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Abstract 

Residual stress is the stress which exists in the bulk of material without application of an 

external load and it is self-equilibrating. The resultant force and the moment which they 

produced must be zero. The formation of residual stress can be from primary product, 

surface removal, joining, mechanical surface treatment and heat treatments. 

Residual stress is an important characteristic in engineering design because it can have a 

significant influence on the fatigue lives of engineering components which can also be 

both detrimental and beneficial. Extensive case studies regarding autogrettage, cold 

expansion, shot peening, laser shock peening and low plasticity burnishing have been 

examined and analyzed, so as to show that residual stress can be induced intentionally 

and unintentionally. 

As to determine the residual stress, various quantities and qualitative methods have been 

introduced, which can be distinguished between destructive techniques such as the hole 

drilling method, the ring core technique, layer removal method and the sectioning method 

and the non-destructive techniques are including X-ray method, the neutron diffraction 

method, the ultrasonic techniques, magnetic Methods and Raman Spectroscopy. 

A classical method of measuring residual stress is to use hole drilling in combination with 

strain gages. However, the strain gages inherent nature gives it a disadvantage when 

used to measure the residual stress. This disadvantage may be eliminated through the 

implementation of the Digital Speckle Correlation method (DSC). DSC is a computerized 

method which determines the displacement, strains and consequently calculates the 

stress. Thus this project demonstrates the viability of hole drilling in combination with 

DSC. 

The DSC technique has been examined and many measurement parameters and factors 

have been discussed and analyzed. The recommendation has been made to provide a 
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straightfolWard solution. The parameters and factors include range determination, depth 

determination, principal direction determination, convergence area in the stress graphics 

and full coverage of measureTt field. 

Based on the Kirsch solution, the relationship between the biaxial residual stress and the 

released strain components has been derived. Consequently, the relationship between the 

released strain and residual stress has been established. With the aid of MathCad 8, the 

visual contact can be shown the relation, which provides a better understanding of the 

determination of residual stress by DSC method. 
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Nomenclature 

r Maximum shear strain m 

r R0 Shear strain in (R, e) coordinate 

r xy Shear strain in (X, Y) coordinate 

e a Initial residual average normal strain 

· e a Hole drilling released average normal strain 

e R Residual redial normal strain 

ex Residual normal strain in the X direction 

&y Residual normal strain in the Y direction 

ex Residual normal strain in the x direction 

& y Residual normal strain in the y direction 

· & x Hole drilling released normal strain in X-direction 

· &y Hole drilling released normal strain in Y -direction 

· & R Hole drilling released radial strain 

· &0 Hole drilling released tangential strain 

e Angle between (X,Y) and (R, e) 

e Angle between (x,y) ander, e) 

e p Angle between (X,Y) and (x,y) 

a r Radial stress in (r, e) after hole drilling 

.. 
a R Radial stress in (R, e) after hole drilling 
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a~ Radial stress in (R, e) after hole drilling 

a; Radial stress in (r, B) after hole drilling 

a, Initial Residual principal stress 

a 2 Initial Residual principal stress 

a~ Hole drilling released average normal stress 

a r Initial residual radial stress in (r, B) 

a R Initial residual radial stress in (R, e) 

a~ Hole drilling released radial stress in (r, B) 

, 
a R Hole drilling released radial stress in (R, e) 

a e Initial residual tangential stress in (R, e) 

, 
(J' e Hole drilling released tangential stress in (R, e) 

Initial residual tangential stress in 

, 
(J' 0 Hole drilling released tangential stress in 

" 
'rO Shear stress in (r, B)after hole drilling 

" 'Re Shear stress in (R, e )after hole drilling 

'm Maximum shear stress 

'rO Initial residual shear stress in (r, B) 

'Re Initial residual shear stress in (R, e) 

'rO Hole drilling released shear stress in(r, B) 

, Re Hole drilling released shear stress in(R, e) 
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Chapter 1 Introduction 

Residual stress is the stress which exists in the bulk of material without application of an external load 

(applied force, displacement of thermal gradient). All residual stress systems are self equilibrating, the 

resultant force and the moment which they produce must be zero.[ I] 

Residual stress is produced by heterogreneous plastic deformation, thermal contractions and phase 

transformations induced by the manufacturing process. These compressions are compensated by 

tensile stresses in the bulk of the sample. Most manufacturing processes and surface treatments 

produce residual stresses such as: 

Primary product: casting, forming, forging, drawing, extruding, rolling, spinning, bending, 

etc; 

Surface removal: machining, electro-erosion, etc; 

Joining: welding, brazing, etc; 

Mechanical surface treatment: shot peening, laser shock, etc; 

Heat treatments, chemical and thermochemical treatments: quenching, carburizing, etc. 

Therefore, it comes to the challenge of how to determine the residual stress. Many available 

mathematics methods can be used and several techniques can be operated accordingly. Details of the 

technique will be discussed, compared and concluded in the later chapters. One of the techniques 

named Digital Speckle Correlation method (DSC) used by the author has been introduced and the 

mathematics relationship between the biaxial residual stress and the released strain components have 

to be established in order to obtain the result. 



Consequently, the equation of released strain components in term of the residual stress is formed. The 

visual contact has been made to express the best understanding the relationship between the residual 

stress and released strain components. 
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Chapter 2 Influence of Residual Stress 

Residual stress can have a significant influence on the fatigue lives of engineering components. Up to 

present, it is known that the near surface tensile residual stress tends to accelerate the initiation and 

growth phases of the fatigue process while the compressive residual stress close to the surface may 

prolong fatigue life. The residual stress can be induced intentionally and unintentionally and the 

influence of it can also be either detrimental or beneficial. For the purpose of an accurate assessment 

of fatigue lifetime, a detailed knowledge of residual stress including the magnitude and direction is 

required. 

Current study indicates that fatigue accounts for at least ninety percent of all service failures due to 

mechanical cause. Among all the factors that cause the fatigue, the residual stress is one of the factors 

that is not easily noticed and sometimes not even realized by people. 

In this case study part, some surface processes that intentionally introduce the beneficial stress to the 

sample surface including autofrettage, cold expansion, shot peening, laser shock peening and low 

plasticity burnishing are discussed. Afterwards, the test shows that fatigue life of the samples has been 

prolonged significantly. 

2.1 Autofrettage 

Autofrettage is the process by which beneficial residual stress introduced into thick-walled tubes by 

initially SUbjecting the tube to high internal pressure that causes plastic deformation. As a result, loads 

carrying capacity of the tube is increased due to the presence of residual stresses, this process also 

enhances the fatigue life of the tube. 

Under the application of the Autofrettage process, the bore undergoes plastic deforemation. When the 
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pressure is released, the plastic defonnation of the bore is maintained, while the defonnation of the 

outside portion of the tube is recovered to nearly its original position. This non-unifonn recovery 

results in compressive residual stress at the bore and tensile residual stress at the outside radius. [3] 

The tangential compressive residual stress in the core suppresses crack fonnation, resulting in fatigue 

life improvement. As mentioned above, the distribution of residual stress is needed to be detennined, 

which was calculated by using an elastic-plastic finite element stress analysis. 

In the study reported by Pu and Hussain[4], they suggested that an active thennal loading could 

produce elastic thennal stressed equivalent to the autogrettage residual stress in a partially 

autofrettaged thick-walled pressure vessel. Based on this, the thennalloading was used as the input 

data in the residual stress analysis. The keyway grooved objective has been examined and the results 

showed the compressive stress at the bore region and stresses became tensile through the thickness, 

while at the root of the groove, the residual stress increased in order to evaluate the fatigue life. 

The load-controlled simulation fatigue tests were conducted. The results showed that firstly, during the 

test, the considered crack initiation life of 2 mm crack length fonned at the all comers of the 

specimens, as expected. Secondly, the lower level of the autofrettage is, the longer the fatigue life last. 

It implies that the fatigue life of pressure vessel is influenced by the magnitude of tensile residual 

stress. The local stress and local strain estimate by both elastic-plastic finite element analysis and 

Neuber's rule were used in predicating the fatigue life, the results are reasonably in agreement with 

the experiment result. 

In Thumser's paper [5], the autofrettage process by 10 kbar has been tested on the ASIS 4140 steel 

samples and the endurance limit has been improved by a factor of 2.4. He concluded that the higher 

compressive stresses result in higher endurance limit. Furthennore, prediction accuracy might suffer 
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for components with weaker notches. 

2.2 Cold Expansion 

The most effective and widely accepted method of fastener hole expansion in the aerospace industry is 

the split-sleeve process introduced by fatigue technology incorporated[6]. The survey shows that the 

main source of fatigue damage in the aircraft structure is fastener holes. The study [7] shows that 

seventy percent of fatigue cracks originated from the holes of riveted or bolted joints. 

The hole cold expansion has been employed for over forty years. This involves pulling an oversize 

tapered mandrel through an internally lubricated expandable split-sleeve inserted into the hole. The 

sleeve prevents direct contact between the sliding mandrel and the hole, reducing damage to the inside 

of the hole and minimizing the material flow through the thickness direction. Consequently, the 

maximized compressive hoop stress at the periphery of the hole may further increase with the degree 

of cold expansion, which mainly limit by available tooling. 

The residual stress zone acts to retard crack growth around the hole, thereby increasing the fatigue life 

of the component. This process can improve the fatigue life by 3-10 factor in the simple specimens 

subjected to constant amplitude loading. [8] 

Because fatigue cracks tend to initiate at fastener holes particularly in highly stressed areas such as the 

bottom skins of wings, the fastener hole is expanded by pulling an oversize mandrel through it. The 

surrounding material is left compressed retarding or arresting crack growth. The result shows that the 

mean lives for ex and NCx specimens and the life improvement factors have been significant longer. 

The comprehensive three-dimensional elastic-plastic finite element analysis[9] was conducted to 

evaluate the development and growth of the plastic zone and unloading residual stress resulting from 
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the cold expansion of interacting adjacent fastener holes. The contact between the mandrel and the 

hole was modeled using special contact elements, which employ the combined penalty-Lagrange 

multipliers formulation. The results were the used to predict fatigue crack growth in the presence of 

residual stress using a specimen containing two holes in close proximity. 

The X-ray and Garicai-Sachs methods[10] were used to measure the residual stress in the cold 

expanded hole before and after exposure to the high temperature. The result shows that exposure to 

temperature alone leads to a relaxation of residual stresses induced by cold expansion of fastener holes, 

the larger the magnitude of the residual stress, the larger the relaxation. The benefits derived from the 

cold expansion were significantly reduced at both 20°C and 150°C. The reduction in fatigue life 

improvement factor was even larger at 150 °C compared to 20°C. 

2.3 Shot Peening 

Shot peening method is first developed by Kobayashi [11]. Shot peening is a cold working process 

used mainly to improve the fatigue life of metallic components. The results are accomplished by 

bombarding the surface of the component with small spherical shots made of hardened cast steel, 

conditioned cut wire, glass or ceramic beads at a relatively high velocity. 

After contact between the target and the shot has ceased, a small plastic indentation is formed causing 

stretching of the top layers of the exposed surface. Upon unloading, the elastically stressed 

sub-surface layers tend to recover their original dimensions, but the continuity of the material in both 

zones, the elastic and the plastic, does not allow this to occur. Consequently, the compressive residual 

stress fields is highly effective in preventing premature failure under conditions of cyclic loading. 

Besides, a study has been conducted regarding the dynamic elastic-plastic analysis of the process 

using a single shot. Specifically, it is desired to evaluate the effect of shot velocity, size and shape 
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upon the time variations of the contact force, the velocity history, the plastic zone developments and 

its growth and unloading residual stress. 

In industries, shot peening is controlled with the help of Almen plates. They are standardized thin 

plates that are placed in parallel to the treated material, receiving the same treatment. This treatments 

induced residual stress in small plates that become deformed. It results in hardened surface layers of 

material in which the compressive residual stress can stop or at least slow down the initiation and 

propagation of the fatigue cracks.[12,13,l4] This deflected shape caused by the process is called 

Almen intensity and its value is appropriate to adjust the shot peening parameters. [15] 

Torres and Voorwald induced the residual stress by the shot peening to the AISI 4340 steel which is 

widely used steel in the aircraft and automobile industry. Both finite element analysis and the empiric 

model based on the experiment data. [16, 17] The specimens are treated with four intensities of shot 

peening: 0.0027A, O.0063A,0.0083A and O.0141A. The residual stress induced was measured by 

X-ray diffraction method with Raystress equipment. 

The S-N curves for the base material and four peening conditions are plotted and showing the 

improvement in the fatigue resistance of the specimens with shot peened compared to the base 

material. However, it is noted that the best fatigue life condition was found in the intermediate peening 

condition rather than in the highest or lowest peening condition. They also concluded that the greater 

the peening intensity, the greater width of the compressive residual stress field. However, the surface 

residual stress was independent of the peening conditions. 

In the high cycle, the shot peening pushed the crack sources beneath the surface, while in the low 

cycles, the cracks originated from the surface. According to the statement of Li , Zhang and Yao [14], 

the surface stresses are more related to the mechanical characteristic such as hardness and elastic 

recuperation and surface condition than to the shot peeing intensity. Therefore, it is concluded that the 
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improvement in fatigue life is a consequence of the compressive stress field induced by the shot 

peening. 

Limitation of shot peening 

Solid shot cannot always penetrate the most inaccessible areas of a component. For very small 

radius the process in limited to the depth of compressive stress achievable [18]. In practice shot 

peening parameters are specified to ensure that the depth of compressive stress from any surface 

penetrated no greater than 10 % of the section thickness. This becomes a problem on very thin 

components such as gas turbine compressor blades and plate valves. Care must also be taken to ensure 

that the shot peening intensity is controlled to ensure that the compressive stress is optimized at the 

surface. 

Further, the solid shot cannot always penetrate the most inaccessible lasers of the components. Shot of 

no greater diameter than half the highest radius on the component should be utilized to ensure 

adequate coverage. For very small radius the process is limited to the depth of compressive stress 

achievable. 

2.4 Laser Shock Peening 

In laser materials processing such as laser machining, target material inevitably undergoes intensive 

non-uniform temperature change and as a result a complex residual stress distribution forms near the 

processed areas. An unfavorable stress distribution may result in micro crack formation and 

propagation, reduce the part's fatigue life and lead to catastrophic failures. 

Laser shot peening (LSP) has been studied on and off since 1970s, in which laser generated shock 

waves in a confining medium are used to improve the mechanical properties of metallic material 
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including aluminum, steel and copper alloys, In particular, LSP induced compressive residual stress in 

the target and improves its fatigue life, lasers of l.06!lm wavelength and 1-6 mm beam size are 

commonly used in conventionally LSP. [19] 

The basic principle is explained as follows. First, a high energy pulsed laser beam onto the surface of 

the part. A dual component overly is applied to the surface over the area. It consists of a thin film of 

material opaque to the laser beam, which is placed directly on the surface. The second is thicker film, 

transparent to the laser beam, which is over the first layer. 

When the laser beam strikes the material, it passes through the transparent film (thicker one) and 

absorbed by the opaque film (the thinner one), caused the thin film to vaporize, The rapid expanding, 

heated gas is confined on the surface of the metal part by the thicker layer, creating pressures of 6 GPa. 

This surface pressure propagates into the parts as a shock wave, the high residual surface compressive 

stress is produced. The schematic of laser shot peening process is shown as follows in the figure 2-1: 

Figure 2-1 Laser shot peening schematic 

The coating could be metallic foil, organic paints or adhesives. These coatings can modify the surface 

loading transmitted to the substrate by acoustic impedance mismatch effects at the coating-substrate 

interface, and additional fifty percent increase in the peak stress values can be achieved. 

Water is used to physically constrain the gas release, the advantages of using water as medium is that 
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it can reduce heat affected zone and focus the beam. However, the overly high laser intensity may 

cause water breakdown. When water breakdown takes place, laser energy cannot reach the target 

surface efficiently and water will lose its function of confinement, the exact level of laser intensity 

causing water breakdown depends on laser wavelength and laser water interaction time. Since the 

great interest is fatigue life and fatigue strength, it can reduce fretting fatigue and stress-corrosion 

cracking. 

Earlier modeling work on laser-induced shock waves was carried out by Clauer[19]. Their model 

considered the non-linear coupled irradiation and hydrodynamic equations governing pressure 

evolution at the metal surface. Fabbro[20] developed a model which assumed that the laser irradiation 

is uniform and therefore shock propagation in the confining medium and the target. The assumption is 

appropriate when the size of laser beam which typically follows a Gaussian distribution, is relatively 

large. The shock model in this paper made modifications to Fabro's model assuming the laser beam 

spot size is in the order of microns. 

The governing equations for stress analysis follow standard elasticity-plasticity analysis except the 

extremely high pressure and strain rate involved for especial considerations. The influence of the high 

strain rate on the yield strength of material has been considered. [21] The influence of pressure on the 

yield strength of material was found to be more important than other effects when the pressure was 

given by Steinberg. Steinberg's model did not consider rate dependent effects. For shock pressures 

below 10 GPa, the rate dependent effects cannot be neglected. In laser shock processing, the pressure 

involved is fairly high but less than 10 GPa. Therefore, both strain rate effects and shock pressure 

effects on the yield stress of materials need to be considered. 

From Peryre [22] research paper, laser shot peening is a very attractive, promising, new surface 

treatment for aluminum alloys yielding large fatigue improvements in A 356, A1I2Si and 7050 alloys. 

In this study, mechanical surface modifications were investigated to the residual stress field induced, 
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surface hardening and surface roughness modifications. In all three alloys investigation, the residual 

stress fields extend to a greater level. Hardening is limited to + 1 0% of the initial value, which is half 

of the increase achievable by conventional shot peening treatment. The main difference between two 

treatments has been demonstrated: laser shot peening generated a general compression of the material 

with no roughness changes; shot peening strongly affects the surface and created potential initiations 

sites. Much better fatigue performance is observed with laser shocked 7075 than with conventional 

shot peened specimens. This is attributed, through fatigue crack detection to large increases in the 

crack initiations stage for laser shot peening than for shot peening specimens. It has also been shown 

that a combination of laser shot peening and shot peening treatments is capable of achieving art 

optimal surface layer. In Peryer [23] another paper, after laser shock peening process, fatigue tests 

carried out no notched samples displayed about 30% maximum increases of the fatigue limits. 

Advantage of the Laser Shot Peening 

The potential benefits of the laser technique are to induce the surface of components residual 

compressive stress to a magnitude equivalent to that achieved by conventional shot peeing, which is 

approximately 60% of the ultimate tensile stress of the material. Components most likely to benefit 

from the technique are in the aerospace industry and especially aero engine components such as blades, 

discs and rotors, but application are also possible in the automotive, medical, petrochemical and power 

generation industries. 

The most application of laser shot peening is in the aero engine part such as compressor and turbine 

blades, which may be damaged by the ingested foreign objects. It can be used to achieve the 

satisfactory result without change the surface which can be a critical factor effects the fuel efficiency 

and balance. Further, the precise depth of residual stress can be controlled by applying successive 

shocks to the small area. This derives the residual stress progressively deeper without exceeding the 
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limited of the material at the surface. The extensions of service life can be somewhere from 310 times 

the extension compared to the normal shot peening. The main reason is that laser peening puts 

compressive stress much deeper into the part. 

However, it should be noted that when the shot peening introduced, it is possible to damage the 

surface by excessive peening or rolling if it is conventional shot peening. Experience and testing are 

required to establish the proper conditions which produce the optimum residual stress distribution. 

[24] 

3.5 Low Plasticity Burnishing 

The concept of low plasticity burnishing (LPB) originated at Lambda rrsearch, as a means of 

producing a layer of compressive residual stress of high magnitude and depth 'vith minimal cold work, 

LPB can be performed with conventional CNC machine tools allowing part~ to be processed during 

manufacturing rather than as a post process in a separate facility. 

The process is characterized by the use of a single point contact achieved with a smooth free rolling 

spherical ball, the ball is supported in a fluid bearing under sufficiently high pressure to lift the ball to 

the surface of the retaining spherical socket. The ball is in mechanical contact only with the surface to 

be burnished. 

Controlling the path of the tool in a CNC lathe or milling machines, allows the tool to deform any 

point ensuring that the depth of compressive stress from any surface penetrated no greater than 10 % 

of the section thickness. It is measured by X -ray method. 

Considering the low plasticity burnishing, it can be accomplished with conventional CNC machine 

tools. It can reach a maximum beneath the surface. When using shot peening, because each shot 

impacts the surface at a random location and it results in many multiple impacts, producing a highly 
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cold worded surface layer. While applying laser shot peening, the cold work is accumulative, multiple 

laser shot peening shock cycles may produce an accumulation of the cold work. Laser shot peening 

achieves maximum compression with minimum cold working. The best part is cheaper than laser 

shock peening process. From practice point of view, when the job of improving some specimens is 

proceeded, the technology is considered. At the mean time, the cost and other factors are needed to 

access in all process. 

Lastly, I proposes that the applicability of using the high velocity water shot when forming the surface 

residual stress, which can avoid the machine cost and consequent effect such as surface roughness. 

The difficult portion of experiment is to control the pressure in the volume, velocity and distribution in 

the form of uniformities. 

Conclusions 

The induced beneficial compressive residual stress to the specimen via methods such as autogrettage, 

cold expansion, shot peening, laser shock peening and low plasticity burnishing are discussed in 

detailed and all shows the improvement to the fatigue life. 
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Chapter 3 Residual Stress Evaluation Methods 

Over the last few decades, various quantities and qualitative methods have been developed. In general, 

a distinction is made between destructive and non-destructive techniques. 

The first series of methods is based on destruction of the state of equilibrium of the residual stress 

after sectioning of the mechanical component, machining or layer removal. The redistribution of the 

internal forces leads to local strains, which are measured to evaluate the residual stress field. The 

residual stress is deduced from the measured strain using the elastic theory (analytical approach or 

finite element calculations). 

These techniques are only sensitive to the macroscopic residual stress. The most usual methods are: 

• The hole drillbg method, 

• The ring core technique, 

• Layer removal method 

• The sectioning method. 

The second series of methods is based on the relationship between the physical and crystallographic 

parameters and the residual stress. The most developed methods are: 

• The X-ray and neutron diffraction method. 

• The ultrasonic techniques. 

• The magnetic methods 

• Raman Spectroscopy 

• Synchrotrons 
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3.1 Hole Drilling Method 

3.1.1 Background 

Stresses will be relaxed when introducing a hole in a stressed body. The relaxation which occurs can 

be monitored through a specifically designed strain gage rosette. The hole is drilled in the center of the 

strain gage grids. The average residual stress occurring over the depth of the drilled hole can be 

calculated from the strain relaxations. 

The hole-drilling method (ASTM Standard E837) relies on stress relaxation when a hole is drilled into 

the centre of a rosette strain gage when the strain gage is used as in determining the strain. When 

the material is removed by drilling, the extent of the strain relief is monitored by the strain gages or 

other strain measurement methods and the direction and magnitude of the principal stresses can be 

calculated. 

A special high-speed air turbine drill, as shown in below Figure 3-1, is used to first locate the drill to 

within 0.001 inch of the rosette centre and then to remove material to a controlled depth. At each 

depth increment, the strain relief on each of the gages is measured and converted into stress. As 

subsequent material removals occur, the stress distribution as a function of depth can be determined. 

Figure 3-1 High-speed air turbine drill 

\ 
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The important consideration in the method is the ability to drill the relief hole so as not to introduce 

new stresses. This is best achieved in hard materials by use of a high-speed turbine drill which avoids 

excessive rubbing of the cutting surface against the hole wall. As a result of careful design of the 

tool, the holes have flat bottoms and straight walls as required by ASTM E837. 

The accuracy of the hole-drilling method is directly related to the ability of locating the hole 

accurately in the centre of the rosette. As an example, if the hole is no more than 0.00 I" off centre, 

the residual strain error is less than 3%. In practice, the location accuracy is better than this, so the 

overall accuracy in residual stress measurements is quite good. 

Based on the limitation of the strain gage method, the Digital Speckle Correlation method has the 

obvious advantage over the strain gage because no matter where the hole is drilled, the subset of 

whole image can be moved respectively until the best location can be located. The a ignment of the 

centre of drilled hole and the strain gages centre will be not be obstacle any more in the experiment. 

Feature of Hole Drilling Method 

• An established method standardized by ASTM Procedure E837. 

• Customized strain gages. 

• Method only valid for residual stresses up to nominally 50% of yield strength. 

• Highly sensitive to position and shape of drilled hole. 

• Residual stresses determined are the average over the depth of drilled hole. 

• Incremental technique offers qualitative results only 

Application of Hole Drilling Method 

• Austenitic stainless steel weldments. 

• Cast iron piping. 

• Forged nickel base alloy disk components. 

• Welded titanium pipes. 
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• Dual phase stainless steel rollers. 

• Inertia welded jet-engine disks. 

Mathar[25] first proposed that every perpendicular to a free surface is necessarily a principal axis on 

which the shear and normal stresses are zero. The elimination of these stresses on the hole surface 

changes the stress in the immediately surrounding region, causing the local strains on the surface of 

the test object to change correspondingly. 

3.1.2 Through Hole Analysis 

Through hole drilling is based on the basis of a small hole drilled completely through a thin, wide, flat 

plate subjected to uniform plane stress. A local area within a thin plate which is subject to a uniform 

residual stress. Set up the stain gages and drilling a through hole in the geometry center of the rosette 

and obtained the relaxed the strains. 

Subtracting the initial stresses from the final (after drilling) stresses gives the change in stress at point 

P ( R , a ) due to drilling the hole. 

If the material of the plate is homogeneous and isotropic in its mechanical properties, and 

linear-elastic in its stress/strain behaviour, by using biaxial Hooke's law to solve for the relieved 

normal strains at the point P(R, a ). The resulting expressions are as follows: 

0' II (1 + v) [ 1 3 4 ] 
of r = - -2 - -4 COS 2 a + :l ( ) cos 2 a 

2E r r r l+v 3.1 

3.2 

They can be written in a simpler form, demonstrating that along a circle at any radius R (R :::: R ()) the 

relieved radial and tangential strains vary in a sinusoidal manner: 

17 

, ! 



8 r = 0" 11 (A + B cos 2 a) 3.3 

8 9 = 0"11 (-A+ Ccos2a) 3.4 

while A, Band C stand for: 

A=_l+V(~) 
2E r':J 

B_1 + v[( 4 ) 1 3 ] 
-- 2E l+v -;r-~ 

C 1+ v[ ( 4V) 1 3] 
=- 2E - l+v ~+7 

In practice, residual stresses are more often biaxial rather than the above mentioned unaixal condition. 

The following equations establish the relationship between the released strain and principal stresses 

and their direction. 

3.5 

3.6 

3.7 

where &'1' &'2 and &'3 are the measured value of the strain gages, A and B are coefficients, 

a max and a min are the principle stresses, a is principle direction. 
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Determining Coefficients A and B 

The advantage of experimental calibration is that it is potentially the most accurate means for 

determining the coefficients when performed correctly with sufficient attention to detail. And its 

disadvantage is that it must be repeated each time a different set of geometric parameters involved. 

The steps in the calibration procedure can be as follows: 

1. Zero-balance the strain gage circuits; 

2. Apply a load, P, to the specimen to develop the desired calibration stress, a c. 

3. Measure strains .6"{and .6"~ (before drilling); 

4. Unload the specimen, and remove it from the testing machine; 

5. Drill the hole; 

6. Replace the specimen in the testing machine, re-zero the strain gage circuits, and then reapply 

exactly the same load, P. 

II II 

7. Measure strains .6" land .6" 3(after drilling). 

The calibration strains or the relaxed strains corresponding to the load, P, and the stress, a c, are 

then: 

~ _ ",II ",I 

.. c1 - ""1 - "1 

co = COil _ ",I 
c3 3 "3 

co c1 = ac(A + B cos (0")] = ac (1 + B) 

co .. 3 == a c [1 + B cos (2 x 90·) ] = a (; (A -B) 
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Solving for A and B, 

- Ii' ,,1 + Ii' e3 
A=---

2ue 

B = _1i'_c1_-_Ii'_"_3 

2ue 

3.1.3 Blind-Hole Analysis 

As we discussed above, the through hole drilling configuration is not typical of practical test objects. 

The practical specimens can be of any size or shape, and are rarely thin or flat. Because of this, a 

shallow "blind" hole is used in most applications of the hole-drilling method. Due to introducing a 

very complex local stress state by drilling a blind hole, there is not close fonn by the theory of 

elasticity_ 

Rendler and Vigness [26] showed that Blind hole closely parallels the through-hole condition in the 

general nature of the stress distribution. The relieved strains due to drilling the blind hole still vary 

sinusoidally along a circle concentric with the hole in the manner as the through hole if appropriate 

blind-hole coefficients Aand B are employed, which can be obtained by experimental calibration or 

by numerical procedures such as finite-element analysis. 

Now, for any given initial state of residual stress and a fixed hole diameter, the relieved strains 

generally increase (at a decreasing rate) as the hole depth is increased. Therefore, in order to maximize 

the strain signals, the hole is nonnally drilled to a depth corresponding to at least Z I D= 0.4 

Schajer [27] introduced two new coefficients, denoted here as (j and b, and defined as follows: 
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2EA 
a=---

1+ v 

b =-2EB 

where coefficients Aand B can be obtained from the above section "though hole drilling". 

3.1.4 Accuracy and Validation 

3.12 

3.13 

It is noticed that when drilling a hole, the drilling machining system can be end-mill cutting, air 

abrasion, electro-chemical and high-speed drilling. They can induce the machining strains. So this 

kind of machining strain needs to be examined before final calculating the residual stress. The study 

shows that these stresses are not equal bi-axial or axisymmetric. The induced stress can be determined 

by the means of performing hole drilling (possibly several times) on a sample of stress-relieved 

material and collect the induced strains. Average the strains from the three gages at each hole depth 

and use the averages as the representatives of the induced strains. One of the solutions is to apply a 

machining technique that induces minimal additional stresses. One study [29 ] indicated that if the 

statistical average of the total induced strain registered by each of the strain gages is not greater than 

Sue, then the resultant calculations of the residual stresses are acceptable. 

Another study has been done and showing the strong evidence that hole drilling may be used reliably 

to determine the residuals tested in the engineering components which made of the investigated 

materials by comparing the result obtained by destructive with non-destructive methods. [30] 

A Effect of Hole eccentricity 

Although caution has been made to ensure the hole is to be drilled in the center of strain gage rosette, 

the misalign still can contribute to the erroneous calculations to residual stress. Wang [31] established 
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the relationship between the relieved strains which are obtained from the off-center drilled hole to the 

"real" center residual stresses. The equation and its schematic as figure 3-2 as follows: 

[1 
Where 

AI. = __ 1_(1 + U)y2 cos2a. 
2£ I I 

3.14 

1 3 
Bi =-E[(1-u)1j2cos2ai +(1+u)1j2(1- 21j2)cos2(8i -aJ] 

Ci = - ~[(1- U)1j2 sin2a i + (1 + U)1j2(1- ~ 1j2)sin2(8; - aJ] 

1'; = r / Ri where r is the hole radius normalized with respect to the distance from 0 to the 

center of the gage i; 

8i and a i are the orientation and offset angles of the gage i respectively; 

o is the rosettes center; 

R is the distance form the rosette center to the gage center; 

~ and e are the eccentricity and the offset angle of the hole center 0 with respect to the point 

0; 

~i is the orientation of gage i with respect to the system of coordinates XOY. 

22 



Figure 3-2 Schematic of Measurement 

I. 

i 

From the Sasaki [32] by comparing the simulated residual stress with the actual residual stress and 

concluded that when a hole is drilled without eccentricity, the residual stressed can be estimated 

within 3 percent of error at most by the five gage method and 5 percent of error at most by the three 

gage method. Also, the accuracy of residual stress measurement increases with decreasing distance of 

strain gage, r/R. Even when the hole is drilled eccentrically and when the hole is close to the boundary, 

the residual stresses can be estimated within 20 to 30 percent of error by the three gages. 

B Effect of Stress Gradients 

If the stresses vary below the material surface, the accuracy of their determination depends on the 

increments of the hole drilling. It is difficult to predict the pattern of stress distribution in the majority 

of engineering problems. In ASTM [33] test, the stress gradients may be determined with reasonable 

accuracy, if the increments are approximately 0.12 mm. As to the steep gradient, the smaller the 

increment is achieved, the better the accuracy can get. In doing so, the accuracy of the instrument has 

been to be ensured in order to meet the requirement. 
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C Effect of Plasticity Defonnation 

If hole drilling is perfonned in a specimen in which the residual stress state is uniaxial or equal 

bi-axial and greater than 1/3 or 0/5 cry some region around the hole's perimeter will be plastically 

defonned, which violates the basic assumption of laws of linear elasticity. There are two solutions 

available so far to improve the analysis for the cases of high stress. Lu [34] proposed a gage layout 

that consists of sequences of gages along the three major directions. 

Li. and Liu [35] proposed another approach by estimating the state of plastic defonnation at the hole 

region that results from stress concentration. Strains before and after hole drilling under these loads 

would have be recorded, and calibration curves charted. From these data, the appropriate fonnulas that 

relate the measured strains and tl e measured stress would be developed. 

D Effect of Experimental tec1lniques 

In this section, the techniques s lch as drilling system, surface preparation and choice of strain gage 

has been discussed due to thei:- effort to the experiment measurement. Serious consideration can 

ensure the precise measurement .md satisfactory result. 

Drilling system 

In the following Table 3-1, the comparison has been made to the five different drilling tools. The 

author proposes laser in drilling the hole. The advantage can control easily the increment and assure 

the drilled-hole center aligning tte rosette center and the bottom. However, it should be noted that the 

diameter cannot be too large. And due to the size of the hole can be very small, the relaxed strain has 

be detected by more sensitivity instruments. 
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Conclusion 

Abrasive jet system, High-speed turbine system and Milling machine are strongly recommended to 

measure the residual stress. Abrasive jet system is the standard method for verifying the other 

technique where a danger of introducing machining residual stress. 

Table 3-1 Comparing Five Different Drilling Tools 

Name Advantage Disadvantage Stress free Portability 

Classical drilling Done easily, can Low-speed end mill N/A N/A 

system be hard materials induced large 

proportion of stress 

Electrical Conducting Surface integrity N/A N/A 

discharge materials affected by the 

machining system heating; protecting 

the strain gage 

Abrasive jet No flat bottom, not Yes Yes 

system for incremental 

drilling 

High-speed turbine Portable; can be Not for hard Yes Yes 

system center and material not for big 

incremental, flat diameter. 

bottom 

Milling machine Can be big hole Yes Yes 

and for ceramic 

coating; stable. 

To be noted, as to the bulk ceramic material, a diamond drill can be used to achieve the drilling. 
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2) Surface preparation of the sample 

The nonnal way to preparing the surface is using the abrasive paper or other mechanical technique 
;/// 

which can generate considerable amount of residual stress to the object. It should be kept in the 
/ 

minimal. The solution is just to keep it when measuring or polish the surface by X-ray diffraction 

method. 

3) Choice of strain gage 

Here in Table 3-2 list some gages which are commonly used. 

Table 3-2 List of Stain Gage 

MMRE031, MM-R 

RY21,1NKI 

~062, 125, HBM RY61 Depth less than 4 mm, 3 gag~ rosette 

RS2, TML FRS3 

MM- l(X-062 Edge of weld beau 

TML-F _A-05-8R 8-gage rosette 

The strain gage shown i l the table can be referred from reference 1. 

3.1.5 Properties, factors and techniques issues 

A Residual stress measurement in Orthotropic material 

There are many materials such as fiber-reinforced composites has anisotropic elastic properties, which 

cannot be applied by the same approach .. Schajer and Yang [36] presented a different solution method 

can be used for materials of any degree of elastic orthotropic. For an isotropic material, the relived 

strain measured by a strain gage whose axial is inclined at an angle e from the x direction is: 

3.15 

26 



The above equation can be rewritten in matrix form to relate the three measured strains 8" 8 2 , 8 3 to 

the Cartesian stress. In the orthotropic case, the above equation can be generalized to 

o 
-c 
o 

3.16 

Where the elastic compliances are depending on the orthotropic elastic properties of the specimen, the 

hole diameter and the strain-gage rosette geometry. 

And the list of numerical values of the compliance values to be used in the above equation for a range 

of elastic constants has been determined on the paper. Consequently the experiments have been carried 

out in verifying the method. The result is quite agreeable between the expected and the measured 

values. One of the error sources is the variation in the material properties of the test specimens. 

B Modified hole-drilling technique 

In the conventional procedure, the amount of relaxation for a given strain-gage hole configuration, 

material and drilling procedure is measured for a known stress distribution. From the measured values, 

relaxation coefficients are calculated and used to determine residual stresses, using identical test 

conditions, in an unknown stress fieled. Am, Nawwar and J, Shewchuk[37] proposed a new technique 

by which can remove the necessity for calibration of each experimental setup. The relaxation 

coefficients are calculated from theory and the strain components which are extraneous to the true 

relation strain are separated from the measured value. 

The net relaxation strain is used to calculate the residual stress at the point of measurement 
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E 
(J =1:'; .----

x R Kr(A,e) 3.17 

A is the radial relaxation coefficient, Is the no dimensional hole diameter which is the ration 

of the hole size. 

d to the center distance between the hole and strain gage 

e the angular orientation of the strain gage 

And this technique can extend the range of measurements to thin plates as well as thick plates. 

In the experiment section, the researcher performed the outward-drilling sequence which is found 

correction for stress redistribution. The experiment showed that the change of stress at any loca jon is 

proportional to the residual stress. So it is reasonable to assume that a similar reduction of stress at the 

location of drilling has taken place during the action of drilling. This will, in turn, result in an error in 

estimating the residual stress at the location of drilling. 

The conclusion is drawn that the technique may be used to measure residual stress distribution. Its 

accuracy is affected by the observed redistribution of residual stresses due to drilling and the 

interaction between holes. 

C A new Rosette design in improving the reliability 

Schajer and Tootoonian [38] proposed a new Rosette design for more reliable hole drilling residual 

stress measurements. The objectives are to increase the overall sensitivity of the strain measurements 

and to increase the strain sensitivity to interior stresses. In assessing the strain gage direction, after 

comparing with the traditional gage used in the ASTM which is rectangular gage with parallel grid 
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line. The gage with the radial and circumferential direction looks more promising. 

The three factors of the gage size can be the inner radius, the angular span and the outer radius. The 

inner radius is chosen to be large enough to accommodate the maximum desired hole size. 30 degree 

of the angular has been chosen to maximize the thermal stability. Because small outer radius 

maximizes strain response and calibration constants a and b, so a small value is chosen. 

As to the rosette layout, based on the feature of the circumferential rosette can give strains that are 

opposite in sign to those of the radial gage, the author proposed the combination of the radial and 

circumferential geometry as follows in Figure 3-3: 

Figure 3-3 Newly Designed Rosette 

This kind of Rosette layout has the advantage of higher overall stain sensitivity; without localizing the 

strain measurement close to the hole edge; half bridge circuits greatly reduced extraneous thermal 

strains and electrical noise. 

In the section of experimental measurement, this layout and the ASTM measurement have compared 
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with the theoretical method. The calibration constants a and b has been improve by 130 % and 60% 

respectively, which increase residual stress accuracy. 

D Induced drilling stressed in the center-hole method 

When applying center hole drilling method in determining the residual stress which varies with depth, 

the semi-empirical procedures have been suggested to overcome this problem by requiring the precise 

increment by drilling the hole. Therefore, the more precise the increment, the better the result can be 

achieved. And the flat-bottom is required as well. 

Flaman [54] suggested use ultra-high-speed drill (UHS) rather than conventional low-speed (LS) mill. 

In his experiment, five different specimens have been used by the two methods. The result shows as 

follows in Table 3-3: 

Table 3-3 Magnitude of total average relief stains as measured by the three gages of the strain 

Rosette on stress-relieved specimens 

Ultra-high-speed drill Low-speed End mill 

Mild steel -6 -40 

Stainless steel -4 -293 

Nickel +3 -169 

Aluminium -54 -169 

Copper -81 -2843 

In addition, firstly the sides of hole in UHS is much smoother and straighter than that of LS; secondly 

the bottom of the hole made by UHS is much flatter and less rounded than that of LS. The 

conclusion is made that the ultra-high-speed drill is general much superior to the low-speed end mill 

with respect to induced machining stressed for use in the center hold method for residual stress 

measurement. 
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Discussion 

The relieved strains decay quite rapidly with distance from the edge of the hole, the gages only 

measure about 25-40% of the original residual strains at the hole location. If the relative decay rate 

can be determined, it is can be used to establish the relationship with the relieved strains, therefore we 

can obtain the relieved strain without compromising the decaying. 

Conclusion 

The hold drilling method is very popularly used and well standardized in the ASTM. It has the 

advantage of less time consuming, less cost and a board range of material applications. 

3.2 RING CORE (TREPAN) METHOD 

The ring-core method[ I] is a mechanical/strain gage technique employed to describe the principal 

residual stress field as a function of depth in polycrystalline or amorphous materials. The method 

involves placing a strain gage rosette at the surface at the location of interest on a give component. An 

annular groove is machined around the strain gage rosette at predetermined depth increments. The 

strain relaxation which occurs as a function of machined depth is recorded. The entire process and 

data collection are controlled by an on-line computer. The final residual stress values are calculated 

using the measured change in strain with depth. 

The ring-core method is generally used when x-ray diffraction residual stress measurements are not 

feasible. The ring-core method works well on materials which are of coarse grained, such as cast 

metals or weldments. The ring-core technique can be used on ceramics and plastics as well as metallic 

materials. 
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Feature of Ring-core Method 

• Principal residual stresses are determined as a function of depth. 

• Method valid for residual stresses up to 100% of yield strength. 

• Low sensitivity to placement of strain gage and eccentricity of the machined ring. 

• Low sensitivity near the surface. 

Two methods employed at Lambda Research, the ring-core or trepanning method and the center-hole 

drilling method, allow the residual stresses to be determined mechanically by the relaxation of strains 

in arbitrary geometries and stress fields. Both methods have been used extensively for residual stress 

measurement in coarse grained or even amorphous materials. Orthotropic solutions and software have 

been developed at Lambda Research using the method of Schajer and Yang [40] for composite 

materials. 

Lambda Research p. ovides residual stress determination in alloys, ceramics. and composites through 

mechanical methods These techniques are utilized when x-ray diffraction methods are not feasible, 

such as for coarse gr< ·ned castings or weldments which do not have an adequate amount of diffracting 

grains. The mechanic; J methods are also used to determine the residual stress in materials which do 

not have a useable difiraction peak for x-ray residual stress evaluation or when integration over larger 

volumes is desirable. 

A variety of geometry and stress field dependent mechanical methods have been developed, such as 

Sachs' method for boring or Letner's layer removal procedures. Such mechanical techniques are 

applicable only to specific, simple specimen geometries and symmetrical stress fields, the varity of 

application is limited. 

3.3 Layer removal method 

The principle of this I lethod is a plane part which contains residual stresses is deformed in such a way 
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as to maintain the static equilibrium of the internal moment and forces. On a thin parallelepipeda1 test 

specimen, this deformation is represented by the deflection(f). The deflection naturally depends on the 

type and magnitude of the residual stressed involved whose distribution throughout the thickness of , 

the material can be characterized by a function (j' e (e), where e is the thickness of the layer being 

considered with respect to the surface area of the part. 

If the layers of material in which there are residual stresses which are gradually removed by chemical 

machining, the balance of internal stresses and moments is upset at the same time. To re-establish this 

balance, the part has to change shape. The variation in deflection (df) produced by removing a layer of 

thickness (de) can be related to the surface stress (j' e (e) which existed in the removed layer by 

equation: 

4 e
2 * df 

(j' (e) = --E- -
e 3 12 de 

3.18 

Where 1 represents the length on which the deflection is measured and E is the Young's modulus of 

the materials. 

This equation is based on the following hypotheses: 

l) The pre-stressed test specimen is homogeneous and isotropic; its axes coincide with those of 

the principal stresses 

2) The stress in the direction of the thickness is negligible. 

3) The transverse stresses will initially.be considered negligible although, strictly speaking, they 

should be taken into account. 

Therefore, only the principal stress (j' e ( e) parallel to the axis of the test specimens will be considered. 

It will be likened to a girder subjected to a constant bending moment, which therefore has a constant 
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curve. The stress will only vary according to the depth and will be identical along the entire length and 

width of the test specimen. 

3.4 The Sectioning Method 

The principle[l] is that when stress is induced in a body without the action of external load, the stress 

is called residual stress which is self-equilibrating, and the source of residual stress should exist in the 

body. 

The source of residual stress is incompatible strain which is called here "inherent strain." As an 

example, when a stress free body is subjected to temperature change locally. Thermal stress is 

produced in the body, the thermal strain due to temperature change is regarded as inherent strain. In 

the case of welded joints, the source of residual stress is plastic strain including dislocation. The 

inherent strain is generally produced as the result of thermal elastic-plastic behavior. 

When the object is cut without producing new plastic strain for measurement of residual stress, the 

magnitude and distribution of the inherent strain do not change, but the stress distribution changes due 

to reUef of stress which as acting on the newly exposed surfaced before cutting. 

Paying attention to three-dimensional residual stress, one approach is the so-called sectioning method, 

by which the measuring object is sectioned and the stress is relaxed. In order to measure 

three-dimensional residual stress, the stress distributing which was action on the newly exposed 

surfaces of the measuring object before sectioning is estimated from relaxed strains observed on the 

surface during sectioning. The sectioning is applied repeatedly to the sectioned pieces until no 

relaxation strain is observed. In this procedure, section stress in the sectioned plane is dealt as a 

parameter for measurement. 
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3.5 X-Ray Method 

X-Ray Diffraction is a common non-destructive technique that can be used to determine the levels of 

residual stress in a component. X-rays probe a very thin surface layer of material (typically tens of 

microns). Through knowledge of the wavelength, the change in the Bragg angle, and the changes in 

interplanar spacing, the elastic strain may be calculated 

The sin
2 

\II'method is a sensitive and accurate technique to measure residual stresses in a fine-grained, 

polycrystalline material. 

As shown in Figure 3-4 shown below, the position of a diffraction peak will shift as the sample is 

rotated by an angle 1¥. The magnitude of the shift will be related to the magnitude of the residual 

stress. 

Shift of diffraction peak with change in '¥value. Note that as 'Pincreases in b) and c) that above the 

position of the diffraction peak the shift further away from its usual position in a). Thus, if there is no 

residual stress, the shift will be zero. The relationship between the peak shift and, the residual stress 

f} is given by 

o :: 

3.19 

where E is Young's modulus, v is Poisson's ratio, 'l!lis the tilt angle, and d
i 

are the "d" spacings 

measured at each tilt angle. If there are no shear strains present in the sample, the "d" spacings would 

change linearly with sin
2 

IF and a least-squares fit to the curve (for multiple values of'lf) would give 

o. However, if shear strains are present, a splitting of the plot will occur and the analysis is more 

complicated. Finally, if the sample is rotated in-plane, it is possible to determine the principal 

stresses and their directions. 
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Figure 3-4 Schematic of X-ray Method 
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3.6 The Neutron Diffraction Method 

The principle of neutron diffraction method, the components of strain are obt" 'ned from 

measurements of change L\ d in the lattice spacing d of crystals. When a beam of neutnns of fixed 

wavelength A is incident upon a crystalline specimen, a diffraction pattern with sharp maximum is 

produced, the positions of the peaks are given by the Bragg equation 2d sin 8 = nA Where n is an 

integer and 28 the diffraction angle. A small change in the lattice parameter L\ d will result in a 

change L\8 in the Bragg angle so that the lattice elastic strain in the direction of the scattering vector 

Q is given by[41] 

L\d 
I:: = - = -L\cot8 

d 
3.20 

Only the neutron diffraction method is capable of making satisfactory residual stress measurements 

non-destructively within the interior of materials. Like other diffraction techniques, neutron 

diffraction relies on elastic deformations within a polycrystalline material that cause changes in the 

spacing of the lattice planes from their stress free value. Measurements are carried out in much the 
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same way as with X-Ray diffraction, with a detector moving around the sample, locating the positions 

of high intensity diffracted beams. 

The difference between the X-ray diffraction and neutron diffraction method is made. There are many 

situations where X-ray diffraction is not useful for measuring residual stresses. These include 

non-crystalline materials, large-grained materials, nano-materials, textured, or heavily deformed 

metals. While in these cases, the neutron can success applied. 

The greatest advantage that neutrons have over X-Rays is the very large penetration depths, which 

makes them capable of measuring at near surface depths of around O.2mm down to bulk 

measurements of up to 250mm in aluminum or 37mm in steel. Therefore, this advantage of neutron 

diffraction method will play an important role in measuring the near surface depth residual stress 

which induced by the autofrettage and shot peening. 

Another advantage of neutron diffraction can provide complete three-dimensional strain maps of 

engineered components. This is achieved through translational and rotational movements about the 

center axis of the test piece. 

This method of stress evaluation, with its capacity to collect large quantities of accurate data (via 

position sensitive detectors) over the whole surface and depth (depending on the thickness of the 

sample), has made neutron diffraction a particularly useful techniques. 

3.7 The Ultrasonic Techniques 

Ultrasonic methods utilize the sensitivities of the velocity of ultrasound waves traveling through a 

solid to the stress levels within it.[ I] Changes in the speed of ultrasonic waves in a material are 

directly affected by the magnitude and direction of stresses present. Because the velocity changes are 
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small and are sensitive to the material's texture (grain alignment) it is often more practical to measure 

transit times as the ultrasonic path length is usually not known to sufficiently high precision. Because 

the changes in velocity depend on the stress field over the entire ultrasonic path, the spatial resolution 

is poor. The acoustoelastic coefficients necessary for the analyses are usually calculated from 

calibration tests. 

Whilst ultrasonic methods provide a measure of the macro residual stresses over a large volume of 

material, the presence of texture in the material often restricts their spatial resolution. Nevertheless, 

they have the advantage of being able to measure in the bulk of the material and are therefore well 

suited to routine inspection operations. Additionally, the instrumentation is portable and quick to 

implement. 

3.8 Magnetic Methods 

The ferromagnetic properties of steels and other ferromagnetic materials are sensitive to the internal 

stress state due to magnetostriction and the consequent magnetoelastic effect.[l] Magnetostriction is 

the process whereby each magnetic domain is strained along its direction of magnetization. At 

minimum energy the magnetisation will align with the crystalline directions - the magnetic easy axes. 

A change in the stress level will result in a change in the number of domains aligned along each of the 

easy axes leading to a reduction in the magneto elastic energy. Although the stress dependence of the 

magnetic parameters is quite strong, there are many other variable, such as hardness, texture, grain 

size, etc. which also affect the measurement. For this reason, a combination of magnetic techniques is 

required so that the effect of these other variables can be eliminated. 

The primary advantages of the magnetic methods are that they are very rapid (measurements normally 

made in seconds), the equipment is fully portable and can measure biaxial stresses, typically to a depth 

of -6-1 Omm. The weakness of the magnetic techniques is the limited range of materials which can be 
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examined and the inherent sensitivity to a variety of other micro-structural features. 

3.9 Raman Spectroscopy 

The Raman effect involves the interaction oflight with matter.[l] Incident laser light causes the bonds 

between atoms to vibrate. Analysis of the scattered light, known as Raman spectrum, reveals vital 

information about a sample's physical state and chemical structure. This technique is non-destructive 

and non-invasive and has a high spatial resolution (1 ~m or less). 

Raman or fluorescence lines shift linearly with variations in hydrostatic stress. This method has fine 

spatial resolution and by using optical microscopy it is possible to select regions of interest just a few 

microns in size. The method is essentially a surface strain measurement technique, but with optically 

transparent materials such as sapphire it is even possible to obtain sub-surface information. Materials 

that give Raman spectra include silicon carbide and alumina-zirconia ceramics and the method is 

particularly useful for studying fiber composites. 

3.10 Synchrotrons 

Synchrotrons, or Hard X-Rays, provide very intense beams of high energy X-Rays. [1] These X-Rays 

have a much higher depth penetration than conventional X-Rays, around 1-2mm in many materials. 

This increased penetration depth means that synchrotron diffraction is capable of providing high 

spatial resolution, three-dimensional maps of strain to millimeter depths in engineered components. 

This increased penetration depth is one of the major advantages of synchrotron diffraction over 

conventional X-Ray diffraction. 

Another great advantage of synchrotrons is the intense narrow beam size (Imm-lOmm). This leads to 

spatial resolutions that are limited not by the instrument but by the crystallite size within the sample. 
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The measurement is also very much quicker than with conventional X-Ray diffraction. With 

measurements times of a fraction of a second detailed strain maps of components can be constructed 

using a few hours of beam time. 

3.10 Conclusion 

Due to the characteristics of the above-mentioned measurement methods, they can be applied in the 

different fields. Therefore, the distinction and the downside and upside should be made clearly before 

using them. To be note, the cost and measuring requirement are to be considered in the event of 

selecting the approach. 
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Chapter 4 Digital Speckle Correlation Method 

4.1 Theory 

Digital Speckle Correlation is one of the computerized method in finding the displacement, strains and 

consequently calculate the stress. [42] It produces the displacement (U and V) and their gradients 

(du/dx, du/dy,dv/dx, dv/dy) by using the Newton-Raphson method of Partial Differential Correlation 

(shorten as NR method). 

4.2 Hard Ware and software requirement 

Charge Coupled Device (CCD) camera 

Image grabbing board OC300 

Pneumatic vibration isolation table 

IBM PC 

Additional monitor to display images 

Fibber optic illumination system by D.O Industry 

Specimen and appropriate loading device 

4.3 Operation sequence and procedure of DSC 

The procedure ofDSC can be classified in the following three steps[43]: 

Step I To collect or grab all the images and any corresponding initial data needed of the object 

under load. 

Step II To take these two images and data colleted from the PRESP and proceeds to process them 
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through the techniques in the published paper. 

Step III To graphically plot the collected resultant displacement and gradient data. 

Basic theory of Digital Speckle Correlation is by using a standard video camera attached to a video 

digitizer, which transforms the image to a 512X512 set of numbers representing the image. Each 

number represents the intensity of light impinging on the small area of the camera sensor, which is 

referred to as pixels. Each point is distinguished by its level of darkness and is given by 0-255 

numbers, which is called the greyscale. The number of greyscale means total dark (black), and 255 

means total bright (white). The value of each pixel is typically an eight-bit number with the lowest 

value represent ~ng black, highest value white and values in between representing different shades of 

grey. 

To compare 'rn ) digital images so as to determine the deformation between the two images, it 

becomes a job c '" comparing subsets of numbers between the two digital images. The coiTelation is to 

measure how well (co-ordinates)subsets match; to determine the value for six parametel , D, V du/dx, 

du/dy,dv/dx, dv/dy so as to minimize the correlation coefficient (S). 

With the technique, Newton-Raphson method quickly gives corrections or modifications for the initial 

guess of the six deformation parameters and will converge to the solution with substantially fewer 

calculations. 

At a selected point, a subset F of user set sizeofM x N (maximum is 101XlOI pixel)from the first 

image is chosen to be compared to a subset G from the second image starting at the same (1, J) 

location. The subset G (maximum 131X13l pixels) can be selected immediately after selecting the 

subset F. The schematic is shown in Figure 4-1 as follows: 
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The pixels from both entire subsets are compared and summed in order to calculate the correlation 

factor S from both entire subset. 

4.1 

where F(x,y) represents the greyscale values of the pixels at the (x, y) and G(x*,y*) represents the 

greyscale of the pixel at (x*,y*) for the G subsets respectively. 

As seen in the'S' function, both F and G subsets work on an (x,y) coordinate system rather than the 

screen coordinate system (ij). This (x,y) system covers the subset size only and Las a centre 

coordinate (0,0) at the center of each F and G subsets. Thus the x coordinates cover ± 'n-l)/2 and y 

coordinates cover ±(m-I)/2 for a subset of size m x n: 

au au 
x*=x+u+ -~x+-~y 

Ox Oy 
4.2 

Ov Ov 
y*=y+v+ -- ~+-~y 

ox Oy 
4.3 

The coordinates (x*, y*) are based on the above two equations which are dependatn OOll teh values fo x, 

y, U, V and the gradients duldx, duldy, dv/dx and dv/dy. Note that noe of these vables correspond to 

values loaded fr:>m the PRESP data and that x* and y* can be between pixels. 

The x* and y* can be in between pixels, let us say G(x*, y*) is a greyscale between pixels. In order to 

calculate a greyscale between pixels, in other words, an approximation of grey level values between 

pixels is neede, ,4 existing pixels around (x*,y*) must be found. These four pixels: round the (x*,y*) 

are then substit Ited into the Lagrange equation to calculate the greyscale G(x*,y*). 
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There are many methods to do this including the Lagrange equation, Bilinear interpolation and 

Bicubic spine interpolation, which all aim to approximate the grey level of value. For higher 

accuracy, the Bicubic spine interpolation has been used. 

If the correlation factor S is zero, which means the pixel in F subset exactly coincide with those in G 

subset, hence the solution is exact. This is never possible due to internal and external noises and the 

error during the execution of program, which means it is not possible to the grabbed second image is 

exactly the same as the first image. Therefore the Newton Raphson method produces a solution 

when close to 0 or when the change in. 's' is close to O. (The user can set the tolerances) 

4.4 Theory of Newton-Raphson Method 

Newton-Raphson method is for calculation of correction terms which to improve the initial guess. The 

correction for each guess of the location of the F subset in subset G is given by 

4.4 

Where if ~ is the translation and gradient values indicating the location of the F subset in subset G 

or the translation and rotation between imagine # 1 and image #2 

u 

V 

au 
ax 

p. = au 
4.5 -I ay 

Ov 
-
ax 
Ov -ay 

45 



Then the Jacobian matrix is made up of the first order derivative of the correlation function's' with 

respect to each term in Pi and H(Pi) is the second order derivatives of the correlation function with 

respect to each term in Pi. However, the error is found in the row 4 and row 5 in the published paper, 

the correction has been made and shown in this paper. 

as -
au 
as 
-
fJv 

as 
a(au) 

ax 
V(PJ = 

as 
a(au) 

4.6 

ay 
as 

a(fJv) 
ax 
as 

a(fJv) 
ay 
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RCP;) = 
028 028 028 028 028 0 28 

EJuou ' ouOv' 8u8C 8u) , 8u8( 8u) , 8u8( Ov) , 8u8( Ov ) 
8x ay 8x ay 

828 828 828 828 828 828 

Ov8u' Ov8u' Ov8(EJu) , Ov8C OU ) ' 8vO(8v) ' Ov8C Ov ) 
8x ay 8x ay 

828 a28 828 828 828 828 

8C 8u )8u ' 8C 8u )Ov' 8C 8u )8C 8u ) , 8C 8u )8C Ov) , 8C 8u )8C Ov) , 8C 8u )8C Ov) 
8x 8x 8x 8x 8x ay ox 8x 8x ay 

828 828 028 828 828 028 

8(8u)EJu ' 8(8u)Ov' 8(8u)8C8u ) , 8(8u)8(Ov) ' 8C 8u )8C Ov) ' 8CEJu)8(Ov) 
ay ay ay 8x ay ay ay ax ay ay 

828 828 828 828 828 828 

8(Ov)EJu' 8(Ov)0v' 8COv)8(EJu) ' 8(Ov)8C Ov ) ' 8(Ov)oC Ov ) ' 8C Ov )8(0v) 
8x 8x 8x 8x 8x ay 8x ax 8x ay 

828 828 a28 a28 a28 028 

8(8u)8u' 8(Ov)0v' 8C Ov )8C8u ) ' 8C Ov)8C Ov)' 8(Ov)8(0v) ' 8(ay)8C Ov) 4.7 
Ov ay ay ax ay ay ay 8x ay ay 

Once the correction terms are calculated, they are added to their respective U, V and the gradient 

terms to produce new corrected U, V and gradient values. This iteration of adding the equation to U, V 

and gradients is repeated until a close enough answer is produced. 

4.5 Proposing An Alternative Searching Tool: Genetic Algorithms Method 

Genetic Algorithms (GA) [44] is search algorithms based on the mechanics of natural selection and 

natural genetics. They combine survival of the fittest among string structures with a structured yet 

randomized information exchange to formal search algorithm with some of the innovative flair of 

human search. 
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Traditional optimization and search methods involve direct search methods which seek local optima 

by hopping on the function and moving in a direction related to the local gradient( hill-climbing or 

descending) such as Newton-Ralphson method. These methods have strong reasoning because they 

use calculus as the driving tools. The advantage of using genetic algorithms is that it is more robust in 

optimizing discontinuous and noise functions which have rapidly changed points. 

GA uses statistics as the driving tool to perform optimization and search methods. The rule of thumb 

governed in GA is that only the best will stay and the worst will die off. The starting point is selected 

randomly from a population of points not a single point. Unlike the traditional methods which use a 

lot of derivatives and other derivatives and other auxiliary knowledge to perform searching, GA uses 

the objective function directly to perform searching. The type of Direct search can save a lot of 

computation time. 

GA exploits this wealth of information by 1) reproducing high-quality notions acc( tding to their 

performance (reproduction); 2) crossing these notions with many other high-performanc,: notions from 

other strings (crossover); 3) occasionally flip-flopping the genes of each string pair t" create more 

diversity( mutation). 

Applications of GA 

Betallo [44] used GA to synthesize a multiplayer radar absorbing coating that maximize~ absorption of 

an electromagnetic wave over a desired range of frequencies and incident angles. The optimization 

parameters were absorber thickness, permittivity and permeability. 

Michigan State University is doing or have recently done a number of interesting projects, both in 

terms of GA fundamental research and in GA/GP applications, including: automated design. It 

includes research on composite material design and multi-objective design of automotive components 
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for crashworthiness, weight savings, and other characteristics automated design of mechatronic 

systems using bond graphs and genetic programming (NSF) parallelization of GA. 

4.6 Advantage, Accuracy and Limitation of Digital Speckle Correlation 

The advantage ofDSC has been classified in the following: 

I) It provides a contour map of the strains (both normal and shear strain) of the released stress 

rather than at a few points measurement such as the strain gage method; 

2) It is simple in set-up, real-time basic and quick in obtaining the result; 

3) Human judgment and processing time can been reduced by the accuracy and speed of the 

computer error is eliminated by computer; 

4) It can be applied in the complex geometrical shape; 

5) It also can be applied in the area to which people cannot be access such as gas filled 

chambers, extreme high or low temp environment; 

6) Shear strain can be obtained 

Accuracy ofDSC can be analyzed as follow: comparison of the results obtained by the DSC technique 

with the actual ones it is proved that the technique works accurately with the maximum error of 5 per 

cent. The error can be divided into two groups: systematic and random. Systematic error can be an 

error involved in using a 2D method to measure 3-D displacement field of an object. 

The discrete spatial resolution of the CCD camera, the interpolation scheme used to obtain the grey 

level between two pixel, the displacement shape function adopted for the image subset in searching 
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for the maximum correlation between two images are the error of the t~chnique itself. Since the 

systematic errors are repetitive in nature they may be compensated by calibration scheme. Random 

error can be an error such as errors in pixel readouts and they are also called noise. And it has been 

noted that limitation ofDSC is that this method is still a 2-D measurement and is limited in the area of 

3-D field. 

Conclusion 

In this section, theory, set-up and applications of DSC has been introduced and discussed. One of 

option search method Genetic Algorithm is suggested. Finally, the advantage, accuracy and limitation 

of DSC are presente 1. The overall picture of this technique is presented for the application in the 

preceding chapters. 
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Chapter 5 Residual Stress 

Using Whole 

Measurement 

Determination 

Field Strain 

When the material from a residually stressed body is taken away by drilling a hole, the stress fields in 

that specific area are released or relaxed. This changes the stress fields in the immediate surrounding 

region. Because the hole' surface is a free surface, all the shear and nonnal stress, perpendicular to the 

hole' surface are zero. This causes the local strain on the surface of the test object to change 

correspondingly. [46] 

Assumption is made by the ASTM E837 that "This test method covers the procedure for detennining 

the residual stresses near the surface of isotropic linearly-elastic materials" and "where the stress do 

not vary significantly with depth and do not exceed one half of the yield strength". 

The residual stress cr 1 and cr 2 are specified in the (x, y) Cartesian system, and its equivalent polar 

system (r, e). The hole drilling stresses cr x' cry, 1" X,Y are specified with the (X,Y) system and its 

polar equivalent (R, e). The original stress cr state is defined by the transfonnation equations for 

plane stress. Visually, it is shown in Figure 5-1 as follows: 

Hence the biaxial initial stress state of the residual stress (before the drilling of the hole) expressed in 

( r, e ) system is given by: 
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Figure 5-1 Schematic of Initial Stress Definition 
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Hence the biaxial initial stress state of the residual stress (before the drilling of the hole) expressed in 

( R, e ) system is given by: 

52 



(j' + (j' (j' - (j' 
(j' = 1 2 + 1 2 Cos2(E> - E> ) 

R 2 2 p 
5.1* 

(j' + (j' (j' - (j' 
(j' = 1 2 _ I 2 Cos2(8 - 8 ) 

e 2 2 p 
5.2* 

(j' - (j' 
't = - I 2 Sin2(E> - 8 ) 
~ 2 p 

5.3* 

After the hole is drilled, the resulting stress field (j''' is the Kirsch solution for a biaxial loaded infinite 

plate. The Kirsch solution in (r, e ) system is given by: 

5.4 

5.5 

5.6 

The Kirsch solution in ( R, 8 ) system is given by: 

2 3 4 4 2 
" _ (j'1 + (j' 2 (1 a) (j'1 + (j' 2 (1 a a)C 2(C\ C\) 

(j'R - -- + +----- os ~-~ 
2 r2 2 r 4 r2 P 5.4* 

23 4 
" (j'1 +(j'2 a (j' -(j'? a 

(j'e = (1+-2)- I - (1+-4 )Cos2(8-8 p ) 

2 r 2 r 
5.5* 

5.6* 

By principal of super-positioning, subtracting the residual stress system before the hole is drilled ( (J ), 

from the residual stress system after the hole was drilled ((j''') yields the hole drilling released 
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stress( 0"'), which can be shown graphically as follows Figure 5-2: 

Figure 5-2 Schematic of Superposition of Residual Stress 

-- -
A fler Hole Drilled Before Hole Drilled R elt.led stress 
K irscb Solution 

Mathematically, this is shown in equations as for the ( r, e ) system: 

5.7 

2 3 4 
'_" _ 0" 1 + 0" 2 (a) 0" 1 - 0" 2 ( a )C 2A 

0" - 0" - 0" - - - - -- OS \J 
e e r 2 r2 2 r 4 5.8 

, .. 
T rB = T rB - T rB = 5.9 

And for the ( R, e ) system, 

2 3 4 4 2 
, .. _ 0" I + 0" 2 (a ) 0" I - 0" 2 ( a a)C 2(a a) 

0" = 0" - 0" - - - + -- - -- OS ~ - ~ 
R R R 2 R2 2 R4 R2 P 

5.7* 

2 3 4 
, ", 0" 1 + 0" 2 (a ) 0" I - 0" 2 ( a )C 2(a a) 

0" = 0" - 0" = - - -- OS ~ - ~ e e e 2 R2 2 R4 P 
5.8* 

5.9* 

54 



The raw data or known data are two normal strain components ( 8 x , 8 y ) and a shear component of the 

release strain. The data are measured under the (X,Y) Cartesian system and its equivalent (R, e ) 

system. The two principal residual stresses «(j 1 ' (j 2) and the orientation of the residual stress field 

e p with respect to the pre-determined axis (X,Y) are the desired or unknown values. 

Now it comes to the step to solve the residuals stress. From the definition of maximum shear stress: 

The average stress is defined as: 

For the sake of simplification purposes: 

A=~=~ 
r R 

By adding equation 5.7* and 5.8* thus: 

Substituting equation 5.9* into Al yields: 

By subtracting equations 5.7* and 5.8* 

5.10 

5.11 

5.l3 
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5.14 

From equation A 1, by substitution, it comes to: 

5.15 

As a result, the residual stress components "C m ,(j a' 8 p are now all written in term of the hole 

drilling released stress components in the (R, 8 ) system: 

5.16 

5.17 

C\, C\, 1 -1 : ,"C'Re 
o = 0 - - tan - --=-'""--

p 2 cr~12-3A?) 
5.18 

But since the measured experimental values are in the (X,Y) system, it is necessary to rewrite the 

released strain components in terms of (X,Y) system. This is to be done by relating the released 

strain components in the: (R, 8) system to the (X,Y) system by strain transformation equations. 

By 2-D Hooke's laws, i.5 and A 7 are rewritten in term of the released stra ns. 

, 
cr. 

"C =- = 
m 2A?Cos2(8 -8 ) 

, P 

5.19 

3,1, 3E, E 1 .. 
(ja = --(j +-(j =----e +---(ve +e ) 

4 a A? e 41- V a 1- v 2 A? R e 

E 1 {[ 3 2 J' , } =--- --(1+v)A. +2 e -(1-v)e 
1- v2 ..1.2 4 a R 

5.20 
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o 0 1 -l[((l-V)J Y~e ] 
>< p = >< -"2 tan 

(l+v) (2-3).})8~ 5.21 

" 
So far, the residual stress components are related to the released strains in the (X,Y), from the 

following strain transformation equations: 

I , I I I 

, 8 +8 8 -8 y. 8 = x y + x y Cos20 + .2.'LSm20 
R 2 2 2 

I I I I , 

, 8x +8y 8x -8 Y 
8 _ = - y Cos20 _.2.'L Sin20 

e 2 2 2 

Y~e = -(8~ - 8~ )Sin20 + y~yCos20 

So equations A8 and AIO come to: 

E &~ 
Till =-

2(l-v) Cos2(0-0
p

) 

5.22 

3 , 1 , 
eJ = --eJ +-eJ 

\ a 4 a /L e 
5.23 

3 E , E (' ') = ----& +-- u& +& 
41 a 1 2 R e -u -u 

5.24 
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! 

= e-ktan-1r(-:-_V) -(e~ -e~ )Sin2~+r~COS2ej 
+v (2-3A?) ex +ey 

2 

= e -.!. tan -I r(_1-_v)-,-(8-::.~_-_8...:..~-'-)S_in_2_e_-.:...r.:.:.:.~_C_OS_2_el 
2 l+v (%A.2-1)(8~+8~) 

Hence the initial principal residual stresses are obtained as 

CJ2 = 'm + CJa 

CJ1=CJa-'m 

E 1 ([ 3 2] 8~ + 8' (1- v) [, , " r'xr]J CJ1 =--2 -2 --(1+v)1 +2 y --- 8x +8 +(8x -8y)Cos2E>+-Sin2E> + 
I-v 1 4 2 2 y 2 

E 8 a 

2(1- v) Cos2(E> - E> p) 

E I ([ 3 2] 8: + 8~ (1- v) [, , " r~]J CJ2 =--2 -2 --(1+v)1 +2 --- 8x +8y +(8x -8y)Cos2E>+-Sin2E> -
I-v 1 4 2 2 2 

E 8 a 

2(1- v) Cos2(E> - E> p) 

Conclusion 

Based on the Kirsch solution and the method of superposition, the unknown residual stress can be 

expressed in the term of released strain components which is obtainable from the DSC method, That is 

to say, once DSC is operated and the released strain component is measured, just plug in the provided 

equation, the residual stress can be determined. 
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Chapter 6 DSC Measurement Factors 

Analysis and Determination 

It has been known that the hole drilling method is rapid and versatile. Still, there are some limitations 

and the accuracy is needed to be examined and improved. Therefore, details of influential parameters 

and factors will be discussed upon which the conclusion is drawn. 

6.1 DSC measurement range determination 

One of the accuracy concerns of the hole-drilling method is directly related to the ability of locating 

the hole accurately in the centre of the rosette. As an example, if the hole is no more that 0.001" off 

centre, the residual strain error is less than 3%. In the practice, it will be more than that. Thus, lots of 

care should be taken in order to have an accurate result when applying hole-drilling method to 

measure the residual stress. 

The standard hole drilling method procedures including measurement range and depth of the drilled 

hole in ASTM 387 will be examined. Afterward, it will be applied to DSC method because the two 

methods essentially same, except for the different strain-capture tools. 

The common procedure for measuring the relieved strains is to mount three resistance strain gages in 

the form of a rosette around the site of the hole before drilling. Such a rosette is shown schematically 

in Figure 6-1, where three radically oriented strain gages are located with their centers at the radius R 

from the center of the hole. 
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Figure 6-1 Schematic of Strain gage 

- a~ • +a 

Although the ang1~s between gages can be arbitrary (but must be known), a 45-degree angular 

increment leads t. the simplest analytical expressions, and thus has become the standard for 

commercial residm . stress rosettes. 

In the DSC measur ment, the ideal range area should be, logically, a radical band an -und the drilled 

hole, while the locat on range should be theoretically and experimentally found. 

The relieved strains generally decrease with increasing distance from the hole increases. Because of 

this, it is desirable to measure the strains close to the edge of the hole in order to maximize the strain 

gage output signal. Against the will, plasticity effects also increase in the immediate vicinity of the 

hole. These considerations, along with practical aspects of strain gage design and application, 

necessitate a comprcmise in selecting the optimum radius (R) for gage location. Analytical and 

experimental studies t.ave established a practical range of 0.3 < r< 0.45 where r = R" I Rand Ro 

is the radius of the hole and R is the radius to the longitudinal centre of the gage. 

So there is the practical range in term of the hole diameter is from Ro 10.45 to Ro /0.3, that is 1.11D 

to 1.67 D, where D in the diameter of the drilled hole. Based on the ASTM E837, there are three types 

of commonly used hole diameters available and shown in Table 6-1 as follows: 
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Table 6-1 Three Types of Hole Diameter 

Type A TypeB TypeC 

l.01mm 2.54mm 2.54mm 

2.54mm N/A N/A 

5.89mm N/A N/A 

To be noted that in the ASTM, the minimum recommended hole diameter is 60% of the maximum 

allowable diameter. In light of the different material properties, the diameter of the hole can be 

different. In order to avoid to missing the possible value, it would like to cover more range area than 

the smaller one. Therefore, here only the maximum value is considered. 

Based on the calculated range, it is possible to calculate the specific range with respect to one specific 

hole. Table 6-2 contains the both hole diameter and recommended range in unit of millimetre. 

The table can be used as recommendation, while as to the specific problems, the range can be adjusted 

on the trial and error basis. 

Table 6-2 Recommended Hole Diameter and Measurement Range 

Type A DSC Type B DSC Type C DSC 

Diameter measure Diameter measure Diameter measure 

Range to Range to Range to 

the centre the centre the centre of 

of the of the the hole 

hole hole 

1.01mm 1.12-1.69 2.54mm 2.82-4.24 2.54mm 2.82-4.24 

2.54mm 2.82-4.24 N/A N/A N/A N/A 

5.89mm 6.54-9.84 N/A N/A N/A N/A 
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6.2 DSC Measurement Depth Determination 

In general, the large holes are recommended because of the increased of sensitivity. Under an ideally 

condition, it is expected to drill a large hole, the sensitivity can be improved greatly. However, due to 

the nature of the method, it is still semi-destructive which means" It should be applied only in those 

cases either where the specimen is expendable or where the introduction of a small shallow hole will 

not significantly affect the usefulness of the specimen." [1] Therefore, it is possible to drill the hole as 

small as possible to meet this requirement. Consequently, it comes to the problem how to accurately 

determine the value of hole. 

The general variation of relieved strain with depth is illustrated, where the strains have been 

normalized, in this case, to 100% at Z I D= 0.4. The data shown above include experimental results 

from two different investigators demonstrating the manner in which the relieved-strain function is 

affected by the ratio of hole diameter to gage circle diameter (D" I D). Both cases involve uniform 

uniaxial (plane) stress, in specimens which are thick compared to the maximum hole depth. The 

curves plotted in the figure are considered representative of the response to be expected when the 

residual stress is uniform throughout the hole depth. 

The above mentioned range is related with the hole radius. Thus it is highly possible that the empirical 

result also can be used in the DSC method because the study field is the same except the different 

measure method. In order to maximize the strain signals, the hole is normally drilled to a depth in 

corresponding to at least Z I D= 0.4 (ASTM E837 specifies Z I D= 0.4 for the maximum hole 

depth). 

Once the range is determined, the possible hole depth range can be obtained as follows in Table 6-3: 
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Table 6-3 Hole Depth Range Of Three Different Gages 

Type A DSC Hole Type B DSC measure Hole ype C DSC Hole 

Diameter measure depth Diameter Range to the depth iameter measure depth 

Range to range entre of the hole range Range to range 

the centre the centre of 

of the hole the hole 

1.01 1.12-1.6 0.45- 2.54 2.82-4.24 1.13- .54 2.82-4.2 1.13-1. 

9 0.68 1.70 4 70 

2.54 2.82-4.2 1.13- N/A N/A N/A N'/A N/A N/A 

4 1.70 

5.89 6.54-9.8 2.60- N/A N/A N/A ~/A N/A N/A 

4 3.94 

The unit for each value in the table is millimeter. Gages types please refer to reference 2. 

Although the argument has been raised that a blind hole was applicable, while the theory was 

developed for a through hole, which is not appropriate. To the author's understanding, it is 

applicable to apply this method on the blind hole because the higher value residual stress is close to 

the surface and the released strain is in the decreasing trend as the hole is drilled deeper, which can be 

proved theoretically and experimentally. So the close to the surface portion is under study so far. 

Furthermore, by the theoretical and experimental method, even as to the sample which with residual 

stress uniform distribution and the released strains are measured by step by step hole drilling method. 

It shows the measured value of the first step is not the same as that of the followed step or the third. 

The deeper the hole is drilled, the smaller the value can be measured, which is the nature distribution 

of the residual stress. 
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Due to the various application and complex shape of the specimen, the blind hole has more 

applications than the through hole drilling. Therefore, it is feasible to apply this calculation in the 

blind hole drilling method. 

6.3 Residual Stress Principal Direction Determination 

From the strain graphics, Due to the nature of r xy and the equation [47] 

Where A = (1 + V)(6A
4 

-4A2 ) 
E 

6.1 

when () p equc: Is to 0, 90, 180 or 270 degree, r xy equals to 0, which is along with the principle axis. 

And the oriental ion of the residual stress field with respect to the pre-determined axis (X, Y) are the 

desired. This is tgreeable and can be seen from the experiment result. 

6.4 Convergence area in the stress graphics 

It can be found that the convergence of stresses coming to the relative constant value between 140 and 

160 pixels in all principal stress graphics which are referred from reference 47 . The graphics show 

principal stress verses distance from hole. And this range is taken as to be the value to be sought. Here 

comes the question why and how people choose it in between 140 and 160 pixels. From the obtained 

stress graphics, it has been found they are all different patterns to some extent. However, from each 

graphic it is noticed that there is a trend which showing the calculated values begin to converge and 

then showing the scattering phenomenon. So it has been taken as the specific period under study. 

The reason that it comes to scatter after certain distance or value can be explained that the relieved 

stress is inverse to the distance to the hole centre. The uneven and unpredictable value appeared before 

the convergence can probably be explained that due to the plasticity effect when drilling the hole and 
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the influence from the material itself. 

Discussion 

In the part of DSC measurement factors determination, it is known the DSC measurement range 

determination, DSC measurement Depth determination, e p determination and convergence area in 

the stress graphics. It should be noted that it can be achieved by DSC method a whole field of value in 

form of contour map compared to the strain gage that only single value can be measured. Therefore, 

the shortcut to find the most significant value in order to reducing the relatively great calculation is 

needed to be done. 

In the hole drilling method, the different drills are provided by ASTM. The feature of them is 

discussed. In aiming to drilling the smallest hole, it is proposed by author laser drill can be used. By 

taking advantage of the laser, the method can be easily control special in the step by step measurement, 

greatly reduce the diameter of the hole and off-centre tolerance can be minimized substantially 

compared with other drills. Consequently, the related factors such as measurement range and hole 

depth are needed to carefully proceeded so as to get the accurate result. 

The current application area of the DSC method is limited by its set-up meaning only can be 

performed in the lab. Comparing to the standardized method such as hole drilling method, it can be 

implemented on site which improves the feasibility and bring the diversity. From the history point of 

view, along the knowledge and technology improvement, no wonder it is expectable to see the 

portable DSC appearing in the working front line. 

6.5 Full Coverage of Measurement Field 

It is desirable to ensure r -'C'- occurring when measuring. When there is a gap between the two 

neighboring graphics, the possibility exists that r -,:v passes right through the gaps, which means it 

can result no r xy value obtain from the experiment. This special case can be shown simplicity as 
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followed in Figure 6-2: 

Figure 6-2 Missing Yxy Condition 

Sample Area 

, . 
• 1. 

III_ ,AI 

So it is recommend by author that it can have the four graphics overlaps to each other in order to avoid 

of the above- mentioned situation. The recommended one is shown below Figure 6-3: 

Figure 6-3 Recommended Data Gathering Graphic 
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Conclusion 

When applying DSC method in measuring the release strain, then determining the residual stress 

through the relevant equations, there are many factors needed to be considered. Because of natural 

feature of the hole drilling method itself, the measurement dimension such as the distance to the hole 

center and drilling depth are to be well-calculated and optimized. The ultimate goal is to provide 

assistance and help for the users, minimize the error and mature the method. 
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Chapter 7 Analysis and Discussion 

Based on the proceeded chapter work, it has been established the relationship between the released 

strains and the residual stress. For the purpose of convenience, they are herein presented again. 

r = m 
E 

2(I-v) Cos2(e-e p ) 

E 1 ([ 3 2 J' ) , () a = 2 -2 - -(1 + v}"l + 2 & a - (1 - v) & R 
I-v 1 4 

t::\ _t::\ 1 _J[(l-V)(&~ -&~)Sin2e-r:rrCOS2el 
~ -~--tan --

p 2 1 + V (3 12 1)' , 
-/1, - & +& 2 X Y 

It can be found that (}J - () 2 = 2r m , from the equation 7.1, for the purpose of simplicity, 

N __ ~ E 1 
Where J-

2 V 12 cos2(e-e ) p 

Also from 7.3, it comes 
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7.3 

7.4 



C\ C\ 1 -I (1- V) (£~ - £~ )Sin28 - r:rrCos28 
~ =~--tan --

p 2 1 + V (3 ')2 1)' , 
-/I, - £ +£ 2 X y 

2(8 -8 p) = ~tan-I[(I-V) (e~ -e~ )Sin28 - r~COS28l 
2 1 + v (3 12 1)' , 

-/l, - e +e 2 x Y 

Perfonn tangent function on each side, 

tan2(8-8 )= I-v (&'~ -e~)Sin28-r~Cos28 
p 1 + v (3 ')2 1)' , 

-/l, - e +e 2 x Y 

, "O+v) (1.5A,2 -I)tan2(8-8 p )(e: +e~) r = tan 2e( e - e ) - --'-----'---------=--------'---
xy x Y I-v cos2e 

7.5 

cr j +cr2 Furthennore, it is known that = cr 
2 a 

From equation 7.6, 

crl +cr2 E 1 ([ 3 2 ]e' +e', O-V)[, , " r'xt]J 
---'----"-=--2 -2 --(1+v)A, +2 x .> --- ex +ey + (ex -ey)Cos28+-Sin28 

2 I-v A, 4 2 2 2 

Clear up and i: -e.:, can be expressed in the following, named 7.6: 

, , 1 {(e: + e;,){2-0.75(1 + V)A,2} A,2(1 + v)(cr j +O-?) (' ') . 2t:A ' } e - e = . . - - - &' + &' - sm ~ r 
x y cos 28 1- v E x Y xy 

... 7.6 

Now substitute equation 7.5 into to 7.6 and re-arrange, it comes: 
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" (B~ +B~){2-0.75(I+v)A?} A?(1+V)(O"l +0"2) , , 
& - & = COS 20 [ - (B + & ) + 

x Y I-v E x Y 

(B: +b'y' )(1+V)(1.5A? -I)tan20tan2(0-0 ) 
p ] 7.7 

I-v 

Take equation 7.4 into 7.7 and it is named the c1ear- up equation 7.8, shown as follows: 

" 0"1 - 0"2 {2 - 0.75(1 + V)A?} + (1 + v)(1.512 -I) tan 20 tan 2(0 - 0 p) 
& -B = cos 20 [~-.::... { -

x Y N I-v 
1 

7.8 

The coming stt p is to sum the equations 7.4 and 7.8, at the mean time, take the expression of N j 

back, after deal up, yielding the following equation: 

, 
[; = x 

,? (1- V)(O"I -0"2)12c2(0 - 0 p) 
-- . 

E 

{2 - 0.75(1 + v)12} + (1 + v)(1.512 -I)tan20tan2(0 - 0 p) . 
{I + cos 20[ -I]} 

I-v 

, 
From 7.4, easily it can be determined By as following: 

, 
& = y 

A?(1-V)(O"I -0"2)A?c2(0-0 p ) 
- . 

E 

{2 - 0.75(1 + v)12} + (1 + v)(1.512 -1) tan 20 tan 2(0 - 0 ) 
{I:.... cos 20[ p -I]} 

I-v 
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7.10 

. . 
Up to now, & x' & y have been detennined. 

Just take the value into equation 7.4, it comes to equation 7.11 

. sin 20 cos 2(0 -0 p)(O") - 0"2)A,z (1 + v){l- O.75A? + (1.5A? -1)tan20tan2(0 - 0 p)} 
r~=-4------------~---------------E--------------------------~ 

2 tan 20(0") + 0"2)(1 + V)A? 2(1 + V)A? sin 2(0 - 0 p)(1.5A? -1)(0") - 0"2) 
--------~--~~--~-+----------------~----------------

E Ecos20 7.11 

So far it has been established the relationship between the released strain and the principal stress 

components in the polar coordinate with the variables of A, and e. A, is the result of air, in 

which a stands for the radius of drilled hole; r stands for the distance from measured field to the hole 

center. 

. . . 
By using MathCad 8, the graphic has been plotted & x' & y ,r xy in term of A, and e. It is noted 

that when e equals to e p or 90 degree different to e p' the & ~ , & ~ come to the greatest 

magnitude, while r ~ is zero. For this certain condition, its graphic is shown in Figure 7-1 enclosed 

which shows the greatest magnitude including plus and minus signs comes from e equals to e p or 

90 degree different to e p • 
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Figure 7-1 

The graphic show the change of released strain 

with respect to lambda (resulting value of drilled hole radius over distance from 
hole center to measurement field margin)and theta, which is in polor coordinate. 

The specific conditions are given as follows: 
Radius of drilled hole is a= O.Olm, 

u= 0.3, 

E = 100, 
11easurementrange 
Theta changes from -90 degree to 90 degree, 
Lambda from 0.5 to 0.75, 
Sigma 1=0.5, 

Sigma 2=0.01, 

Theta p is 0 degree 

It shows the greated magnitude comes along the principle direction. In this specifice 

condition, it is 0 degree. 

This axial 
shows 
resul1:ing 
value of' 
released 
s1:rain 
value.. The 
10... end 
presen1:s 1:he 
grea1:es1: 
aagni 1: ude .. 

The1:a is 
o 
degree. 

30 
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Analysis Part I 

Firstly, in the coming experiment when determining value of () p , it has been known that along that 

() p direction or the principal direction, it can obtain the greatest magnitude value of &'~, &'~ and 

zero value of r:rr. When calculation, rather than plugging three different values &' ~ , &' ~ , r:rr into 

the equations in determining the residual stress component such as 0'1,0'2' only two values of 

, , , 
&' x' &'y are suffice to obtain 0'1> 0'2 because of r xy is zero at the moment. By doing so, the 

cost of calculation has been saved and it is one simple and consist way in determining the residual 

stress. 

Secondly, there are many random errors existing in the DSC method. It is known that each of them 

make the contribution to the whole error system, while none of them has resulted in the major 

influence in the technique. Based on the knowledge of statistics knowledge, by comparing the 

greater and the smaller magnitude values, the error percent generated from greater magnitude is lesser 

than that of the smaller magnitude values. Therefore, from the error analysis point of view, the best 

way to reducing the level of the random error to the experiments result is to. take the greatest 

magnitude for calculation. Based on the above analysis, the conclusion is drawn that determination of 

() p can both benefit to the reducing the calculation and errors generated from the system. 

Analysis Part II 

From the above analysis, initially it has been determined the principle direction of the residual stress 

for certain sample. Then, it is possible to rotate the identical specimen to that particular degree. When 

the proceeding hole is drilled, it is confidently expected that the residual stress principal direction is 

aligning with the system coordinates and the greatest magnitude value can be achieved along the 

direction. 
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Now it can be transfonned from polar coordinate of the released strains and the residual stress 

equations into Cartesian coordinate, it can be expectable that it is capable to give us the visual contact 

that the relationship between the residual stress and released strain with the aid of Math Cad 8. 

The equations shown below provide the transfonnation from the polar coordinate to the Cartesian 

coordinate. 

r=~x2+y2 

B=tan-I y 
x 

7.12 

7.13 

So when plugging the above equations 7.12 and 7.13 into 7.9, 7.10 and 7.11, it comes to equation 

,. , 
[; x' [; y and r xy in tenn of x and y in Cartesian system. 

Further, from the previous chapter's conclusion, it is known that the ideal hole radius. Here for 

example r = 1 mm, and the measurement range is chosen according to the optical range which is 

discussed in the previous chapter. 

By using MathCad 8, based on the above derived equations, in Cartesian coordinates the visual 

contact has been established, referring to Figure 7-2 enclosed, the function of the released strain 

components [; ~ , [; ~ , r:rr in tenn of the residual stress components 0"1' (J' 2 • 
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Figure 7-2 

The graphics show the values or patterns of released strain change 

with respect to changing of residual stress ratio. 
The specific conditions are given as follows: 
Radius of drilled hole is a::: O.Olm, 

Principle direction theta p is chosen as 0 degree, 
u=0.3, 
E= 100, 

Range of Measurement Area 
X direction is from 0.2m to 0.6m, 
Y direction is from +0.25m to -0.25m, 
Sigma 1=0.5, 
Sigma 2=0.25 , 
Th~..residual stress ratio of2:1 in the first grpahic, ratio of5:1, 10:1 

and 20: 1 in the second, third and fourth graphics. 
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Intentionally by changing the ratio within the reasonable range, correspondently the contour map 

changes. Please refer to Figure 7-2 enclosed for different ratios and the graphics respectively. The 

graphics show that under the condition of the identical property samples and the same distance from 

the measured field to hole center on the right side for example, the patterns of the released strain vary 

correspondently when the principle stress ratio changes. 

Furthermore, once the certain pattern change can be noticed and concluded, at the time of a fresh 

experiment is to be done, it can get to the ideas of the principle stress ratio which can be determined 

from the released strain patterns. It can provide the way to better understand the meaning of the 

released strains graphics. 

Conclusion 

In this chapter, by re-arranging the previous equation, it has been set up relationship between the 

released strain and residual stress. By using MathCad 8, the visual contact can be made. Furthermore, 

by acknowledging the understanding the change of contour map with the residual stress ratio, the 

understanding of residual stress and the released strain can be done. 
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Chapter 8 Conclusions 

Extensive case studies have been examined and analyzed, so as to show that residual stress can be 

induced intentionally and unintentionally. As to determine the residual stress, various quantities and 

qualitative methods have been introduced, which can be distinguished between destructive techniques 

and the non-destructive techniques. 

Digital Speckle Correlation (DSC) is a computerized method which determines the displacement, 

strains and consequently calculates the stress. The advantage of using DSC is shown and the limited 

of the method is discussed as well. 

As to the DSC method, the parameters and factors including range determination, depth determination, 

principal direction determination, convergence area in the stress graphics and full coverage of 

measurement field have been examined. Further, the recommendation is given so as to provide the 

better solution for the method. 

Based on the Kirsch solution, the equations related between the biaxial residual stress to the released 

strain components have been derived. Consequently, the relationship between the released strain and 

residual stress has been established. 

With the aid of MathCad 8, it is acknowledged that that determination of principal direction can both 

benefit to the reducing the calculation and to the error brought to the system. Further, based on the 

visual contact to the changed patterns in the graphics when the residual stress ratios change, it can 

provide the way to better understand the meaning of the released strains graphics. 
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