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There are various studies concerned with the estimation of stochastically varying coefficients for the

hedge fund series but just few are available in the literature that study the model with time-varying

coefficients and non-linear factors, or make a comparison of the series before and during the financial

crisis. This work studies a model with linear and non-linear factors with stochastically varying coeffi-

cients to obtain better estimation of the exposure of the hedge fund and accuracy in the results. Better

exposure estimates implies better hedging against negative changes in the market hence a reduction in

the risk taken by the hedge fund manager. Besides, different techniques have been studied, implemented

and applied in this thesis to estimate and analyze time varying exposures of different HFRX Index (an

index that describes the hedge fund industry performance).

The study shows that option-like models with time-varying coefficients perform the best for most of the

HFRX indexes analyzed. It also shows that the Kalman Filter technique combined with the Maximum

Likelihood Estimator is the best approach to estimate time-varying coefficients. In addition, we provide

evidence that Kalman Filter is in a better position to capture changes in the exposure to the market

conditions.

Keywords: Time-varying coefficients, Kalman filter, hedge funds, financial crisis
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Chapter 1

Introduction

Beta is a systematic risk measure, also called a market risk measure. It represents one of the most widely

used concepts in finance. In a sense, beta is an incomplete explanation of risk and returns because a low

beta does not necessarily mean low risk, it simply means low exposure to the market, or more simply, low

market risk [LHabitant, 2001]. Beta is used by financial economists and practitioners to estimate asset’s

sensitivity to the overall market, to apply a variety of valuation models, to evaluate the performance of

the asset managers, among others.

Our objective in this thesis is to model beta varying on time, such as a random walk or as a periodic

function. Then, we can estimate beta by using different techniques in a variety of models.

In the context of the Capital Asset Pricing Model (CAPM), [LHabitant, 2001], beta is assumed to be

constant over time and it is estimated using an Ordinary Least Squares (OLS) approach. However,

due to the fact that beta depends on economic’s factors some studies have found evidence of time

dependent betas. [Fabozzi and Francis, 1978] suggest that beta is random for a significant number of

securities. [Sunder, 1980] introduces a model where some variations of beta are not independent in time.

His results indicate a higher level of non-stationarity beta in some period of time but not in others.

[Bos and Newbold, 1984] study a market model in which they allow a stochastic beta to obey a first

order autoregressive process. In their empirical study they found strong evidence indicating stochas-

tic systematic risk. Support studies for the hypothesis of time dependent exposure are provided by

[Daniel W. Collins and Rayburn, 1987] and [Kim, 1993] among others.

The most intuitive and straightforward explanation for the exposure of hedge fund be time dependent

states in their nature. For example, the portfolio exposure can change due to time variant market pre-

miums or beta underlying assets, while portfolio weights are kept constant. But also, the hedge fund

managers are allowed to change the exposures in order to adapt their portfolios to changing market

environments, thus the portfolio weights are dynamically changed over time.

Several alternatives have been used in the financial literature to model time-varying returns and risk.

One idea to make beta time dependent is that there is a linear relationship between the coefficients

at time t and the coefficients at time t − 1. The idea is that at time t − 1 the hedge fund manager

observes the market and adjusts his portfolio accordingly. [Yao and Gao, 2006] use a dynamic model

1



CHAPTER 1. INTRODUCTION

and recursive filtering on the Australian industry portfolios to confirm that betas on stock portfolios

vary in time.

In the fund industry there exist various papers studying the estimation and the use of regression models

with stochastic coefficients but just few of them explain the properties of the estimator and the parame-

ters, and it is what [Pagan, 1980] does. Under some conditions he obtains that the estimator is consistent

and asymptotically normal. He also provides sufficient conditions for the estimation of regression models

with stationary stochastically varying coefficients [Pagan, 1980]. As there exist different techniques that

allow for the modeling and estimation of time varying betas we decided to focus on three of them: the

rolling windows, the Kalman filter approach and seasonal periodic betas. Theses techniques provide the

estimation of beta series through time allowing to examine and analyze the time varying behavior of

betas.

Regression analysis is one of the most widely used and misused techniques in economics and finance

as well as in several other fields. However, the standard assumptions of these models are most of the

time violated principally when time series data are used. One of the main assumptions of the standard

regression analysis is that the variance of the errors is constant. [Brealey and Kaplanis, 2001] studied

whether the exposure in hedge fund returns is constant. They found that the null hypothesis of constant

coefficients is strongly rejected when using a rolling window regression, which indicates that the factor

exposures of hedge fund are time varying.

It is well known that the role of regression analysis is to describe exactly the specific relationship that

exists between the two variables under the assumption that the coefficients of the regression model are

constant over time. But there is an ample group of practical applications where this is not a realistic as-

sumption, such as in financial or economical studies. For example, in financial investment, it is generally

agreed that stock markets’ volatility is rarely constant over time [Wei, 2006], therefore an option-like

factor in the hedge fund models indicate that the exposure of it is not constant but changing over time.

It is precisely the base of the OLS-rolling window methodology that it is a regression analysis applied in

each window assuming a fixed style allocation over time. It is hardly sustainable, that at the end beta

will be time dependent.

By using rolling windows, the fund’s investment style is constantly monitored, making classification and

style exposures readily identifiable. Such a rolling style benchmark tracks the manager’s actual returns

much more closely than static benchmarks. It determines how the fund’s styles may have changed over

time. It also allows faster reactions to changes in management style, and so it provides an early warning

of potential changes in whether funds adhere to their stated investments styles over time.

From a theoretical point of view, there is no argument to justify the use of rolling windows in model

analysis. The rolling window technique even creates a contradiction between the estimation model as-

suming constant exposures and the final output that shows time-varying exposures. If it is true that

the exposure can change over time, their variations should be explicitly modeled rather than estimated

by rolling window assuming them to be constant first in some intervals of time. The Kalman Filter is a

technique that allows precisely this sort of modeling.

Named after Rudolph E. Kalman (1940), the Kalman filter approach is a computational algorithm that

makes optimal use of imprecise data in a linear or near linearly system with Gaussian errors to contin-
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uously update the best estimate of the past of the data, current and even future states. In a sense, the

Kalman filter is similar to least squares fitting, but allows for real time updates to fit.

The filter only uses past information, but it reacts very quickly to a change in its environment. This

confirms its usefulness and applicability to the changing nature of hedge fund portfolios and the im-

portance of it to detect crisis or some big changes in the market. Indeed, the Kalman filter is suited

to take into consideration the multiple investment style variations of actively managed hedge funds

[Swinkels and Sluis, 2006], but its use has been rather limited in the literature due to the limited size

of hedge fund databases. In addition, due to the complexity of understanding and implementing the

Kalman filter, it has not been widely used over the traditional regression analysis in most of the statis-

tical inference problems.

There are some studies where the researchers use Kalman filter to estimate different time-varying coef-

ficients models in order to see which model suits better the data. For example, [Wells, 1994] estimates

a dynamic version of the market model (CAPM) by using the Kalman filter technique. They allow the

parameters to be dependent on their past values. There were no gain model but somehow the ran-

dom walk model was preferred by using the Akaike information criterion to compare the out-of-sample

forecasting ability of the models. The researches not only compare models but also most of the stud-

ies are based in the comparison of different estimator’s techniques including Kalman filter approach.

In the paper of [Robert D. Brooks and McKenzie, 1999] the estimation of the conditional time varying

betas for Australian portfolios using monthly data was made. In this paper it can be found evidence

supporting the Kalman filter approach, based on in-sample and out-of-sample forecast errors. Also,

[Robert W. Faff and Hillier, 2000] estimate the time dependent exposure of 32 different UK industry

sectors by some models, including the regression model with time varying beta where the Kalman filter

was used for estimation. Their study concludes overwhelmingly that market model betas are unstable

and betas estimated using Kalman filter approach are consistently more efficient than other methods

used in the paper. [Ebner and Neumann, 2004] evaluate the estimation of beta using a rolling window

regression, a random walk using Kalman filter and a flexible least square model for individual German

stocks. They found evidence that the rolling window regression is even worse than the constant beta

estimated using OLS, in spite of being widely used in the financial field.

On the other hand it is known that the analysis of the time varying beta of hedge fund is an important

part of the performance analysis of it, however there are not too many studies related to it in the field.

[Racicot and Theoret, 2009] test the assumption that the conditional alpha and beta follow a random

walk by using different models with a data of hedge fund. They propose the use of the Kalman filter

approach with some supposed dynamic risk factors and measure the error of the estimation process.

While some of the models assume that the relation between the market and the hedge fund depends on

time, we also analyze whether there is a close relation with nonlinear option-like exposures of the hedge

fund to standard asset classes. There is a suggestion in the literature, that hedge fund returns exhibit

option-like features. [Henriksson and Merton, 1981] introduce one option in the index portfolio trying

to separate the portfolio manager ability to pick an option and to determine the market timing.

[Fung and Hsieh, 1997] show some results indicating that there exist some strategies of hedge funds

highly dynamic. They find five dominant investment styles in hedge funds that combined with the asset

3
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class factor model, can provide an integrated framework for style analysis of both buy-and-hold and

dynamic trading strategies [Fung and Hsieh, 1997]. Then, [Agarwal and Naik, 2004] show that some of

the equity hedge fund strategies present a non-linear pay-off structure. They found that the option-like

strategies explain better the variation in hedge fund returns.

My thesis research in this area has been concentrated on analyzing the existence of time dependent beta

in the hedge fund series and to estimate them by using a Kalman filter approach. Using linear regression

methods as benchmark, since it is the most used technique by the practitioners nowadays, we work with

models and methods that allow us to obtain the estimation of the time dependent parameters for a hedge

fund series. Therefore, we implement a Kalman filter in order to use it with different models and hedge

fund strategies.

We expect that not only the models with time dependent exposures perform better but also the model

with option like and time dependent parameters will have the best performance for most of the styles

of hedge funds. Since our interest is to make a comparative analysis of the behavior of the time-varying

betas estimated by each technique in each model and to compare the techniques by their accuracy to

forecast the parameters, we use in-sample performance criteria. Some studies on the modeling hedge

fund series with stochastic coefficients and the estimation of them have emerged in recent years, but

only few of them are available in the literature on analysis of the series before and after a financial crisis.

Therefore, we make an analysis if this issue, before and after a financial crisis basis in order to examine

the effect of different data frequency on the result of the study as well as the timing to locate the crisis

by each technique of parameter estimation.

The rest of the thesis is organized as follows: an overview of models and methods with constant and

time dependent parameters used for testing is presented in Chapter 2. Most of the estimation of the

parameters for these models requires a Kalman filter technique, thus Chapter 3 establishes the assump-

tions of the models that can be used by Kalman filter as well as an explanation of the Kalman filter

approach, some of its characteristics and its implementation. Chapter 4 describes and analyzes the data,

and also shows the test and results. At the end the conclusions and further future work are described

to complete the thesis.
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Chapter 2

Models and estimation methods

Hedge fund returns can be expressed as the sum of the exposure to the market, which is measured by

beta, and the abnormal returns, defined by alpha. Alpha characterizes the managers selection skill. Now,

a portfolio may exhibit time-varying alpha and beta for three reasons: Firstly, the underlying assets in

the portfolio may have changing alphas and betas. Secondly, due to active trading strategies and thus

dynamic change of portfolio weights, alpha and beta of the portfolio may be time-varying. Thirdly, both

of these characteristics may be inherent in the portfolio. While the first behavior is not connected to

the fund manager, the second is an indication of market timing skills of the manager.

A study of some hedge fund return model regression are presented below. In this chapter we describe

first the factor models and then the cases of one, two or three factors models when the parameters are

constants or time dependent. Then, we explain some of the methods used to estimate the parameters,

their ideas and the assumptions needed to apply them.

2.1 Factor Models

Factor models are useful for asset pricing, portfolio management, risk measurement and, more generally

for any discipline that needs information about the co-movements of different assets. Technically, a

factor model does no more than condensing the dynamics of a large series of fund returns into smaller

series of explanatory factors, whose influence is common to all funds. In a sense, the small set of factors

and factor exposures provide a parsimonious representation of the large set of funds. That is, it explains

most of the variance and covariance of the funds considered, see [LHabitant, 2001]

In practice, the use of factor analysis is supported by the observation that hedge fund returns tend to

react together to some extent. This confirms the intuition that fund returns are likely to be affected by

the same factors at the same time. Consequently, it is meaningful to attempt to capture the common

behavior of a series of funds by one or several factors.

Multi-factor modeling is a general form of factor model, and it is the most popular model for the return

5



2.1. FACTOR MODELS CHAPTER 2. MODELS AND ESTIMATION METHODS

generating process. The return yt is represented as,

yt = αt +

k∑
i=1

βitFit + εt (2.1)

where:

yt = Return of the hedge fund at time t.

Fit = Factors affecting the returns at time t.

αt = The “zero” factor which is the value added by the manager at time t

βit = Exposure of the hedge fund return to the factor i at time t.

εt = random disturbances of the return at time t.

k: The number of factors and it is a positive integer larger than zero.

The statistical noise εt, which corresponds to the residual return is a zero mean random variable. It is

generally assumed that the covariance between εt and factor Fit is zero.

Some domains of applications for hedge fund multi-factor models are the following:

• The identification of the relevant drivers of performance of a portfolio of funds or a hedge fund

index.

• The understanding of the factors that together explain the total risk of a portfolio of funds or a

hedge fund index.

• The creation of a benchmark.

• The construction of a portfolio of funds tilted toward specific risk factors of choice.

• The construction of index trackers or enhanced index portfolio.

• The determination of alpha which describes the degree to which a product outperforms a compa-

rable product or index.

Furthermore, factor models provide an interesting and natural explanation for the change in correlations

observed between hedge funds.

In this section we consider one, two and three factor models. We focus on the parameters’ characteristic

of these models, i.e. if they are constant or changing in time, therefore, in the equation of the models

and the properties of their parameters.

2.1.1 Case of one factor models: k = 1

In this case the model represented in 2.1 can be written as,

yt = αt + βtXt + εt (2.2)

where Xt is the market return indicators at time t.
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Linear Regression with constant coefficients

The classical regression model is given by,

yt = α+ βXt + εt (2.3)

where εt is a white noise. It assumes that the relationship between the explanatory and explained

variables remains constant through the estimation period.

Linear Regression with Time-Varying Coefficients

In this model the parameters alpha and beta can be taken in many different ways, but here we assume

that they evolve according to a random walk which is confirmed by a unit root test in Chapter 4. This

means that the current exposure to the market is a normally distributed random variable taking as mean

the exposure of the last period. The corresponding noises are normally distributed and not correlated.

Therefore, the system can be written as:

yt = αt + βtXt + εt

αt = αt−1 + εt (2.4)

βt = βt−1 + ξt

where:

εt = Alpha disturbances at time t.

ξt = Exposure disturbances at time t.

and,

εt ∼ ℵ(0, σ2
εt)

εt ∼ ℵ(0, σ2
εt) (2.5)

ξt ∼ ℵ(0, σ2
ξt)

Also there are some time varying characterizations of the exposure that can be considered dependent on

the style of the hedge fund return used,

βt = φ(βt−1 − β̄) + β̄ + εt, AR(1)

βt = β̄ + ξt, Random Coefficient

βt = βt−1 + ξt, Random walk used in this work

βt = a(b+ sin(wt)), Periodic Beta used in this work

We just use two of them and in section 4.2.3 in Chapter 4 the empirical testing of the hypothesis for

using these models are explained.
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2.1.2 Case of two factors models: k = 2 or option-like models

The literature has identified several problems with the above linear models when used for the task of

performance evaluation. For example, these models restrict the relationship between risk factors and

returns to be linear, and thus do not properly evaluate the assets with non-linear payoffs.

[Henriksson and Merton, 1981] were the first to suggest using options to explain the performance of

managed portfolios. Their model is basically a simplified two-state framework for performance evaluation

in which a fund manager attempts to forecast whether the market return will be higher or lower than

the risk free rate [LHabitant, 2001].

In this context hedge fund returns may be viewed as a linear combination of the market’s returns and

a call option or a put option on the underlying market. A call option is an agreement that gives an

investor the right (but not the obligation) to buy a stock, bond, commodity, or other instrument at

a specified price within a specific time period. The put option is the opposite of a call option, it is

an option contract giving the owner the right, but not the obligation, to sell a specified amount of an

underlying security at a specified price within a specified time.

The exercise price of this call option is taken as the risk free rate, hence the option becomes more

valuable only if the market return is lower than the risk free rate. Consequently, the following equation

of regression provides consistent estimates for timing and selectivity:

yt = αt + β1tXt + β2t max{Xt −Kt, 0}+ εt (2.6)

in the case of a call option. In the case of the put option the model can be written as:

yt = αt + β1tXt + β2t max{Kt −Xt, 0}+ εt (2.7)

where Kt is the risk free rate.

[Henriksson and Merton, 1981] show that β2t > 0 if and only if the fund manager has a superior market

timing ability of the fund while αt > 0 still indicates selection ability. In fact, a positive parameter β2t

can be seen as the number of no cost options on the market portfolio provided by the market timing

strategy. A β2t < 0 and αP = 0 1 are equivalent to being short a number of options on the market

without receiving any cash.

Option-like model with constant coefficients

Here, we assume the parameters to be constant through time. It means that at time t and t − 1 the

parameters must be:

αt = α

β1t = β1 (2.8)

β2t = β2

1P is a portfolio
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where α, β1, β2 are constants.

Option-like model with Time-Varying Coefficients

In this case we assume that the parameters have a linear relationship with the previous values in the

series. Moreover, we assume that the parameters at time t are random walks given by,

αt = αt−1 + εt

β1t = β1,t−1 + ξ1t (2.9)

β2t = β2,t−1 + ξ2t

but as we said before betas can be characterized by other time dependent models.

2.1.3 Case of three factors models: k = 3

In this case the model represented in 2.1 can be written as,

yt = αt + β1tX1t + β2tX2t + β3tX3t + εt (2.10)

with the parameters constant or changing on time as follows:

αt = αt−1 + εt

β1t = β1,t−1 + ξ1t (2.11)

β2t = β2,t−1 + ξ2t

β3t = β3,t−1 + ξ3t

where X1t, X2t, X3t can be taken as different market return indicators at time t or as a combination of

a call-option and put-option.

2.2 Estimation methods

After having established a set of models that are well suited to describe the returns of a particular fund

we can attempt to estimate the fund’s exposure, with respect to the factor and all of the parameters of

the model by using different approaches. Since there is an ample variety of techniques to estimate the

beta, it is critical that we adopt the most appropriate modeling and estimation technique. In this section

we describe few methods used by researchers to estimate the exposure and the parameters mentioned

above.

2.2.1 Ordinary Least Squares

A popular technique used to estimate the unknown parameters, such as exposures, is Ordinary Least

Squares (OLS) [LHabitant, 2001]. The OLS is a statistical technique that uses sample data to estimate
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the relationship between two variables. This technique is used frequently because its implementation is

straightforward and it is easy to understand.

The basis of the OLS method is to minimize the sum of the squared difference between the observed

responses in the data set, y, and the responses predicted by the linear approximation model 2.3, ŷ. That

is,

min
θ

T∑
t=1

(yt − ŷt)2 (2.12)

where θ is the set of parameters to estimate and T is the total number of observations.

One virtue of the OLS approach is that it is very easy to implement computationally. In particular this

approach has three most desirable properties:

• Gives simple closed-form solutions for the parameters estimation.

• Penalizes large individual errors and ensure that all errors remain small on average.

• Has good statistical properties under plausible assumptions about the error term. One can show:

1. the regression line always passes through the points of means (X, y).

2. the errors have zero covariance with the sample of X values and also with the predicted ŷ

values.

3. the estimation of the parameters, α̂ and β̂, are the best linear unbiased estimators of the

values α and β.

These properties make the OLS technique the most widely used in practice when performing regression

analysis [LHabitant, 2001]. However, a critical assumption necessary to obtain robust exposures from

OLS estimation is that they remain constant over the estimation period. Consequently, it will be difficult

to capture the diverse and dynamic behavior of the hedge funds using a model based solely on regression

estimation. Indeed, it would not be real to assume that hedge fund managers do not change their factor

exposures over the life of their fund. A lack of rigid investment restrictions provides hedge fund managers

with the flexibility to make rapid and significant changes in their style, sector or market bets according

to their future expectations. As a result, hedge fund managers can be much more dynamic in their

investment approach than traditional managers. As said before, the technique is used when the model

has constant coefficients, for example it can be used in models 2.3, 2.8

2.2.2 Rolling Window Regression

A method used frequently within the regression framework to account for the dynamic behavior of hedge

funds is the Rolling Window (RW) regression. The method involves using a shorter and more recent

data window to estimate the regression parameters by using the Ordinary Least Square method at each

window. Discarding past data in this manner will allow the model to capture recent changes in the

exposures more rapidly.

The RW method comes at a cost of statistical accuracy since the estimation is performed using a
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smaller data sample. In addition, the method will not capture exposure changes over short windows

[Robert W. Faff and Hillier, 2000]. The estimation window can be chosen in an ad-hoc manner and it

may not be optimal for every hedge fund. Choosing a size of the window is not easy since this may

result in the exclusion of critical data from the estimation process of the parameters for some windows.

Therefore, it will strongly depend on the individual dynamic of each fund. Consequently, the use of

a shorter data window may produce noisy estimates and inferior forecasts. The RW method is used

when the model has time varying coefficients, for example it can be used in models 2.4, 2.9. The use

of RW comes with the easy way to implement and explain it combined with the assumptions that the

coefficients are time dependent.

2.2.3 Kalman Filter approach

As we mentioned before, rolling window regression is unable to capture immediate changes in the expo-

sures as the estimated parameters are depending upon the length of the estimation window. Therefore,

when the exposures of the hedge funds vary over an estimation window, then the use of a more gen-

eral method can improve the estimation of the parameters. Here we present the Kalman Filter (KF)

State-Space Model, since Kalman filter overcomes the issues observed in rolling window regression. The

Kalman Filter estimation technique is presented with more detail in Chapter 3.

Kalman Filter (KF)

The Kalman filter method, originally developed by Kalman (1960) within the context of linear systems,

is a recursive algorithm procedure for computing the optimal estimator of the state vector at time t,

based on the information available at time t − 1 ([Harvey, 1989]) and for forecasting variances in time

series models.

It was invented to solve a problem in spacecraft navigation, but the technique nowadays is relevant

for helping to solve many problems where incomplete observations must be combined with a state of

a system. As a mathematical point of view, Kalman filter does not solve any problem by itself, it is

only a mathematical tool that help us to make the problem easier to understand. As statistical point of

view of an estimation problem, Kalman filter is more than an estimator because it propagates through

the prediction step of the filter the entire probability distribution of the variables are asked to estimate.

This is a complete statistical characterization of the current state of knowledge of the dynamic system,

including the influence of all past measurements.

A Kalman filter combines all available measurement data, plus prior knowledge about the system and

measuring devices to produce an estimation of the desired variables such that any quadratic function

(estimation error) is statistically minimized. Hence it is going to minimize, in this research, the square

of the errors of the regression model.

The Kalman filter provides a linear estimation method for any time series model that can be represented

in a state space form. The origin of state space models can be traced to dynamical system in engineering

branches including automatic control, communications, robotics, and aerospace systems such as space-

craft altitude control [Kedem and Fokianos, 2002].
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If Y(t) represent the output, A(t) the state vector, and U(t), the input or error, then the general

state-space equations that creates the relationship between the variables are the nonlinear equations,

Y (t) = G(A(t), U(t), t)

dA(t)

dt
= F (A(t), U(t), t) (2.13)

The discrete-time linear case is,

Y (t) = A(t)X(t) + U(t)

A(t+ 1) = M(t)A(t) + V (t) (2.14)

The statistical adaptation of equations 2.13 and 2.14 is widely used in discrete time regression-like models

made of two interconnected equations, the observation equation and the system equation, which may

assume various linear and nonlinear forms and commonly referred to as state space models and their

application in prediction, filtering and smoothing or interpolation is crucial [Kedem and Fokianos, 2002].

The state space model provides a flexible approach to time series analysis, especially for simplifying

maximum likelihood estimation and handling missing values [Tsay, 2010].

Then the application of a Kalman filter is just a matter of problem’s appearance. Once the problem is

formulated in terms of state-space equations, the standard Kalman filter algorithm can be applied in a

straightforward manner.

State Space Model

The linear state space has been demonstrated to be an extremely powerful tool in handling all linear and

many classes of nonlinear time series models [Harvey, 1989]. The state-space form provides a general

framework for representing a wide range of time series models. It consists in the measurement equation

(measurement model) that indicates the relationships among unobserved state variables and observed

variables. And the transition equation (dynamic model) that describes the function as we described in

the previous section.

A filtering problem can be put into the state space form by defining the state vector represented by

certain parameters. The equation representing the state vector is known as the transition equation, and

it is not observed directly. Instead, the state of the system is conveyed by an observed variable called

the signal equation, which is subject to contamination by disturbance or measurement error. Now we

are going to be more specific in the definition of the State-Space Model (SSM) since we need to set some

assumptions over the error of the model for our cases.

Gaussian State Space Models

The state space model is similar to a regression model, but does not assume that the exposures

are constant over the estimation window. Instead, it introduces stochastic elements which allows the
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exposures to vary over the estimation period. Therefore, writing the model 2.1 in the state space

representation is going to be useful for the estimation. The new representation of the model using this

framework is given by:

Measurement equation : yt = αt +

k∑
i=1

βitXit + ut, ut ∼ ℵ(0, Ut) (2.15)

State equations : βit = M1iβi,t−1 + vit, vit ∼ ℵ(0, Vit) (2.16)

αt = M2αt−1 + wt, wt ∼ ℵ(0,Wt) (2.17)

where t = 1, . . . , T , {ut}, ({v1t}, . . . , {vkt}) and {wt} are independent and mutually independent random

variables. Mjt are the transition matrices, j = 1, 2 and the order of the matrix varies depending on the

order of the autoregressive process2 taken to describe the coefficients of the model, see Chapter 3.

The measurement equation describes the relation between the data and the unobserved variables. While

the transition equation describes the dynamics of the state variables based on the information from

the past such that the future behavior of the system can be completely described by the knowledge of

the present state and the future input. The most important difference between the conventional linear

models and the state space models is that in the former the state of nature is not assumed to be constant

but can change over time.

In model 2.16 - 2.17, calculation of the exposure estimates for every point in time involves the use of

the Kalman filter approach. The noises ut (that is the amount by which Xt has changed since the prior

period, time t− 1) and (v1t, . . . , vkt), wt are time-independent Gaussian noise processes. The exposures

(β1t, . . . , βkt), the variance of ut, and the variance of (v1t, . . . , vkt), wt are usually estimated using a

maximum likelihood technique, see Chapter 3 for more details. In addition, the state-space framework

and Kalman filter allow for the computation of contemporaneous, predicted and smoothed values of the

exposures.

In principle, this model may be better due to its ability to capture the dynamic of exposures of the

time series analyzed. However, this additional flexibility sometimes has a drawback. When the model

specification is inaccurate, or when there are too few return data points available, this approach inad-

vertently will fit the excess noise. As was the case with the regression approach, the state space model

also can suffer from outdated data if there is a significant shift in a hedge funds risk profile. However,

the dynamic quality of the state space model allows it to be more adaptive, and therefore more robust

than the constant exposure modeling assumption used in the regression analysis [Tsay, 2010].

The automated exposure estimation approach can vary by hedge fund. This flexibility is necessary in

order to capture the dynamic behavior of a funds exposures with respect to the common factor returns.

As a result, the exposure estimation methodology can vary over time and across hedge funds, or even for

a particular hedge fund. For example, OLS multivariate regression might be the best choice for a hedge

fund whose exposures vary little over time. Conversely, a Kalman Filter approach might be selected as

the superior estimation approach for a hedge fund during a period when its common factor exposures

2Autoregressive process of order p, AR(p), can be written as: Bt = c +
∑p

i=1 ϕiBt−i + εt where εt is white noise, ϕi

are the parameters of the model and c is a constant.
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have been very volatile, as we can see in the last chapter of the thesis.

In the state space equation 2.16-2.17 the goal of the analysis is to infer the properties of the state βit,

i = 1, . . . , k, from the data yt and the chosen model. There are three important types of inference where

N is the length of the data vector [Tsay, 2010]:

• Filtering for t = N , to recover the state variable given the information available at time t to remove

the measurement errors from the data.

• Prediction for t > N , to forecast βi,t+m or yt+m for m > 0 given the information available at time

t, where t is the forecast origin.

• Smoothing for t < N , to estimate βit given the information available at time T , where T > t

A simple analogy of the three types of inference is reading a handwritten note. Filtering is figuring out

the word you are reading based on knowledge accumulated from the beginning of the note, predicting is

to guess the next word, and smoothing is deciphering a particular word once you have read through the

note.

One of the main advantages of the Kalman filter is that it can be applied in real time. That is, for any

value observed of the time series, the forecast for the next observation can be computed. This makes

the method very practical and important in the financial field. Therefore in the next chapter a more

detailed explanation of the Kalman filter as well as its algorithm is given.
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Chapter 3

Kalman Filter

The model of a stochastic system driven by a noise disturbance requires the use of a filter to estimate

it. One optimal state space based estimation tool that is widely used in statistics and engineering is the

Kalman filter, as it is described in Chapter 2. The filter is known to be able to support estimations for

past, present, and future states even when the precise nature of the modeled system is unknown.

In this chapter we define the equations of the Kalman Filter technique and its algorithm. At the end of

the chapter we use the Kalman filter approach with simulated data in order to see how it works in the

environment where we have the perfect model. We use this study to choose the initial values and a right

sample size we need in order to get good estimators. Good estimation in the context where the Kalman

filter estimator display the minimum mean square of the innovations.

3.1 Betas varying on time

When dealing with time series data, researchers usually write the regression model as,

yt = α+

k∑
i=1

βiXit + ut

for t = 1, ..., T and i the number of factors, where yt is the dependent variable, Xit are the vectors of

exploratory variables, βi are the unknown coefficients to be estimated, and ut is the error with mean

zero and variance σ2

As we described in Chapter 2, the Ordinary Least Square (OLS) is one of the methods that is used

to estimate the equation mentioned above. In this method it is assumed that the parameters to be

estimated are constant over time. However, there are ample evidence that the parameters used may

have some variations over time. Therefore, it is going to be useful to consider a model such that the

parameters are a function of time, which is usually called the time-varying parameter model. There

are few examples of time varying models commons in finance and economics fields. They are mostly

estimated by a combination of Kalman filter technique and the log-likelihood function.
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The Kalman filter technique is used to estimate the state of alpha and beta based on recursive observa-

tions of the unknown parameters for the following general state-space model with t = 1, 2, . . . , T ,

yt = αt +

k∑
i=1

βitXit + εt

βit = M1iβi,t−1 + εit (3.1)

αt = M2αt−1 + ξt

where εt ∼ ℵ(0, σ2
εt), εit ∼ ℵ(0, σ2

εit), ξt ∼ ℵ(0, σ2
ξt

), and they are independent.

Assuming that the parameters alpha and beta are autoregressive of order p the matrices M1i and M2

represent the autoregressive structure matrix of the time varying coefficients βt and αt, and can be

written as:

M1i =



φ
(1)
1i φ

(1)
2i · · · φ

(1)
pi

1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


M2 =



φ
(2)
1 φ

(2)
2 · · · φ

(2)
p

1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1



where {φ(m)
l }m=1,2

l=1,...,p are the parameters of the autoregressive process and i are the number of factors

in the model. For our study we are going to focus in a more particular case that it is when the parameters

can be represented by a first order autoregressive, and in this case the transition matrices are constants.

Therefore, M1i = φ1i and M2 = φ2 for our specific case and the model can be written in the following

matrix form,

yt = ZtΓt + εt

Γt = ΦΓt−1 + Ψt (3.2)

this is the notation being used in this chapter assuming i = 1, . . . , k is the number of factors in the model,

where Γt = (αt β1t β2t . . . βkt)
′ , Zt = (1 X1t X2t . . . Xkt) , Ψt = (ξt ε1t ε2t . . . εkt)

′

and Φt = (φ2 φ11 φ12 . . . φ1k)′ 1

The error is assumed to be distributed with conditional expectation zero and covariance matrix Ht,

E(εt) = 0 and V ar(εt) = Ht, [Harvey, 1989]. In our case we assume Ht constant over time, Ht = H = σ2
ε .

In addition, E(Ψt) = (0 0)′ and V ar(Ψt) =

[
Rt 0

0 Qt

]
where Qt and Rt are diagonal matrices with the

variance of ξt and (ε1t ε2t . . . εkt)
′ on it respectively, as

1(•)′ is the transpose matrix.
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Rt =


σ2
ξ1

0
. . .

0 σ2
ξt

 Qt =


σ2
ε1t 0

. . .

0 σ2
εkt



In our study we take Rt = R = σ2
ξ as constant for any t and Qt = Q is a vector depending on

i = 1, . . . , k the number of factors in the model. Vector Q contains the constant variance for each factor

in our model, i.e. Q = (σ2
ε1 , . . . , σ

2
εk

).

The problem now is how to estimate a model given by 3.2. As can be seen there are two sets of unknowns:

the parameters of the model and the elements of the state vectors Γt. However, once a model is cast into

his state-space representation, the addition of certain assumptions allow the model to be estimated using

maximum likelihood and the Kalman filter algorithm as we have seen in the previous chapter. That is,

estimation of the state variables and system parameters usually involves two well-developed inter-related

algorithms: the Kalman filter and the Gaussian Maximum Likelihood, more specifically the maximum

of the Gaussian log-likelihood.

3.2 Kalman filter equations

In this section we work with a general model 3.2 with the assumptions mentioned before. Usually the pa-

rameters of the model are unknown hence by using the Kalman filter approach the problem of how to esti-

mate the parameters of the state equation of the model, Γt, is solved. Therefore, finding the “best” linear

estimates of the state, in the sense of minimum mean square error can solve the problem. [Pagan, 1980],

[Harvey, 1989], [Grewal and Andrews, 1993], [Robert W. Faff and Hillier, 2000], [Racicot and Theoret, 2009]

The difference between the best estimation of the state given the information up to t− 1 and the result

obtained at time t,

εt = yt − ŷt (3.3)

= yt − ZtΓ̂t|t−1

where Γ̂t|t−1 is the estimator at time t given the information up to time t − 1, is called the prediction

error.

Consider at as the optimal estimator of Γt based on all of the information at time t. Then, the estimator

could be written as at = Et(Γt), i.e. the conditional expectation of the state variables up to time t. The

covariance of the estimators, denoted as Pt, is defined by Pt = Et[(at − Γt)(at − Γt)
′]. Therefore, the

optimal estimator of Γt based on all the observations at time t− 1 could be denoted by at−1 = Et−1(Γt)

and consequently the covariance of this estimator is defined by Pt|t.
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The Kalman filtering consists in the following recursive set of equations:

at|t−1 = Φat−1 (state prediction)

Pt|t−1 = ΦPt−1Φ′ + (R Q)′ (prediction dispersion)

yt|t−1 = ztat|t−1

ηt = yt − yt|t−1 (prediction error)

Ft = ztPt|t−1z
′
t +H (error dispersion)

Gt = Pt|t−1z
′
tF
−1
t (Kalman gain)

at = at|t−1 + Pt|t−1z
′
tF
−1
t ηt (state estimate)

Pt = (I2 −Ktzt)Pt|t−1 (estimate dispersion)

where Pt|t−1 is the covariance matrix of the error of at|t−1, as we defined before, hence the one-step

predictor. And ηt is a one-period prediction error for yt, called innovation, F−1
t is the inverse of the

covariance matrix of the innovation at time t while Gt is called the gain of the Kalman filter. The above

equations are derived in [Grewal and Andrews, 1993].

The Kalman gain vector depends on Φ, (R Q), H = σ2
ε and the past data vector zt. The Kalman

gain function plays an important role in updating the estimates because it determines how heavily the

innovations are weighted. When the system is linear and the normality assumptions are valid, this

specific form of the Kalman gain function optimally weighs the innovations, which makes at = Γ̂t (the

expectation of the conditional distribution of Γt given the information yt). This is the Minimum Mean

Square Estimator (MMSE) of Γt based on the information up to t as it is given in the theorem below. If

the assumptions mentioned above are violated then the Kalman filter estimator is no longer the MMSE.

However, it is still the Minimum Mean Square Linear Estimator, which means it is the optimal among

all the estimators that are composed of linear combinations of the observations [Harvey, 1989].

In other words, it is well known that the Kalman filter method gives unbiased and efficient estimators

of the state vector E
(
Γt|t
)

= E
(
Γt|t−1

)
= E (Γt) = at, when the initial conditions a0 and P0 and the

matrices Φ, (R Q), H are known. When (R Q), H are unknown will be better to use the log-likelihood

of the innovations combine with the Kalman filter approach to obtain consistent and asymptotically

efficient estimators of Φ, (R Q), H; otherwise the filter cannot be optimal.

Kalman Filter estimates properties

In theorem 1 we give a result showing a property of the estimation of the Kalman filter technique and

the proof can be found in [Grewal and Andrews, 1993].

Theorem 1. Assume that the white noise εt and Ψt in model 3.2 are Gaussian and uncorrelated, i.e

εt ∼ ℵ(0, Ht) and Ψt ∼ ℵ(0,Σt)

where Σt = (Rt Qt) Then the Kalman filter gives the minimum-variance estimate of βt. That is, the
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covariances Pt|t and Pt|t−1 are the smallest possible. Also, the estimates are the conditional expectations

at|t = E(Γt|yt)

at|t−1 = E(Γt|yt − 1)

�

Therefore, we can conclude that the Kalman filter is the optimal filter for a linear model subject to

Gaussian noise and it can be derive by using conditional expectations.

The equations of the recursive least square and the Kalman filter equations described above have the

same characteristic of estimation as expected, it means that both try to find the estimator that minimize

the mean square error. The equations are relevant for the estimation of time-varying coefficient models.

Models that can be written into state-space form so that the likelihood function can be calculated easily

by the Kalman filter algorithm as it was showed in [Pagan, 1980]. The equation 3.3 is usually used as

the prediction error decomposition of the likelihood function.

3.3 Likelihood estimators

In the estimation stage, the maximum likelihood estimator is used. In this way the Kalman filter

can be used with exact maximum likelihood in the time domain to estimate the parameters of the

model and the state space vector Γt via a prediction error decomposition function. As for all numerical

procedures, attention has to be paid to starting values in order to avoid local minima. [Manly, 1994],

[Racicot and Theoret, 2009]

The classic likelihood function for independently and identically distributed data is not applicable for

time series data, since the observations are time dependent. Thus, the classic likelihood function in the

context of time series analysis is usually used in the sense of Gaussian likelihood, which means that

the likelihood is computed under the assumptions that the series is Gaussian, fact that could be false

for some time series as we can see in Chapter 3. Nevertheless, estimators of the ARMA2 coefficients

computed by maximization of the Gaussian likelihood have good large-sample properties, i.e. they are

unbiased when T is large even if they are not Gaussian.

However, it is known that the data yt, t = 1, . . . , T , conditional on all observation up to t− 1 (denoted

as Yt−1) are independent. Therefore, the likelihood function of the observations is the joint conditional

probability density function with respect to Θ defined for all y = (y0, . . . , yT ) where Θ = (Φ, H,R,Q)

2Forecasting model or process in which both auto-regression analysis and moving average methods are applied to a
well-behaved time series data. ARMA assumes that the time series is stationary-fluctuates more or less uniformly around
a time-invariant mean. An ARMA(p,q) model is given by, B1 = A+

∑p
i=1 ϕiBt−i +

∑q
j=1 ψjεt−j + εt where εt are the

error terms and are assume to be independent identically-distributed random variable sampled from a normal distribution
with zero mean and variance σ2 and ϕi, ψj are the parameters of the model while A is a constant.
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the vector of the parameters to be estimate. The function is given by:

LΘ|y = f(yT |YT−1)f(yT−1|YT−2) . . . f(y2|Y1)f(y1)

=

T∏
t=1

f(yt|Yt−1,Θ) (3.4)

Assuming that f(y1) does not depend on Θ, it is irrelevant. Most of the practitioners assume the state

one is known.

Based on the assumptions that the initial values and innovation are multivariate normally distributed,

and yt|Yt−1 is multivariate normal with E(yt|Yt−1) = Ztat|t−1 and cov(yt|Yt−1) = Ft = ZtPt|t−1Z
′
t+Ht.

Hence, as define before

yt − E(yt|Yt−1) = yt − Ztat|t−1 = ηt

and Ft is the covariance matrix of ηt, then the likelihood function can be written as a function of

innovations by:

LΘ|y =

T∏
t=1

(2π)−
p
2 |Ft|−

1
2 e−

1
2 (yt−yt|t−1)′tF

−1
t (yt−yt|t−1)

=

T∏
t=1

(2π)−
p
2 |Ft|−

1
2 e−

1
2η
′
tF
−1
t ηt (3.5)

where y is the vector (y1, y2, . . . , yT ) and |Ft| is the determinant of the matrix Ft

Let us now define,

lΘ|y = log(LΘ|y) (3.6)

as the log-likelihood function. Then, by the properties of logarithm and 3.5

lΘ|y = −pT
2
log 2π − 1

2

T∑
t=1

log (|Ft|)−
1

2

T∑
t=1

η′tF
−1
t ηt (3.7)

and it is known as the prediction error decomposition form of the likelihood [Harvey, 1989].

By the prediction error decomposition formula, the log-likelihood function of the model 3.2 is essentially

decomposed into segments of different instances of time. The log-likelihood at each time can be repre-

sented by the innovations ηt and their variance Ft, both of which are functions of unknown parameters

Θ = (Φ, H,R,Q). Since ηt and Ft involve recursive terms, the Kalman Filter technique is used to esti-

mate the fixed parameters of the model, and obtain them from the prediction of future values. In other

words, the maximum likelihood estimators obtained by maximizing the summation of the log-likelihood

over the time with respect to Θ are based on information of the entire time series.

Having estimated the vector of the variances of the model (σ2
ε , σ

2
ξ , σ

2
ε1 , . . . , σ

2
εk

), the prediction based on

the fitted state space model can be made and the mean square error can be minimized.
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3.4 Algorithm

The algorithm used to estimate the parameters of the model 3.2 was based in the recursive Kalman

filter equations for the state space equations of the regression model with time-varying coefficients. The

Kalman and the Gaussian maximum likelihood are related to each other very closely in this algorithm.

In order to apply the Kalman filter, a system of matrices must be fixed and their maximum likelihood

estimated. In the other hand, the log-likelihood value is computed from the products of the values

obtained by the Kalman filter algorithm. The procedure begins providing initial values for the innovation

and their covariance matrix, and also the starting values of the parameters, for the Kalman filter, that

are going to be estimated.

The Kalman filter provides innovations and innovation covariance matrices that are needed to calculate

the log-likelihood. Then, the initial values of the parameters, Θ, are updated based on some conventional

recipe of numerical optimization. Once the parameters are updated, the Kalman filter is carried out

again to calculate the new log-likelihood. The procedure is repeated until a convergence criteria is

reached. The state and parameters estimates corresponding to the maximization of the log-likelihood

function are regarded as the final estimates.

Steps of the estimation method:

1. Initialized the variables, Φ0, (R0 Q0), H0, a0, P0 where P0 is the covariance matrix of the vector

a0 as we saw before.

2. Apply the Kalman filter to the model 3.2 to generate ηt, the prediction errors, and Ft, the inno-

vation covariance to define the log-likelihood function:

lΘ|y = −N
2

log 2π − 1

2

N∑
t=1

log (|Ft|)−
1

2

N∑
t=1

ηTt F
−1
t ηt

3. Using numerical optimization, maximize the likelihood function with respect to the unknown pa-

rameters: the volatility of the residuals, ηt, and the volatility of the stochastic components, Ft. In

this step we need to find,

lΘ̂|y = max
Θ

lΘ|y

where Θ is the vector of the variances to estimate that represents the variance of each equation of the

model. Thus, the region where the variances must be estimated are all the real positive values.

In brief, the algorithmic loop can be summarized in the following diagram,
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Figure 3.1: Kalman Filter recursive algorithm

Note that the roundoff is a problem in Kalman filter implementations when we are working in

MATLAB environments, there are some examples in [Grewal and Andrews, 1993] that show how a well-

conditioned problem can be made ill-conditioned by the filter implementation. Therefore the next step is,

to use decomposition methods for the covariance matrices and other matrices in the implementation that

could be singular, to avoid roundoff errors. We can use for example, Cholesky decomposition algorithms.

3.5 Application to simulated data

Before running the models with real data of Hedge Funds, a simulation can show the performance of

the Kalman filter approach for the regression model with one or both parameters varying in time using

a one factor model describe in Chapter 1. Both models are under artificial conditions.

A simulation of the data are computed using the equations 2.4 taking in account that the time-varying

coefficients alpha and beta follow a random walk. First, we worked with different data size to see how

it could affect the results. Then, we use the same size of data but different values for the parameters we

want to estimate.

In the next table, table 3.1, we are going to show how the algorithm works with different initial values

in order to see if it depends on them or if the result are independent of them. As we can see the results

do not depend on the initial values in general. This table is only an example with simulation data of

N = 1500.
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Simulated σ2
εt = 0.09 σ2

εt = 0.04 σ2
ξt

= 0.01

Initial Values [σ2
εt σ2

εt σ2
ξt

] |σ2
εt − σ̂

2
εt | |σ2

εt − σ̂
2
εt | |σ2

ξt
− σ̂2

ξt
|

[0.5, 0.2, 0.1] 0.001288 0.013923 0.005091
[0.1, 0.4, 0.2] 0.001290 0.013917 0.005091
[0.4, 0.03, 0.1] 0.001289 0.013905 0.005091
[0.3, 0.5, 0.008] 0.001291 0.013906 0.005091
[0.1, 0.03, 0.008] 0.001289 0.013913 0.005091

Table 3.1: Table of estimation error for each parameter using different vectors of initial values

The table shows different starting points and the error estimating the parameters in each case. We

can see that the starting point is not important for this model since the estimated parameters are very

close to the real values of the parameters taking to simulate the data.

Next, we show how fast the estimators converge to the parameters. In the graph we can see that a big

sample size is not needed to have good estimation using Kalman filter algorithm with the regression

model in the case the parameters are varying on time.

Figure 3.2: Estimation of the variance of the model equation and beta equation when alpha is taken
constant over time.

As we show in table 3.1 the initial point does not make a big difference but also the sample size is not a

critical issue. As we can see in the graphs above from N = 450 the estimated parameters are very close

to the real parameters used to simulate the data. The outlier point in both figures represent the real

value uses to simulate the data.

In order to know the adequate sample size to use when working with time dependent parameters we

are going to simulate a data from a linear regression. The tables 3.2 and 3.3 show the values of the

parameters used to simulated the data and the error when estimating the parameters using Kalman

filter approach.
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Beta varying on time and alpha constant over time.

Based on an increasing constantly beta and alpha kept constant. Table 3.2 show the error estimating

the variance of beta and the regression equation for different sample sizes using Kalman filter technique,

as well as the parameters used to simulate the data. Initial values are taken as: σ2
εt = 0.7, σ2

εt = 0.3

Simulated σ2
εt = 0.16 σ2

εt = 0.04

|σ2
εt − σ̂

2
εt | |σ2

εt − σ̂
2
εt |

N=500 0.001640 0.012573
N=1500 0.000829 0.012234
N=2500 0.000908 0.003559

Table 3.2: Error of estimation using different sample size and using the model with alpha constant and
beta time dependent

Table 3.2 shows the estimator of the parameters with different sample sizes. Once again we can see that

we do not need to have a big sample size since after N = 2000 (approximately) the estimation values

are very similar.

Both parameters, alpha and beta, changing over time.

Here we can also show that even for the model with both parameters time dependant, the estimation

stabilizes after certain value of the sample size, which will help us with the application since there is

very little data available in the hedge fund industry. The simulated data was done as we described at

the beginning of the section.

Simulated σ2
εt = 0.36 σ2

εt = 0.09 σ2
ξt

= 0.04

|σ2
εt − σ̂

2
εt | |σ2

εt − σ̂
2
εt | |σ2

ξt
− σ̂2

ξt
|

N=500 0.018007 0.009808 0.003687
N=1500 0.005023 0.013130 0.001567
N=2500 0.008399 0.009210 0.009583

Table 3.3: Error of estimation using different sample size and using the model with both parameters
time varying.

Initial values are taken as: σ2
εt = 0.7, σ2

εt = 0.3, σ2
ξt

= 0.2

As we can see also when the model has both parameters varying on time the sample size is not so

important after N = 1500 (approximately).
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Figure 3.3: Vector of alpha(left) and beta(right) estimated by Kalman Filter

Figure 3.3 shows the Kalman filter estimation of the parameters, α and β, versus the true values of

the simulation vectors. As we can see the estimation of the Kalman filter is very close to the real values

for the given values of the variance. Looking at the graph of alpha we almost cannot distinguish the

estimation and real curves, just in few points small differences appear. In the case of the estimation of

beta the discrepancies between the real and the estimation curves are more visible. Therefore, in the

next chapter we are going to apply this approach to real values of a Hedge Fund series.

25



3.5. APPLICATION TO SIMULATED DATA CHAPTER 3. KALMAN FILTER

26



Chapter 4

Applications to Hedge Funds

Hedge funds, best known for their unique strategies, high returns, and capital inflows, have also attracted

considerable requests for stronger regulation. The substantial out-performance prior to the financial

crisis suggests that in particular hedge funds offer investors significant portfolio benefits by enhancing

the risk-return trade-off of their portfolios. In fact, hedge fund strategies generate high and steady

returns that appear to be rather uncorrelated with returns of conventional asset classes such as stocks

and bonds. During the recent financial crisis, however, the investment performance of hedge funds has

deteriorated substantially as they suffered significant losses on their portfolio holdings. Moreover, recent

studies indicate that diversification benefits of hedge funds have continuously declined due to a slow

but persistent upward trend in the co-movement of hedge fund returns with conventional asset classes

[Bressler and Holler, 2010].

In this chapter we first analyze the statistical properties of one hedge fund index and a market index we

are going to work with. Then, we test the forecasting in sample of each model using the index of hedge

fund and the market index previously analyzed. We do some comparison not only between models but

also between the methods used to estimate the parameters in each model in order to show the relative

importance of using a beta varying on time when modeling hedge fund indexes. It is well known that

there is difference between the performance of the hedge funds prior and during the crisis, hence we

examine both series separately and the analysis is done for each model and method to see the behavior

of each of them.

As we mentioned before there is and indication that hedge funds may include derivatives, therefore we

study the models with put option and call option using beta varying on time. Finally, we work with

some strategies of hedge funds. For these strategies, a statistical analysis and a research of some of the

styles that work in general with options is performed. The styles taken in this chapter are styles that

work with options as they are defined in [LHabitant, 2001].
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4.1 Hedge Funds data

“Hegde funds are unregistered private investment partnerships, funds or pools that may invest and trade

in many different markets, strategies and instruments (lets say securities, non-securities and derivatives),

and are not subject to the same regulatory requirements as mutual funds. It is not surprising that hedge

funds are a diverse lot, given that even the majority of existing definitions of them reveal little about their

process. Some researchers describe a hedge fund as an “actively managed, pooled investment vehicle

that is open to only limited group of investors and whose performance is measured in absolute units

of return”. The term “hedge” suggests that these funds reduce their volatility by taking positions that

offset their exposures to various risk factors” [LHabitant, 2001]. The degree of hedging that actually

occurs varies widely among these funds.

In this thesis we work with a hedge fund index: the hedge funds Absolute Return Index (HFRX-Abs).

We take the daily closure prices from July of 2004 to June of 2010 and we chose the Standard and Poor

with 500 companies (S&P500) as the index describing the market in NYSE.

The HFRX Absolute Return Index is designed to be a representative compilation of all available Hedge

Funds that pursue various strategies. Some of these strategies are: convertible arbitrage, distressed

securities, equity hedge, equity market neutral, event-driven, macro, merger arbitrage, and relative

value. As a component of the optimization process, the Index selects those funds that exhibit lower

volatilities and a closer correlation to traditional markets for example S&P500.

HFRX indices are a series of benchmarks of hedge funds industry performance in order to reach a

representative performance of larger universe of hedge fund strategies. Hedge Fund Research (HFR)

utilizes the HFRX methodology to construct the HFRX Hedge Fund Indices. The methodology is

based on defined and predetermined rules and objective criteria to select and re-balance components to

maximize representation of the Hedge Fund Universe. This methodology includes robust classification,

cluster analysis, correlation analysis, Monte Carlo simulations and advanced optimization techniques to

ensure that each index is a pure representation of its corresponding investment focus. In the construction

of the HFRX methodology a model output is used to select funds that, when added and weighted, have

the highest statistical likelihood of producing a return series that is most representative of the reference

universe of strategies. As a result, a sub-set of strategies which are representative of a larger universe

of hedge fund strategies, geographic constituencies or groupings of funds maintaining certain specific

characteristics are selected.

Figure 4.1 shows the series of HFRX and the series of the market index S&P500 corresponding to the

same period and their series of return. The return of the index is the relative change in the index over

a certain holding period of time, and it is calculate using a single period as,

Rt =
rt − rt−1

rt−1

where rt is the index value at time t.
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Figure 4.1: Series and Return series of the HFRX-Abs and S&P500 for a period of 6 years, from July
2004 to June 2010. The returns are daily and include the financial crisis of 2007

In Figure 4.1, in the series of returns, we can see the change in the volatility around mid-2007, when

the financial crisis started. The graph of the series of HFRX-Abs shows the increment from 2006 to 2007

and how it rapidly decays around 2008 leaving a lag in between when the financial crisis really started

and when it affects the HFRX.

Table 4.1 presents a summary of descriptive statistics including mean, standard deviation, Sharpe Ratio,

Skewness, Kurtosis, minimum, maximum, and the proportion of positive months for the series of returns

of HFRX-Abs and S&P500.

Hedge Fund S&P 500

Mean −1.740049× 10−5 −0.7656518× 10−5

Standard Deviation 0.001798 0.014468
Minimum -0.012921 -0.094695
Maximum 0.010219 0.109572
Skewness -0.909301 -0.251452
Kurtosis 9.342557 13.505853
Number of positive months 787 826
Sharpe -0.009680 -0.000529

Table 4.1: Summary of Descriptive Statistics of the return series

Let us first explain some of these statistics showed in table 4.1 that may be used to quantify the effect

of large deviations from normality in the data:

Skewness is the third central moment. It measures the symmetry of the probability distribution around

its mean. Zero skewness indicates a symmetrical distribution. A positive skewness is the outcome of
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rather small negative changes but large positive changes, so the distribution has a long right-tail which

is desirable. While, a negative skewed distribution is the outcome of many small gains but larger losses

are less frequent, so it has a long tail on the left-hand side of the distribution. [LHabitant, 2001]

The skewness is define as:

Sk =
T

(T − 1)(T − 2)

T∑
t=1

(
Rt −R
S

)3

where T is the number of observations, Rt, R are the return at time t and the mean of the return

respectively, and S is its standard deviation.

Kurtosis is the fourth moment of a probability distribution. It measures the degree of “peakedness”

and heaviness of the tail. Distributions where a relative large proportion of the observed values lie

towards the extreme display a positive kurtosis. Therefore, they have heavy tails compared with a

normal distributions whose kurtosis is equal to three. On the other hand, negative kurtosis display a

flat top near the mean.

The kurtosis is computed as:

Kurt =
T (T + 1)

(T − 1)(T − 2)(T − 3)

T∑
t=1

(
Rt −R
S

)4

− 3(T − 1)2

(T − 2)(T − 3)

where T is the number of observations.

Table 4.1 represents the descriptive statistics of the daily data of the hedge funds and market returns

from 2004 to 2010 in order to provide a general understanding of the nature of the return series. The

data sets show that the market return series is greater than the mean of the Hedges Funds index. Both

have negative average of the returns implying the fact that the overall market returns have decreased

over the sample period. The volatility is smaller in the HFRX-Abs than in the S&P500 but the hedge

fund index has higher average losses in the period in general.

As usual features in any financial time series, high kurtosis or heavy tails and excess are features appear-

ing in the return series. As we can observe the kurtosis for both series is higher than three, therefore,

the tails are heavier than the normal distribution for both of them in the period analyzed.

We also found negative skewness in both series indicating that the tail on the left side of the probability

density function is longer than the right side. It means, that there is now a high probability of having

big negative returns.

The Sharpe Ratio is a measure of the mean return per unit of risk in an investment portfolio or trading

strategy. More particularly, it is the average of excess returns divided by the volatility of excess returns

taking, for example, the risk free rate of return as the benchmark. The Sharpe Ratio is calculate by:

Sharpe Ratio =
R−Rf
S

where Rf is the risk-free interest rate taken as reference (LIBOR), R and S are the average and the

standard deviation of returns on portfolio respectively.

LIBOR is the interest rate that banks charge each other for one-month, three-month, six-month and

30



CHAPTER 4. APPLICATIONS TO HEDGE FUNDS 4.2. ONE-FACTOR MODELS

one-year loans and it is an acronym for London Inter-Bank Offer Rate. LIBOR is the most widely

used benchmark for short term interest rates in the world, primarily because most of the world’s largest

borrowers borrow money on the London market. It is also important because it is the rate at which the

world’s most preferred borrowers are able to borrow money. LIBOR is compiled daily by the British

Bankers Association (BBA), and derived from a filtered average of the world’s most creditworthy banks’

interbank deposit rates for larger loans 1. It is officially fixed once a day by small group of large London

banks, but the rate changes throughout the day.

The interpretation of the Sharpe Ratio is straightforward: the higher the ratio the better. A high

Sharpe Ratio means that the fund is question delivered a higher return for its level of volatility, see

[LHabitant, 2001]. In general, the Sharpe Ratio is used to characterize how well the asset returns

compensate the investor for the risk taken.

The period we are analyzing has included the profound financial crisis started in 2007. We can divide

the series between before and after the financial crisis in order to analyze the effects separately.

July 2004 - July 2007 August 2007 - June 2010

Mean 2.040404× 10−4 −2.537871× 10−4

Standard Deviation 0.001262 0.002209
Minimum -0.004683 -0.012921
Maximum 0.005011 0.010219
Skewness -0.200983 -0.758414
Kurtosis 4.432529 7.587643
Sharpe 0.161745 -0.114961

Table 4.2: Descriptive statistical analysis to the HFRX-Abs before and during the crisis.

In table 4.2 we can see the difference between the series before and during the financial crisis and we

can compare them with the complete series that include both periods, see table 4.1. In the series that

include both periods the mean is negative but not in the series before the crisis. We can also see the

decreasing Kurtosis for the series before and during the crisis with respect to the complete series, and

between them. More interesting is the change on the Sharpe Ratio which is negative in the complete

series and in the series during the crisis but in the series before the crisis is positive together with the

higher volatility after the crisis showing higher risk after August 2007.

4.2 One-factor models

The simplest factor model is one-factor model, i.e. k = 1. It expresses the return on each hedge fund

as a linear function of a factor F . One-factor models with market index as the factor variable are called

market models. However, factor models do not restrict the factor to be the market index. Researchers

use different approaches in factor models, see [Nai-Fu Chen and Ross, 1986] and [Manly, 1994]. The

1Countries that rely on the LIBOR for a reference rate include the United States, Canada, Switzerland, and the United
Kingdom.
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first one assumes that the sensitivities to factors are known, and the factors are estimated from the

security returns. The second approach assumes that some known fundamental factors are the factors

that influence the security and β’s are evaluated accordingly. In this section we are going to use HFRX-

Abs index as a dependent variable while the market index, S&P500, is the factor of the models.

One-factor models provide a simple but effective framework for understanding and predicting returns.

As beta is the factor’s exposure indicator, then a higher beta means more reaction to factor movements,

while a lower beta means less reaction. Also, a positive beta means that hedge fund returns generally

follow the market’s returns, in the sense that they both tend to be above or below their respective

averages together, while a negative beta means that the asset’s returns generally move opposite the

market’s returns. The knowledge of the future value of F could be used to predict assets returns, albeit

not perfectly, given the presence of a random error term. One-factor models also provide a very simple

framework for understanding and predicting risk.

4.2.1 Deterministic Coefficients Model

In model 2.3 where we assume the parameters are constant over time, we can estimate them by using

the OLS method as we already explained in Chapter 1. Now, we are going to assume that yt = Rt is

the return of the hedge fund at time t and Xt = RMt is the market index return, in this case S&P500,

but could be Russell3000, MSCI World, among others.

The OLS is the classic method used for estimation of the regression coefficients. Several technical

measures are produced as part of a regression output and usually serve as indicators of confidence in the

results of the regression. For instance, R2 is the Coefficient of Determination defined as:

R2 = 1− SSE

SStot

where,

SSE =

T∑
t=1

(yt − ŷt)2 is the sum of the square of the errors

SStot =

T∑
t=1

(yt − y)2 is the total sum of the squares

The Coefficient of Determination indicates the total variation observed in the dependent variable Rt

that can be explained using the linear model prediction R̂t compared with just using the mean R̄t. R
2

can not be used as selection criteria for accuracy of forecast but it gives an indicator of the in-sample

fit. Another measure we are going to look at is the F-statistic that is used as statistical test to measure

if there is a linear relationship between the dependent and independent variables.

Based on the analysis, using MATLAB functions we get R2 = 0.0637% and F − stat = 0.955 with

p− value = 0.329. Also the OLS estimation of the parameters are: α = −0.0000174 and β = 0.00314.

Looking at the values of R2 we can see that the percentage of the explanation using a classic linear
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regression model is very low, giving evidence that the chosen model does not fit well the data. The

F value shows that there is no reason to assume a linear relationship between the variables since the

p−value is bigger than 0.05. Suggesting that the use of a Regression Model with time-varying coefficients

might be better to the hedge fund’s returns series analyzed.

4.2.2 Periodical Coefficient

A particular dynamic formulation is an oscillator model for beta with sinusoidal terms. The motivation

of using this model was that the model might capture high frequency dynamics of data variation.

In this case, we implemented a code that allows us to find the parameters that minimize the sum of the

squared errors. To do that we need to create a grid to help the algorithm find the best estimator since

it depends on the initial values. The grid is taken depending on the number of years and the frequency

is taken small to capture as many market’s downwards and upwards as possible. The following values

are taken to create the mentioned grid,

w = [0.010, 0.013], with the step size of 0.001

a = [1.5, 3], step size equal to 0.5

b = [0.5, 2], step size equal to 0.5

The code implemented is very effective in the case of simulations. The estimations obtained are close to

the real values taken to simulate the data. In the case of real values, working with HFRX and S&P500

we get the following graph of beta and the estimation of the model (Ŷ ),

Figure 4.2: Beta estimation using periodical model. The beta’s parameters are estimated using the code
describe above.
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Figure 4.3: Estimation of Y from the periodical model using the above approach to estimate all the
parameters of the model. The entire hedge fund series is used.

Figure 4.2 shows the estimation of the parameter beta, and we can see that there is also a peak

around 2007 where the financial crisis started. While figure 4.3 shows large changes around 2007 when the

financial crisis began. Though, there are some changes around 2009, the largest changes are concentrated

around the crisis and here we can see also some evidence that beta should be stochastic.

The values using to measure the performance of the model can be found in the following subsection.

There, a comparison between models and also between methods used to estimate the parameters are

given.

4.2.3 Stochastic Coefficients

Over the past years, hedge fund researches have been studying the stability of beta. When estimating

the capital market model it is common practice to assume betas to be invariant over time. However,

this stability assumption has been questioned and a considerable amount of empirical evidence reports

the importance of variation over time (see among others [Fabozzi and Francis, 1978], [Ledolter, 1979],

[Bos and Newbold, 1984], [Daniel W. Collins and Rayburn, 1987], [Kim, 1993]). Therefore, the common

admitted opinion that hedge funds offer positive absolute returns independent of market conditions can

not be maintained. Moreover, it seems that the low exposure of hedge funds to market risk, measured

with traditional regression methods is just an average value of a dynamic, time-varying exposure of the

portfolio.

There are plenty of reasons why linear regression models with constant coefficients do not have a good

performance in describing hedge fund returns; an example is the inability of these models to measure

time-varying exposures. Some papers investigate whether the factor exposure of the hedge funds are

constant or not, see [Sunder, 1980], [Racicot and Theoret, 2009], [Schwert and Seguin, 1990].

Using a moving window regression with OLS method to estimate the parameters for each window
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taken with same size (same amount of observation) and having no intersection, we found that the

null hypothesis of stable coefficients is strongly rejected, as it is in Figure 4.4, which indicates that factor

exposures of hedge funds are indeed changing over time. In the figure we can see that in each window

beta estimation is different, suggesting that beta might be not constant over a period of time.

In order to study the time variation of the hedge funds, we divide the sample data into evenly-spaced

subperiods. Figure 4.4 represents one of this subperiods when a window of 12 months is taken to fit the

parameters and analyze the time variation.

As showed in Figure 4.4 in each window the beta and alpha estimated by OLS appear to be different.

Figure 4.4: Alpha (left) and beta (right) estimation in different disjoint periods of time. The x-axis is
the subperiod, yearly, in which we divided the sample data while the y-axis represents the estimation
values of the parameters.

In this graph the x− axis represent the subperiods taken to estimate the parameters and the y − axis
are the values of the parameters in each window.

In the following graph, Figure 4.5, we can see the confidence intervals for the OLS estimator obtained

from disjoint windows of the return series. The size of the window taken was 500 observations, therefore

with the sample size of 1500 we had 3 disjoint windows as it is shown in the following figures.
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Figure 4.5: Confidence interval for OLS alpha (left) and beta (right) estimators using disjoint windows.
The confidence level used was 95%

Figure 4.5 suggests that for the real data used the beta exposure of the hedge fund index (HFRX)

and the market index (S&P500) varies in time, since there are at least two intervals do not overlapping.

Testing a random walk (the unit root tests)

In order to test whether the series of hedge funds utilized in this study can be modeled by a Random

Walk. We consider the equations

yt = αt + βtXt + εt

βt = M1βt−1 + ξt (4.1)

αt = M2αt−1 + εt

and test for M1 = 1 and M2 = 1 applying a unit root test. It translate into the following hypothesis

test for M1, an it is the same for M2,

H0 : M1 = 1, (unit root)

Ha : M1 < 1, (no unit root)

this is a well-known unit root testing problem, [Schwert, 1989].

A unit root process is a data-generating process whose first difference is stationary. It attempts to

determine whether a given time series is consistent with a unit root process. There are many tests

to prove unit root process; in this thesis we are going to apply Augmented Dickey-Fuller (ADF) and

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests that are two of the most commonly used.

A convenient test statistics is the t− ratio of the least square estimate of the M1. The t− ratio of M̂1
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is given by,

ADF − test =
M̂1 − 1

se

where M̂1 is the least square estimate of M1, and se is the standard error in the alternative model.

In the case of KPSS test the statistic is:

KPSS − test =
1

s2
nwT

2

T∑
t=1

(st)
2

where s(t) is the sum of the residuals from the regression, T is the the sample size of the time series, in

our case HFRX, and s2
nw is the Newey-West estimator of the long-run variance.

To test whether M1 and M2 are equal to one for the specific data analyzed in this study, we assume

that both (M1 and M2) are different of one and estimate them using the Kalman filter approach. Then,

using as data the estimation obtained we can applied the test mentioned above.

The hypothesis of the KPSS test is the opposite of the ADF test. Meaning that the null hypothesis is

that an observable time series is trend stationary, it means stationary2 around a deterministic trend,

against the alternative that it is a non-stationary process.

Alpha Beta

ADF test
Statistic -1.0576 -0.6561
p-value 0.2645 0.4116
KPSS test
Statistic 1.7454 16.5289
p-value 0.01 0.01

Table 4.3: Unit root test statistics of the return series using a significance level of 0.05

The results given in table 4.3 suggest that the series of the beta is a random walk when we use the ADF

test and using the KPSS test with 0.05 as the confidence level, then we can assume that both series

are random walks. The results are obtained from the test equations including both intercept and trend

terms.

For the remaining thesis, we are going to assume that the beta and alpha exposure change over time.

Furthermore, they follow a random walk process.

4.2.4 Models Comparison

Now we make a comparison of the parameters obtained as a combination of Kalman filter and maximum

likelihood, and by OLS-rolling windows (with 1 year as window size) approaches. The series are showed in

the following figure. Figures 4.6 and 4.7 show the vector of beta and alpha estimated by both techniques.

2A stationary process is a stochastic process whose joint probability distribution does not change when shifted in time
or space.
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Here we can see that in the case of alpha estimated by KF approach is most of the time higher than

using OLS-RW method except from 2007 to late 2008, and this is exactly a period of financial crisis.

Figure 4.6: Alpha estimated using RW-OLS with a window size of 12 months (left) and KF (right)
techniques

Figure 4.7: Beta estimated using RW-OLS with a window size of 12 months(left) and KF (right) tech-
niques

Figure 4.7 represents the estimation of the beta exposure by RW-OLS and KF approaches. In both

graphs we can see a high peak but more representative in the KF. The peak occurs approximately one

year after the crisis started and then after that the values of the exposure decrease until late 2009. This

might be caused due to hedge funds managers trying to balance the returns. But more interesting is

that we can see that by late 2007, when the crisis started, the volatility increases, it is clearer in the

graph of beta estimated by KF technique suggesting that KF is better to locate changes and it will show

some high volatility before some crash in the market.

The following figure 4.8 shows the fitted residuals when using the one factor models from Chapter 1.
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Figure 4.8: Residues of the estimation by each method used in this study

The fitted residuals are the differences between the observed values y1, ..., yn of the vector Y (the

HFRX) and the values ŷ1, ..., ŷn fitted by the model,

ŷi = α̂+ β̂ ∗Xi

where α̂ and β̂ denote the estimators of the model by four different approaches and X is the market

index (S&P500). That is, the fitted residuals are given by,

ε̂i = yi − ŷi

The residuals give an indication of the errors the regression would make in a forecasting application.

Looking to the graph of the residues it shows that the error in the estimation of the parameters by a

linear regression is larger than that using the time varying regression. Smallest errors are showed by the

estimation of the time-varying coefficients using Kalman filter techniques, as we can see in Figure 4.8.

Residuals analysis.

The adequacy of the model and its underlying assumptions were examined further by analyzing the

statistical properties of the residuals.

39



4.2. ONE-FACTOR MODELS CHAPTER 4. APPLICATIONS TO HEDGE FUNDS

Figure 4.9: Histogram of the residues of the estimation by each estimation method used in the thesis

Residuals from the full sample estimates were in general well behaved. In all cases they were dis-

tributed with approximate symmetry and with means near zero as we can see in histograms in figure 4.9.

Most of the values are concentrated in the middle, and there is no heavy tail. Looking at the graphs,

they suggest that there is a normal distribution in the residuals but for further analysis we are going to

do some test to confirm or not the assumptions.

In order to see if the provided assumptions regarding the random error term in the models are satisfied

we can analyze the residues of each method by running a diagnostic tests on residuals. We obtained

the following table 4.4 in which the values of the Ljung-Box-Q (LBQ) test and the Kolmogorov-Smirnov

(KS) test are shown.

The Ljung-Box-Q test is used to test the the hypothesis that all of the autocorrelations are zero; that

is, that the series is a white noise. Under the null hypothesis the statistics used, Q, is distributed as

Chi-square. In general the Ljung-Box-Q test can be defined as:

H0 : The data is independently distributed.

Ha : The data is not independently distributed.

and the Q-statistic is given by the following equation:

Q = T (T + 2)

L∑
k=1

r2
k

T − k
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where T is the sample size, r2
k is the squared sample autocorrelation at lag k, and L is the number of

lags being tested. The Kolmogorov-Smirnov test is a nonparametric test for the equality of continuous,

one-dimensional probability distributions that can be used to compare a sample with a reference prob-

ability distribution. The test can be modified to serve as a goodness of fit test. In the special case of

testing for normality of the distribution, samples are standardized and compared with a standard normal

distribution. Kolmogorov-Simirnov test is defined by:

H0 : The data (x) follows a standard normal distribution.

Ha : The data (x) does not follow that distribution.

and the test statistic is given by:

D = max(|F (x)−G(x)|)

where F (x) is the empirical cumulative distribution function and G(x) is the standard normal cumulative

distribution function.

Tests OLS RW-OLS KF bOsc
stats 82.3083 57.3156 76.7338 186.5346

LBQ
p-value < 10−3 < 10−3 0 < 10−3

stats 0.4967 0.4959 0.4984 0.4967
KS

p-value < 10−3 < 10−3 0 < 10−3

Table 4.4: Values of the statistics and p-value of the Ljung-Box-Q test and Kolmogorov-Smirnov test
with 0.05 as the significance level to test independence and normality respectively.

Table 4.4 shows that the residues for each method are not normal and independent distributed because

for each method we have to reject the null hypothesis at 0.05 of significance level. Therefore, the models

fit are not adequate. Consequently, we decided to work with a GARCH model to overcome these two

issues, [Terasvirta, 2009]. But working with GARCH model we face another problem, the parameters

estimation.

The GARCH model we use is GARCH(1,1) and it can be written by the following equations,

yt = αt + βtXt + εt

βt = βt−1 + ζt

αt = αt−1 + ϑt

where ζt and ϑt are white noise, and εt ∼ ℵ(0, σ2
εt), with

σ2
εt = C0 + C1ε

2
t−1 +D1σ

2
εt−1

where GARCH(1,1) coefficients have the following constrains C0 > 0, C1 ≥ 0, D1 ≥ 0 and C1 +D1 < 1.

For more information see Appendix A.
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Studying the GARCH model we realize that the estimation obtained by simulation were not good when

compared to the real values used to simulate the data. Therefore, we decide not to continue working

with this model for the thesis. It remains an open problem.

In the case of in-sample forecast we are going to measure the accuracy of OLS, rolling windows (RW-

OLS), beta periodic (bOSC) and KF approaches by using a measure of forecast error which compares

the forecasts to the actual observed data in-sample. One option is the mean absolute forecasting error

(MAE), defined as:

MAE =
1

T

T∑
j=1

|ŷj − yj | (4.2)

An alternative approach is the root of the mean square forecasting error (RMSE) approach,

RMSE =

√√√√ 1

T

T∑
j=1

(ŷj − yj)2 (4.3)

The use of the square in the equation places a heavier penalty on outliers than the MAE measure.

Therefore, we are going to compare the performance of each estimation technique by using these two

measures of forecasting error.

Methods/ S&P500 Russell3000 MSCI
Models MAE RMSE MAE RMSE MAE RMSE

OLS 1.2741 1.7970 1.2736 1.7972 1.2691 1.7775
RW-OLS 1.2022 1.7109 1.2018 1.7100 1.1820 1.6432
KF 0.8321 1.0758 0.9955 1.3939 0.7493 1.0133
bOsc 1.2687 1.7886 1.2655 1.7882 1.2558 1.7643

Table 4.5: MAE and RMSE values for different models and market indices. Russell 3000 index is
comprised of the 3000 largest and most liquid stocks based and traded in the U.S. and the MSCI World
index is a composite of 24 developed and 27 emerging market indices.

From table 4.5 we can see that the best estimation is given by the model with time varying beta

where a KF-likelihood approach is used. For the rest of the models presented in the table there is

no significant difference between their values. Therefore, the best goodness of fit is given by the KF

techniques followed by RW-OLS. Also a comparison between different indexes can be done. The Russell

3000 index is composed of the 3,000 largest U.S. companies as measured by market capitalization,

and represents about 98% of the U.S. stock market. It can be subdivided into two segments: the

Russell 1000 (consisting of the 1000 largest market-cap companies) and Russell 2000 (consisting of 2000

small-cap companies). As we can notice, the index is market-cap weighted, hence, the largest firms

have the biggest impact on the index’s value. On the other hand, the MSCI World index is a leading

provider of equity, fixed-income and hedge fund indexes. Its acronym stands for Morgan Stanley Capital
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International. MSCI global equity benchmarks have become the most widely used international indexes

by institutional investors worldwide. This consistent approach makes it possible to aggregate individual

indexes to create meaningful composite, regional, sector and industry benchmarks. As it is shown in the

table, the best index could be the MSCI. It might be due to the fact that MSCI is a broad and investable

global equity benchmark.

4.2.5 Before and after the financial crisis

From the graph of beta filtered, Figure 4.7, we have decided to paid special attention separately to the

series before and during the crisis, in order to compare the performance of hedge fund strategies in good

and bad times. Figure 4.7 showed that the KF approach will locate the crisis better, as we can see in

the peak that the plot has is when the financial crisis started in late 2007.

We want to find which model fit better before and during a financial crisis, therefore in the following

table we get some performance values for each model.

Before After
MAE RMSE MAE RMSE

OLS 0.9775 1.2889 1.5592 2.2233
RW-OLS 0.9777 1.2792 1.5437 2.1544
KF 0.9728 1.2739 0.8363 1.1492
bOsc 0.9756 1.2783 1.5314 2.1909

Table 4.6: Performance values before and after the financial crisis started in late 2007. The values are
re-scaled to 103.

Table 4.6 shows the performance of the series before and during the financial crisis respectively. In

the first table we can see that the behavior of all the approaches are similar with just a little bit of

variation that indicates KF provides a better fitting. However, in the performance values for the series

after the financial crisis the difference between the values of each model is more relevant, given the KF

as the best estimation since it can adapt to changes in the data.

4.3 Multi-factors model

Another factor, as for example options, in the regression model may explain the data better. In our

case, we are going to work with a two factor model as described in Chapter 1, equation 2.7, as well as a

three factor models when we combine both equations. The equation can be written as:

Rt = αt +

3∑
i=1

βitRit + εt

where Rit can be taken as the market return or as the option based factor for different values of i.
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4.3.1 Models Comparison

In order to see if a KF approach with two or more factors models improves the fit, we are going to make

a comparison with the OLS method. The models are given by:

Rt = αt + β1tRMt + β2t max{RMt −Kt, 0}+ εt, a call option added to the model

Rt = αt + β1tRMt + β2t max{Kt −RMt, 0}+ εt, a put option added to the model

or the case where both, put and call options are added to the model and the equation can be written as

follow:

Rt = αt + β1tRMt + β2t max{RMt −Kt, 0}+ β3t max{Kt −RMt, 0}+ εt

where Kt is the daily return in the LIBOR series. The parameters are either constant over time or follow

a random walks in the case of time dependent parameters.

Methods/ MAE RMSE
Models call-option put-option both call-option put option both

OLS 1.2534 1.2562 1.2494 1.7774 1.7794 1.7743
KF 0.5732 0.6218 0.0473 0.7941 0.8704 0.0649

Table 4.7: Performance of the model with call options, put options, and the model with three factor
that include call and put options. The values are re-scaled to 103

In table 4.7, as before, we can conclude that the KF estimation is better than OLS. The estimation

is much better using two factor models than one factor model as we suggested before. But also using a

call option the performance is better than put option, the following graph represents this better since

the call option should have positives values when the market performance is good contrary to the put

option.

Figure 4.10 shows both graphs, in the first (call option) we can see that in general most of the values

are positive except during the crisis where the market performance were bad, hence the exposure to the

option should take opposite position with respect to the market. The put option has the same behavior

concluding that in this case the model with put option do not have better performance than the call

option.
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Figure 4.10: Exposure to the market for the call-option (left) and put-option (right) in a two factors
models

Ideally, an equity fund should participate in the upside performance of the market and limits its

negative values in the downside. The fund will typically increase its beta (market exposure) when the

market is expected to perform well, and reduce its market exposure when market is expected to perform

badly. In figure 4.10 we can see that before the financial crisis most exposures values are positive,

inversely after the financial crisis in late 2007 the market exposure is reduced in order to minimize the

losses. The figure, also shows the timing of the manager changing the investments, middle of 2008,as

soon as they notice the change due to the crisis.

Figure 4.11: Exposure to the market for the call-option and put-option when working with a three
factors model that takes in account the market, the call options and the put options.

Figure 4.11 represents the beta estimated for the factor call and put when working with a three

factors model. In the graph we can observe the difference between the put and call option. In the case
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of put option we can see that before the financial crisis most of the values are negatives, meaning that

it has a negative correlation with the negative values of the market. The opposite happens during and

after the financial crisis. The same analysis can be done for the graph of call options, but we have to

take into account that here the values are positive, therefore the correlation is positive with positive

values of the market.

Another three factor model interesting to study, is the model where the factor are different market

indexes. In this case we chose S&P500, Russell3000 and MSCI indexes, hence the model can be written

as:

Rt = αt + β1tRSP500 + β2tRRusell3000 + β3tRMSCI + εt

where the parameters can be either constant or time dependent. With this model we get the following

graphs,

Figure 4.12: Exposure to each market return used in the model describe above. Market returns used:
S&P 500, Russell 3000 and MSCI

Figure 4.12 we can see that the pattern of each exposure to the market return is very similar to the

exposure when we use only S&P500 as the market return. We can see the difference in values between

before and after the crisis, but the values of the exposure for MSCI are slightly bigger that the others

two. It might be caused due to the fact that the MSCI is a global index, hence it includes international

markets but not S&P500 and Russell3000 that are based fundamentally in the US market.

The performance value in this case are: MAE = 0.5514 and RMSE = 0.7790 both lesser values than

46



CHAPTER 4. APPLICATIONS TO HEDGE FUNDS 4.4. HEDGE FUND STYLES

the previous models, suggesting that the model fit better for the data analyzed.

4.3.2 Before and after the financial crisis with two factors

Now, working with the option-like model and the data before and after the crisis we get the following

values to measure the performance of each series.

Call Option Put Option
MAE RMSE MAE RMSE

OLS 0.9474 1.2548 0.9495 1.2567
KF 0.9358 1.2359 0.8571 1.1356

Table 4.8: Before the Financial Crisis in late 2007. The series are divided as following: before the crisis
are the returns from July 2004 to July 2007 and after the crisis are the returns from August 2007 to
June 2010. The values are re-scaled to 103

Call Option Put Option
MAE RMSE MAE RMSE

OLS 1.5266 2.1951 1.5663 2.1950
KF 0.4784 0.7902 0.8302 1.1501

Table 4.9: After the Financial Crisis in late 2007. The series are divided as following: before the crisis
are the returns from July 2004 to July 2007 and after the crisis are the returns from August 2007 to
June 2010. The values are re-scaled to 103

In tables 4.8 and 4.9 the conclusion is similar to the tables in the previous section. Therefore, the

behavior of the model is similar but the estimation is better using two factor models. Also, before the

crisis the values of MAE and RMSE of the KF and OLS methods are closer but not the same after

the crisis, since the values of KF are much more smaller than OLS which implies that the KF is the

better approach to use since in normal time it behaves like the OLS but in time with large volatility the

estimation is much better. Also, as we said before, the KF approach is very useful in the location of the

crisis time.

4.4 Hedge Fund Styles

The term ”hedge funds” is often used generically, in reality hedge funds are not all alike. In fact, there

are several investment styles with different approaches and objectives, where the returns, volatilities and

risk vary not only according to the fund manager, but also to the target market and the investment

strategies. As it is critical to have a basic understanding of the underlying hedge fund strategies and

their difference. In order to develop a coherent plan to exploit the opportunity offered by hedge funds,

consultants, investors and managers often classify the hedge fund market into a range of investment

styles.
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We examined eight hedge fund indexes corresponding to different strategies. We use 8 strategies of hedge

fund: Convertible Arbitrage, Distressed Securities, Event Drive, Global, Equity Market Neutral, Merger

Arbitrage, Macro, Relative Value Arbitrage. See Appendix A for more details on the definitions of these

strategies. The data consist of daily returns from June 2003 through to July 2010, a period that covers

market up and downturns.

Since the crisis cause large volatility variation and high kurtosis in the returns data, it is interesting to

analyze the behavior of different strategies of hedge funds in good and bad times. As each style has

different investment strategies, therefore they will have a diverse way to handle the crisis.

Hedge Fund Style Mean SD Sharpe Skew Kurtosis Min Max

Convertible Arbitrage 5.39× 10−5 0.0021 0.025 -0.417 5.128 -0.0095 0.0090
Distressed Securities 0.3210×− 5 0.0015 0.216 0.397 6.062 -0.0074 0.0077
Event Drive 0.362× 10−5 0.0027 0.137 -0.829 7.928 -0.019 0.011
Global 0.242× 10−5 0.0022 0.109 -1.213 8.420 -0.013 0.0081
Equity Market Neutral 4.13× 10−5 0.0025 0.017 -0.241 49.386 -0.031 -0.031
Merger Arbitrage 0.23× 10−5 0.0022 0.108 -1.137 15.675 -0.018 0.013
Macro 0.16× 10−5 0.0045 0.035 -1.764 14.554 -0.037 0.020
Relative Value Arbitrage 0.19× 10−5 0.0019 0.098 0.404 12.532 -0.0095 0.016

Table 4.10: Descriptive analysis of the return series of different strategies of hedge fund before the crisis

Table 4.10 presents a summary of descriptive statistics of daily returns for eight HFR indexes from

July 2003 through to July 2007. The summary statistics include mean, standard deviation (SD), sharpe

ratio (Sharpe), skewness (Skew), kurtosis, minimum (Min) and maximum (Max), minimum and maxi-

mum values of each of the statistic among the indexes.

Hedge Fund Style Mean SD Sharpe Skew Kurtosis Min Max

Convertible Arbitrage −0.744× 10−5 0.0073 -0.103 -3.253 23.682 -0.066 0.032
Distressed Securities −0.56× 10−5 0.0037 -0.151 -2.972 32.448 -0.043 0.017
Event Drive 0.16× 10−5 0.0041 -0.039 -1.060 13.641 -0.032 0.025
Global −0.18× 10−5 0.0032 -0.058 -1.073 10.652 -0.020 0.019
Equity Market Neutral −4.93× 10−5 0.0072 -0.015 -0.171 4.672 -0.014 0.013
Merger Arbitrage 0.17× 10−5 0.0044 0.039 2.091 48.575 -0.024 0.056
Macro 0.35× 10−5 0.0050 0.007 -0.180 3.801 -0.019 0.015
Relative Value Arbitrage −0.15× 10−5 0.0046 -0.033 -1.315 19.966 -0.038 0.032

Table 4.11: Descriptive analysis to the return series of different styles of hedge fund during the crisis

Table 4.11 presents a summary of descriptive statistics of daily returns for eight HFR indexes from

August 2007 through to July 2010. The summary statistics includes mean, standard deviation (SD),

sharpe ratio (Sharpe), skewness (Skew), kurtosis, minimum (Min) and maximum (Max), minimum and

maximum values of each of the statistic among the indexes.

When comparing the performance of eight hedge fund strategies before and after the crisis we observe

that the average returns for all of the chosen strategies are positives for the series before crisis, but as

we expected during the crisis period the behavior is worse, since most of them are negative. When we

look at the volatility we find, similarly to the average return, that for the series before the crisis is lower
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than the series after the crisis period. We need to point out that the worst behavior from before and

after the crisis is for the Equity Market Neutral with respect to the average return and volatility.

We observe that the kurtosis for both series is higher than three for all of the strategies of hedge fund

we are analyzing. Therefore, the probability distribution of the returns have heavier tails than the

normal distribution for all of them in each period. We find positive skewness for the following strategies:

Distress Securities and Relative Value Arbitrage in the series before the crisis, and Merger Arbitrage for

the series after the crisis that indicates the fat left tail for these strategies. The rest of the strategies

have a negative skewness for both series (before and after the crisis).

In terms of Sharpe ratio as well, the strategies for the series before the crisis exhibit better risk-return

tradeoffs compared to the series after the crisis. Thus, overall before the crisis strategies seem to have

delivered better risk-return tradeoff compared to the after the crisis strategies across a wide range of

risk-return metrics during the period measuring in each case. Furthermore, we can conclude that the

series of the strategies before the crisis perform better that those after the crisis period. We need to

emphasize that the Merger Arbitrage strategy performs well in both periods, before and after crisis.

4.4.1 Strategies Analysis

The suggested option-like model should be more useful for the type of hedge fund styles that use option

strategies. Therefore, we are going to work with three of these styles: Equity Hedge Index, Global Hedge

Fund Index and Macro Index, see [LHabitant, 2001].

MAE RMSE
O-L No O-L O-L No O-L

Equity 1.1931 3.0867 1.7712 4.3474
Global 0.5684 1.8066 0.8138 2.6350
Macro 2.6841 2.8622 3.7498 4.0015

Table 4.12: Performance of the option-like model with time-varying parameters (O-L) and the regression
model with time-varying parameters (No O-L) for different styles of hedge funds. The values are re-scaled
to 103

In table 4.12 we can note the higher difference in the Equity and Macro styles since they are the

styles that use more option strategies. The comparison between the styles shows that the styles Equity

and Global have better behavior when using option-like models. This might be due to the tendency of

these styles to have long exposure that might be suggesting a significant correlation with the market.

The performance of the Global style is much better since the manager’s investments could be worldwide.
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Conclusions

Over the past decades the financial literature has abounded with constant coefficient model just to make

it easy to analyze the stochastic dynamics of asset prices. However, this assumption has been criticized

by many empirical analysts. Consequently, at the beginning of the thesis we stated that dynamics

asset allocations of hedge fund managers could not be captured using constant coefficient regression

methods. We realized that as consequence of this, time varying exposure of hedge funds as beta would

be inaccurately computed with these methods.

Given the regression model with time varying coefficients as our state space, we applied a Kalman filter

based state estimation technique to our model. Anchored to the recursive Kalman filtering mechanism,

we performed a numerical analysis with real data of Hedge Funds. The same was done for a regression

model with two factors and three factors. Taking into account the relationship between some hedge

funds styles and options, we used a model that includes a call or put option and performance also

a numerical analysis. The numerical analysis in both cases include the comparison between models

and methods, since we worked not only with stochastic coefficient models but also with deterministic

coefficients models.

We found that the models with stochastic coefficients are superior to the model with constant coefficient

in most of the cases. Moreover, the estimation of the parameters of this model with Kalman filter

approach perform better than the OLS-Rolling Windows method. Through the thesis a study of the

models with beta varying on time have been done and this study suggests that the time varying beta

models behave better when working with forecasting in-sample. In general, concerning the evolution of

beta over time, results indicates that models with time varying are better able to estimate the current

value of the parameters than OLS.

When using option-based models, the advantages of models with time varying parameters against OLS

decline while the forecast error becomes smaller than in the univariate case for both, classic linear

regression and linear regression with time-variant parameters.

It is precisely the base of the OLS-rolling window In order to analyze the impact of the financial crisis

in the exposure of the hedge funds industry; we made use of the series of return of some styles of hedge

funds that includes the financial crisis. An analysis of the series before and during the financial crisis

was completed for every model studied in this thesis. When working with the series before the financial

crisis we concluded that the use of Kalman filter approach or OLS technique might be a choice of the

practitioners since the performance of both methods for this period was similar. In the case of the series
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during the financial crisis the Kalman filter approach improved the OLS method suggesting that the

Kalman filter can locate better the changes in the market showing high volatilities even before the crash.

For further works a forecasting out-of-sample may have been done to conclude if time-varying exposure

considered in the estimation models fit better when modeling hedge funds or some financial series that

involves managing. It will also be interesting to use Kalman filter approach with GARCH models when

we do not have the assumptions needed in the regression equation.
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GARCH Model

Financial economists are concern with modeling volatility in assets returns. This is important in the

financial field because volatility is considered a measure of risk, and investor want a premium for investing

in risky assets. Modeling and forecasting volatility is therefore important. The fact that volatility in

returns vary on time has been known for a long time. Observations in return series of financial assets

observed at weekly and higher frequencies are in fact not independent. While observations in these

series are uncorrelated or nearly uncorrelated, the series contain higher order dependence. Models of

Autoregressive Conditional Heteroskedasticity (ARCH) form the most popular way of parameterizing

this dependence. This ARCH model is the first model of conditional heteroskedasticity. Let εt be a

random variable that has mean and variance conditionally on the information known at time t− 1. The

ARCH model follows the properties related to conditional mean and variance in t given the information at

t−1. It means that the conditional mean and conditional variance of εt|t−1 has the following properties:

first, E(εt|t−1) = 0 and second, V ar(εt|t−1) = σ2
εt) is a nontrivial positive-valued parametric information

function. The sequence εt in our case is the error sequence of the regression model. Lets consider the

general regression model with conditional heterocedasticity ARCH of order q structure for the error

variance and parameters α and β varying in time,

yt = α+ βtXt + εt

βt = βt−1 + ζt (A.1)

αt = αt−1 + ϑt

where ζt and ϑt are white noise, and εt ∼ ℵ(0, σ2
εt), with

σ2
εt = C0 +

q∑
i=1

Ciε
2
t−i (A.2)

where C0 > 0, Ci ≥ 0 i = 1, . . . , q−1 and Cq > 0. The parameter restrictions in A.2 form a necessary

and sufficient condition for positivity of the conditional variance.
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In many applications, the ARCH model has been replaced by the Generalized ARCH (GARCH)

model. In this model proposed by [?], the conditional variance is also a linear function of its own lags

and can be written of the following form for a GARCH(p,q) model,

σ2
εt = C0 +

q∑
i=1

Ciε
2
t−i +

p∑
j=1

Djσ
2
εt−j

(A.3)

where the GARCH(p,q) coefficients has the following constrains C0 > 0, Ci ≥ 0 i = 1, . . . , q, Dj ≥

0 j = 1, . . . , p and
q∑
i=1

Ci +
p∑
j=1

Dj < 1. The parameter restrictions in A.2 form a necessary and sufficient

condition for positivity of the conditional variance. The conditional variance define above in A.3 has the

property that the unconditional autocorrelation function of ε2
t , if exists, can decay slowly although still

exponential. For the ARCH family, the decay rate is too rapid compare to what is typically observed in

financial time series, unless the maximum lag q in A.2 is long. As A.3 is more parsimonious model of

the conditional variance than a high-order ARCH model [Terasvirta, 2009]
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Hedge Fund Styles

To further investors understanding of hedge funds, data providers have classified them into more homo-

geneous categories or styles. The funds within each category serve as a peer group for the style. Hedge

fund classifications differ in both definition and granularity. Therefore, it is important to understand

the differences between the various hedge fund strategies because all hedge funds are not the same –

investment returns, volatility, and risk vary enormously among the different hedge fund strategies. Some

strategies which are not correlated to equity markets are able to deliver consistent returns with extremely

low risk of loss, while others may be as or more volatile than mutual funds. A successful fund of funds

recognizes these differences and blends various strategies and asset classes together to create more stable

long-term investment returns than any of the individual funds.

We now describe 8 Hedge Fund investments styles with which we are going to do some statistical com-

parison,

• Convertible Arbitrage

Convertible arbitrage is a market-neutral investment strategy often employed by hedge funds. This

style is identified by hedge investing in the convertible securities of a company. While some hedge

funds simply invest in convertible bonds, a hedge fund using convertible arbitrage is actually taking

positions in both the convertible bonds and the stocks of a particular company. A convertible bond

can be converted into a certain number of shares. A typical investment is to be long the convertible

bond and short the common stock of the same company. Positions are designed to generate profits

from the fixed income security as well as the short sale of stock, while protecting principal from

market moves. The approach typically involves a medium-term holding period and results in low

volatility.

• Distresses Securities

Distressed Securities is the investing by the fund managers invest in the debt, equity or trade

claims of companies in financial distress and generally bankruptcy. Also, short-selling the stocks

of those corporations. Such companies are generally in bankruptcy reorganization or are emerging

from bankruptcy or appear likely to declare bankruptcy in the near future. Because of their
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distressed situations, the manager can buy such companies’ securities at deeply discounted prices.

The manager stands to make money on such a position should the company successfully reorganize

and return to profitability. Also, the manager could realize a profit if the company is liquidated,

provided that the manager had bought senior debt in the company for less than its liquidation

value. Results generally not dependent on the direction of the markets. Expected Volatility: Low

- Moderate.

• Event drive

This strategy is defined as equity-oriented investing designed to capture price movement generated

by an anticipated corporate event. Some managers who employ Event-Driven trading strategies

may shift the majority weighting between Merger Arbitrage and Distressed Securities, while others

may take a broader scope. Typical trades and instruments used may include long and short

common and preferred stocks, debt securities, options and credit default swaps. Leverage may be

employed by some managers. Such funds, which include risk-arbitrage vehicles and entities that

buy distressed securities, typically employ medium-term holding periods and experience moderate

volatility.

• Global

The Global strategy is an all-round category for funds that invest is assets beyond those based

in their home market. Other than that, no more specific technique is associated with this. An

example would be a Hedge Fund investing in an emerging market such as India.

• Equity Market Neutral Equity market neutral is a hedge fund strategy that seeks to exploit

investment opportunities unique to some specific group of stocks while maintaining a neutral

exposure to broad groups of stocks defined, for example, by sector, industry, market capitalization,

country, or region. Due to the portfolio’s low net market exposure, performance is insulated

from market volatility. The Market-neutral funds typically employ long-term holding periods and

experience moderate volatility.

• Merger Arbitrage

Merger Arbitrage Fund is a fund strategy in which the stocks of two merging companies are

simultaneously bought and sold to create a risk-less profit. A merger arbitrageur looks at the risk

that the merger deal will not close on time, or at all. Because of this slight uncertainty, the target

company’s stock will typically sell at a discount to the price that the combined company will have

when the merger is closed. This discrepancy is the arbitrageur’s profit. In other words, merger

arbitrage is an investment strategy that simultaneously buys and sells the stocks of two merging

companies.

• Macro

Global macro are the strategies that have the highest risk/return profiles of any hedge fund strategy.

Global macro funds is an approach in which a fund manager seeks to anticipate broad trends

in the worldwide economy due to economic, political, or government related events. Based on
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those forecasts, the manager chooses investments from a wide variety of market, e.g. stocks,

bonds, currencies, commodities, options, futures, forwards and other forms of derivative securities.

They tend to place directional bets on the prices of underlying assets and they are usually highly

leveraged. Most of these funds have a global perspective and, because of the diversity of investments

and the size of the markets in which they invest, they can grow to be quite large before being

challenged by capacity issues. Many of the largest hedge fund that ”blow-ups” were global macros.

The approach typically involves a medium-term holding period and produces high volatility. Many

of the largest hedge funds follow global-macro strategies. They are sometimes called ”macro” or

”global directional-investment” funds. Expected Volatility: Very High.

• Relative Value Arbitrage

Relative Value Arbitrage is an investment strategy that seeks to take advantage of price differentials

between related financial instruments, such as stocks and bonds, by simultaneously buying and

selling the different securitiesthereby allowing investors to potentially profit from the ”relative

value” of the two securities. The underlying concept is that a hedge fund manager is purchasing a

security that is expected to appreciate, while simultaneously selling short a related security that

is expected to depreciate. Related securities can be the stock and bond of a specific company; the

stocks of two different companies in the same sector; or two bonds issued by the same company

with different maturity dates and/or coupons. In each case, there is an equilibrium value that is

easy to calculate since the securities are related but differ in some of their components.
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Appendix C

MATLAB Code

% Working with option− l i k e model y t = a t + b1 t ∗ X t + b2 t ∗ X1 t + ey t

% where a t = a t−1 + e a t ; b1 t = b1 t−1 + eb1 t ; b2 t = b2 t−1 + eb2 t ;

% X t i s the vec to r o f the market r e tu rn s ; y t i s the vec to r o f the hedge

% fund re tu rn s and X1 t = max( X t−K t , 0 ) with K t the LIBOR s e r i e s .

c l e a r a l l

format long

g l o b a l XT Y m bKF nt

load Y; load X; load IR ;

%%%%%%%

K = IR ;

X1 = max(X−K, 0 ) ;

XT = cat (2 , ones ( l ength (X) , 1 ) ,X, X1 ) ;

% I n i t i a l Values

par0 = [ 0 . 0 7 0 .02 0 .03 0 . 0 1 ] ; %[ey , ealpha , ebeta , elambda ]

% Option f o r the opt imiza t i on func t i on

opt ions = opt imset ( ’ Display ’ , ’ i t e r−de ta i l ed ’ , ’ TolX ’ , 1 0 ˆ ( −1 0 ) , . . .

’ TolCon ’ ,10ˆ( −10) , ’ TolFun ’ , 10ˆ( −10) ) ;

lbv = 10ˆ(−9); % lower bound

ubv = 200 ; % upper bound

lb = [ lbv lbv lbv lbv ] ;

ub = [ ubv ubv ubv ubv ] ;

% Ca l l i ng the opt imiza t i on func t i on implemented f o r Matlab

[ par , f va l , e f l a g ] = fmincon ( @log l ik1 , par0 , [ ] , [ ] , [ ] , [ ] , lb , ub , [ ] , opt ions ) ;

% Error o f e s t imat i on by Kalman F i l t e r approach

r e s = Y−(bKF(1 , : ) ’+bKF( 2 , : ) ’ . ∗X+bKF( 3 , : ) ’ . ∗X1 ) ;
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% Estimation performance

pe r f 1 = mae( r e s ) ;

p e r f 2 = mse ( r e s ) ; p e r f 2 = s q r t ( pe r f 2 ) ;

% Plot the vec to r o f the c o e f f i c i e n t est imated by KF

subplot ( 3 , 1 , 1 ) ; p l o t (bKF ( 1 , : ) ) ; h1=gca ;

t i t l e ( ’ Alpha ’ )

subplot ( 3 , 1 , 2 ) ; p l o t (bKF ( 2 , : ) ) ; h2=gca ;

t i t l e ( ’ Beta 1 ’ )

subplot ( 3 , 1 , 3 ) ; p l o t (bKF ( 3 , : ) ) ; h3=gca ;

t i t l e ( ’ Beta 2 ’ )

hh = [ h1 h2 h3 ] ;

s e t (hh , ’ XTick ’ , 1 : 2 5 2 : l ength (Y)+252) % s e t t i n g the axes o f the f i g u r e s

s e t (hh , ’ XTickLabel ’ ,{ ’ 2 004 ’ , ’ 2 005 ’ , ’ 2 006 ’ , ’ 2 007 ’ , ’ 2 008 ’ , ’ 2 009 ’ , ’ 2 010 ’} )

Log-likelihood Function

% V=(v1 , d1 , d2 , v2 , v3 )

% v1 −− the var iance o f e1 , z ( t )=( bt )∗ z ( t−1)+e1

% d1 −− c o e f f i c i e n t o f the t a n s i t i o n matrix M ( alpha )

% d2 −− c o e f f i c i e n t o f the t a n s i t i o n matrix M ( beta )

% v2 −− the var iance o f e2 , s ( t )=M1∗ s ( t−1)+e2 ( alpha )

% v3 −− the var iance o f e3 , z ( t)=M2∗z ( t−1)+e3 ( beta )

func t i on L = l o g l i k (V)

g l o b a l XT Y m bKF nt h

% I n i t i a l i z a t i o n

m = length (Y) ; % s i z e o f r e tu rn s

Xt = XT;

Yt = Y;

Bu = [0 . 000001 0.000001 0 . 0 0 0 0 0 1 ] ’ ;

Pu = ze ro s (m, 1 ) ;

H = V( 1 ) ;

M = 1 ; % we are working with a random walk

h = length (V) ;

vtemp = V( 2 : h ) ;

Q = diag ( vtemp ) ; % matrix o f var i ance o f the e r r o r

% Ca l l i ng the Kalman Function

[ Ft , nt , l t , bKF] = kalman (Bu ,M,Q, Pu , Xt , Yt ,H) ;

L = −sum( l t ) ; % the negat ive o f the log−l i k e l i h o o d func t i on s i n c e

% we need to f i n d i t s maximum and the opt imiza t i on

% func t i on implemented in Matlab f i n d s the minimum .
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Kalman Function

% The input o f the func t i on are the i n i t i a l va lue s needed f o r the Kalman

% equat ions s i n c e the equat ions work with the past data . The output are

% the vec to r va lue s o f the log−l i k e l i h o o d func t i on in each step , and the

% matrix that each column conta in s the e s t imat ion vec to r o f each c o e f f i c i e n t

% o f the model .

f unc t i on [ kalm , e r ror , LL , betaKF ] = kalman (Bu ,M,Q, Pu , Xt , Yt ,H)

g l o b a l m h

f o r j =1:m

i f j==1

Btu = M’ . ∗Bu ; % Bt | t−1 −− s t a t e p r e d i c t i o n

Ptu = Q; % p r e d i c t i o n d i s p e r s i o n

e l s e

Btu = M’ . ∗Bu ; % Bt | t−1 −− s t a t e p r e d i c t i o n

Ptu = M∗Pu∗M’+Q; % p r e d i c t i o n d i s p e r s i o n

end

Zt = Xt( j , : ) ;

Ytu( j ) = Zt∗Btu ;

nt ( j ) = Yt( j )−Ytu( j ) ; % p r e d i c t i o n e r r o r

Ft ( j ) = Zt∗Ptu∗Zt ’+H; % e r r o r d i s p e r s i o n

InvFt ( j ) = Ft ( j )\ eye ( 1 ) ;

Kt = ( Ptu∗Zt ’ ) . ∗ InvFt ( j ) ; % Kalman gain

Bu = Btu+Kt .∗ nt ( j ) ; % s t a t e es t imate

f o r k=1:h−1

BuT(k , j ) = Bu( k ) ;

end

Pu =Ptu−Kt∗Ft ( j )∗Kt ’ ; % est imate d i s p e r s i o n

kalm1 ( j ) = Ft ( j ) ;

e r r o r ( : , j ) = nt ( j ) ;

LL( j ) = −((h/2)∗ l og (2∗ pi )+(1/2)∗ l og ( abs ( Ft ( j ) ) )+(1/2)∗ nt ( j )∗ InvFt ( j )∗ nt ( j ) ’ ) ;

end

kalm = kalm1 ;

betaKF = BuT;
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