
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2012

Context-Preserving Volume Image Exploration
Using A 3D Painting Metaphor
Lev Faynshteyn
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Graphics and Human Computer Interfaces Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Faynshteyn, Lev, "Context-Preserving Volume Image Exploration Using A 3D Painting Metaphor" (2012). Theses and dissertations.
Paper 719.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F719&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F719&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F719&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F719&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/719?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F719&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

CONTEXT-PRESERVING VOLUME IMAGE EXPLORATION USING A

3D PAINTING METAPHOR

by

Lev Faynshteyn, BSc, South-Russian State Technical University, Novocherkassk, Russia, 2001

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

Toronto, Ontario, Canada, 2012

© Lev Faynshteyn 2012

ii

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A

THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

CONTEXT-PRESERVING VOLUME IMAGE EXPLORATION USING A

3D PAINTING METAPHOR

Lev Faynshteyn

MSc, Computer Science, Ryerson University, 2012

ABSTRACT

This thesis combines a 3D interaction model with a Maximum Intensity Difference Accumulation

(MIDA) volume visualization algorithm to create a technique for exploring volumetric datasets.

The interaction model is based on a 3D Painting metaphor where a user selects a Region of

Interest (ROI) by “painting” a 3D envelope enclosing features of interest. The result is an

exploration technique that is intuitive to use and easy to learn even for non-expert users. The

painting based model and the MIDA algorithm also provide visualization flexibility by allowing

for different combinations of volumetric exploration operations. In addition, the various

algorithms comprising the exploration technique have been implemented to take full advantage

of parallel computational capabilities of modern Graphics Processing Units (GPUs), thus

providing real-time interaction and high-quality visualisation. Finally, the contributions of the

thesis are validated by a series of experiments and a user study.

iv

ACKNOWLEDGEMENTS

I want to thank everybody who has helped me on this journey. My parents and extended family

abroad, who have always supported me in every single one of my undertakings and who

invariably in our weekly Skype chat sessions would half-jokingly ask me to come and visit them,

even though they know I cannot until I am fully done with the work you are now reading. My

friends, who inspired and gave me ideas over countless beer sessions. My girlfriend, who had to

deal with a serious lack of attention, especially in the later stages of the project, but still stuck by

me. My supervisor Dr. Tim McInerney, who always gave me valuable support and guidance and

conversations with whom I enjoyed immensely. And finally, even though it might sound a bit

vain, I want to thank myself for finally doing it. It had been a long time coming, but I finally did

it!

v

TABLE OF CONTENTS

Chapter 1: Introduction ... 1

1.1 Contributions... 3

1.2 Thesis Outline ... 7

Chapter 2: Literature Survey ... 8

2.1 Mapping From a Data Field to a Visual Field .. 8

2.1.1 One-Dimensional and Derivative-based Transfer Functions 10

2.1.2 Curvature or Shape Based Transfer Functions .. 13

2.1.3 Size-based Transfer Functions ... 15

2.1.4 Statistics-based Transfer Functions ... 16

2.1.5 Semantics-based Transfer Functions ... 18

2.1.6 Clustering-based Transfer Functions ... 19

2.1.7 Non-Transfer Function-based Mapping Methods .. 21

2.2 Illustrative Volume Visualization ... 23

2.2.1 Low-Level Abstraction Techniques ... 24

2.2.2 High-Level Abstraction Techniques .. 29

vi

2.3 Volume Space Navigation .. 38

Chapter 3: Methodology and Implementation .. 42

3.1 ImageVis3D as an Implementation Platform .. 44

3.2 Introduction to Volume Rendering ... 45

3.2.1 Ray Casting .. 47

3.3 Methodology and Implementation Details .. 49

3.3.1 User Interface and Camera Control ... 49

3.3.2 Painting .. 51

3.3.3 GUI Controls .. 59

3.3.4 Maximum Intensity Difference Accumulation .. 62

3.3.5 Front- to-Back Depth Peeling .. 67

3.3.6 Envelope Definition with GPU Accelerated Metaballs ... 72

3.3.7 Surface Painting Mode Implementation .. 76

Chapter 4: Evaluation and Results .. 79

4.1 Exploration Flexibility .. 79

4.1.1 3D Painting Mode .. 80

vii

4.1.2 2D Painting Mode .. 83

4.2 User Study ... 85

4.3 Performance .. 88

4.4 Extensibility .. 92

Chapter 5: Conclusion and Future work ... 94

5.1 Conclusion .. 94

5.2 Future work ... 95

viii

LIST OF ACRONYMS

1. MIDA - Maximum Intensity Difference Accumulation

2. ROI - Region of Interest

3. GPU - Graphics Processing Unit

4. TF - Transfer Function

5. VR - Volume Rendering

6. DVR - Direct Volume Rendering

7. FtBDP - Front-to-Back Depth Peeling

8. GUI - Graphic User Interface

9. FPS - Frames per Second

10. MRI - Magnetic Resonance Imaging

11. CT - Computer Tomography

12. PET - Positron Emission Tomography

13. DICOM - Digital Imaging and Communications in Medicine

14. RGBA - Red Green Blue Alpha

15. MIP - Maximum Intensity Projection

16. LOD - Level of Detail

17. SDK - Software Development Kit

18. API - Application Programming Interface

19. ESS - Empty Space Skipping

ix

LIST OF FIGURES

Figure 1: (a) A 1D TF specifying color and opacity values for the scull and skin and (b) the

resulting volume image [3]. .. 2

Figure 2: Using multiple 2D projections of the volume to aid in the process of navigation and

ROI selection in 3DSlicer [4]. .. 3

Figure 3: A series of 2D DICOM MRI slices is stacked up into a 3D volume. 9

Figure 4: An example of a 1D TF and the resulting image of a hand dataset in ImageVis3D [2].

... 10

Figure 5: A 2D histogram of density values and gradient magnitudes. Some regions and

boundaries are selected and assigned different colors. The resulting generated image is on the

right [10]. .. 11

Figure 6: (a) Selecting different materials by coloring the diagonals on a histogram [12]. (b) An

example of working with an LH histogram based TF [13].. 13

Figure 7: Non-photorealistic rendering using curvature based transfer functions [16]. 14

Figure 8: A process of classification of the blood vessels [17]. In the initial step the curve-

skeleton is built. Then the user decides how to merge the detected shape primitives shown in

different colors. ... 15

Figure 9: Comparison of the images produced using traditional (a) 1D and (b) 2D histogram

based TFs with size-based TFs, (c) mapping size to only color and (d) to both color and opacity

[19]. ... 16

Figure 10: Top row: images produces using a traditional 1D TF in VTK, a 2D lighting and

gradient based TF and a multi-dimensional TF respectively. Bottom row: images generated using

texture-based TF approach [20]. ... 17

Figure 11: Comparison of (a) 1D and (b) 2D TFs and (c) an LH histogram with (d) a statistical

TF [22]. All TF types are used to try to classify the same brain tissue. 18

x

Figure 12: Visibility of different structures within a volume is controlled by the user by using a

single slider to switch between instances of TFs [23]. ... 19

Figure 13: Comparison of single modal visualizations (two imaged on the left) to multimodal

visualization (two images on the right) [24]. .. 19

Figure 14: Visualizations of the engine and the carp are produced by painting over LH clustered

histograms [26]. .. 21

Figure 15: Images generated using (a) DSMIP [27] and (b) LMIP [28] visualization techniques.

... 22

Figure 16: Seamless transition between DVR, MIDA and MIP [5]. .. 23

Figure 17: (a) A pencil hand drawing of a staghorn beetle and (b) a VR generated image of a

staghorn beetle using a similar illustrative style [29]. In the VR generated image the shape of the

various parts of the beetle is emphasized by using a contouring technique [29]. 24

Figure 18: Lit sphere shading [30]. A 3D sphere represents all possible normal direction

variations for any visualized object. The actual normal directions of the currently visualized

object are encoded in the form of a sphere image. During the shading process the points

(corresponding to the currently evaluated normal value) on the sphere image are mapped to the

TF values. .. 26

Figure 19: Visualizations using (a) a multi-dimensional style TF and (b) contouring [30]. 27

Figure 20: (a) Examples of using the view direction dependant stylized transparency and

contouring techniques [30]. (b) Visualizations using the directional and omni-directional haloing

effect respectively [30]. .. 28

Figure 21: A photograph of a plastinated anatomic model from Gunter von Hagens’ Body-worlds

exhibition (a) and a similar exploded-view image generated using VR (b) [29]. 29

Figure 22: The context in the image is achieved by making the parts of the body that occlude the

features of interest transparent, while reducing transparency for the rest of the body [32]. 30

xi

Figure 23: An illustration of the human heart as a combination of three layers (three images on

the left: line drawing, DVR muscle layer, isosurface veins layer) with a rotation operation

applied (right) [33]. ... 31

Figure 24: (a) Magic Lantern visualization using two different TFs [8]. (b) Magic Lens using

masking and compositing technique [33]. (c) Magic Volume Lens using a magnification effect

[34]. ... 31

Figure 25: “Zoom in” effect in action. The context is provided by using rectangular and circular

ROIs, that are super-sampled using B-spline subdivision and enlarged [35]. 32

Figure 26: Images produced MIDA and distance-based opacity modulated DVR using different

superquadratic envelope shapes [36]. ... 33

Figure 27: An interactive exploded-view illustration with two virtual hinges constraining the

positioning of the exploded parts [37]. ... 34

Figure 28: Exploded views with different portioning settings applied [38]. 34

Figure 29: (a) An example of the spherical carving operation of the volume [39]. (b) A geometry

based 3D deformable mesh is used to define the ROI and exclude all other parts from the

visualization process [40]. (c) A section of the skin layer is cut-away after painting on the surface

of the head and neck (c) [41]. ... 35

Figure 30: A free-from mask is painted on the surface on the skull. The rays are cast through the

mask and any intersected parts of the volume are peeled away [42]. ... 36

Figure 31: (a) The “leafing” technique in action [43] and (b) the “pliers” operation applied to the

internal organs of the frog while the skin is being retracted [44]. .. 37

Figure 32: An example of (a) a retracting deformation and (b) a bending deformation [45]. 38

Figure 33: A simulation of a whiplash injury using constrained deformations [46]. 38

Figure 34: Various rotational and translational widgets from 3DS Max, Blender, XSI, Houdini,

Mode and Maya [49]. All share the same underlying principle. .. 39

Figure 35: The 3D shape of the interior surface of the blood vessels is used to constrain the

possible camera travelling paths [53]. .. 40

xii

Figure 36: A series of screenshots taken during the volume navigation process using the context-

aware volume navigation technique [57]. ... 41

Figure 37: Voxels representing a discretized volumetric object [6]. .. 47

Figure 38: Rays cast through a volume are sampled between starting (fn) and ending (ln)

positions [6]. ... 48

Figure 39: User interface with the GUI controls (on the left) and the visualization area (on the

right). ... 50

Figure 40: A 2D envelope defined in the space of the screen as three 2D stripes. The shape and

position of the envelope stays the same regardless of the orientations of the visualized volumetric

object. .. 51

Figure 41: A 3D envelope defined in the space of the target volumetric object. The position and

orientation of the envelope change according to the position and orientation of the visualized

object. .. 52

Figure 42: Envelope painting in 3D depicted as a sequence of steps of: a) previewing the results

of the visualization by moving the brush tip to the desired location; b) placing a new brush stroke

at the brush tip’s current location.. 53

Figure 43: The painting plane always stays parallel to the screen plane, regardless of the

orientation of the volumetric object in the 3D scene space. The current depth of the brush tip

determines the depth of the painting plane, which can be adjusted within limits specified by the

near and far clipping planes. When the user moves the mouse cursor on the screen plane its

current position is projected onto the painting plane, thus defining the current 3D coordinates of

the brush tip. New brush strokes can then be placed at the current 3D position of the brush tip on

the painting plane, thus allowing the user to extend the envelope as needed. 56

Figure 44: (a) A negative brush tip erasing a part of the previously painted envelope. (b) A

cylindrical brush tip self-aligned with the cross-section of a finger and depth-adjusted to show

the whole digit of the finger. (c) A flattened envelope defined using a cylindrical brush tip and

surface-painted following the curvature of the skull. ... 58

xiii

Figure 45: Visualizations of the palm using different visible value ranges and base colors for

parts of the volume inside and outside the envelope. ... 59

Figure 46: A green 3D envelope visualized in an opaque, semitransparent and transparent

manner... 60

Figure 47: (a) A small-sized brush tip used to define the envelope tracing the outline of the veins

on the surface of the palm. (b) A large brush tip used to quickly envelope a big part of the palm.

(c) A negative brush tip used to “push away” the previously painted envelope. 60

Figure 48: A transparent outlined version of a 2D envelope vs. a solid semitransparent version. 61

Figure 49: A ray traversing a volumetric space, while encountered voxels are mapped to color

and opacity values and blended with the previously accumulated results. 63

Figure 50: A comparison between (a) typical DVR and (b) MIDA ray profiles. In the case of

MIDA the accumulated opacity value (red line) is modulated by the amount of the difference

between the current and the previous local data value maximum (grey line). The blue line

represents the accumulated color intensity of the resulting projected pixel on the screen. 64

Figure 51: In the absence of the brightness compensation (a) a visualization of a hand using a

wide MIDA sub-range has more definition, but is too dim. (b) Under the same conditions a much

narrower MIDA sub-range produces a less detailed but noticeably brighter image. 66

Figure 52: A visualization of the same volumetric dataset (a) without and (b) with brightness

compensation applied.. 66

Figure 53: A series of images displaying peeling of the fragments using DP algorithm [64]. 68

Figure 54: DP stripping away layers with each successive pass. The first pass peels away the

front-most (leftmost) fragments, with hidden fragments shown in thin black lines. In the

subsequent passes the already peeled away fragments are shown in light grey lines................... 69

Figure 55: (a) A normal map without filtering applied. (b) A normal map with the 1x9 horizontal

Gaussian kernel applied. (c) A normal map with the 9x1 vertical Gaussian kernel applied. 78

Figure 56: The results of visualizing different volumetric datasets ((a) a head , (b) a palm and (c)

two feet) while providing the desired level of contextual information. .. 81

xiv

Figure 57: Carving and peeling are used to expose internal features and to remove the occluding

parts in volumetric datasets. .. 83

Figure 58: (a) An orange visualized without an envelope applied. (b) A 3D envelope is painted

enclosing a part of the orange. (c) A 2D envelope is used to see all the way through the orange to

better reveal internal structures. .. 84

Figure 59: Examples of pre-rendered images from each trial group: (a) an example of a 2D

painting trial, (b) an example of a 3D carving trial and (c) an example of 3D context-preserving

trial. ... 86

Figure 60: The results of the user study questionnaire based on a 7-point Likert scale. 87

Figure 61: Average FPS measured under different visualization conditions. 90

Figure 62: A head dataset visualized at (from left to right) 100%, 65% and 30% sampling rate. 91

Figure 63: A head dataset visualized at different LODs (the highest on the left to the lowest on

the right). ... 92

Figure 64: (a) The 2D painting mode with 1D and 2D TF rendering modes. (a) An example of

the 3D surface painting over the surface defined by a 1D TF. (c) A combination of MIDA and

2D VR techniques using a free-hand painted 3D envelope. ... 93

1

Chapter 1: Introduction

The visualization of volumetric data is a rapidly evolving area in the field of computer graphics,

especially in the context of medical applications. The advent of modern Graphics Processing

Units (GPUs) along with the development of various computational and visualization techniques

has resulted in previously unattainable levels of user interactivity and realism. Medical

professionals can harness this power to explore and manipulate volumetric images in order to get

a better understanding of the underlying data and processes, often in ways that would be

impossible to replicate in the real world.

Nevertheless, when it comes to providing the user with easily understandable and predictable

ways of specifying how the data is to be visualized, there is still a lot of room for improvement.

Traditionally this mapping from a scalar value field of a volumetric dataset to a visual field of

pixel colors on a screen was and, in the vast majority of cases, still is specified by the user with

Transfer Functions (TFs) (Figure 1). Despite the significant amount of research that has been

done in this area [1], specifying a TF that achieves the desired visual effect still often remains a

non-trivial task, even for expert users.

This problem of finding a perfect TF to achieve the desired visualization can also be

compounded by the necessity of having different areas of the volume visualized using different

sets of parameters in order to preserve the visual context. This secondary goal presents a

challenge in its own right as navigation in the 3D space of a volume and specification of

different Regions of Interest (ROIs) in a 3D dataset is often a complex operation. Problems such

as ROI depth specification and depth perception as well as volumetric feature separation are

among the most prominent issues. The traditional approach to the ROI specification and feature

2

separation problems is to the use multiple 2D data views along with a variety of 2D ROI editing

capabilities. The multiple 2D views, however, often complicate the user interaction model and

make it difficult for the user to understand the spatial relationship between the various 2D and

3D views (Figure 2).

In an attempt to address the aforementioned challenges this thesis presents a prototype

volumetric data visualization and exploration system, implemented as a series of extensions to an

open-source Volume Rendering
1
 (VR) (Section 3.2) program called ImageVis3D [2]. The

extensions add new visualisation modes and a new user interaction model that will be covered in

detail in the following chapters.

(a) (b)

Figure 1: (a) A 1D TF specifying color and opacity
2
 values for the scull and skin and (b) the

resulting volume image [3].

1
 In computer graphics in general, rendering refers to the process of generating a 2D image from models in a virtual

scene. In the case of the 3D computer graphics rendering is typically achieved by projecting 3D models in a scene

onto a 2D surface of a screen. In its turn, volume rendering is a set of techniques used to generate 2D projections of

discretely sampled 3D datasets.
2
 In computer graphics opacity describes the level of a material’s impenetrability to light.

3

Figure 2: Using multiple 2D projections of the volume to aid in the process of navigation and

ROI selection in 3DSlicer [4].

1.1 Contributions

The primary goal of this thesis was to provide an alternative approach to volumetric dataset

exploration that would combine qualities such as a fast learning curve, intuitiveness, ease of

control and flexibility
3
. A user study (Section 4.2) was conducted in order to evaluate the first

three qualities. A series of experiments presented in Section 4.1 demonstrates the flexibility of

the proposed approach by generating various context-preserving visualizations of several

volumetric datasets. The ability of the system to provide visually appealing and contextually

meaningful visualizations at interactive frame-rates throughout the whole interaction and

exploration user experience was also paid a lot of attention. Section 4.3 is dedicated to the

performance evaluation of the system under different visualization conditions. Finally, designing

3
 Flexibility here means providing several ways of visualizing features of interest, i.e. ROIs.

4

and implementing a future-ready visualization model should consider the question of

extensibility
4
 as well. Section 4.4 demonstrates the extensibility potential of the proposed

approach by integrating two additional visualization modes into the system.

To meet all of the aforementioned goals an interaction model based on a painting metaphor was

conceived and implemented. The painting interaction model allows a user, with just a few brush

strokes, to define an ROI by painting a 2D or 3D envelope in the space of a volumetric scene to

achieve the desired visual effect and contextual representation of volumetric information. A

number of algorithmic, visual and user interaction techniques have been explored and

implemented as contributing parts to the final solution of volumetric dataset exploration. The

following subsections break down the contributions that resulted from this work.

An Efficient Implementation of the Maximum Intensity Difference Accumulation

Visualization Mode

A Maximum Intensity Difference Accumulation (MIDA) visualization technique was proposed by

Bruckner et al. [5] as a means of visualizing volumetric datasets without the necessity to specify

TFs (Section 2.1). It takes a conventional Direct Volume Rendering (DVR) [6] (Sections 3.2,

3.3.4) approach and modifies it to exploit inherent data characteristics of the underlying

volumetric dataset by modulating the accumulated opacity of the image in accordance with

changes in the data values. To control what features of a volumetric dataset should have the most

prominence in the resulting image, only a range defined by the minimum and maximum data

intensity values needs to be specified.

4
 Extensibility here means the ability to extend the visualization capabilities of the system by adding alternative

visualization modes.

5

A 2D/3D Painting Model

In order to provide a non-expert user with an intuitive way of specifying an ROI, a 2D and 3D

interaction model based on a painting metaphor was conceived and implemented. This model

allows a user to paint and edit a 2D or 3D envelope (i.e. a contour and a closed surface

respectively) either in screen space or volume object space respectively, and utilizes Metaballs
5

[7] (Section 3.3.6) as the underling mechanism for implicit specification of an envelope’s shape.

MIDA or any other visualization technique can be specified for parts of the volume that fall

inside and outside an envelope to achieve complex and visually compelling results.

User Interactions within a Single 3D View

As a mechanism to visualize a 3D envelope an approach based on combining polygon-based and

volumetric geometry rendering has been implemented. An implementation of the Front-to-Back

Depth Peeling (FtBDP) (Section 3.3.5) technique was used to allow for seamless integration of

both types of rendering, which in turn provides enough visual cues for a user to be able to

perform all of the manipulations on the volumetric data in a single 3D view. This means that a

common practice of providing additional axially aligned 2D volume data projections aiding in

the exploration process can be abandoned in favor of an uninterrupted and fluid user experience.

Different Types of Volume Exploration within a Single Generic Paradigm

As will be shown in Chapter 3:, a combination of the 2D and 3D painting and the MIDA

technique allows for many types of volume data exploration and editing operations (such as 3D

5
 Metaballs are organic looking n-dimentional objects, whose surface is implicitly defined by a chosen (e.g.

Gaussian) field function.

6

contextual views, 3D volume “carving”, or “Magic Lantern”
6
 [8] like behaviour, etc.) within a

single user interaction model.

Fully GPU Accelerated Visualization Pipeline

One of the goals of the project was to provide the user with an interactive and semi-immersive

environment, where visual feedback to user interactions with a Graphic User Interface (GUI)

would be instantly reflected in the resulting image on the screen. To achieve this goal heavy

emphasis was placed on utilizing GPU parallel computational capabilities to alleviate

computational burden on the CPU. As a result, all stages of the visualization pipeline have been

implemented using GPU-based “shader” programs [9] written in OpenGL Graphics Shading

Language. This implementation achieves interactive frame-rates for a wide array of volumetric

datasets of varying sizes on the current generation of GPUs found in a modern desktop computer

and will also take full advantage of additional computational power of forthcoming generations

of GPUs.

Extensible Visualization Model

MIDA is used as the default visualization mode to allow for visualization of volumetric datasets

with a minimum of parameter specification. This mode is, however, limited in terms of visual

results that can be achieved, and thus the architecture and the code structure of the extensions

were designed and implemented in such a way as to allow for this technique to be easily

substituted by any other DVR (3.2) method.

6
 Magic Lantern or Magic Lens is a metaphor commonly used to describe methods of volumetric visualization where

a user guides some kind of a virtual optical device (e.g. a flash light or a lens) to highlight internal structures in a

certain region of an object.

7

1.2 Thesis Outline

Chapter 2 explores the multitude of existing solutions to the problems of volumetric data

visualization and exploration. Various TF types and their parameter specification techniques,

ROI definition approaches and user interaction models will be covered.

Chapter 3 begins by explaining the reasons behind choosing ImageVis3D [2] as the base

platform for the thesis implementation. It then provides a brief introduction to Volume Rendering

(VR) in general and Ray Casting in particular. After that the user interaction model realizing the

2D and 3D painting metaphor is explained, providing the necessary context for the detailed

descriptions of various implemented algorithms (MIDA, FtBDP, Metaballs, etc.) that conclude

the chapter.

Chapter 4 presents both quantitative and qualitative results to validate the thesis contributions.

Quantitative results are centered around measuring the performance of the system (average

Frames per Second (FPS)) using different datasets of varying sizes. The qualitative part presents

results of a user study conducted to evaluate the learning curve, ease of control, and intuitiveness

of the implemented visualization techniques and of the user interaction model. Examples of

different contextual volume exploration tasks are given to showcase the flexibility of the

proposed exploration and visualization model. Finally, the extensibility of the implemented

visualization model is validated by integrating two additional visualization modes.

Chapter 5 concludes by summarising the thesis work and discusses possible avenues for future

work and improvements.

8

Chapter 2: Literature Survey

Volumetric dataset exploration is one of the supporting pillars in the field of volume graphics.

After all, what is the use of any dataset, no matter how big and detailed, if one cannot identify

and analyze features of interest within it? This chapter will present a survey of various

techniques and approaches that deal with the problem of volume exploration. To further aid in

the comprehension of the following material, the techniques will also be arranged into distinct

categories.

It should be noted that this thesis and all of the material presented in it deals with unsegmented

volumetric datasets exclusively. This is in contrast to segmented or pre-authored datasets, where

a volume has been pre-processed and labelled in such a way as to provide additional information

about the objects within. While some of the challenges associated with the visualization and

exploration of segmented datasets are similar to those of unsegmented ones, they are by and

large a separate topic and are thus not covered in the following material.

2.1 Mapping From a Data Field to a Visual Field

A volumetric dataset in its basic form is nothing more than an array of scalar values that has been

obtained by means of scanning a physical phenomenon or an object or modelling/simulating an

object or a process. In the medical field volumetric datasets are usually products of a scanning

process (e.g. Magnetic Resonance Imaging (MRI), Computer Tomography (CT), Positron

Emission Tomography (PET), etc.) and the values are obtained by measuring the intensity of a

signal (e.g. X-rays for CT or radio-frequency waves for MRI) in different parts of the object

being scanned. Typically scanning is performed in a slice-by-slice fashion, with the final

9

volumetric representation assembled by stacking up the resulting 2D slices (Figure 3). The

resolution of the scanning process and the size of each element in the final array are usually

dictated by the nature of the underlying phenomenon or object and the desired precision of its

electronic representation.

Figure 3: A series of 2D DICOM MRI slices is stacked up into a 3D volume.

In order to be able to view and analyze the data in a volumetric dataset in ways comprehensible

by humans it is necessary to map values from a dataset’s scalar representation to a visual

representation. To put it more simply, each scalar value has to have a visual counterpart defined

by a color and opacity pair (Section 3.2). This mapping from a scalar to visual field traditionally

has been defined by what is known as a Transfer Function (TF) (Figure 4). The following

subsections will summarize and classify the most commonly used types of TFs, with the

emphasis on those that are specifically aimed at facilitating a more meaningful data exploration

process. Several other non-TF based approaches that have emerged in an attempt to avoid the

often convoluted and unintuitive process of specifying TFs are also described. The classification

is based on work presented in [1] while also updating it with the latest research material and

references.

10

2.1.1 One-Dimensional and Derivative-based Transfer Functions

The simplest form of a TF is a 1-dimentional TF. The term 1-dimensional implies that a simple

1-to-1 or many-to-1 mapping exists from the scalar domain into the visual domain. To allow a

user to define a 1D TF within a GUI of a program, typically a 2-dimentional histogram is pre-

computed in which one axis corresponds to every scalar value encountered in the dataset and the

other axis depicts the frequency of encountering each particular value. In Figure 4 the red, green,

blue and white lines on the histogram define how RGBA values corresponding to the mapped

scalar values will be generated. The projection of a point from each line onto the X-axis

determines the scalar value to be mapped, the projection onto the Y-axis determines the intensity

of a mapped R, G, B or A value from 0 to 1, and the projection onto the gradient colored bar at

the top (the gradient coloration is defined by a combined color depending on the XY-projected

values of all the lines) specifies the opacity of the mapped value.

Figure 4: An example of a 1D TF and the resulting image of a hand dataset in ImageVis3D [2].

However, even though for some datasets 1D TFs are sufficient to achieve the desired visual

results, more often than not they are afflicted by poor data feature separation (for instance in

Figure 4 some arteries cannot be distinguished from the bones due to similar underlying scalar

11

intensity values). This is due to the fact that intensity values alone represent only a small fraction

of information contained in any volumetric dataset. To address this problem various multi-

dimensional representations of the underlying volumetric data, that are based on utilizing scalar

value derivatives of first and higher orders, are used. In the simplest and most commonly used

case, only the first derivative is computed for each value inside a volumetric dataset, representing

a gradient, or simply a direction of the most prominent change in the values of the dataset at a

particular point in space. A histogram with scalar and gradient values arranged along horizontal

and vertical axes respectively can then be generated [10], allowing for the visualization of

material boundaries in a dataset in the form of arches (Figure 5). The two ends of an arch

correspond to the homogenous regions of two different materials within a volume that have a

gradient value of 0, while the top of the arch correspond to the border between the materials

where the magnitude of the gradient is at its maximum. Usually various graphical widgets are

used to allow the user to select regions representing certain materials and boundaries while

assigning different color and opacity values to them (Figure 5).

Figure 5: A 2D histogram of density values and gradient magnitudes. Some regions and

boundaries are selected and assigned different colors. The resulting generated image is on the

right [10].

12

One of the problems with the above method is that material density values and gradient

magnitudes can overlap. One possible solution is to add another component (i.e. a second

derivative) to the histogram as a third dimension representing gradient direction. However, this

additional dimension introduces a user interaction problem, as specification of ROIs on a 3D

histogram becomes progressively more difficult and time consuming.

In addition these methods do not address such problems as noise in the data, partial volume

effects and false material border detection due to biasing
7
 [11], all of which can make selection

of the features of interest virtually impossible using a traditional 2D histogram. One of the

solutions to these problems is presented in [12], where the authors use two density values from

the opposite sides of the gradient border to represent the data in a form of diagonals. A TF thus

can be created by coloring sections of the diagonals (Figure 6(a)). Another popular approach is

proposed in [13]. It uses the idea of so called LH Histograms that show lower and higher

intensities of the materials that form the boundaries (Figure 6 (b)). This approach performs better

in terms of noise, bias, and partial volume effects and has been used in a number of medical

volume rendering programs including Voreen [14] and OsiriX [15].

7
 Applied to volumetric datasets in general, biasing is manifested as nonuniformities in the intensity values of an

obtained volumetric dataset caused by some high-field MRI scanners. This in turn can cause the generation of the

false material borders in a histogram.

13

(a) (b)

Figure 6: (a) Selecting different materials by coloring the diagonals on a histogram [12]. (b) An

example of working with an LH histogram based TF [13].

However, even with all of the above improvements, selecting features on a 2D histogram can

still be difficult. This is due to the fact that often it is hard to estimate what the final image will

look like by selecting or coloring arbitrary regions on a histogram. In addition, especially in the

case of unsegmented datasets, it is not easy to establish a correlation between the features on a

histogram and the actual structures in the volume. Thus, numerous other approaches have been

proposed, that attempt to alleviate these issues, with varying degree of success.

2.1.2 Curvature or Shape Based Transfer Functions

These methods are based on the idea of using geometrical features of the structures within a

volume to aid in their classification. In [16] the curvature of structures is used as a basis for

designing a TF and also as a means to produce non-photorealistic
8
 images by highlighting the

contours of the structures (Figure 7). First, a set of isosurfaces
9
 (Section 3.3.6) within a volume

is specified. Then an algebraic framework is used to calculate the curvature of the isosurfaces

8
 In computer graphics non-photorealistic rendering is an area that focuses on a variety of expressive styles (e.g.

painting, drawing, technical illustration) to produce the resulting images.
9
 An isosurface is a 3D surface that represents points of a constant value (known as an iso threshold value) within

the space of a volume.

14

using differential invariants. The drawback of this approach is that in noisier datasets (such as

the ones usually obtained by means of an MRI scanning process) it suffers from spurious surface

curvature variations. The authors try to combat this problem by smoothing the data values, while

sacrificing accuracy and resolution.

Figure 7: Non-photorealistic rendering using curvature based transfer functions [16].

In [17] the authors propose a method of classification based of the shape of volumetric features

(Figure 8). They use a rough pre-segmentation process as the initial step for selecting an ROI

within a volume. Pre-segmentation is done by specifying data intensity thresholds (a process

called windowing), thus effectively defining isosurfaces (Section 3.3.6) approximating the shapes

of the objects inside the volume. Then a so called curve-skeleton of each volume structure within

the region is examined in order to try to fit one of the three predefined shape descriptors

(longitudinal, surface-like and blobby) to them. The structures are then merged in a process

supervised by the user. Additional classes of shape descriptors can be defined if necessary. The

advantage of this method is that the user deals only with shape-classified volumetric features and

avoids the difficulties of interpreting histogram data. The obvious disadvantage is the need to

15

properly mask the volumetric shapes before they even can be shape-classified. Depending of the

structure of the volume in question this can also present challenges.

Figure 8: A process of classification of the blood vessels [17]. In the initial step the curve-

skeleton is built. Then the user decides how to merge the detected shape primitives shown in

different colors.

2.1.3 Size-based Transfer Functions

This group of TF generation methods tries to address the problem of identifying structures within

a volume that have similar intensity values but differ in size. This work is mainly based on [18]

and [19] and stems from the idea of so called scale-fields (which has its origins in computer

vision). In the initial step a scale field for a volume is computed and shapes within a user

specified size range are detected. As a result of this step a set of discrete points representing the

most prominent scales in the volume is generated. These points are then interpolated and

combined with the traditional histogram representation (Figure 9(c,d)).

16

(a) (b) (c) (d)

Figure 9: Comparison of the images produced using traditional (a) 1D and (b) 2D histogram

based TFs with size-based TFs, (c) mapping size to only color and (d) to both color and opacity

[19].

One of the major limitations of this approach is that the computation of a scale field is a very

expensive operation. For a data set containing 512
3
 values the computation time can exceed 10

seconds even on a rather powerful GPU
10

. A compromise obviously has to be chosen between

the need to have interactive frame-rates and the size and/or resolution of the analyzed dataset.

2.1.4 Statistics-based Transfer Functions

These methods are based on capturing different structural and geometrical properties of

volumetric datasets using various first-, second- and higher-order statistics and their

combinations. Again, as in the case of size-based TFs, they are aimed at discriminating structures

even when they have similar intensity values. In [20] the authors propose an approach based on

analysing local textural properties of the volume (Figure 10). They capture both geometrical and

structural properties by using histogram statistics, run-length and co-occurrence matrices.

10
 This figure is based on the test results with nVidia GeForce 8800 GTX. The latest generations of GPUs will most

likely reduce this time by several orders.

17

For this technique to keep the data size and the computation times under control the dataset is

first divided into overlapping sub-volumes, which are then analyzed separately. The textural

properties that can be analyzed and captured include occurrence of the predefined intensity

values, first order (e.g. variance, skewness, kurtosis, etc.) and second-order statistics (i.e.

likelihood of observing two different intensity values at a certain distance). Overall there are 20

metrics that can be pre-computed and combined into a TF. Naturally the fact that this method

works on the fixed size data extraction regions precludes it from differentiating between

homogenous and inhomogeneous regions in a dataset.

Figure 10: Top row: images produces using a traditional 1D TF in VTK, a 2D lighting and

gradient based TF and a multi-dimensional TF respectively. Bottom row: images generated using

texture-based TF approach [20].

Another team of researches attempt to address the problem of feature separation in [21] and [22],

with the latter offering a semi-automatic selection of neighborhoods for extraction of statistical

properties (Figure 11). They also demonstrate a novel approach of integrating statistical

information into the design process of a TF, which makes selection of the features of interest

18

much more intuitive. However, this technique also suffers from very high memory consumption

in the pre-processing steps (triple that of the original data) and poor performance for some types

of noise present in the data (when the noise distribution is very different from an assumed

Gaussian white noise).

(a) (b) (c) (d)

Figure 11: Comparison of (a) 1D and (b) 2D TFs and (c) an LH histogram with (d) a statistical

TF [22]. All TF types are used to try to classify the same brain tissue.

2.1.5 Semantics-based Transfer Functions

Approaches in this category try to address the issue of the complexity of adjusting parameters of

TFs and reduce the unpredictability of the visual results associated with this process. In [23] the

authors create a semantic model which maps various semantic parameters (e.g. sharpness,

visibility, contrast, etc.) to instances of TFs based on user requirements (Figure 12). This in turn

allows non-expert users to intuitively visualize volumetric data without technical knowledge of

the visual parameters involved in the visualization process. The algorithm is centered around the

notion of a so called principal component analysis (PCA), which is used to determine the vector

of maximum TF variance in its given parameter space.

19

Figure 12: Visibility of different structures within a volume is controlled by the user by using a

single slider to switch between instances of TFs [23].

In [24] additional derived quantities for evaluating the joint information of multiple modalities

are provided, which further enhance the possibilities of separating different tissues while

providing for easier understanding of a TF space (Figure 13).

Figure 13: Comparison of single modal visualizations (two imaged on the left) to multimodal

visualization (two images on the right) [24].

2.1.6 Clustering-based Transfer Functions

The idea behind these methods is to combine or cluster certain features of a volume based on

pre-defined criteria. In [25] features are clustered in accordance with volume intensity values,

gradient magnitude, second directional derivative and neighboring values. The proposed solution

20

allows the user to not only specify the number of clusters to be used, but also to combine or split

them when there are too many or too few of them. To achieve interactive frame-rates the

algorithms are only applied to subsets of randomly chosen values within a volume (the remaining

values are classified based on the minimum distance between the feature value and mean vectors

of clusters). The results of this pre-processing step are then converted into a 2D TF based on

density values and gradient magnitudes.

In [26] the authors build on their previous work that dealt with LH histograms. They propose a

method that generates clusters by analyzing the LH feature space and evaluating the spatial

connectivity of the clusters. Filtering is applied to eliminate false positives, which usually occur

due to noise present in the data. Different criteria (such as distance, separation and direction of a

cluster elongation) are then used to group the clusters together. Using Bayesian decision theory

the clusters are interpreted as bivariate 2D Probability Density Functions (PDF), which allows

plotting them in a form that is easy for the user to work with (Figure 14). This method allows for

a real-time interaction with the cluster hierarchy and also provides the ability to adjust the

grouping of the clusters on the fly, thus creating different visual results.

21

Figure 14: Visualizations of the engine and the carp are produced by painting over LH clustered

histograms [26].

2.1.7 Non-Transfer Function-based Mapping Methods

This set of visualization techniques is based on the idea of mapping volume intensity values and

their derivatives directly to color/opacity pixel intensities. The simplest and most commonly

used approach is called Maximum Intensity Projection (MIP). MIP works by finding a global

maximum for every ray traversing a volume (Section 3.2) and linearly mapping these values to a

visual range. The fact that only a single value for each ray is mapped to a visual field means that

MIP does not provide any depth cues, which can lead to ambiguities while interpreting the

resulting image. Several approaches addressing this drawback have been proposed. In the Depth-

Shaded Maximum Intensity Projection (DSMIP) [27] technique the intensity of each sampled

value within a volume is modulated by its depth and the results are written to the final image

only if the value of the currently processed pixel is smaller than the newly modulated value

22

(Figure 15(a)). This in turn means that any values located far away from the current viewing

point have less of a chance of being projected onto the final image, which can result in obscuring

of some of the volumetric features, even if they have high intensity values. In [28] a Local

Maximum Intensity Projection (LMIP) technique is introduced, which allows the user to

interactively control the threshold parameter. The values are evaluated in a front-to-back order

along the travelling path of a ray cast into a volume, and the first found local maximum above

the user-defined threshold is projected onto the final image (Figure 15(b)). In case no such value

is found, a projection of the global maximum is used instead. This approach provides more

flexibility by giving the user a degree of control over the visualization process, but also suffers

from occlusion problems, since it does not support translucent materials.

(a) (b)

Figure 15: Images generated using (a) DSMIP [27] and (b) LMIP [28] visualization techniques.

Recently an approach presented in [5] attempts to combine characteristics of both DVR and MIP

by modifying a monotonically growing opacity function typically associated with DVR. This is

done by modulating any previously accumulated color/opacity results along the path of a ray by

the amount of the positive difference between the newly evaluated value and the previous one. In

23

other words the intensity of any previously accumulated results is reduced by the difference

between the current and the previous value, but only if the current value is larger than the

previous one. It also allows for a smooth transition between DVR and MIP in terms of visual

results by adjusting a parameter that controls the level of modulation of any previously

accumulated results (Figure 16). This allows the user to choose the best possible representation

of the data in the resulting images. The algorithm presented by the authors has been chosen and

implemented as the default visualization technique to be used in conjunction with the painting

metaphor presented in this thesis, and will be described in detail in Section 3.3.4.

Figure 16: Seamless transition between DVR, MIDA and MIP [5].

2.2 Illustrative Volume Visualization

For many years one of the prevailing objectives among researchers and developers involved in

the field of VR was to achieve an ever higher degree of visual realism of generated images (by

using realistic lighting, shading, refractions, etc. [6]). However as the field evolved and matured

it became clear that often a more stylized and sometimes even cartoon-like rendition of the

volumetric data can be more beneficial in terms of both highlighting the features of interest and

ease of information comprehension. Thus a branch of VR that deals with illustrative visualization

techniques was born. The following material will present some of the most prominent works in

24

this field while separating them into two major categories based on the classification proposed in

[29].

Depending on the kinds of modification they perform and the scope of volumetric features they

work on, all of the VR illustrative visualization techniques can be broken down into low-level

and high-level abstraction techniques.

2.2.1 Low-Level Abstraction Techniques

Low-level abstraction techniques change the way volumetric objects are visualized by

highlighting important features or de-emphasizing less relevant ones. This is achieved by

presenting the information in a more stylized way (e.g. line drawings), while drawing attention to

the features of interest by using more prominent illustrative visualization techniques (such as

contouring, shading, haloing, etc.) (Figure 17).

(a) (b)

Figure 17: (a) A pencil hand drawing of a staghorn beetle and (b) a VR generated image of a

staghorn beetle using a similar illustrative style [29]. In the VR generated image the shape of the

various parts of the beetle is emphasized by using a contouring technique [29].

25

2.2.1.1 Stylized Shading

This is a family of techniques that enhances features of importance while deemphasizing

background information using non-photorealistic shading techniques. This can be done in a

number of ways. One of the approaches is to modify how lighting in the vicinity of the features

of interest is applied during the TF value mapping process to achieve the desired artistic effect.

Some of the more popular methods in this category include Lighting Maps [30], which are

basically 2D functions representing light interaction with the surface of an object based on the

direction of light and surface normal vectors
11

 of a visualized object, and a so called Lit Sphere

Shading [30] approach. In the latter case the idea is to capture all of the possible color variations

of an object as a function of a surface normal direction. This is done by using the concept of a

sphere, where an image of a sphere is used to capture all possible variations of normal directions

of an object relative to the current viewing direction (normal vectors parallel to the viewing

direction are mapped to the center of the sphere and normal vectors orthogonal to the viewing

direction are mapped to the outside rim of the sphere) (Figure 18). Thus the sphere image is

indexed by the normal values of a volumetric object and is used to map the normal values to the

TF values during the shading process.

11
 In computer graphics normal vectors are used to define the direction in which the surface of an object at any given

point is facing.

26

Figure 18: Lit sphere shading [30]. A 3D sphere represents all possible normal direction

variations for any visualized object. The actual normal directions of the currently visualized

object are encoded in the form of a sphere image. During the shading process the points

(corresponding to the currently evaluated normal value) on the sphere image are mapped to the

TF values.

2.2.1.2 Style Transfer Functions

This approach extends the domain of TFs, that are normally used to map scalar values to color

and opacity values only, to include shading information as well (i.e. normal values are now

mapped too). One example of this approach was presented in the already mentioned paper [16],

where surface curvature information is used to create non-photorealistic renderings with

emphasized silhouettes. Another example is the work presented in [30] where a spherical model

for normal-based light attributes mapping is combined with multi-dimensional style TFs (Figure

19).

27

(a) (b)

Figure 19: Visualizations using (a) a multi-dimensional style TF and (b) contouring [30].

2.2.1.3 Stylized Contouring and Transparency

Contouring often helps to resolve the ambiguities when visualizing semi-transparent objects.

This is done by emphasizing the transition between front- and back-facing surfaces. A traditional

technique most often employed in VR, that uses a dot product
12

 of the viewing vector and a

surface normal, has a drawback of producing contours of unpredictable thickness. An improved

method proposed in [16] regulates the contours thickness by restricting its value based on the

viewing direction. A somewhat modified version of this method is presented in [30] (Figure

20(a)).

All of the previously mentioned illustrative visualization techniques can be enhanced by adding

an option to make certain features semi- or completely transparent. A normal direction can also

be brought into the equation to allow for view-dependent opacity effects [30] (Figure 20(a)).

12
 In linear algebra dot product of two vectors is a sum of products of their corresponding components. In computer

graphics a dot product is used to determine how “similar” two vectors are (the larger the dot product the more

similar the vectors are, i.e. they point in a similar direction).

28

2.2.1.4 Volumetric Halos

This approach can be helpful when there are a lot of fine and overlapping features in a

volumetric dataset. Since human eyes are very sensitive to sharp changes in contrast, halos

drawn around objects can be helpful in providing additional visual cues. Two approaches to

generating haloes include a technique where halos are generated in a pre-processing step and

thus become an integral part of the volume, and methods where halos are generated on the fly

during the actual visualization process. Naturally the latter method allows for more flexibility in

terms of interactivity and achievable visual results.

In addition, halos can be generated in a directional or omni-directional way, that is they can be

visualized while taking the viewing or lighting direction into account, or just extend uniformly in

all directions around the object of interest [30] (Figure 20(b)).

(a) (b)

Figure 20: (a) Examples of using the view direction dependant stylized transparency and

contouring techniques [30]. (b) Visualizations using the directional and omni-directional haloing

effect respectively [30].

29

2.2.2 High-Level Abstraction Techniques

In contrast to low-level abstraction techniques, that affect the appearance of all volumetric

features in the scene, high-level abstraction techniques try to highlight only certain features in

the resulting image by using various techniques borrowed from the field of the traditional

medical illustration (e.g. making certain tissues in the illustration transparent, using exploded

views, etc.) (Figure 21).

(a) (b)

Figure 21: A photograph of a plastinated anatomic model from Gunter von Hagens’ Body-worlds

exhibition (a) and a similar exploded-view image generated using VR (b) [29].

2.2.2.1 Context Preserving Views

One of the most popular illustration techniques is to use transparency to show the interior of the

objects while preserving context by reducing transparency closer to their edges [31]. This

technique is employed in [32], where the authors use the results of a shading intensity function

for opacity modulation (Figure 22). The basic idea is to reduce the opacity for large regions of

highly illuminated material that would normally correspond to rather flat surfaces (e.g. skin)

while keeping the less brightly lit regions (for example light silhouettes of veins and tendons)

visible. Also the distance to the current viewing point is taken into account to reduce opacity

30

attenuation for rays that have already accumulated a lot of opacity and thus limit the number of

overlapping transparent objects (as too many of these can actually make perception more

difficult).

Figure 22: The context in the image is achieved by making the parts of the body that occlude the

features of interest transparent, while reducing transparency for the rest of the body [32].

In another paper [33] the authors present a novel VR approach, also borrowing from the field of

traditional illustrative techniques, in which they use compositing and masking techniques to

draw the user’s attention to certain parts of the image while preserving the overall context. The

final image is generated from several independently produced layers (such as the line drawing

layer corresponding to the contours of the organs and several tissue layers that are generated

using isosurface, DVR and even MIP rendering techniques) that are combined in the final stage

using a masking operation (Figure 23). Using masking also allows achieving the effect known as

a Magic Lens (i.e. a method where a user guides some kind of a virtual optical device, such as a

flash light or a lens, to highlight internal structures in the certain region of an object) which is

another popular and widely used context preserving technique.

31

Figure 23: An illustration of the human heart as a combination of three layers (three images on

the left: line drawing, DVR muscle layer, isosurface veins layer) with a rotation operation

applied (right) [33].

Different variations based on the idea of a magic lens have been proposed by researchers. In the

case of DVR a second TF [8] can be used to visualize an ROI in a distinct manner (Figure 24(a)).

In [33] multiple layers are first generated using different visualization techniques and then

combined using masking in the user defined order (Figure 24(b)). Finally, various standard and

custom magnification effects are employed in [34] to enlarge the features of interest within the

context of the surrounding volume (Figure 24(c)).

(a) (b) (c)

Figure 24: (a) Magic Lantern visualization using two different TFs [8]. (b) Magic Lens using

masking and compositing technique [33]. (c) Magic Volume Lens using a magnification effect

[34].

32

Another approach presented in [35] enhances the feature of interest in the resulting image by

super-sampling intensity values of the volume using B-spline subdivision and fast gradient

quantization, which allows for an instant “zoom in” effect on the said feature (Figure 25).

Figure 25: “Zoom in” effect in action. The context is provided by using rectangular and circular

ROIs, that are super-sampled using B-spline subdivision and enlarged [35].

A recent technique presented in [36] combines several mathematical and visualization models to

allow for a real-time 3D context-preserving exploration of large volumetric datasets. Among

them are octree
13

 based out-of-core
14

 data management, MIDA based VR for parts of the volume

that correspond to an ROI, distance-based opacity modulated DVR for regions outside of an

ROI, and superquadratic
15

 3D envelope shapes (such as a cylinder, a sphere and a rounded cube)

for ROI definition (Figure 26).

13
 An octree is a tree data structure in which each parent node has eight child nodes. In computer graphics it is often

used to represent objects in a scene in a hierarchical order, allowing for more efficient granular data processing.
14

 In computer graphics out-of-core algorithms are designed to allow for processing of data that is too large to fit in

dynamic memory (usually memory dedicated for the GPU usage only) by fetching or streaming the data in chunks

according to the demands of the application.
15

 In computer graphics superquadratics or superquadrics are a family of 3D geometric shapes that are described by

equations similar to the ones used to describe regular quadratic shapes, but with the squaring operation replaced by

the arbitrary powers. By changing the powers in a superquadratic equation the range of shapes can be extended.

33

Figure 26: Images produced MIDA and distance-based opacity modulated DVR using different

superquadratic envelope shapes [36].

2.2.2.2 Exploded Views

This is another group of methods aimed at solving the problem of occlusion in VR while

providing contextual information. The idea is to decompose an object into several parts so that

internal structures of interest can become visible. This approach has an additional benefit of

being able to reveal additional information such as cross-sectional geometry of an object. In [37]

an approach is proposed that is based on the idea of separating a volume into a selection and

background parts (the distinction is based on a combination of the selection geometry, the data

volume and the specified TF). The user can then specify into how many pieces and along which

axes the background potion of the volume should be split. Notions of force and hinge joints are

also used to specify how far apart separate pieces of the background should be spaced and along

which axes they should be aligned and rotated (Figure 27).

34

Figure 27: An interactive exploded-view illustration with two virtual hinges constraining the

positioning of the exploded parts [37].

In [38] a volume is sliced into slabs along the user specified axis (Figure 28). However, in this

approach the manual process of specifying the thickness of slabs is automated through a

mechanism that determines the thickness by measuring the level of similarity between partitions.

The similarity criterion is evaluated on the basis of maximum gain of information.

Figure 28: Exploded views with different portioning settings applied [38].

2.2.2.3 Volume Clipping and Sculpting

These methods attempt to reveal the structures inside a volume by physically removing parts of

the volume that otherwise would obstruct them. This is achieved by applying Boolean operations

to cut or carve away parts of the volume using clipping planes, boxes, spheres and other

35

geometric shapes and in general include any technique that allows displaying a subset of a

volumetric dataset bounded by an isosurface. The most prominent works in this field include [39,

40] and [41]. The first paper [39] presents an approach where various geometric primitives and

depth test algorithms are used to specify parts of the volume that need to be cut away (Figure

29(a)). In the second approach [40] a mesh which can be flexibly deformed by the user with an

adjustable sphere of influence is used (Figure 29(b)). The last paper [41] describes a whole

framework called VolumeShop that allows for advanced manipulation and illustrative rendering

techniques to generate illustrations directly from volumetric data. The principle behind its

operations is a multi-volume representation of the scene with ability to individually control each

volume. The segmentation of the volumetric data is performed via the means of surface-

constrained 3D painting (Figure 29(c)). The system also includes segmentation and labeling

features that allow for an annotated representation of the data in the resulting images.

(a) (b) (c)

Figure 29: (a) An example of the spherical carving operation of the volume [39]. (b) A geometry

based 3D deformable mesh is used to define the ROI and exclude all other parts from the

visualization process [40]. (c) A section of the skin layer is cut-away after painting on the surface

of the head and neck (c) [41].

36

Volume clipping can also be used as a pre-processing step, where the occluding parts of the

volume are removed in order to reveal the structures that will be later used to perform other

operations on (e.g. segmentation). This approach is used in [42] where the authors use the

surface-based sketching operation to mark the region on the surface of the volumetric object that

will be clipped or peeled away. Then the Point Radiation algorithm is used to project rays into

the volume within the defined region. The orientation of the rays and the depth of penetration of

the surface depend on the current orientation of the masking plane and the pressure level of the

input stylus device controlled by the user (the maximum depth of penetration is limited to 12

voxels). Any parts of the volume intersected by the rays are removed to reveal the underlying

structures (Figure 30).

Figure 30: A free-from mask is painted on the surface on the skull. The rays are cast through the

mask and any intersected parts of the volume are peeled away [42].

2.2.2.4 Volume Deformation

While making inner structures more visible, volume clipping methods may also result in the loss

of context. To address this problem, another approach can be used which merely deforms

volumetric data (without actually removing any portions of it) in such a way as to allow the

37

structures inside the volume to become exposed. Operations employed in these methods are

usually mimicking actions from real medical practices (e.g. tissue peeling, incisions, various

tissue spreading techniques, etc). Two examples of this approach are presented in [43] (Figure

31(a)) and [44] (Figure 31(b)).

(a) (b)

Figure 31: (a) The “leafing” technique in action [43] and (b) the “pliers” operation applied to the

internal organs of the frog while the skin is being retracted [44].

A more recent paper [45] proposes techniques that allow for more advanced deformations (such

as retratcing, multi-spacing, highlighting and deemphasizing deformations and others) with an

emphasis on illustrative representation of the data (Figure 32). These techniques allow for an

extension of the deformation methods into other areas of VR beyond medical applications (such

as physics, mechanics and basically any other type of volumetric information visualization).

38

(a) (b)

Figure 32: An example of (a) a retracting deformation and (b) a bending deformation [45].

One of the most recent approaches that deals with deformations in medical datasets is presented

in [46]. In it the authors introduce a notion of constrained displacement fields, which allow

restrictions to be placed in terms of both what parts of the volume are allowed to be deformed

and in which ways (by specifying rigidity and degrees of freedom). This avoids such common

problems in unrestrained models as self-intersection and collision with features of interest.

Figure 33: A simulation of a whiplash injury using constrained deformations [46].

2.3 Volume Space Navigation

In order to get a better understanding of any given visualized volumetric dataset it is necessary to

provide the user with a means of navigating in a volume space. Furthermore any employed

navigational model should be intuitive to use and provide the necessary level of precision.

39

According to [47] a generalized virtual navigational task can be thought of as consisting of both

explorative navigation and directed navigation.

2.3.1.1 Explorative Navigation

In the course of explorative navigation the user is interactively inspecting the data to gather

knowledge while being unaided and usually unrestricted in ways of navigation. Most

navigational models of this type are based on the concept of a so called Virtual Trackball, Sphere

or Arcball [48] and are usually combined with such operations as panning, rotating and zooming

to allow for adjustment of an arcball’s center of rotation. Examples of this model can be found in

numerous 3D modelling suites [49] and volumetric visualization software [2, 4, 14, 15, 50, 51],

and have been adapted to both trackball and mouse usage.

Figure 34: Various rotational and translational widgets from 3DS Max, Blender, XSI, Houdini,

Mode and Maya [49]. All share the same underlying principle.

2.3.1.2 Directed Navigation

When it comes to directed navigation, very little research has been done for the field of volume

graphics. The vast majority of techniques proposed for directed volumetric navigation are

tailored toward specific tasks of virtual endoscopy [52-55] (i.e. navigation in heavily constrained

tubular structures) and often include pre-processing steps with pre-defined visualization settings

in order to be able to compute such parameters as a centerline or allowed camera travelling path

(Figure 35).

40

Unlike well established navigational models developed for polygonal virtual scenes [56], where

geometrical structures are always explicitly defined, visual appearance of features as well as their

geometric form in a volumetric scene can be easily changed by adjusting TF parameters,

performing carving or peeling operations, or using different visualization modes. Only recently a

generic approach that integrates real-time navigation of both the explorative and navigational

nature has been published [57]. In it the authors propose and implement a context-aware volume

visualization technique in which a 360 degree spherical representation of the scene is updated in

real-time and is used to perform instant collision detection under any combination of the

visualization parameters (Figure 36). Combined with traditional operations of panning, rotating

and zooming this approach allows for seamless transitioning between both navigation modes.

Figure 35: The 3D shape of the interior surface of the blood vessels is used to constrain the

possible camera travelling paths [53].

41

Figure 36: A series of screenshots taken during the volume navigation process using the context-

aware volume navigation technique [57].

42

Chapter 3: Methodology and Implementation

The previous chapter introduced and classified various volume visualization and interaction

techniques that aim at providing the user with tools for better volume exploration and

understanding. Some of them employ a combinatorial approach by creatively drawing on the

knowledge from different areas and fields in order to simplify that task. However, most still

suffer from either:

 Assuming a potential user to have at least some background knowledge in the field of

VR. The vast majority of the TF specification techniques described in Section 2.1 [1]

suffer from this drawback, as they require an understanding of volumetric information

representation in the form of various 2D histograms. Similarly, many high-level and low-

level abstraction illustrative techniques [29] assume that the user is familiar with the

different visualization models (i.e. isosurfaces, DVR, MIP, etc) and rely on their

expertise in specifying the shading/lighting parameters, order and modes of combining

different pre-rendered layers, orientation and thickness of the slices in the case of an

exploded view data representation (in such a way as to achieve the best perception of the

features of interest), etc.

 Providing models for interaction and visualization parameter specification that are still

not easy to use. Again, many TF specification models are far from ideal in this respect

[1]. Operating in a 2D feature space of a histogram is an unintuitive process that can lead

to drastically different visual results with only minute changes in the positioning and

shape of the TF-defining curves and geometrical shapes. Volume navigation and

interaction models are often flawed [52-55] by the inability to easily position a virtual

43

camera in the desired location with the desired orientation in the scene (this is an inherent

problem of any navigational model that tries to use a 2D input device, such as a mouse or

a trackball, to navigate in a 3D space). A confusing spatial relationship of various objects

in the scene is another common problem that stems from the lack of sufficient depth cues

or their poor implementation. Finally, depth specification [57] in general is not a

straightforward task in the context of VR and its complexity is further compounded by

the aforementioned issues.

The work presented in this thesis tries to overcome these domain knowledge and interface

complexity issues by proposing and implementing a volume exploration model based on a

painting metaphor that strives to be both intuitive and easy to use. This is achieved by focusing

on providing the user with an integrated 3D single-view interaction model and a minimum of

visualization controls that allow the user to concentrate more on their task of gaining insight into

the data rather than encumbering them with the necessity to tweak numerous visualization and

interaction related controls.

As a platform for the implementation of the extensions the project uses one of the most popular

open source VR rendering software suites called ImageVis3D [2]. The following sections will

explain the reasons behind choosing this particular platform, provide an introduction to some of

the technical aspects of VR, and detail the user interaction model and underlying algorithms used

to implement the proposed visualization and exploration model.

44

3.1 ImageVis3D as an Implementation Platform

The field of VR is maturing fast and today there are a number of very capable and feature-rich

VR programs. Both open source and commercial products are available. Some of the most

notable ones include OsiriX [15], Voreen [14], ImageVis3D [2], 3DSlicer [4], Amira [58] and

MeVisLab [50].

For the implementation purposes of this thesis, a decision was made not to start “from scratch”

but rather to take advantage of some of the already implemented auxiliary functionality (such as

dataset loading and saving, graphics pipeline initialization, memory management, etc.) most of

the aforementioned products could provide. A subset of open source projects was evaluated,

consisting of Voreen, ImageVis3D and 3DSlicer, with ImageVis3D chosen as the final platform

for extension. The decision was primarily based on the examination of the source code

(ImageVis3D appeared to have the most well thought-out and clean structure) and the list of

already implemented features that could potentially aid in the implementation of the envisioned

future extensions (ImageVis3D provides a flexible out-of-core memory management system and

an automatic Level of Detail (LOD)
16

 support for any loaded dataset, both of which allow it to

perform well even in the absence of sufficient memory or computational resources).

ImageVis3D is an open source volume rendering project, developed by the NIH/NCRR Center

for Integrative Biomedical Computing (CIBC) and is written in pure C++ TR1 with Boost C++

extensions [59]. It provides wrappers for both DirectX (Microsoft Corporations’ Proprietary

Graphics Library) and OpenGL (Open Graphics Library) [9] and uses the Qt [60] cross-platform

16
 In computer graphics the term “Level of Detail” refers to the ability of an application to adaptively change the

detail of displayed 3D objects according to the needs of the application or the user.

45

application framework developed by Nokia to implement its GUI controls and widgets. The fact

that it does not rely on any other proprietary platform-dependent third party Software

Development Kits (SDKs) and Application Programming Interfaces (APIs) and works with

OpenGL, an open royalty free cross-platform standard, means that it can be easily ported to any

hardware/software platform capable of compiling the code and supporting OpenGL 3.3. In fact a

mobile version for iPhone called ImageVis3D Mobile is now available in Apple’s iTune App

store.

All of the extensions added in the course of this thesis work have been designed and

implemented with the above unofficial portability development policy in mind, and thus also do

not rely on any third party libraries (although some of the implemented algorithms necessitated

using OpenGL 4.1 instead of 3.3).

3.2 Introduction to Volume Rendering

In the field of computer graphics visualization is the process by which data is represented

through the means of images, diagrams and animations in such a way as to aid its understanding

and cognition. Scientific visualization is a subfield that deals with visualization of data

representing some sort of physically based phenomena (such as seismic activity, air currents or

X-ray reflection rates measured by a CT scanner).

Volume Rendering (VR) is one type of scientific visualization technique that is used to generate

2D projections of discreetly sampled 3D datasets. It is inherently different from another more

commonly used approach to represent 3D information, which is based on surface representation

(knows as geometry- or polygon-based graphics).

http://en.wikipedia.org/wiki/Nokia

46

In polygon-based graphics 3D objects are constructed from interconnected points (usually

arranged in the form of triangular meshes). The points have various attributes describing their

position in space, surface normal orientation, texture coordinates, etc. In order to view these 3D

objects on a 2D screen a process known as rendering is used, during which the models are

converted into pixels on the screen by applying spatial transformations, texturing, lighting,

shading and other operations. This polygonal representation is quite efficient in terms of memory

consumption and is suitable for highly parallel data processing algorithms (this explains the

massively parallel architecture of modern day GPUs). However, in cases when fuzzy or complex

data (e.g. smoke, clouds, water, various body tissues) has to be described, the polygon-based

representation is far from ideal. Another obvious drawback is that in a polygonal representation

no interior information about an object is represented.

On the other hand, in the case of a volumetric data representation, objects are stored in the form

of a 3D array of cubic
17

 elements, where each element occupies a curtain volume of space

(Figure 1). These elements are called voxels (volumetric pixels) and have at least one scalar

value (often referred to as intensity since it represents some sort of a physical property measured

during the scanning process) associated with each of them. A collection of all these values is

known as a scalar field of the volume. Thus volume visualization, also commonly referred to as

volume rendering, can be defined as a process of displaying volume scalar fields [61] by

projecting the interior information of a dataset onto a screen using one of several known

techniques [62].

17
 This is the case when a regular grid is used and is the most common.

47

Figure 37: Voxels representing a discretized volumetric object [6].

3.2.1 Ray Casting

The advent of powerful GPUs has revolutionized the field of VR. Where in the past either the

resultant image quality or performance or both had to be compromised due to the lack of

sufficient computational resources, today highly parallel brute force rendering techniques

dominate the field [63].

Ray casting [62] is by far the most popular brute force VR technique. It is a rendering method in

which every voxel in a volumetric dataset is evaluated as part of a ray traversal process through

the volume. For each pixel in the resulting image a ray is cast into a scene from the current view

point (Figure 38). At certain intervals along the ray (equidistant in the simplest case) the volume

dataset’s values are sampled, usually employing some kind of interpolation technique (tri-linear

interpolation is often considered to provide a good balance between speed and quality). The

resulting sample value is then used to determine the color/opacity (RGBA value) of that point in

space using a lookup table, typically containing previously defined TF mappings. At this stage

various lighting and shading techniques can be also applied in order to achieve the desired visual

48

effects. The process continues by blending the obtained RGBA values until the ray exits the

volume or the opacity of the desired level is achieved (called an early ray termination condition).

Figure 38: Rays cast through a volume are sampled between starting (fn) and ending (ln)

positions [6].

The above front-to-back process of color and opacity accumulation can be described by

following equation [6]:

(3.1)

where and are the current color and opacity respectively at the sample point

 , and
 and

 are the accumulated color and opacity.

Because of this in-place evaluation of the visual model, ray casting is also often referred to as

Direct Volume Rendering (DVR), though strictly speaking DVR is a broader term that includes

all VR techniques dealing with direct voxel data evaluation during a rendering process.

49

3.3 Methodology and Implementation Details

Since the proposed painting metaphor is a focal point of this thesis, it and the user interaction

model that realizes it will be presented first, providing the necessary context for the following

subsections.

3.3.1 User Interface and Camera Control

The user interface consists of two areas (Figure 39):

 The area containing the GUI components controlling the visualization parameters.

 The visualization area, where the user interaction with a virtual scene takes place and the

results of the visualization are displayed.

Both areas are implemented as dockable Multiple Document Interface (MDI) child windows and

thus can be freely resized and rearranged within the limits of the main application window

according to user preferences.

50

Figure 39: User interface with the GUI controls (on the left) and the visualization area (on the

right).

3.3.1.1 Camera Control

The visualization area is the area where the user interacts with the visualized volumetric dataset.

In order to control the orientation and position of the camera relative to the volumetric object an

arcball rotational model has been used. By clicking the left mouse button anywhere in the

visualization area and holding it while moving the mouse, the user can rotate the camera around

the object. The camera can also be moved in space so that the object appears closer or farther

away by using the scroll wheel on the mouse. Finally, right clicking and holding while moving

the mouse allows the scene to be panned in the desired direction.

51

3.3.2 Painting

The painting metaphor allows the user to define an ROI by placing “brush strokes” directly in the

space of the visualization area. By placing additional brush strokes the paint is “spread”, thus

creating the envelope that defines the ROI and encloses the features of interest. Painting can be

done in either 2D or 3D. When the 2D painting mode is used the painting is done in the

visualization area screen space coordinates. That means that the envelope always stays in the

same position in terms of the screen coordinates regardless of the orientation of the visualized

volumetric object
18

 (Figure 40).

Figure 40: A 2D envelope defined in the space of the screen as three 2D stripes. The shape and

position of the envelope stays the same regardless of the orientations of the visualized volumetric

object.

18
 A 2D envelope acts in a manner similar an X-ray machine that projects its rays all the way through the scene.

52

When the 3D painting mode is used the envelope is painted in the 3D volumetric space of the

target object. Hence the defined envelope always maintains its relative position to the volumetric

object in 3D space (Figure 41).

Figure 41: A 3D envelope defined in the space of the target volumetric object. The position and

orientation of the envelope change according to the position and orientation of the visualized

object.

To place a new brush stroke a brush tip, which represents a circular or a spherical user defined

area either in a 2D or 3D space respectively, is used. In the current implementation, the brush tip

and the painted envelope are realized using the technique of defining implicit 3D surfaces known

as Metaballs [7] (Section 3.3.6). Metaballs have a characteristic of merging with each other

based on their proximity, radius and the chosen field function, creating organic-looking and

flowing shapes. This behavior is similar to the painting operations performed in various raster

editing programs (e.g. Photoshop) and was the main reason behind choosing metaballs as the

envelope definition mechanism.

53

3.3.2.1 Envelope Definition Process

After a new brush stroke is placed it specifies the 2D or 3D area where the envelope is now

defined. To extend the envelope subsequent brush strokes are placed by moving the brush tip to

the areas of interest. As the brush tip is being moved any parts of the volume that fall within its

area of influence are instantly visualized using a different visualization style (defined for the

parts of the volume inside the envelope (Section 3.3.3)). Thus the brush tip provides a real-time

preview functionality that allows the user to see exactly what the envelope will look like and

what features inside of the volumetric object it will enclose if a new brush stroke is placed at the

current position of the brush tip. Hence the process of painting an envelope can be described as a

sequence of placing new brush strokes in positions where the brush tip preview results achieve

the desired visual effect. The process of painting a 3D envelope consisting of several preview

and brush stroke placing steps is illustrated in Figure 42
19

.

Figure 42: Envelope painting in 3D depicted as a sequence of steps of: a) previewing the results

of the visualization by moving the brush tip to the desired location; b) placing a new brush stroke

at the brush tip’s current location.

19
 A 2D envelope is painted in the same way, but in the screen space of the visualization area.

54

3.3.2.2 Brush Tip Positioning

To control the position of the brush tip either in a 2D or 3D space a control scheme very similar

to the previously described camera navigation model (Section 3.3.1) is used. Under this

navigation model the user first orients the volumetric object into the position that they consider

to be suitable for painting (see explanations in the next paragraph). Then by pressing down and

holding the Alt key the user initiates the painting mode. By continuing to hold the Alt key and

moving the mouse pointer in the visualization area on the screen they are able to see the brush tip

as a circle or a sphere (depending on the chosen 2D or 3D painting mode) of the currently

specified size centered at the current position of the mouse cursor. The parts of the volume that

fall within the area defined by the brush tip are instantly highlighted (Section 3.3.3) using the

alternative visualization parameters specified by the user. If the user decides to place a new brush

stroke at the current position of the brush tip, they do it by clicking the left mouse button while

still holding down the Alt key. When the Alt key is released the scene interaction mode reverts

back to the camera navigation mode, allowing the user to adjust the orientation of the object in

the scene and evaluate the results of the painting operation (the envelope remains in the scene

until it is cleared (Section 3.3.3)). The above procedure can be repeated any number of times

allowing the user to extend the envelope to enclose the desired volumetric features.

In the 3D painting mode, in addition to the screen space position, the depth of the brush tip needs

to be controlled as well. For this purpose, similarly to the camera navigation model (Section

3.3.1), the scroll mouse button is used. By scrolling the wheel of the mouse while holding down

the Alt key the user can adjust the current depth of the brush tip, thus moving it further away or

closer to the viewer. After the desired depth of the brush tip is reached its value is preserved and

55

is used to define a virtual painting plane that orients itself in such a way as to always stay

parallel to the screen (Figure 43).

The painting plane defines the plane in which all of the new brush strokes are placed. Thus when

the user moves the brush tip by changing the position of the mouse cursor in the screen space,

they actually change the position of the brush tip as projected onto the painting plane defined at

the current brush tip’s depth. By moving the brush tip in this manner (moving the cursor on the

screen and using the scroll wheel) the user controls its 3D position within the 3D space of the

scene. Naturally the relative position and orientation of the volumetric object and the painting

plane can be adjusted by the user at any moment by releasing the Alt key and using the standard

camera navigation model. This rapid switching between the two very similar navigation models

by using just the Alt key allows the user to quickly paint the envelope of the desired arbitrary

shape. Furthermore, any parts of the volumetric object that fall within the 3D boundaries of the

envelope are instantly visualized using the specified alternative visualization parameters (exactly

the same way as in the case of the brush tip preview mode), thus allowing the user to see if the

envelope they are currently painting achieves the desired contextual view.

It should be noted, that by default (i.e. when a new dataset is loaded into the program) the depth

of the brush tip, and hence the depth of the painting plane, are set to a value such as to make the

brush tip always visible (i.e. floating in front of the volumetric object in 3D space). This depth

value is calculated by using the dimensions of the volumetric object’s axis-aligned Bounding

Box
20

.

20
 In computer graphics a bounding box is the minimum box that encloses all parts of a 3D object.

56

Figure 43: The painting plane always stays parallel to the screen plane, regardless of the

orientation of the volumetric object in the 3D scene space. The current depth of the brush tip

determines the depth of the painting plane, which can be adjusted within limits specified by the

near and far clipping planes. When the user moves the mouse cursor on the screen plane its

current position is projected onto the painting plane, thus defining the current 3D coordinates of

the brush tip. New brush strokes can then be placed at the current 3D position of the brush tip on

the painting plane, thus allowing the user to extend the envelope as needed.

In the 2D painting mode the depth of the painting plane is always set to a constant value and

cannot be changed by the user. The position and the shape of the brush tip (and of the envelope if

it is defined) are projected onto the painting plane and are used as a stencil to select parts of the

volumetric object that fall inside of the projected contour along the current viewing direction (Z

axis in Figure 43). Any parts of the volume that fall within the stencil’s projected contour are

visualized using the same alternative visualization mode as in the case of the 3D painting mode.

57

The difference from the 3D painting mode is that the depth values of the parts of the volume that

fall inside of the stencil are disregarded (i.e. a stencil works in a way similar to an X-ray

machine, by applying the visualization effect all the way through the object).

3.3.2.3 Free-hand and Surface 3D Painting Modes

The 3D painting mode described above, where the user fully controls the depth of the brush tip at

all times, is called a free-hand painting mode. Naturally, depending on the desired type of

exploration, cases might arise when it would be preferable to be able to automatically follow the

shape of a volumetric object with the brush tip (e.g. when the user wants to paint an envelope

that encloses only the features close to the surface of the object). In that case a mode called

surface painting is available. In this mode the depth of the brush tip, and hence the depth of the

painting plane, at the current projected position is overridden by the depth value of the object’s

surface, obtained by intersecting the ray fired from the current mouse cursor position on the

screen into the volume space with the visible surface of the volumetric object (Section 3.3.7).

3.3.2.4 Additional Brush Tip Properties

As was described earlier, metaballs (Section 3.3.6) are used as the underlying mechanism for

envelope definition. Any envelope is thus defined by a series of metaballs that merge themselves

with each other based on their size, proximity and selected field function. In general the larger a

metaball and the closer it is to other metaballs, the greater its influence and merging factor with

other metaballs. As the brush tip is always the first metaball in the scene, it defines the attributes

of every new metaball that is added to the series. Thus by controlling the size and other

parameters of the brush tip the user can have more control over the shape of the painted

envelope.

58

The brush tip can be defined as a negative brush tip, thus allowing the user to negate or erase the

results of the previous painting operations (Figure 44(a)). In addition, in the 3D surface painting

mode the depth of the object’s surface penetration by the brush tip as well as its shape can be

changed. In the current implementation the only shape (aside from a sphere) that is allowed is

that of a cylinder
21

. A cylindrical brush tip will try to always orient itself perpendicular to the

surface of a volumetric object (Figure 44(b)) (Section 3.3.7). In addition to its size, the height of

a cylindrical brush tip can also be adjusted, thus providing additional flexibility for envelope

definition (e.g. a flat envelope with a small height value can be used to follow the curvature of

the skull to include only the bone but not the brain matter) (Figure 44(c)).

(a) (b) (c)

Figure 44: (a) A negative brush tip erasing a part of the previously painted envelope. (b) A

cylindrical brush tip self-aligned with the cross-section of a finger and depth-adjusted to show

the whole digit of the finger. (c) A flattened envelope defined using a cylindrical brush tip and

surface-painted following the curvature of the skull.

21
 A cylindrical shape was chosen as the most useful one in terms of aiding in the envelope definition process. Other

superquadratic shapes, such as stars and ellipsoids, did not contribute much in terms of usability and thus were

excluded from the implementation.

59

3.3.3 GUI Controls

As was mentioned in Section 3.3.1, in addition to the visualization window, the interface also

contains the GUI controls window that allows adjusting all the parameters related to the

visualization, the envelope definition process and the painting modes. The GUI controls window

is further subdivided into the following functional areas (labeled with capital letters in Figure

39):

Areas A1 and A2 contain slider controls allowing the user to adjust the ranges of visible volume

values outside the envelope and inside the envelope respectively (Figure 45) (in Figure 39 the

area outside the envelope is highlighted by the white dashed line, and the area inside the

envelope is highlighted by the black dashed line). Maximum and current values are displayed to

the right of each slider. “Base Color” buttons in each area allow the user to specify the color

used to tinge volumetric features inside and outside the envelope (see Section 3.3.4 for details on

MIDA technique).

Figure 45: Visualizations of the palm using different visible value ranges and base colors for

parts of the volume inside and outside the envelope.

60

Area B contains a slider controlling the transparency level of the envelope’s surface and two

buttons that allow the user to specify the envelope color and to clear it (i.e. completely remove

it) (Figure 46).

Figure 46: A green 3D envelope visualized in an opaque, semitransparent and transparent

manner.

Area C contains controls to change the size of the brush tip, its color and to define it as negative

(Figure 47).

(a) (b) (c)

Figure 47: (a) A small-sized brush tip used to define the envelope tracing the outline of the veins

on the surface of the palm. (b) A large brush tip used to quickly envelope a big part of the palm.

(c) A negative brush tip used to “push away” the previously painted envelope.

61

Using controls in area D a user can switch to the surface painting mode, adjust how deep the

brush tip penetrates the surface of a volumetric object by adjusting the depth slider or change the

shape of the brush tip to a cylinder by selecting the deformable brush tip option and set the

desired height of a cylinder by using the height slider control (Figure 44).

The last area E controls the activation of the screen painting mode. The only parameter that can

be adjusted in this group is represented by a show envelope edges checkbox, that controls

whether a semitransparent or a transparent but outlined version of a 2D envelope should be

displayed (Figure 48). Note that in either case a level of transparency of either the outline or the

envelope itself can be controlled with the transparency slider contained in area B.

Figure 48: A transparent outlined version of a 2D envelope vs. a solid semitransparent version.

62

3.3.4 Maximum Intensity Difference Accumulation

As was mentioned in Section 2.1.7 MIDA [5] is an approach that allows the user to visualize

volumetric datasets without having to specify a TF. Instead it exploits inherent data

characteristics to map scalar field values to unique color/opacity values. The basic idea behind

this approach is to alter the opacity accumulation behavior of a traditional DVR to incorporate

some of the characteristics of MIP. In a traditional DVR as a ray traverses a volume and hits

voxels on its path, the intensity values of the voxels are mapped to the color and opacity values

specified by the TF (Figure 49). These values are then blended together using Equation (3.1

(Page 48), resulting in a monotonically growing accumulated opacity value (Figure 50(a)). This

means that regardless of the prominence of the underlying volumetric features
22

, if they are

occluded by an opaque region, they won’t contribute to the final 2D image. MIDA tries to

address this issue by modulating any previously accumulated color/opacity value by an amount

of the positive difference between the current and the previous intensity value (Figure 50(b)).

Thus color and opacity accumulation formula from Section 3.2 becomes:

(3.2)

where , and

(3.3)

Here
 represents the data value at the sample point and

 is the current maximum value

along the ray which is also updated to
 whenever

.

22
 The assumption here is that more prominent features are usually represented by higher voxel intensity values.

63

Figure 49: A ray traversing a volumetric space, while encountered voxels are mapped to color

and opacity values and blended with the previously accumulated results.

The difference between DVR and MIDA opacity accumulation behaviours can be better

understood by looking at Figure 50. As can be seen in the case of MIDA, the opacity of any

previously accumulated results is modulated by the difference in the previous and the newly

encountered local maximum. As can also be seen, some of the rather prominent features (check

the last peak on the graph in Figure 50b) can still be obscured if the corresponding local

maximum does not quite go over the previous value. To address this issue, a sub-range of

sampled data values can be defined by the user to include only the desired volumetric features.

This is also useful to exclude data at the lower part of the total range that usually corresponds to

noise resulting from a scanner picking up the surrounding air and dust particles floating around

the object as it is scanned.

64

Figure 50: A comparison between (a) typical DVR and (b) MIDA ray profiles. In the case of

MIDA the accumulated opacity value (red line) is modulated by the amount of the difference

between the current and the previous local data value maximum (grey line). The blue line

represents the accumulated color intensity of the resulting projected pixel on the screen.

Under MIDA, in the absence of a TF, any sampled values (in accordance with a specified sub-

range) are linearly mapped to a full range of grey scale intensities from black to white and

opacities from 0 to 1. To provide for more pleasing visual results and a better degree of

comprehension, grey scale intensities can also be multiplied by a so called base color, which

tinges the resulting rendered volumetric objects according to user preferences.

One of the inherent issues with MIDA, that was discovered while implementing it, is that the

resulting images suffer from inconsistent brightness; that is they are usually too dim when a

MIDA sub-range is large and too bright when a MIDA sub-range is small. This behaviour is

explained by the nature of the modulation process. When a MIDA sub-range is large chances are

65

high that any previously accumulated color/opacity values will be modulated by the newly

encountered values corresponding to the more prominent features. Since rays are travelling in the

front-to-back order, any front facing structures will appear dimmed out. In contrast, when a

MIDA range is small, the possibility of encountering a prominent feature and thus of any

previous value being significantly modulated is much less, hence allowing for the original

unmodulated value to be displayed (Figure 51). Naturally, results will also vary depending on the

relative position of processed scalar values within the defined sub-range. To combat this

shortcoming, a simple brightness compensation scheme was devised that adjusts the intensity of

the base color depending on the ratio of the defined sub-range to the total range of all possible

values and the user specified brightness compensation factor, as follows:

(3.4)

where is the user specified base color, is the brightness compensation factor, the

constant amplification factor to avoid the dimming effect for extremely narrow sub-ranges, and

and are the sub- and full value ranges respectively. The empirically determined values that

provided good visual results for most datasets and that were used in the course of the conducted

experiments and the user study (Section 4.2) were and 23 (Figure 52).

23
 In case the resulting image becomes too bright the colors could be easily adjusted by reducing the intensity of

 using the standard Windows color selection window.

66

(a) (b)

Figure 51: In the absence of the brightness compensation (a) a visualization of a hand using a

wide MIDA sub-range has more definition, but is too dim. (b) Under the same conditions a much

narrower MIDA sub-range produces a less detailed but noticeably brighter image.

(a) (b)

Figure 52: A visualization of the same volumetric dataset (a) without and (b) with brightness

compensation applied.

67

3.3.5 Front- to-Back Depth Peeling

In order to be able to define an ROI directly in a 3D space of a volume it was necessary to come

up with an approach that would satisfy the following conditions:

 Define an ROI as a 3D shape.

 Allow real-time updating of a 3D shape as an ROI is being defined and modified.

 Provide enough depth cues for the user to be able to see clearly the spatial relationship of

the volumetric features and the 3D shape defined by an ROI.

To achieve these requirements an approach based on Depth Peeling (DP) described in [64] was

chosen. DP is a well known technique that allows for visualizing transparent polygonal objects

of any complexity in an order-independent manner. It is based on the idea that while a standard

depth test
24

 provides the coordinates of the projected parts of the object (also known as

fragments) closest to the viewer for every pixel, there also might be parts of the object in the

scene that are second closest, third closest and so on. These second, third and generally n
th

fragments correspond to the surfaces of a polygonal object that under normal circumstances

would be culled away. However when a polygonal object needs to be rendered in a semi-

transparent way, this information has to be preserved and taken into account.

DP addresses this task by rendering the scene using n passes (Figure 53), where n corresponds to

the number of rendered layers, or how deeply into the scene a viewer can peer. The first pass is

rendered in a regular way and depth information for all of the closest fragments in the scene is

24
 In computer graphics a depth test is an operation typically performed as a part of the rendering process that allows

only the front-most parts of the rendered 3D objects to be visible. Without it the resulting image would be incorrect

with parts of the object’s internal structures showing through.

68

generated. The second pass goes over the whole scene again, but now it compares the depth of

any processed fragments to the depth information obtained in the first pass. Any new fragments

with the depth less or equal to the values from the first pass are ignored and the depth buffer

containing the depth values for all second closest fragments is generated. Naturally, color values

from the first rendering pass are blended with the newly generated color values to achieve the

correct semitransparent look. The process continues until the rendering pass fails to find any new

fragments that satisfy the depth test condition (i.e. there is no more geometry left to render at the

depth greater than the previously generated one). The process is illustrated in Figure 54, where

each pass peels away layers of front-most facing fragments.

Figure 53: A series of images displaying peeling of the fragments using DP algorithm [64].

69

Figure 54: DP stripping away layers with each successive pass. The first pass peels away the

front-most (leftmost) fragments, with hidden fragments shown in thin black lines. In the

subsequent passes the already peeled away fragments are shown in light grey lines.

Unlike the original technique, which deals only with peeling of polygonal models, the solution

implemented in this thesis combines polygon-based peeling with VR by breaking down the ray

casting process into stages according to the intermediate results of the peeling process. Since ray

casting is done in front-to-back order, the peeling process is also done in the same order and thus

is called Front-to-Back Depth Peeling (FtBDP)
25

 [65]. FtBDP can be described as a sequence of

the following steps:

1. The front-most polygonal geometry corresponding to the front surface of the envelope

facing the user is rendered in a normal way. The depths of all corresponding fragments

for every pixel in the frame are stored in the depth buffer.

2. The MIDA ray casting stage is initiated with the color and depth buffers from step 1

passed into it using special memory buffers called Texture buffers (further referred to as

simply textures). The depth test is performed for any rays cast into the scene and only

25
 Technically depth peeling can be performed in any order, as long as the depth test is performed properly and the

results are blended together correctly.

70

those parts of the volume that fall outside of the envelope are rendered. The colors of the

previous peeling pass are blended with the results of the ray casting to achieve the correct

visual effect. The positions of the rays intersecting the peeled surface from step 1 are kept

in a separate buffer for future use.

3. The next envelope peeling stage is initiated with the depth results of the previous peeling

pass passed to it in a texture. New fragments are chosen based on satisfying the depth test

condition (i.e. comparing their depths to the values stored in the above texture). The

depth values of all newly chosen fragments are stored in the depth buffer.

4. The MIDA ray casting stage is initiated with the color and depth buffers from step 3 as

well as the ray positions and accumulated color results from step 2 passed into it as

textures. The ray starting positions are initialized according to the previously stored

values. The depth test is performed for any rays cast into the scene. Depending on

whether the sampled values fall inside or outside of the envelope, they are rendered using

different MIDA visualization settings (Section 3.3.6). The colors of the previous peeling

pass and the previous ray casting pass are blended with the current ray casting results to

achieve the correct visual effect. The positions of the rays intersecting the peeled surface

from step 3 are kept in a separate buffer for future use.

5. Steps 3 and 4 are repeated until the envelope peeling stage reports 0 newly chosen

fragments.

Several things are also considered during execution of the aforementioned sequence of steps:

71

 To distinguish between the parts of the volume that fall inside and outside of the

envelope, the information about polygon face orientation is used. This means that any ray

sampled values that fall between a front facing and a back facing fragment are considered

to be inside of the envelope; otherwise – outside.

 Since ray positions are properly kept and initialized between separate MIDA ray casting

stages no additional overhead is put on the GPU in terms of computational workload

associated with ray casting. There is, however, overhead associated with each stage’s

shader code initialization and execution as well as with an overdraw effect resulting from

the DP algorithm itself (i.e. the full geometry of the scene has to be drawn and tested in

each polygon peeling pass).

 The geometry corresponding to the envelope is tagged on a vertex attribute level by a

special key, thus allowing shaders to distinguish between the regular polygon-based

geometry present in the scene and the envelope geometry. This in turn allows combining

visualization of any number of polygon-based objects in the scene, that properly intersect

and are correctly blended with volumetric and envelope features.

 Extreme cases where the envelope geometry crosses the boundaries of the specified

metaball grid (Section 3.3.6) and thus no longer forms a closed surface are considered

and handled correctly
26

.

26
 In general in the current implementation an envelope does not have to be a closed surface.

72

3.3.6 Envelope Definition with GPU Accelerated Metaballs

The envisioned 3D painting metaphor necessitated defining an envelope in such a way as to

allow for its growing and editing in a manner similar to placing brush strokes. A metaball

representation of the envelope was chosen since it allows for an implicit surface definition and

easy creation of flowing and blending shapes, as well as for editing of the envelope by using

metaballs with negative radii. In its general form, a metaball is defined by a function in n-

dimensions [7]. For a Euclidian 3D space, a common representation of a regular quadratic

metaball can be expressed as:

(3.5)

where are the coordinates of the metaball’s center. However, due to the floating point

division operation this representation is computationally expensive and thus approximate

polynomial functions are typically used.

For the purposes of this thesis two types of metaballs are used:

 A regular quadratic metaball, representing a spherical brush stroke, with a field falloff

function defined by a six’ degree Wyvill polynomial [66] as:

(3.6)

where is the distance from the current location in space to the metaball’s center, and

is the metaball’s radius. Wyvill’s function was primarily chosen because of its visually

pleasing metaball blending results.

73

 A superquadratic metaball, that is used to define shapes used primarily in surface

painting/peeling operations:

(3.7)

where is the distance from the metaball’s center to the current point in space,

 specifies the size of the metaball, and and are the exponents defining the

shape of the superquadratic metaball.

Within the implementation each metaball is described by a set of parameters, such as position,

radius, color, a negative flag (in case the metaball emits a negative field) and a superquadratic

flag. If a metaball is superquadratic, then additional parameters are specified, including scale

factors along X, Y and Z axes, X, Y and Z exponents, and a rotation matrix, that specifies the

orientation of the metaball’s Z axis in space. These parameters are used in the process of

constructing an isosurface [67] that represents a combined field effect of all metaballs present in

the scene.

A common approach used to construct an isosurface is based on the idea of subdividing a volume

space containing all metaballs into a regular grid of volumetric cells or voxels. The size and the

resolution of the grid depend on the desired precision of the final isosurface approximation. The

values of each metaball’s field function are then evaluated for every vertex of the voxel grid. The

resulting function values are added and stored and the vertex locations, thus representing a

combined field effect of all metaballs at every vertex of the grid.

74

The process of defining an isosurface is inherently connected to a threshold value. An isosurface

can be defined as a surface that consists of only points with the chosen constant threshold value.

Once the isosurface threshold value is specified and the voxel grid containing the combined

metaball field effect values is calculated, the isosurface can be approximated by a polygonal

mesh representation using one of the well-known isosurface generation algorithms, such as

Marching Cubes [68] or Marching Tetrahedrons [69]. These methods work by stepping or

marching through the values of the combined field effect at each vertex of the voxel grid and

comparing them to the chosen isosurface threshold value. If the currently considered voxel

contains the specified threshold value (i.e. one or more corners of the voxel’s cube have the field

value that is greater or equal to the threshold value and one or more corners have the field value

that is smaller or equal to the threshold value) then, depending on the particular configuration of

the corners containing the value, the polygons needed to represent the corresponding part of the

isosurface that passes through the voxel are generated. As the algorithm proceeds through the

voxels of the grid the individual polygons are fused into the resulting polygonal mesh.

To provide for interactive frame-rates a GPU accelerated version of the marching cubes

algorithm has been implemented as a part of this thesis. The implementation utilizes a massively

parallel architecture of modern day GPUs and employs a two-stage approach to achieve optimum

performance.

Stage 1: A grid of the user specified dimensions and resolution is generated (64x64x64 grid was

used throughout all the tests and the user study). OpenGL vertex shader programs are then

executed in parallel, each one processing a single vertex in a grid to provide for the maximum

level of parallelism. For each vertex all of the specified metaballs are evaluated and the

75

combined field effect value, the surface normal direction and the color are calculated. The results

are written into a separate array that will be used as an input to the next stage.

Stage 2: In this stage instead of vertices every shader program is handling a cube combined of 8

previously computed vertices and their attributes. Depending on whether the cube is intersected

by the isosurface, appropriate triangles are emitted by the OpenGL geometry shader. For every

emitted triangle the normal and the vertex color values are interpolated using the information

calculated in stage 1.

It should be noted that the configuration of the envelope and thus the combined field effect of all

the metaballs present in the scene are changed only when the user actively explores the volume

by editing the envelope’s geometry. In all other cases it would be wasteful to reconstruct the

isosurface for every newly generated frame (e.g. in the cases when the scene is merely being

rotated or zoomed, without the envelope actually being changed). Therefore geometry generated

by the aforementioned two-stage approach is captured in a dynamically allocated vertex array

buffer through an operation known as Transform-Feedback [9]. Later this vertex array could be

reused any number of times to render the envelope without having to calculate its underlying

geometry.

76

3.3.7 Surface Painting Mode Implementation

The surface painting mode allows painting on the surface of a volumetric object by following its

shape. To provide this functionality the isosurface of the volumetric object is generated. The

generation of the isosurface is performed by employing the same MIDA ray casting algorithm,

with the only distinction being that the process of evaluating the samples along the ray’s path is

stopped as soon as the first non-transparent voxel is encountered. At this point the ray’s position

and the object’s normal value are stored in two separate 2D buffers that will be later used to

guide the surface painting process. Since each pair of values in the two buffers corresponds to a

certain point on the screen plane, by moving the mouse cursor to the desired location on the

screen the user can specify which pair of values from the two buffers will be used to override the

current brush tip’s (and hence the corresponding metaball’s) depth and, in the case of a

superquadratic metaball, orientation (the direction of the normal at the current position is used to

calculate the rotation matrix of the superquadratic metaball).

One thing that has to be considered when it comes to superquadratic metaballs is that, due to the

nature of volumetric datasets, the obtained 2D buffer or map containing the normal values can be

quite noisy. This in turn can result in unpleasant abrupt changes in the orientation of a

superquadratic metaball as it glides along the surface. To combat this problem two techniques

are used:

 First, a 5 step isosurface refinement routine is used inside the isosurface generation

shader program. It finds a finer matching isosurface by subdividing the current ray

stepping size into increasingly smaller values and probing the volume space in both

77

directions from the current position along the ray. This produces not only a smoother

isosurface but also a more uniformly distributed map of normal values.

 To further reduce the noise a simple convolution operation with a Gaussian blurring

kernel [70] is applied to the normal map.

In a general sense, a convolution is a mathematical operation that combines two different

functions and produces a third function that usually represents a modified version of one of the

initial functions. In applications involving 2D images, a convolution is often used for filtering

and can be defined as an operation in which a final pixel’s RGBA values are a result of a

weighting operation on neighboring pixel values. Typically it is represented by a square matrix

that defines weights assigned to each one of the neighboring pixels. This matrix is called a

convolution kernel and depending on its size and coefficients allows achieving various visual

effects, such as blurring, edge detection, embossing, etc.

One of the most popular filtering kernels is the Gaussian kernel that can be described by the

following function:

(3.8)

where is a parameter that controls the kernel’s width or area of effect.

When applied in the context of 2D images a Gaussian function is both separable and radially

symmetric. This in turn means that instead of computing the pixel’s value by evaluating all of its

neighboring pixels in accordance with the size of the kernel (i.e. a kernel of size 5x5 will require

25 pixel value lookup operations) it is possible to achieve the same visual effect by dividing the

78

operation into two separate passes. In the first pass a 1D kernel is used to blur the image in either

a horizontal or a vertical direction. In the second pass the same 1D kernel is used to blur the

image in the remaining direction (against the original 5x5 Gaussian kernel the use of two 1D

kernels of sizes 1x5 and 5x1 will result in 15 less pixel value lookup operations). The results of

this two stage approach can be observed in Figure 55.

(a) (b) (c)

Figure 55: (a) A normal map without filtering applied. (b) A normal map with the 1x9 horizontal

Gaussian kernel applied. (c) A normal map with the 9x1 vertical Gaussian kernel applied.

It should be noted that a traditional full-image Gaussian filter would produce erroneous filtered

normal values in the areas corresponding to the edges of the projected volumetric shape (by

weighting the neighbouring values that correspond to the empty space in the scene). Hence an

edge-preserving variation of the filtering technique is used, that takes into account only the

pixels of the normal map that fall inside of the projected volumetric shape.

79

Chapter 4: Evaluation and Results

The primary goal of this thesis was to provide an alternative approach to volumetric dataset

exploration that would combine qualities such as a fast learning curve, intuitiveness, ease of

control and flexibility
27

. A user study (Section 4.2) was conducted in order to evaluate the first

three qualities. A series of experiments presented in Section 4.1 demonstrates the flexibility of

the proposed approach by generating various context-preserving visualizations of several

volumetric datasets. In addition, considering the current state of maturity of similar products in

the industry, the ability to provide visually appealing and contextually meaningful visualizations

at interactive frame-rates throughout the whole interaction and exploration user experience was a

given. Section 4.3 is dedicated to the performance evaluation of the system under different

visualization conditions. Finally, designing and implementing a future-proof visualization model

should consider a matter of extensibility
28

 as well. Section 4.4 demonstrates the extensibility

potential of the proposed approach by integrating two additional visualization modes into the

system.

4.1 Exploration Flexibility

This section highlights the flexibility of the proposed approach in terms of the types of

exploration tasks that can be performed. It presents a number of examples with each one

focusing on exploring a given volumetric dataset while trying to achieve the desired contextual

view by exposing certain features of interest. The painting modes and techniques as well as the

relevant GUI controls used to achieve each of the desired contextual views are also covered.

27
 Flexibility here means providing several ways of visualizing features of interest, i.e. ROIs.

28
 Extensibility here means the ability to extend the visualization capabilities of the system by adding alternative

visualization modes.

80

4.1.1 3D Painting Mode

The 3D painting mode allows exposing the features of interest in a volumetric dataset by

enclosing them in a 3D envelope. In its turn the operation of exposing can be performed in two

distinct ways that are commonly recognized in the field of VR.

4.1.1.1 Context-Preserving Exploration

One of the most common tasks in the field of VR in general and in the medical VR in particular

is to provide a contextual representation of the data by displaying the features of interest in a

distinctly different way from the surrounding (i.e. contextual) parts of the volume. This

subsection demonstrates the flexibility of the proposed 3D painting approach by achieving a

number of contextual data views. These contextual views correspond to volumetric data

exploration tasks, typically encountered in the medical field, which are centered around the

process of revealing various hard and soft tissues in the context of the surrounding hard and soft

tissues (Figure 56). Both free-hand and surface painting modes were used to achieve the visual

results presented in Figure 56.

For example, in Figure 56(a) the free-hand painting technique was used to paint a 3D envelope in

the plane that separated the volume space approximately into two equal parts. Then the MIDA

range sliders for both the parts of the head inside and outside of the envelope were used to reveal

the bone and tendons, and the skin layer respectively. Finally, the base colors were adjusted to

achieve a more realistic look.

In the case of the hand screenshot (Figure 56(b)) the surface painting technique with a flattened

brush tip was used to roughly isolate the skin layer from the rest of the dataset’s features. The

MIDA sliders corresponding to the parts of the volume enclosed in the envelope were adjusted to

81

exclude any values (i.e. some of the blood vessels and muscle tissue close to the skin layer were

also enclosed by the envelope, and thus had to be filtered out) except those corresponding to the

skin layer. Since the envelope only enclosed the parts close to the skin layer, adjusting the MIDA

sliders corresponding to the parts of the volume outside of the envelope to reveal the bones was a

straightforward task.

To produce the third screenshot (Figure 56(c)) containing the image of two feet (one showing

only the bones and the other the bones and the muscles), first the surface painting mode with a

spherical brush tip was used to roughly isolate one foot from the other, then the free-hand

painting mode was employed to tweak the envelope’s shape to achieve the exact desired

enclosure of the features (i.e. to provide a clean separation of the two feet). Finally, the MIDA

sliders and the base colors corresponding to the parts of the volume inside and outside of the

envelope were adjusted to produce the desired contextual view.

(a) (b) (c)

Figure 56: The results of visualizing different volumetric datasets ((a) a head , (b) a palm and (c)

two feet) while providing the desired level of contextual information.

82

4.1.1.2 Carving

Another commonly encountered type of 3D exploration task exposes the features of interest by

completely removing the occluding parts of the volume. This type of interaction with a volume is

often referred to as carving (or peeling when applied in the context of a surface), and is

commonly used in cases when the user wants to examine the outline or shape of the structures

inside the volume. Due to the fact that MIDA visualization works with a settable range of

visualized values, carving can be easily achieved by specifying an empty range (i.e. a range in

which the minimum and maximum visualized values are the same). This subsection

demonstrates the flexibility of the proposed approach by performing a series of carving/peeling

tasks. The rest of the exploration process remains exactly the same as in the case of the context-

preserving exploration and all of the aforementioned painting techniques can be applied (Figure

57).

In Figure 57(a) a part of a volumetric piggybank dataset was carved away using the free-hand

painting mode.

The carving of the head in Figure 57(b) was performed by free-hand painting a 3D envelope in

the plane roughly aligned with the profile of the head (much like the case presented in Figure

56(b)).

To achieve the contextual view shown in Figure 57(c) the surface painting mode with a flattened

brush tip with a low height value (so that the skull, but not the brain underneath, could be peeled

away) was used.

83

In the three examples above, the MIDA sliders for the parts of the volume enclosed by the

envelope were adjusted to set the visible sub-range of volume values to 0.

(a) (b) (c)

Figure 57: Carving and peeling are used to expose internal features and to remove the occluding

parts in volumetric datasets.

4.1.2 2D Painting Mode

Often in the presence of fuzzy data with a low level of intensity value variability (such as MRI

scans of various soft tissues, e.g. a soft part of a fruit, brain matter or various small structures that

are simply beyond a scanner’s resolution ability) it is difficult to isolate features of interest while

operating in a 3D space. This is due to the fact that fuzzy data doesn’t have a clearly defined

surface and suffers heavily from partial volume effects
29

. To visualize such data, techniques that

provide semi-translucent spatial representations of the data are often used. This in turn can lead

to ambiguities while interpreting the results of the visualized information as features that are

29
 In other words it is difficult to tell where one type of tissue or matter ends and another begins.

84

closer to the viewer clash with the ones that are further away. In this case the 2D painting mode

can provide additional cues that aid in the understanding of spatial relationships and internal

structure of the features of interest. By painting an arbitrarily shaped 2D window on the screen

the user can rotate and move the target object and adjust the visualization parameters in order to

obtain the sought after information.

As an example of such a scenario can be demonstrated using an MRI scan of an orange. The goal

is to collect information about the internal structure of the pulp, its shape and spatial relationship

to the rind. The results of the experiment illustrating this scenario are shown in Figure 58.

(a) (b) (c)

Figure 58: (a) An orange visualized without an envelope applied. (b) A 3D envelope is painted

enclosing a part of the orange. (c) A 2D envelope is used to see all the way through the orange to

better reveal internal structures.

Note that the 2D painting mode is also useful when the user doesn’t want to deal with the depth

of the painted envelope and instead wants to apply the visual effect inside of the envelope to all

the structures in the scene regardless of their distance to the viewing point.

85

4.2 User Study

A user study was conducted in order to evaluate how intuitive and easy to learn and control the

proposed painting metaphor and its implementation were.

Ten male and one female subject participated in the study. Ten of the subjects were Ryerson

undergraduate students and one subject was a Ryerson MSc graduate student. All of the

participants were full-time students of either the department of computer science or engineering.

All subjects were first-time users of the implemented exploration technique and none had any

previous experience with any medical or VR software. Approximately half however did have

limited experience with various 3D modelling programs (i.e. Blender, Maya, etc.). In order to

better gauge the level of participants’ proficiency performing navigational tasks in virtual 3D

environments, they were also asked to state the approximate number of Hours per Week (HPW)

spent using a mouse and playing video games, with the average numbers coming to 25.5HPW

and 11.5HPW respectively.

The participants were asked to use the implemented software to perform several trial tasks. The

goal of each trial was to achieve an approximate visual match to a pre-rendered image (Figure

59). A total of nine trials, each based on a different dataset, were used. The trials were further

broken down into 3 groups: three 2D painting trials, three 3D volume carving trials and three 3D

context-preserving trials. In the course of the trials from both the 3D carving and 3D context-

preserving groups the users had to use both the free-hand and the surface painting modes. Before

each set of trials each participant was given instructions using a separate demonstration dataset

and was also given time to play around with the software to familiarize themselves with the

visualization controls and the painting mechanism. The time for each trial was recorded for

86

statistical purposes, thought the participants were informed that achieving a visual match in the

shortest possible time was not an objective. The average measured trial completion time was 1

minute. Upon completion of all trials the participants were asked to fill out the questionnaire and

indicate their level of agreement or disagreement with each statement using a 7-point Likert

scale
30

. The results of the questionnaire are shown in Figure 60
31

.

(a) (b) (c)

Figure 59: Examples of pre-rendered images from each trial group: (a) an example of a 2D

painting trial, (b) an example of a 3D carving trial and (c) an example of 3D context-preserving

trial.

30
 A Likert scale is a psychometric scale, where a respondent specifies their level of agreement or disagreement to a

statement on a symmetric agree-disagree scale.
31

 The white bars correspond to the minimum and maximum marks given by the participants for each question.

87

Figure 60: The results of the user study questionnaire based on a 7-point Likert scale.

As can be seen from the answers the results were quite positive. In all categories but one the

mean average was 6.0 or more. Also as can be seen by the spread of the marks for each question,

there was not much variability in the given answers. The only question that received a mean

below 6.0 was related to the sliders that control the visible range of values under MIDA

visualization mode. Perhaps this aspect of the interaction process can be improved by providing

1 2 3 4 5 6 7

1. Was the 3D free-hand painting technique
easy to learn?

2. Was the 3D free-hand painting technique
easy to control?

3. Was the 3D surface painting technique
easy to learn?

4. Was the 3D surface painting technique
easy to control?

5. Was the 2D screen space painting
technique easy to learn?

6. Was the 2D screen space painting
technique easy to control?

7. Were the visible range sliders easy to
understand?

8. Were the visible range sliders easy to
control?

9. Was the flattened brush tip useful?

10. Was it easy to achieve desired/expected
visual results?

11. Was it easy to achieve visual matches for
given trial tasks?

12. Did you find the 3D interaction process
and controls intuitive?

13. Did you like the “Painting” metaphor
overall?

88

a single more user-friendly custom range control (instead of the two separate sliders), that would

allow users to achieve the same visual results but with a fewer number of adjustments. Another

common comment from participants was that even though gauging the depth of the brush tip in

relation to volumetric structures in the scene was usually not a problem, under certain conditions

it still could be somewhat confusing and thus they would prefer to have additional depth cues.

This is a known issue in the current implementation and possible ways of addressing it will be

discussed in Chapter 5:.

Overall, the results of the user study show that all of the participants liked the proposed

visualization and exploration model and found it to be both intuitive and quite easy to learn and

control.

4.3 Performance

As was stated previously, one of the characteristics of a satisfactory exploration experience can

be expressed in terms of the fluidity of a user interaction with a virtual scene. That means that

rendering frame-rates for any given visualized dataset should be maintained at interactive levels

as not to appear choppy or unbearably slow, regardless of the types of operations and

visualization modes. A number of 30 FPS was chosen as an acceptable target frame-rate. A total

of four different 16 bit
32

 per voxel datasets of varying sizes were chosen to measure the

performance both with and without 2D and 3D envelopes. Different combination of rendering

modes for cases with a defined envelope including MIDA only, MIDA and 1D TF, MIDA and

32
 Here 16 bit refers to the number of bits used to represent voxel intensity values in a dataset.

89

2D TF, and 1D and 2TF were also benchmarked. The results of the measurements expressed in

average FPS for all combinations are presented in Figure 61.

It should be noted that measuring performance for different volumetric datasets, even if they

have the same physical size and are visualized using the same visualization parameters, is not a

straightforward process and can produce quite different results in terms of performance. This is

due to the fact that the complexity of computations is heavily dependent on the nature of the data

being processed and such aspects of the visualization process as color mapping, gradient

evaluation, early ray termination, the number of values sampled along a ray, volume and lighting

model interaction and many others can heavily influence the results. Thus to minimize the

possible effects of the aforementioned conditions all of the tests were performed using the same

resolution of the rendering window (which was left at the ImageVis3D default value of 400x400

pixels) and the same default visualization parameters for all the tested rendering modes (i.e.

MIDA slider values were left in their default positions). Also, a 3D envelope (for the tests where

the envelope was present) covering approximately half of the volume of a dataset was used.

90

Figure 61: Average FPS measured under different visualization conditions.

As can be seen from the results, for very large datasets (i.e. greater than 200MB), under certain

combinations of visualization techniques, the average frame-rate can drop quite considerably

below the target value of 30 FPS. This is both due to the overhead of the depth peeling algorithm

and the heavy computational load VR is putting on even a powerful GPU
33

. In the future these

figures will be considerably improved by employing various optimization techniques (Section

5.2), such as Per-Pixel Linked List [71] for order-independent transparency rendering, Empty

Space Skipping (ESS) [72], Frame Temporal Coherence [73] and others. Currently, if the

rendering frame-rate is considered to be inadequate by the user, two options for increasing it are

available (albeit at a price of losing some of the visual quality in the resulting images).

33
 All of the tests were performed using nVidia 480 GTX video card.

80

65 65 61 62

143

28 25 24
15 16

40
48

36 37
32 29

57

78

50
40

35 35

91

0

20

40

60

80

100

120

140

No Envelope 3D Envelope
with MIDA Only

3D Envelope
with

MIDA+1DTF

3D Envelope
with

MIDA+2DTF

3D Envelope
with

1DTF+2DTF

2D Envelope
with MIDA Only

A
ve

ra
ge

 F
P

S
Dataset

Hand: 244x124x257 Size: 15.5MB Head: 512x512x460 Size: 241MB

Feet: 512x512x250 Size: 131MB Torso: 256x256x296 Size: 38.8MB

91

The user can adjust the sampling rate of a volumetric dataset, forcing the VR algorithm to skip

some of the data during the ray traversal process. This can be done directly from within the

ImageVis3D user interface allowing the user to choose the desired level of compromise between

quality and performance. The visual results with respective frame-rates for different levels of the

sampling rate are shown in Figure 62.

Figure 62: A head dataset visualized at (from left to right) 100%, 65% and 30% sampling rate.

Another available option allows the user to either force the desired LOD for the visualized

volumetric dataset, or let the system choose it automatically by specifying the minimum allowed

frame-rate. In the latter case the system will adjust the LOD on the fly by reducing the

dimensions of the rendered dataset by half until the target frame-rate is reached. Examples of

using differ LODs with corresponding frame-rates are presented in Figure 63.

92

Figure 63: A head dataset visualized at different LODs (the highest on the left to the lowest on

the right).

4.4 Extensibility

Despite its flexibility the MIDA visualization technique also has its limitations. For instance in

datasets where feature separation based on intensity value ranges alone is not possible (e.g. due

to similarity of intensities of different materials measured during a scanning process) MIDA

produces poor visual results. Also, using just one base color for feature coloration can be

somewhat restrictive. Realizing that, the implemented visualization and envelope definition

techniques have been designed in such a way as to allow for seamless and straightforward

integration of other volume visualization techniques (such as the ones described in Sections 2.1

and 2.2).

To demonstrate the extensibility potential of the proposed approach, two other VR techniques,

1D and 2D TF rendering modes, already implemented in ImageVis3D have been integrated into

the code. The total time of the integration was about 3 hours. With this newly added functionality

93

the user is now able to select MIDA, 1D TF or 2D TF as the rendering mode for parts of the

volume both inside and outside of the envelope. Any combination of rendering modes is possible

and the original functionality, including the 3D surface painting, is fully preserved. Figure 64

shows examples of combining different rendering modes as well as using both the 2D screen

painting and the 3D surface and free-hand painting modes. The screenshot in Figure 64(a)

depicts using the 2D painting mode with the parts of the volume inside of the envelope rendered

using a 1D TF and the parts outside of the envelope using a 2D TF. The screenshot in Figure

64(b) uses results of the 1D TF rendering process as the basis for the 3D surface painting to

define the 3D envelope enclosing features rendered using the MIDA technique. The last

screenshot in Figure 64(c) shows a combination of the MIDA and 2D TF visualization modes

and the use of the 3D free-hand painting technique.

(a) (b) (c)

Figure 64: (a) The 2D painting mode with 1D and 2D TF rendering modes. (a) An example of

the 3D surface painting over the surface defined by a 1D TF. (c) A combination of MIDA and

2D VR techniques using a free-hand painted 3D envelope.

94

Chapter 5: Conclusion and Future work

5.1 Conclusion

This thesis presented an implementation of an alternative context-preserving volume image

exploration model. The image exploration is realized by an interaction model based on a novel

painting metaphor, where a user encloses the volumetric features of interest by painting a 2D or

3D envelope directly in the space of a virtual scene. Combined with the MIDA volumetric

visualization mode, the envelopes allow the user to quickly achieve the desired context-

preserving views by visualizing the envelope enclosed features in a distinctly different way from

the rest of the volume. Furthermore, the ability to adjust the range of visible volume intensity

values when using the MIDA visualization mode provides additional volume exploration

flexibility by allowing the user to easily filter out the occluding volumetric features, as well as

perform such operations as carving and peeling.

The proposed interaction model was implemented in the form of extensions to the existing

volume rendering system ImageVis3D. The extensions were designed and implemented in such a

way as to blend seamlessly with the rest of the ImageVis3D framework, provide easy

extensibility in terms of possible usage of other rendering modes and support interactive frame-

rates even for very large volumetric datasets. The results and contributions of this thesis have

been evaluated in terms of flexibility of possible modes of volume exploration, performance and

extensibility of visualization modes by carrying out a series of experiments presented in Chapter

5:. Finally, the results of the conducted user study validate such claimed qualities of the proposed

approach as the fast learning curve, intuitiveness and ease of control.

95

5.2 Future work

Following one of the initially set objectives, the volume exploration paradigm and the painting

metaphor implemented as a part of this thesis are quite generic. This allows taking the future

development of this project in a number of directions.

One of the very popular and rapidly evolving areas in the field of VR, that has not been covered

in this thesis, is Volume Segmentation [74]. This area is somewhat related to volume exploration

in a sense that segmenting and labeling volumetric features allows for a much wider choice of

ways of visualizing them. One popular approach to performing a user guided semi-automatic

segmentation process is based on the idea of Seed Growing and Edge Detection [74]. There are

quite a few techniques and mathematical models that try to address this issue, but, despite all the

research, most of them still (especially when applied to noisy datasets) suffer from a problem

known as leakage, where a segmentation process spills outside of the shape that it is meant to

detect. One of the solutions to this problem is to restrict the segmentation process by enclosing it

in some sort of a user adjustable envelope. Coincidentally, this is exactly what the proposed

approach of enveloping the features of interest is designed to do, and combined with one of the

segmentation techniques it could prove to be a useful constraining mechanism.

Another possible direction for future work is to concentrate on evolving the painting interaction

model and envelope editing capabilities. Unlike parametric models that allow the user to define

control points directly on the surface of a described 3D parametric model, implicit models are

lacking this characteristic and are thus difficult to use when precise control over the shape of the

modelled surface is required. This is however changing with the introduction of some novel

techniques [5] that allow controlling the geometry of implicit surfaces in a manner similar to

96

their parametric counterparts. Integrating such functionality into the project would allow it to

become a much more precise and flexible exploration tool.

Furthermore, a few ways of improving and optimizing the current implementation can also be

explored.

Firstly, as was already mentioned, additional depth cues could be used to improve spatial

comprehension of the relative position of the envelope and volumetric features. This could be

achieved in several ways, including, but not limited to, using optically correct self-casting

shadows for all volumetric and polygonal objects present in the scene, providing additional

views of the objects in the scene from a number of different viewpoints, or introducing some sort

of a projection plane directly into the space of a 3D scene onto which the outlines of the objects

in the scene will be cast.

Secondly, the rendering frame-rates could be improved considerably by employing various

optimization techniques, such as ESS [72], temporal coherence [73], data compression and on-

demand streaming [75], etc. The applicability of each of these techniques however has to be

carefully considered and evaluated, as reconciling and marrying different algorithms in the same

visualization pipeline can pose non-trivial problems. In fact, due to exactly these reasons, an ESS

algorithm that had been implemented at the early stages of the project and provided on average a

40% boost in frame-rates, had to be “put on ice”, as, in view of the project deadlines, it was not

possible to integrate it properly with the rest of the system.

Finally, as new research is being done and new work is being published, some of the techniques

presented in this thesis could be improved or replaced entirely by other more efficient versions.

97

For instance Generalized Metaballs [76] could be used to extend the project’s implicit surface

definition capabilities. As a bonus they provide more freedom in terms of choosing a suitable

field function. An order independent FtBDP algorithm used in this thesis could be replaced by a

recently published more efficient single-pass Per-Pixel Linked Lists technique [71]. This in turn

will allow implementing a single-pass ray-casting algorithm with simultaneous peeling and

blending, which should result in the frame-rates that are almost identical regardless of whether a

3D envelope is present and not. In addition, if implemented, this approach will open doors for

various other polygon-based and volumetric rendering techniques, as all of the information (i.e.

fragment coordinated, normal directions, color values, etc.) about all objects in the scene will be

readily available through a single linked-list structure.

98

REFERENCES

[1] Opitz, A. (2009). Classification and Visualization of Volume Data using Clustering.

Master Thesis, Technischen Universität Wien, Wien.

[2] ImageVis3D. (NIH/NCRR Center for Integrative Biomedical Computing). Retrieved

November 24, 2011, from http://www.sci.utah.edu/cibc/software/41-imagevis3d.html

[3] Hayward, K. Volume Rendering 102: Transfer Functions. (Kyle Hayward). Graphics

Runner Blog. Retrieved November 24, 2011, from

http://graphicsrunner.blogspot.com/2009/01/volume-rendering-102-transfer-

functions.html

[4] The community of Slicer developers. (2011). 3DSlicer (Version 4.0): Free open source

software under BSD license. Retrieved November 24, 2011, from http://www.slicer.org/

[5] Bruckner, S., & Gröller, M. E. (2009). Instant volume visualization using maximum

intensity difference accumulation. Computer Graphics Forum, 28(3), 775-782.

[6] Hadwiger, M., Ljung, P., Salama, C. R., & Ropinski, T. (2008). Advanced illumination

techniques for GPU volume raycasting. In proceedings of ACM SIGGRAPH Asia 2008

courses, Singapore, 1-166.

[7] Bloomenthal, J., Bajaj, C., Blinn, J., Cani-Gascuel, M.-P., Rockwood, A., Wyvill, B., et

al. (August 15, 1997). An Introduction to Implicit Surfaces (1 ed.): Morgan Kaufmann.

[8] Monclus, E., Dıaz, J., Navazo, I., & Vazquez, P.-P. (2009). The virtual magic lantern: an

interaction metaphor for enhanced medical data inspection. In proceedings of the 16th

ACM Symposium on Virtual Reality Software and Technology, Kyoto, Japan, 119-122.

[9] Khronos Group. (2011). OpenGL (Version 4.2): Khronos Group. Retrieved November

24, 2011, from http://www.opengl.org/

[10] Kniss, J., Kindlmann, G., & Hansen, C. (2002). Multidimensional transfer functions for

interactive volume rendering. IEEE Transactions on Visualization and Computer

Graphics, 8(3), 270-285.

http://www.sci.utah.edu/cibc/software/41-imagevis3d.html
http://graphicsrunner.blogspot.com/2009/01/volume-rendering-102-transfer-functions.html
http://graphicsrunner.blogspot.com/2009/01/volume-rendering-102-transfer-functions.html
http://www.slicer.org/
http://www.opengl.org/

99

[11] Zin, Y. C., Zheng, W., Chee, M. W. L., & Zagorodnov, V. (2009). Evaluation of

performance metrics for bias field correction in MR brain images. Journal of Magnetic

Resonance Imaging, 29(6), 1271-1279.

[12] Lum, E. B., & Ma, K. L. (2004). Lighting transfer functions using gradient aligned

sampling. In proceedings of the 15th IEEE Conference on Visualization 2004 (VIS'04),

Austin, TX, USA, 289-296.

[13] Sereda, P., Bartroli, A. V., Serlie, I. W. O., & Gerritsen, F. A. (2006). Visualization of

boundaries in volumetric data sets using LH histograms. IEEE Transactions on

Visualization and Computer Graphics, 12(2), 208-218.

[14] University of Münster and Linköping University. (2011). Voreen (Version 2.6.1):

University of Münster and Linköping University. Retrieved November 24, 2011, from

http://www.voreen.org/

[15] Pixmeo. OsiriX (Version 4.0): Pixmeo. Retrieved November 24, 2011, from

http://www.osirix-viewer.com/

[16] Kindlmann, G., Whitaker, R., Tasdizen, T., & Moller, T. (2003). Curvature-based

transfer functions for direct volume rendering: methods and applications. In proceedings

of the 14th IEEE Conference on Visualization 2003 (VIS'03), Seattle, WA, USA, 513-

520.

[17] Prassni, J. S., Ropinski, T., Mensmann, J., & Hinrichs, K. (2010). Shape-based transfer

functions for volume visualization. In proceedings of Pacific Visualization Symposium

2010 (PacificVis '10), IEEE, Taipei, 9-16.

[18] Sato, Y., Westin, C., Bhalerao, A., Nakajima, S., Shiraga, N., Tamura, S., et al. (2000).

Tissue classification based on 3D local intensity structures for volume rendering. IEEE

Transactions on Visualization and Computer Graphics, 6(2), 160-180.

[19] Correa, C., & Kwan-Liu, M. (2008). Size-based Transfer Functions: A New Volume

Exploration Technique. IEEE Transactions on Visualization and Computer Graphics,

14(6), 1380-1387.

http://www.voreen.org/
http://www.osirix-viewer.com/

100

[20] Caban, J. J., & Rheingans, P. (2008). Texture-based Transfer Functions for Direct

Volume Rendering. IEEE Transactions on Visualization and Computer Graphics, 14(6),

1364-1371.

[21] Patel, D., Haidacher, M., Balabanian, J. P., & Groller, E. M. (2009). Moment curves. In

proceedings of Pacific Visualization Symposium 2009 (PacificVis '09), IEEE, Beijing,

201-208.

[22] Haidacher, M., Patel, D., Bruckner, S., Kanitsar, A., & Groller, M. E. (2010). Volume

visualization based on statistical transfer-function spaces. In proceedings of Pacific

Visualization Symposium 2010 (PacificVis '10), IEEE, Taipei, 17-24.

[23] Salama, C. R., Keller, M., & Kohlmann, P. (2006). High-Level User Interfaces for

Transfer Function Design with Semantics. IEEE Transactions on Visualization and

Computer Graphics, 12(5), 1021-1028.

[24] Haidacher, M., Bruckner, S., Kanitsar, A., & Gröller, M. E. (2008). Information-based

Transfer Functions for Multimodal Visualization. IEEE Transactions on Visualization

and Computer Graphics, 14(6), 1380-1387.

[25] Tzeng, F.-Y., & Ma, K.-L. (2004). A cluster-space visual interface for arbitrary

dimensional classification of volume data. In proceedings of Eurographics VGTC

Symposium on Visualization 2004 (VisSim '04), IEEE, Norköping, Sweden, 17–24.

[26] Sereda, P., Vilanova, A., & Gerritsen, F. A. (2006). Automating transfer function design

for volume rendering using hierarchical clustering of material boundaries. In

proceedings of Eurographics VGTC Symposium on Visualization 2006 (VisSim '06),

IEEE, Nicosia, Cyprus, 243–250.

[27] Heidrich, W., McCool, M., & Stevens, J. (1995, 29 Oct-3 Nov 1995). Interactive

maximum projection volume rendering. In proceedings of the 6th IEEE Conference on

Visualization 1995 (VIS '95), Atlanta, GA , USA, 11-18, 433.

[28] Sato, Y., Shiraga, N., Nakajima, S., Tamura, S., & Kikinis, R. (1998). Local maximum

intensity projection (LMIP): A new rendering method for vascular visualization. Journal

of Computer Assisted Tomography, 22(6), 912–917.

101

[29] Bruckner, S. (2006). Interactive illustrative volume visualization techniques for

exploration and communication. In proceedings of ACM SIGGRAPH 2006 Courses,

Boston, MA. USA, 6.

[30] Bruckner, S., & Gröller, M. E. (2007). Style Transfer Functions for Illustrative Volume

Rendering. Computer Graphics Forum, 26(3), 715-724.

[31] Diepstraten, J., Weiskopf, D., & Ertl, T. (2002). Transparency in Interactive Technical

Illustrations. Computer Graphics Forum, 21(3), 317-325.

[32] Bruckner, S., Grimm, S., Kanitsar, A., & Groller, M. E. (2006). Illustrative Context-

Preserving Exploration of Volume Data. IEEE Transactions on Visualization and

Computer Graphics, 12(6), 1559-1569.

[33] Bruckner, S., Rautek, P., Viola, I., Roberts, M., Sousa, M. C., & Gröller, M. E. (2010).

Hybrid Visibility Compositing and Masking for Illustrative Rendering. Computers &

Graphics, 34(4), 361-369.

[34] Wang, L., Zhao, Y., Mueller, K., & Kaufman, A. (2005, 23-28 Oct. 2005). The magic

volume lens: an interactive focus+context technique for volume rendering. In

proceedings of the 16th IEEE Conference on Visualization 2005 (VIS'05), Baltimore,

MD, USA, 367-374.

[35] Taerum, T., Sousa, M. C., Samavati, F. F., Chan, S., & Mitchell, J. R. (2006). Real-Time

Super Resolution Contextual Close-up of Clinical Volumetric Data. In proceedings of

EuroVis'06, Lisbon, Portugal, 347-354.

[36] Luo, Y. (2011). The Distance-based Focus+Context Models for Exploration of Large

Volumetric Medical Datasets. Computing in Science & Engineering, PP(99), 1-1.

[37] Bruckner, S., & Groller, M. E. (2006). Exploded Views for Volume Data. IEEE

Transactions on Visualization and Computer Graphics, 12(5), 1077-1084.

[38] Ruiz, M., Viola, I., Boada, I., Bruckner, S., Feixas, M., & Sbert, M. (2008). Similarity-

Based Exploded Views. In Andreas Butz, Brian Fisher, Antonio Krüger, Patrick Olivier

& Marc Christie (Eds.), Smart Graphics (Vol. 5166, pp. 154-165): Springer Berlin /

Heidelberg.

102

[39] Weiskopf, D., Engel, K., & Ertl, T. (2003). Interactive clipping techniques for texture-

based volume visualization and volume shading. IEEE Transactions on Visualization and

Computer Graphics, 9(3), 298-312.

[40] Bernhard, O. K.-V., Preim, B., & Littmann, A. (2004). Virtual Resection with a

Deformable Cutting Plane. In proceedings of Simulation und Visualisierung 2004

(SimVis'04), Magdeburg, Germany, 203-214.

[41] Bruckner, S., & Groller, M. E. (2005). VolumeShop: an interactive system for direct

volume illustration. In proceedings of the 16th IEEE Conference on Visualization 2005

(VIS'05), Baltimore, MD, USA, 671-678.

[42] Chen, H.-L. J., Samavati, F. F., & Sousa, M. C. (2008). GPU-based point radiation for

interactive volume sculpting and segmentation. The Visual Computer, 24(7), 689-698.

[43] McGuffin, M. J., Tancau, L., & Balakrishnan, R. (2003). Using deformations for

browsing volumetric data. In proceedings of the 14th IEEE Conference on Visualization

2003 (VIS'03), Seattle, WA, USA, 401-408.

[44] Correa, C. D., Silver, D., & Chen, M. (2006). Feature Aligned Volume Manipulation for

Illustration and Visualization. IEEE Transactions on Visualization and Computer

Graphics, 12(5), 1069-1076.

[45] Correa, C. D., Silver, D., & Min, C. (2007). Illustrative Deformation for Data

Exploration. IEEE Transactions on Visualization and Computer Graphics, 13(6), 1320-

1327.

[46] Correa, C. D., Silver, D., & Chen, M. (2010). Constrained illustrative volume

deformation. Computers and Graphics (Pergamon), 34(4), 370-377.

[47] Christie, M., Olivier, P., & Normand, J.-M. (2008). Camera Control in Computer

Graphics. Computer Graphics Forum, 27(8), 2197-2218.

[48] Bade, R., Ritter, F., & Preim, B. (2005). Usability comparison of mouse-based

interaction techniques for predictable 3d rotation. In proceedings of Smart Graphics

2005, Frauenwoerth Cloister, Germany, 138-150.

103

[49] Schmidt, R., Singh, K., & Balakrishnan, R. (2008). Sketching and composing widgets for

3D manipulation. Computer Graphics Forum, 27(2), 301-310.

[50] MeVis Medical Solutions AG and Fraunhofer MEVIS. (2011). MeVisLab (Version

2.2.1): MeVis Medical Solutions AG and Fraunhofer MEVIS. Retrieved November 24,

2011, from http://www.mevislab.de/

[51] The Institute of Computer Graphics and Algorithms. (2011). VolumeShop (Version 1.7):

The Institute of Computer Graphics and Algorithms. Retrieved November 24, 2011, from

http://www.cg.tuwien.ac.at/volumeshop/download/

[52] Scharsach, H., Hadwiger, M., Neubauer, A., Wolfsberger, S., & Bühler, K. (2006).

Perspective Isosurface and Direct Volume Rendering for Virtual Endoscopy

Applications. In proceedings of Eurographics VGTC Symposium on Visualization

(VisSim '06), IEEE, Nicosia, Cyprus, 315-322.

[53] Haigron, P., Bellemare, M. E., Acosta, O., Goksu, C., Kulik, C., Rioual, K., et al. (2004).

Depth-map-based scene analysis for active navigation in virtual angioscopy. IEEE

Transactions on Medical Imaging, 23(11), 1380-1390.

[54] Hong, L., Muraki, S., Kaufman, A., Bartz, D., & He, T. (1997). Virtual voyage:

Interactive navigation in the human colon. In proceedings of SIGGRAPH 1997 Los

Angeles, CA, USA, 27-34.

[55] Kruger, A., Kubisch, C., Strauss, G., & Preim, B. (2008). Sinus Endoscopy - Application

of Advanced GPU Volume Rendering for Virtual Endoscopy. IEEE Transactions on

Visualization and Computer Graphics, 14(6), 1491-1498.

[56] McClymont, J., Shuralyov, D., & Stuerzlinger, W. (2011). Comparison of 3D navigation

interfaces. In proceedings of IEEE International Conference on Virtual Environments

Human-Computer Interfaces and Measurement Systems 2011 (VECIMS'11), Ottawa,

ON, Canada, 7-12.

[57] Diepenbrock, S., Ropinski, T., & Hinrichs, K. (2011, 1-4 March 2011). Context-aware

volume navigation. In proceedings of Pacific Visualization Symposium 2011 (PacificVis

'11), IEEE, Hong Kong, China, 11-18.

http://www.mevislab.de/
http://www.cg.tuwien.ac.at/volumeshop/download/

104

[58] Visage Imaging. Amira (Version 5.4.1): Visage Imaging. Retrieved November 24, 2011,

from http://www.amira.com/

[59] Boost Community. Boost C++ Libraries (Version 1.48.0): Free open source software

under Boost license. Retrieved November 24, 2011, from http://www.boost.org/

[60] Nokia. Qt (Version 4.7.4): Nokia. Retrieved November 24, 2011, from

http://qt.nokia.com/products/

[61] Foley, J. D., Dam, A.V., Feiner S.K., Hughes J.F. (Ed.). (August 14, 1995). Computer

Graphics: Principles and Practice in C (2 ed.): Massachusetts: Addison-Wesley

Publishing Company.

[62] Levoy, M. (1988). Display of surfaces from volume data. IEEE Computer Graphics and

Applications, 8(3), 29-37.

[63] Çelebi, O. C. Scientific Visualization and 3D Volume Rendering (Volume Rendering

Tutorial). Retrieved November 24, 2011, from

http://www.celebisoftware.com/Tutorials/volume_rendering/Index.aspx

[64] Everitt, C. (2001). Interactive order-independent transparency (Technical Report):

NVIDIA Corporation.

[65] Bavoil, L., & Myers, K. (2008). Order Independent Transparency with Dual Depth

Peeling (Technical Report): NVIDIA Corporation.

[66] Wyvill, G., McPheeters, C., & Wyvill, B. (1986). Data structure for soft objects. The

Visual Computer, 2(4), 227-234.

[67] Blinn, J. F. (1982). Generalization of Algebraic Surface Drawing. Computer Graphics

(ACM), 16(3), 273.

[68] Lorensen, W. E., & Cline, H. E. (1987). MARCHING CUBES: A HIGH RESOLUTION

3D SURFACE CONSTRUCTION ALGORITHM. Computer Graphics (ACM), 21(4),

163-169.

[69] Chan, S. L., & Purisima, E. O. (1998). A new tetrahedral tesselation scheme for

isosurface generation. Computers and Graphics (Pergamon), 22(1), 83-90.

http://www.amira.com/
http://www.boost.org/
http://qt.nokia.com/products/
http://www.celebisoftware.com/Tutorials/volume_rendering/Index.aspx

105

[70] Nguyen, H. (September 12, 2007). GPU Gems 3 (1 ed.): Addison-Wesley Professional.

[71] Yang, J. C., Hensley, J., Grün, H., & Thibieroz, N. (2010). Real-time concurrent linked

list construction on the GPU. Computer Graphics Forum, 29(4), 1297-1304.

[72] Zou, H., Gao, X., & Lv, X. (2008). An accelerating algorithm for 3D texture volume

rendering with octree encoding. Journal of Xi'an Jiaotong University, 42(12), 1490-1494.

[73] Scherzer, D. (2009). Applications of temporal coherence in real-time rendering. PhD-

Thesis, Technischen Universität Wien, Wien.

[74] Pham, D. L., Xu, C., & Prince, J. L. (2000). Current Methods in Medical Image

Segmentation. Annual Review of Biomedical Engineering, 2(1), 315-337.

[75] Crassin, C., Neyret, F., Lefebvre, S., & Eisemann, E. (2009). GigaVoxels: Ray-Guided

Streaming for Efficient and Detailed Voxel Rendering. In proceedings of ACM

SIGGRAPH Symposium on Interactive 3D Graphics and Games 2009 (I3D'09), Boston,

MA, USA, 15-22.

[76] Jin, X., Li, Y., & Peng, Q. (2000). General constrained deformations based on

generalized metaballs. Computers and Graphics (Pergamon), 24(2), 219-231.

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2012

	Context-Preserving Volume Image Exploration Using A 3D Painting Metaphor
	Lev Faynshteyn
	Recommended Citation

