , Monte Carlo n )

2 %Jump Di f f u s i on Model

3

4 format long

5 nrep = round (T/ d e l t a t ) ;

6 spot 1 = 30 ;

7 spot 2 = 53 ;

8 spot 3 = 24 ;

9 r = 0 . 0 3 ;

10 T 1 = T + (1/2) ;

11 c uran = 0.5;% conver s i on

12 c ga s = 1;% conver s i on

13 %K = 9 ; %s t r i k e p r i c e

14 s = l i n s p a c e (0 ,T,T/ d e l t a t ) ; %for i n t e g r a l c a l c u l a t i o n

15
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16 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−

17 %Calcu la t e m 1 , m 2 , m 3

18

19 mu J 1 = 0 ;

20 mu J 2 = 0 ;

21 mu J 3 = 0 ;

22

23 s i g 1 1 = 0 . 0 1 ;

24 s i g 1 2 = 0 . 0 1 ;

25 s i g 1 3 = 0 . 0 1 ;

26 s i g 2 1 = 0 . 0 1 ;

27 s i g 2 2 = 0 . 0 1 ;

28 s i g 2 3 = 0 . 0 1 ;

29 s i g 3 1 = 0 . 0 1 ;

30 s i g 3 2 = 0 . 0 1 ;

31 s i g 3 3 = 0 . 0 1 ;

32

33 mu 0 J1 = 0 ;

34 mu 0 J2 = 0 ;

35 mu 0 J3 = 0 ;

36

37 m 1 = lambda 1 ∗( exp (mu J 1 + 1/2∗( s i g 1 1 ) . ˆ2 −1) ) + lambda 0 ∗( exp (mu 0 J1 +

1/2∗( s i g 1 1 ) ˆ2 − 1) ) ;

38 m 2 = lambda 2 ∗( exp (mu J 2 + 1/2∗( s i g 2 2 ) . ˆ2 −1) ) + lambda 0 ∗( exp (mu 0 J2 +

1/2∗( s i g 2 2 ) ˆ2 − 1) ) ;

39 m 3 = lambda 3 ∗( exp (mu J 3 + 1/2∗( s i g 3 3 ) . ˆ2 −1) ) + lambda 0 ∗( exp (mu 0 J3 +
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1/2∗( s i g 3 3 ) ˆ2 − 1) ) ;

40

41 %−−−−−−−−−−−−−−−−−−−

42 %Calcu la t e A

43

44 [ mu t 1 , mu t 2 , mu t 3 ] = season (T, d e l t a t ) ;

45

46 a 1 = ( ( r−m 1)∗(1−exp(−a lpha 1 ∗ de l t a t ) ) + mu t 1 ( end ) ) ;

47 A 1 = exp ( a 1 ) ;

48

49 a 2 = ( ( r−m 2)∗(1−exp(−a lpha 2 ∗ de l t a t ) ) + mu t 2 ( end ) ) ;

50 A 2 = exp ( a 2 ) ;

51

52 a 3 = ( ( r−m 3)∗(1−exp(−a lpha 3 ∗ de l t a t ) ) + mu t 3 ( end ) ) ;

53 A 3 = exp ( a 3 ) ;

54 %−−−−−−−−−−−−−−−−−−−−

55 %Calcu la t e B

56

57 [ B 1 B 2 B 3]= eye j (T, d e l t a t ) ;

58 %−−−−−−−−−−−−−−−−−−−−

59 %Calcu la t e Future p r i c e

60

61 for k = 1 : Monte Carlo n ;

62

63 [ Yend 1 Yend 2 Yend 3 l e v 1 l e v 2 l e v 3 ]= EulMar (T, de l ta t , vol1 , vol2 , vol3 ,

lambda 0 , lambda 1 , lambda 2 , lambda 3 , ro12 , ro13 , ro23 , alpha ) ;
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64

65 %Calcu la t e p s i

66 dv1 = horzcat (0 , d i f f ( l e v 1 ) ) ;

67 dv2 = horzcat (0 , d i f f ( l e v 2 ) ) ;

68 dv3 = horzcat (0 , d i f f ( l e v 3 ) ) ;

69

70 e1 = sum( exp ( ( a lpha 1 ) ∗( s−T) ) ∗dv1 ’ ) ;

71 e 1 = exp ( e1 ) ;

72 e2 = sum( exp ( ( a lpha 2 ) ∗( s−T) ) ∗dv2 ’ ) ;

73 e 2 = exp ( e2 ) ;

74 e3 = sum( exp ( ( a lpha 3 ) ∗( s−T) ) ∗dv3 ’ ) ;

75 e 3 = exp ( e3 ) ;

76

77 %Calcu la t e spot p r i c e s

78 S 1 (k ) = spot 1 ∗ exp ( ( Yend 1 ) ) ;

79 S 2 (k ) = spot 2 ∗ exp ( ( Yend 2 ) ) ;

80 S 3 (k ) = spot 3 ∗ exp ( ( Yend 3 ) ) ;

81

82 F 1 (k ) = S 1 (k ) .∗A 1 .∗B 1∗ e 1 ;

83 F 2 (k ) = S 2 (k ) .∗A 2 .∗B 2∗ e 2 ;

84 F 3 (k ) = S 3 (k ) .∗A 3 .∗B 3∗ e 3 ;

85

86 %payo f f

87

88 P ura (k ) = ( ( F 1 (k ) − c uran ∗F 2 (k ) )−K) ;

89 P gas (k ) = ( ( F 1 (k ) − c ga s ∗F 3 (k ) )−K) ;
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90

91 Pay ura (k ) = max( P ura (k ) ,0 ) ;

92 Pay gas (k ) = max( P gas (k ) ,0 ) ;

93

94 end

95

96 % famele = mean( F 1 )

97 % famura = mean( F 2 )

98 % famgas = mean( F 3 )

99

100 %j o i n these in to one l i n e

101 payo f f u ra = mean( Pay ura ) ;% there w i l l be n payo f f s

102 payo f f g a s = mean( Pay gas ) ;

103

104 Pr i c e u ra = mean( exp(−r ∗T) ∗( payo f f u ra ) )

105 Pr i c e ga s = mean( exp(−r ∗T) ∗( payo f f g a s ) )

106

107 %Graph fu tu r e p r i c e

108 f i g u r e ;

109 subplot ( 3 , 1 , 1 ) ;

110 p l o t ( F 1 ) ;

111 t i t l e ( ’ Future p r i c e s for e l e c t r i c i t y ’ ) ;

112 subplot ( 3 , 1 , 2 ) ;

113 p l o t ( F 2 ) ;

114 t i t l e ( ’ Future p r i c e s for uranium ’ ) ;

115 subplot ( 3 , 1 , 3 ) ;
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116 p lo t ( F 3 ) ;

117 t i t l e ( ’ Future p r i c e s for gas ’ ) ;

118 % %

119 pr in t −depsc f u t p r i c e . eps

120

121

122 f i g u r e ;

123 subplot ( 1 , 2 , 1 ) ;

124 h i s t ( Pay ura ) ;

125 t i t l e ( ’ Uranium Payof fs ’ ) ;

126 subplot ( 1 , 2 , 2 ) ;

127 h i s t ( Pay gas ) ;

128 t i t l e ( ’ Natural Gas Payof fs ’ ) ;

129

130 f i g u r e ;

131 subplot ( 1 , 2 , 1 ) ;

132 p l o t ( Pay ura ) ;

133 t i t l e ( ’ Uranium Payof fs ’ ) ;

134 subplot ( 1 , 2 , 2 ) ;

135 p l o t ( Pay gas ) ;

136 t i t l e ( ’ Natural Gas Payof fs ’ ) ;

137

138 end

139

140 %fu t (0 , 1 , 1/260 , 1 , 1 , 1 , 1 , 0 . 15 , 0 . 15 , 0 . 15 , 0 . 15 , 0 . 001 , 0 .0001 , 0 . 1 ,

0 . 03 , 0 . 03 , 0 . 03 , 100)
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141

142

The function below is the function for the compound Poisson process

1 function de l t a z = zcpp (T, de l ta t , lambda 0 , lambda 1 , lambda 2 , lambda 3 )

2 %Compound Poisson Process

3

4

5 %c a l l each index o f Xk

6 de l t a z1 = cpp c (T, de l ta t , lambda 1 ) ;

7 de l t a z2 = cpp d (T, de l ta t , lambda 2 ) ;

8 de l t a z3 = cpp e (T, de l ta t , lambda 3 ) ;

9

10 %c a l l X0k

11 XzeroK = cpp a (T, de l ta t , lambda 0 ) ;

12

13 de l taZ 1 = de l t a z1 + (XzeroK ( : , 1 ) ) ’ ;

14 de l taZ 2 = de l t a z2 + (XzeroK ( : , 2 ) ) ’ ;

15 de l taZ 3 = de l t a z3 + (XzeroK ( : , 3 ) ) ’ ;

16

17 de l t a z = horzcat ( de l taZ 1 ’ , de l taZ 2 ’ , de l taZ 3 ’ ) ;

18

19 f i g u r e ;

20 subplot ( 3 , 1 , 1 ) ;

21 p l o t ( de l taZ 1 ) ;

22 t i t l e ( ’CPP Simulat ion for E l e c t r i c i t y ’ ) ;
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23 x l ab e l ( ’Time to Maturity ’ ) ;

24 subplot ( 3 , 1 , 2 ) ;

25 p l o t ( de l taZ 2 ) ;

26 t i t l e ( ’CPP Simulat ion for Uranium ’ ) ;

27 x l ab e l ( ’Time to Maturity ’ ) ;

28 subplot ( 3 , 1 , 3 ) ;

29 p l o t ( de l taZ 3 ) ;

30 t i t l e ( ’CPP Simulat ion for Gas ’ ) ;

31 x l ab e l ( ’Time to Maturity ’ ) ;

32

33 end

34

35 %to run zcpp (1 , 1/260 , 1 , 1 , 3 , 1)

The function below is the function for the Wiener process.

1 function de l tab = brown (T, de l ta t , ro12 , ro13 , ro23 )

2 %Brownian motion

3 nrep = round (T/ d e l t a t ) ;

4

5 SigB = [1 ro12 ro13 ; ro12 1 ro23 ; ro13 ro23 1 ] ;

6 mu = [ 0 , 0 , 0 ] ;

7

8 de l tab = mvnrnd(mu, ( SigB∗ de l t a t ) , nrep ) ;

9

10 f i g u r e ;

11 p l o t ( de l tab ) ;
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12 t i t l e ( ’ Geometric Brownian Motion Simulat ion ’ ) ;

13 x l ab e l ( ’Time to Maturity ’ ) ;

14

15

16 %B = cumsum( de l tab )

17 end

18

19 %to run : brown (1 , 1/260 , 0 . 03 , 0 . 03 , 0 . 03 )

The function below is the function for the Euler Maruyama Method. It is similar in

both models.

1 function [ Yend 1 Yend 2 Yend 3 l e v 1 l e v 2 l e v 3 ] = EulMar (T, de l ta t , vol1 ,

vol2 , vol3 , lambda 0 , lambda 1 , lambda 2 , lambda 3 , ro12 , ro13 , ro23 ,

alpha )

2 %Euler Maruyama Method

3

4 ro = 0 . 0 0 3 ;

5 Y 0 = 0 ;

6 d e l t a t = 1/260;

7 nrep = round (T/ d e l t a t ) ;

8 r = 0 . 0 5 ;

9 spot 1 = 53 ;

10 spot 2 = 17 ;

11 spot 3 = 10 ;

12

13 %c a l l deltaB which i s a n by 2 matrix for the brownian motion
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14 de l tab = brown (T, de l ta t , ro12 , ro13 , ro23 ) ;

15

16 %c a l l de l taZ which i s a n by 2 matrix for the compound po i s son proce s s

17 de l t a z = zcpp (T, de l ta t , lambda 0 , lambda 1 , lambda 2 , lambda 3 ) ;

18

19 %cr ea t e l ev for p s i which i s needed for f u tu r e p r i c e c a l c u l a t i o n

20 for k = 1 : nrep

21 l e v 1 (k ) = de l tab (k , 1 ) + de l t a z (k , 1 ) ;

22 l e v 2 (k ) = de l tab (k , 2 ) + de l t a z (k , 2 ) ;

23 l e v 3 (k ) = de l tab (k , 3 ) + de l t a z (k , 3 ) ;

24 end

25

26 %s e a s on a l i t y

27 [ mu t 1 , mu t 2 , mu t 3 ] = season (T, d e l t a t ) ;

28

29 %two mean terms needed for m

30 mu J 1 = 0 ;

31 mu J 2 = 0 ;

32 mu J 3 = 0 ;

33 mu 0 J1 = 0 ;

34 mu 0 J2 = 0 ;

35 mu 0 J3 = 0 ;

36 s i g 1 1 = 0 . 0 1 ;

37 s i g 1 2 = 0 . 0 1 ;

38 s i g 1 3 = 0 . 0 1 ;

39 s i g 2 1 = 0 . 0 1 ;
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40 s i g 2 2 = 0 . 0 1 ;

41 s i g 2 3 = 0 . 0 1 ;

42 s i g 3 1 = 0 . 0 1 ;

43 s i g 3 2 = 0 . 0 1 ;

44 s i g 3 3 = 0 . 0 1 ;

45

46 cov = [ s i g 1 1 s i g 1 2 s i g 1 3 ; s i g 2 1 s i g 2 2 s i g 2 3 ; s i g 3 1 s i g 3 2 s i g 3 3 ] ;

47 mu 0 J = [ mu 0 J1 mu 0 J2 mu 0 J3 ] ;

48

49 m 1 = lambda 1 ∗( exp (mu J 1 + 1/2∗( s i g 1 1 ) . ˆ2 −1) ) + lambda 0 ∗( exp (mu 0 J1 +

1/2∗( s i g 1 1 ) ˆ2 − 1) ) ;

50 m 2 = lambda 2 ∗( exp (mu J 2 + 1/2∗( s i g 2 2 ) . ˆ2 −1) ) + lambda 0 ∗( exp (mu 0 J2 +

1/2∗( s i g 2 2 ) ˆ2 − 1) ) ;

51 m 3 = lambda 3 ∗( exp (mu J 3 + 1/2∗( s i g 3 3 ) . ˆ2 −1) ) + lambda 0 ∗( exp (mu 0 J3 +

1/2∗( s i g 3 3 ) ˆ2 − 1) ) ;

52

53 m 1 = ((1/2 ) ∗diag ( cov ) ) ∗m 1 ;

54 m 2 = ((1/2 ) ∗diag ( cov ) ) ∗m 2 ;

55 m 3 = ((1/2 ) ∗diag ( cov ) ) ∗m 3 ;

56

57 m1 = m 1 (1) ;

58 m2 = m 2 (2) ;

59 m3 = m 3 (3) ;

60

61 %I n i t i a l i z e Euler Maruyama with k = 1

62 Y 1 1s (1 ) = Y 0 + ( alpha ∗( r−m1−Y 0 ) ∗ de l t a t ) + vol1 .∗ de l tab (1 , 1 )+ de l t a z (1 , 1 ) ;
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%+ mu t 1 (1 ) ;

63 Y 1 2s (1 ) = Y 0 + ( alpha ∗( r−m2−Y 0 ) ∗ de l t a t ) + vol2 .∗ de l tab (1 , 2 )+ de l t a z (1 , 2 ) ;

%+ mu t 2 (1 ) ;

64 Y 1 3s (1 ) = Y 0 + ( alpha ∗( r−m3−Y 0 ) ∗ de l t a t ) + vol3 .∗ de l tab (1 , 3 )+ de l t a z (1 , 3 ) ;

%+ mu t 3 (1 ) ;

65

66 Y 1 1 (1 ) = Y 0 + ( alpha ∗( r−m1−Y 0 ) ∗ de l t a t ) + vol1 .∗ de l tab (1 , 1 )+ de l t a z (1 , 1 )+

mu t 1 (1 ) ;

67 Y 1 2 (1 ) = Y 0 + ( alpha ∗( r−m2−Y 0 ) ∗ de l t a t ) + vol2 .∗ de l tab (1 , 2 )+ de l t a z (1 , 2 )+

mu t 2 (1 ) ;

68 Y 1 3 (1 ) = Y 0 + ( alpha ∗( r−m3−Y 0 ) ∗ de l t a t ) + vol3 .∗ de l tab (1 , 3 )+ de l t a z (1 , 3 )+

mu t 3 (1 ) ;

69

70 %Euler Maruyama Tra jec tory

71 for k = 2 : nrep

72

73 Y 1 1s (k ) = Y 1 1 (k−1) + ( alpha ∗( r−m1−Y 1 1 (k−1) ) ∗ de l t a t ) + vol1 .∗ de l tab (k , 1 )+

de l t a z (k , 1 ) ; %+ mu t 1 (k ) ;

74 Y 1 2s (k ) = Y 1 2 (k−1) + ( alpha ∗( r−m2−Y 1 2 (k−1) ) ∗ de l t a t ) + vol2 .∗ de l tab (k , 2 )+

de l t a z (k , 2 ) ; %+ mu t 2 (k ) ;

75 Y 1 3s (k ) = Y 1 3 (k−1) + ( alpha ∗( r−m3−Y 1 3 (k−1) ) ∗ de l t a t ) + vol2 .∗ de l tab (k , 3 )+

de l t a z (k , 3 ) ; %+ mu t 3 (k ) ;

76

77 Y 1 1 (k ) = Y 1 1 (k−1) + ( alpha ∗( r−m1−Y 1 1 (k−1) ) ∗ de l t a t ) + vol1 .∗ de l tab (k , 1 )+

de l t a z (k , 1 ) + mu t 1 (k ) ;

78 Y 1 2 (k ) = Y 1 2 (k−1) + ( alpha ∗( r−m2−Y 1 2 (k−1) ) ∗ de l t a t ) + vol2 .∗ de l tab (k , 2 )+
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de l t a z (k , 2 ) + mu t 2 (k ) ;

79 Y 1 3 (k ) = Y 1 3 (k−1) + ( alpha ∗( r−m3−Y 1 3 (k−1) ) ∗ de l t a t ) + vol2 .∗ de l tab (k , 3 )+

de l t a z (k , 3 ) + mu t 3 (k ) ;

80 end

81

82 Y 1 = horzcat (Y 0 , Y 1 1 ) ;

83 Y 2 = horzcat (Y 0 , Y 1 2 ) ;

84 Y 3 = horzcat (Y 0 , Y 1 3 ) ;

85

86 Y 1s = horzcat (Y 0 , Y 1 1s ) ;

87 Y 2s = horzcat (Y 0 , Y 1 2s ) ;

88 Y 3s = horzcat (Y 0 , Y 1 3s ) ;

89

90

91 S 1 = spot 1 ∗ exp ( ( Y 1 ) ) ;

92 S 2 = spot 2 ∗ exp ( ( Y 2 ) ) ;

93 S 3 = spot 3 ∗ exp ( ( Y 3 ) ) ;

94

95 %End term i s the output s i n c e i t i s needed to c a l c u l a t e spot p r i c e s

96 Yend 1 = (Y 1 ( end ) ) ;

97 Yend 2 = (Y 2 ( end ) ) ;

98 Yend 3 = (Y 3 ( end ) ) ;

99

100 % %Graph o f Tra j ec tory

101 f i g u r e ;

102 subplot ( 3 , 1 , 1 ) ;
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103 p lo t (Y 1 ) ;

104 t i t l e ( ’ Tra jec tory o f the Euler Maruyama Method for E l e c t r i c i t y ’ ) ;

105 x l ab e l ( ’Time to Maturity (Days ) ’ ) ;

106 subplot ( 3 , 1 , 2 ) ;

107 p l o t (Y 2 ) ;

108 t i t l e ( ’ Tra jec tory o f the Euler Maruyama Method for Uranium ’ ) ;

109 x l ab e l ( ’Time to Maturity (Days ) ’ ) ;

110 subplot ( 3 , 1 , 3 ) ;

111 p l o t (Y 3 ) ;

112 t i t l e ( ’ Tra jec tory o f the Euler Maruyama Method for Natural Gas ’ ) ;

113 x l ab e l ( ’Time to Maturity (Days ) ’ ) ;

114

115

116 f i g u r e ;

117 subplot ( 3 , 1 , 1 ) ;

118 p l o t ( S 1 ) ;

119 t i t l e ( ’ Spot Pr i ce S imulat ion for E l e c t r i c i t y ’ ) ;

120 x l ab e l ( ’Time to Maturity (Days ) ’ ) ;

121 y l ab e l ( ’ Pr i ce ( Do l l a r s ) ’ ) ;

122 subplot ( 3 , 1 , 2 ) ;

123 p l o t ( S 2 ) ;

124 t i t l e ( ’ Spot Pr i ce S imulat ion for Uranium ’ ) ;

125 x l ab e l ( ’Time to Maturity (Days ) ’ ) ;

126 y l ab e l ( ’ Pr i ce ( Do l l a r s ) ’ ) ;

127 subplot ( 3 , 1 , 3 ) ;

128 p l o t ( S 3 ) ;
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129 t i t l e ( ’ Spot Pr i ce S imulat ion for Natural Gas ’ ) ;

130 x l ab e l ( ’Time to Maturity (Days ) ’ ) ;

131 y l ab e l ( ’ Pr i ce ( Do l l a r s ) ’ ) ;

132 %

133

134 %Graph o f Tra jec tory

135 f i g u r e ;

136 subplot ( 3 , 1 , 1 ) ;

137 p l o t ( Y 1s ) ;

138 t i t l e ( ’ Tra jec tory o f the Sea sona l i z ed Euler Maruyama Method for E l e c t r i c i t y ’ ) ;

139 x l ab e l ( ’Time to Maturity (Days ) ’ ) ;

140 subplot ( 3 , 1 , 2 ) ;

141 p l o t ( Y 2s ) ;

142 t i t l e ( ’ Tra jec tory o f the Sea sona l i z ed Euler Maruyama Method for Uranium ’ ) ;

143 x l ab e l ( ’Time to Maturity (Days ) ’ ) ;

144 subplot ( 3 , 1 , 3 ) ;

145 p l o t ( Y 3s ) ;

146 t i t l e ( ’ Tra jec tory o f the Sea sona l i z ed Euler Maruyama Method for Natural Gas ’ ) ;

147 x l ab e l ( ’Time to Maturity (Days ) ’ ) ;

148

149

150 end

151

152 %[Yend 1 Yend 2 Yend 3 l e v 1 l e v 2 l e v 3 ]= EulMar (1 , 1/260 , 0 . 2 , 0 . 2 , 0 . 2 , 1 ,

1 , 1 , 1 , 0 . 03 , 0 . 03 , 0 . 03 , 0 . 001 ) to run
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5.2 Time Changed Model

The function below is the main pricing function for the time- changed model. It calls

upon other functions which are sequentially listed below.

1 function [ P r i c e u ra Pr i c e ga s ] = L j (T, K, de l ta t , Y 0 , a , b , vol1 , vol2 , vol3 ,

ro12 , ro13 , ro23 , Monte Carlo n )

2 %Time−Changed Model

3

4 format long

5

6 nrep = round (T/ d e l t a t ) ;

7 T 1 = T + (1/2) ;

8 c uran = 0.5;% conver s i on

9 c ga s = 1;% conver s i on

10 %K = 0 ; %s t r i k e p r i c e

11 s j = l i n s p a c e (T, T 1 , (T−T 1 ) / d e l t a t ) ; %for f u tu r e p r i c e i n t e g r a l

12 s = l i n s p a c e (0 ,T,T/ d e l t a t ) ; %for 0 to maturity i n t e g r a l

13

14 spot 1 = 30 ;

15 spot 2 = 53 ;

16 spot 3 = 24 ;

17 s i g 0 = 0 . 0 1 ;

18 s i g 1 = 0 . 0 1 ;

19 s i g 2 = 0 . 0 1 ;

20 s i g 3 = 0 . 0 1 ;

21 %alpha j for bounds
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22 a lpha 0 = 0 . 1 5 ;

23 a lpha 1 = 0 . 1 5 ;

24 a lpha 2 = 0 . 1 5 ;

25 a lpha 3 = 0 . 1 5 ;

26 c 0 = 1 ;

27 c 1 = 1 ;

28 c 2 = 1 ;

29 c 3 = 1 ;

30 r = 0 . 0 3 ;

31

32 m 0 = −a∗((2∗(−1/2∗( s i g 0 ) . ˆ 2 ) + (b) . ˆ2 ) . ˆ ( 1/2 ) − b) + −a∗((2∗(−1/2∗( c 0 ) ∗(

s i g 0 ) . ˆ 2 ) + (b) . ˆ2 ) . ˆ ( 1/2 ) − b) ;

33 m 1 = −a∗((2∗(−1/2∗( s i g 1 ) . ˆ 2 ) + (b) . ˆ2 ) . ˆ ( 1/2 ) − b) + −a∗((2∗(−1/2∗( c 1 ) ∗(

s i g 1 ) . ˆ 2 ) + (b) . ˆ2 ) . ˆ ( 1/2 ) − b) ;

34 m 2 = −a∗((2∗(−1/2∗( s i g 2 ) . ˆ 2 ) + (b) . ˆ2 ) . ˆ ( 1/2 ) − b) + −a∗((2∗(−1/2∗( c 2 ) ∗(

s i g 2 ) . ˆ 2 ) + (b) . ˆ2 ) . ˆ ( 1/2 ) − b) ;

35 m 3 = −a∗((2∗(−1/2∗( s i g 3 ) . ˆ 2 ) + (b) . ˆ2 ) . ˆ ( 1/2 ) − b) + −a∗((2∗(−1/2∗( c 3 ) ∗(

s i g 3 ) . ˆ 2 ) + (b) . ˆ2 ) . ˆ ( 1/2 ) − b) ;

36

37 %−−−−−−−−−−

38 %Calcu la t e A

39

40 [ mu t 1 , mu t 2 , mu t 3 ] = season (T, d e l t a t ) ;

41

42 a 1 = ( ( r−m 1)∗(1−exp ( a lpha 1 ∗ de l t a t ) ) ∗exp(−a lpha 1 ∗ de l t a t ) + mu t 1 ( end ) ) ;

43 A 1 = exp ( a 1 ) ;
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44

45 a 2 = ( ( r−m 2)∗(1−exp ( a lpha 2 ∗ de l t a t ) ) ∗exp(−a lpha 2 ∗ de l t a t ) + mu t 2 ( end ) ) ;

46 A 2 = exp ( a 2 ) ;

47

48 a 3 = ( ( r−m 3)∗(1−exp ( a lpha 3 ∗ de l t a t ) ) ∗exp(−a lpha 3 ∗ de l t a t ) + mu t 3 ( end ) ) ;

49 A 3 = exp ( a 3 ) ;

50 %−−−−−−−−−−−−−−−−−−

51 %Calcu la t e B

52

53 %function

54 PH1 1 = ( a ) ∗ ( ( ( s i g 1 . ˆ 2 ) ∗( exp (2∗ a lpha 1 ∗ s j ) )+(b) . ˆ 2 ) . ˆ ( 1/2 ) ) − b ;

55 PH1 2 = ( a ) ∗ ( ( ( s i g 1 . ˆ 2 ) ∗( c 1 ) ∗( exp (2∗ a lpha 1 ∗ s j ) )+(b) . ˆ 2 ) . ˆ ( 1/2 ) ) − b ;

56

57 PH2 1 = ( a ) ∗ ( ( ( s i g 2 . ˆ 2 ) ∗( exp (2∗ a lpha 1 ∗ s j ) )+(b) . ˆ 2 ) . ˆ ( 1/2 ) ) − b ;

58 PH2 2 = ( a ) ∗ ( ( ( s i g 2 . ˆ 2 ) ∗( c 2 ) ∗( exp (2∗ a lpha 2 ∗ s j ) )+(b) . ˆ 2 ) . ˆ ( 1/2 ) ) − b ;

59

60 PH3 1 = ( a ) ∗ ( ( ( s i g 3 . ˆ 2 ) ∗( exp (2∗ a lpha 1 ∗ s j ) )+(b) . ˆ 2 ) . ˆ ( 1/2 ) ) − b ;

61 PH3 2 = ( a ) ∗ ( ( ( s i g 3 . ˆ 2 ) ∗( c 3 ) ∗( exp (2∗ a lpha 3 ∗ s j ) )+(b) . ˆ 2 ) . ˆ ( 1/2 ) ) − b ;

62

63

64 %Now we apply the t r ap e z o i d a l r u l e

65 CH1 2 = (PH1 1 + PH1 2) ;

66 CH1 1 = trapz ( s j , CH1 2) ;

67 B 1 = exp (CH1 1) ;

68

69 CH2 2 = (PH2 1 + PH2 2) ;
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70 CH2 1 = trapz ( s j , CH2 2) ;

71 B 2 = exp (CH2 1) ;

72

73 CH3 2 = (PH3 1 + PH3 2) ;

74 CH3 1 = trapz ( s j , CH3 2) ;

75 B 3 = exp (CH3 1) ;

76

77

78 %−−−−−−−−−−−−−−−−−−−−−−−−−

79

80 for k = 1 : Monte Carlo n ;

81

82 [ Yend 1 Yend 2 Yend 3 dV 1 dV 2 dV 3]= EulMar2 (T, de l ta t , a , b , vol1 , vol2 , vol3

, ro12 , ro13 , ro23 ) ;

83

84 %Calcu la t e p s i

85 e1 = sum( exp ( ( a lpha 1 ) ∗( s−T) ) ∗dV 1 ) ;

86 e 1 = exp ( e1 ) ;

87 e2 = sum( exp ( ( a lpha 2 ) ∗( s−T) ) ∗dV 2 ) ;

88 e 2 = exp ( e2 ) ;

89 e3 = sum( exp ( ( a lpha 3 ) ∗( s−T) ) ∗dV 3 ) ;

90 e 3 = exp ( e3 ) ;

91

92 %Log return

93 S 1 (k ) = spot 1 ∗ exp ( ( Yend 1 ) ) ;

94 S 2 (k ) = spot 2 ∗ exp ( ( Yend 2 ) ) ;
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95 S 3 (k ) = spot 3 ∗ exp ( ( Yend 3 ) ) ;

96

97 %Future p r i c e c a l c u l a t i o n

98 F 1 (k ) = S 1 (k ) .∗A 1 .∗B 1∗ e 1 ;

99 F 2 (k ) = S 2 (k ) .∗A 2 .∗B 2∗ e 2 ;

100 F 3 (k ) = S 3 (k ) .∗A 3 .∗B 3∗ e 3 ;

101

102 P ura (k ) = ( ( F 1 (k ) − c uran ∗F 2 (k ) )−K) ;

103 P gas (k ) = ( ( F 1 (k ) − c ga s ∗F 3 (k ) )−K) ;

104

105 Pay ura (k ) = max( P ura (k ) ,0 ) ;

106 Pay gas (k ) = max( P gas (k ) ,0 ) ;

107

108 end

109

110 payo f f u ra = mean( Pay ura ) ;

111 payo f f g a s = mean( Pay gas ) ;

112

113 Pr i c e u ra = mean( exp(−r ∗T) ∗( payo f f u ra ) )

114 Pr i c e ga s = mean( exp(−r ∗T) ∗( payo f f g a s ) )

115

116 f i g u r e ;

117 subplot ( 1 , 3 , 1 ) ;

118 p l o t ( S 1 ) ;

119 t i t l e ( ’ Spot p r i c e s for e l e c t r i c i t y vs Time to maturity ’ ) ;

120 subplot ( 1 , 3 , 2 ) ;
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121 p lo t ( S 2 ) ;

122 t i t l e ( ’ Spot p r i c e s for uranium vs Time to maturity ’ ) ;

123 subplot ( 1 , 3 , 3 ) ;

124 p l o t ( S 3 ) ;

125 t i t l e ( ’ Spot p r i c e s for gas vs Time to maturity ’ ) ;

126

127 f i g u r e ;

128 subplot ( 1 , 3 , 1 ) ;

129 h i s t ( F 1 ) ;

130 t i t l e ( ’ Future p r i c e s for e l e c t r i c i t y ’ ) ;

131 subplot ( 1 , 3 , 2 ) ;

132 h i s t ( F 2 ) ;

133 t i t l e ( ’ Future p r i c e s for uranium ’ ) ;

134 subplot ( 1 , 3 , 3 ) ;

135 h i s t ( F 3 ) ;

136 t i t l e ( ’ Future p r i c e s for gas ’ ) ;

137

138 f i g u r e ;

139 subplot ( 1 , 2 , 1 ) ;

140 h i s t ( Pay ura ) ;

141 t i t l e ( ’ Uranium Payof fs ’ ) ;

142 subplot ( 1 , 2 , 2 ) ;

143 h i s t ( Pay gas ) ;

144 t i t l e ( ’ Natural Gas Payof fs ’ ) ;

145

146 f i g u r e ;
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147 subplot ( 3 , 1 , 1 ) ;

148 p l o t ( F 1 ) ;

149 t i t l e ( ’ Future p r i c e s for e l e c t r i c i t y ’ ) ;

150 subplot ( 3 , 1 , 2 ) ;

151 p l o t ( F 2 ) ;

152 t i t l e ( ’ Future p r i c e s for uranium ’ ) ;

153 subplot ( 3 , 1 , 3 ) ;

154 p l o t ( F 3 ) ;

155 t i t l e ( ’ Future p r i c e s for gas ’ ) ;

156

157 end

158

159 % L j (0 , 1 , 1/260 , 0 , 0 . 0001 , 0 . 1 , 0 . 15 , 0 . 15 , 0 . 1 5 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5 , 10)

160

161

162

163

164

The function below is the function for the inverse Gaussian process.

1 function I1 = I j (T, de l ta t , a , b )

2 %Inve r s e Gaussian Subordinator

3

4 nrep = round (T/ d e l t a t ) ;

5 I 0 = 0 ;

6
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7 v = normrnd (a , b) ;

8 y = v . ˆ 2 ;

9 x = ( a/b) + y/(2∗ ( b . ˆ 2 ) ) − ( ( ( 4∗ a∗b∗y ) + (y . ˆ 2 ) ) . ˆ ( 1 /2 ) /(2∗ ( b . ˆ 2 ) ) ) ;

10 u = normrnd (a , b) ;

11 t = a/( a+(x∗b) ) ;

12 s = ( a . ˆ 2 ) / ( ( b . ˆ 2 ) ∗x ) ;

13

14 i f u <= t

15

16 outp = x ;

17 else

18

19 outp = s ;

20

21 end

22

23 I (1 ) = I 0 + outp ;

24

25 for k = 2 : nrep

26

27 v = normrnd (a , b) ;

28

29 y = v . ˆ 2 ;

30

31 x = ( a/b) + y/(2∗ ( b . ˆ 2 ) ) − ( ( ( 4∗ a∗b∗y ) + (y . ˆ 2 ) ) . ˆ ( 1 /2 ) /(2∗ ( b . ˆ 2 ) ) ) ;

32
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33 u = normrnd (a , b) ;

34

35 t = a/( a+(x∗b) ) ;

36 s = ( a . ˆ 2 ) / ( ( b . ˆ 2 ) ∗x ) ;

37

38 i f u <= t

39

40 out (k ) = x ;

41 else

42

43 out (k ) = s ;

44

45 end

46

47 I ( k ) = I (k−1) + out (k ) ;

48 end

49

50 I1 = horzcat ( I 0 , I ) ;

51 f i g u r e ;

52 p l o t ( I1 ) ;

53 t i t l e ( ’ Inve r s e Gaussian Subordinator ’ )

54 x l ab e l ( ’Time to Maturity (Days ) ’ ) ;

55

56 end

57

58 %I j (1 , 1/260 ,0 . 001 , 20 )
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5.3 Appendix: Tables
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Table 5.1: Variables and the Respective Parameters

Name Location Used Parameter and Definition

T brown Maturity

rho brown ρ - volatility

deltat brown Time increment

deltab brown n by 3 matrix of Brownian component

lamda 0 oil levy λ0
Oil

lamda 1 oil levy λ1
Oil

lamda 2 oil levy λ2
Oil

lamda 1 oil levy λ1
Oil

lamda ura levy λura

lamda ura levy λura

mu J 1 levy µJ=1

mu J 2 levy µJ=2

mu 0 J1 levy µ1

mu 0 J2 levy µ2
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Table 5.2: Variables and the Respective Parameters

Name Location Used Parameter and Definition

sigma 1 1 levy σ1,1

sigma 1 2 levy σ1,2

sigma 1 3 levy σ1,3

sigma 2 1 levy σ2,1

sigma 2 2 levy σ2,2

sigma 2 3 levy σ2,3

sigma 3 1 levy σ3,1

sigma 3 2 levy σ3,2

sigma 3 3 levy σ3,3

r EulMar r = interest

alpha EulMar α = sensitivity

Y 0 EulMar Y0 - Initial iteration = 0

c ura EulMar cura - conversion factor

c oil EulMar coil - conversion factor
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