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Abstract 

In this work, a new numerical framework is proposed and implemented to simulate acoustic wave 

propagation in 3D viscoelastic heterogeneous media. The framework is based on the 

elastodynamic wave equation in which a 3D second-order time-domain perfectly matched layer 

(PML) formulation is developed to model unbounded media. The numerical framework is 

discretized by a finite difference formulation and its stability analysis is discussed.  

The proposed numerical method is capable of simulating 3D shear and longitudinal acoustic waves 

for arbitrary source geometries and excitations, together with arbitrary initial and boundary 

conditions. After validation of the framework, it was used to simulate the propagation of 

ultrasound shear wave in high intensity focused ultrasound (HIFU) induced thermal lesions located 

within soft tissue. The parameters in these simulations were obtained from standard double-

indentation measurements of the viscoelastic parameters of normal and thermally coagulated 

chicken breast tissue samples. A HIFU system was used to induce thermal lesions in tissue.  

In this study, a new elastography procedure was also introduced to differentiate between the 

normal and HIFU induced thermal lesions. This method is based on time-frequency analysis of 
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shear wave propagation within the tissue. In the proposed method, the Wigner-Ville distribution 

has been used as a time-frequency analytical technique to detect the location of shear wave 

propagating within the tissue, and to estimate the shear speed of the wave as well as its center 

frequency and attenuation coefficient. This method was applied to the acoustic wave propagation 

simulation results of the HIFU thermal lesion. It was finally used to estimate the local viscoelastic 

parameters of the medium. It was demonstrated that the proposed method is capable of 

differentiating the thermal lesions from the normal tissue based on their viscoelastic parameters. 
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Chapter    1 

Introduction 

In this chapter, the motivations of this thesis study are first introduced. Then the goals and the 

specific aims are listed and briefly explained. The contributions of this research are also described 

and finally an overview of the dissertation is presented. 

1.1. Motivation 

There are various applications of ultrasound in medicine, industry, and science; and they have been 

rapidly expanding in the past few decades. There is a wide range of non-medical applications of 

ultrasound such as seismology applications [1], [2], underwater findings, navigation systems, 

ultrasound welding and flaw detection [3]. Moreover, many research and development works have 

been carried out in the field of ultrasound in recent years to understand and develop its applications 

in medicine and biology [4]. There are many biomedical applications of ultrasound ranging from 

medical diagnosis and imaging techniques [4] to medical therapeutic methods [5].  

The simulation of ultrasound wave propagation and its interaction with different types of materials 

could be a powerful tool for researchers and inventers to develop and improve new ultrasound 

techniques and methodologies. In this dissertation, an ultrasound wave propagation simulation 

method has been proposed based on the elastodynamic wave equation for heterogeneous and 
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homogeneous isotropic media. The proposed method is a comprehensive simulation framework 

which could be very beneficial to avoid time-consuming and expensive ultrasound experiments 

and the try-and-error approach in the design and implementation of ultrasound applications in 

different fields.  

One of the recent applications of ultrasound in biomedical imaging is elastography. This imaging 

technique provides information about the local stiffness of soft tissue through analysis of 

ultrasound wave propagation inside the region of interest and estimation of local elastic or 

viscoelastic parameters of tissue.  

This thesis dissertation is divided into two main parts. In the first part, the focus is to model and 

numerically simulate ultrasound wave propagation; and in the second part, a new approach in 

ultrasound elastography is developed to estimate the viscoelastic parameters of soft tissue. The 

developed method was used toward detection of HIFU thermal lesions in tissue as an application 

in the field of therapeutic ultrasound. 

1.2. Goals and Specific Aims 

The first goal of this study is to develop an algorithm with the capacities in simulating shear and 

longitudinal waves propagation in three-dimensional geometries with any arbitrary source 

geometries and boundary conditions. This method should be capable of simulating elastic and 

viscoelastic inhomogeneous isotropic media with wide range of medium parameters to cover wide 

range of applications from biomedicine to seismology. To achieve this goal, a numerical solution 

of the three-dimensional generalized elastodynamic wave equation has been proposed in this study 

and has been implemented to simulate full wave propagation in inhomogeneous media. The 

numerical solution is based on the finite difference technique and has been implemented in a matrix 
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form. This method has also been applied to the generalized Navier’s wave equation for 

homogeneous applications. To extend the capacities of the proposed method in simulating 

boundless media, a perfectly matched layer (PML) formulation has been implemented in the 

numerical solution to model three-dimensional media with non-reflecting and absorbing 

boundaries. 

The second goal of this study is to utilize the developed simulation tool and model the propagation 

of ultrasound wave in an induced thermal lesion located within soft tissue. The parameters used in 

this simulation is based on experimental measurements of high intensity focused ultrasound 

(HIFU) induced thermal lesions. HIFU is a therapeutic application of ultrasound in which high 

amount of ultrasonic energy can be concentrated in the focal region of a focused transducer leading 

to a rapid increase in the local temperature of the focal region until the tissue thermal coagulation 

occurs.  

The third goal of this study is to propose a novel elastography imaging procedure to differentiate 

between the normal tissue and HIFU induced thermal lesion based on the propagation of shear 

wave applied inside the thermal lesion. In the proposed method, the Wigner-Ville distribution 

(WVD) has been used as a time-frequency analytical technique to capture the simulated shear wave 

propagating in the tissue, to calculate the shear speed of the wave as well as its center frequency 

and attenuation coefficient, and finally to estimate the local elasticity of the medium. The normal 

tissue and the thermally coagulated regions could then be differentiated according to difference in 

their elastic parameters. 

The specific aims of this research can be summarized as the following: 

1- Development and implementation of a three-dimensional full-wave propagation simulation 

with the capabilities in modeling isotropic elastic or viscoelastic, homogeneous or 
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inhomogeneous, single-layer or multi-layer, bounded or boundless media with any 

arbitrary acoustic source. 

2- Introducing and implementation of PML formulation in the proposed acoustic wave 

simulation framework.  

3- Validation of the proposed simulation and utilizing it to numerically model shear wave 

propagation within a HIFU induced thermal lesion surrounded by normal tissue. 

4- Implementation of an elastography imaging method based on time-frequency analysis of 

shear wave signals to differentiate the HIFU thermal lesion from the surrounding normal 

tissue. 

1.3. Main Contributions of the Dissertation 

The major contributions of this work can be summarized as in the following: 

1- Developing a numerical simulation framework to model the generalized 3D full-wave 

acoustic elastodynamic equations including the viscoelastic terms. The model is capable of 

simulating a wide range of applications such as seismological and biomedical applications. 

2- Introducing PML formulations for 3D elastodynamic equations including the viscoelastic 

term. 

3- Simulating shear wave propagation generated from acoustic radiation force in a soft tissue 

including HIFU thermal lesion with elastography purposes. 

4- Introducing a time-frequency analytical method based on the WVD and image processing 

techniques to locate a shear wave propagating in soft tissue and estimate propagation speed, 

center frequency of the wave and attenuation coefficient of the medium. 
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5- Introducing a HIFU thermal lesion detection method based on time-frequency analysis of 

acoustic shear wave. 

1.4. Overview of the Dissertation 

In Chapter 2, the ultrasound and the signal analysis backgrounds used in this dissertation are 

provided. Chapter 2 starts with an overview of the biomedical applications of ultrasound and 

continues with more detailed descriptions of ultrasound elastography imaging modality and HIFU 

therapeutic application of ultrasound. The generalized viscoelastic and elastic wave equations as 

well as the ultrasound background are also presented in Chapter 2. In this chapter, the 

nonstationary signals and the stablished time-frequency analysis techniques are also reviewed and 

the Wigner Ville Distribution is explained in more details.  

In Chapter 3, the proposed method of full-wave propagation simulation is explained. The 

implementation of viscoelastic simulation, PML formulation, and stability conditions of the 

simulation are given in Chapter 3 in details. 

In Chapter 4, the time-frequency analysis of the ultrasound wave is studied and the viscoelastic 

parameters estimation method is described. 

The results and discussions of this dissertation are provided in Chapter 5. In this chapter, the 

propagation simulation method is validated through quantitative comparison of its results with 

other published research works. Then, shear wave propagation through a HIFU lesion induced 

inside soft tissue is simulated. In Chapter 5, the results of WVD time-frequency analysis of the 

ultrasound wave and the estimation of the medium’s local viscoelastic parameters are explained. 

In Chapter 6, the summary of this study and future works are provided. 
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Chapter    2 

Background 

In this chapter, first a brief review of the biomedical applications of ultrasound in diagnosis and 

treatment is provided. The elastography as an imaging modality and the high intensity focused 

ultrasound (HIFU) as a treatment application of ultrasound are reviewed in more details. This 

chapter is continued by reviewing the acoustic wave propagation formulations and their numerical 

simulation techniques. This provides the background review of the ultrasound researches related 

to this thesis study. 

Then, an explanation is provided to show how the acoustic waves can be treated as non-stationary 

signals. The well-known time-frequency methods are described and the WVD method is explained 

in more details. This chapter also provides the basis for the time-frequency analytical method used 

in this research. 

2.1. Biomedical Applications of Ultrasound 

The propagation of ultrasound wave through the biological tissue involves interaction with the 

tissue in different ways. The wave may partially be reflected or scattered in the tissue, or be 

absorbed by the tissue [6]. The reflected and scattered wave echoes from different layers of the 

tissue can be used as the source of diagnostic information and ultrasound imaging. On the other 
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hand, the absorbed wave results in delivery of acoustic energy and can be utilized in therapeutic 

applications. The biological effect of the absorbed wave is mainly divided into two classes of 

thermal and non-thermal effects [5]. In the thermal effects, the acoustic energy results in heating 

the target and rising its temperature [7]. The non-thermal or mechanical effects of ultrasound are 

cavitation, acoustic radiation force and acoustic streaming [8]. The ultrasound wave can result in 

formation of micron-sized bubbles in the field, then their activation by the induced pressure wave 

[7]. At lower intensity levels acoustic streaming is the dominant mechanical mechanism which is 

a unidirectional high‐velocity flow induced by the acoustic pressure [8]. Acoustic radiation force 

is created from the spatial distribution of the acoustic energy density and it is the result to energy 

absorption, scattering, and reflection [9].  

2.1.1. Diagnostic applications of ultrasound 

The diagnostic applications of ultrasound have been started to develop since 1940s when the pulse-

echo ultrasound was used to detect and differentiate tissue structures such as cancer and benign 

cells, and the gall stones. The first B-mode ultrasound images were generated by Howry and Bliss 

and Wild and Reid, independently [10]. The diagnostic applications of ultrasound can be 

categorized as A-mode, B-mode, C-mode, M-mode, continuous-wave Doppler (CW-Doppler), 

pulsed-Doppler, color-Doppler, power-Doppler, elastography, ultrafast imaging, tissue harmonic 

imaging (THI) and contrast-agent harmonic imaging (CHI) modalities [4], [11]–[14]. Brief 

descriptions of these modalities are provided in the following. 

A-mode: In this mode, the ultrasound signal is generated by a transducer and propagated through 

the tissue. Then, the axial echoes from different points of the tissue are displayed as the amplitude 

versus time showing the strength of reflected signals from different distances [4], [13].  
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B-mode: This is a 2D version of A-mode ultrasound signals when an ultrasound image is created 

from multiple A-mode lines. The B-mode imaging is a 2D display of the tissue by representing the 

strength of the echo signals as the brightness of dots (or pixels) in the image. These images scan 

the plane through the tissue normal to the surface of the transducer [4], [13]. In order to make a B-

mode ultrasound image, the scanner must calculate the time it takes for the ultrasound wave to 

travel from the surface of the transducer to the scatterrer and back. This shows the distance of the 

scatterrer from the transducer. The strength of the echo depends on the strength of the transmitted 

signal and the amount of reflection from the scatterer. A brighter point in the image represents a 

stronger reflection which could be from a tissue boundary or from a denser area. Stronger 

transmitted signal could result into a larger depth of wave penetration and a deeper ultrasound 

image. The echo wave is normally acquired by a predefined sampling rate in the scanner.  

In B-mode imaging technique, an array of transducer elements is used. Each element is small size 

transducer that is capable of both transmitting and receiving. The scanner develops a B-mode 

image by focusing the transmitted signal electronically by multiple elements of the array 

transducer, then receiving the echoed signal. A complete image is generated when all transducer 

elements scan the image line by line. This process limits the maximum number of frames that 

could be acquired within a second. 

C-mode: These images represent the received echoes from a 2D plane in a constant depth of the 

tissue normal to the B-mode image plane. These images are produced by moving an  ultrasound 

transducer in the surface of the target and using a gate in order to select only the signals from the 

depth of interest [4], [13].  
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M-mode: In this ultrasound imaging technique, the ultrasound pulses of A-mode or B-mode are 

sent in quick succession to detect the motion of the target; therefore, the reflections from a moving 

boundary are gathered to determine its velocity or displacement [4], [13]. 

Doppler mode: In this category of ultrasound imaging, the Doppler effect is used to measure the 

blood flow or any motion in the body. In CW-Doppler, continuous ultrasound wave is propagated 

through the target along a line to detect the velocity of different points on the line. The velocity 

can be calculated by measuring the changes in the frequency of received signal. In pulsed-Doppler, 

the sampling is done by sending ultrasound pulses in a specified sample volume considering the 

time required for the pulse to travel toward the target and return. In color-Doppler, the velocity 

information is placed on top of a B-mode image in a color coded representation, showing the flow 

direction toward or away from the transducer according to the frequency or phase shifts in the 

received signal. Furthermore, in power-Doppler, the frequency and phase shift of the received 

signal along with its amplitude are utilized to generate the velocity information over the B-mode 

image [4], [13].  

Elastography: This technique was originally an ultrasound imaging method of estimating the 

tissue elasticity by calculating the local displacements of its elements under a given compression 

[15]. Elastography was then combined with the other imaging modalities such as Magnetic 

Resonant Imaging (MRI) and Optical Contrast Tomography (OCT) [16]–[18]. In the conventional 

ultrasound elastography, the target is subjected to a small compression and the RF echo signals are 

acquired before and after compression. After comparing these signals, the stiffness of different 

points along the compression can be estimated. In shear-wave elastography (SWE), the ultrasound 

signal is focused in a point in the target area as the source of shear wave, and the elasticity of the 
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target elements is estimated by calculating the shear wave propagation speed (or pattern) in the 

tissue [19], [20]. 

Ultrafast Imaging: In this imaging technique, a single plane wave is transmitted to the region of 

interest by firing all transducer elements at the same time and then receiving the echoed signals 

from all the elements. This technique increases the number of frames per second into the range of 

5000 – 15000 fps. The theory of ultrafast imaging was introduced in 1970s but it has been first 

developed in a clinical scanner in 2008. This method is based on digital parallel beamforming and 

needs advanced graphical processing units for implementation [21]. 

Tissue Harmonic Imaging (THI): This imaging technique is an application of nonlinear 

ultrasound propagation in tissue. In THI, the spatial resolution of imaging is improved using the 

second or higher harmonic frequencies generated due to nonlinear wave propagation; moreover, 

better visualization of smaller objects is obtained in this technique [4], [11]–[13]. 

Contrast-agent Harmonic Imaging (CHI): In CHI method, the imaging is based on the contrast-

agent harmonics. The harmonics are generated by reflections from the injected micro-bubbles into 

the target [22]. When an ultrasound wave hits a gas bubble, the volume of the bubble is changed 

due to the force from the wave. The changes in the volume result in the generation of harmonics 

reflections. Then the generated harmonics are utilized in the CHI technique to improve the 

resolution of imaging [4], [22]. 

2.1.2. Therapeutic applications of ultrasound 

Therapeutic applications of ultrasound can be categorized as low and high power classes [8]. At 

low power levels, beneficial and reversible cellular effects may be produced, whereas at high 

powers instantaneous cell death is resulted [5]. The low power applications include physiotherapy, 
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bone healing and fracture repair, sonophoresis, sonoporation and gene therapy. On the other hand, 

the high power therapeutic ultrasound in medicine includes lithotripsy, histotripsy and high 

intensity focused ultrasound (HIFU). 

Sonophoresis: It is a process in order to increase the absorption of semisolid compounds in the 

skin by stimulating it with ultrasound waves. Better delivery of drug through the skin is resulted 

by the low intensity ultrasound waves as they increase the micro vibrations in the skin cells and 

the penetration of pharmacologically drugs [5], [23]. 

Sonoporation: This is another application of low power ultrasound in the drug delivery. In this 

method, the permeability of the cell plasma membrane is increased by employing acoustic 

cavitation of micro-bubbles. Then the large molecules of the drug are delivered into the cell for 

various therapeutic purposes [5], [23]. 

Gene therapy: It is a similar process to the sonoporation, but the goal is to deliver some modified 

genes to specific regions of a patient body through increasing the permeability of the cell 

membrane by ultrasound wave [5]. 

Physiotherapy, bone healing and fracture repair: These are the other therapeutic applications 

of low power ultrasound. They are mainly resulted from the periodic nature of the sound pressure 

field and its massaging effect on tissue [8].  

Lithotripsy: This is a technique to break down and damage the stones in the kidney or gallbladder 

by applying high pressure focused short ultrasound pulses to the target stones. The therapeutic 

potential of these pulses is due to the formation of destructive shock waves for the disintegration 

of the stone material without damage to the surrounding tissues [24]. The applied shock waves 

result in generating cavitation bubbles surrounding the target [25]. 
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Histotripsy: In this process, a number of short high intensity ultrasound pulses are focused at the 

region of interest in the tissue, resulting in mechanical fraction of the target tissue. In this 

technique, micro-bubbles, that are produced by the high intensity short pulses, are the source of 

mechanical cavitation in the target [26]. 

High Intensity Focused Ultrasound:  In HIFU, the energy of the focused ultrasound wave is 

converted into the heat energy through the absorption mechanism at the target tissue that results in 

increasing of its temperature [27]. The target tissue is positioned at the focal region of the 

ultrasound transducer. Enough delivery of heat causes the target tissue to be damaged rapidly by 

coagulation necrosis [5], [8], [28]. The HIFU treatment will be described in more details in Section 

2.3. 

2.2. Elastography 

Elastography is a medical imaging modality that maps biomechanical properties of soft tissue from 

its responses to a mechanical disturbance. There is important information hidden in the mechanical 

properties of tissue. The information about the stiffness or softness of tissue in comparison with a 

normal tissue can provide aids to the physicians to diagnose the existence of an abnormality. From 

ancient times, manual palpation served as a source of information about soft tissues in order to 

detect different diseases related to the changes in tissue elasticity. For example, the estimation of 

tissue stiffness provides key information which can benefit in early detection of abnormalities such 

as cancerous tumors [29].  

During the last two decades, many elasticity imaging methods have been proposed and the 

applications of elastography have been expanding very fast in medical diagnostics and treatment 

monitoring. Elasticity imaging methods are emerging as commercial applications. The 
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conventional elastography images the local stiffness of tissue by calculating the local 

displacements of its elements under compression. Elastography has been developed to differentiate 

the abnormal versus normal tissues by estimating the stiffness variations in the soft tissues [20]. 

The main idea is from the manual palpation that has been widely used by physicians for detection 

of abnormalities in different organs. Changes in the elasticity of tissue are generally correlated 

with pathological phenomena [15].  

Elastography has originally developed as an application of ultrasound imaging [15] but it is not 

limited to ultrasound. Elastography techniques have been also developed by other medical imaging 

modalities such as MRI and OCT [30]. The goal of elasticity measurements is to evaluate the 

response of the tissue to the forced displacement or disturbance and to estimate unknown 

biomechanical properties of soft tissue. This method is completely non-invasive and it can guide 

or even replace biopsies from tissue. The common biomechanical properties of soft tissue are the 

bulk modulus, Young’s modulus, Poisson’s ratio, Lame’s first and second coefficients, anisotropy, 

viscosity and poroelasticity [20]. Elastography imaging has been investigated in many organs and 

for many diseases. It has been shown that malignant lesions are generally stiffer in comparison 

with the normal tissue; however, they mostly appear normal in the conventional B-mode 

ultrasound images [15], [31], [32]. 

In general, elastography can be considered as an inverse problem of estimating the biomechanical 

properties of soft tissue by measuring the forced disturbance from a known source of mechanical 

excitation and using an accurate biomechanical model [20]. Considering this definition, the 

elastography methods can be characterized based on: 1) the excitation/mechanical source that 

induces the mechanical displacement within the tissue, 2) the data acquisition technique, 3) the 

mathematical model and acoustic parameters that are used to model the tissue, and 4) the analytical 
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detection method for the local acoustic parameters estimation. In this thesis, these factors are 

summarized as: 1) the disturbance source, 2) the imaging technique, 3) the model, and 4) the 

estimation method. 

2.2.1. Ultrasound Elastography 

To measure the elasticity properties of tissue, its behavior under deformation should be monitored. 

The main methods of inducing a distortion are as follows: 

- Pushing/deforming the tissue by an external axial and quasi-static or constant compression, 

- Vibrating the surface of the tissue or organ with a probe or an external device, 

- Using physiological movements created inside body, e.g. pulse or heartbeat. 

- Using acoustic radiation force impulse from an ultrasound transducer to remotely generate 

push or series of pushes inside the tissue. 

These deformation sources are the bases of different ultrasound elastography methods. Most 

elastography techniques find the tissue stiffness based on one of the following principles: 

- Stiffer tissue deforms less than the softer tissue when a force is applied, 

- Mechanical shear waves propagate faster within stiffer tissue than softer tissue. 

In some elastography method, the distortion of the tissue is displayed. In some other methods, the 

speed of wave propagation is converted into stiffness map and displayed [20], [33].  

Conventional ultrasound elastography involves acquiring RF echo signals (A-lines) from a target 

region, and subjecting the target to a small compression, e.g. 1% of its length or less, and obtaining 

other RF signals along the compression axis. The RF echo signal pairs are then analyzed by 

piecewise cross-correlation methods in order to calculate the local longitudinal strain profile of the 

tissue along the compression axis. This calculation results in generating a 2D strain image. By 
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combining the estimated local strain values and the applied local stress distribution, a quantitative 

estimation of local elastic modulus values through the target is resulted [34].  Elastogram is an 

image obtained by displaying the elasticity information in gray scale [31]. In general, elastograms 

are local elasticity images produced by processing the pre- and post-compression frames obtained 

from the target. 

The strain imaging, as the simple version of elastography, was first examined on foam phantoms 

and bacon slabs [15], and later on cancer nodules in the breast and muscles in 1993 [31]; the results 

showed that the elastography is a promising method in the estimation of strain distributions in 

phantoms and tissues. It is also stated that elastography is a better modality in detecting lesions 

compared with B-mode imaging method [15], [31], [34]. In 1994, J. Ophir et al. could identify the 

beef muscle structures by elastography [35]. The strain map, without considering the distribution 

of stress, is not a complete indicator of actual elasticity distribution in the target. Pontekani et al. 

in 1994 [36] and 1995 [37] proposed an estimation of stress distribution in an isotropic elastic 

target with simple composition, location and boundary conditions assuming that the strain and 

stress are linearly related.  

In the following, the currently-used elastography techniques are reviewed. 

2.2.1.1. Quasi-Static Elastography: 

The quasi-static elastography method is based on small deformation of the tissue by an external 

axial force. The deformation is normally in form of a constant compression called quasi-static 

deformation [20]. During the deformation, several ultrasound RF signals are acquired and the 

response of the tissue to the deformation is recorded. The pre-compression and post-compression 

signals are compared in order to produce strain profiles of the scanned region. Local displacement 

of the tissue is calculated by analyzing the movement of the scatterers between consecutive 
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ultrasound RF data. The displacement shows the tissue response to the mechanical force and it is 

relative to the stiffness of the tissue. The strain map is estimated by determining the displacement 

from the time shifts between corresponding segments [31]. It is assumed that the softer segments 

of the tissue take more deformation than the stiffer segments. A strain map is usually shown on 

top of the B-mode ultrasound image of the same region.  

2.2.1.2. Transient Elastography and Vibro-Acoustography 

In these methods of elastography, the distortion/displacement is in form of sinusoidal vibration 

which could be from either a mechanical vibration or an acoustic source. In transient elastography, 

the source of vibration is a low frequency mechanical vibrator, typically lower than 1 kHz, which 

generates shear wave within the tissue. In vibro-acoustography, acoustic radiation forces are 

applied to the tissue by two confocal transducers with slightly different frequencies in the range of 

few hundred Hertz. In both cases, the vibration propagates into the tissue with a speed relative to 

its stiffness. The tissue response to the vibration is then recorded by ultrasound image acquisition 

of the region of interest. The image acquisition rate should be high enough to capture the vibration. 

The main advantage of vibro-acoustography imaging compared to traditional ultrasound imaging 

is its speckle free characteristic. It also has the ability to image specular surfaces from any angle. 

Vibro-acoustography has been used to image breast [9], [38], prostate [38], [39], thyroid, liver 

lesions [40], arteries [41], and bone [42]. 

2.2.1.3. Acoustic Radiation Force Impulse and Shear Wave Elastography 

Acoustic radiation force impulse (ARFI) could be used as the source of deformation in tissue. In 

this technique, a localized mechanical excitation is induced in the region of interest. The ARFI is 

usually generated by a focused ultrasound transducer and it is the source of both longitudinal and 

shear waves propagating in the tissue. The shear modulus of the tissue could be calculated from 
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speed of shear wave propagation. Shear modulus is a practical parameter to differentiate different 

types of soft tissue because it has a broader range of variations than bulk modulus for soft tissues. 

In shear wave elastography, ultrafast ultrasound image acquisition techniques are used to capture 

shear wave. Then the local shear wave speed is estimated and it is finally converted into local shear 

modulus. There are many proposed applications of ARFI such as phantom imaging [43], [44], 

imaging thermally induced lesions [45], [46], abdominal imaging of cancer lesions [47], [48], 

prostate imaging [49], and imaging of the cardiovascular system including the heart [50] and 

vessels [51], [52]. 

2.2.1.4. Supersonic Shear Wave Imaging 

Like ARFI technique, the supersonic shear wave imaging (SSI) relies on the acoustic radiation 

force from the ultrasound transducer to perturb the tissue [19]. In SSI technique, quasi-plane low 

frequency shear waves are generated within the soft tissue by the same scanning transducer.  The 

quasi-plane shear waves can be created by rapidly changing the focal point of the acoustic radiation 

force beam at different depths of the soft tissue along a line. In this technique, it is required to use 

ultrafast ultrasound image acquisition to capture the shear wave. The data acquisition is normally 

conducted with 5,000 to 20,000 frames per second. This makes it possible to have a real-time 

measurement of local shear elasticity within the region of interest. Since the amplitude of the 

induced shear wave is limited to the power of imaging probe, this method is not suitable for 

scanning the elasticity of deeper parts of the tissue. 

2.2.2. Principles of Elastography 

An acoustic model of wave propagation in soft tissue is the model that predicts the forced 

mechanical disturbance (or displacement) in the tissue from a given source when the corresponding 
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tissue parameters are known. In other words, if the source of the mechanical excitation is given, 

the mechanical displacement field can be calculated within the tissue either analytically or 

numerically knowing an accurate model of the soft tissue with enough knowledge of 

biomechanical properties. Therefore, the problem of elasticity estimation can be considered as an 

inverse problem of estimating the biomechanical properties in the model by measuring a forced 

disturbance [20]. Hook’s law, axial strain map [32], axial-shear strain equation [53], shear wave 

speed equation [54], Voigt’s model [55] and the Navier’s equation [56] are some examples of the 

models used in elastography techniques in different studies. 

The estimation of biomechanical properties of tissues from various elastographic techniques is 

based on assuming tissue as a linear viscoelastic and incompressible medium. In viscoelastic 

models, soft tissue is treated as a solid medium without any fluid motion. On the other hand, tissue 

can be considered as a combination of fluid phase and porous solid phase. This approach in 

elastography is called poroelastography [57]–[59]. 

The elasticity of an inhomogeneous media can be reconstructed in a number of different 

approaches. In general, these approaches are categorized as direct and indirect reconstruction 

techniques [60]–[62].  

In direct reconstruction technique, the distribution of elastic modulus, e. g. Young’s modulus, is 

calculated by knowing the internal displacement vector and strain tensor at any point within the 

tissue. The main advantage of this technique is its capability to locally estimate the elastic modulus 

within the medium without knowing of global boundary conditions. 

In indirect approaches, the elastic modulus is estimated mainly based on calculation of the speed 

of shear wave. In these approaches, the displacement vector is monitored at every point within the 

tissue, and the speed of shear wave is estimated from the time it takes for the wave to propagate in 
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the medium. The indirect approaches could be considered as inverse versions of wave equations. 

In wave equations, the displacement vector is calculated knowing the elastic and mechanical 

properties of the medium; on the other hand, in indirect elastography approach, the elastic 

parameter is calculated by estimating the displacement vector and speed of sound. In general, the 

elasticity models are based on the general linear equations of dynamic equilibrium that describes 

the motion of a mechanical body. The Elastodynamic and the Navier’s wave equations are 

described in more details in Section 2.4 and in Chapter 3. 

2.2.3. Clinical Applications of Elastography 

Elastography is an imaging modality that maps differences in the biomechanical properties of 

normal and abnormal tissues [20]. The strain imaging, as the simple version of elastography, was 

first examined on foam phantoms and bacon slabs [15], and later on cancer nodules in the breast 

and muscles in 1993 [31]; the results showed that the elastography is a promising method in the 

estimation of strain distributions in phantoms and tissues. It is also stated that elastography is a 

better modality in detecting cancer lesions compared to B-mode imaging method [15], [31], [32]. 

In 1994, J. Ophir et al. could identify the beef muscle structures by elastography [35]. 

There have been many clinical practices using elastography since 2005. Most of the ultrasound 

imaging manufacturers also included elastography to their ultrasound scanners. This technique has 

been used to examine many tissue types such as breast, prostate, liver, pancreas, thyroid, tendon, 

muscle, fat, heart, skin, cartilage, blood vessels, lymph nodes, and even brain [63].  

The clinical applications of elastography can be categorized into two main groups [20]: 

1. Detecting, characterizing and diagnosing diseased or abnormal tissue from normal tissue, 

2. Guiding non-invasive or minimally invasive therapeutic techniques. 
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It has been shown in many researches that most of pathological or physiological changes in soft 

tissue results in significant changes in the elasticity. Therefore, elasticity is among the best 

biomechanical parameters in differentiating abnormal tissue structures [63]. Ultrasound 

elastography is capable of detecting and distinguishing cancerous tumors from benign lesions [63]. 

A brief overview of most common elastography clinical applications in recent years has been 

provided as follows. 

2.2.3.1. Breast Elastography 

Breast elastography provides non-invasive evaluation of the stiffness of breast lesions in addition 

to the conventional ultrasound sonography and mammography [64]. The main clinical approaches 

used as breast elastography are 1) strain elastography and 2) shear wave elastography. It has been 

demonstrated that elastography assists physicians to better detect cancerous lesions in breast. Since 

the cancerous cells are stiffer, they are normally darker than benign lesions and surrounding normal 

breast tissue in elastographic images. A standard method of grading lesion by color maps have 

also been used in Hitachi scanners to display tissue stiffness [65]. There are methods proposed for 

qualitative evaluation of stiffness by measuring the strain ratios between the cancerous nodules 

and the neighboring reference tissue [66]. Estimation of shear modulus of nodules from shear wave 

velocity provides an assessment of the tissue stiffness [67]–[69]. 

2.2.3.2. Liver Elastography: 

Because the liver is located deep in the body and it is under the rib cage, the application of strain 

elastography is very limited in liver examinations compared with the superficial organs. Therefore, 

shear wave elastography techniques are the main elastographic methods in the measurement of 

liver stiffness. Some common liver elastography examinations are the determination of hepatic 

cirrhosis, fibrosis and focal liver lesions [29], [70]–[75]. Evaluation of liver fibrosis is usually 
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examined by biopsy which is both expensive and invasive. Elastography along with analysis of 

different blood marker levels is a new non-invasive technique in hepatic fibrosis with promising 

results in the determination of the degree of liver fibrosis [74]–[77]. Magnetic resonance 

elastography, transient ultrasound elastography, supersonic shear imaging and shear wave 

vibrometry are among the methods developed for the assessment of the mechanical properties of 

liver tissues and fibrosis staging [78]–[80]. The advantages of ultrasound elastography methods in 

comparison with liver biopsy are that they are rapid, easy, non-invasive and painless. 

2.2.3.3. Prostate Elastography: 

Prostate cancers are stiff lesions and they are normally not visible in standard ultrasound 

sonographic images [81]. Therefore, elastography is a useful technique in detecting and locating 

cancerous regions within the prostate. Two main prostate elastography approaches are 1) the quasi-

static method, and 2) the transient shear wave technique [15]. There are several published studies 

on prostate elastography, but it is generally more difficult to obtain high quality elastographic 

images of the prostate gland compared with the breast [9], [82], [83]. Shear wave elastography 

systems that use ARFI or external vibration as the source of shear wave are among the most 

successful approaches for imaging prostate cancers. 

2.2.3.4. Thyroid Elastography: 

Malignant thyroid nodules tend to be stiffer than benign nodules [84]. Therefore, thyroid 

elastography can be potentially used to classify a nodule as malignant or benign [85], [86]. 

Elastographic imaging of the thyroid can be challenging due to the pulsations from the adjacent 

carotid artery and due to the steeply sloping neck contour. Elastography combined with different 

ultrasound imaging modalities has been used to improve basic diagnosis of thyroid [87]. Quasi-

static elastography, shear wave and ARFI are used to provide precise mechanical information 
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about tissue stiffness, to differentiate malignant and benign nodules and to confirm the presence 

of Graves disease and chronic autoimmune thyroiditis [78], [88]–[90].  

Even though thyroid elastography is still not able to distinguish between different types of 

thyroiditis, it helps to confirm thyroiditis in general.  

2.3. High Intensity Focused Ultrasound  

High-temperature thermal therapeutic techniques have been applied to many anatomical sites such 

as brain, eyes, bladder, kidney, and the prostate [28]. These techniques are usually minimally- or 

non-invasive. In comparison to the traditional open surgeries, the minimally- and/or non-invasive 

therapeutic approaches have the advantages of reducing tissue damages, side effects and recovery 

time. There are various modalities to deliver the heat energy to the target area.  

HIFU therapy is a minimally- or non-invasive therapeutic approach that has been employed to 

destroy tumors locally by delivering heat energy and increasing their temperature to above 60°C 

[27], [28]. In the HIFU therapy, the high intensity ultrasound beam is focused and delivered to the 

targeted tissue and the ultrasound acoustic energy is converted into heat energy through tissue 

absorption mechanism. Consequently, the temperature of tissue is raised locally to the levels that 

irreversible structural changes are resulted at that location.  HIFU has the capability to deliver 

energy deep and focalized into the body. 

2.3.1. HIFU Treatment Applications 

In the 1940s, Lynn et al. demonstrated the effects of intensive focused ultrasound beams in 

biological tissue for the first time [91]. Later, in the 1950s, Burov et al. suggested that HIFU can 

be used in cancer therapy by inducing coagulated necrosis as the main mechanism responsible for 
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tumor treatment. In the 1950s and early 1960, Fry et al. developed HIFU to create tissue destruction 

specifically in brain and employed it as a treatment of Parkinson`s disease. In the 1980s, HIFU 

was further employed by Coleman et al. in the treatment of some Ophthalmological problems such 

as in glaucoma and retinal tears [28]. In the 1980s, after the development of more sophisticated 

imaging modalities to monitor the procedure of HIFU treatment, this technique was emerged as 

the subject of interest in many medical researches and was employed on more biomedical areas 

[5]. Currently, HIFU has many applications in cancer therapy including the treatment of fibro 

adenoma and cancer of the breast [92], [93], benign prostatic hyperplasia and prostate cancer [94]–

[96], uterine fibroids [97], [98], bladder tumors [99], kidney cancer tumor [100], ovaries, pancreas, 

and liver cancers [101]. Moreover, HIFU has effective applications in bleeding control and 

hemostasis of injuries in the solid organs like liver and spleen, and major blood vessels [102]. 

Recently, HIFU has been used in some non-invasive cosmetic applications such as ablating 

adipose tissue from the abdomen and flank to reduce the circumference of the waist [103], [104]. 

HIFU has been also used in facial cosmetic surgery for skin lifting and tightening, wrinkle 

reduction, and eyebrow lifting [105], [106]. 

The focal intensity of HIFU beam generated by the transducer can be in the range of 1-10 kW/cm2 

[107]. The high intensity beam is focused at the focal region of the transducer with the small size 

of few millimeters that results in delivering high energy to this region. The highly focused intensive 

beam induces thermal and non-thermal (mechanical) biological effects [28] at the focal spot 

without heating or damaging the surroundings. This mechanism results in the rapid cell death in 

the tight focal region of the transducer without damaging the other parts of the tissue. 

In the thermal effect, the acoustic wave energy is converted to heat energy that increases the 

temperature of the targeted region. On the other hand, in the non-thermal or mechanical effects, 
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high amplitude pressure wave causes the acoustic cavitation that is the formation and activity of 

destructive gas micro-bubbles around the target [7], [108]. 

2.3.2. Detecting HIFU thermal lesions 

Due to the existence of different tissue layers between the HIFU transducer and the targeted area 

in the tissue, there are always some limitations in the exact estimation of HIFU intensities in a real 

surgery planning. Besides, the tissue movement and cooling effect of blood flow make the 

uncertainty of treatment planning even more complicated [109]. Moreover, a complete HIFU 

treatment generally contains repeated HIFU exposures that scan the whole region to be treated. 

Therefore, it is necessary to monitor the procedure of HIFU surgery during the treatment in order 

to make it more efficient and safe as a non-invasive treatment modality, and to ensure that the 

whole region of interest has been treated.  

There are several methods proposed to detect thermal lesions induced by HIFU or to monitor HIFU 

treatment. B-mode ultrasound imaging has been utilized to monitor the hyper-echoic changes in 

real-time during the treatment [110]. Analysis of backscattered radio frequency signals have been 

also studied in some researches to monitor the dynamic changes of tissue during HIFU procedure 

[111]. The statistical analysis of RF signal was used to monitor the dynamic changes [112] of the 

acousto-mechanical parameters during and after HIFU treatment. Signal processing methods such 

as Manifold algorithm [113] have been also used to differentiate ablated tissue from non-ablated 

tissue during HIFU treatment. 

MRI-guided focused ultrasound therapy has been developed during recent years to measure tissue 

temperature non-invasively and to detect the induced thermal lesion in the tissue [92], [93], [110].  
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Stiffness imaging as a conventional elastography method has been studied in several investigations 

to quantitatively estimate the size, area and volume of thermal lesions [114], [115]. Magnetic 

response elastography (MRE) is another proposed method to quantitatively study HIFU lesions by 

estimating the shear modulus of the tissue (as its elasticity) using MRI technique [116]. In another 

study, the induced thermal lesion was detected by combining elastography and temperature 

estimation methods [117]. In this study, a unified computational kernel is proposed to calculate 

the strain by concurrent estimation of both temperature and elasticity from RF echo time 

displacements. This technique results in detection of the lesion location and dimension during the 

HIFU treatment. The feasibility of axial-shear strain elastography has also been studied to visualize 

the boundaries of HIFU induced lesion [118]. This imaging technique is referred to as axial-shear 

strain elastography because a quasi-static axial compression is applied to the tissue similar to 

conventional elastography. Then, the dimension and location of the lesion are estimated by 

detecting the generated shear wave at the boundaries of the lesion [118].  

In a recent study, a shear wave elastography technique using a HIFU transducer was used to 

generate push beams to monitor the treatment and the tissue coagulation induced by the same 

transducer. The induced lesion was illustrated in the shear wave map and the results shows that 

HIFU-push, can produce shear waves strong enough for elastography purposes [119]. An 

algorithm is needed to accurately measure the shear wave velocities. This would be beneficial to 

detect the boundaries of the induced lesion and control the treatment process. 

2.4. Wave Propagation Formulation 

The mathematical formulation of wave propagation can be described in the form of particle 

displacement, particle velocity, pressure, and density. Ultrasound wave propagation in different 
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types of tissue has been studied for many years and there are several equations that mathematically 

model wave propagation in the fluid or solid media. These equations have been used in many 

studies to model and simulate wave propagation in elastic or viscoelastic, homogeneous or 

inhomogeneous, bounded or unbounded, single layer or multilayer geometries. The elastodynamic 

and the Navier’s  equations have been widely used to model acoustic wave propagation in 

viscoelastic media in the fields such as seismology researches [1], [2], and biomedical shear wave 

elastography [56]. In viscoelastic models, soft tissue is treated as a solid medium without any fluid 

motion; therefore, the Elastodynamic and Navier’s equations are decent choices to be used for the 

ultrasound wave propagation simulation for the elastography purposes. These equations are among 

the well-known and well-established equations that express the response of a medium to an 

external source and model the propagation of longitudinal and shear waves.  

In this research, the proposed simulation tool covers variety of distribution sources and models the 

acoustic wave propagation within multilayer inhomogeneous media. The simulation includes full 

waves, i.e. both longitudinal and shear waves, generated from any arbitrary source in the soft 

tissue. This can be beneficial for other researches to study different wave detection and estimation 

methods to calculate the elastography properties of soft tissues before being involved in the 

experimental validations.  

In general, the elasticity of a medium is defined as its ability to resist any form of external 

mechanical distortion and in different context, there have been different moduli used as elasticity. 

The well-known parameters that describe elasticity are: Young’s modulus (E), bulk modulus (K), 

Lame’s first (λ) and second (µ) parameters, and Poisson ratio (ν). Any pair of two moduli from 

this list is enough to describe the properties of homogeneous isotropic linear elastic medium. The 
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rest could be extracted from those two. The definition of these parameters are provided in the 

following [2]: 

Young’s Modulus (E): It is a measurement of material stiffness. Young’s modulus is defined as 

the ratio of extensional stress to the resulting extensional strain for a cylinder being pulled on both 

ends. It can be determined by calculating the slope of stress-strain curve during tensile or 

compression of the sample material. 

Bulk Modulus (K): Buk modulus is defined as the ratio of required hydrostatic pressure to the 

resulting volume change. It is a measure of the incompressibility or resistance of the material to 

uniform compression.  

Lame’s parameters (λ, µ): The Lame’s parameters completely describe the linear stress–strain 

relation within an isotropic solid. The second Lame’s parameter, µ, also known as shear modulus, 

is defined as half of the ratio between the applied shear stress and the resulting shear strain. This 

parameter is a measure of the resistance of the material to shearing. The first Lame’s parameter, λ, 

does not have a physical explanation. This constant is defined based on bulk modulus and shear 

modulus. 

Poisson Ratio (ν): It is defined as the ratio of the lateral contraction of a cylinder to its longitudinal 

extension when it is being pulled on its ends. When a material is stretched in one direction, it tends 

to get thinner in the other two directions and the Poisson ratio is an indication of this tendency.  

2.4.1. Navier’s Equations 

The Navier’s equations describe wave propagation in the form of particle displacement in an elastic 

medium. This equation could be extracted from the Newton’s second law and Hooke’s 
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representation of viscosity stress tensor [56] A linearized version of this equation for an infinite 

isotropic solid has been shown in Eq. (2-1) [2]: 

𝜌
𝜕2𝑢𝑖

𝜕𝑡2 =
𝜕

𝜕𝑥𝑖
(𝜆

𝜕𝑢𝑗

𝜕𝑥𝑗
) +

𝜕

𝜕𝑥𝑗
(𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)). (2-1) 

This equation is a set of three equations for a 3D geometry where index i = 1,2,3. The Lame’s first 

and second parameters are, respectively, shown as λ and µ and their SI units are the Pascal (Pa). 

Lame’s first parameter can be also described by Young’s modulus and Poisson’s ratio. Lame’s 

second parameter is also known as shear modulus.  

In a homogeneous medium, the Lame’s parameters are constant and they could be moved outside 

the derivative operator. Therefore, the Navier’s equation for a homogeneous elastic fluid can be 

written in vector form as in Eq. (2-2) [56]: 

𝜌 �̈�⃗⃗⃗  = 𝑓 + (𝜆 + 𝜇)∇(∇⃗⃗ . u⃗ )⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝜇 ∇2�⃗� ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , (2-2) 

this equation is again a set of three equations which model the propagation of both longitudinal 

and shear waves generated from an external force.  

In Eq. (2-2), the external force 𝑓  could be in any arbitrary form. It could also be resulted from 

multiple sources in any direction and with arbitrary volume and temporal distribution. 

2.4.2. Generalized Navier’s Equations 

The generalized viscoelastic version of the Navier’s equations could be obtained for an infinite 

homogenous medium using �̅�, �̅�  instead of µ, λ [56]: 

{
�̅� = 𝜇 + 𝜂𝑠

𝜕

𝜕𝑡

�̅� = 𝜆 + 𝜂𝑝

𝜕

𝜕𝑡

 (2-3) 
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where ηp and ηs are the bulk and shear viscosities with the SI units of Pa.s. Bulk viscosity is a 

property of the medium that measure its internal resistance of compression or expansion. Shear 

viscosity characterizes the resistance of the medium to shearing flows. 

2.4.3. The Elastodynamic Wave Equation 

The elastodynamic wave equation is the result of combining the equation of motion in a linear 

elastic solid and Hooke’s equation. This equation is described as [1], [2]: 

𝜌
𝜕2𝑢𝑖

𝜕𝑡2 = ∑
𝜕

𝜕𝑥𝑗
(∑ (𝐶𝑖𝑗𝑘𝑙

𝜕𝑢𝑘

𝜕𝑥𝑙
)3

𝑘,𝑙=1 )3
𝑗=1 , (2-4) 

where Cijkl is the stiffness tensor. This equation is a linear formulation which is valid for wave 

propagation in any heterogeneous anisotropic medium. It can be simplified for a homogenous 

medium by considering Cijkl coefficients as constants and moving them outside of the derivatives. 

As shown in Eq. (2-5), the viscoelastic version of Eq. (2-4) can be obtained by introducing ηijkl as 

the viscosity tensor: 

𝜌
𝜕2𝑢𝑖

𝜕𝑡2 = ∑
𝜕

𝜕𝑥𝑗
(∑ (𝐶𝑖𝑗𝑘𝑙

𝜕𝑢𝑘

𝜕𝑥𝑙
+ 𝜂𝑖𝑗𝑘𝑙

𝜕2𝑢𝑘

𝜕𝑡𝜕𝑥𝑙
)3

𝑘,𝑙=1 )3
𝑗=1 + 𝑓𝑖. (2-5) 

Using Eq. (2-5), an inhomogeneous viscoelastic medium could be simulated. In the calculation 

domain, the wave propagation at every spatial point is calculated based on the local parameters. 

The implementation of these equations is explained in Chapter 3. It should be noted that the 

numerical algorithms in this thesis study are based on the elastodynamic equation in Eq. (2-5). The 

simplified cases such as homogeneous simulations of Navier’s equation or pure elastic simulations 

are also based on the implementation of Eq. (2-5). 
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2.4.4. Perfectly Matched Layer (PML) 

In numerical simulations of wave propagation, a discretized domain should be defined to 

numerically solve the equation under study. This results into computational reflections of the 

wave from the simulation geometry boundaries. These reflections should be removed when 

simulating the wave propagation in open boundary media. One technique is to add an 

absorbing layer surrounding and perfectly matching the computational domain.  

The perfectly matched layer (PML) technique was first introduced by Berenger in 1994 [120] 

to model Maxwell equations and simulate electromagnetic wave propagation. Since then, PML 

has been applied in several computational studies to simulate the propagation of different types 

of wave such as electromagnetic [121], [122], seismic, elastic and acoustic waves [123]–[125]. 

This method has been applied to Maxwell’s equations [117], [122], Helmholtz equations [126], 

Euler equations, the elastodynamic equations [127]–[129]. 

In general, the goal of using PML formulation is to assure the following two conditions: 

1- All frequency components of propagating wave transmit to the PML region without 

any reflection and at any angle, 

2- The wave gets significantly absorbed in the PML region before reaching to the outer 

boundary of the computational domain. 

The following steps are usually performed to obtain the PML formulations for a given wave 

equation [127]: 

1- The Fourier transform of the wave equation with respect to time is calculated. 

2- New dependent complex variables are introduced to allow absorption in the PML 

region. 
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3- The introduced variables are set to zero in the physical domain and non-zero in the 

PML. 

4- The resulting formulations are simplified and split into main and auxiliary equations to 

model the wave propagation in both physical and PML regions. 

5- The equations are transferred to time-domain by inverse Fourier transform.  

The resulted formulations will include main equations similar to the original wave equation 

including PML variables, and some auxiliary equations that present wave propagation in the 

PML region. All the resulting equations should be numerically solved together with the Finite 

Difference or the Finite Element methods to include the PML region in the simulation. Since 

the PML variables are zero in the physical domain, the wave propagation simulation results 

are correct. The PML equations are solved only at the boundaries and they do not affect the 

actual physical layer. 

2.5. Why viscoelasticity? 

As previously mentioned, HIFU is a technique that utilizes intensive focused ultrasonic waves to 

elevate the temperature at the focal region in a very short period of time. This procedure as a non-

invasive surgical technique must be used alongside with a reliable monitoring technique to localize 

the induced thermal lesion to accurately verify the extent of tissue damage. The detection of HIFU 

thermal lesions during the treatment provides a feedback to determine whether the desired location 

is being sufficiently ablated and to make appropriate changes in the treatment plan, if needed. This 

is a challenging problem to be solved because it is difficult to precisely measure the volume and 

boundaries of the thermal lesion in real time during the HIFU treatment. It is even more complex 
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because the response of the tissue to increased temperature is not immediate and the boundaries 

between the coagulated region and the normal tissue is not well defined.  

The propagation of shear wave within the tissue can provide quantified information about the 

stiffness of the normal tissue or the lesions inside it. The goal of shear wave elastography, as a 

method in characterization of soft tissue elasticity,  is to generate shear stiffness images from the 

soft tissue to detect the abnormal tissue [20], [54], [130]–[132]. This method is based on 

measurement of shear wave propagation speed within the area of interest. The shear wave speed 

is 2 - 4 times larger in abnormal diseased tissue than its speed in the normal tissue [54]. In shear 

wave elastography, it is an advantage to use the wide range of shear moduli in comparison with 

bulk moduli in the soft tissue. This wide range has been shown in Figure 2.1.  

The HIFU thermal lesions are stiffer than normal surrounding soft tissue and the estimation of 

shear modulus leads us to differentiate the thermal lesion from its surrounding tissue [133]. In this 

research, the wide range of shear modulus has been used as an advantage to differentiate a 

simulated HIFU thermal lesion from the surrounding normal tissue.  

A new method is proposed in this study based on the time-frequency analysis of the shear wave to 

measure the viscoelastic parameters in the region of interest to improve HIFU thermal lesion 

 
Figure 2.1: Ranges associated to Shear and Bulk moduli in various materials and body tissue [171]. 
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detection. In the proposed method, the viscoelastic parameters of the tissue are estimated at every 

spatial point independent to the other points. The WVD time-frequency method used in this thesis 

can capture the shear wave propagating in the tissue which results in calculating the shear speed 

of the wave as well as its frequency and attenuation coefficient. This technique provides more 

insight and quantitative information about the medium elastic properties; thus, the normal tissue 

and the thermally coagulated regions could be differentiated according to difference in their elastic 

parameters. 

2.6. Ultrasound Wave as a Non-Stationary Signal 

As the complexity of the information carried in a signal grows, it becomes more essential to select 

a representation space in which the information could be more clearly observed, structured, and 

processed. In fact, the choice of a representation space is an important decision in processing the 

signals. The perception of time-frequency signal analysis methods is to analyze and process signals 

with time-varying frequency content [134], [135].  

The acoustic wave generated by radiation force impulse is a non-stationary signal with time-

varying frequencies because it normally contains both longitudinal and shear components with 

different speeds and frequencies. These wave components travel in time and they might be present 

at a specific location just in a short period [136], [137]. Moreover, because the biological tissue 

shows dispersive properties in regards to acoustic wave propagation, the tissue displacement and 

the shear wave generated from an acoustic radiation force are frequency dependant [138]. All these 

properties emphasize that the ultrasound wave shows non-stationary behaviour in the shear wave 

elastography applications [139].  
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Such signals are better represented by a time-frequency distribution which illustrate the 

distribution of the energy of the signal over the two-dimensional time and frequency domain rather 

than only time or frequency domains. The time-frequency distribution illustrates the frequency 

range of the signal and the variation in frequency within time. This variation is called the 

instantaneous frequency (IF). To better understand the behaviour of ultrasound elastographic wave 

propagation, there is need to utilize a robust time-frequency analytical solution.  

The focus of this chapter is to provide more detailed information about the time-frequency analysis 

signals generated by acoustic radiation force impulses in the shear wave elastography. 

2.7. Widely-used Time-Frequency Transforms 

The representation of a signal in time domain does not show the frequency components of the 

signal. On the other hand, The Fourier transform represents only the spectral contents of the signals 

without any demonstration of localization in time. Time and frequency domains have both 

limitations when dealing with non-stationarity signals such as acoustic signals. In order to 

overcome these limitations and to analyze the non-stationary signals, there is need for techniques 

that provide joint time and frequency information. The time-frequency (TF) representation 

indicates a two-dimensional energy demonstration of a signal in terms of time and frequency. In 

these methods, the signal is decomposed into elementary functions that are well concentrated in 

time and frequency domains. These elementary functions localize the signal not just by a pure 

frequency, but by packets of close frequencies in time. 

There are many joint-TF techniques proposed in different studies. The suitability of each technique 

depends on the nature of the signal and its complexity [140]–[143]. 

In general, the desirable characteristics of a time-frequency domain technique are as follows [144]: 
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- Capability to identify the characteristics of the signal such as time variation, frequency 

variation, number of components, relative amplitudes, etc. 

- Capability to separate the components from each other and from the noise. 

- Capability to analyze specific components separately, and to track the instantaneous 

amplitude, the instantaneous frequency, and the instantaneous bandwidth. 

- Capability to employ a mathematical model that shows the significant characteristics of the 

signal, such as the IFs. 

In linear time-frequency transforms, the correlation of the signal by a family of waveforms is 

calculated. The concentration of the waveforms in time and frequency indicate the strength of the 

method in localizing the TF components. These waveforms are called time-frequency atoms [145]. 

It is necessary to have different types of atoms to be able to analyze different signal structures. In 

the following, a brief description of popular time-frequency transforms is explained. 

The most widely-used time-frequency analysis techniques could be classified as:  

- Short-time Fourier transform or spectrograms [146], [147];  

- Filter banks or sonograms [147];  

- Wavelets: Continuous such as Morlet wavelet, or discrete such as Haar wavelet [145];  

- Quadratic Cohen class: Wigner-Ville distribution (WVD), Choi-Williams distribution 

(CWD), Page distribution (as an instantaneous power spectrum method), Rihaczek and 

Levin distributions (as energy density methods) [134], [141]; 

- Dictionary learning methods [148]. 

Any of these techniques transform a temporal signal into a TF space where the TF values show 

the strength of the located frequency component at the given time stamp. Depending on the 
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transformation technique, different properties of the signal could be obtained from the TF 

distributions. 

For example, some methods construct distributions with non-negative entries while some might 

result in negative values. Some methods have better energy localization in TF space and some 

results in generation of cross-terms [141].  

2.7.1. Short-Time Frequency Transform 

The Short-time Fourier transform (STFT) is a windowed version of the Fourier transform where a 

moving window is multiplied to the signal in the Fourier transform integral calculations. This 

results in concentration of the Fourier transform into specific time locations.  In general, the STFT 

of signal f(t) can be defined as follows [145]: 

𝑆𝑓(𝑢, 𝜉) = ∫ 𝑓(𝑡)𝑔(𝑡 − 𝑢)𝑒−𝑗𝜉𝑡𝑑𝑡
+∞

−∞
, (2-6) 

in this equation, the signal f(t) is multiplied to g(t-u) which is zero everywhere except for the 

neighborhood of t=u. This results in the localization of the Fourier Transform in different time 

instances by changing the value of u. The function g(t) is called the windowed Fourier atom and 

g(t-u) is the shifted version in time.  

The energy density of STFT is called spectrogram and it indicates the energy distribution of the 

signal in time and frequency plane. A very special case of STFT is Gabor transform where the 

window function is in form of a Gaussian function: 

𝐺𝑓(𝑢, 𝜉) = ∫ 𝑓(𝑡)𝑒−(𝑡−𝑢)2/(2𝜎2)𝑒−𝑗𝜉𝑡𝑑𝑡
+∞

−∞
. (2-7) 

Dennis Gabor introduced this transform in 1946 which was the basis of the STFT [146]. 
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2.7.2. Filter Banks and Sonograms 

A filter bank is a set of band-pass filters that are applied to the input signal in order to decompose 

the signal into the sub-signal components with sub-frequency details. Sonograms are the results of 

applying filter banks to the signal and they could be considered as the window-based presentation 

of the signals in frequency domain [141]. In order to generate the sonogram representation of a 

signal and extract its bandpass component, the Fourier transform of the signal is multiplied to the 

centered filter functions in frequency domain; then, the inverse Fourier is calculated. Although this 

process is nonlinear, it does not result into artifacts.  

2.7.3. Wavelets and Scalograms 

A wavelet is a wave-like function that has a concentrated energy in time. Wavelets are used to 

analyze non-stationary, time-varying and transient phenomena [145]. Wavelets can be defined in 

different forms depending on the application. They are used to transform a signal into a new 

representation that present useful information about the signal. When a signal is convolved with a 

specific wavelet, the result shows the time points that the signal has the most similarity to the 

wavelet. A set of complementary wavelets is normally needed to analyze a signal. This concept 

gives us a powerful mathematical tool to deal with non-stationary signals.  

In wavelet analysis of the signals, a mother wavelet is normally defined with a specific function; 

then, the wavelet family is constituted by shifting and scaling the mother wavelet. Depending on 

the definition of the mother wavelet, there are different methods proposed by researchers in this 

field. When a signal is visually represented by Wavelets, the visual display of energy density is 

called scalogram [145].   
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If the scaling and shifting procedures are performed in a continuous fashion, the result will be 

Continuous Wavelet Transforms (CWT); on the other hand, in Discrete Wavelet Transforms 

(DWT) the scaling and shifting are executed in discrete steps. 

The CWT of a continuous signal f(t) is defined as [149]: 

𝑇(𝑎, 𝑏) = ∫ 𝑓(𝑡)𝜓𝑎,𝑏
∗ (𝑡)𝑑𝑡

+∞

−∞
= 〈𝑓, 𝜓𝑎,𝑏〉, (2-8) 

where 𝜓(𝑡) is the mother wavelet function and 𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
) is the normalized shifted and 

scaled wavelet extracted from the mother wavelet. 

The most widely-used continuous wavelet transforms are Morlet, Mexican hat, Meyer, Poisson 

and Shannon wavelets [145], [149]. The difference between these transforms is the definition of 

mother wavelet function. 

The DWT of a signal f(t) is defined as [149]: 

𝑇𝑚,𝑛 = ∫ 𝑓(𝑡)𝜓𝑚,𝑛(𝑡)𝑑𝑡
+∞

−∞
= 〈𝑓, 𝜓𝑚,𝑛〉, (2-9) 

𝜓𝑚,𝑛(𝑡) =
1

√𝑎0
𝑚 𝜓 (

𝑡−𝑛𝑏0𝑎0
𝑚

𝑎0
𝑚 ), (2-10) 

where a0 is specified fixed step parameter, and the integer values m and n control the discretization 

of the wavelet. The widely-used discrete wavelet transforms are Haar, Daubechies and Dual-tree 

Complex Wavelet transforms [145]. 

2.7.4. Quadratic Cohen Class 

In general, the quadratic Cohen class of a signal is a set of every bilinear representation covariant 

under time and frequency translations and are formulated in the following form: 

𝐶𝑥(𝑡, 𝑓) = ∫ ∫ 𝑟𝑥(𝑡, 𝜏)𝑒
−𝑗2𝜋𝑓𝜏 𝑑𝜐 𝑑𝑡

+∞

−∞

+∞

−∞
, (2-11) 

where,  
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𝑟𝑥(𝑡, 𝜏) = 𝜙𝑡−𝑑(𝑡 − 𝜐, 𝜏) 𝑥 (𝜐 +
𝜏

2
) 𝑥∗ (𝜈 −

𝜏

2
). (2-12) 

In fact the Cohen class is the Fourier transform of an instantaneous autocorrelation function 

defined as rx(t,τ). In this equation ϕt-d represent different types of kernel in the Cohen quadratic 

class. The equation can be written in the following form after defining narrow band symmetric 

ambiguity function Ax(τ,ξ) and the use of Fourier transform: 

𝐶𝑥(𝑡, 𝑓) = ∫ ∫ 𝜙𝑡−𝐷(𝜏, 𝜉)𝐴𝑥(𝜏, 𝜉)𝑒
𝑗2𝜋(𝑡𝜉− 𝑓𝜏) 𝑑𝜉 𝑑𝑡

+∞

−∞

+∞

−∞
, (2-13) 

𝐴𝑥(𝜏, 𝜉) = ∫ 𝑥 (𝑡 +
𝜏

2
) 𝑥∗ (𝑡 −

𝜏

2
) 𝑒−𝑗2𝜋𝑡𝜉  𝑑𝑡

+∞

−∞
, (2-14) 

𝜙𝑡−𝐷(𝜏, 𝜉) = ∫ 𝜙𝑡−𝑑(𝜏, 𝜉)𝑒−𝑗2𝜋𝑡𝜉 𝑑𝑡
+∞

−∞
. (2-15) 

In the above equations, τ and ξ represent the shift in time and frequency and they are known as the 

delay and Doppler frequency, respectively. The ambiguity function is a function of the input signal 

and does not depend on the method. On the other hand, different definition for the kernel results 

in different types of time-frequency methods [147]. The widely-used time-frequency methods in 

the Cohen class are: the Wigner-Ville distribution, Rihaczek distribution, Levin distribution, Page 

distribution and Choi-Williams distribution [141]. 

2.8. Wigner-Ville Distribution 

The Wigner-Ville distribution is a time-frequency analytical method with the best time and 

frequency resolution for a non-stationary process [141], [150]. This method is under the Cohen’s 

class of TF analysis methods and has a quadratic nature. The WVD is based on a symmetrical 

instantaneous autocorrelation function (IAF) that extracts the localized and Instantaneous 

Frequency content of a non-stationary signal [151]. Since the acoustic wave propagation is a non-



 CHAPTER 2: BACKGROUND 

40 

 

stationary signal with time varying frequency content, the WVD seems to be a suitable approach 

to detect the shear waves [139].  

The WVD, as a time-frequency analysis method, has been studied to detect the low-frequency 

shear waves that were modulated by the acoustic radiation force of ultrasound resulted from two 

transducers with slightly different frequencies [139]. The WVD has been utilized to analyze 

Doppler spectrum both in biomedical and radar applications [152], [153] and seismic wave 

parameter estimation [154] in previous studies. This analysis method has also been studied in 

researches in estimation of the motion parameters of objects either in the air or in the water based 

on the acoustical waves generated from the objects. It has been shown in [155] that a TFD with 

optimal energy concentration is capable to estimate the frequency and the speed of the moving 

object under water by time-frequency analysis of acoustic data. 

The main drawback associated to this method is the production of cross-terms (interferences) when 

there are more than one time-frequency components in the signal. The cross-terms are the artifacts 

in between the existing time-frequency components, which are formed due to the quadratic nature 

of the WVD [151]. The cross-terms are exactly in the middle of any pair of existing time-frequency 

components. To reduce the interference and the cross-terms, the WVD utilizes the analytical 

associate of the real signal.  

2.8.1. The WVD Formulation 

The WVD of a signal s(t) is shown by Wz(t,f) and is defined in Eq. (2-16) [141]: 

𝑊𝑧(𝑡, 𝑓) = 2 ℱ𝜏→𝑓 {𝑧 (𝑡 +
𝜏

2
) 𝑧∗ (𝑡 −

𝜏

2
)}, (2-16) 

where z(t) is the analytical associate of the real signal s(t) at a given local point. z(t+τ/2) and z(t-

τ/2) are the shifted versions of the signal to the left and right sides in time domain, and ℱ𝜏→𝑓{. } is 
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the discrete Fourier transform with respect to the shift. The WVD of a signal contains the IFs at 

any time window. The analytical associate of a real signal is its complex-valued version where the 

negative frequency components are removed.  

2.8.2. Properties of the WVD 

The WVD has several desirable attributes in signal processing applications. Some of the most 

important properties of the WVD are listed in the following: 

- Generality: Since the WVD has the simplest form of time-lag kernel, other TF distributions 

can be extracted from it by applying specific time-lag filters. 

- Realness: The WVD is real for all values of t, f and z. 

- Time-shift invariance: A time shift in the signal results in the same amount of time shift in 

the WVD.  

- Time delay: The periodic first moment of the WVD with respect to time is called the time 

delay.  

- Frequency-shift invariance: A frequency shift in the signal results in the same amount of 

frequency shift in the WVD.  

- Instantaneous frequency: The periodic first moment of the WVD with respect to frequency 

is the instantaneous frequency.  

- Time marginal: The integration (summation) of the WVD over frequency results in the 

instantaneous power of the signal at even time samples [150]: 

∫ 𝑊𝑧(𝑡, 𝑓)𝑑𝑓
+∞

−∞
= |𝑧(𝑡)|2. (2-17) 

- Spectral marginal: The integration (summation) of the WVD over time results in the energy 

spectrum of the signal at even frequency samples [150]: 



 CHAPTER 2: BACKGROUND 

42 

 

∫ 𝑊𝑧(𝑡, 𝑓)𝑑𝑡
+∞

−∞
= |𝑍(𝑓)|2. (2-18) 

- Time support: If z(t)=0 everywhere except t1<t<t2, then Wz(t,f)=0 everywhere except 

t1<t<t2 [141]. 

- Frequency support: If Z[k]=0 everywhere except f1<f<f2, then Wz(t,f)=0 everywhere 

except f1<f<f2 [141]. 

Even with all desirable properties of WVD, it has some drawbacks. Since the WVD is a bilinear 

or quadratic operation, it suffers from the cross-term artifacts which appears when dealing with 

signals with multi TF components. The cross-terms appear in the midway between the true TF 

components. They make the WVD difficult to interpret if there are several TF components in the 

signal or if they are close to each other. The cross-terms also make it more difficult to interpret the 

WVD in the presence of noise. 

2.8.3. Removing Cross Terms 

The cross terms can be partially removed or supressed by introducing window-based WVD. The 

proposed methods to eliminate or reduce the cross-terms are listed in the following: 

1- Masked WVD [141]: This is the result of multiplying the WVD by the Spectrogram. The 

WVD has high TF resolution but includes cross-terms; on the other hand, the spectrogram 

has lower resolution but it does not have any cross-term. In masked WVD, the high 

resolution of the WVD is combined with the cross-term suppression of the spectrogram. 

This results into cleaner time-frequency distribution than the WVD.  

2- Multiplying by the Fourier transform of the signal. This results into suppression of the 

cross-terms by filtering them in frequency domain [141], [147].   
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3- Pseudo-WVD [134], [141], [147]: In this method, a sliding window is applied in the time 

domain before calculation of the WVD. This results in suppression of the cross-term by 

averaging a WVD in time.  

4- Smoothed-pseudo-WVD [134], [141], [147]: In this method, a sliding averaging window 

function is applied in the time-frequency plane. This results in more smoothing of the cross-

term component. Smoothed-pseudo-WVD method deemphasizes the components arising 

from calculations and gives more emphasis to the deterministic components. 

In the pseudo-WVD and smoothed-pseudo-WVD, the averaging window could be defined in 

various forms. The most frequently used options are Gaussian, Hamming or Hanning windows. 

There are two main drawbacks in pseudo- and smoothed-pseudo- WVD in comparison with 

the original version. First, the computational cost of applying a moving window is high and it 

reduces the speed of calculation. Second, using an averaging window reduces the time-

frequency resolution and localization. The wider the window introduces more averaging; 

therefore, the cross-terms are reduced more but they are less localized. This means that 

applying averaging window decreases the time and frequency resolution.  
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Chapter    3 

Acoustic Wave Propagation Simulation 

In this chapter, the numerical implementations of the elastodynamic wave equation and its 

homogeneous version, the Navier’s equation, are described. The numerical solutions are based on 

the finite difference method to model the ultrasound wave propagation in 3D heterogeneous 

isotropic media with any arbitrary shape acoustic source. The procedure of obtaining the perfectly 

matched layer (PML) formulation for the simulation is also presented. 

3.1. Implementation of Viscoelastic Wave Equations 

The three equations representing acoustic wave propagation in an infinite homogenous viscoelastic 

medium known as Navier’s equations are shown in Eq. (3-1) [56]: 

𝜌
𝜕2𝑢1

𝜕𝑡2
= (�̅� + �̅�) (

𝜕2𝑢1

𝜕𝑥1
2 +

𝜕2𝑢2

𝜕𝑥1𝜕𝑥2
+

𝜕2𝑢3

𝜕𝑥1𝜕𝑥3
) + �̅� (

𝜕2𝑢1

𝜕𝑥1
2 +

𝜕2𝑢1

𝜕𝑥2
2 +

𝜕2𝑢1

𝜕𝑥3
2 ) + 𝑓1, 

𝜌
𝜕2𝑢2

𝜕𝑡2 = (�̅� + �̅�) (
𝜕2𝑢1

𝜕𝑥1𝜕𝑥2
+

𝜕2𝑢2

𝜕𝑥2
2 +

𝜕2𝑢3

𝜕𝑥2𝜕𝑥3
) + �̅� (

𝜕2𝑢2

𝜕𝑥1
2 +

𝜕2𝑢2

𝜕𝑥2
2 +

𝜕2𝑢2

𝑥3
2 ) + 𝑓2, 

𝜌
𝜕2𝑢3

𝜕𝑡2 = (�̅� + �̅�) (
𝜕2𝑢1

𝜕𝑥1𝜕𝑥3
+

𝜕2𝑢2

𝜕𝑥2𝜕𝑥3
+

𝜕2𝑢3

𝜕𝑥3
2 ) + �̅� (

𝜕2𝑢3

𝜕𝑥1
2 +

𝜕2𝑢3

𝜕𝑥2
2 +

𝜕2𝑢3

𝜕𝑥3
2 ) + 𝑓3. 

(3-1) 

The first and second terms in the right side of these equations represent the longitudinal and shear 

waves, respectively. These waves are also known as P-wave and S-wave in seismology contexts 
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[1]. As mentioned in previous chapters, the generalized Navier’s equations could be obtained for 

an infinite homogenous viscoelastic medium using �̅�, �̅�  instead of µ, λ from Eq. (2-3). 

3.2. The PML Formulation for the Elastodynamic Wave Equation 

In the simulating of ultrasound wave propagation with open boundaries, there could be unwanted 

numerical reflections from the boundaries of the computational domain. In order to model wave 

propagation in unbounded infinite media, these computational reflections should be eliminated. 

One of the most effective solutions to this problem is the perfectly matched layer (PML) 

formulation [120], [128], [156]–[158]. This method along with finite difference or finite element 

numerical simulations could model ultrasound wave propagation in unbounded infinite media. The 

idea is to add an artificial absorbing layer to the computational domain that is perfectly matched 

to the boundaries of the physical domain. This results in the dissipation of the propagating wave 

in the PML region with negligible reflections at the boundaries. It requires adding some additional 

auxiliary PML formulation to the wave equation in order to model the absorbing layer. The 

PML equations are solved only at the boundaries and they do not affect the actual physical 

layer. 

In this study, a similar approach to the method proposed by Assi et al. [128], [156] is used to obtain 

the PML formulations for the elastodynamic wave equation and to its homogeneous case, the 

Navier’s equation. Assi et al. proposed PML formulations for 2D elastic wave equation in their 

research study. In this work, a generalized PML formulation has been proposed for 3D viscoelastic 

medium. 

The following steps summarize the method to obtain the PML formulations: 

1- Mapping the elastodynamic wave equation into the complex domain: 
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𝜌
𝜕2𝑢𝑖

𝜕𝑡2
= ∑

𝜕

𝜕�̃�𝑗
(∑ (𝐶𝑖𝑗𝑘𝑙

𝜕𝑢𝑘

𝜕�̃�𝑙
+ 𝜂𝑖𝑗𝑘𝑙

𝜕2𝑢𝑘

𝜕𝑡𝜕�̃�𝑙
)3

𝑘,𝑙=1 )3
𝑗=1 . (3-2) 

 In this equation �̃� is the complex transformation of the coordinates x, where �̃�𝑗 depends only on 

𝑥𝑗. 

2- Fourier Transform of the elastodynamic equation including the PML terms: In this step, 

the Fourier transform of Eq. (3-2) is calculated: 

𝜌((−𝑖𝜔)2𝑈𝑖) = ∑
𝜕

𝜕�̃�𝑗
(∑ (𝐶𝑖𝑗𝑘𝑙

𝜕𝑈𝑘

𝜕�̃�𝑙
+ (−𝑖𝜔)𝜂𝑖𝑗𝑘𝑙

𝜕𝑈𝑘

𝜕�̃�𝑙
)3

𝑘,𝑙=1 )3
𝑗=1 . (3-3) 

3- Introducing complex function sj(xj) to map the derivatives between the complex and the 

real coordinates. Assuming a dependent variable U: 

𝜕𝑈𝑖

𝜕𝑥𝑗
=

𝜕𝑈𝑖

𝜕�̃�𝑗
 
𝜕�̃�𝑗

𝜕𝑥𝑗
= 𝑠𝑗(𝑥𝑗) 

𝜕𝑈𝑖

𝜕�̃�𝑗
, (3-4) 

𝜕

𝜕�̃�𝑗
=

1

𝑠𝑗(𝑥𝑗)
 

𝜕

𝜕𝑥𝑗
, (3-5) 

where the complex stretch function, sj(xj), can be defined as: 

𝑠𝑗(𝑥𝑗) = 𝛼𝑗(𝑥𝑗) [1 + 𝑖
𝛽𝑗(𝑥𝑗)

𝜔
]. (3-6) 

In Eq. (3-6), αj is called the scaling parameter and βj is the damping coefficient. In this work, no 

scaling is considered, but only damping in the defined PML region is defined. Thus; 𝛼𝑗 = 1, 𝛽𝑗 =

0 in the physical domain and 𝛼𝑗 = 1, 𝛽𝑗 ≥ 0 in the absorbing layer. Hence, the complex 

coordinate transform can be simply achieved by applying the following equation to any spatial 

derivative in the wave equation: 

𝜕

𝜕�̃�𝑗
=

1

[1+
𝛽𝑗(𝑥𝑗)

−𝑖𝜔
]
 

𝜕

𝜕𝑥𝑗
, (3-7) 

one of the commonly used choices for βj is: 
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𝛽𝑗(𝑥𝑗) = {
0                                      |𝑥𝑗| ≤ 𝑥0 

𝛽0𝑗 (
|𝑥𝑗|−𝑥0

𝑑
)
𝑛

       𝑥0 < |𝑥𝑗| ≤ 𝑥0 + 𝑑
  , (3-8) 

𝜕

𝜕�̃�𝑗
=

1

[1+
𝛽𝑗(𝑥𝑗)

−𝑖𝜔
]
 

𝜕

𝜕𝑥𝑗
, (3-9) 

where β0j is a constant. For a normal incident β0j can be expressed in terms of the desired maximum 

reflection coefficient (Rj) [128]: 

𝛽0𝑗(𝑥𝑗) =
𝑐𝑚𝑎𝑥(𝑛+1)

2𝑑
ln (1/𝑅𝑗). (3-10) 

In this equation cmax is the maximum speed of wave propagation in the medium and n is the order 

of the equation for βj. The speed of propagation of longitudinal and shear waves can be estimated 

by the following equations: 

𝑐𝐿 = √
𝜆+2μ

𝜌
, (3-11) 

𝑐𝑆 = √
μ

𝜌
. (3-12) 

Using the following equations, the final formulation of the perfectly matched layer will be 

obtained: 

𝑠1(𝑥𝑗)𝑠2(𝑥𝑗)𝑠3(𝑥𝑗) = [1 +
𝛽1

−𝑖𝜔
] [1 +

𝛽2

−𝑖𝜔
] [1 +

𝛽3

−𝑖𝜔
] =

1

(−𝑖𝜔)3
[(−𝑖𝜔)3 +

(−𝑖𝜔)2(𝛽1+𝛽2 + 𝛽3) + (−𝑖𝜔)(𝛽1𝛽2+𝛽1𝛽3 + 𝛽2𝛽3) + 𝛽1𝛽2𝛽3], 

(3-13) 

𝑠𝑗(𝑥𝑗)𝑠𝑙(𝑥𝑗) = [1 +
𝛽𝑗

−𝑖𝜔
] [1 +

𝛽𝑙

−𝑖𝜔
] =

1

(−𝑖𝜔)2
[(−𝑖𝜔)2 + (−𝑖𝜔)(𝛽𝑗+𝛽𝑙) + 𝛽𝑗𝛽𝑙], (3-14) 

𝑠1𝑠2𝑠3

𝑠𝑙
=

1

(−𝑖𝜔)2
[(−𝑖𝜔)2 + (−𝑖𝜔)(𝛽1+𝛽2+𝛽3−𝛽𝑙) +

𝛽1𝛽2𝛽3

𝛽𝑙
], (3-15) 
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𝑠1𝑠2𝑠3

𝑠𝑙𝑠𝑗
=

[1+
(𝛽1+𝛽2+𝛽3−𝛽𝑙)

(−𝑖𝜔)
+

𝛽1𝛽2𝛽3
(−𝑖𝜔)2𝛽𝑙

]

[1+
𝛽𝑗

−𝑖𝜔
]

=
[(−𝑖𝜔)+(𝛽1+𝛽2+𝛽3−𝛽𝑙)+

𝛽1𝛽2𝛽3
(−𝑖𝜔)𝛽𝑙

]

[−𝑖𝜔+𝛽𝑗]
= 1 +

[(𝛽1+𝛽2+𝛽3−𝛽𝑙−𝛽𝑗)+
𝛽1𝛽2𝛽3
(−𝑖𝜔)𝛽𝑙

]

[−𝑖𝜔+𝛽𝑗]
. 

(3-16) 

4- Substituting �̃� with x using Eq. (3-3) and multiplying the resulted equation by s1s2s3: 

𝜌𝑠1𝑠2𝑠3((−𝑖𝜔)2𝑈𝑖) = ∑
𝜕

𝜕𝑥𝑗
(∑

𝑠1𝑠2𝑠3

𝑠𝑗𝑠𝑙
(𝐶𝑖𝑗𝑘𝑙

𝜕𝑈𝑘

𝜕𝑥𝑙
+ (−𝑖𝜔)𝜂𝑖𝑗𝑘𝑙

𝜕𝑈𝑘

𝜕𝑥𝑙
)3

𝑘,𝑙=1 )3
𝑗=1 . (3-17) 

5- Simplifying the left side of Eq. (3-17) as: 

𝜌𝑠1𝑠2𝑠3((−𝑖𝜔)2𝑈𝑖) = 𝜌 [(−𝑖𝜔)2 + (−𝑖𝜔)(𝛽1+𝛽2 + 𝛽3) + (𝛽1𝛽2+𝛽1𝛽3 +

𝛽2𝛽3) +
𝛽1𝛽2𝛽3

(−𝑖𝜔)
]𝑈𝑖, 

(3-18) 

and, calculating the inverse Fourier transform of this formulation as: 

𝜌 [
𝜕2𝑢𝑖

𝜕𝑡2 + 𝑎
𝜕𝑢𝑖

𝜕𝑡
+ 𝑏𝑢𝑖 + 𝑐 ∫𝑢𝑖𝑑𝜏], (3-19) 

where: 

𝑎 = (𝛽1+𝛽2 + 𝛽3),   𝑏 = (𝛽1𝛽2+𝛽1𝛽3 + 𝛽2𝛽3),   𝑐 = 𝛽1𝛽2𝛽3. (3-20) 

6- Simplifying the right side of Eq. (3-17) as: 

∑
𝜕

𝜕𝑥𝑗
(∑

𝑠𝑗𝑠𝑙

𝑠1𝑠2𝑠3
(𝐶𝑖𝑗𝑘𝑙

𝜕𝑈𝑘

𝜕𝑥𝑙
+ (−𝑖𝜔)𝜂𝑖𝑗𝑘𝑙

𝜕𝑈𝑘

𝜕𝑥𝑙
)3

𝑘,𝑙=1 )3
𝑗=1 = ∑

𝜕

𝜕𝑥𝑗
(∑ [(1 +3

𝑘,𝑙=1
3
𝑗=1

(𝛽1+𝛽2+𝛽3−𝛽𝑙−𝛽𝑗)+
𝛽1𝛽2𝛽3
(−𝑖𝜔)𝛽𝑙

−𝑖𝜔+𝛽𝑗
)(𝐶𝑖𝑗𝑘𝑙

𝜕𝑈𝑘

𝜕𝑥𝑙
+

(−𝑖𝜔)𝜂𝑖𝑗𝑘𝑙
𝜕𝑈𝑘

𝜕𝑥𝑙
)]) =∑

𝜕

𝜕𝑥𝑗
(∑ (𝐶𝑖𝑗𝑘𝑙

𝜕𝑈𝑘

𝜕𝑥𝑙
+ (−𝑖𝜔)𝜂𝑖𝑗𝑘𝑙

𝜕𝑈𝑘

𝜕𝑥𝑙
) + 𝑊𝑖𝑗

3
𝑘,𝑙=1 )3

𝑗=1 , 

(3-21) 

and, calculating the inverse Fourier transform of this side of the equation as: 
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∑
𝜕

𝜕𝑥𝑗
(∑ (𝐶𝑖𝑗𝑘𝑙

𝜕𝑢𝑘

𝜕𝑥𝑙
+ 𝜂𝑖𝑗𝑘𝑙

𝜕2𝑢𝑘

𝜕𝑡𝜕𝑥𝑙
)3

𝑘,𝑙=1 + 𝑤𝑖𝑗)
3
𝑗=1 , (3-22) 

where Wij is defined by the following equation in the Fourier domain: 

𝑊𝑖𝑗 = ∑ [(
(𝛽1+𝛽2+𝛽3−𝛽𝑙−𝛽𝑗)+

𝛽1𝛽2𝛽3
(−𝑖𝜔)𝛽𝑙

−𝑖𝜔+𝛽𝑗
)(𝐶𝑖𝑗𝑘𝑙

𝜕𝑈𝑘

𝜕𝑥𝑙
+ (−𝑖𝜔)𝜂𝑖𝑗𝑘𝑙

𝜕𝑈𝑘

𝜕𝑥𝑙
)]3

𝑘,𝑙=1 . (3-23) 

By taking the inverse Fourier transform, the equation for wij in time domain can be obtained: 

𝜕𝑤𝑖𝑗

𝜕𝑡
+ 𝛽𝑗𝑤𝑖𝑗 = ∑ [((𝑎−𝛽𝑙−𝛽𝑗)𝐶𝑖𝑗𝑘𝑙

𝜕𝑢𝑘

𝜕𝑥𝑙
+

𝑐

𝛽𝑙
𝜂𝑖𝑗𝑘𝑙

𝜕𝑢𝑘

𝜕𝑥𝑙
+3

𝑘,𝑙=1

(𝑎−𝛽𝑙−𝛽𝑗)𝜂𝑖𝑗𝑘𝑙
𝜕2𝑢𝑘

𝜕𝑡𝜕𝑥𝑙
+

𝑐

𝛽𝑙
𝐶𝑖𝑗𝑘𝑙

𝜕 ∫𝑢𝑘𝑑𝜏

𝜕𝑥𝑙
)]. 

(3-24) 

Therefore, the 3D viscoelastic wave equation that includes PML will be in the following 

formulation: 

𝜌 [
𝜕2𝑢𝑖

𝜕𝑡2 + 𝑎
𝜕𝑢𝑖

𝜕𝑡
+ 𝑏𝑢𝑖 + 𝑐 ∫𝑢𝑖𝑑𝜏] = ∑

𝜕

𝜕𝑥𝑗
(∑ (𝐶𝑖𝑗𝑘𝑙

𝜕𝑢𝑘

𝜕𝑥𝑙
+ 𝜂𝑖𝑗𝑘𝑙

𝜕2𝑢𝑘

𝜕𝑡𝜕𝑥𝑙
)3

𝑘,𝑙=1 + 𝑤𝑖𝑗)
3
𝑗=1 , 

𝜕𝑤𝑖𝑗

𝜕𝑡
+ 𝛽𝑗𝑤𝑖𝑗 = ∑ [((𝑎−𝛽𝑙−𝛽𝑗)𝐶𝑖𝑗𝑘𝑙

𝜕𝑢𝑘

𝜕𝑥𝑙
+

𝑐

𝛽𝑙
𝜂𝑖𝑗𝑘𝑙

𝜕𝑢𝑘

𝜕𝑥𝑙
+ (𝑎−𝛽𝑙−𝛽𝑗)𝜂𝑖𝑗𝑘𝑙

𝜕2𝑢𝑘

𝜕𝑡𝜕𝑥𝑙
+3

𝑘,𝑙=1

𝑐

𝛽𝑙
𝐶𝑖𝑗𝑘𝑙

𝜕 ∫ 𝑢𝑘𝑑𝜏

𝜕𝑥𝑙
)]. 

(3-25) 

This formulation includes three main equations for ui and nine auxiliary equations for wij, where 

i,j = 1,2,3. 

3.3. The PML Formulation for the Navier’s Equation 

The Navier’s equation could be extracted from the elastodynamic wave equation. By comparing 

equations (2-1) and (2-4), the similarity between the coefficients can be obtained. This is 

summarized as follows: 
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𝐶𝑖𝑖𝑖𝑖 = 𝜆 + 2𝜇,        𝐶𝑖𝑖𝑗𝑗 = 𝜆,       𝐶𝑖𝑗𝑖𝑗 = 𝐶𝑖𝑗𝑗𝑖 = 𝜇, 

 𝜂𝑖𝑖𝑖𝑖 = 𝜂𝑝 + 2𝜂𝑠 ,    𝜂𝑖𝑖𝑗𝑗 = 𝜂𝑝,     𝜂𝑖𝑗𝑖𝑗 = 𝜂𝑖𝑗𝑗𝑖 = 𝜂𝑠, 

(3-26) 

where 𝑖, 𝑗 = 1,2,3,      𝑖 ≠ 𝑗. All other Cijkl and ηijkl coefficients are zero. Using the equation set Eq. 

(3-25), and substituting the coefficients in Eq. (3-26), the PML formulation can be obtained for 

the Navier’s equations. It should be noted that the coefficients in Eq. (3-25) are all local values. 

3.4. Numerical Implementation of the Elastodynamic Wave 

Equation 

In this section, the numerical implementation of the elastodynamic wave equation including the 

PML formulation, Eq. (3-25), is explained. This implementation is valid for 3D inhomogeneous 

isotropic media and a homogeneous counterpart can be simply extracted. It should be noted that, 

since Eq. (3-25) is valid for anisotropic materials, the proposed method can also be used for 

anisotropic media. However, the focus of this study is on isotropic materials.  

1- Parameter initialization: 

Every parameter related to the wave formulation or mechanical properties of simulation domain 

are defined as a 3D matrix to make the simulation capable of dealing with heterogeneous 

conditions. This includes defining the following 3D matrices: 

- ρ(x,y,z), λ(x,y,z), µ(x,y,z), ηp(x,y,z) and ηs(x,y,z).  

- ux, uy and uz as the three components of displacement vector at every local point, their first 

and second derivatives in time and space, as well as their integral in time.  

2- Calculating cmax, β01, β02 and β03:  

In equations (3-8) to (3-10), the PML length, d, is usually a value between 10% to 20% of the 

length of the physical layer. β1, β2 and β3 are then initialized as 3D matrices. 
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3- Determining the stability of the simulation based on the proposed method in the next 

section. 

4- Defining the source parameters:  

In this simulation framework, one or multiple sources can be defined. Each source can be defined 

by a 3D matrix in space to specify its location, geometry, and shape, and a 1D matrix in time that 

specifies the excitation signal.  

5- Iterative wave propagation calculation: 

This step is mainly based on Eq. (3-25) and the calculation of wave propagation is performed 

iteratively in time. The new displacement values at time t+1 for each local point depend on the 

previous displacement values at t and the neighboring points.  

In Eq. (3-25), the first derivatives in space are first calculated based on the backward explicit 

difference; then, after multiplication to the mechanical coefficient the second derivatives are 

calculated based on forward difference formulations. 

In each iteration, wij coefficients are first calculated as 3D matrices, then, the displacement 

components are calculated based on these coefficients, the displacement spatial and temporal 

derivatives, and displacement integral in time. All these matrices are then updated and saved for 

the next iteration. 

The above 5-step process results in the implementation of elastodynamic wave equation in 3D. 

Since it is an iterative process, the amount of memory used for the calculations only depends on 

the spatial resolution of the simulation. On the other hand, the calculation time depends on both 

the temporal and the spatial resolutions.  

As mentioned in Chapter 2, Navier’s equation is the homogeneous case of the elastodynamic wave 

equation. Therefore, the proposed numerical method is also valid for homogeneous simulations. 
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3.5. Stability of the Simulation 

Considering the numerical stability of the simulation, it is required to select the time and spatial 

increments (∆t, ∆h) carefully to satisfy the convergence conditions of the finite difference method. 

The spatial gridding, ∆h, should be small enough to capture the shortest wavelength existing in the 

simulation; moreover, the time step, ∆t, should be small enough to avoid numerical instability of 

the simulation in the iterating calculations. Therefore, ∆h depends on the frequency content of the 

source, and it can be chosen based on the shortest wavelength: 

∆ℎ ≤ 0.1𝜆𝑚𝑖𝑛. (3-27) 

The proper choice of ∆t can be obtained by writing the finite difference equivalent of Eq. (2-2). 

Since the viscosity terms act as damping parameters in this equation, ∆t can be calculated only 

based on the elastic part of equation. In the other words, the numeric specifications resulting in 

stability of the elastic simulation should make the viscoelastic wave simulation stable too. The 

finite difference elastic version of Eq. (2-2) in z direction is shown in Eq. (3-28): 

𝜌
𝑢𝑧(𝑥, 𝑦, 𝑧, 𝑡 + Δ𝑡) − 2𝑢𝑧(𝑥, 𝑦, 𝑧, 𝑡) + 𝑢𝑧(𝑥, 𝑦, 𝑧, 𝑡 − Δ𝑡)

(Δ𝑡)2

= 𝜇 ∇2𝑢𝑧(𝑥, 𝑦, 𝑧, 𝑡) + (𝜇 + 𝜆)∇𝑧 (∇⃗⃗ . u⃗ (𝑥, 𝑦, 𝑧, 𝑡)). 

(3-28) 

This equation could be written in form of Eq. (3-29) after converting the spatial second derivative 

operators into their equivalent discrete forms, using the Von Neumann stability analysis approach. 

In Von Neumann approach, the discrete terms are substitute by their Fourier series at a discrete 

point (x,y,z) [159]: 

(𝑢𝑧,𝑥𝑦𝑧
𝑡+1 − 2𝑢𝑧,𝑥𝑦𝑧

𝑡 + 𝑢𝑧,𝑥𝑦𝑧
𝑡−1 ) =

 
(∆𝑡)2

𝜌

𝜇(𝑢𝑧,𝑥𝑦𝑧
𝑡 )(𝑒𝑖𝑘∆ℎ+𝑒−𝑖𝑘∆ℎ+𝑒𝑖𝑙∆ℎ+𝑒−𝑖𝑙∆ℎ+𝑒𝑖𝑚∆ℎ+𝑒−𝑖𝑚∆ℎ−6)

(∆ℎ)2
+

(3-29) 
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(∆𝑡)2

𝜌

(𝜆+𝜇)(𝑢𝑥,𝑥𝑦𝑧
𝑡 )(𝑒𝑖(𝑘+𝑚)∆ℎ+𝑒−𝑖(𝑘+𝑚)∆ℎ−𝑒𝑖(𝑘−𝑚)∆ℎ−𝑒−𝑖(𝑘−𝑚)∆ℎ)

4(∆ℎ)2
+

(∆𝑡)2

𝜌

(𝜆+𝜇)(𝑢𝑦,𝑥𝑦𝑧
𝑡 )(𝑒𝑖(𝑙+𝑚)∆ℎ+𝑒−𝑖(𝑙+𝑚)∆ℎ−𝑒𝑖(𝑙−𝑚)∆ℎ−𝑒−𝑖(𝑙−𝑚)∆ℎ)

4(∆ℎ)2
+

 
(∆𝑡)2

𝜌

(𝜆+𝜇)(𝑢𝑧,𝑥𝑦𝑧
𝑡 )(𝑒𝑖𝑚∆ℎ+𝑒−𝑖𝑚∆ℎ−2)

(∆ℎ)2
= 𝐴𝑧𝑥𝑢𝑥,𝑥𝑦𝑧

𝑡 + 𝐴𝑧𝑦𝑢𝑦,𝑥𝑦𝑧
𝑡 + 𝐴𝑧𝑧𝑢𝑧,𝑥𝑦𝑧

𝑡 , 

where  �⃗� 𝑥𝑦𝑧
𝑡

= [𝑢𝑥,𝑥𝑦𝑧, 𝑢𝑦,𝑥𝑦𝑧, 𝑢𝑧,𝑥𝑦𝑧]
𝑇

= [𝑒𝑖(𝑘𝑥), 𝑒𝑖(𝑙𝑦), 𝑒𝑖(𝑚𝑧)]
𝑇
 denotes the particle displacement 

vector at point (x,y,z) at time t when x=nx∆h, y= ny∆h, and z= nz∆h.  

The same approach can be used in x and y directions: 

 (𝑢𝑥,𝑥𝑦𝑧
𝑡+1 − 2𝑢𝑥,𝑥𝑦𝑧

𝑡 + 𝑢𝑥,𝑥𝑦𝑧
𝑡−1 ) =

 
(∆𝑡)2

𝜌

𝜇(𝑢𝑥,𝑥𝑦𝑧
𝑡 )(𝑒𝑖𝑘∆ℎ+𝑒−𝑖𝑘∆ℎ+𝑒𝑖𝑙∆ℎ+𝑒−𝑖𝑙∆ℎ+𝑒𝑖𝑚∆ℎ+𝑒−𝑖𝑚∆ℎ−6)

(∆ℎ)2
+

(∆𝑡)2

𝜌

(𝜆+𝜇)(𝑢𝑦,𝑥𝑦𝑧
𝑡 )(𝑒𝑖(𝑙+𝑘)∆ℎ+𝑒−𝑖(𝑙+𝑘)∆ℎ−𝑒𝑖(𝑙−𝑘)∆ℎ−𝑒−𝑖(𝑙−𝑘)∆ℎ)

4(∆ℎ)2
+

(∆𝑡)2

𝜌

(𝜆+𝜇)(𝑢𝑧,𝑥𝑦𝑧
𝑡 )(𝑒𝑖(𝑚+𝑘)∆ℎ+𝑒−𝑖(𝑚+𝑘)∆ℎ−𝑒𝑖(𝑚−𝑘)∆ℎ−𝑒−𝑖(𝑚−𝑘)∆ℎ)

4(∆ℎ)2
+

 
(∆𝑡)2

𝜌

(𝜆+𝜇)(𝑢𝑥,𝑥𝑦𝑧
𝑡 )(𝑒𝑖𝑘∆ℎ+𝑒−𝑖𝑘∆ℎ−2)

(∆ℎ)2
= 𝐴𝑥𝑥𝑢𝑥,𝑥𝑦𝑧

𝑡 + 𝐴𝑥𝑦𝑢𝑦,𝑥𝑦𝑧
𝑡 + 𝐴𝑥𝑧𝑢𝑧,𝑥𝑦𝑧

𝑡 , 

(3-30) 

 

(𝑢𝑦,𝑥𝑦𝑧
𝑡+1 − 2𝑢𝑦,𝑥𝑦𝑧

𝑡 + 𝑢𝑦,𝑥𝑦𝑧
𝑡−1 ) =

 
(∆𝑡)2

𝜌

𝜇(𝑢𝑦,𝑥𝑦𝑧
𝑡 )(𝑒𝑖𝑘∆ℎ+𝑒−𝑖𝑘∆ℎ+𝑒𝑖𝑙∆ℎ+𝑒−𝑖𝑙∆ℎ+𝑒𝑖𝑚∆ℎ+𝑒−𝑖𝑚∆ℎ−6)

(∆ℎ)2
+

(∆𝑡)2

𝜌

(𝜆+𝜇)(𝑢𝑥,𝑥𝑦𝑧
𝑡 )(𝑒𝑖(𝑘+𝑙)∆ℎ+𝑒−𝑖(𝑘+𝑙)∆ℎ−𝑒𝑖(𝑘−𝑙)∆ℎ−𝑒−𝑖(𝑘−𝑙)∆ℎ)

4(∆ℎ)2
+

(∆𝑡)2

𝜌

(𝜆+𝜇)(𝑢𝑧,𝑥𝑦𝑧
𝑡 )(𝑒𝑖(𝑚+𝑙)∆ℎ+𝑒−𝑖(𝑚+𝑙)∆ℎ−𝑒𝑖(𝑚−𝑙)∆ℎ−𝑒−𝑖(𝑚−𝑙)∆ℎ)

4(∆ℎ)2
+

 
(∆𝑡)2

𝜌

(𝜆+𝜇)(𝑢𝑦,𝑥𝑦𝑧
𝑡 )(𝑒𝑖𝑙∆ℎ+𝑒−𝑖𝑙∆ℎ−2)

(∆ℎ)2
= 𝐴𝑦𝑥𝑢𝑥,𝑥𝑦𝑧

𝑡 + 𝐴𝑦𝑦𝑢𝑦,𝑥𝑦𝑧
𝑡 + 𝐴𝑦𝑧𝑢𝑧,𝑥𝑦𝑧

𝑡 . 

(3-31) 
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Combining Eqs. (3-29) to (3-31) lead us to the following matrix based equation: 

�⃗� 𝑥𝑦𝑧
𝑡+1

− 2�⃗� 𝑥𝑦𝑧
𝑡

+ �⃗� 𝑥𝑦𝑧
𝑡−1

= 𝐴�⃗� 𝑥𝑦𝑧
𝑡

, (3-32) 

 

where 𝐴3×3 = [

𝐴𝑥𝑥 𝐴𝑥𝑦 𝐴𝑥𝑧

𝐴𝑦𝑥 𝐴𝑦𝑦 𝐴𝑦𝑧

𝐴𝑧𝑥 𝐴𝑧𝑦 𝐴𝑧𝑧

]: 

 

𝐴𝑥𝑥 =
(∆𝑡)2

𝜌

𝜇(𝑒𝑖𝑘∆ℎ+𝑒−𝑖𝑘∆ℎ+𝑒𝑖𝑙∆ℎ+𝑒−𝑖𝑙∆ℎ+𝑒𝑖𝑚∆ℎ+𝑒−𝑖𝑚∆ℎ−6)+(𝜆+𝜇)(𝑒𝑖𝑘∆ℎ+𝑒−𝑖𝑘∆ℎ−2)

(∆ℎ)2
, 

𝐴𝑦𝑦 =
(∆𝑡)2

𝜌

𝜇(𝑒𝑖𝑘∆ℎ+𝑒−𝑖𝑘∆ℎ+𝑒𝑖𝑙∆ℎ+𝑒−𝑖𝑙∆ℎ+𝑒𝑖𝑚∆ℎ+𝑒−𝑖𝑚∆ℎ−6)+(𝜆+𝜇)(𝑒𝑖𝑙∆ℎ+𝑒−𝑖𝑙∆ℎ−2)

(∆ℎ)2
, 

𝐴𝑧𝑧 =
(∆𝑡)2

𝜌

𝜇(𝑒𝑖𝑘∆ℎ+𝑒−𝑖𝑘∆ℎ+𝑒𝑖𝑙∆ℎ+𝑒−𝑖𝑙∆ℎ+𝑒𝑖𝑚∆ℎ+𝑒−𝑖𝑚∆ℎ−6)+(𝜆+𝜇)(𝑒𝑖𝑚∆ℎ+𝑒−𝑖𝑚∆ℎ−2)

(∆ℎ)2
, 

𝐴𝑥𝑦 = 𝐴𝑦𝑥 =
(∆𝑡)2

𝜌

(𝜆+𝜇)(𝑒𝑖(𝑙+𝑘)∆ℎ+𝑒−𝑖(𝑙+𝑘)∆ℎ−𝑒𝑖(𝑙−𝑘)∆ℎ−𝑒−𝑖(𝑙−𝑘)∆ℎ)

4(∆ℎ)2
, 

𝐴𝑥𝑧 = 𝐴𝑧𝑥 =
(∆𝑡)2

𝜌

(𝜆+𝜇)(𝑒𝑖(𝑚+𝑘)∆ℎ+𝑒−𝑖(𝑚+𝑘)∆ℎ−𝑒𝑖(𝑚−𝑘)∆ℎ−𝑒−𝑖(𝑚−𝑘)∆ℎ)

4(∆ℎ)2
, 

𝐴𝑦𝑧 = 𝐴𝑧𝑦 =
(∆𝑡)2

𝜌

(𝜆+𝜇)(𝑒𝑖(𝑙+𝑚)∆ℎ+𝑒−𝑖(𝑙+𝑚)∆ℎ−𝑒𝑖(𝑙−𝑚)∆ℎ−𝑒−𝑖(𝑙−𝑚)∆ℎ)

4(∆ℎ)2
. 

(3-33) 

By defining an auxiliary variable 𝑠𝑥𝑦𝑧
𝑡 , Eq. (3-32) can be simplified to the following iterating form: 

𝑠 𝑥𝑦𝑧
𝑡+1

− 𝑠 𝑥𝑦𝑧
𝑡

= 𝐴�⃗� 𝑥𝑦𝑧
𝑡

, (3-34) 

𝑠 𝑥𝑦𝑧
𝑡+1

= �⃗� 𝑥𝑦𝑧
𝑡+1

− �⃗� 𝑥𝑦𝑧
𝑡

. (3-35) 

Therefore, 
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[
 
 
 
 
 
 
 
𝑠𝑥,𝑥𝑦𝑧

𝑡+1

𝑠𝑦,𝑥𝑦𝑧
𝑡+1

𝑠𝑧,𝑥𝑦𝑧
𝑡+1

𝑢𝑥,𝑥𝑦𝑧
𝑡+1

𝑢𝑦,𝑥𝑦𝑧
𝑡+1

𝑢𝑧,𝑥𝑦𝑧
𝑡+1 ]

 
 
 
 
 
 
 

= [
𝐼3×3 𝐴3×3

𝐼3×3 𝐼3×3 + 𝐴3×3
]

[
 
 
 
 
 
 
 
𝑠𝑥,𝑥𝑦𝑧

𝑡

𝑠𝑦,𝑥𝑦𝑧
𝑡

𝑠𝑧,𝑥𝑦𝑧
𝑡

𝑢𝑥,𝑥𝑦𝑧
𝑡

𝑢𝑦,𝑥𝑦𝑧
𝑡

𝑢𝑧,𝑥𝑦𝑧
𝑡 ]

 
 
 
 
 
 
 

, (3-36) 

or: 

[
𝑠 𝑥𝑦𝑧
𝑡+1

�⃗� 𝑥𝑦𝑧
𝑡+1] = 𝐶6×6 [

𝑠 𝑥𝑦𝑧
𝑡

�⃗� 𝑥𝑦𝑧
𝑡 ]. (3-37) 

 

Based on Eq. (3-37), the finite difference simulation is stable if the absolute value of all six 

eigenvalues of matrix 𝐶6×6 are smaller than 1. 

|𝜆𝑗| ≤ 1,        𝑗 = 1,… ,6, 

𝜆𝑗 = 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒(𝐶6×6). 

(3-38) 

In the simulations, first ∆h is selected from Eq. (3-27), then ∆t is selected using Eq. (3-38). Since 

the eigenvalues could change for different locations in space, two marginal cases are considered 

where all elements of A are maximum or minimum; and ∆t is chosen such that Eq. (3-38) remains 

valid. 

The validation of the proposed numerical framework will be discussed in more details in Section 

5.1. The application of this framework in simulation of shear wave propagating in soft tissue 

including a HIFU thermal lesion will be then presented in Section 5.2. 
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Chapter    4 

Viscoelasticity Estimation 

In many publications, the cross-correlation of consecutive ultrasound RF signals or ultrasound 

images is the basis of detecting the longitudinal or shear waves [20], [160]–[162] which results in 

calculation of time-of-arrival of the waves. In this thesis, the proposed estimation method for 

detecting the shear wave is based on the combination of Wigner-Ville distribution (WVD) 

analysis, the alternating sequential filters (ASF) and the circular Hough transform (CHT). It will 

be demonstrated that the combination of these techniques leads to detection of longitudinal and 

shear waves generated by an acoustic radiation force impulse at any individual location in the 

region of interest. This is done to estimate the location of the waves in time; and then to estimate 

the longitudinal and shear wave parameters such as frequency content, propagation speed and the 

attenuation coefficient of the medium. Since some cross-term artifacts could exist in the time-

frequency profile from the WVD that are not real frequencies [141], [151], specific image 

processing techniques such as the ASF and CHT are employed in order to detect all time-frequency 

points including the real ones and the cross-term artifacts; then, to separate the real time-frequency 

components from the artificial cross-terms by further analysis. Based on this method, the time-

frequency profiles of the local signals are evaluated and the time-of-arrival, and therefore the 

speed, and frequency of the signal are estimated. Then, by using the Voigt model, the acoustic 

properties of the medium are estimated. These estimations are the bases for calculating the 
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elasticity and viscosity of the medium and distinguishing between the layers of tissue. The Voigt 

model is used because it includes both elasticity and viscosity terms and formulates the speed of 

wave propagation and attenuation coefficient of the material based on viscosity parameters [160]. 

Therefore, the inverse Voigt model is an appropriate method to estimate the viscoelastic 

parameters from the estimated speed, frequency, and attenuation coefficient.  

The major benefit of the proposed detection and estimation method over the traditional cross-

correlation based methods is its capability of extracting more information from the particle 

displacement profile. The cross-correlation based methods are normally capable of estimating the 

time-of-arrival of the wave. On the other hand, the proposed WVD based method provides the 

instantaneous frequency of the propagating wave as well as its time-of-arrival. This could lead to 

a more accurate estimation of viscoelastic parameters of the medium. 

The other major benefit of the proposed method is its capability of estimating the time-of-arrival 

of the wave at any spatial point independently without any prior knowledge of the acoustic signal 

shape at other points. In the correlation-based methods, since the time-of-arrival is estimated by 

comparing the acoustic signals at two spatial points and calculating the time-shift between them, 

the calculations are not independent for each point. Therefore, if the calculations fail at the points 

closer to the source, it will fail at the other farther points. As per the Green’s function solution for 

wave propagation in viscoelastic medium, proposed by Bercoff et al. [56], the formulations show 

that the shape of the acoustic wave changes during propagation. Although these changes are 

negligible for two close neighboring points, they could be significant for two far points. This fact 

increases the chance of correlation-based methods failure in comparison with the proposed time-

frequency analysis. This will be further discussed in the next chapter with examples. 
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4.1. Wigner-Ville Distribution of Acoustic Wave 

In this study, the propagating acoustic wave is detected using a discrete version of the WVD given 

in Eq. (4-1) [141]: 

𝑊𝑧[𝑛, 𝑘] = 2 𝐷𝐹𝑇𝑚→𝑘{𝑧[𝑛 + 𝑚]𝑧∗[𝑛 − 𝑚]}, (4-1) 

where z[n] is the analytical associate of the real signal s[n] at a given local point. z[n+m] and z[n-

m] are the m-unit shifted versions of the signal to the left and right sides in the time domain, 

respectively. DFT{.} is the discrete Fourier transform with respect to the shift. The WVD of a 

signal with the length of N is an N×N matrix of the time-frequency profile that contains the IFs at 

any time window. As mentioned in Chapter 2, the analytical associate of a real signal is its 

complex-valued version where the negative frequency components are removed. Using the 

analytical associate avoids the appearance of some interference terms that are generated from the 

interaction of positive and negative frequency components without losing any information when 

dealing with multiple frequency components [141]. The analytical associate of the signal can be 

derived from the Hilbert transform of the real signal: 

𝑧[𝑛] = 𝑠[𝑛] + 𝑖𝐻{𝑠(𝑛)}. (4-2) 

Given the analytical signal z[n], the instantaneous autocorrelation function (IAF) is defined as: 

𝐾𝑧[𝑛,𝑚] = 𝑧[𝑛 + 𝑚]𝑧∗[𝑛 − 𝑚]. (4-3) 

The IAF is a function of actual time variable, n, and the time lag, m. The WVD is defined as the 

Fourier transform of the IAF with respect to m.  

In the following, the steps towards the development of the discrete WVD of a signal are 

summarized: 

- Calculation of the Hilbert transform of the real signal, 

- Derivation of analytical associate of the signal from the Hilbert transform, 
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- Shifting the signal to the right and left side and calculation of the instantaneous 

autocorrelation function for all possible amounts of lag, 

- Implementation of the discrete WVD by calculating the Fourier transform of the IAF. 

Therefore, first the IAF of the signal should be calculated for all possible amounts of lag in order 

to implement the Discrete WVD. 

The WVD could be interpreted as the energy distribution of the signal over the TF plane [141]. 

This method is perfectly localized when dealing with the signals with mono time-frequency 

component. It has the best resolution among the other time-frequency methods, such as short-time 

Fourier transform, in the detection of Instantaneous Frequencies [141]. Since WVD is quadratic in 

nature, it introduces cross terms when dealing with signals with multi time-frequency components. 

The cross terms are introduced by every pair of time-frequency components in the TF plane. They 

are located exactly in the middle of the pairs of components.  

 Since the acoustic displacement profile may contain both longitudinal and shear waves, the WVD 

could result in generation of cross-terms between the time-frequency components. There are 

different methods proposed to reduce the cross terms using window-based calculations by 

smoothing the signal in time and/or in frequency domains in pseudo-WVD and smoothed pseudo-

WVD methods [9]. These methods, generally, result in reducing the amplitude of cross terms with 

cost of losing the time-frequency resolution. The goal of this study is to detect the shear wave 

resulted from ARFI at different locations of the medium. In order to detect longitudinal and shear 

components, a different approach is introduced by multiplying the WVD result with the Fourier 

transform of the acoustic signal [141]. In this way, Fourier Transform acts as a window-based filter 

that eliminates the artificial cross-terms and keeps only the real TF components. The time-

frequency profile is then further processed to extract the time-frequency components of the signal 
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from the acoustic noise and the cross-terms by utilizing a post-processing algorithm that includes 

a peak detection method along with morphological operators and the circular Hough transform. 

The goal is to detect the existing time-frequency points and to eliminate the unwanted cross-terms.  

4.1.1. Morphological Operators 

The morphological gradients has been used along with thresholding in various image processing 

purposes such as filtering, marking and image segmentation [163]. These operators calculate the 

difference between the local maximum and minimum values in the neighborhood of the given 

points in an image using a user defined structuring element (SE). In this project, an algorithm is 

implemented based on the alternating sequential filters in order to detect and distinguish the 

boundaries between two instant frequencies in the time-frequency plane. The ASF is a composition 

of alternating openings and closings with increasingly wide structuring elements. The opening of 

image A by the structuring element SE is defined as an erosion of A and SE followed by a dilation. 

The closing of image A and SE is defined as a dilation followed by an erosion. The definitions of 

the, opening, closing and ASF are presented in equations (4-4) - (4-6), respectively [163]. 

𝐴 ∘ 𝑆𝐸 = (𝐴 ⊖ 𝑆𝐸) ⊕ 𝑆𝐸, (4-4) 

𝐴 • 𝑆𝐸 = (𝐴 ⊕ 𝑆𝐸) ⊖ 𝑆𝐸, (4-5) 

𝐴𝑆𝐹𝑛{𝐴} = ((((((𝐴 • 𝑆𝐸1) ∘ 𝑆𝐸1) • 𝑆𝐸2) ∘ 𝑆𝐸2) • …) • 𝑆𝐸𝑛) ∘ 𝑆𝐸𝑛, (4-6) 

where the operators ⊖, ⊕, ∘ and • are erosion, dilation, opening and closing operators, 

respectively. In Eq. (4-6), SE1, SE2, … and SEn are the increasingly expanding structuring 

elements. Therefore, the order of ASF is n and changes accordingly.  
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In this work, the TF plane of the acoustic signal at every spatial point as is considered a 2D image. 

By utilizing the ASF method, the gaps in areas indicating time-frequency components are removed 

by using n=10 pixels. 

4.1.2. Circular Hough Transform 

The Hough transform is a broadly used image processing technique in shape detection and 

recognition [164]. This technique is robust to noise and it has been widely used in the recognition 

of lines, corners, circles, ellipses and any analytically and arbitrary defined object in an image. 

This method is based on transform mapping and voting rule to detect the best candidate for the 

defined shape. 

In this work, the best candidates of TF components are extracted from the TF plane using circular 

Hough transform are extracted by searching for the circular shapes with brighter intensities in the 

TF plane. Then, the frequency and the time-of-travel of the wave are measured at the detected TF 

points. The amplitude of the signal is also measured to estimate the local attenuation coefficient of 

the medium. 

4.2. Direct Voigt’s Model  

It is possible to write Voigt’s model [161] for both longitudinal and shear waves. Based on this 

model, the speed of the wave and the attenuation coefficient of the medium can be calculated from 

Eqs. (4-7) - (4-10): 

𝑐𝑠 = √
2 (𝜇2+𝜔𝑠

2𝜂𝑠
2)

𝜌 (𝜇+√𝜇2+𝜔𝑠
2𝜂𝑠

2)

, (4-7) 
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𝛼𝑠 = √
𝜌𝜔𝑠

2(√𝜇2+𝜔𝑠
2𝜂𝑠

2− 𝜇)

 2(𝜇2+𝜔𝑠
2𝜂𝑠

2)
, 

(4-8) 

𝑐𝑝 =  √
2 [(𝜆+2𝜇)2+𝜔2(𝜂𝑝+2𝜂𝑠)

2
]

𝜌 [(𝜆+2𝜇)+ √(𝜆+2𝜇)2+𝜔2(𝜂𝑝+2𝜂𝑠)
2
]

, (4-9) 

𝛼𝑝 =  
√

𝜌𝜔2(√(𝜆+2𝜇)2+𝜔2(𝜂𝑝+2𝜂𝑠)
2
− (𝜆+2𝜇))

 2((𝜆+2𝜇)2+𝜔2(𝜂𝑝+2𝜂𝑠)
2
)

, 
(4-10) 

where ω and ωs are the angular frequencies of the longitudinal and shear waves, respectively. In 

this study, an inverse version of the Voigt’s equations is utilized.  

4.3. Inverse Voigt’s Model 

The shear modulus and shear viscosity are estimated by approximating the frequency, attenuation, 

and speed of propagation of the waves. Equations (4-11) and (4-12) show the local shear modulus 

and viscosity terms based on the local shear speed, frequency and attenuation: 

𝜇 =
𝜌𝑐𝑠

2𝜔𝑠
2(𝜔𝑠

2−𝛼𝑠
2𝑐𝑠

2)

(𝜔𝑠
2+𝛼𝑠

2𝑐𝑠
2)

2 , (4-11) 

𝜂𝑠 =
2𝜌𝑐𝑠

3𝜔𝑠
2𝛼𝑠

(𝜔𝑠
2+𝛼𝑠

2𝑐𝑠
2)

2. (4-12) 

In case of very high frequencies when ωs→∞, these equations can be approximated as µ = ρcs
2 

and ηs = 0. Since the frequency of shear wave generated in tissue-like medium is in low range of 

100-1000 Hz, this assumption is not accurate. Therefore, using the frequency and attenuation 

coefficient information leads to a more accurate estimation of the viscoelastic parameters. 

The results of the proposed detection method will be discussed in Section 5.3. This method will 

be applied on simulated data of a shear wave propagation in a HIFU lesion located in the center of 



 CHAPTER 4: VISCOELASTICITY ESTIMATION 

63 

 

normal tissue. It will be discussed that the proposed time-frequency algorithm can detect shear 

wave at every location in the simulation. It can also estimate the time-of-flight of the wave and its 

center frequency. The estimations for every single local point are independent to the other 

surrounding points. In Sections 5.3 and 5.4, the results of shear elasticity and shear viscosity will 

be shown and discussed. 
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Chapter    5 

Results and Discussions 

In this chapter, the results from the acoustic wave propagation simulation are presented and 

validated by comparing them with the published results. Then the result of the proposed estimation 

method is demonstrated in finding the local acoustic parameters of a simulated HIFU thermal 

lesion induced inside a normal tissue.  

In Sections 5.1 and 5.2, the results of the proposed method in Chapter 3 are presented. First the 

numerical method is validated by comparing its results with other studies. Then the acoustic wave 

propagation in simulated HIFU lesions is presented and discusses.  

In Section 5.3, the results of the proposed detection method in Chapter 4 are shown. In this section, 

the estimations of time-of-arrival, center frequency and amplitude of simulated shear wave in a 

soft tissue with ellipsoid HIFU lesion are discussed. Then the estimation of shear elasticity and 

viscosity is explained. In the discussion section, it is illustrated that the proposed detection method 

can differentiate between normal tissue and HIFU lesion. 

5.1. Validation of the Simulation 

This section shows the results of the proposed numerical framework in Chapter 3 along with its 

validation by comparing its results with other research works. In order to validate the proposed 



 CHAPTER 5: RESULTS AND DISCUSSIONS 

65 

 

simulations approach, two published simulation studies are considered. In the first comparison, the 

proposed simulation method including the Perfectly Matched Layer is compared with the results 

from an analytical solution by Bercoff et al. in homogeneous media [56]. In the second comparison, 

the validation is based on the simulation by Yohann Dudouit [157] in a multilayer media in 

seismologic studies.  

5.1.1. Comparison with Green’s Function Method 

Bercoff et al. [56] proposed a solution to the generalized Navier’s equation in an infinite 

homogeneous isotropic elastic and viscous medium using Green’s functions. In this study, Green’s 

function has been used to formulate the particle displacement of the medium corresponding to an 

impulse spatio-temporal excitation. The proposed analytical solution by Bercoff et al. includes 

three terms that represent bulk component, shear component and the coupling term between the 

bulk and shear components, as given in Eqs. (5-1) - (5-4) [56]: 

𝑔𝑖𝑗(𝑟 , 𝑡) = 𝑎𝑖 (𝑔𝑖𝑗
𝑝 (𝑟 , 𝑡) + 𝑔𝑖𝑗

𝑠 (𝑟 , 𝑡) + 𝑔𝑖𝑗
𝑝𝑠(𝑟 , 𝑡)), (5-1) 

𝑔𝑖𝑗
𝑝 (𝑟 , 𝑡) =

1

4𝜋𝜌𝑐𝑝

1

√2𝜋𝜈𝑝𝑡
𝛾𝑖𝛾𝑗

1

𝑟
𝑒

−
(𝑡−

𝑟
𝑐𝑝

)

2

𝑐𝑝
2

2𝜈𝑝𝑡 , 
(5-2) 

𝑔𝑖𝑗
𝑠 (𝑟 , 𝑡) =

1

4𝜋𝜌𝑐𝑠

1

√2𝜋𝜈𝑠𝑡

𝛿𝑖𝑗−𝛾𝑖𝛾𝑗

𝑟
𝑒

−
(𝑡−

𝑟
𝑐𝑠

)
2
𝑐𝑠
2

2𝜈𝑠𝑡 , (5-3) 

𝑔𝑖𝑗
𝑝𝑠(𝑟 , 𝑡) =

1

4𝜋𝜌

3𝛾𝑖𝛾𝑗−𝛿𝑖𝑗

𝑟3 [𝐼𝑝(𝑟 , 𝑡) + 𝐼𝑠(𝑟 , 𝑡)], (5-4) 

where, 

𝐼𝑝(𝑟 , 𝑡) =  
√𝜈𝑝𝑡

√2𝜋𝑐𝑝

[
 
 
 

𝑒
−

𝑡2𝑐𝑝
2

2𝜐𝑝𝑡 − 𝑒
−

(𝑡−
𝑟
𝑐𝑝

)

2

𝑐𝑝
2

2𝜐𝑝𝑡

]
 
 
 

+
𝑡

2
[𝐸𝑟𝑓 (

𝑐𝑝𝑡

√2𝜐𝑝𝑡
) − 𝐸𝑟𝑓 (

𝑐𝑝(𝑡−
𝑟

𝑐𝑝
)

√2𝜐𝑝𝑡
)], (5-5) 
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𝐼𝑠(𝑟 , 𝑡) =  
√𝜈𝑠𝑡

√2𝜋𝑐𝑠
[𝑒

−
𝑡2𝑐𝑠

2

2𝜐𝑠𝑡 − 𝑒
−

(𝑡−
𝑟
𝑐𝑠

)
2
𝑐𝑠
2

2𝜐𝑠𝑡 ] +
𝑡

2
[𝐸𝑟𝑓 (

𝑐𝑠𝑡

√2𝜐𝑠𝑡
) − 𝐸𝑟𝑓 (

𝑐𝑠(𝑡−
𝑟

𝑐𝑠
)

√2𝜐𝑠𝑡
)]. (5-6) 

In the first simulation, the results from the proposed finite difference method are compared with 

the results from the Bercoff’s formulations in a homogeneous viscoelastic medium with the 

properties given in Table 5.1. The parameters in this simulation are not representative of a typical 

soft tissue. The speed of longitudinal wave chosen in this simulation is 40 m/s much smaller than 

1500 m/s in a typical soft tissue. The reason of using these parameters is to show longitudinal and 

shear waves in a single simulation [56]. 

 

Table 5.1: The specifications of Simulation 1 

Mechanical Properties 

Density ρ=1,000 kg/m3 

Lame’s first parameter λ=1,598 kPa 

Lame’s second parameter μ=1 kPa 

Bulk Viscosity νp=0.2 Pa.s 

Shear Viscosity νs=0.2 Pa.s 

Geometry 

-20 mm ≤ x ≤ 20 mm dx = 1 mm 

-20 mm ≤ y ≤ 20 mm dy = 1 mm 

-20 mm ≤ z ≤ 20 mm dz = 1 mm 

Simulation Duration 0 ≤ t ≤ 15 ms dt = 100 ns 

PML Parameters 

PML Length d = 3 mm 

PML Order n = 2  

Reflection Coefficient Rj = 10-3 
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In this simulation, the ultrasound source is modeled as an impulse at the origin in z direction, and 

the particle displacement is calculated in different locations. The simulation geometry and the 

source are illustrated in Figure 5.1.  

The results of the simulations are shown in Figure 5.2 at two different radial points. 

 

 

 

 
Figure 5.1: The geometry and the source in the first simulation validation. 
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The results of the simulations are also shown in Figure 5.3 at one axial and one lateral points. 

 

 

 
(a)      

                                                                           

 
(b) 

Figure 5.2: Comparison between the results of the Green’s functions formulation (Bercoff et al. [56]) and 

the proposed finite difference method using PML at two different radial points. 
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The effect of PML has been illustrated in Figure 5.4 and Figure 5.5 for the same locations. These 

figures show how the PML can efficiently remove the reflected waves from computational 

boundaries.   

 

 
(a) 

 

 
(b) 

Figure 5.3: Comparison between the results of the Green’s functions formulation (Bercoff et al. [56]) and 

the proposed finite difference method using PML at (a) a lateral point, and (b) an axial point. 
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(a) 

 

 
(b) 

 

Figure 5.4: The simulation results with and without PML at two radial points. 
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It should be noted that the shear wave amplitude drops in the results without PML when the spatial 

point is closer to the boundaries, e.g. Figure 5.4 (b) and Figure 5.5 (a). This is due to the numerical 

reflections of the shear wave from the boundaries which are all eliminated after using PML.  

 
(a) 

 

 
(b) 

 

Figure 5.5: The simulation results with and without PML at (a) a lateral point, and (b) an axial point. 
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The total acoustic energy as computed over the entire geometry is also shown in Figure 5.6 for the 

simulations with and without PML. This figure also depicts that the energy is attenuated in the 

PML region. 

 

As illustrated in the above figures, the results when applying PML are in very good agreements 

with the results from Bercoff’s formulation.  

5.1.2. Two-Layer Large Scale Medium Simulation 

In this section, the simulation results of a large size viscoelastic medium, representing a 

seismological application, has been provided and compared with the results from Dudouit studies 

[157].  

In this simulation, a two-layer medium has been simulated with the characteristics in Table 5.2.  

 

 
Figure 5.6: The comparison of total energy attenuation in time (in decibels) with/without PML. 



 CHAPTER 5: RESULTS AND DISCUSSIONS 

73 

 

Both simulations used a source function consisting of a second order Ricker function, h(t) and a 

Gaussian regularized Dirac function 𝑔(|𝑟 − 𝑟𝑠|) over a sphere located at rs whose radius is r0. This 

source function is given by: 

𝑓(𝑟, 𝑡) = ℎ(𝑡)𝑔(|𝑟 − 𝑟𝑠|)
𝑟−𝑟𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

|𝑟−𝑟𝑠|
, (5-7) 

where the Ricker wavelet function, whose peak frequency is  𝑓0, is given by: 

  ℎ(𝑡) = (2𝜋2(𝑓0𝑡 − 1)2 − 1)𝑒−𝜋2(𝑓0𝑡−1)2
, (5-8) 

and the regularized Dirac function is 

𝑔(|𝑟 − 𝑟𝑠|) = 𝑒
−7

|𝑟−𝑟𝑠|2

𝑟0
2

𝑟0
2⁄ , (5-9) 

In Eq. (5-7) the vector term 
𝑟−𝑟𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

|𝑟−𝑟𝑠|
  generates the applied acoustic displacement in the radial 

direction, which implies that the source has only longitudinal term in the layer containing the 

origin.  The source in this simulation was at location (x=100, y=0, z=100) m; moreover, in both 

simulations 𝑓0 was taken to be 40 Hz, a typical frequency used in seismology applications. The 

results from Dudouit studies, as shown in Figure 2.11 of his thesis [157], and this simulation are 

shown in Figure 5.7. This figure shows how the wave propagates from the first layer to the second 

one. It should be noted that the physical domain geometry in this simulation is the same as that 

given by Dudouit; however, the PML length and parameters are different. The wave source is in 

the first layer and generates a pure longitudinal wave.  

As shown in Figure 5.7, in both simulations the propagating wave is initially only longitudinal 

wave.  The shear wave is then created after the wave propagates toward the interface between the 

layers. Both simulations show that the shear wave is generated and propagates in the same manner. 
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Table 5.2: The specifications of Simulation 2 

 Layer 1 Layer 2 

Mechanical Properties 

Density ρ=2,100 kg/m3 ρ=2,300 kg/m3 

Lame’s 1st parameter λ=4.2×109 Pa λ=7.774×109 Pa 

Lame’s 2nd parameter μ=2.1×109 Pa μ=3.887×109 Pa 

Bulk Viscosity νp=0 Pa.s νp=0 Pa.s 

Shear Viscosity νs=0 Pa.s νs=0 Pa.s 

Geometry 

dx = 4 m 0 ≤ x ≤ 280 m -280 m ≤ x ≤ 0 

dy = 4 m -280 m ≤ y ≤ 280 m -280 m ≤ y ≤ 280 m 

dz = 4 m -280 m ≤ z ≤ 280 m -280 m ≤ z ≤ 280 m 

Simulation Duration dt = 500 µs 0 ≤ t ≤150 ms 

PML Parameters 

PML Length d = 80 m 

PML Order n = 1 (Linear) 

Reflection Coefficient Rj = 10-4 

 

 

    
(a) 

 

 
(b) 

 

Figure 5.7: Comparison between results from (a) the proposed method, and (b) the results from Dudouit 

studies [157] at t = 50 ms, t = 100 ms and t = 150 ms. 
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5.2. Simulations of Acoustic Wave Propagation in HIFU Lesion  

In this section, an application of the proposed numerical model in the field of therapeutic 

biomedical ultrasound is studied. As it was discussed in Chapter 2, High Intensity Focused 

Ultrasound (HIFU) is a minimally-invasive therapeutic approach that has been employed to 

destroy tumors locally by inducing localized heat inside tumors and increasing their temperature 

approximately to above 60°C [165], [166]. In the HIFU therapy, the high intensity ultrasound beam 

is focused and delivered to the targeted tissue and the ultrasound mechanical energy is converted 

into heat energy through tissue absorption. Consequently, the temperature of tissue is raised locally 

to the levels that irreversible structural changes are resulted at that location leading to tissue 

coagulation necrosis. It has been demonstrated that the mechanical properties of coagulated tissue, 

a.k.a. a thermal lesion, are different than the surrounding normal tissue [54], [167].   

In the following sections, the propagation of ultrasound wave is simulated within a tissue-like 

medium with a HIFU thermal lesion induced in the middle region of the tissue.  

5.2.1. Double Indentation Experiment 

The HIFU lesion simulation parameters are based on the double indentation measurements [168] 

on samples from chicken breast tissue. First, a large HIFU thermal lesion was induced; then, the 

density, Young’s and Shear moduli of three samples from the normal tissue and three samples 

from the HIFU thermal lesion area were measured. Young’s and shear moduli were measured 

based on the method proposed by Hayes et al. [168] using Mach-1TM mechanical tester 

(Biomomentum Inc., Laval, QC, Canada).  The tester has a vertical and horizontal stage, so it can 

perform compression, tension, and shear tests. In double indentation method, two 

spherical indenters with different radii are used to compress the tissue; then, two graphs for the 
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parameter under test are plotted as functions of load factor for the spherical indenters. The overlap 

between these two graphs can result in estimation of Young’s modulus, shear modulus, and 

Poisson’s ratio.  

In these measurements, the diameters of the indenters were 4 mm and 8 mm. The samples were 

cut wide enough; therefore, the indenters could be placed far from their edges to have more 

accurate measurements. The thickness of the samples was between 3 mm to 4 mm and they were 

placed on a rigid support. The maximum indentation load was 100 grams and the measurements 

were captured from the linear part of the force-position curve. These measured Young’s modulus 

and shear modulus parameters can be converted into Lame’s first and second parameters.  

In Figure 5.8, the HIFU treatment setup, including the HIFU transducer and the tissue holder, and 

two chicken breast samples are shown. The induced HIFU lesions in the chicken breast sample are 

visible in this figure.  

These lesions are formed after long HIFU treatments with the peak-to-peak pressure of 3.5 MPa 

at the focal region, center frequency of 1 MHz, 50% duty cycle and the duration of 10 minutes. 

In Figure 5.9 (a) some samples are shown which are cut from the HIFU lesions and the normal 

tissue. Figure 5.9 (b) illustrates Mach-1TM mechanical tester during a double indentation 

measurement.  
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(a) 

 

        
(b)                                                                   (c) 

 

Figure 5.8: (a) HIFU treatment setup, (b) and (c) two pieces of chicken breast with induced HIFU lesions. 
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Table 5.3 shows the resulted mechanical parameters from the double indentation tests: 

Table 5.3: The results from double indentation experiment 

Mechanical 

Properties 

Normal Tissue: ρ=1,004 kg/m3 λ=2.58×109 Pa μ=3.27×103 Pa  

HIFU lesion: ρ=1,104 kg/m3 λ=2.72×109 Pa μ=11.74×103 Pa  

 
(a) 

 

 
(b) 

 

Figure 5.9: (a) Samples from HIFU induces lesions and the normal chicken breast tissue, (b) Mach-1TM 

mechanical tester during double indentation measurement 
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5.2.2. Ultrasound Shear-Wave Simulation in Cubic Inhomogeneous Tissue 

As illustrated in Figure 5.10, a cubic HIFU lesion, as a simplified lesion geometry, is defined at 

the center of normal tissue in this simulation. An ARFI is used as the source of shear wave with 

the duration of 50 µs located in the center of the cubic HIFU lesion. The Lame’s first and second 

coefficients and the density values used for the normal chicken breast and the thermally induced 

HIFU lesion are from the double indentation measurements in Table 5.3.  

In this simulation, the bulk and shear viscosities are set as 10 Pa.s and 1 Pa.s, respectively. The 

reason of choosing these values is base on the fact that the bulk and shear viscosities of soft tissue 

are usually in the range of 1-10 Pa.s [169], and the bulk viscosity is normally larger than shear 

viscosity. The simulation parameters are summarized in Table 5.4. This table also shows the 

geometry of the simulated area, and the PML parameters. 

 

 
Figure 5.10. The simulation geometry: thermal HIFU lesion is inside the normal tissue, and the black area 

is the PML region 
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The results of this simulation are illustrated in Figure 5.11 to 5.13. Figure 5.11 shows how the 

shear wave is generated and propagated after the ARFI is applied in z direction. 

Figure 5.12, six samples of shear wave signal are illustrated at three locations inside the HIFU 

lesion and three locations outside of the HIFU lesion in the normal tissue. 

In Figure 5.13, it has been shown how the wave energy is dissipating rapidly after it reaches to the 

PML region. 

 

Table 5.4: The specifications of Simulation 3 

 Normal Tissue HIFU lesion 

Mechanical 

Properties (derived 

from measurements) 

Density ρ=1,004 kg/m3 ρ=1,104 kg/m3 

Lame’s 1st parameter λ=2.58×109 Pa λ=2.72×109 Pa 

Lame’s 2nd parameter μ=3.27×103 Pa μ=11.74×103 Pa 

Bulk Viscosity νp=10 Pa.s νp=10 Pa.s 

Shear Viscosity νs=1 Pa.s νs=1 Pa.s 

Geometry 

dx = 2 mm -14 cm ≤ x ≤ 14 cm -5 cm ≤ x ≤ 5 cm 

dy = 2 mm -14 cm ≤ y ≤ 14 cm -5 cm ≤ y ≤ 5 cm 

dz = 2 mm -14 cm ≤ z ≤ 14 cm -5 cm ≤ z ≤ 5 cm 

Simulation Duration dt = 0.25 ms 0 ≤ t ≤150 ms 

PML Parameters 

PML Length d = 4 cm 

PML Order n = 1 (Linear) 

Reflection Coefficient Rj = 10-4 
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Figure 5.11. Shear wave propagation from HIFU thermal lesion to normal tissue regions. The red box 

denotes boundary of the induced HIFU lesion. 

 

 
Figure 5.12. Shear wave signal at three locations inside the HIFU thermal lesion (Top) and three locations 

in the normal tissue (Bottom). 
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5.2.3. Ultrasound Shear-Wave Simulation in Elliptic HIFU Lesion 

In this example, the propagation of an acoustic wave is simulated which is created within a tissue-

like medium with a HIFU thermal lesion induced in the center of the normal tissue volume. In this 

simulation, the thermal HIFU lesion is defined in an elliptical shape which makes it alike the real 

HIFU lesions. The Lame’s first and second coefficients and the density values used for the normal 

chicken breast and the thermally induced HIFU lesion are from the double indentation 

measurements in Table 5.3. The bulk and shear viscosities of soft tissue are usually in the range of 

1-10 Pa.s [169], and the bulk viscosity is normally larger than shear viscosity; therefore, the bulk 

and shear viscosities are set as 10 Pa.s and 1 Pa.s, respectively. A summary of simulation 

parameters is provided in Table 5.5.  

As illustrated in Figure 5.14, an ellipsoid-shape HIFU lesion is defined to be at the center of a 

volume of normal tissue and to have principle axes of (rx, ry, rz). An ARFI with a duration of 50 µs 

and located in the center of the HIFU lesion is used as the source of shear wave. This technique is 

frequently used in elastography imaging and consists of a focused ultrasound beam that is absorbed 

in a localized region causing the generation of low frequency shear waves.  

 
Figure 5.13. Total energy attenuation in time due to PML. 
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Figure 5.15 shows how the shear wave is generated and propagated after the ARFI is applied in z 

direction. Six samples of shear wave signal are illustrated in Figure 5.16 at three locations inside 

the HIFU lesion and three locations outside of the HIFU lesion in the normal tissue. In Figure 5.17, 

it has been shown how the wave energy is dissipating rapidly after it reaches to the PML region. 

Table 5.5: Parameters used for induced HIFU thermal lesion in chicken breast tissue 

 Normal Tissue 
Elliptical HIFU 

lesion 

Mechanical 

Properties (derived 

from measurements) 

Density ρ=1,004 kg/m3 ρ=1,104 kg/m3 

Lame’s 1st parameter λ=2.58×109 Pa λ=2.72×109 Pa 

Lame’s 2nd parameter μ=3.27×103 Pa μ=11.74×103 Pa 

Bulk Viscosity νp=10 Pa.s νp=10 Pa.s 

Shear Viscosity νs=1 Pa.s νs=1 Pa.s 

Geometry 

dx = 2 mm -14 cm ≤ x ≤ 14 cm rx = 2.5 cm 

dy = 2 mm -14 cm ≤ y ≤ 14 cm ry = 2.5 cm 

dz = 2 mm -14 cm ≤ z ≤ 14 cm rz = 5.0 cm 

Simulation Duration dt = 0.25 ms 0 ≤ t ≤150 ms 

PML Parameters 

PML Length d = 4 cm 

PML Order n = 1 (Linear) 

Reflection Coefficient Rj = 10-4 

 

  

Figure 5.14. The simulation geometry: thermal HIFU lesion is inside the normal tissue, and the black area 

is the PML region 
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Figure 5.15. The simulation geometry: thermal HIFU lesion is inside the normal tissue, and the black area 

is the PML region. The outline of the elliptical HIFU region has been inserted into each frame. 

 

 

 
Figure 5.16. Shear wave signal at three locations inside the HIFU thermal lesion (Top) and three locations 

in the normal tissue (Bottom). 
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5.3. Shear Elasticity and Viscosity Estimation 

In this section, the results of the proposed time-frequency analysis method based on the WVD 

techniques are studied. Since the cubic HIFU simulation was performed only because of its 

simplicity and as an initial study, the time-frequency method is applied to the acoustic wave 

simulation results of the elliptical HIFU lesion. The goal is to distinguish between the HIFU 

thermal lesion and the normal surrounding tissue by analyzing the shear acoustic wave propagation 

and estimation of tissue’s viscoelastic parameters such as shear elasticity and shear viscosity. The 

acoustic wave propagation profile used in this section is based on the simulations in section 5.2.3. 

The proposed method has been applied to selected spatial points of the simulation. The results 

from some of the points are shown in this section.  

As explained in sections 5.2.3, the HIFU simulation geometry was defined as: -140mm≤x≤140mm, 

-140mm≤y≤140mm, -140 mm≤z≤140mm, with the spatial resolution of 2mm. However, in the 

time-frequency analysis, only a portion of the geometry is used for simplicity: -40mm≤x≤40mm,                

-40mm≤y≤40mm, -68mm≤z≤68mm, with the spatial steps of 2mm. 

 
Figure 5.17. Total energy attenuation in time due to PML. 
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In total, 12 sample points from the elliptical HIFU lesion simulation are shown in the following 

sections.  

5.3.1. Shear Elasticity and Viscosity Estimation in Elliptical HIFU Lesion 

The acoustic signals at four lateral points of the elliptical HIFU lesion simulation are illustrated in 

Figure 5.18 (top), their time-frequency profiles resulted from the WVD (middle), and the results 

of applying morphological operators (bottom).  

The ASF method is used starting with a closing operator and a circular shape segment element 

with minimum size of 1 pixel and maximum size of 10 pixels. As shown in this figure, the result 

of applying the ASF over the time-frequency profile is to fill the gaps within the image. The red 

circles shown in Figure 5.18 illustrate the detected peak in the time-frequency plane which is 

captured by the CHT technique. This will be explained in more details later. Figure 5.19 illustrate 

the same results for 4 axial sample points; and Figure 5.20 show the results obtained for 4 radial 

sample points. 

As shown in these figures, the shape, the amplitude and the frequency content of the acoustic signal 

changes when it is propagating in the tissue. A summary of the time of arrival, frequency and the 

amplitude of the acoustic wave at these 12 spatial points are shown in Table 5.6.  

It should be noted that the time-of-arrival in Table 5.6 is based on the arrival of the peak of 

distributed energy of the signal. The value of frequency in this table represents the canter frequency 

of the signal that locally carries the maximum energy in the time-frequency plane. 
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Table 5.6. Acoustic wave parameter captured from time-frequency analysis of 12 sample spatial points 

 
Location 

(x,y,z) in mm 

Time of Arrival 

in ms 

Center Frequency 

in Hz 
Normalized Amplitude 

Lateral Points 

(10,0,0) 20.75 54.74 0.0295 

(20,0,0) 24.25 46.92 0.0121 

(30,0,0) 28.25 46.92 0.0097 

(40,0,0) 33.75 46.92 0.0072 

Axial Points 

(0,0,10) 25.25 66.47 0.0014 

(0,0,20) 29.25 66.47 0.0016 

(0,0,30) 32.75 84.07 0.0009 

(0,0,40) 39.50 56.70 0.0003 

Radial Points 

(10,0,10) 21.75 48.88 0.0131 

(20,0,20) 26.25 52.79 0.0071 

(30,0,30) 32.50 62.56 0.0045 

(40,0,40) 40.50 64.52 0.0042 

 

  
Figure 5.18. Lateral sample points in elliptical HIFU simulation, (top) acoustic signals, (middle) the WVD 

of the signals, (bottom) captured TF after CHT analysis. 
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The estimated time of arrival for the points within -40mm≤x≤40mm, -40mm≤y≤40mm,                        

-68mm≤z≤68mm are shown in Figure 5.21. The speed of sound was then estimated by calculating 

the gradient of the 3D time-of-arrival matrix in x, y, and z directions [4], [170]: 

∇𝑇𝑎 = 
𝜕𝑇𝑎

𝜕𝑥
�̂� +

𝜕𝑇𝑎

𝜕𝑦
�̂�  +

𝜕𝑇𝑎

𝜕𝑧
�̂�, (5-10) 

where Ta is the 3D time-of-arrival matrix, and 
𝜕𝑇𝑎

𝜕𝑥
, 

𝜕𝑇𝑎

𝜕𝑦
 and 

𝜕𝑇𝑎

𝜕𝑧
 are the derivatives of Ta in x, y and 

z directions, respectively. 

 

 
Figure 5.19. Axial sample points in elliptical HIFU simulation, (top) acoustic signals, (middle) the WVD of 

the signals, (bottom) captured TF after CHT analysis. 
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The speed of shear wave is calculated by: 

 

𝑐𝑥 = 
𝜕𝑥

𝜕𝑡
=

1

(
𝜕𝑇𝑎
𝜕𝑥

)
,   𝑐𝑦 = 

𝜕𝑦

𝜕𝑡
=

1

(
𝜕𝑇𝑎
𝜕𝑦

)
,   𝑐𝑧 = 

𝜕𝑧

𝜕𝑡
=

1

(
𝜕𝑇𝑎
𝜕𝑧

)
, (5-11) 

𝑐 =  √𝑐𝑥
2 + 𝑐𝑦

2 + 𝑐𝑧
2, (5-12) 

 

where, the components of wave propagation speed have been calculated over the whole geometry 

by finding the inverse of each element in 
𝜕𝑇𝑎

𝜕𝑥
, 

𝜕𝑇𝑎

𝜕𝑦
 and 

𝜕𝑇𝑎

𝜕𝑧
 matrices.  

 

 
Figure 5.20. Radial sample points in elliptical HIFU simulation, (top) acoustic signals, (middle) the WVD 

of the signals, (bottom) captured TF after CHT analysis. 
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The speed of shear wave in x and z directions and the total speed of shear wave propagation are 

illustrated in Figure 5.22. As shown in this figure, the wave has relatively a faster propagation 

(brighter in the figures) in the HIFU region than the normal tissue. Figure 5.23 shows the image 

resulted from estimation of the shear attenuation of the media, as well as the estimated shear 

viscosity and shear elasticity. The latter two terms are calculated based on Eqs. (4-11) and (4-12). 

 

 
Figure 5.21. Time of arrival of the shear wave in elliptical HIFU simulation. 
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(a) 

 
(b) 

 
(c) 

 
Figure 5.22. (a) speed of shear wave in x direction, (b) speed of shear wave in z direction, and (c) the total 

speed of shear wave propagating in the elliptical HIFU simulation. 
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(a) 

 
(b) 

 
(c) 

 
Figure 5.23. (a) estimated attenuation, (b) estimated shear viscosity, and (c) estimated shear elasticity of 

the elliptical HIFU simulation. 
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5.4. Discussions 

In Section 5.1.1, the proposed simulation framework has been validated for a homogeneous 

isotropic viscous medium. The acoustic source was defined as an impulse source and the results 

were compared with the analytical solution proposed by Bercoff et al. Figures 5.2 and 5.3 show 

that the results from the proposed finite difference method provide a good match with the Green’s 

function solution of Bercoff et al. [56]. It should be noted that the longitudinal waves propagate 

much faster than shear waves in a viscous tissue-like medium. Also, an impulse source gives rise 

to a wide spectrum of shear waves. Moreover, the attenuation of shear waves in a viscous medium 

is relatively high in the ultrasound frequency range and diminishes rapidly as the frequency 

approaches the audio range [4]. As a result, it is only the shear wave of lower frequency spectral 

components that have significant amplitudes. On the other hand, the longitudinal wave created by 

the impulse extends over a comparatively short interval. These characteristics are seen in Figures 

5.2 and 5.3 for both the simulated and Green’s function predicted waveforms. As shown in these 

figures there is good agreement between the simulated shear wave and the results obtained using 

the solution given by Bercoff et al. Moreover, the longitudinal wave for both solutions consist of 

a very short duration oscillatory spikes. The short time oscillations following the longitudinal wave 

are caused by the chosen finite value of dt. These oscillations could be avoided with a smaller 

value of dt; but this could significantly increase the computational load. 

Figures 5.4 and 5.5 compare the simulated results with and without the PML. These figures show 

that many numerical artifacts arise from wave reflections at the boundaries when the PML is 

absent. In Figure 5.4 (b) and Figure 5.5 (a), the reflections of both longitudinal and shear waves 

are illustrated in the simulation without the PML. The shear wave reflection can be observed in 

these figures because the local points are closer to the boundaries. Since these reflections affect 
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the amplitude of shear wave, it can be observed that the shear wave amplitude is lower in the 

simulation without PML in comparison with the simulation with the PML.  

As can be seen in Figure 5.6, absorption of the wave in the PML results in a significant reduction 

in the time variation of the total energy as computed over the entire geometry. 

In Section 5.1.2, a comparison of the obtained results with those reported by Dudouit [157] for a 

two-layer media is presented . It has been shown in Figure 5.7 that for both simulations the upper 

region containing the source contains no shear wave, in agreement with the assumption that the 

source consisted of a displacement in the radial direction. The perfect alignment between the 

particle displacement and wave propagation direction fails when the wave passes through the 

boundary between the layers. This is shown at t =150 ms, when the longitudinal wave reaches the 

boundary causing wave-mode conversion such that shear waves are generated at the interface as 

the refracted and reflected waves. In general, the comparison of two sets of images shows 

satisfactory qualitative agreement between both methods. The major discrepancy between the two 

results is the differences in the brightness of the propagating acoustic wave which could be due 

different image normalization techniques. 

In Section 5.2, the results from two numerical simulations were shown to simulate the propagation 

of an acoustic shear wave generated by an ARFI in soft tissue. The purpose of the simulations in 

this section was to show that HIFU-induced thermal lesions can be detected and imaged by using 

the shear wave elastography technique. In these numerical studies, the simulated tissues include a 

region of HIFU induced thermal lesion surrounded by normal tissue. In Section 5.2.1, a cubic 

HIFU lesion, as a simplified lesion geometry, is modeled and in Section 5.2.2, an elliptical HIFU 

thermal lesion is simulated.  
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The Lame’s parameters as well as the density of the normal tissue and HIFU lesion are based on 

experimental measurements. Young’s modulus, shear modulus, and Poisson’s ratio were measured 

using an stablished double indentation method; then, the Lame’s parameters were calculated using 

these parameters.  

In both numerical experiments, the proposed PML formulation demonstrates the effectiveness of 

this technique in removing the signal reflections from the boundaries.  

In Section 5.3, the results of viscoelastic parameter estimation are explained. In this section, the 

proposed time-frequency algorithm is applied to the results from the elliptical HIFU lesion imaging 

simulation.  

As a summary, the following steps were applied on the acoustic displacement profile in the 

proposed time-frequency method: 

- calculation of WVD and removing the cross-terms by multiplying the time-frequency 

profile by the Fourier transform of the signal, 

- applying ASF to remove the small gaps within the time-frequency profile, 

- using CHT and peak detection algorithm to find the maximum energy in the time-frequency 

plane, 

- estimation of shear wave propagation speed based on the estimated time-for-arrival, 

- estimation of shear attenuation coefficient based on the changes in the amplitude of the 

detected waves, 

- estimation of shear viscosity and elasticity using inverse Voigt model knowing speed, 

attenuation, and frequency of the wave. 

As illustrated in Figure 5.18 to 5.23, the WVD along with the CHT and ASF methods can estimate 

the peak of the signals in the time-frequency plane. This results in estimation of time-of-arrival of 
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the propagating shear wave within the soft tissue. It also estimates the frequency of the shear wave 

at every spatial point as well as the amplitude of the wave.  

The shear wave propagation speed is then calculated by measuring the time it takes for the wave 

to propagate between two neighbor locations based on Eqs. (5-11) and (5-12).  The speed of the 

shear wave has been calculated in different directions; then, the total speed is estimated. As shown 

in Figure 5.22 (a) and (b), the estimations are more accurate off-axis. The resulted calculations 

show an average of 3.2 m/s and 1.85 m/s as shear wave speeds in the HIFU lesion and the normal 

tissue, respectively. These values match with the expected values from the mechanical properties 

of the simulated media. 

The results of estimating the attenuation coefficient and shear viscosity and elasticity are shown 

in Figure 5.23. This figure illustrates that the attenuation coefficient estimation does not distinguish 

the HIFU lesion from the normal tissue properly. However, the resulted shear elasticity estimation 

from inverse Voigt model is an improvement in HIFU detection when compared with the shear 

speed results.  

In Figure 5.21, some artifacts present close to the boundaries of HIFU thermal lesion and the 

normal tissue. These artifacts are generated due to reflection and refraction of the acoustic wave 

in the boundaries. As the result of wave reflection and refraction, the proposed time-frequency 

method cannot estimate the time-of-arrival of the wave at the boundaries correctly.  

There are also some artifacts in Figure 5.22 when the speed of wave propagation is calculated. 

These artifacts are mainly close to the axes, and they are mainly resulted from the numerical 

implementation of derivative. In Figure 5.22 (a), an image of cx is presented. In this image, the 

points close to z-axis are brighter because the wave propagation direction close to this axis is 

mainly in z direction; however, the speed is calculated in x direction. A similar result can be 
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observed Figure 5.22 (a), the image of cz, for the points close to x-axis. These artifacts are reduced 

in Figure 5.22 (c), where the total speed is calculated. As illustrated in Figure 5.23 (c) the artifacts 

are even more reduced after calculating the shear elasticity. For further reduction of the artifacts, 

appropriate image filtering techniques such as mean filter or median filter could be applied. 

One of the main strengths of the proposed method is its independency in capturing the arrival time 

of the wave at every point. Unlike the conventional correlation-based elastography methods, the 

proposed time-frequency technique can estimate the wave arrival at every point independently.  

On the other hand, one of the major limitations of the proposed analytical method is when it deals 

with waveforms with two or more frequencies close to each other. In this case, the filtering method 

is not effective to remove the cross-terms. In order to solve this limitation, other time-frequency 

methods which do not produce cross-terms such as wavelet transform might be useful. 

It should be noted that HIFU thermal lesions are normally not visible in the standard B-mode 

imaging modality [119]; therefore, Figures (5.22) and (5.23) illustrate significant achievements, 

obtained from the proposed time-frequency algorithm, by the detecting the HIFU thermal lesion 

and distinguishing it from the normal surrounding tissue.  

The limitations of the proposed methods are discussed in more details in the Future Work section. 
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Chapter    6 

Conclusions and Future Work 

6.1. Conclusions 

As the first main goal of this thesis, a simulation framework capable of modeling acoustic full 

wave propagation in 3D geometries was proposed and implemented. The framework can simulate 

acoustic wave propagation in elastic or viscoelastic heterogeneous media with any arbitrary 

acoustic wave source. In this framework, a 3D PML formulation was included in the 

elastodynamic wave equation to simulate the propagation of acoustic waves in 3D media with non-

reflecting and absorbing boundaries. For the numerical implementation, the finite difference 

formulation was used to discretize the elastodynamic wave equation and the numerical stability 

analysis was studied.  

Then, the implementation of the proposed framework and the PML formulation was validated by 

comparing its results in homogeneous viscous isotropic media with the results from a Green’s 

function formulation. The Green’s functions were obtained from the well-established published 

research works that presented closed-form equations for infinite viscoelastic homogeneous 

isotropic media. The proposed simulation framework has also been validated for a multilayer 

inhomogeneous isotropic simulation using seismological parameters.  



 CHAPTER 6. CONCLUSIONS AND FUTIRE WORK 

99 

 

After validation of the numerical simulation framework, two simulation examples of acoustic wave 

propagation in the field of biomedical ultrasound were presented in which thermally-induced 

HIFU lesions placed in the middle of normal soft tissue to demonstrate the capabilities of this 

simulation framework in biomedical elastography applications. The parameters used in these 

simulations were based on double-indentation mechanical measurements of the viscoelastic 

parameters of ex vivo chicken breast samples with and without high intensity focused ultrasound 

induced thermal lesions.  

The other main goal of this thesis was to present an elastography detection method based on a 

time-frequency analysis of acoustic wave propagation in soft tissue. The goal was to differentiate 

the HIFU thermal lesion from the normal tissue. The WVD algorithm is used along with other 

image processing methods such as ASF and CHT techniques to estimate the time-of-arrival, the 

center frequency of the wave carrying the maximum energy, and the amplitude of the propagating 

acoustic shear wave in a simulated HIFU thermal lesion located within normal soft tissue. Then, 

the shear elasticity and viscosity of the media was estimated by inverse Voigt model and the HIFU 

lesion was differentiated from the normal tissue.  

The main contributions of this thesis research work are summarized as:  

- To the best of author’s knowledge, this is the first time that a 3D method has been proposed 

to simulate the generalized elastodynamic full wave equation for viscoelastic 

heterogeneous media that includes a PML technique.  

- The proposed numerical framework can simulate full wave propagation for elastography 

purposes. 

- More details are obtained by analyzing acoustic wave propagation for elastography 

purposes using time-frequency WVD along with the image processing techniques. The 
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proposed method not only calculates the time-of-arrival of the wave, it also estimates the 

central frequency of the wave and the attenuation coefficient, and generate 3D maps of the 

speed of wave propagation, shear elasticity and shear viscosity of the medium. 

- In the proposed method, the estimation of time-of-arrival of the wave can be performed 

independently at each spatial point.  

6.2. Future Work 

Since the acoustics wave simulation is a beneficial tool for many research fields, any improvement 

or added feature to the simulation framework is an added value to this work.  

The proposed framework in this research was mainly based on the elastodynamic wave equation 

which is a linear equation and could handle an arbitrary acoustic source geometry. Therefore, the 

following future works are proposed: 

1- In this study, the ARFI that was used as the acoustic source in the HIFU lesion simulation 

was based on a single-point source within the soft tissue. One possible study is to substitute 

the point source with a spatially distributed acoustic source obtained from the profile of a 

HIFU acoustic field at its focal region. The initial study could be based on a linear profile 

of the HIFU field; then, this could be extended to a nonlinear distributed source. The 

nonlinear profile of the transducer can be calculated by nonlinear wave equations such as 

KZK or Westervelt equations and used to calculate a distributed acoustic force. 

2- In the current study, fixed increments in time and space discretization were used. Another 

possible research could be to use variable increments to improve the performance and the 

speed of simulation. This could potentially help to simulate different sources of 
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longitudinal and shear waves with significantly different speeds and frequencies in a single 

simulation framework. 

3- Another possible future work is to validate the proposed simulation framework in 

anisotropic cases, such as acoustic wave propagation in bone. The elastodynamic wave 

equations used in the proposed method are also valid for the anisotropic media; however, 

the simulation needs to be validated for anisotropic studies. 

4- The proposed simulation can also be studied in more depths by experimental measurements 

of the acoustic field generated from various types of source. This might be achieved either 

by hydrophone measurements, or using research-based ultrasound scanners such as 

Verasonics scanner. 

There are also possible future works in the proposed time-frequency analysis of the acoustic wave: 

1- Other methods of generating shear wave can be studied by the proposed time-frequency 

algorithms, such as transient or vibrational shear waves. 

2- The proposed method can be experimentally studied on shear acoustic wave generated 

from ARFI within soft tissue. 

3- The diagnostic capabilities of the proposed method can be studied to differentiate 

cancerous or abnormal tissue from normal tissue. As mentioned previously, shear elasticity 

has a wider range of values than bulk modulus in soft tissue; therefore, the proposed method 

could potentially be used to differentiate normal and abnormal tissues.  

4- The proposed time-frequency method can potentially be used on commercial ultrasound 

scanners through FPGA or GPU implementations.  

There are other potential future projects that could be performed to continue this research study. 

The above suggestions are just a few of them. 
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