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ABSTRACT 

This thesis combines a 3D interaction model with a Maximum Intensity Difference Accumulation 

(MIDA) volume visualization algorithm to create a technique for exploring volumetric datasets. 

The interaction model is based on a 3D Painting metaphor where a user selects a Region of 

Interest (ROI) by “painting” a 3D envelope enclosing features of interest. The result is an 

exploration technique that is intuitive to use and easy to learn even for non-expert users. The 

painting based model and the MIDA algorithm also provide visualization flexibility by allowing 

for different combinations of volumetric exploration operations. In addition, the various 

algorithms comprising the exploration technique have been implemented to take full advantage 

of parallel computational capabilities of modern Graphics Processing Units (GPUs), thus 

providing real-time interaction and high-quality visualisation. Finally, the contributions of the 

thesis are validated by a series of experiments and a user study.  
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Chapter 1: Introduction 

The visualization of volumetric data is a rapidly evolving area in the field of computer graphics, 

especially in the context of medical applications. The advent of modern Graphics Processing 

Units (GPUs) along with the development of various computational and visualization techniques 

has resulted in previously unattainable levels of user interactivity and realism. Medical 

professionals can harness this power to explore and manipulate volumetric images in order to get 

a better understanding of the underlying data and processes, often in ways that would be 

impossible to replicate in the real world. 

Nevertheless, when it comes to providing the user with easily understandable and predictable 

ways of specifying how the data is to be visualized, there is still a lot of room for improvement. 

Traditionally this mapping from a scalar value field of a volumetric dataset to a visual field of 

pixel colors on a screen was and, in the vast majority of cases, still is specified by the user with 

Transfer Functions (TFs) (Figure 1). Despite the significant amount of research that has been 

done in this area [1], specifying a TF that achieves the desired visual effect still often remains a 

non-trivial task, even for expert users. 

This problem of finding a perfect TF to achieve the desired visualization can also be 

compounded by the necessity of having different areas of the volume visualized using different 

sets of parameters in order to preserve the visual context. This secondary goal presents a 

challenge in its own right as navigation in the 3D space of a volume and specification of 

different Regions of Interest (ROIs) in a 3D dataset is often a complex operation. Problems such 

as ROI depth specification and depth perception as well as volumetric feature separation are 

among the most prominent issues. The traditional approach to the ROI specification and feature 
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separation problems is to the use multiple 2D data views along with a variety of 2D ROI editing 

capabilities. The multiple 2D views, however, often complicate the user interaction model and 

make it difficult for the user to understand the spatial relationship between the various 2D and 

3D views (Figure 2). 

In an attempt to address the aforementioned challenges this thesis presents a prototype 

volumetric data visualization and exploration system, implemented as a series of extensions to an 

open-source Volume Rendering
1
 (VR) (Section 3.2) program called ImageVis3D [2]. The 

extensions add new visualisation modes and a new user interaction model that will be covered in 

detail in the following chapters. 

  
(a) (b) 

 

Figure 1: (a) A 1D TF specifying color and opacity
2
 values for the scull and skin and (b) the 

resulting volume image [3]. 

                                                 

1
 In computer graphics in general, rendering refers to the process of generating a 2D image from models in a virtual 

scene. In the case of the 3D computer graphics rendering is typically achieved by projecting 3D models in a scene 

onto a 2D surface of a screen. In its turn, volume rendering is a set of techniques used to generate 2D projections of 

discretely sampled 3D datasets. 
2
 In computer graphics opacity describes the level of a material’s impenetrability to light. 
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Figure 2: Using multiple 2D projections of the volume to aid in the process of navigation and 

ROI selection in 3DSlicer [4]. 

1.1 Contributions 

The primary goal of this thesis was to provide an alternative approach to volumetric dataset 

exploration that would combine qualities such as a fast learning curve, intuitiveness, ease of 

control and flexibility
3
. A user study (Section 4.2) was conducted in order to evaluate the first 

three qualities. A series of experiments presented in Section 4.1 demonstrates the flexibility of 

the proposed approach by generating various context-preserving visualizations of several 

volumetric datasets. The ability of the system to provide visually appealing and contextually 

meaningful visualizations at interactive frame-rates throughout the whole interaction and 

exploration user experience was also paid a lot of attention. Section 4.3 is dedicated to the 

performance evaluation of the system under different visualization conditions. Finally, designing 

                                                 

3
 Flexibility here means providing several ways of visualizing features of interest, i.e. ROIs. 
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and implementing a future-ready visualization model should consider the question of 

extensibility
4
 as well. Section 4.4 demonstrates the extensibility potential of the proposed 

approach by integrating two additional visualization modes into the system.  

To meet all of the aforementioned goals an interaction model based on a painting metaphor was 

conceived and implemented. The painting interaction model allows a user, with just a few brush 

strokes, to define an ROI by painting a 2D or 3D envelope in the space of a volumetric scene to 

achieve the desired visual effect and contextual representation of volumetric information. A 

number of algorithmic, visual and user interaction techniques have been explored and 

implemented as contributing parts to the final solution of volumetric dataset exploration. The 

following subsections break down the contributions that resulted from this work. 

An Efficient Implementation of the Maximum Intensity Difference Accumulation 

Visualization Mode 

A Maximum Intensity Difference Accumulation (MIDA) visualization technique was proposed by 

Bruckner et al. [5] as a means of visualizing volumetric datasets without the necessity to specify 

TFs (Section 2.1). It takes a conventional Direct Volume Rendering (DVR) [6] (Sections 3.2, 

3.3.4) approach and modifies it to exploit inherent data characteristics of the underlying 

volumetric dataset by modulating the accumulated opacity of the image in accordance with 

changes in the data values. To control what features of a volumetric dataset should have the most 

prominence in the resulting image, only a range defined by the minimum and maximum data 

intensity values needs to be specified. 

                                                 

4
 Extensibility here means the ability to extend the visualization capabilities of the system by adding alternative 

visualization modes. 
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A 2D/3D Painting Model 

In order to provide a non-expert user with an intuitive way of specifying an ROI, a 2D and 3D 

interaction model based on a painting metaphor was conceived and implemented. This model 

allows a user to paint and edit a 2D or 3D envelope (i.e. a contour and a closed surface 

respectively) either in screen space or volume object space respectively, and utilizes Metaballs
5
 

[7] (Section 3.3.6) as the underling mechanism for implicit specification of an envelope’s shape. 

MIDA or any other visualization technique can be specified for parts of the volume that fall 

inside and outside an envelope to achieve complex and visually compelling results. 

User Interactions within a Single 3D View  

As a mechanism to visualize a 3D envelope an approach based on combining polygon-based and 

volumetric geometry rendering has been implemented. An implementation of the Front-to-Back 

Depth Peeling (FtBDP) (Section 3.3.5) technique was used to allow for seamless integration of 

both types of rendering, which in turn provides enough visual cues for a user to be able to 

perform all of the manipulations on the volumetric data in a single 3D view. This means that a 

common practice of providing additional axially aligned 2D volume data projections aiding in 

the exploration process can be abandoned in favor of an uninterrupted and fluid user experience. 

Different Types of Volume Exploration within a Single Generic Paradigm 

As will be shown in Chapter 3:, a combination of the 2D and 3D painting and the MIDA 

technique allows for many types of volume data exploration and editing operations (such as 3D 

                                                 

5
 Metaballs are organic looking n-dimentional objects, whose surface is implicitly defined by a chosen (e.g. 

Gaussian) field function. 
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contextual views, 3D volume “carving”, or “Magic Lantern”
6
 [8] like behaviour, etc.) within a 

single user interaction model. 

Fully GPU Accelerated Visualization Pipeline 

One of the goals of the project was to provide the user with an interactive and semi-immersive 

environment, where visual feedback to user interactions with a Graphic User Interface (GUI) 

would be instantly reflected in the resulting image on the screen. To achieve this goal heavy 

emphasis was placed on utilizing GPU parallel computational capabilities to alleviate 

computational burden on the CPU. As a result, all stages of the visualization pipeline have been 

implemented using GPU-based “shader” programs [9] written in OpenGL Graphics Shading 

Language. This implementation achieves interactive frame-rates for a wide array of volumetric  

datasets of varying sizes on the current generation of GPUs found in a modern desktop computer 

and will also take full advantage of additional computational power of forthcoming generations 

of  GPUs. 

Extensible Visualization Model 

MIDA is used as the default visualization mode to allow for visualization of volumetric datasets 

with a minimum of parameter specification. This mode is, however, limited in terms of visual 

results that can be achieved, and thus the architecture and the code structure of the extensions 

were designed and implemented in such a way as to allow for this technique to be easily 

substituted by any other DVR (3.2) method.  

                                                 

6
 Magic Lantern or Magic Lens is a metaphor commonly used to describe methods of volumetric visualization where 

a user guides some kind of a virtual optical device (e.g. a flash light or a lens) to highlight internal structures in a 

certain region of an object. 
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1.2 Thesis Outline 

Chapter 2 explores the multitude of existing solutions to the problems of volumetric data 

visualization and exploration. Various TF types and their parameter specification techniques, 

ROI definition approaches and user interaction models will be covered. 

Chapter 3 begins by explaining the reasons behind choosing ImageVis3D [2] as the base 

platform for the thesis implementation. It then provides a brief introduction to Volume Rendering 

(VR) in general and Ray Casting in particular. After that the user interaction model realizing the 

2D and 3D painting metaphor is explained, providing the necessary context for the detailed 

descriptions of various implemented algorithms (MIDA, FtBDP, Metaballs, etc.) that conclude 

the chapter. 

Chapter 4 presents both quantitative and qualitative results to validate the thesis contributions. 

Quantitative results are centered around measuring the performance of the system (average 

Frames per Second (FPS)) using different datasets of varying sizes. The qualitative part presents 

results of a user study conducted to evaluate the learning curve, ease of control, and intuitiveness 

of the implemented visualization techniques and of the user interaction model. Examples of 

different contextual volume exploration tasks are given to showcase the flexibility of the 

proposed exploration and visualization model. Finally, the extensibility of the implemented 

visualization model is validated by integrating two additional visualization modes. 

Chapter 5 concludes by summarising the thesis work and discusses possible avenues for future 

work and improvements. 
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Chapter 2: Literature Survey 

Volumetric dataset exploration is one of the supporting pillars in the field of volume graphics. 

After all, what is the use of any dataset, no matter how big and detailed, if one cannot identify 

and analyze features of interest within it? This chapter will present a survey of various 

techniques and approaches that deal with the problem of volume exploration. To further aid in 

the comprehension of the following material, the techniques will also be arranged into distinct 

categories. 

It should be noted that this thesis and all of the material presented in it deals with unsegmented 

volumetric datasets exclusively. This is in contrast to segmented or pre-authored datasets, where 

a volume has been pre-processed and labelled in such a way as to provide additional information 

about the objects within. While some of the challenges associated with the visualization and 

exploration of segmented datasets are similar to those of unsegmented ones, they are by and 

large a separate topic and are thus not covered in the following material. 

2.1 Mapping From a Data Field to a Visual Field 

A volumetric dataset in its basic form is nothing more than an array of scalar values that has been 

obtained by means of scanning a physical phenomenon or an object or modelling/simulating an 

object or a process. In the medical field volumetric datasets are usually products of a scanning 

process (e.g. Magnetic Resonance Imaging (MRI), Computer Tomography (CT), Positron 

Emission Tomography (PET), etc.) and the values are obtained by measuring the intensity of a 

signal (e.g. X-rays for CT or radio-frequency waves for MRI) in different parts of the object 

being scanned. Typically scanning is performed in a slice-by-slice fashion, with the final 
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volumetric representation assembled by stacking up the resulting 2D slices (Figure 3). The 

resolution of the scanning process and the size of each element in the final array are usually 

dictated by the nature of the underlying phenomenon or object and the desired precision of its 

electronic representation. 

 

Figure 3: A series of 2D DICOM MRI slices is stacked up into a 3D volume. 

In order to be able to view and analyze the data in a volumetric dataset in ways comprehensible 

by humans it is necessary to map values from a dataset’s scalar representation to a visual 

representation. To put it more simply, each scalar value has to have a visual counterpart defined 

by a color and opacity pair (Section 3.2). This mapping from a scalar to visual field traditionally 

has been defined by what is known as a Transfer Function (TF) (Figure 4). The following 

subsections will summarize and classify the most commonly used types of TFs, with the 

emphasis on those that are specifically aimed at facilitating a more meaningful data exploration 

process. Several other non-TF based approaches that have emerged in an attempt to avoid the 

often convoluted and unintuitive process of specifying TFs are also described. The classification 

is based on work presented in [1] while also updating it with the latest research material and 

references. 
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2.1.1 One-Dimensional and Derivative-based Transfer Functions 

The simplest form of a TF is a 1-dimentional TF. The term 1-dimensional implies that a simple 

1-to-1 or many-to-1 mapping exists from the scalar domain into the visual domain. To allow a 

user to define a 1D TF within a GUI of a program, typically a 2-dimentional histogram is pre-

computed in which one axis corresponds to every scalar value encountered in the dataset and the 

other axis depicts the frequency of encountering each particular value. In Figure 4 the red, green, 

blue and white lines on the histogram define how RGBA values corresponding to the mapped 

scalar values will be generated. The projection of a point from each line onto the X-axis 

determines the scalar value to be mapped, the projection onto the Y-axis determines the intensity 

of a mapped R, G, B or A value from 0 to 1, and the projection onto the gradient colored bar at 

the top (the gradient coloration is defined by a combined color depending on the XY-projected 

values of all the lines) specifies the opacity of the mapped value. 

  

Figure 4: An example of a 1D TF and the resulting image of a hand dataset in ImageVis3D [2].  

However, even though for some datasets 1D TFs are sufficient to achieve the desired visual 

results, more often than not they are afflicted by poor data feature separation (for instance in 

Figure 4 some arteries cannot be distinguished from the bones due to similar underlying scalar 
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intensity values). This is due to the fact that intensity values alone represent only a small fraction 

of information contained in any volumetric dataset. To address this problem various multi-

dimensional representations of the underlying volumetric data, that are based on utilizing scalar 

value derivatives of first and higher orders, are used. In the simplest and most commonly used 

case, only the first derivative is computed for each value inside a volumetric dataset, representing 

a gradient, or simply a direction of the most prominent change in the values of the dataset at a 

particular point in space. A histogram with scalar and gradient values arranged along horizontal 

and vertical axes respectively can then be generated [10], allowing for the visualization of 

material boundaries in a dataset in the form of arches (Figure 5). The two ends of an arch 

correspond to the homogenous regions of two different materials within a volume that have a 

gradient value of 0, while the top of the arch correspond to the border between the materials 

where the magnitude of the gradient is at its maximum. Usually various graphical widgets are 

used to allow the user to select regions representing certain materials and boundaries while 

assigning different color and opacity values to them (Figure 5). 

 

Figure 5: A 2D histogram of density values and gradient magnitudes. Some regions and 

boundaries are selected and assigned different colors. The resulting generated image is on the 

right [10]. 
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One of the problems with the above method is that material density values and gradient 

magnitudes can overlap. One possible solution is to add another component (i.e. a second 

derivative) to the histogram as a third dimension representing gradient direction. However, this 

additional dimension introduces a user interaction problem, as specification of ROIs on a 3D 

histogram becomes progressively more difficult and time consuming.  

In addition these methods do not address such problems as noise in the data, partial volume 

effects and false material border detection due to biasing
7
 [11], all of which can make selection 

of the features of interest virtually impossible using a traditional 2D histogram. One of the 

solutions to these problems is presented in [12], where the authors use two density values from 

the opposite sides of the gradient border to represent the data in a form of diagonals. A TF thus 

can be created by coloring sections of the diagonals (Figure 6(a)). Another popular approach is 

proposed in [13]. It uses the idea of so called LH Histograms that show lower and higher 

intensities of the materials that form the boundaries (Figure 6 (b)). This approach performs better 

in terms of noise, bias, and partial volume effects and has been used in a number of medical 

volume rendering programs including Voreen [14] and OsiriX [15]. 

  

                                                 

7
 Applied to volumetric datasets in general, biasing is manifested as nonuniformities in the intensity values of an 

obtained volumetric dataset caused by some high-field MRI scanners. This in turn can cause the generation of the 

false material borders in a histogram. 
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(a) (b) 

Figure 6: (a) Selecting different materials by coloring the diagonals on a histogram [12]. (b) An 

example of working with an LH histogram based TF [13]. 

However, even with all of the above improvements, selecting features on a 2D histogram can 

still be difficult. This is due to the fact that often it is hard to estimate what the final image will 

look like by selecting or coloring arbitrary regions on a histogram. In addition, especially in the 

case of unsegmented datasets, it is not easy to establish a correlation between the features on a 

histogram and the actual structures in the volume. Thus, numerous other approaches have been 

proposed, that attempt to alleviate these issues, with varying degree of success. 

2.1.2 Curvature or Shape Based Transfer Functions 

These methods are based on the idea of using geometrical features of the structures within a 

volume to aid in their classification. In [16] the curvature of structures is used as a basis for 

designing a TF and also as a means to produce non-photorealistic
8
 images by highlighting the 

contours of the structures (Figure 7). First, a set of isosurfaces
9
 (Section 3.3.6) within a volume 

is specified. Then an algebraic framework is used to calculate the curvature of the isosurfaces 

                                                 

8
 In computer graphics non-photorealistic rendering is an area that focuses on a variety of expressive styles (e.g. 

painting, drawing, technical illustration) to produce the resulting images. 
9
 An isosurface is a 3D surface that represents points of a constant value (known as an iso threshold value) within 

the space of a volume. 



 

14 

 

using differential invariants. The drawback of this approach is that in noisier datasets (such as 

the ones usually obtained by means of an MRI scanning process) it suffers from spurious surface 

curvature variations. The authors try to combat this problem by smoothing the data values, while 

sacrificing accuracy and resolution. 

 

Figure 7: Non-photorealistic rendering using curvature based transfer functions [16]. 

In [17] the authors propose a method of classification based of the shape of volumetric features 

(Figure 8). They use a rough pre-segmentation process as the initial step for selecting an ROI 

within a volume. Pre-segmentation is done by specifying data intensity thresholds (a process 

called windowing), thus effectively defining isosurfaces (Section 3.3.6) approximating the shapes 

of the objects inside the volume. Then a so called curve-skeleton of each volume structure within 

the region is examined in order to try to fit one of the three predefined shape descriptors 

(longitudinal, surface-like and blobby) to them. The structures are then merged in a process 

supervised by the user. Additional classes of shape descriptors can be defined if necessary. The 

advantage of this method is that the user deals only with shape-classified volumetric features and 

avoids the difficulties of interpreting histogram data. The obvious disadvantage is the need to 
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properly mask the volumetric shapes before they even can be shape-classified. Depending of the 

structure of the volume in question this can also present challenges. 

 

Figure 8: A process of classification of the blood vessels [17]. In the initial step the curve-

skeleton is built. Then the user decides how to merge the detected shape primitives shown in 

different colors. 

2.1.3 Size-based Transfer Functions 

This group of TF generation methods tries to address the problem of identifying structures within 

a volume that have similar intensity values but differ in size. This work is mainly based on [18] 

and [19] and stems from the idea of so called scale-fields (which has its origins in computer 

vision). In the initial step a scale field for a volume is computed and shapes within a user 

specified size range are detected. As a result of this step a set of discrete points representing the 

most prominent scales in the volume is generated. These points are then interpolated and 

combined with the traditional histogram representation (Figure 9(c,d)).  
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(a) (b) (c) (d) 

Figure 9: Comparison of the images produced using traditional (a) 1D and (b) 2D histogram 

based TFs with size-based TFs, (c) mapping size to only color and (d) to both color and opacity 

[19]. 

One of the major limitations of this approach is that the computation of a scale field is a very 

expensive operation. For a data set containing 512
3
 values the computation time can exceed 10 

seconds even on a rather powerful GPU
10

. A compromise obviously has to be chosen between 

the need to have interactive frame-rates and the size and/or resolution of the analyzed dataset. 

2.1.4 Statistics-based Transfer Functions 

These methods are based on capturing different structural and geometrical properties of 

volumetric datasets using various first-, second- and higher-order statistics and their 

combinations. Again, as in the case of size-based TFs, they are aimed at discriminating structures 

even when they have similar intensity values. In [20] the authors propose an approach based on 

analysing local textural properties of the volume (Figure 10). They capture both geometrical and 

structural properties by using histogram statistics, run-length and co-occurrence matrices. 

                                                 

10
 This figure is based on the test results with nVidia GeForce 8800 GTX. The latest generations of GPUs will most 

likely reduce this time by several orders. 
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For this technique to keep the data size and the computation times under control the dataset is 

first divided into overlapping sub-volumes, which are then analyzed separately. The textural 

properties that can be analyzed and captured include occurrence of the predefined intensity 

values, first order (e.g. variance, skewness, kurtosis, etc.) and second-order statistics (i.e. 

likelihood of observing two different intensity values at a certain distance). Overall there are 20 

metrics that can be pre-computed and combined into a TF. Naturally the fact that this method 

works on the fixed size data extraction regions precludes it from differentiating between 

homogenous and inhomogeneous regions in a dataset. 

 

Figure 10: Top row: images produces using a traditional 1D TF in VTK, a 2D lighting and 

gradient based TF and a multi-dimensional TF respectively. Bottom row: images generated using 

texture-based TF approach [20]. 

Another team of researches attempt to address the problem of feature separation in [21] and [22], 

with the latter offering a semi-automatic selection of neighborhoods for extraction of statistical 

properties (Figure 11). They also demonstrate a novel approach of integrating statistical 

information into the design process of a TF, which makes selection of the features of interest 
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much more intuitive. However, this technique also suffers from very high memory consumption 

in the pre-processing steps (triple that of the original data) and poor performance for some types 

of noise present in the data (when the noise distribution is very different from an assumed 

Gaussian white noise). 

 
(a) (b) (c) (d) 

Figure 11: Comparison of (a) 1D and (b) 2D TFs and (c) an LH histogram with (d) a statistical 

TF [22]. All TF types are used to try to classify the same brain tissue. 

2.1.5 Semantics-based Transfer Functions 

Approaches in this category try to address the issue of the complexity of adjusting parameters of 

TFs and reduce the unpredictability of the visual results associated with this process. In [23] the 

authors create a semantic model which maps various semantic parameters (e.g. sharpness, 

visibility, contrast, etc.) to instances of TFs based on user requirements (Figure 12). This in turn 

allows non-expert users to intuitively visualize volumetric data without technical knowledge of 

the visual parameters involved in the visualization process. The algorithm is centered around the 

notion of a so called principal component analysis (PCA), which is used to determine the vector 

of maximum TF variance in its given parameter space. 
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Figure 12: Visibility of different structures within a volume is controlled by the user by using a 

single slider to switch between instances of TFs [23]. 

In [24] additional derived quantities for evaluating the joint information of multiple modalities 

are provided, which further enhance the possibilities of separating different tissues while 

providing for easier understanding of a TF space (Figure 13).  

 

Figure 13: Comparison of single modal visualizations (two imaged on the left) to multimodal 

visualization (two images on the right) [24]. 

2.1.6 Clustering-based Transfer Functions 

The idea behind these methods is to combine or cluster certain features of a volume based on 

pre-defined criteria. In [25] features are clustered in accordance with volume intensity values, 

gradient magnitude, second directional derivative and neighboring values. The proposed solution 



 

20 

 

allows the user to not only specify the number of clusters to be used, but also to combine or split 

them when there are too many or too few of them. To achieve interactive frame-rates the 

algorithms are only applied to subsets of randomly chosen values within a volume (the remaining 

values are classified based on the minimum distance between the feature value and mean vectors 

of clusters). The results of this pre-processing step are then converted into a 2D TF based on 

density values and gradient magnitudes. 

In [26] the authors build on their previous work that dealt with LH histograms. They propose a 

method that generates clusters by analyzing the LH feature space and evaluating the spatial 

connectivity of the clusters. Filtering is applied to eliminate false positives, which usually occur 

due to noise present in the data. Different criteria (such as distance, separation and direction of a 

cluster elongation) are then used to group the clusters together. Using Bayesian decision theory 

the clusters are interpreted as bivariate 2D Probability Density Functions (PDF), which allows 

plotting them in a form that is easy for the user to work with (Figure 14). This method allows for 

a real-time interaction with the cluster hierarchy and also provides the ability to adjust the 

grouping of the clusters on the fly, thus creating different visual results. 
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Figure 14: Visualizations of the engine and the carp are produced by painting over LH clustered 

histograms [26]. 

2.1.7 Non-Transfer Function-based Mapping Methods 

This set of visualization techniques is based on the idea of mapping volume intensity values and 

their derivatives directly to color/opacity pixel intensities. The simplest and most commonly 

used approach is called Maximum Intensity Projection (MIP). MIP works by finding a global 

maximum for every ray traversing a volume (Section 3.2) and linearly mapping these values to a 

visual range. The fact that only a single value for each ray is mapped to a visual field means that 

MIP does not provide any depth cues, which can lead to ambiguities while interpreting the 

resulting image. Several approaches addressing this drawback have been proposed. In the Depth-

Shaded Maximum Intensity Projection (DSMIP) [27] technique the intensity of each sampled 

value within a volume is modulated by its depth and the results are written to the final image 

only if the value of the currently processed pixel is smaller than the newly modulated value 
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(Figure 15(a)). This in turn means that any values located far away from the current viewing 

point have less of a chance of being projected onto the final image, which can result in obscuring 

of some of the volumetric features, even if they have high intensity values. In [28] a Local 

Maximum Intensity Projection (LMIP) technique is introduced, which allows the user to 

interactively control the threshold parameter. The values are evaluated in a front-to-back order 

along the travelling path of a ray cast into a volume, and the first found local maximum above 

the user-defined threshold is projected onto the final image (Figure 15(b)). In case no such value 

is found, a projection of the global maximum is used instead. This approach provides more 

flexibility by giving the user a degree of control over the visualization process, but also suffers 

from occlusion problems, since it does not support translucent materials. 

 
(a)      (b) 

Figure 15: Images generated using (a) DSMIP [27] and (b) LMIP [28] visualization techniques.  

Recently an approach presented in [5] attempts to combine characteristics of both DVR and MIP 

by modifying a monotonically growing opacity function typically associated with DVR. This is 

done by modulating any previously accumulated color/opacity results along the path of a ray by 

the amount of the positive difference between the newly evaluated value and the previous one. In 
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other words the intensity of any previously accumulated results is reduced by the difference 

between the current and the previous value, but only if the current value is larger than the 

previous one. It also allows for a smooth transition between DVR and MIP in terms of visual 

results by adjusting a parameter that controls the level of modulation of any previously 

accumulated results (Figure 16). This allows the user to choose the best possible representation 

of the data in the resulting images. The algorithm presented by the authors has been chosen and 

implemented as the default visualization technique to be used in conjunction with the painting 

metaphor presented in this thesis, and will be described in detail in Section 3.3.4. 

 

Figure 16: Seamless transition between DVR, MIDA and MIP [5]. 

2.2 Illustrative Volume Visualization 

For many years one of the prevailing objectives among researchers and developers involved in 

the field of VR was to achieve an ever higher degree of visual realism of generated images (by 

using realistic lighting, shading, refractions, etc. [6]). However as the field evolved and matured 

it became clear that often a more stylized and sometimes even cartoon-like rendition of the 

volumetric data can be more beneficial in terms of both highlighting the features of interest and 

ease of information comprehension. Thus a branch of VR that deals with illustrative visualization 

techniques was born. The following material will present some of the most prominent works in 
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this field while separating them into two major categories based on the classification proposed in 

[29]. 

Depending on the kinds of modification they perform and the scope of volumetric features they 

work on, all of the VR illustrative visualization techniques can be broken down into low-level 

and high-level abstraction techniques. 

2.2.1 Low-Level Abstraction Techniques 

Low-level abstraction techniques change the way volumetric objects are visualized by 

highlighting important features or de-emphasizing less relevant ones. This is achieved by 

presenting the information in a more stylized way (e.g. line drawings), while drawing attention to 

the features of interest by using more prominent illustrative visualization techniques (such as 

contouring, shading, haloing, etc.)  (Figure 17). 

  
(a) (b) 

Figure 17: (a) A pencil hand drawing of a staghorn beetle and (b) a VR generated image of a 

staghorn beetle using a similar illustrative style  [29]. In the VR generated image the shape of the 

various parts of the beetle is emphasized by using a contouring technique [29].  
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2.2.1.1 Stylized Shading 

This is a family of techniques that enhances features of importance while deemphasizing 

background information using non-photorealistic shading techniques. This can be done in a 

number of ways. One of the approaches is to modify how lighting in the vicinity of the features 

of interest is applied during the TF value mapping process to achieve the desired artistic effect. 

Some of the more popular methods in this category include Lighting Maps [30], which are 

basically 2D functions representing light interaction with the surface of an object based on the 

direction of light and surface normal vectors
11

 of a visualized object, and a so called Lit Sphere 

Shading [30] approach. In the latter case the idea is to capture all of the possible color variations 

of an object as a function of a surface normal direction. This is done by using the concept of a 

sphere, where an image of a sphere is used to capture all possible variations of normal directions 

of an object relative to the current viewing direction (normal vectors parallel to the viewing 

direction are mapped to the center of the sphere and normal vectors orthogonal to the viewing 

direction are mapped to the outside rim of the sphere) (Figure 18). Thus the sphere image is 

indexed by the normal values of a volumetric object and is used to map the normal values to the 

TF values during the shading process.  

                                                 

11
 In computer graphics normal vectors are used to define the direction in which the surface of an object at any given 

point is facing.  
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Figure 18: Lit sphere shading [30]. A 3D sphere represents all possible normal direction 

variations for any visualized object. The actual normal directions of the currently visualized 

object are encoded in the form of a sphere image. During the shading process the        points 

(corresponding to the currently evaluated normal value) on the sphere image are mapped to the 

TF values. 

2.2.1.2 Style Transfer Functions 

This approach extends the domain of TFs, that are normally used to map scalar values to color 

and opacity values only, to include shading information as well (i.e. normal values are now 

mapped too). One example of this approach was presented in the already mentioned paper [16], 

where surface curvature information is used to create non-photorealistic renderings with 

emphasized silhouettes. Another example is the work presented in [30] where a spherical model 

for normal-based light attributes mapping is combined with multi-dimensional style TFs (Figure 

19). 
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(a) (b) 

Figure 19: Visualizations using (a) a multi-dimensional style TF and (b) contouring [30]. 

2.2.1.3 Stylized Contouring and Transparency  

Contouring often helps to resolve the ambiguities when visualizing semi-transparent objects. 

This is done by emphasizing the transition between front- and back-facing surfaces. A traditional 

technique most often employed in VR, that uses a dot product
12

 of the viewing vector and a 

surface normal, has a drawback of producing contours of unpredictable thickness. An improved 

method proposed in [16] regulates the contours thickness by restricting its value based on the 

viewing direction. A somewhat modified version of this method is presented in [30] (Figure 

20(a)). 

All of the previously mentioned illustrative visualization techniques can be enhanced by adding 

an option to make certain features semi- or completely transparent. A normal direction can also 

be brought into the equation to allow for view-dependent opacity effects [30] (Figure 20(a)). 

                                                 

12
 In linear algebra dot product of two vectors is a sum of products of their corresponding components. In computer 

graphics a dot product is used to determine how “similar” two vectors are (the larger the dot product the more 

similar the vectors are, i.e. they point in a similar direction). 
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2.2.1.4 Volumetric Halos 

This approach can be helpful when there are a lot of fine and overlapping features in a 

volumetric dataset. Since human eyes are very sensitive to sharp changes in contrast, halos 

drawn around objects can be helpful in providing additional visual cues. Two approaches to 

generating haloes include a technique where halos are generated in a pre-processing step and 

thus become an integral part of the volume, and methods where halos are generated on the fly 

during the actual visualization process. Naturally the latter method allows for more flexibility in 

terms of interactivity and achievable visual results. 

In addition, halos can be generated in a directional or omni-directional way, that is they can be 

visualized while taking the viewing or lighting direction into account, or just extend uniformly in 

all directions around the object of interest [30] (Figure 20(b)). 

  
(a) (b) 

Figure 20: (a) Examples of using the view direction dependant stylized transparency and 

contouring techniques [30]. (b) Visualizations using the directional and omni-directional haloing 

effect respectively [30]. 
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2.2.2 High-Level Abstraction Techniques 

In contrast to low-level abstraction techniques, that affect the appearance of all volumetric 

features in the scene, high-level abstraction techniques try to highlight only certain features in 

the resulting image by using various techniques borrowed from the field of the traditional 

medical illustration (e.g. making certain tissues in the illustration transparent, using exploded 

views, etc.) (Figure 21). 

 
(a) (b) 

Figure 21: A photograph of a plastinated anatomic model from Gunter von Hagens’ Body-worlds 

exhibition (a) and a similar exploded-view image generated using VR (b) [29]. 

2.2.2.1 Context Preserving Views 

One of the most popular illustration techniques is to use transparency to show the interior of the 

objects while preserving context by reducing transparency closer to their edges [31]. This 

technique is employed in [32], where the authors use the results of a shading intensity function 

for opacity modulation (Figure 22). The basic idea is to reduce the opacity for large regions of 

highly illuminated material that would normally correspond to rather flat surfaces (e.g. skin) 

while keeping the less brightly lit regions (for example light silhouettes of veins and tendons) 

visible. Also the distance to the current viewing point is taken into account to reduce opacity 
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attenuation for rays that have already accumulated a lot of opacity and thus limit the number of 

overlapping  transparent objects (as too many of these can actually make perception more 

difficult). 

 

Figure 22: The context in the image is achieved by making the parts of the body that occlude the 

features of interest transparent, while reducing transparency for the rest of the body [32]. 

In another paper [33] the authors present a novel VR approach, also borrowing from the field of 

traditional illustrative techniques, in which they use compositing and masking techniques to 

draw the user’s attention to certain parts of the image while preserving the overall context. The 

final image is generated from several independently produced layers (such as the line drawing 

layer corresponding to the contours of the organs and several tissue layers that are generated 

using isosurface, DVR and even MIP rendering techniques) that are combined in the final stage 

using a masking operation (Figure 23). Using masking also allows achieving the effect known as 

a Magic Lens (i.e. a method where a user guides some kind of a virtual optical device, such as a 

flash light or a lens, to highlight internal structures in the certain region of an object) which is 

another popular and widely used context preserving technique. 
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Figure 23: An illustration of the human heart as a combination of three layers (three images on 

the left: line drawing, DVR muscle layer, isosurface veins layer) with a rotation operation 

applied (right) [33]. 

Different variations based on the idea of a magic lens have been proposed by researchers. In the 

case of DVR a second TF [8] can be used to visualize an ROI in a distinct manner (Figure 24(a)). 

In [33] multiple layers are first generated using different visualization techniques and then 

combined using masking in the user defined order (Figure 24(b)). Finally, various standard and 

custom magnification effects are employed in [34] to enlarge the features of interest within the 

context of the surrounding volume (Figure 24(c)).  

   
(a) (b) (c) 

Figure 24: (a) Magic Lantern visualization using two different TFs [8]. (b) Magic Lens using 

masking and compositing technique [33]. (c) Magic Volume Lens using a magnification effect 

[34]. 
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Another approach presented in [35] enhances the feature of interest in the resulting image by 

super-sampling intensity values of the volume using B-spline subdivision and fast gradient 

quantization, which allows for an instant “zoom in” effect on the said feature (Figure 25). 

 

Figure 25: “Zoom in” effect in action. The context is provided by using rectangular and circular 

ROIs, that are super-sampled using B-spline subdivision and enlarged [35]. 

A recent technique presented in [36] combines several mathematical and visualization models to 

allow for a real-time 3D context-preserving exploration of large volumetric datasets. Among 

them are octree
13

 based out-of-core
14

 data management, MIDA based VR for parts of the volume 

that correspond to an ROI, distance-based opacity modulated DVR for regions outside of an 

ROI, and superquadratic
15

 3D envelope shapes (such as a cylinder, a sphere and a rounded cube) 

for ROI definition (Figure 26). 

                                                 

13
 An octree is a tree data structure in which each parent node has eight child nodes.  In computer graphics it is often 

used to represent objects in a scene in a hierarchical order, allowing for more efficient granular data processing. 
14

 In computer graphics out-of-core algorithms are designed to allow for processing of data that is too large to fit in 

dynamic memory (usually memory dedicated for the GPU usage only) by fetching or streaming the data in chunks 

according to the demands of the application. 
15

 In computer graphics superquadratics or superquadrics are a family of 3D geometric shapes that are described by 

equations similar to the ones used to describe regular quadratic shapes, but with the squaring operation replaced by 

the arbitrary powers. By changing the powers in a superquadratic equation the range of shapes can be extended. 
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Figure 26: Images produced MIDA and distance-based opacity modulated DVR using different 

superquadratic envelope shapes [36]. 

2.2.2.2 Exploded Views 

This is another group of methods aimed at solving the problem of occlusion in VR while 

providing contextual information. The idea is to decompose an object into several parts so that 

internal structures of interest can become visible. This approach has an additional benefit of 

being able to reveal additional information such as cross-sectional geometry of an object. In [37] 

an approach is proposed that is based on the idea of separating a volume into a selection and 

background parts (the distinction is based on a combination of the selection geometry, the data 

volume and the specified TF). The user can then specify into how many pieces and along which 

axes the background potion of the volume should be split. Notions of force and hinge joints are 

also used to specify how far apart separate pieces of the background should be spaced and along 

which axes they should be aligned and rotated (Figure 27). 
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Figure 27: An interactive exploded-view illustration with two virtual hinges constraining the 

positioning of the exploded parts [37]. 

In [38] a volume is sliced into slabs along the user specified axis (Figure 28). However, in this 

approach the manual process of specifying the thickness of slabs is automated through a 

mechanism that determines the thickness by measuring the level of similarity between partitions. 

The similarity criterion is evaluated on the basis of maximum gain of information. 

 

Figure 28: Exploded views with different portioning settings applied [38]. 

2.2.2.3 Volume Clipping and Sculpting 

These methods attempt to reveal the structures inside a volume by physically removing parts of 

the volume that otherwise would obstruct them. This is achieved by applying Boolean operations 

to cut or carve away parts of the volume using clipping planes, boxes, spheres and other 
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geometric shapes and in general include any technique that allows displaying a subset of a 

volumetric dataset bounded by an isosurface. The most prominent works in this field include [39, 

40] and [41]. The first paper [39] presents an approach where various geometric primitives and 

depth test algorithms are used to specify parts of the volume that need to be cut away (Figure 

29(a)). In the second approach [40] a mesh which can be flexibly deformed by the user with an 

adjustable sphere of influence is used (Figure 29(b)). The last paper [41] describes a whole 

framework called VolumeShop that allows for advanced manipulation and illustrative rendering 

techniques to generate illustrations directly from volumetric data. The principle behind its 

operations is a multi-volume representation of the scene with ability to individually control each 

volume. The segmentation of the volumetric data is performed via the means of surface-

constrained 3D painting (Figure 29(c)). The system also includes segmentation and labeling 

features that allow for an annotated representation of the data in the resulting images. 

   
(a) (b) (c) 

Figure 29: (a) An example of the spherical carving operation of the volume [39]. (b) A geometry 

based 3D deformable mesh is used to define the ROI and exclude all other parts from the 

visualization process [40]. (c) A section of the skin layer is cut-away after painting on the surface 

of the head and neck (c) [41].  
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Volume clipping can also be used as a pre-processing step, where the occluding parts of the 

volume are removed in order to reveal the structures that will be later used to perform other 

operations on (e.g. segmentation). This approach is used in [42] where the authors use the 

surface-based sketching operation to mark the region on the surface of the volumetric object that 

will be clipped or peeled away. Then the Point Radiation algorithm is used to project rays into 

the volume within the defined region. The orientation of the rays and the depth of penetration of 

the surface depend on the current orientation of the masking plane and the pressure level of the 

input stylus device controlled by the user (the maximum depth of penetration is limited to 12 

voxels). Any parts of the volume intersected by the rays are removed to reveal the underlying 

structures (Figure 30). 

 

Figure 30: A free-from mask is painted on the surface on the skull. The rays are cast through the 

mask and any intersected parts of the volume are peeled away [42]. 

2.2.2.4 Volume Deformation 

While making inner structures more visible, volume clipping methods may also result in the loss 

of context. To address this problem, another approach can be used which merely deforms 

volumetric data (without actually removing any portions of it) in such a way as to allow the 
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structures inside the volume to become exposed. Operations employed in these methods are 

usually mimicking actions from real medical practices (e.g. tissue peeling, incisions, various 

tissue spreading techniques, etc). Two examples of this approach are presented in [43] (Figure 

31(a)) and [44] (Figure 31(b)). 

  
(a) (b) 

Figure 31: (a) The “leafing” technique in action [43] and (b) the “pliers” operation applied to the 

internal organs of the frog while the skin is being retracted [44]. 

A more recent paper [45] proposes techniques that allow for more advanced deformations (such 

as retratcing, multi-spacing, highlighting and deemphasizing deformations and others) with an 

emphasis on illustrative representation of the data (Figure 32). These techniques allow for an 

extension of the deformation methods into other areas of VR beyond medical applications (such 

as physics, mechanics and basically any other type of volumetric information visualization). 
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(a) (b) 

Figure 32: An example of (a) a retracting deformation and (b) a bending deformation [45]. 

One of the most recent approaches that deals with deformations in medical datasets is presented 

in [46]. In it the authors introduce a notion of constrained displacement fields, which allow 

restrictions to be placed in terms of both what parts of the volume are allowed to be deformed 

and in which  ways (by specifying rigidity and degrees of freedom). This avoids such common 

problems in unrestrained models as self-intersection and collision with features of interest. 

 

Figure 33: A simulation of a whiplash injury using constrained deformations [46]. 

2.3 Volume Space Navigation 

In order to get a better understanding of any given visualized volumetric dataset it is necessary to 

provide the user with a means of navigating in a volume space. Furthermore any employed 

navigational model should be intuitive to use and provide the necessary level of precision. 
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According to [47] a generalized virtual navigational task can be thought of as consisting of both 

explorative navigation and directed navigation.  

2.3.1.1 Explorative Navigation  

In the course of explorative navigation the user is interactively inspecting the data to gather 

knowledge while being unaided and usually unrestricted in ways of navigation. Most 

navigational models of this type are based on the concept of a so called Virtual Trackball, Sphere 

or Arcball [48] and are usually combined with such operations as panning, rotating and zooming 

to allow for adjustment of an arcball’s center of rotation. Examples of this model can be found in 

numerous 3D modelling suites [49] and volumetric visualization software [2, 4, 14, 15, 50, 51], 

and have been adapted to both trackball and mouse usage. 

 

Figure 34: Various rotational and translational widgets from 3DS Max, Blender, XSI, Houdini, 

Mode and Maya [49]. All share the same underlying principle. 

2.3.1.2 Directed Navigation  

When it comes to directed navigation, very little research has been done for the field of volume 

graphics. The vast majority of techniques proposed for directed volumetric navigation are 

tailored toward specific tasks of virtual endoscopy [52-55] (i.e. navigation in heavily constrained 

tubular structures) and often include pre-processing steps with pre-defined visualization settings 

in order to be able to compute such parameters as a centerline or allowed camera travelling path 

(Figure 35). 
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Unlike well established navigational models developed for polygonal virtual scenes [56], where 

geometrical structures are always explicitly defined, visual appearance of features as well as their 

geometric form in a volumetric scene can be easily changed by adjusting TF parameters, 

performing carving or peeling operations, or using different visualization modes. Only recently a 

generic approach that integrates real-time navigation of both the explorative and navigational 

nature has been published [57]. In it the authors propose and implement a context-aware volume 

visualization technique in which a 360 degree spherical representation of the scene is updated in 

real-time and is used to perform instant collision detection under any combination of the 

visualization parameters (Figure 36). Combined with traditional operations of panning, rotating 

and zooming this approach allows for seamless transitioning between both navigation modes. 

 

Figure 35: The 3D shape of the interior surface of the blood vessels is used to constrain the 

possible camera travelling paths [53]. 
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Figure 36: A series of screenshots taken during the volume navigation process using the context-

aware volume navigation technique [57]. 
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Chapter 3: Methodology and Implementation 

The previous chapter introduced and classified various volume visualization and interaction 

techniques that aim at providing the user with tools for better volume exploration and 

understanding. Some of them employ a combinatorial approach by creatively drawing on the 

knowledge from different areas and fields in order to simplify that task. However, most still 

suffer from either: 

 Assuming a potential user to have at least some background knowledge in the field of 

VR. The vast majority of the TF specification techniques described in Section 2.1 [1] 

suffer from this drawback, as they require an understanding of volumetric information 

representation in the form of various 2D histograms. Similarly, many high-level and low-

level abstraction illustrative techniques [29] assume that the user is familiar with the 

different visualization models (i.e. isosurfaces, DVR, MIP, etc) and rely on their 

expertise in specifying the shading/lighting parameters, order and modes of combining 

different pre-rendered layers, orientation and thickness of the slices in the case of an 

exploded view data representation (in such a way as to achieve the best perception of the 

features of interest), etc. 

 Providing models for interaction and visualization parameter specification that are still 

not easy to use. Again, many TF specification models are far from ideal in this respect 

[1]. Operating in a 2D feature space of a histogram is an unintuitive process that can lead 

to drastically different visual results with only minute changes in the positioning and 

shape of the TF-defining curves and geometrical shapes. Volume navigation and 

interaction models are often flawed [52-55] by the inability to easily position a virtual 
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camera in the desired location with the desired orientation in the scene (this is an inherent 

problem of any navigational model that tries to use a 2D input device, such as a mouse or 

a trackball, to navigate in a 3D space). A confusing spatial relationship of various objects 

in the scene is another common problem that stems from the lack of sufficient depth cues 

or their poor implementation. Finally, depth specification [57] in general is not a 

straightforward task in the context of VR and its complexity is further compounded by 

the aforementioned issues. 

The work presented in this thesis tries to overcome these domain knowledge and interface 

complexity issues by proposing and implementing a volume exploration model based on a 

painting metaphor that strives to be both intuitive and easy to use. This is achieved by focusing 

on providing the user with an integrated 3D single-view interaction model and a minimum of 

visualization controls that allow the user to concentrate more on their task of gaining insight into 

the data rather than encumbering them with the necessity to tweak numerous visualization and 

interaction related controls. 

As a platform for the implementation of the extensions the project uses one of the most popular 

open source VR rendering software suites called ImageVis3D [2]. The following sections will 

explain the reasons behind choosing this particular platform, provide an introduction to some of 

the technical aspects of VR, and detail the user interaction model and underlying algorithms used 

to implement the proposed visualization and exploration model. 
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3.1 ImageVis3D as an Implementation Platform 

The field of VR is maturing fast and today there are a number of very capable and feature-rich 

VR programs. Both open source and commercial products are available. Some of the most 

notable ones include OsiriX [15], Voreen [14], ImageVis3D [2], 3DSlicer [4], Amira [58] and 

MeVisLab [50]. 

For the implementation purposes of this thesis, a decision was made not to start “from scratch” 

but rather to take advantage of some of the already implemented auxiliary functionality (such as 

dataset loading and saving, graphics pipeline initialization, memory management, etc.) most of 

the aforementioned products could provide. A subset of open source projects was evaluated, 

consisting of Voreen, ImageVis3D and 3DSlicer, with ImageVis3D chosen as the final platform 

for extension. The decision was primarily based on the examination of the source code 

(ImageVis3D appeared to have the most well thought-out and clean structure) and the list of 

already implemented features that could potentially aid in the implementation of the envisioned 

future extensions (ImageVis3D provides a flexible out-of-core memory management system and 

an automatic Level of Detail (LOD)
16

 support for any loaded dataset, both of which allow it to 

perform well even in the absence of sufficient memory or computational resources). 

ImageVis3D is an open source volume rendering project, developed by the NIH/NCRR Center 

for Integrative Biomedical Computing (CIBC) and is written in pure C++ TR1 with Boost C++ 

extensions [59]. It provides wrappers for both DirectX (Microsoft Corporations’ Proprietary 

Graphics Library) and OpenGL (Open Graphics Library) [9] and uses the Qt [60] cross-platform 

                                                 

16
 In computer graphics the term “Level of Detail” refers to the ability of an application to adaptively change the 

detail of displayed 3D objects according to the needs of the application or the user.  
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application framework developed by Nokia to implement its GUI controls and widgets. The fact 

that it does not rely on any other proprietary platform-dependent third party Software 

Development Kits (SDKs) and Application Programming Interfaces (APIs) and works with 

OpenGL, an open royalty free cross-platform standard, means that it can be easily ported to any 

hardware/software platform capable of compiling the code and supporting OpenGL 3.3. In fact a 

mobile version for iPhone called ImageVis3D Mobile is now available in Apple’s iTune App 

store. 

All of the extensions added in the course of this thesis work have been designed and 

implemented with the above unofficial portability development policy in mind, and thus also do 

not rely on any third party libraries (although some of the implemented algorithms necessitated 

using OpenGL 4.1 instead of 3.3). 

3.2 Introduction to Volume Rendering 

In the field of computer graphics visualization is the process by which data is represented 

through the means of images, diagrams and animations in such a way as to aid its understanding 

and cognition. Scientific visualization is a subfield that deals with visualization of data 

representing some sort of physically based phenomena (such as seismic activity, air currents or 

X-ray reflection rates measured by a CT scanner). 

Volume Rendering (VR) is one type of scientific visualization technique that is used to generate 

2D projections of discreetly sampled 3D datasets. It is inherently different from another more 

commonly used approach to represent 3D information, which is based on surface representation 

(knows as geometry- or polygon-based graphics). 

http://en.wikipedia.org/wiki/Nokia
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In polygon-based graphics 3D objects are constructed from interconnected points (usually 

arranged in the form of triangular meshes). The points have various attributes describing their 

position in space, surface normal orientation, texture coordinates, etc. In order to view these 3D 

objects on a 2D screen a process known as rendering is used, during which the models are 

converted into pixels on the screen by applying spatial transformations, texturing, lighting, 

shading and other operations. This polygonal representation is quite efficient in terms of memory 

consumption and is suitable for highly parallel data processing algorithms (this explains the 

massively parallel architecture of modern day GPUs). However, in cases when fuzzy or complex 

data (e.g. smoke, clouds, water, various body tissues) has to be described, the polygon-based 

representation is far from ideal. Another obvious drawback is that in a polygonal representation 

no interior information about an object is represented. 

On the other hand, in the case of a volumetric data representation, objects are stored in the form 

of a 3D array of cubic
17

 elements, where each element occupies a curtain volume of space 

(Figure 1). These elements are called voxels (volumetric pixels) and have at least one scalar 

value (often referred to as intensity since it represents some sort of a physical property measured 

during the scanning process) associated with each of them. A collection of all these values is 

known as a scalar field of the volume. Thus volume visualization, also commonly referred to as 

volume rendering, can be defined as a process of displaying volume scalar fields [61] by 

projecting the interior information of a dataset onto a screen using one of several known 

techniques [62]. 

                                                 

17
 This is the case when a regular grid is used and is the most common. 
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Figure 37: Voxels representing a discretized volumetric object [6]. 

3.2.1 Ray Casting 

The advent of powerful GPUs has revolutionized the field of VR. Where in the past either the 

resultant image quality or performance or both had to be compromised due to the lack of 

sufficient computational resources, today highly parallel brute force rendering techniques 

dominate the field [63]. 

Ray casting [62] is by far the most popular brute force VR technique. It is a rendering method in 

which every voxel in a volumetric dataset is evaluated as part of a ray traversal process through 

the volume. For each pixel in the resulting image a ray is cast into a scene from the current view 

point (Figure 38). At certain intervals along the ray (equidistant in the simplest case) the volume 

dataset’s values are sampled, usually employing some kind of interpolation technique (tri-linear 

interpolation is often considered to provide a good balance between speed and quality). The 

resulting sample value is then used to determine the color/opacity (RGBA value) of that point in 

space using a lookup table, typically containing previously defined TF mappings. At this stage 

various lighting and shading techniques can be also applied in order to achieve the desired visual 
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effects. The process continues by blending the obtained RGBA values until the ray exits the 

volume or the opacity of the desired level is achieved (called an early ray termination condition). 

 

Figure 38: Rays cast through a volume are sampled between starting (fn) and ending (ln) 

positions [6]. 

The above front-to-back process of color and opacity accumulation can be described by 

following equation [6]: 

 
 
  

      
         

      

  
      

         
    

  

 

(3.1) 

 

where                and    are the current color and opacity respectively at the sample point 

  , and   
  and   

 are the accumulated color and opacity. 

Because of this in-place evaluation of the visual model, ray casting is also often referred to as 

Direct Volume Rendering (DVR), though strictly speaking DVR is a broader term that includes 

all VR techniques dealing with direct voxel data evaluation during a rendering process. 
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3.3 Methodology and Implementation Details 

Since the proposed painting metaphor is a focal point of this thesis, it and the user interaction 

model that realizes it will be presented first, providing the necessary context for the following 

subsections. 

3.3.1 User Interface and Camera Control 

The user interface consists of two areas (Figure 39): 

 The area containing the GUI components controlling the visualization parameters. 

 The visualization area, where the user interaction with a virtual scene takes place and the 

results of the visualization are displayed. 

Both areas are implemented as dockable Multiple Document Interface (MDI) child windows and 

thus can be freely resized and rearranged within the limits of the main application window 

according to user preferences.  
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Figure 39: User interface with the GUI controls (on the left) and the visualization area (on the 

right). 

 

3.3.1.1 Camera Control 

The visualization area is the area where the user interacts with the visualized volumetric dataset. 

In order to control the orientation and position of the camera relative to the volumetric object an 

arcball rotational model has been used. By clicking the left mouse button anywhere in the 

visualization area and holding it while moving the mouse, the user can rotate the camera around 

the object. The camera can also be moved in space so that the object appears closer or farther 

away by using the scroll wheel on the mouse. Finally, right clicking and holding while moving 

the mouse allows the scene to be panned in the desired direction.  
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3.3.2 Painting 

The painting metaphor allows the user to define an ROI by placing “brush strokes” directly in the 

space of the visualization area. By placing additional brush strokes the paint is “spread”, thus 

creating the envelope that defines the ROI and encloses the features of interest. Painting can be 

done in either 2D or 3D. When the 2D painting mode is used the painting is done in the 

visualization area screen space coordinates.  That means that the envelope always stays in the 

same position in terms of the screen coordinates regardless of the orientation of the visualized 

volumetric object
18

 (Figure 40). 

 

 

Figure 40: A 2D envelope defined in the space of the screen as three 2D stripes. The shape and 

position of the envelope stays the same regardless of the orientations of the visualized volumetric 

object. 

                                                 

18
 A 2D envelope acts in a manner similar an X-ray machine that projects its rays all the way through the scene. 
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When the 3D painting mode is used the envelope is painted in the 3D volumetric space of the 

target object. Hence the defined envelope always maintains its relative position to the volumetric 

object in 3D space (Figure 41). 

 

 

Figure 41: A 3D envelope defined in the space of the target volumetric object. The position and 

orientation of the envelope change according to the position and orientation of the visualized 

object. 

To place a new brush stroke a brush tip, which represents a circular or a spherical user defined 

area either in a 2D or 3D space respectively, is used. In the current implementation, the brush tip 

and the painted envelope are realized using the technique of defining implicit 3D surfaces known 

as Metaballs [7] (Section 3.3.6). Metaballs have a characteristic of merging with each other 

based on their proximity, radius and the chosen field function, creating organic-looking and 

flowing shapes. This behavior is similar to the painting operations performed in various raster 

editing programs (e.g. Photoshop) and was the main reason behind choosing metaballs as the 

envelope definition mechanism.  
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3.3.2.1 Envelope Definition Process 

After a new brush stroke is placed it specifies the 2D or 3D area where the envelope is now 

defined. To extend the envelope subsequent brush strokes are placed by moving the brush tip to 

the areas of interest. As the brush tip is being moved any parts of the volume that fall within its 

area of influence are instantly visualized using a different visualization style (defined for the 

parts of the volume inside the envelope (Section 3.3.3)). Thus the brush tip provides a real-time 

preview functionality that allows the user to see exactly what the envelope will look like and 

what features inside of the volumetric object it will enclose if a new brush stroke is placed at the 

current position of the brush tip. Hence the process of painting an envelope can be described as a 

sequence of placing new brush strokes in positions where the brush tip preview results achieve 

the desired visual effect. The process of painting a 3D envelope consisting of several preview 

and brush stroke placing steps is illustrated in Figure 42
19

. 

     

Figure 42: Envelope painting in 3D depicted as a sequence of steps of: a) previewing the results 

of the visualization by moving the brush tip to the desired location; b) placing a new brush stroke 

at the brush tip’s current location. 

 

                                                 

19
 A 2D envelope is painted in the same way, but in the screen space of the visualization area. 
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3.3.2.2 Brush Tip Positioning 

To control the position of the brush tip either in a 2D or 3D space a control scheme very similar 

to the previously described camera navigation model (Section 3.3.1) is used. Under this 

navigation model the user first orients the volumetric object into the position that they consider 

to be suitable for painting (see explanations in the next paragraph). Then by pressing down and 

holding the Alt key the user initiates the painting mode. By continuing to hold the Alt key and 

moving the mouse pointer in the visualization area on the screen they are able to see the brush tip 

as a circle or a sphere (depending on the chosen 2D or 3D painting mode) of the currently 

specified size centered at the current position of the mouse cursor. The parts of the volume that 

fall within the area defined by the brush tip are instantly highlighted (Section 3.3.3) using the 

alternative visualization parameters specified by the user. If the user decides to place a new brush 

stroke at the current position of the brush tip, they do it by clicking the left mouse button while 

still holding down the Alt key. When the Alt key is released the scene interaction mode reverts 

back to the camera navigation mode, allowing the user to adjust the orientation of the object in 

the scene and evaluate the results of the painting operation (the envelope remains in the scene 

until it is cleared (Section 3.3.3)). The above procedure can be repeated any number of times 

allowing the user to extend the envelope to enclose the desired volumetric features. 

In the 3D painting mode, in addition to the screen space position, the depth of the brush tip needs 

to be controlled as well. For this purpose, similarly to the camera navigation model (Section 

3.3.1), the scroll mouse button is used. By scrolling the wheel of the mouse while holding down 

the Alt key the user can adjust the current depth of the brush tip, thus moving it further away or 

closer to the viewer. After the desired depth of the brush tip is reached its value is preserved and 
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is used to define a virtual painting plane that orients itself in such a way as to always stay 

parallel to the screen (Figure 43).  

The painting plane defines the plane in which all of the new brush strokes are placed. Thus when 

the user moves the brush tip by changing the position of the mouse cursor in the screen space, 

they actually change the position of the brush tip as projected onto the painting plane defined at 

the current brush tip’s depth. By moving the brush tip in this manner (moving the cursor on the 

screen and using the scroll wheel) the user controls its 3D position within the 3D space of the 

scene. Naturally the relative position and orientation of the volumetric object and the painting 

plane can be adjusted by the user at any moment by releasing the Alt key and using the standard 

camera navigation model. This rapid switching between the two very similar navigation models 

by using just the Alt key allows the user to quickly paint the envelope of the desired arbitrary 

shape. Furthermore, any parts of the volumetric object that fall within the 3D boundaries of the 

envelope are instantly visualized using the specified alternative visualization parameters (exactly 

the same way as in the case of the brush tip preview mode), thus allowing the user to see if the 

envelope they are currently painting achieves the desired contextual view. 

It should be noted, that by default (i.e. when a new dataset is loaded into the program) the depth 

of the brush tip, and hence the depth of the painting plane, are set to a value such as to make the 

brush tip always visible (i.e. floating in front of the volumetric object in 3D space). This depth 

value is calculated by using the dimensions of the volumetric object’s axis-aligned Bounding 

Box
20

. 

                                                 

20
 In computer graphics a bounding box is the minimum box that encloses all parts of a 3D object. 
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Figure 43: The painting plane always stays parallel to the screen plane, regardless of the 

orientation of the volumetric object in the 3D scene space. The current depth of the brush tip 

determines the depth of the painting plane, which can be adjusted within limits specified by the 

near and far clipping planes. When the user moves the mouse cursor on the screen plane its 

current position is projected onto the painting plane, thus defining the current 3D coordinates of 

the brush tip. New brush strokes can then be placed at the current 3D position of the brush tip on 

the painting plane, thus allowing the user to extend the envelope as needed. 

In the 2D painting mode the depth of the painting plane is always set to a constant value and 

cannot be changed by the user. The position and the shape of the brush tip (and of the envelope if 

it is defined) are projected onto the painting plane and are used as a stencil to select parts of the 

volumetric object that fall inside of the projected contour along the current viewing direction (Z 

axis in Figure 43). Any parts of the volume that fall within the stencil’s projected contour are 

visualized using the same alternative visualization mode as in the case of the 3D painting mode. 
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The difference from the 3D painting mode is that the depth values of the parts of the volume that 

fall inside of the stencil are disregarded (i.e. a stencil works in a way similar to an X-ray 

machine, by applying the visualization effect all the way through the object). 

3.3.2.3 Free-hand and Surface 3D Painting Modes 

The 3D painting mode described above, where the user fully controls the depth of the brush tip at 

all times, is called a free-hand painting mode. Naturally, depending on the desired type of 

exploration, cases might arise when it would be preferable to be able to automatically follow the 

shape of a volumetric object with the brush tip (e.g. when the user wants to paint an envelope 

that encloses only the features close to the surface of the object). In that case a mode called 

surface painting is available. In this mode the depth of the brush tip, and hence the depth of the 

painting plane, at the current projected position is overridden by the depth value of the object’s 

surface, obtained by intersecting the ray fired from the current mouse cursor position on the 

screen into the volume space with the visible surface of the volumetric object (Section 3.3.7). 

3.3.2.4 Additional Brush Tip Properties 

As was described earlier, metaballs (Section 3.3.6) are used as the underlying mechanism for 

envelope definition. Any envelope is thus defined by a series of metaballs that merge themselves 

with each other based on their size, proximity and selected field function. In general the larger a 

metaball and the closer it is to other metaballs, the greater its influence and merging factor with 

other metaballs. As the brush tip is always the first metaball in the scene, it defines the attributes 

of every new metaball that is added to the series. Thus by controlling the size and other 

parameters of the brush tip the user can have more control over the shape of the painted 

envelope. 
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The brush tip can be defined as a negative brush tip, thus allowing the user to negate or erase the 

results of the previous painting operations (Figure 44(a)). In addition, in the 3D surface painting 

mode the depth of the object’s surface penetration by the brush tip as well as its shape can be 

changed. In the current implementation the only shape (aside from a sphere) that is allowed is 

that of a cylinder
21

. A cylindrical brush tip will try to always orient itself perpendicular to the 

surface of a volumetric object (Figure 44(b)) (Section 3.3.7). In addition to its size, the height of 

a cylindrical brush tip can also be adjusted, thus providing additional flexibility for envelope 

definition (e.g. a flat envelope with a small height value can be used to follow the curvature of 

the skull to include only the bone but not the brain matter) (Figure 44(c)). 

 
 

 
(a) (b) (c) 

Figure 44: (a) A negative brush tip erasing a part of the previously painted envelope. (b) A 

cylindrical brush tip self-aligned with the cross-section of a finger and depth-adjusted to show 

the whole digit of the finger. (c) A flattened envelope defined using a cylindrical brush tip and 

surface-painted following the curvature of the skull. 

                                                 

21
 A cylindrical shape was chosen as the most useful one in terms of aiding in the envelope definition process. Other 

superquadratic shapes, such as stars and ellipsoids, did not contribute much in terms of usability and thus were 

excluded from the implementation. 



 

59 

 

3.3.3 GUI Controls  

As was mentioned in Section 3.3.1, in addition to the visualization window, the interface also 

contains the GUI controls window that allows adjusting all the parameters related to the 

visualization, the envelope definition process and the painting modes. The GUI controls window 

is further subdivided into the following functional areas (labeled with capital letters in Figure 

39): 

Areas A1 and A2 contain slider controls allowing the user to adjust the ranges of visible volume 

values outside the envelope and inside the envelope respectively (Figure 45) (in Figure 39 the 

area outside the envelope is highlighted by the white dashed line, and the area inside the 

envelope is highlighted by the black dashed line). Maximum and current values are displayed to 

the right of each slider. “Base Color” buttons in each area allow the user to specify the color 

used to tinge volumetric features inside and outside the envelope (see Section 3.3.4 for details on 

MIDA technique). 

   

Figure 45: Visualizations of the palm using different visible value ranges and base colors for 

parts of the volume inside and outside the envelope. 
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Area B contains a slider controlling the transparency level of the envelope’s surface and two 

buttons that allow the user to specify the envelope color and to clear it (i.e. completely remove 

it) (Figure 46). 

   

Figure 46: A green 3D envelope visualized in an opaque, semitransparent and transparent 

manner. 

Area C contains controls to change the size of the brush tip, its color and to define it as negative 

(Figure 47). 

   
(a) (b) (c) 

Figure 47: (a) A small-sized brush tip used to define the envelope tracing the outline of the veins 

on the surface of the palm. (b) A large brush tip used to quickly envelope a big part of the palm. 

(c) A negative brush tip used to “push away” the previously painted envelope. 
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Using controls in area D a user can switch to the surface painting mode, adjust how deep the 

brush tip penetrates the surface of a volumetric object by adjusting the depth slider or change the 

shape of the brush tip to a cylinder by selecting the deformable brush tip option and set the 

desired height of a cylinder by using the height slider control (Figure 44). 

The last area E controls the activation of the screen painting mode. The only parameter that can 

be adjusted in this group is represented by a show envelope edges checkbox, that controls 

whether a semitransparent or a transparent but outlined version of a 2D envelope should be 

displayed (Figure 48). Note that in either case a level of transparency of either the outline or the 

envelope itself can be controlled with the transparency slider contained in area B.   

  

Figure 48: A transparent outlined version of a 2D envelope vs. a solid semitransparent version. 
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3.3.4 Maximum Intensity Difference Accumulation 

As was mentioned in Section 2.1.7 MIDA [5] is an approach that allows the user to visualize 

volumetric datasets without having to specify a TF. Instead it exploits inherent data 

characteristics to map scalar field values to unique color/opacity values. The basic idea behind 

this approach is to alter the opacity accumulation behavior of a traditional DVR to incorporate 

some of the characteristics of MIP. In a traditional DVR as a ray traverses a volume and hits 

voxels on its path, the intensity values of the voxels are mapped to the color and opacity values 

specified by the TF (Figure 49). These values are then blended together using Equation (3.1 

(Page 48), resulting in a monotonically growing accumulated opacity value (Figure 50(a)). This 

means that regardless of the prominence of the underlying volumetric features
22

, if they are 

occluded by an opaque region, they won’t contribute to the final 2D image. MIDA tries to 

address this issue by modulating any previously accumulated color/opacity value by an amount 

of the positive difference between the current and the previous intensity value (Figure 50(b)). 

Thus color and opacity accumulation formula from Section 3.2 becomes: 

 
 
  

        
           

      

  
        

           
    

  

 

(3.2) 

 

where        , and 

 
    

        
      

           
  

 

(3.3) 

 

Here    
 represents the data value at the sample point    and      

 is the current maximum value 

along the ray which is also updated to    
 whenever    

      
. 

                                                 

22
 The assumption here is that more prominent features are usually represented by higher voxel intensity values. 
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Figure 49: A ray traversing a volumetric space, while encountered voxels are mapped to color 

and opacity values and blended with the previously accumulated results. 

The difference between DVR and MIDA opacity accumulation behaviours can be better 

understood by looking at Figure 50. As can be seen in the case of MIDA, the opacity of any 

previously accumulated results is modulated by the difference in the previous and the newly 

encountered local maximum. As can also be seen, some of the rather prominent features (check 

the last peak on the graph in Figure 50b) can still be obscured if the corresponding local 

maximum does not quite go over the previous value. To address this issue, a sub-range of 

sampled data values can be defined by the user to include only the desired volumetric features. 

This is also useful to exclude data at the lower part of the total range that usually corresponds to 

noise resulting from a scanner picking up the surrounding air and dust particles floating around 

the object as it is scanned. 
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Figure 50: A comparison between (a) typical DVR and (b) MIDA ray profiles. In the case of 

MIDA the accumulated opacity value (red line) is modulated by the amount of the difference 

between the current and the previous local data value maximum (grey line). The blue line 

represents the accumulated color intensity of the resulting projected pixel on the screen. 

Under MIDA, in the absence of a TF, any sampled values (in accordance with a specified sub-

range) are linearly mapped to a full range of grey scale intensities from black to white and 

opacities from 0 to 1. To provide for more pleasing visual results and a better degree of 

comprehension, grey scale intensities can also be multiplied by a so called base color, which 

tinges the resulting rendered volumetric objects according to user preferences. 

One of the inherent issues with MIDA, that was discovered while implementing it, is that the 

resulting images suffer from inconsistent brightness; that is they are usually too dim when a 

MIDA sub-range is large and too bright when a MIDA sub-range is small. This behaviour is 

explained by the nature of the modulation process. When a MIDA sub-range is large chances are 
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high that any previously accumulated color/opacity values will be modulated by the newly 

encountered values corresponding to the more prominent features. Since rays are travelling in the 

front-to-back order, any front facing structures will appear dimmed out. In contrast, when a 

MIDA range is small, the possibility of encountering a prominent feature and thus of any 

previous value being significantly modulated is much less, hence allowing for the original 

unmodulated value to be displayed (Figure 51). Naturally, results will also vary depending on the 

relative position of processed scalar values within the defined sub-range. To combat this 

shortcoming, a simple brightness compensation scheme was devised that adjusts the intensity of 

the base color depending on the ratio of the defined sub-range to the total range of all possible 

values and the user specified brightness compensation factor, as follows: 

 
     

                     

 

(3.4) 

 

where       is the user specified base color,   is the brightness compensation factor,        the 

constant amplification factor to avoid the dimming effect for extremely narrow sub-ranges, and   

and   are the sub- and full value ranges respectively. The empirically determined values that 

provided good visual results for most datasets and that were used in the course of the conducted 

experiments and the user study (Section 4.2) were       and           23 (Figure 52).  

                                                 

23
 In case the resulting image becomes too bright the colors could be easily adjusted by reducing the intensity of 

      using the standard Windows color selection window. 
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(a) (b) 

Figure 51: In the absence of the brightness compensation (a) a visualization of a hand using a 

wide MIDA sub-range has more definition, but is too dim. (b) Under the same conditions a much 

narrower MIDA sub-range produces a less detailed but noticeably brighter image.   

 

  

(a) (b) 

Figure 52: A visualization of the same volumetric dataset (a) without and (b) with brightness 

compensation applied.  
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3.3.5 Front- to-Back Depth Peeling 

In order to be able to define an ROI directly in a 3D space of a volume it was necessary to come 

up with an approach that would satisfy the following conditions: 

 Define an ROI as a 3D shape. 

 Allow real-time updating of a 3D shape as an ROI is being defined and modified. 

 Provide enough depth cues for the user to be able to see clearly the spatial relationship of 

the volumetric features and the 3D shape defined by an ROI. 

To achieve these requirements an approach based on Depth Peeling (DP) described in [64] was 

chosen. DP is a well known technique that allows for visualizing transparent polygonal objects 

of any complexity in an order-independent manner. It is based on the idea that while a standard 

depth test
24

 provides the coordinates of the projected parts of the object (also known as 

fragments) closest to the viewer for every pixel, there also might be parts of the object in the 

scene that are second closest, third closest and so on. These second, third and generally n
th

 

fragments correspond to the surfaces of a polygonal object that under normal circumstances 

would be culled away. However when a polygonal object needs to be rendered in a semi-

transparent way, this information has to be preserved and taken into account. 

DP addresses this task by rendering the scene using n passes (Figure 53), where n corresponds to 

the number of rendered layers, or how deeply into the scene a viewer can peer. The first pass is 

rendered in a regular way and depth information for all of the closest fragments in the scene is 

                                                 

24
 In computer graphics a depth test is an operation typically performed as a part of the rendering process that allows 

only the front-most parts of the rendered 3D objects to be visible. Without it the resulting image would be incorrect 

with parts of the object’s internal structures showing through. 
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generated. The second pass goes over the whole scene again, but now it compares the depth of 

any processed fragments to the depth information obtained in the first pass. Any new fragments 

with the depth less or equal to the values from the first pass are ignored and the depth buffer 

containing the depth values for all second closest fragments is generated. Naturally, color values 

from the first rendering pass are blended with the newly generated color values to achieve the 

correct semitransparent look. The process continues until the rendering pass fails to find any new 

fragments that satisfy the depth test condition (i.e. there is no more geometry left to render at the 

depth greater than the previously generated one). The process is illustrated in Figure 54, where 

each pass peels away layers of front-most facing fragments. 

 

Figure 53: A series of images displaying peeling of the fragments using DP algorithm [64].  



 

69 

 

 

Figure 54: DP stripping away layers with each successive pass. The first pass peels away the 

front-most (leftmost) fragments, with hidden fragments shown in thin black lines. In the 

subsequent passes the already peeled away fragments are shown in light grey lines. 

Unlike the original technique, which deals only with peeling of polygonal models, the solution 

implemented in this thesis combines polygon-based peeling with VR by breaking down the ray 

casting process into stages according to the intermediate results of the peeling process. Since ray 

casting is done in front-to-back order, the peeling process is also done in the same order and thus 

is called Front-to-Back Depth Peeling (FtBDP)
25

 [65]. FtBDP can be described as a sequence of 

the following steps: 

1. The front-most polygonal geometry corresponding to the front surface of the envelope 

facing the user is rendered in a normal way. The depths of all corresponding fragments 

for every pixel in the frame are stored in the depth buffer. 

2. The MIDA ray casting stage is initiated with the color and depth buffers from step 1 

passed into it using special memory buffers called Texture buffers (further referred to as 

simply textures). The depth test is performed for any rays cast into the scene and only 

                                                 

25
 Technically depth peeling can be performed in any order, as long as the depth test is performed properly and the 

results are blended together correctly. 
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those parts of the volume that fall outside of the envelope are rendered. The colors of the 

previous peeling pass are blended with the results of the ray casting to achieve the correct 

visual effect. The positions of the rays intersecting the peeled surface from step 1 are kept 

in a separate buffer for future use. 

3. The next envelope peeling stage is initiated with the depth results of the previous peeling 

pass passed to it in a texture. New fragments are chosen based on satisfying the depth test 

condition (i.e. comparing their depths to the values stored in the above texture). The 

depth values of all newly chosen fragments are stored in the depth buffer. 

4. The MIDA ray casting stage is initiated with the color and depth buffers from step 3 as 

well as the ray positions and accumulated color results from step 2 passed into it as 

textures. The ray starting positions are initialized according to the previously stored 

values. The depth test is performed for any rays cast into the scene. Depending on 

whether the sampled values fall inside or outside of the envelope, they are rendered using 

different MIDA visualization settings (Section 3.3.6). The colors of the previous peeling 

pass and the previous ray casting pass are blended with the current ray casting results to 

achieve the correct visual effect. The positions of the rays intersecting the peeled surface 

from step 3 are kept in a separate buffer for future use. 

5. Steps 3 and 4 are repeated until the envelope peeling stage reports 0 newly chosen 

fragments. 

Several things are also considered during execution of the aforementioned sequence of steps: 
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 To distinguish between the parts of the volume that fall inside and outside of the 

envelope, the information about polygon face orientation is used. This means that any ray 

sampled values that fall between a front facing and a back facing fragment are considered 

to be inside of the envelope; otherwise – outside. 

 Since ray positions are properly kept and initialized between separate MIDA ray casting 

stages no additional overhead is put on the GPU in terms of computational workload 

associated with ray casting. There is, however, overhead associated with each stage’s 

shader code initialization and execution as well as with an overdraw effect resulting from 

the DP algorithm itself (i.e. the full geometry of the scene has to be drawn and tested in 

each polygon peeling pass). 

 The geometry corresponding to the envelope is tagged on a vertex attribute level by a 

special key, thus allowing shaders to distinguish between the regular polygon-based 

geometry present in the scene and the envelope geometry. This in turn allows combining 

visualization of any number of polygon-based objects in the scene, that properly intersect 

and are correctly blended with volumetric and envelope features. 

 Extreme cases where the envelope geometry crosses the boundaries of the specified 

metaball grid (Section 3.3.6) and thus no longer forms a closed surface are considered 

and handled correctly
26

.  

 

                                                 

26
 In general in the current implementation an envelope does not have to be a closed surface. 
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3.3.6 Envelope Definition with GPU Accelerated Metaballs  

The envisioned 3D painting metaphor necessitated defining an envelope in such a way as to 

allow for its growing and editing in a manner similar to placing brush strokes. A metaball 

representation of the envelope was chosen since it allows for an implicit surface definition and 

easy creation of flowing and blending shapes, as well as for editing of the envelope by using 

metaballs with negative radii. In its general form, a metaball is defined by a function in n-

dimensions [7]. For a Euclidian 3D space, a common representation of a regular quadratic 

metaball can be expressed as: 

 
                   

        
        

   
 

(3.5) 

 

where             are the coordinates of the metaball’s center. However, due to the floating point 

division operation this representation is computationally expensive and thus approximate 

polynomial functions are typically used. 

For the purposes of this thesis two types of metaballs are used: 

 A regular quadratic metaball, representing a spherical brush stroke, with a field falloff 

function defined by a six’ degree Wyvill polynomial [66] as: 

 
        

 
 

 
 
 

 
 

 

 
  

 
 
 

 
 

 

 
  

 
 
 

 
 

 

         

        

  

 

(3.6) 

 

where   is the distance from the current location in space to the metaball’s center, and   

is the metaball’s radius. Wyvill’s function was primarily chosen because of its visually 

pleasing metaball blending results. 
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 A superquadratic metaball, that is used to define shapes used primarily in surface 

painting/peeling operations: 

 
              

  

  
 

 
  

  
  

  
 

 
  

 

     

  
  

  
 

 
  

  

 

(3.7) 

 

where          is the distance from the metaball’s center to the current point in space, 

         specifies the size of the metaball, and    and    are the exponents defining the 

shape of the superquadratic metaball. 

Within the implementation each metaball is described by a set of parameters, such as position, 

radius, color, a negative flag (in case the metaball emits a negative field) and a superquadratic 

flag. If a metaball is superquadratic, then additional parameters are specified, including scale 

factors along X, Y and Z axes, X, Y and Z exponents, and a rotation matrix, that specifies the 

orientation of the metaball’s Z axis in space. These parameters are used in the process of 

constructing an isosurface [67] that represents a combined field effect of all metaballs present in 

the scene. 

A common approach used to construct an isosurface is based on the idea of subdividing a volume 

space containing all metaballs into a regular grid of volumetric cells or voxels. The size and the 

resolution of the grid depend on the desired precision of the final isosurface approximation. The 

values of each metaball’s field function are then evaluated for every vertex of the voxel grid. The 

resulting function values are added and stored and the vertex locations, thus representing a 

combined field effect of all metaballs at every vertex of the grid. 
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The process of defining an isosurface is inherently connected to a threshold value. An isosurface 

can be defined as a surface that consists of only points with the chosen constant threshold value. 

Once the isosurface threshold value is specified and the voxel grid containing the combined 

metaball field effect values is calculated, the isosurface can be approximated by a polygonal 

mesh representation using one of the well-known isosurface generation algorithms, such as 

Marching Cubes [68] or Marching Tetrahedrons [69]. These methods work by stepping or 

marching through the values of the combined field effect at each vertex of the voxel grid and 

comparing them to the chosen isosurface threshold value. If the currently considered voxel 

contains the specified threshold value (i.e. one or more corners of the voxel’s cube have the field 

value that is greater or equal to the threshold value and one or more corners have the field value 

that is smaller or equal to the threshold value) then, depending on the particular configuration of 

the corners containing the value, the polygons needed to represent the corresponding part of the 

isosurface that passes through the voxel are generated. As the algorithm proceeds through the 

voxels of the grid the individual polygons are fused into the resulting polygonal mesh. 

To provide for interactive frame-rates a GPU accelerated version of the marching cubes 

algorithm has been implemented as a part of this thesis. The implementation utilizes a massively 

parallel architecture of modern day GPUs and employs a two-stage approach to achieve optimum 

performance.  

Stage 1: A grid of the user specified dimensions and resolution is generated (64x64x64 grid was 

used throughout all the tests and the user study). OpenGL vertex shader programs are then 

executed in parallel, each one processing a single vertex in a grid to provide for the maximum 

level of parallelism. For each vertex all of the specified metaballs are evaluated and the 
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combined field effect value, the surface normal direction and the color are calculated. The results 

are written into a separate array that will be used as an input to the next stage. 

Stage 2: In this stage instead of vertices every shader program is handling a cube combined of 8 

previously computed vertices and their attributes. Depending on whether the cube is intersected 

by the isosurface, appropriate triangles are emitted by the OpenGL geometry shader. For every 

emitted triangle the normal and the vertex color values are interpolated using the information 

calculated in stage 1. 

It should be noted that the configuration of the envelope and thus the combined field effect of all 

the metaballs present in the scene are changed only when the user actively explores the volume 

by editing the envelope’s geometry. In all other cases it would be wasteful to reconstruct the 

isosurface for every newly generated frame (e.g. in the cases when the scene is merely being 

rotated or zoomed, without the envelope actually being changed). Therefore geometry generated 

by the aforementioned two-stage approach is captured in a dynamically allocated vertex array 

buffer through an operation known as Transform-Feedback [9]. Later this vertex array could be 

reused any number of times to render the envelope without having to calculate its underlying 

geometry. 
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3.3.7 Surface Painting Mode Implementation 

The surface painting mode allows painting on the surface of a volumetric object by following its 

shape. To provide this functionality the isosurface of the volumetric object is generated.  The 

generation of the isosurface is performed by employing the same MIDA ray casting algorithm, 

with the only distinction being that the process of evaluating the samples along the ray’s path is 

stopped as soon as the first non-transparent voxel is encountered. At this point the ray’s position 

and the object’s normal value are stored in two separate 2D buffers that will be later used to 

guide the surface painting process. Since each pair of values in the two buffers corresponds to a 

certain point on the screen plane, by moving the mouse cursor to the desired location on the 

screen the user can specify which pair of values from the two buffers will be used to override the 

current brush tip’s (and hence the corresponding metaball’s) depth and, in the case of a 

superquadratic metaball, orientation (the direction of the normal at the current position is used to 

calculate the rotation matrix of the superquadratic metaball). 

One thing that has to be considered when it comes to superquadratic metaballs is that, due to the 

nature of volumetric datasets, the obtained 2D buffer or map containing the normal values can be 

quite noisy. This in turn can result in unpleasant abrupt changes in the orientation of a 

superquadratic metaball as it glides along the surface. To combat this problem two techniques 

are used: 

 First, a 5 step isosurface refinement routine is used inside the isosurface generation 

shader program. It finds a finer matching isosurface by subdividing the current ray 

stepping size into increasingly smaller values and probing the volume space in both 
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directions from the current position along the ray. This produces not only a smoother 

isosurface but also a more uniformly distributed map of normal values. 

 To further reduce the noise a simple convolution operation with a Gaussian blurring 

kernel [70] is applied to the normal map. 

In a general sense, a convolution is a mathematical operation that combines two different 

functions and produces a third function that usually represents a modified version of one of the 

initial functions. In applications involving 2D images, a convolution is often used for filtering 

and can be defined as an operation in which a final pixel’s RGBA values are a result of a 

weighting operation on neighboring pixel values. Typically it is represented by a square matrix 

that defines weights assigned to each one of the neighboring pixels. This matrix is called a 

convolution kernel and depending on its size and coefficients allows achieving various visual 

effects, such as blurring, edge detection, embossing, etc. 

One of the most popular filtering kernels is the Gaussian kernel that can be described by the 

following function: 

       
 

  

    
 

(3.8) 

 

where   is a parameter that controls the kernel’s width or area of effect. 

When applied in the context of 2D images a Gaussian function is both separable and radially 

symmetric. This in turn means that instead of computing the pixel’s value by evaluating all of its 

neighboring pixels in accordance with the size of the kernel (i.e. a kernel of size 5x5 will require 

25 pixel value lookup operations) it is possible to achieve the same visual effect by dividing the 
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operation into two separate passes. In the first pass a 1D kernel is used to blur the image in either 

a horizontal or a vertical direction. In the second pass the same 1D kernel is used to blur the 

image in the remaining direction (against the original 5x5 Gaussian kernel the use of two 1D 

kernels of sizes 1x5 and 5x1 will result in 15 less pixel value lookup operations). The results of 

this two stage approach can be observed in Figure 55. 

   
(a) (b) (c) 

Figure 55: (a) A normal map without filtering applied. (b) A normal map with the 1x9 horizontal 

Gaussian kernel applied. (c) A normal map with the 9x1 vertical Gaussian kernel applied. 

It should be noted that a traditional full-image Gaussian filter would produce erroneous filtered 

normal values in the areas corresponding to the edges of the projected volumetric shape (by 

weighting the neighbouring values that correspond to the empty space in the scene). Hence an 

edge-preserving variation of the filtering technique is used, that takes into account only the 

pixels of the normal map that fall inside of the projected volumetric shape. 
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Chapter 4: Evaluation and Results 

The primary goal of this thesis was to provide an alternative approach to volumetric dataset 

exploration that would combine qualities such as a fast learning curve, intuitiveness, ease of 

control and flexibility
27

. A user study (Section 4.2) was conducted in order to evaluate the first 

three qualities. A series of experiments presented in Section 4.1 demonstrates the flexibility of 

the proposed approach by generating various context-preserving visualizations of several 

volumetric datasets. In addition, considering the current state of maturity of similar products in 

the industry, the ability to provide visually appealing and contextually meaningful visualizations 

at interactive frame-rates throughout the whole interaction and exploration user experience was a 

given. Section 4.3 is dedicated to the performance evaluation of the system under different 

visualization conditions. Finally, designing and implementing a future-proof visualization model 

should consider a matter of extensibility
28

 as well. Section 4.4 demonstrates the extensibility 

potential of the proposed approach by integrating two additional visualization modes into the 

system.  

4.1 Exploration Flexibility 

This section highlights the flexibility of the proposed approach in terms of the types of 

exploration tasks that can be performed. It presents a number of examples with each one 

focusing on exploring a given volumetric dataset while trying to achieve the desired contextual 

view by exposing certain features of interest. The painting modes and techniques as well as the 

relevant GUI controls used to achieve each of the desired contextual views are also covered. 

                                                 

27
 Flexibility here means providing several ways of visualizing features of interest, i.e. ROIs. 

28
 Extensibility here means the ability to extend the visualization capabilities of the system by adding alternative 

visualization modes. 
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4.1.1 3D Painting Mode 

The 3D painting mode allows exposing the features of interest in a volumetric dataset by 

enclosing them in a 3D envelope. In its turn the operation of exposing can be performed in two 

distinct ways that are commonly recognized in the field of VR. 

4.1.1.1 Context-Preserving Exploration 

One of the most common tasks in the field of VR in general and in the medical VR in particular 

is to provide a contextual representation of the data by displaying the features of interest in a 

distinctly different way from the surrounding (i.e. contextual) parts of the volume. This 

subsection demonstrates the flexibility of the proposed 3D painting approach by achieving a 

number of contextual data views. These contextual views correspond to volumetric data 

exploration tasks, typically encountered in the medical field, which are centered around the 

process of revealing various hard and soft tissues in the context of the surrounding hard and soft 

tissues (Figure 56). Both free-hand and surface painting modes were used to achieve the visual 

results presented in Figure 56.  

For example, in Figure 56(a) the free-hand painting technique was used to paint a 3D envelope in 

the plane that separated the volume space approximately into two equal parts. Then the MIDA 

range sliders for both the parts of the head inside and outside of the envelope were used to reveal 

the bone and tendons, and the skin layer respectively. Finally, the base colors were adjusted to 

achieve a more realistic look. 

In the case of the hand screenshot (Figure 56(b)) the surface painting technique with a flattened 

brush tip was used to roughly isolate the skin layer from the rest of the dataset’s features. The 

MIDA sliders corresponding to the parts of the volume enclosed in the envelope were adjusted to 
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exclude any values (i.e. some of the blood vessels and muscle tissue close to the skin layer were 

also enclosed by the envelope, and thus had to be filtered out) except those corresponding to the 

skin layer. Since the envelope only enclosed the parts close to the skin layer, adjusting the MIDA 

sliders corresponding to the parts of the volume outside of the envelope to reveal the bones was a 

straightforward task. 

To produce the third screenshot (Figure 56(c)) containing the image of two feet (one showing 

only the bones and the other the bones and the muscles), first the surface painting mode with a 

spherical brush tip was used to roughly isolate one foot from the other, then the free-hand 

painting mode was employed to tweak the envelope’s shape to achieve the exact desired 

enclosure of the features (i.e. to provide a clean separation of the two feet). Finally, the MIDA 

sliders and the base colors corresponding to the parts of the volume inside and outside of the 

envelope were adjusted to produce the desired contextual view. 

   
(a) (b) (c) 

Figure 56: The results of visualizing different volumetric datasets ((a) a head , (b) a palm and (c) 

two feet) while providing the desired level of contextual information. 
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4.1.1.2 Carving 

Another commonly encountered type of 3D exploration task exposes the features of interest by 

completely removing the occluding parts of the volume. This type of interaction with a volume is 

often referred to as carving (or peeling when applied in the context of a surface), and is 

commonly used in cases when the user wants to examine the outline or shape of the structures 

inside the volume. Due to the fact that MIDA visualization works with a settable range of 

visualized values, carving can be easily achieved by specifying an empty range (i.e. a range in 

which the minimum and maximum visualized values are the same). This subsection 

demonstrates the flexibility of the proposed approach by performing a series of carving/peeling 

tasks. The rest of the exploration process remains exactly the same as in the case of the context-

preserving exploration and all of the aforementioned painting techniques can be applied (Figure 

57). 

In Figure 57(a) a part of a volumetric piggybank dataset was carved away using the free-hand 

painting mode. 

The carving of the head in Figure 57(b) was performed by free-hand painting a 3D envelope in 

the plane roughly aligned with the profile of the head (much like the case presented in Figure 

56(b)). 

To achieve the contextual view shown in Figure 57(c) the surface painting mode with a flattened 

brush tip with a low height value (so that the skull, but not the brain underneath, could be peeled 

away) was used. 
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In the three examples above, the MIDA sliders for the parts of the volume enclosed by the 

envelope were adjusted to set the visible sub-range of volume values to 0. 

 

 

 

(a) (b) (c) 

Figure 57: Carving and peeling are used to expose internal features and to remove the occluding 

parts in volumetric datasets.  

4.1.2 2D Painting Mode 

Often in the presence of fuzzy data with a low level of intensity value variability (such as MRI 

scans of various soft tissues, e.g. a soft part of a fruit, brain matter or various small structures that 

are simply beyond a scanner’s resolution ability) it is difficult to isolate features of interest while 

operating in a 3D space. This is due to the fact that fuzzy data doesn’t have a clearly defined 

surface and suffers heavily from partial volume effects
29

. To visualize such data, techniques that 

provide semi-translucent spatial representations of the data are often used. This in turn can lead 

to ambiguities while interpreting the results of the visualized information as features that are 

                                                 

29
 In other words it is difficult to tell where one type of tissue or matter ends and another begins. 
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closer to the viewer clash with the ones that are further away. In this case the 2D painting mode 

can provide additional cues that aid in the understanding of spatial relationships and internal 

structure of the features of interest. By painting an arbitrarily shaped 2D window on the screen 

the user can rotate and move the target object and adjust the visualization parameters in order to 

obtain the sought after information. 

As an example of such a scenario can be demonstrated using an MRI scan of an orange. The goal 

is to collect information about the internal structure of the pulp, its shape and spatial relationship 

to the rind. The results of the experiment illustrating this scenario are shown in Figure 58. 

   
(a) (b) (c) 

Figure 58: (a) An orange visualized without an envelope applied. (b) A 3D envelope is painted 

enclosing a part of the orange. (c) A 2D envelope is used to see all the way through the orange to 

better reveal internal structures. 

Note that the 2D painting mode is also useful when the user doesn’t want to deal with the depth 

of the painted envelope and instead wants to apply the visual effect inside of the envelope to all 

the structures in the scene regardless of their distance to the viewing point.  
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4.2 User Study 

A user study was conducted in order to evaluate how intuitive and easy to learn and control the 

proposed painting metaphor and its implementation were. 

Ten male and one female subject participated in the study. Ten of the subjects were Ryerson 

undergraduate students and one subject was a Ryerson MSc graduate student. All of the 

participants were full-time students of either the department of computer science or engineering. 

All subjects were first-time users of the implemented exploration technique and none had any 

previous experience with any medical or VR software. Approximately half however did have 

limited experience with various 3D modelling programs (i.e. Blender, Maya, etc.). In order to 

better gauge the level of participants’ proficiency performing navigational tasks in virtual 3D 

environments, they were also asked to state the approximate number of Hours per Week (HPW) 

spent using a mouse and playing video games, with the average numbers coming to 25.5HPW 

and 11.5HPW respectively. 

The participants were asked to use the implemented software to perform several trial tasks. The 

goal of each trial was to achieve an approximate visual match to a pre-rendered image (Figure 

59). A total of nine trials, each based on a different dataset, were used. The trials were further 

broken down into 3 groups:  three 2D painting trials, three 3D volume carving trials and three 3D 

context-preserving trials. In the course of the trials from both the 3D carving and 3D context-

preserving groups the users had to use both the free-hand and the surface painting modes. Before 

each set of trials each participant was given instructions using a separate demonstration dataset 

and was also given time to play around with the software to familiarize themselves with the 

visualization controls and the painting mechanism. The time for each trial was recorded for 
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statistical purposes, thought the participants were informed that achieving a visual match in the 

shortest possible time was not an objective. The average measured trial completion time was 1 

minute. Upon completion of all trials the participants were asked to fill out the questionnaire and 

indicate their level of agreement or disagreement with each statement using a 7-point Likert 

scale
30

. The results of the questionnaire are shown in Figure 60
31

. 

   
(a) (b) (c) 

Figure 59: Examples of pre-rendered images from each trial group: (a) an example of a 2D 

painting trial, (b) an example of a 3D carving trial and (c) an example of 3D context-preserving 

trial. 

                                                 

30
 A Likert scale is a psychometric scale, where a respondent specifies their level of agreement or disagreement to a 

statement on a symmetric agree-disagree scale. 
31

 The white bars correspond to the minimum and maximum marks given by the participants for each question. 
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Figure 60: The results of the user study questionnaire based on a 7-point Likert scale. 

As can be seen from the answers the results were quite positive. In all categories but one the 

mean average was 6.0 or more. Also as can be seen by the spread of the marks for each question, 

there was not much variability in the given answers. The only question that received a mean 

below 6.0 was related to the sliders that control the visible range of values under MIDA 

visualization mode. Perhaps this aspect of the interaction process can be improved by providing 

1 2 3 4 5 6 7 

1. Was the 3D free-hand painting technique 
easy to learn? 

2. Was the 3D free-hand painting technique 
easy to control? 

3. Was the 3D surface painting technique 
easy to learn? 

4. Was the 3D surface painting technique 
easy to control? 

5. Was the 2D screen space painting 
technique easy to learn? 

6. Was the 2D screen space painting 
technique easy to control? 

7. Were the visible range sliders easy to 
understand? 

8. Were the visible range sliders easy to 
control? 

9. Was the flattened brush tip useful? 

10. Was it easy to achieve desired/expected 
visual results? 

11. Was it easy to achieve visual matches for 
given trial tasks? 

12. Did you find the 3D interaction process 
and controls intuitive? 

13. Did you like the “Painting” metaphor 
overall? 
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a single more user-friendly custom range control (instead of the two separate sliders), that would 

allow users to achieve the same visual results but with a fewer number of adjustments. Another 

common comment from participants was that even though gauging the depth of the brush tip in 

relation to volumetric structures in the scene was usually not a problem, under certain conditions 

it still could be somewhat confusing and thus they would prefer to have additional depth cues. 

This is a known issue in the current implementation and possible ways of addressing it will be 

discussed in Chapter 5:. 

Overall, the results of the user study show that all of the participants liked the proposed 

visualization and exploration model and found it to be both intuitive and quite easy to learn and 

control. 

4.3 Performance 

As was stated previously, one of the characteristics of a satisfactory exploration experience can 

be expressed in terms of the fluidity of a user interaction with a virtual scene. That means that 

rendering frame-rates for any given visualized dataset should be maintained at interactive levels 

as not to appear choppy or unbearably slow, regardless of the types of operations and 

visualization modes. A number of 30 FPS was chosen as an acceptable target frame-rate. A total 

of four different 16 bit
32

 per voxel datasets of varying sizes were chosen to measure the 

performance both with and without 2D and 3D envelopes. Different combination of rendering 

modes for cases with a defined envelope including MIDA only, MIDA and 1D TF, MIDA and 

                                                 

32
 Here 16 bit refers to the number of bits used to represent voxel intensity values in a dataset. 
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2D TF, and 1D and 2TF were also benchmarked. The results of the measurements expressed in 

average FPS for all combinations are presented in Figure 61. 

It should be noted that measuring performance for different volumetric datasets, even if they 

have the same physical size and are visualized using the same visualization parameters, is not a 

straightforward process and can produce quite different results in terms of performance. This is 

due to the fact that the complexity of computations is heavily dependent on the nature of the data 

being processed and such aspects of the visualization process as color mapping, gradient 

evaluation, early ray termination, the number of values sampled along a ray, volume and lighting 

model interaction and many others can heavily influence the results. Thus to minimize the 

possible effects of the aforementioned conditions all of the tests were performed using the same 

resolution of the rendering window (which was left at the ImageVis3D default value of 400x400 

pixels) and the same default visualization parameters for all the tested rendering modes (i.e. 

MIDA slider values were left in their default positions). Also, a 3D envelope (for the tests where 

the envelope was present) covering approximately half of the volume of a dataset was used. 
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Figure 61: Average FPS measured under different visualization conditions. 

As can be seen from the results, for very large datasets (i.e. greater than 200MB), under certain 

combinations of visualization techniques, the average frame-rate can drop quite considerably 

below the target value of 30 FPS. This is both due to the overhead of the depth peeling algorithm 

and the heavy computational load VR is putting on even a powerful GPU
33

. In the future these 

figures will be considerably improved by employing various optimization techniques (Section 

5.2), such as Per-Pixel Linked List [71] for order-independent transparency rendering, Empty 

Space Skipping (ESS) [72], Frame Temporal Coherence [73] and others. Currently, if the 

rendering frame-rate is considered to be inadequate by the user, two options for increasing it are 

available (albeit at a price of losing some of the visual quality in the resulting images). 

                                                 

33
 All of the tests were performed using nVidia 480 GTX video card. 
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The user can adjust the sampling rate of a volumetric dataset, forcing the VR algorithm to skip 

some of the data during the ray traversal process. This can be done directly from within the 

ImageVis3D user interface allowing the user to choose the desired level of compromise between 

quality and performance. The visual results with respective frame-rates for different levels of the 

sampling rate are shown in Figure 62. 

   

Figure 62: A head dataset visualized at (from left to right) 100%, 65% and 30% sampling rate. 

Another available option allows the user to either force the desired LOD for the visualized 

volumetric dataset, or let the system choose it automatically by specifying the minimum allowed 

frame-rate. In the latter case the system will adjust the LOD on the fly by reducing the 

dimensions of the rendered dataset by half until the target frame-rate is reached. Examples of 

using differ LODs with corresponding frame-rates are presented in Figure 63. 
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Figure 63: A head dataset visualized at different LODs (the highest on the left to the lowest on 

the right). 

4.4 Extensibility 

Despite its flexibility the MIDA visualization technique also has its limitations. For instance in 

datasets where feature separation based on intensity value ranges alone is not possible (e.g. due 

to similarity of intensities of different materials measured during a scanning process) MIDA 

produces poor visual results. Also, using just one base color for feature coloration can be 

somewhat restrictive. Realizing that, the implemented visualization and envelope definition 

techniques have been designed in such a way as to allow for seamless and straightforward 

integration of other volume visualization techniques (such as the ones described in Sections 2.1 

and 2.2). 

To demonstrate the extensibility potential of the proposed approach, two other VR techniques, 

1D and 2D TF rendering modes, already implemented in ImageVis3D have been integrated into 

the code. The total time of the integration was about 3 hours. With this newly added functionality 
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the user is now able to select MIDA, 1D TF or 2D TF as the rendering mode for parts of the 

volume both inside and outside of the envelope. Any combination of rendering modes is possible 

and the original functionality, including the 3D surface painting, is fully preserved. Figure 64 

shows examples of combining different rendering modes as well as using both the 2D screen 

painting and the 3D surface and free-hand painting modes. The screenshot in Figure 64(a) 

depicts using the 2D painting mode with the parts of the volume inside of the envelope rendered 

using a 1D TF and the parts outside of the envelope using a 2D TF. The screenshot in Figure 

64(b) uses results of the 1D TF rendering process as the basis for the 3D surface painting to 

define the 3D envelope enclosing features rendered using the MIDA technique. The last 

screenshot in Figure 64(c) shows a combination of the MIDA and 2D TF visualization modes 

and the use of the 3D free-hand painting technique. 

   
(a) (b) (c) 

Figure 64: (a) The 2D painting mode with 1D and 2D TF rendering modes. (a) An example of 

the 3D surface painting over the surface defined by a 1D TF. (c) A combination of MIDA and 

2D VR techniques using a free-hand painted 3D envelope. 
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Chapter 5: Conclusion and Future work 

5.1 Conclusion 

This thesis presented an implementation of an alternative context-preserving volume image 

exploration model. The image exploration is realized by an interaction model based on a novel 

painting metaphor, where a user encloses the volumetric features of interest by painting a 2D or 

3D envelope directly in the space of a virtual scene. Combined with the MIDA volumetric 

visualization mode, the envelopes allow the user to quickly achieve the desired context-

preserving views by visualizing the envelope enclosed features in a distinctly different way from 

the rest of the volume. Furthermore, the ability to adjust the range of visible volume intensity 

values when using the MIDA visualization mode provides additional volume exploration 

flexibility by allowing the user to easily filter out the occluding volumetric features, as well as 

perform such operations as carving and peeling. 

The proposed interaction model was implemented in the form of extensions to the existing 

volume rendering system ImageVis3D. The extensions were designed and implemented in such a 

way as to blend seamlessly with the rest of the ImageVis3D framework, provide easy 

extensibility in terms of possible usage of other rendering modes and support interactive frame-

rates even for very large volumetric datasets. The results and contributions of this thesis have 

been evaluated in terms of flexibility of possible modes of volume exploration, performance and 

extensibility of visualization modes by carrying out a series of experiments presented in Chapter 

5:. Finally, the results of the conducted user study validate such claimed qualities of the proposed 

approach as the fast learning curve, intuitiveness and ease of control. 
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5.2 Future work 

Following one of the initially set objectives, the volume exploration paradigm and the painting 

metaphor implemented as a part of this thesis are quite generic. This allows taking the future 

development of this project in a number of directions. 

One of the very popular and rapidly evolving areas in the field of VR, that has not been covered 

in this thesis, is Volume Segmentation [74]. This area is somewhat related to volume exploration 

in a sense that segmenting and labeling volumetric features allows for a much wider choice of 

ways of visualizing them. One popular approach to performing a user guided semi-automatic 

segmentation process is based on the idea of Seed Growing and Edge Detection [74]. There are 

quite a few techniques and mathematical models that try to address this issue, but, despite all the 

research, most of them still (especially when applied to noisy datasets) suffer from a problem 

known as leakage, where a segmentation process spills outside of the shape that it is meant to 

detect. One of the solutions to this problem is to restrict the segmentation process by enclosing it 

in some sort of a user adjustable envelope. Coincidentally, this is exactly what the proposed 

approach of enveloping the features of interest is designed to do, and combined with one of the 

segmentation techniques it could prove to be a useful constraining mechanism. 

Another possible direction for future work is to concentrate on evolving the painting interaction 

model and envelope editing capabilities. Unlike parametric models that allow the user to define 

control points directly on the surface of a described 3D parametric model, implicit models are 

lacking this characteristic and are thus difficult to use when precise control over the shape of the 

modelled surface is required. This is however changing with the introduction of some novel 

techniques [5] that allow controlling the geometry of implicit surfaces in a manner similar to 
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their parametric counterparts. Integrating such functionality into the project would allow it to 

become a much more precise and flexible exploration tool. 

Furthermore, a few ways of improving and optimizing the current implementation can also be 

explored. 

Firstly, as was already mentioned, additional depth cues could be used to improve spatial 

comprehension of the relative position of the envelope and volumetric features. This could be 

achieved in several ways, including, but not limited to, using optically correct self-casting 

shadows for all volumetric and polygonal objects present in the scene, providing additional 

views of the objects in the scene from a number of different viewpoints, or introducing some sort 

of a projection plane directly into the space of a 3D scene onto which the outlines of the objects 

in the scene will be cast. 

Secondly, the rendering frame-rates could be improved considerably by employing various 

optimization techniques, such as ESS [72], temporal coherence [73], data compression and on-

demand streaming [75], etc. The applicability of each of these techniques however has to be 

carefully considered and evaluated, as reconciling and marrying different algorithms in the same 

visualization pipeline can pose non-trivial problems. In fact, due to exactly these reasons, an ESS 

algorithm that had been implemented at the early stages of the project and provided on average a 

40% boost in frame-rates, had to be “put on ice”, as, in view of the project deadlines, it was not 

possible to integrate it properly with the rest of the system. 

Finally, as new research is being done and new work is being published, some of the techniques 

presented in this thesis could be improved or replaced entirely by other more efficient versions. 
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For instance Generalized Metaballs [76] could be used to extend the project’s implicit surface 

definition capabilities. As a bonus they provide more freedom in terms of choosing a suitable 

field function. An order independent FtBDP algorithm used in this thesis could be replaced by a 

recently published more efficient single-pass Per-Pixel Linked Lists technique [71]. This in turn 

will allow implementing a single-pass ray-casting algorithm with simultaneous peeling and 

blending, which should result in the frame-rates that are almost identical regardless of whether a 

3D envelope is present and not. In addition, if implemented, this approach will open doors for 

various other polygon-based and volumetric rendering techniques, as all of the information (i.e. 

fragment coordinated, normal directions, color values, etc.) about all objects in the scene will be 

readily available through a single linked-list structure. 
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