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Abstract

As we approach the limits of Moore’s law the Cloud computing landscape is becoming ever more hetero-

geneous in order to extract more performance from available resources. Meanwhile, the container-based

cloud is of growing importance as a lightweight way to deploy applications. A unified heterogeneous

systems framework for use with container-based applications in the heterogeneous cloud is required. We

present a bytecode-based framework and it’s implementation called Man O’ War, which allows for the

creation of novel, portable LLVM bitcode-based containers for use in the heterogeneous cloud. Contain-

ers in Man O’ War enabled systems can be efficiently specialized for the available hardware within the

Cloud and expand the frontiers for optimization in heterogeneous cloud environments. We demonstrate

that a framework utilizing portable bytecode-based containers eases optimizations such as heterogeneous

scaling which have the potential to improve resource utilization and significantly lower costs for users of

the public cloud.
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Chapter 1

Introduction

As we approach the limits of Moore’s law the landscape of computing is becoming ever more hetero-

geneous in order to extract more performance from available resources [42]. This includes the cloud

computing landscape with the widespread adoption of parallel accelerators such as GPUs and new pro-

cessor types such as Amazon’s ARM-based AWS Graviton processor [23].

On the software side, the container-based cloud is of growing importance in modern cloud computing

due to containerization’s popularity as a light weight way to virtualize applications [27]. For example,

Cloud-Native Applications (CNA), applications which are formed from a “distributed, elastic and hor-

izontal scalable system composed of (micro)services ... and operated on a self-service elastic platform”

[15] are increasingly being built using popular container tools such as Docker. Correspondingly this self-

service elastic platform is increasingly container-based and Google Cloud Platform’s Kubernetes Engine

[9], Amazon’s Elastic Container Service [1], and Microsoft’s Azure Kubernetes Service [2] are all public

cloud services based on containers that have launched in the last few years.

As customers of these computing platforms are typically charged by their usage of the underlying

computing resources, as per the Utility computing model, efficient usage of those resources is an impor-

tant object of study in cloud computing and container research [27]. Cloud providers are also naturally

interested in providing a mixture of resources that will appeal to their customers while minimizing opera-

tional costs. This work will examine how the architectural and mircoarchitectural diversity of computing

resources can be exploited in heterogeneous clouds to improve performance and resource utilization.

However, there are barriers both logistical and technical to container-based applications being able to

easily migrate and adapt to optimally take advantage of this heterogeneous environment. Heterogeneous

systems present a great deal of complexity in the form of varying capabilities and requirements to

potential developers who wish to exploit their benefits, necessitating a great deal of software development

effort. Heterogeneous system frameworks seek to alleviate this by presenting a single coherent interface

to heterogeneous computing devices.

In order to deal with the full-range of heterogeneity available in the container-based cloud, a new

1



CHAPTER 1. INTRODUCTION

Figure 1.1: A Portuguese Man O’ War

framework is required. We will introduce the concept of bytecode-based1 container images in order to

present the basis for a novel framework and our implementation we call Man O’ War, named after the

Portuguese Man O’ War (shown in Figure 1.1): a “jelly-like marine invertebrate, where clones bud and

can have specialized function within the colony” [43]. This system allows for the creation of portable

bytecode-based containers for use in the heterogeneous cloud. Much like in their namesake, containers in

a Man O’ War enabled container system can be easily adapted and specialized for the particular location

they are needed within the cloud and they are adapted specific node hardware they will be running on.

After describing the system, some example use cases, and its integration into a container environment, we

discuss performance experiments conducted with the system and a discussion of dynamic optimization

strategies and larger cloud-wide opportunities enabled by the system such as Heterogeneous Scaling. We

demonstrate these optimizations can result in dramatic increases in cost efficiency for some workloads.

We conclude with potential future directions for research and extensions to the system.

In this chapter we will discuss containers, the container-based cloud and the role of containers in

the modern software development ecosystem. We will move on to discuss the nature of the heteroge-

neous computing resources that are currently available in the cloud and the optimization opportunities

1Bytecode is used colloquially to a variety of low-level virtual Instruction Set Architectures (ISAs).
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CHAPTER 1. INTRODUCTION 1.1. OVERVIEW

they present. We will then conclude with a discussion of the difficulties in meshing container-based

development approaches with the optimization opportunities found in the heterogeneous cloud.

1.1 Overview

Cloud Computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that

can be rapidly provisioned and released with minimal management effort or service provider interaction

[20].

1.1.1 Cloud Definition

The NIST Definition of Cloud Computing (SP 800-145) is a useful reference model for our discussions. In

it Cloud Computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that

can be rapidly provisioned and released with minimal management effort or service provider interaction

[20].

This cloud model is composed of five essential characteristics, three service models, and four deploy-

ment models [20]. We briefly reproduce the essential characteristics here as we will refer to them in our

later discussion:

Essential Characteristics

On-demand self-service A consumer can unilaterally provision computing capabilities, such as server

time and network storage, as needed automatically without requiring human interaction with each

service provider.

Broad network access Capabilities are available over the network and accessed through standard

mechanisms that promote use by heterogeneous thin or thick client platforms (e.g. mobile phones,

tablets, laptops, and workstations).

Resource pooling The provider’s computing resources are pooled to serve multiple consumers using

a multi-tenant model, with different physical and virtual resources dynamically assigned and re-

assigned according to consumer demand. There is a sense of location independence in that the

customer generally has no control or knowledge over the exact location of the provided resources

but may be able to specify location at a higher level of abstraction (e.g., country, state, or data-

center). Examples of resources include storage, processing, memory, and network bandwidth.

Rapid elasticity Capabilities can be elastically provisioned and released, in some cases automatically,

to scale rapidly outward and inward commensurate with demand. To the consumer, the capabilities

available for provisioning often appear to be unlimited and can be appropriated in any quantity

at any time.

3



1.1. OVERVIEW CHAPTER 1. INTRODUCTION

Measured service Cloud systems automatically control and optimize resource use by leveraging a

metering capability at some level of abstraction appropriate to the type of service (e.g., storage,

processing, bandwidth, and active user accounts). Resource usage can be monitored, controlled,

and reported, providing transparency for both the provider and consumer of the utilized service

1.1.2 Containers in the Modern Cloud

Virtualization of resources is essential in the cloud to delivering on pooling and sharing resources. Con-

tainers are a type of operating system-level virtualization which are implemented by a number of popular

technologies such as Docker2, provide an isolation environment including a complete base filesystem im-

age for a process or collection of processes to run in. Containers can be a high-performance, low-overhead

alternative to virtual machines in the modern cloud[35].

The container image is composed of several filesystem snapshots called layers. It is managed by a

container engine which, upon a request to create an instance of the container, unpacks it and launches

an initial process within the environment with access to only the outside resources as described by the

manifest in the image. An image contains an application with all of its dependencies packed into one

convenient distributable artifact.The same image unaltered image can be built, tested in the development

and then deployed directly to production on container-based infrastructure and platforms. This setup has

numerous advantages and within popular movements such as DevOps containers as the actual software

artifacts produced and consumed have become very popular given their ability to isolate the application

and it’s dependencies from its underlying environment [7].

1.1.3 The promise of heterogeneity in the cloud

A heterogeneous system consists of processing elements of varied type and capability, presenting unique

optimization opportunities from a systems perspective. These processing elements may be part of the

same logical machine accessible through a local bus or part of a distributed system with nodes physically

and possibly geographically remote, such as in the public cloud. The key characteristic in these systems of

study is that we wish to leverage the system’s heterogeneity to improve some performance characteristic

of our applications, such as total execution time, response time, power efficiency, or cost. While such

systems have in practice existed for many years, for example in the High Performance Computing (HPC)

domain, recently interesting results have become available that show the opportunities for optimization

in public cloud infrastructures [31].

2Docker is a very popular tool for construction and running container environments developed by the company of the
same name.

4



CHAPTER 1. INTRODUCTION 1.2. SCOPE AND GOAL

1.2 Scope and Goal

1.2.1 Difficulties in exploiting heterogeneity

Making use of the heterogeneous computing resources in the cloud in practice is complicated by a

number of factors. Even in the absence of a unifying framework in order to be able to leverage cloud-

level heterogeneity our program must on some level be portable. By portability we mean simply that

the program is capable, generally without extraordinary measures such as complex emulation, of being

run in a different environment. We also must distinguish two types of portability: source and binary.

In the case of source portability, which is indeed the goal of many modern programming languages and

environments such as POSIX [11], the source code of the program is portable between platforms. Binary

portability, which implies source portability, means that the final compiled representation of the program

is portable. The range of environments a program is portable for affects the types of optimization we

can perform for the heterogeneous environment.

Containers are portable between container runtimes and host environments. Containers are not how-

ever portable between operating systems and hardware architectures as they generally contain platform

specific binaries which are not portable. According to Open Container Initiative (OCI) standards, con-

tainer images and filesystem layers are normally tagged with the particular hardware architecture they

are built for. Even if the original application is source portable, this means rebuilding and optimizing

the container for each possible node type.

Figure 1.2: A Docker multi-architecture build and deployment

Figure 1.2 shows what a high level overview of a typical build and deployment process might look like

using Docker if a developer wished to target instances with three different architectures: x86 64 (x86),

5



1.3. OUR CONTRIBUTIONS CHAPTER 1. INTRODUCTION

ARM, and POWER (PPC). Note that the builds are entirely separate even if we are building the same

software, with the same options, as the base image and/or executables packaged into the context will

need to be architecture specific. In the best case, even if we are packaging an application written in a

language which itself is portable (eg. Python) this still means packaging a platform specific version of

its runtime environment.

More problematically, even on the same architecture, for any possible variation of microarchitecture

the container developer wishes to optimize for, they must build specialized binaries and a corresponding

container image for those resources. Consider an example where we wish to utilize processor extensions

including Single Instruction Multiple Data (SIMD) instruction sets which can exploit parallelism, for

example Advanced Vector Extensions (AVX). In this case we will need to ensure our containerized

application is rebuilt to support it. Since many container images are built and published by ISVs to

registries such as Docker Hub, to be composed with other application layers they may omit these types

of optimizations entirely, so we are required to rebuild our application and all of its dependencies. On

the opposite end of the spectrum, container-based PaaS such as Amazon Fargate offer no choice of

heterogeneity at all meaning we are stuck with a one cost/performance point fits all situation.

While these types of platform and portability woes are certainly not new, we feel they are breaking

some of the abstractions and portability gains that containers introduce. One of the primary advantages

of container-based cloud is decoupling the application from the infrastructure. However once we attempt

to perform heterogeneous performance optimizations this quickly starts to break down. A overlying

heterogeneous systems framework will allow us to regain some sense of a unified model.

Clearly we will require a new, portable basis for containers as well in our unified framework if we

wish to be able to easily make use of the available heterogeneity in the cloud. As part of this work

we will introduce a binary architecture portable, bytecode container format and our implementation

of this toolchain called Man O’ War, which allows containers to be translated into a form appropriate

for whichever hardware architecture they may be run on. This allows us to move towards a unified

heterogeneous systems framework while still producing containers that may be run unmodified on existing

container infrastructure as required.

1.3 Our Contributions

While we have shown that in practice it is possible to benefit from exploiting heterogeneity in cloud

systems [31], such systems are often used in a limited capacity in cloud systems; some times limited

solely to the use of accelerators such as Graphics Processing Units (GPUs) [31] and rarely do we en-

counter a system-wide focus on enabling flexibility as well as allowing for optimization in the presence

heterogeneity. A unified approach and heterogeneous systems framework for use with container-based

application virtualization in the presence of a potentially heterogeneous cloud environment is required.

In the rest of this work we introduce our solution for the construction of such a framework and

demonstrate our implementation on scenarios presenting optimization difficulties using container-based

systems in the heterogeneous cloud. We show it is possible to enable simplified heterogeneous node

6



CHAPTER 1. INTRODUCTION 1.4. ORGANIZATION OF THIS WORK

Figure 1.3: Man O’ War bytecode container build and deployment

support by building bytecode-based program translation into the foundation of these platforms. We

introduce Man O’ War, a system based on the LLVM3 bitcode4 format and apply it to the Open Container

Initiative (OCI) container format to produce a portable containers suitable for use with unmodified OCI

compliant runtimes. A high level overview of the build and deployment process using Man O’ War

containers is shown in Figure 1.3 (compare with Figure 1.2). We propose methods for incorporating

these new containers into existing container or orchestration system by utilizing a translation system

called a finalizer which will translate and optimize images to the available node hardware.

With this groundwork laid, we discuss large-scale optimizations that are possible in the heteroge-

neous cloud that can take advantage of the flexibility afforded by a heterogeneous environment such as

Heterogeneous Scaling. We demonstrate via an experiment that in case of the real world heterogeneous

clouds by incorporating nodes of diverse architecture/performance it is possible to achieve significant

cost savings on some workloads. We perform experiments that show that they offer access to specific

performance advantages owing to their in heterogeneous hardware environments due to their dynamic

ability to exploit hardware specific optimization and as well there is generally no notable performance

overhead to using portable bytecode containers over traditionally compiled, single architecture containers

so they maybe utilized universally.

1.4 Organization of this work

The rest of this work is organized as follows:

Chapter 2 will discuss background and introduce some related works we draw upon and that are neces-

sary for an understanding of our approach.

3Originally LLVM stood for Low-Level Virtual Machine[18], though in current usage it is no longer an acronym.
4Bitcode is usually used for the LLVM bytecode, we use the terms interchangeably when referring to our own LLVM-

based implementation.

7



1.4. ORGANIZATION OF THIS WORK CHAPTER 1. INTRODUCTION

In chapter 3 we will describe how bytecode techniques can help us solve the challenge of a unified het-

erogeneous systems framework for cloud and the Man O’ War bytecode container system we developed.

We will continue with a discussion of how this system addresses the potential barriers to performance

optimization in the heterogeneous cloud.

In chapter 4 we will conduct a number of experiments with the Man O’ War system which demonstrates

its practicality in real cloud system and scenarios. We also do a detailed comparison and discussion with

some related works.

Finally we wrap up in chapter 5 with our conclusions, a discussion of potential future work such as

various dynamic optimization methods which are made possible by bytecode containers and which can

be incorporated into container-based clouds, and finally other future directions and extensions we have

considered.
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Chapter 2

Background and Related Works

In this chapter we discuss the background of heterogeneous systems, as well as bytecode techniques and

the container-based cloud that are important for our problem in the subsequent chapters. We will also

discuss several related works and projects that are important for understanding of our work and solution.

We will return to many of the systems describe here later in the discussion section of our evaluation

chapter.

2.1 Heterogeneous Systems

2.1.1 Introduction and Definition

A heterogeneous system is a coherent system consisting of multiple types of processing elements combined

to achieve greater scalability, energy efficiency, and performance than is achievable with a single type of

processor [32]. Some examples may include:

• General Purpose Processors (eg. CPU)

• Parallel Accelerators (eg. GPU)

• Reconfigurable Systems (eg. FPGA)

All of these processing elements may vary greatly in architecture and microarchitecture. They may

have radically differing memory models with different consistency models. The system may function

in either a local or distributed fashion. In addition to physical processing elements we may choose to

incorporate virtualized ones as well. This great variability is the strength of heterogeneous systems, but

also introduces some new challenges that we will consider in the following sections.

2.1.2 Frameworks for Heterogeneous Systems

Managing the complexity of really world heterogeneous systems necessitates a framework and/or run-

time to address the software engineering challenge of running programs on these highly variable systems.
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Without such a framework the software developer would need to address all the variability of the pro-

gramming models of the various devices as well as orchestrating the resulting computation across the

devices.

From the paper and presentation on the heterogeneous systems framework “Dandelion” by Rossbach

et al.[32], which we will discuss in more detail later in this chapter, we obtain their description of goals

for an idealized framework for heterogeneous systems. Primarily this is that it should provide a single

programming interface for:

• CPU

• GPU

• FPGA

• Other current and future devices (“You name it”)

It should allow the programmer to as much as possible write simple sequential code while the frame-

work or runtime adopts all responsibility for:

• Parallelizing the computation

• Partitioning data

• Running on all available resources

• Mapping the computation to the best architecture

These are lofty and unrealizable goals for developers of real systems to aim for1 and they are forced

to compromise on a subset of these or other limitations such as targeting a specific set of programs or

devices [32]. Two important sub-problems can be identified from the above description of the problem

which are identifying the mapping (scheduling) and running on all available resources (portability).

Scheduling

The problem of mapping the computation to available devices is fundamentally an optimization and

scheduling problem. Let us consider our own simplistic way of modelling the problem of running a job

given such a system, so we can understand better what is involved.

Given a set of processes P1 . . . Pn and a set of computing resources R1 . . . Rm, we must find a plan

or schedule S where S maps all processes P to resources R subject to a cost function C which measures

the overall cost (eg. time, throughput, power, monetary cost)2 of running all the P processes with the

given R resources and schedule S. Thus, we are trying to find solutions to the following optimization

problem:

1Dandelion also does not attempt to meet their idealized definition by their own admission[32].
2Roloff et al. discuss a family of such cost functions based on node cost and execution-time [31].
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Argmin
∑

C(P,R, S) (2.1)

That is we are trying to find the minimum cost way to run the processes with the given choice

of resources. In practice this problem is also subject to a number of constraints; some are design

requirements such as scheduling deadlines and performance requirements3, others are limitations such

as program restrictions or resource limits. These limits are of key importance as they restrict our ability

to place processes in their optimal locations.

This is an instance of the classical job shop scheduling problem. While this optimization problem is in

general intractable, it admits numerous interesting approximations and scheduling in heterogeneous sys-

tems whether local, distributed, virtual, cloud or otherwise is a well studied problem [41][14][28][31][33].

All the heterogeneous systems frameworks we consider later address this problem in some way, whether

explicit to the user or not.

Portability and Program Representation

An ideal framework must attempt to ensure the maximal possible computation resources that are avail-

able for use can be utilized without regard to the specific underlying type or architecture of those

resources. While complete abstraction of all types of resources is perhaps unrealistic, this gives rise to

the concept of portable representations of the program. A program written with the framework should

be able to run on all the different physical and virtual devices supported by that particular framework.

The means of achieving this vary by framework and context, but this will be a recurring and central

theme for the rest of the discussion of frameworks in this chapter as well as the rest of our work.

2.1.3 Example Frameworks

In this section we discuss some important instance of frameworks for heterogeneous systems. This list

is by no means exhaustive4, but it is illustrative of the types of frameworks that exist and several that

are important and related to our own work.

OpenCL

OpenCL is an open standard and framework for implement access to parallel accelerators maintained

by the Khronos Group and originally authored by Apple [38]. It allows developers to access the capa-

bilities of parallel accelerators by writing programs called ’kernels’ in a C like language with support for

expressing parallel operations, which is compiled from source by the device driver and uploaded to the

device upon execution. The framework contains functionality for managing the kernels execution and

marshaling data to and from the accelerator [38].

Newer versions of OpenCL have been implemented on top of a bytecode called SPIR-V, solving the

portability problem with an intermediate language that it shares with other Khronos projects and which

3Performance requirement such as to maintain a Service Level Agreement (SLA).
4We do not discuss CUDA the popular NVIDIA framework for example, as it is proprietary and not used for our

implementation.
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allows pre-compiled versions of the kernels to be shipped with the application and later translated on

demand [37].

Heterogeneous System Architecture (HSA)

The Heterogeneous System Architecture (HSA) is a heterogeneous framework and associated compliant

hardware that allows different types of processors to work together efficiently and cooperatively through

shared memory developed by the HSA Foundation with broad industry participation [42, p.2]. Their

motivation includes that Central Processing Unit (CPU) have “reached a plateau in computational speed

per watt” and thus many hardware platforms are becoming heterogeneous, incorporating non-traditional

processing devices such as GPUs and Digital Signal Processor (DSP) which can exploit the parallelism

inherent in many applications [42].

They note that the traditional architectural approach of handling these devices as I/O devices means

that significant overheads arise in software that handles the task initiation and data movement, meaning

developers must make sure tasks are substantive enough to warrant offloading. A second major issue

of this approach is that the programming interface of these devices require a programmer to provide

explicit compute kernel, often written in a completely separate language, that they must then explicitly

interface with their main program. This adds significant overhead to the software development process

and can disrupt the overall architecture of applications.

HSA aims to enable seamless and efficient co-operation of these different types of processors through

a shared memory construct. It provides a unified programming interface to heterogeneous systems that

consists of diverse parallel processors from multiple vendors. They define heterogeneous system archi-

tecture intermediate language (HSAIL) “a low-level compiler intermediate language, designed to express

parallel regions of code and be portable across multiple vendor platforms and hardware generations”[42,

p.19].

Compilers supporting the platform are intended to take traditional high-level languages with parallel

extensions and compile them into HSAIL [42, p.20]. The resulting HSAIL is designed to be embedded in a

binary format (BRIG) inside a standard executable along side native code in a type of Fat Binary. Later

it is retrieved and passed to the HSA runtime system to be compiled by a finalizer (either Ahead-of-Time

(AOT) or Just-in-Time (JIT) on the host). Once the program begins executing it can be dispatched

to available device queues in an HSA-enabled operating system. Front-end languages for compilations

include OpenCL, C++ AMP (a set of parallel computing extensions) and others [42].

Dandelion

In “Dandelion: a Compiler and Runtime for Heterogeneous Systems” Rossbach et al. present a project

which tries to address the programmability challenge for data-parallel programs on heterogeneous sys-

tems [32]. It uses the .NET LINQ (Language Integrated Query) framework to embedded data-parallel

operations encoded in a relational type syntax in a general purpose programming language. The com-

piler and runtime then take care of automatically distributing the data and tasks over CPU, GPU and

FPGA backends [32].
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They identify two primary challenges for the framework. Firstly, the heterogeneity of the system must

be well encapsulated from the programmer and present them with a simple and familiar programming

model in the presence of this diversity. Secondly, the system must attempt to efficiently integrate the

underlying runtimes to achieve high performance [32].

In order to run the same code in different architectural contexts, they introduce a new general-purpose

cross compiler framework for .NET bytecode that allows it to be translated to multiple back-end devices

[32]. This allows the programmer to write code in a mostly familiar way. They believe this prototype

shows the viability of using rich object-oriented languages for programming data-parallel computing on

heterogeneous systems [32].

2.2 Bytecode and Intermediate Representations

Several of the heterogeneous systems frameworks we have describe above make use of various types

of bytecodes and it merits discussing bytecodes in more detail. Bytecodes are a low-level machine

independent representation for programs. The origins of bytecode systems date back to the era of o-

code and BCPL [4]. They have long been used as a machine independent intermediate representation

for programs in a compiler system. Bytecodes can either be compiled directly to machine code (e.g.

LLVM) or executed by a system such as a process virtual machine (e.g. Java Virtual Machine (JVM))

which consists of a software implementation of the virtual architecture utilized by the bytecode.

Many, many different bytecodes and related systems using them exist for different purposes and

systems. We have already mention a few in our discussion of frameworks for heterogeneous systems. We

will discuss just a few in this section that are especially relevant to our work and problem.

2.2.1 Relevant Bytecode Systems

LLVM

LLVM is a framework, a bitcode format and open-source project originally discussed in the 2004 paper

“LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation” by Latter and

Adve [18]. It consists of a standardized bytecode representation that serves as a common representation

for analysis, transformation, and code distribution as well as a compiler framework that makes use of

these features to perform advanced optimizations [18]. We will give a brief overview and discuss a few

details of these, for further reading we recommend the wealth of excellent documentation available on

the LLVM project website.

The LLVM representation describes a program in a RISC-like instruction set that has three inter-

changeable formats: a textual assembly-like syntax, a compact on-disk binary format (known as bitcode),

and in-memory format (for use by the compiler system). The instruction set contains many advanced

features which aid analysis, for example it is presented in Single Static Assignment (SSA) format where

registers are taken from an infinite set, must be defined before use and are assigned exactly once. It has

a type system consisting of fixed-sized primitive types, four derived types (i.e. pointers, arrays, struc-
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tures, and functions) as well as an explicit cast operator. It has an explicit load/store architecture for

memory access as well as the instruction alloca for stack allocation. It also has an explicit function call

instruction which abstracts away platform calling conventions and explicit instructions for implementing

exceptional control flow (e.g. exceptions)[18].

Let us consider a brief example of a typed bitcode instruction. The getelementptr instruction is an

important instruction used in accessing arrays and structures that we will refer back to later in our

discussions. It used by the LLVM system:

“to perform pointer arithmetic in a way that both preserves type information and has

machine-independent semantics. Given a typed pointer to an object of some aggregate type,

this instruction calculates the address of a sub-element of the object in a type-preserving

manner (effectively a combined ‘.’ and ‘[ ]’ operator for LLVM).”

In terms of the compiler system itself, static compiler front-ends for the source languages will produce

the LLVM representation, which is then linked together and Link Time Optimization (LTO) is performed.

After the any optimization passes are perform the code is then translated into native-code for a particular

target and the LLVM code is store with the native code5.

In the paper they set out the following advantages of the LLVM system:

1. persistent program information

2. offline code generation

3. user-based profiling and optimization

4. transparent runtime model

5. uniform, whole-program compilation

The first of these, persistent program information, is provided by the unified LLVM representation

that can be persisted through out the programs lifetime to perform advanced optimizations at all stages,

compile-time, link-time, install-time, run-time, etc. Secondly, offline code generation means we can run

advanced optimizations that are too costly to do at runtime6. User-based profiling and optimization

means that the LLVM framework can insert instrumentation to help profile application behaviour and

use those profiles as the basis to tune program optimizations7. Transparent runtime model means the

system isn’t tied to any particular object model, runtime environment or other aspect of a particular

high-level language, allowing any language to be compiled using it and finally, Uniform, whole-program

compilation means that this language agnostic nature allows us to optimize whole programs as one unit

after linking (what is often called LTO).

5This is the description in the original paper, however we note that many actual LLVM-based compiler toolchains do
not store the bytecode

6This is in contrast to what is done when using JIT techniques in some virtual machines
7We will return to the subject of profiling-based optimization in our final chapter.
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In terms of limitations, they note that they do not intend for LLVM to be a universal compiler IR,

since it cannot represent transformations that depend on high-level language features. They consider

it complementary to virtual machine techniques because LLVM has no notion of high-level constructs,

does not depend on a particular runtime system, and “does not guarantee type safety, memory safety,

or language interoperability any more than the assembly language for a physical processor does” [18].

LLVM is a very low-level representation and even C has features that must be lowered by the compiler

targeting LLVM. LLVM bitcode is also not inherently portable as a frontend may embed a great deal

of platform/target specific information into our bitcode depending on the construction of the language

and tools being utilized.

2.2.2 Portable Native Client

Native Client (NaCl) is a now discontinued8 open source project from Google [17] with the aim of

allowing native C and C++ programs to be run on and integrated into the web platform. While we are

interested specifically in Portable Native Client (PNaCl) bytecode that was later added to the system,

we will give a brief description of the original system to aid overall understanding of the context of that

work.

In “Native Client: A Sandbox for Portable, Untrusted x86 Native Code” Yee et al. note that the

browser environment tends to make certain sets of computations infeasible for browser-based apps due to

performance constraints and it’s limitation to JavaScript-based software limits the use of many libraries

and other code but the alternative of remote execution of native code presents a wealth of security

concerns [45]. They introduce Native Client “a constrained execution environment for native code to

prevent unintended side effects and a runtime for hosting these native code extensions through which

allowable side effects may occur safely”[45]. This infrastructure allows hosting x86 binary modules in an

OS and browser-portable manner9.

The application is prohibited from accessing the native operating system’s system call interface and

is constrained to an inner sandbox via x86 segmented memory. A trusted service runtime and interface

in the processes address space provides access to system services (roughly analogous to a system call

interface) and a simple datagram-based message service allows it to communicate to JavaScript and

other components in the browser (similar to a microkernel). The browser implements an API known

(in later versions) as Pepper, which allows them to ship a C standard library implementation that relies

on the browser for most functionality that would be found on a typical OS. This provides a high level

of separation from the operating system. The rest of their implementation consists of a modified GCC-

based toolchain and a validator that ensures the resulting binary has certain security properties before it

is loaded. They performed validation on the SPEC2000 benchmark suite and show that their approach

is limited to on average a 5% performance penalty over all benchmarks compared to directly running

native code.

8Native client has been depreciated with the adoption of Web Assembly (WASM) as a cross-browser standard for
compiled applications running on JavaScript Virtual Machines (VMs).

9Only Google Chrome actually supported Native Client, a probable factor in it’s downfall.
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After the initial release Google released an extension to Native Client called Portable Native Client

(pNaCl) which introduced a bytecode approach which attempted to alleviate some of it’s short comings

[6]. They introduce the Portable Native Client executable:

“While the operating-system neutrality of Native Client tends to encourage good practices

with respect to ISA portability, the burden of building, testing and deploying a program on all

supported hardware platforms—currently IA-32, ARM and x86-64—lies with the developer.

This arrangement makes it too easy for the developer to fail to support one or more ISAs,

and tends to create a barrier for future new ISAs, threatening the portability promise of the

Web.”[6]

They note that this requires a great deal of developer effort that may be beyond the reach of some

smaller developers and temps them to make the invalid simplifying assumption “all the world’s an

x86”[6]. This is the exact situation we have with heterogeneous systems, and PNaCl is key to our own

approach to portability problems.

PNaCl uses LLVM bitcode as an ISA-neutral representation for it’s binary format and provides a

translator (based on LLVM) that generates the native code on the client side as part of the web browser

where the CPU architecture is known. The resulting binary is then fed to the Native Client runtime as

per normal.

2.2.3 JIT Technology with C/C++

In their 2013 paper “JIT Technology with C/C++: Feedback-Directed Dynamic Recompilation for

Statically Compiled Languages” Nuzman et al.[24] discuss how advanced users, especially those in HPC,

can heavily optimize their code “so the most up-to-date capabilities of the hardware can be unleashed”

but more generally this is a rarity:

“More commonly, developers, users building open-source software, and Independent Soft-

ware Vendors (ISVs) building software in production do not enable the highest optimization

levels, nor do they use hardware specific optimizations or Feedback-Directed Optimizations

(FDOs). The implications of such highly optimizing build processes on software production

costs are such that only a single-step build with moderate optimizations is actually used in

practice.”[24]

Their further motivating example from a vendor’s, such as IBM’s, perspective is the difficulty hard-

ware and tools vendors encounter with the large gap between when the introduce new hardware features

and when ISVs actually begin enabling those features in their software, thus making those benefits avail-

able to end users of these applications running on their hardware. They go on to describe how dynamic

optimization, using information such as the exact CPU model that becomes available later, can help

close this performance gap by enabling efficient use of processor features and removing this burden from

the software development process.

16



CHAPTER 2. BACKGROUND
AND RELATED WORKS 2.3. CLOUD COMPUTING

Their bytecode-based solution is a runtime recompilation system for statically compiled languages

based on Fat Binaries with optimization driven by dynamic profiling [24]. It is based on generating

Fat Binaries which contain both a platform native binary version of the program and an Intermediate

Representation (IR) version from an IBM in-house split compilation toolchain based on the XL C

compiler (they comment that this approach can also be perform with LLVM or similar systems)[24]. The

dynamic optimization is provided at runtime by a JIT infrastructure taken from the IBM Testarossa Java

compiler infrastructure. They validate their results on the SPECint2006 benchmark suite, demonstrating

that the same profiling and instrumentation can be leveraged largely as is from a Java JIT compiler and

that including a binary version of the program can offset the startup costs of JIT for a solely IR version

of the program such as experienced with some virtual machines.

2.3 Cloud Computing and the Container-based Cloud

We introduced the definition of cloud based on the NIST model in chapter 1 and in this section we

expand on and discuss specifics of the container-based cloud. As we have noted containerization is a

popular approach to building cloud systems based on operating system level virtualization that makes

up the domain for our investigation and implementation.

As mentioned in our introduction, virtualization of resources is essential to delivering on the resource

pooling nature of the cloud. Over time during the growth and development of the cloud differing

types of virtualization have become popular. System level virtualization in the form of hypervisors

and system virtual machines has been a dominant type of virtualization for computing resources in

the cloud. In recent years however operating system level virtualization known as containerization

has become a popular alternative due to the increase resource efficiency of such techniques [35]. A

number of application virtualization studies have shown that containers are a high-performance, low-

overhead alternative to virtual machines [35] and accordingly we see containers used increasingly in both

Infrastructure as a Service (IaaS) scenarios in the cloud as alternative to hypervisors and as a Platform

as a Service (PaaS) with cloud-hosted orchestration systems [27].

Container-based application virtualization radically simplifies application deployment, configuration

and dependency management. It is consistent with and essential for achieving the On-demand Self Ser-

vice and Rapid Elasticity characteristics of the cloud as defined by NIST [20], and thus containerization

has become one of the common ways to deploy applications in the modern cloud and Container-based

systems occupy both the IaaS and PaaS portion of the cloud stack [27].

Linux Containers, an implementation of the containerization concept for the Linux OS is implemented

by a number of popular technologies such as LXC [19] and Docker [5] among others. It provides an

isolation environment including a complete base filesystem image for a process or collection of processes

to run in. Separation of the processes running within a container from the outside environment is

normally accomplished through a kernel isolation mechanism called cgroups. The container image,

which may be composed of several filesystem snapshots called layers, is managed by a container engine

which, upon a request to create an instance of the container, unpacks it and launches an initial process
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within the environment with access to only the outside resources as described by its manifest.

Container orchestrators such as Kubernetes10 tie a number of nodes running these container engines

into a container-based cloud, by managing container lifecycle events such as creation and destruction

and provisioning of resources such as networking and storage volumes on a cluster-wide scale.

This setup has numerous advantages from a software engineering perspective. A container image

contains an application with all of its dependencies packed into one convenient artifact. Within popular

movements such as DevOps, which stress the need for automation such as Continuous Integration (CI)

and Continuous Delivery (CD), containers as the actual software artifacts produced and consumed in

these processes have become very popular given their ability to isolate the application from its underlying

environment [7]. An unaltered, identical image can be tested in the development pipeline, then deployed

directly to production on container-based infrastructure, as well as scaled to as many instances as required

in keeping with desire for Rapid Elasticity. Recently the Open Container Initiative (OCI)[26] has been

established to standardize container formats and runtime environments in the name of interoperability,

and Docker has contributed large parts of their container runtime to that effort [26].

Containers have also become very popular for performance reasons, as a number of application

virtualization studies have shown that containers are a high-performance, low-overhead alternative to

virtual machines [35]. Accordingly we see containers used increasingly in both IaaS scenarios in the

cloud as alternative to hypervisors and as a PaaS with cloud-hosted orchestration systems [27].

We have discussed heterogeneity and heterogeneous systems, bytecode-based systems and the con-

tainer based cloud. In the next chapter we will introduce the difficulties and opportunities encountered

when heterogeneity and the container-based cloud intersect and our specific problem as well as our

solution.

10Kubernetes is a container orchestrator originally developed by Google and released as open source.
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Chapter 3

Unified Framework for the

Heterogeneous Cloud Utilizing

Bytecode Containers

In this chapter we first take a look in detail at the barriers we wish to solve on the way to incorpo-

rating heterogeneity into the container-based cloud. We then continue on to discuss the potential of

a heterogeneous systems framework using bytecode-based solutions to address some of these problems

and introduce the Man O’ War system, our contribution for generating portable bytecode containers

for use within heterogeneous cloud environments. We discuss it’s various components including virtual

ABI, toolchain, standard library, finalizer and container format and conclude by discussing how this and

similar systems may be integrated into existing container-based environments.

3.1 Preliminaries

3.1.1 Types of Heterogeneity in the Cloud

“Central Processing Units (CPUs) have reached a plateau ... As a result, all computing systems, from

mobile devices to supercomputers, are quickly becoming heterogeneous” [42, p.1]. Heterogeneity in the

modern cloud comes from several sources.

Firstly, on the individual node scale. For example, Nemirovsky, Markovic, Unsal and Cristal consider

the case of heterogeneous and homogeneous processors:

“Whereas initial chip multiprocessors (CMPs) integrated several identical computation cores

per chip, known as homogeneous processors, we now see an increasing tendency to explore

the integration of diverse computational cores, called heterogeneous processors” [22].

Often this means in cloud instances at the hardware level we see systems that include heterogeneous

19



3.1. PRELIMINARIES
CHAPTER 3. UNIFIED HETEROGENEOUS

FRAMEWORK FOR CLOUD

cores such as designs with Non-Uniform Memory Access (NUMA) or parallel accelerators such as GPU.

Also at the software level, cloud providers may offer instances that are tuned to different performance

characteristics such as high memory bandwidth or having a low latency configuration [31].

Secondly, while these heterogeneous processing elements are of interest to us, we may aim to consider

the problem of exploiting heterogeneity between different nodes in the cloud beyond what is available

on a single host. As put by Roloff et al., “building a cloud system out of more than one instance type

is an area that has been researched less. A system composed of different instance types is considered a

heterogeneous cloud”[31]. What this means in practice is when provider(s) make these diverse types of

computation resources available to us, perhaps by offering different combinations of hardware/software

features to tenants at different prices (for example offering low-power and high performance processor

instances), we are in a heterogeneous cloud environment and new optimization opportunities arise.

3.1.2 Advantages of the Heterogeneous Cloud

In their paper “Heterogeneity-aware adaptive auto-scaling heuristic for improved QoS and resource usage

in cloud environments” Sahni and Vidyarthi describe how most auto-scaling mechanisms in cloud are

restricted to a single type of server configuration, even though the plethora of configurations and prices

available mean the ability to scale by different sizes can provide greater elasticity and cost/resource

efficiency [33].

They identify what they call “heterogeneous scaling” in cloud which allows for scaling across different

sized VMs [33]. We will utilize an even more generalized definition where heterogeneous scaling is scaling

across all different types and sizes of computational devices available in the modern cloud. If we are able

to incorporate the full range of heterogeneous systems, even higher elasticity and resource efficiency can

be achieved.

In “Exploiting Price and Performance Tradeoffs in Heterogeneous Clouds” Roloff et al. explore

the use of multiple instance types in the heterogeneous cloud to improve cost efficiency, reducing the

price of execution while maintaining a similar application performance [31]. Their “results show that

heterogeneous clouds are able to execute parallel applications with a reduced cost, while maintaining a

similar performance as homogeneous clouds”[31].

They begin by defining a metric called the cost-delay product CDP shown in Equation 3.1 (roughly

proportional to the cost efficiency) that provides a basis for analyzing cost-vs-performance tradeoffs in

the heterogeneous cloud. They define two other metrics in this family, C2DP and CD2P , which take

the squares of these respective quantities in order to emphasize the impact of either lower cost or higher

performance.

CDP = cost of execution × execution time (3.1)

They perform an evaluation on the Microsoft Azure cloud using the NAS Parallel Benchmarks using

OpenMPI. They compared the benchmarks running across all combinations of 8 nodes selected from D4

and F8 node types. They computed the CDP-family metrics for each of the configurations and reported

the cost efficiency gains across all configurations.

20



CHAPTER 3. UNIFIED HETEROGENEOUS
FRAMEWORK FOR CLOUD 3.1. PRELIMINARIES

Their results show that a heterogeneous mixture of resources is most efficient for the majority of

benchmarks. Also, each possible configuration is most efficient for some particular benchmark:

“This shows that simple homogeneous clouds that do not take the specific application be-

havior into account can not result in optimal cost efficiencies.”[31]

These results show some of the very important performance optimization opportunities presented

by the heterogeneous cloud. In some cases they were able to improve the cost efficiency of the system

by 42.3%[31]. We use their metrics later in our own performance experiments (laid out in chapter

4) regarding nodes with heterogeneous architecture, as the nodes used in this study are all the same

hardware architecture, and demonstrate more exciting opportunities.

3.1.3 Difficulties in exploiting heterogeneity

Using containers as a platform for making use of the heterogeneous computing resources in the cloud in

practice is complicated by a number of factors, many of which we have discussed in our introduction in

section 1.2.1 which we discuss again here. One of primary concern is that while we might be able to utilize

a parallel accelerator through an existing heterogeneous systems framework but in order to truly be able

to leverage cloud-level heterogeneity our program must on some level be portable. Portability means

in this case that the program is capable, generally without extraordinary measures such as complex

emulation, of being run in a different environment.

While Containers are portable between standardized container runtimes, with the absences of a uni-

fying framework however containers are not however portable between operating systems and hardware

architectures as they generally contain platform specific binaries which are not portable. Refer to the

multi-layered build process in figure 1.2 that shows what a high level overview of a typical build and

deployment process might look like using Docker if a developer wished to target instances with three

different architectures. Even if we are packaging an application written in a language which itself has

some portability, such as an interpreted language, this still means packaging a platform specific version

of its dependencies and runtime environment. More problematically, even on the same architecture, for

any possible variation of microarchitecture the container developer wishes to utilize and optimize for,

they must build specialized binaries and a corresponding container image for those resources.

As we stated before, we feel that these barriers are breaking some of the abstractions and portability

gains that containers introduce. Decoupling the application from the infrastructure is among the primary

advantages of container-based cloud and the cloud in general. However once we attempt to perform

performance optimizations this quickly starts to break down. On the opposite end of the spectrum,

container-based PaaS such as Amazon Fargate offer no choice of heterogeneity at all meaning we are

stuck with a one cost/performance point fits all situation. We will require a new, portable basis for

containers if we wish to be able to make use of the available heterogeneity in the cloud without extensive

developer effort.
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3.2 Toward a Unified Framework for the Heterogeneous Cloud

As we have seen it is well established that heterogeneous systems, whether using mixed CPU types

and system configurations, accelerators such as GPUs or even reconfigurable computing elements such

as FPGAs are beneficial for a variety of workloads [32][42][31]. In cloud systems a number of studies

have confirmed these benefits for parallel and distributed workloads with improvement of performance

metrics such as job completion time and power efficiency which correspondingly contribute to reduced

cost under the utility computing model [31].

Previous works on the heterogenous cloud (discussed in previous sections such as 3.1.2 and 2) have

mainly focused on purely scheduling problems or limited exploiting heterogeneity in the cloud to scenarios

such as heterogeneous scaling largely only in the context of different virtualized resource allocations and

configurations, such as using large and small sized VMs [31]. This is only a small slice of the true

heterogeneity now available in the cloud. We propose one of the causes of this gap is because the format

and runtime environment of these virtualized applications makes it difficult for developers and operators

to exploit non-architecturally homogeneous scalings with out an overall heterogeneous framework, much

as in other types of heterogeneous systems.

Container runtimes treated as purely IaaS can certainly execute containers in a variety of hardware

and virtualized contexts. But the ability of container-based frameworks, utilized as PaaS, to exploit

heterogeneity through actions such as heterogeneous scaling is limited by the increased complexities

that are exposed to the software developer by such scenarios. For example, differing container images

are required due to the varied hardware we must exploit and these need to be provided by the applica-

tion developer. This is unfortunately a consequence of containerized applications fundamentally being

composed of binary applications for the operating system being virtualized which are not designed for

heterogeneity and this means the resulting container is only really useful on a fairly homogeneous set of

cloud systems. In addition, often manual constraints must be manipulated in the orchestration system

to achieve a proper scheduling in the presence of heterogeneity, because it is not aware of the specific

resources involved [40][39].

We consider this a notable shortcoming as developers turn to container systems to help isolate

them from the particulars of the underlying node and software configuration [35]. In order to extend

containerized applications to heterogeneous systems without costly and uncloud-like customization by

the developer an additional framework is required on top of what is normally provided by container

systems. A unified approach and framework utilizing container-based application virtualization in the

presence of a potentially heterogeneous cloud environment is required. One which allows the application

images to remain independent of any particular system but allows running applications to maximally

exploit the particular features of the execution environment they are assigned to.

3.2.1 Bytecode Containers for the Cloud

Incorporating heterogeneous devices such as GPUs as first class citizens in the container-based cloud has

begun with works such as those by NVIDIA on Kubernetes [40] and works on heterogeneous scheduling
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are becoming more common [14][33][31]. But so far the challenge of mitigating the need to dedicate

software development effort to building multiple container images for each supported CPU architecture

(and potentially microarchitecture if optimal performance is desired) has not been fully explored.

In order to be able to generate portable, hardware agnostic containers we must ensure the binaries

in the container are portable and independent of any particular final target. In order to accomplish

this goal we propose utilizing a bytecode format for containerized applications that will allow them to

remain independent of the hardware platform but allowing for later robust optimization of the final

executable container image. Secondly to accompany this change we propose reforming the container

lifecycle to allow for a two-phase compilation/transformation for the container, with responsibility for

the final translation to executable format of the container moved from the application developer to the

cloud instead, either as part of the Cloud Service Provider (CSP)’s platform or as provided by what we

term a separate intermediate Optimization-as-a-Service (OaaS) provider.

3.3 Overview of Our Implementation: Man O’ War

Now that we have seen how our goal of ensuring container portability between different cloud systems that

are architecturally heterogeneous can be met with a bytecode-base approach we can discuss the specifics

of our implementation. In this section we describe the Man O’ War system which currently supports the

C programming language (though we hope to see it extended to other statically typed languages in the

future) and focuses on portability between CPU architectures that are common in cloud data centres

(specifically x86 and ARM). We focus our implementation on solely CPU architectures to validate the

technique but we discuss how this approach maybe extended to incorporate the work that has already

been done with parallel accelerators in our final chapter.

In order to be able to generate truly portable containers, we must ensure the binaries in the container

are portable and independent of any particular final target. We realize our bytecode container approach

using a portable LLVM bitcode-based IR for the application(s) that are stored in the container. The

resulting standard container image can still be stored and handled using OCI compliant tools.

A container “finalizer”, using the terminology derived from Heterogeneous System Architecture

(HSA)[42], is added to the platform which uses an LLVM-derived translator to processes the container

images into their final natively executable format. The design of this translator is shown in the top-right

of Figure 3.2. We must make some extensions to the OCI container format to allow it to be processed in

such a way. Specifically, any platform binary code in the container must be marked in a special manifest

so the translator can efficiently process the image.

We consider two primary ways for the finalization process to be integrated into the lifecycle of an

existing container system. Either as an external service, which we term OaaS, or embedded within the

container-based PaaS. In either cased when knowledge of the target platform becomes available, either

in advance or on demand once a container instance is requested, the finalizer runs the translator over

the various binaries in the image converting the LLVM bytecode to the native instructions of the target

architecture/microarchitecture. The result of this is a new container image optimized for that specific
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target.

Using the Man O’ War toolchain, developers of applications for the platform no longer build their

application containers for a generic version of their preferred hardware architecture (i.e. x86 64-pc-

linux), but instead for our new virtual platform (i.e. le32-manowar-linux). The toolchain provides a

Portable Operating System Interface (POSIX)-like split C standard library that complies to the newly

defined Man O’ War virtual Application Binary Interface (ABI) for our le32 virtual architecture. This

split standard library functions as an abstraction layer, serving to isolate the application from some of

the difference between Linux ABIs on different hardware architectures. Other than utilizing the new

toolchain, their container build process can remain very similar to what it was for targeting an ordinary

hardware platform. The resulting application is stored as LLVM-based bitcode in the container image.

3.3.1 Components

We provide the toolchain, container finalizer and other necessary tooling to process the container image

and integrate it with OCI container runtimes. This implementation includes modified open source

components from Portable Native Client (pNaCl)[6], LLVM [18], Musl [21] and a variety of other projects.

The main components of the Man O’ War systems are as follows:

• toolchain - the compiler frontend, linker and other tooling that takes a C application and translates

it to LLVM-based bitcode, along with various scripts to integrate this with the container build

process

• libraries - the split libC implementation that presents a portable partially POSIX compliant API

conforming to our le32-manowar-linux intermediate platform and the backend platform library

used by the translator that adapts it to the conform to the native ABI of the target platform

• translator - the translator frontend that takes the bytecode image, performs optimization and

generates machine code from it and preforms linking to the platform libraries

• container finalizer - a tool that take a description of the target node hardware and the portable

container to be translated and runs the translator over all the binaries in the container manifest,

creating an optimized platform container

3.4 Man O’ War Virtual Target / ABI

We define a target virtual ABI (i.e. le32-manowar-linux) which defines a 32-bit little endian target

with a ILP32 data model [12]. This is necessary as the C programming language standard intentionally

leaves a great number of things, such as the size and alignment of types up to the specific platform

implementation and ABI[13].

It is also important to note that LLVM bitcode is not inherently portable. For example the C

frontend, Clang will embed a great deal of platform/target specific information into our bitcode that

originates both from platform intrinsic within Clang and target specific headers / libraries. For Clang
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to generate consistent, portable LLVM IR it must be generating bitcode for a virtual target platform

that has a consistent ABI that conforms with our expected behaviour for the bitcode, such as calling

conventions and other parameters. Thus the need for this meta-platform which will ensure we generate

consistent, portable bitcode. Details for the actual platform ABI will be provided later by the translator.

We do not attempt to list a full platform definition here, but beyond the fact that it uses a 32-

bit little endian with an IPL32-type datalayout we note that floating point limited to the IEEE 754

standard (floating point support overall is currently quite limited) and relies on LLVM atomics [6]. These

limitations are sufficient for demonstrating the sample workloads included in our evaluation chapter and

are in fact sufficient for a great many real world applications as well, as adoption of the new x32 ABI

on amd64 platforms suggests [30].

3.5 Container Toolchain

Our goal was to produce a largely POSIX-compatible toolchain to allow typical Linux Standard Base

(LSB) compatible containerized applications to be recompiled for our new container architecture with

no or minimal modifications using standard container build tools. We can see the flow of a typical

Clang/LLVM toolchain in Figure 3.1.

Figure 3.1: A standard Clang+LLVM C compilation on Linux

As a starting point we utilized the Google Native Client code bases implementation of the pNaCL
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LLVM/Clang toolchain. This implementation is composed of a python-based compiler driver script and

frontend for the toolchain, a customized version of LLVM and Clang, as well as a translator to convert the

bytecode version of of the executable to its final platform specific form, as well as a set of libraries which

called Pepper which attempt to implement POSIX APIs on top of the Chrome Browser environment.

From this starting point we have modified the included LLVM/Clang removing unnecessary opti-

mization, sanitation and simplification steps target at step required for their application software fault

isolation (SFI) sandboxing of the Pepper APIs and the Chrome environment. We have added our own

heavily customized split version of the Musl standard library, implementing the standard library-as-

abstration layer from Linux ABI differences. As well we add a versions of GNU binutils and the LLVM

project compiler-rt (which provides necessary compiler runtime intrinsics) as platform libraries for use

by the translator. A diagram of the new toolchain flow with the translator is shown in Figure 3.2.

Figure 3.2: Man O’ War Toolchain

Our implementation is not yet feature complete to a large amount of functions of a POSIX envi-

ronment, with limited support of advanced floating point, threading and atomics libraries, as well as

dynamic linking, as these were unnecessary for the validation of our design and the performance ex-

periments that follow later in this work. However we have achieved our goal in that any number of

standard applications not requiring these features, for example GNU utilities, SPEC benchmarks and

other applications without complex external dependencies, can successfully be ported and run with the

toolchain.
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3.6 Split Standard Library

One of the difficulties we encounter with applying this technique to a modern operating system platform

is that the Linux ABI is not entirely consistent across platforms. If we look at the Linux Standard Base

specification we see that each hardware platform has it’s own addendum [8] giving platform specific

differences. This is a necessity as, for example, the method to invoke system calls is by it’s very nature

platform dependant.

We also find certain data structures which are exposed to user space differ in their implementation

by hardware platform. For example, the ucontext t structure, used as part of the sigaction system

call to setup a signal handler, has many fields who’s bit width and alignment depend on that of the

host architecture. We demonstrated an example of this in the Background chapter section on LLVM in

Listing 4. Since these definitions are normally picked up from the system headers when a Linux program

is compiled, and thus would be included in any resulting bytecode, we must address this issue if we wish

to have a portable bytecode implementation.

Our implementation of the C standard library is based upon a fork of the open source Musl C library

[21], but has been drastically reshaped into two separate components (see Figure 3.3). Firstly into a

portable libC library interface conforming to our le32-manowar-linux virtual platform that can be linked

at bytecode generation time and secondly a platform library containing all assembly and platform specific

routines that is linked in at translation time. The platform library the acts as an hardware abstraction

layer, converting any non-portable kernel types into portable equivalents before exposing them to the

application code.

Generally this can be done by making their field ordering and sizing consistent, padding if need be.

It is also necessary to replace certain preprocessor definitions (i.e. #define) which are platform specific

with global constants which can be resolved during linking (see an example for signal numbers in Listing

1). While this makes the resulting library not precisely POSIX compliant, we have so far found that

most well written applications require little to no modification to be compiled.

// musl

#define SIGHUP 1

// manowar portable

#define SIGHUP SIGHUP_g

const int SIGHUP_g;

// manowar platform

const int SIGHUP_g= 1;

Listing 1: Ucontext t as defined by the Musl C Standard Library
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Figure 3.3: The split C library acts as an abstraction layer for the Kernel ABI differences

3.7 Man O’ War Image Format

In this section we define the format of the container so it can be processed by the finalizer. The format

for Man O’ War container images is defined as an extension to the OCI image format and we use field

names and attributes that have the meaning specified in that standard. Specifically the value of certain

fields and attributes is extended to allow the image to be processed by the finalizer tool. What follows

is a brief description of OCI image format, these extensions and then an explanation of how the image

is process by the finalizer tool.

OCI Image Format

The OCI Image Format provides a standard format for containers, allowing them to be processed and

run by a variety of tools, including our own. The image is fundamentally composed of a number of layers

which represent delta changes composing additions, modifications and deletions to a previous layer. It

is composed of the following primary components [25]:

• Image Manifest - a document describing the components that make up a container image

• Image Index - an annotated index of image manifests

• Filesystem Layer - a changeset that describes a container’s filesystem

• Image Configuration - a document determining layer ordering and configuration of the image

suitable for translation into a runtime bundle
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An index may point to many different manifests for the same image, containing for example versions of

the image for different hardware architectures. The manifest in turn points to a specific set of filesystem

layers and a configuration for this instance of the image.

Description

In the Man O’ War image prior to processing by the finalizer, the Image Index must contain an entry

with the value of architecture set to the value of le32-manowar and os set to linux. The corresponding

Image Configuration must similarly have architecture set to the value of le32-manowar and os set

to linux. This indicates the bytecode images manifest and filesystem layers.

In the resulting image created by the finalizer after processing, the Image Index will contain an

entry with the value of architecture set to the value passed to the finalizer along with optionally the

cpu architecture variant (eg. armv7) and optionally the following attributes show in Table 3.1.

Attribute Value

space.manowar.cpu a string value indicating the
CPU type in the format specified
by LLVM (eg. skylake)

space.manowar.features a string value containing a
comma delimited list of the CPU
features enabled for this build

Table 3.1: Optional attributes for post-processing Man O’ War images

3.8 Finalization

In order to convert the Man O’ War bytecode image to a regular OCI-format container containing

standard platform executables so it can be run by an unmodified container engine, we process it with

the finalizer tool. This tool apply the translator to all bytecode binaries in the image to generate

standard platform binaries. The Man O’ War on-disk image format is laid out as specified in the OCI

image specification.

3.8.1 Operation

The finalizer expects to find a file called .MANOWAR-MANIFEST in the root of the filesystem once

all changesets are applied. This manifest contains a null-delimited list of the bytecode files in the image

that require translation. It runs the Man O’ War translator over each file with the target architecture,

cpu and feature flags defined by the cpuinfo.json file passed to it.

The translator itself consists of tool which invokes a version of the LLVM bitcode to assembly

translator (llc) which performs optimization and code generation along with a linker to pull in the

platform and runtime libraries required.
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Figure 3.4: The finalizer creates a new layer containing the translated binaries

This results in a changeset replacing each bytecode file with it’s translated native version, which is

added to the original filesystem layers as show in Figure 3.4. This changeset is used as the root filesystem

for a new manifest in the container image index and the configuration is duplicated and then updated

as specified above.

The CPU info JSON blob accept by the finalizer is formatted according to Table 3.2. While some of

these properties are optional, they are all heavily recommended. A tool, procinfo, is provided to extract

this information.

Attribute Presence Value

architecture mandatory the target architecture in the standard OCI format
variant optional the variant of the architecture in the standard OCI

format (eg. armv7)
cpu optional a string value indicating the CPU type in the format

specified by LLVM (eg. skylake)
features optional a string value containing a comma delimited list of

the CPU features enabled for this build (eg. sse4.1)

Table 3.2: CPU Info JSON Properties

It is important to note that the resulting images are intended to be heavily cachable to offset any extra

cost of running the extra finalization step. Container runtimes utilizing the Man O’ War system and
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finalizer can utilized the attributes encode in the the finalization step to see if an acceptable translation

already exists for the particular architecture, cpu and feature flag combination. The translated version

of these images can also be stored in whatever image repository the particular orchestration engine in

use is utilizing, as the translated images are fully OCI compliant, there by making them available to the

whole container system.

3.9 Integration with Existing Container Architectures

The Man O’ War container format and toolchain are designed to be flexible enough to be incorporated

in a variety of container-based systems and orchestration technologies. In this section we will discuss

integration strategies with existing container architectures and describe how we support them.

The specific way that portable bytecode container systems will be integrated will depend on the end

users desired mode of use and control over the underlying cloud platform, but we envision two primary

modes of integration. The first scenario is that the cloud platform will have native support for bytecode

containers, with the platform specifically managing building and deploying native containers from the

externally supplied bytecode container image. This is applicable in either PaaS where the container

service integrates this capability or in an on-premise scenario where modifying and customizing the

container runtime is possible.

The flow of events for a user of such a service (assuming no cached image) would be something similar

to what is show in listing 2:

1. Request is sent to PaaS to run bytecode image

2. PaaS fetches bytecode image from repository

3. PaaS runs a separate finalizer process over the image using its internal node configuration

4. PaaS runs the resulting image

Listing 2: Bytecode-aware Container-based PaaS Workflow

Alternatively, in the case the container platform is not natively bytecode aware an external service,

what we term a OaaS provider, translates and optimizes images either integrated with or acting as a

container registry. The translated images can then be run as normal on unmodified container runtimes.

The flow of events for a user of such a service (assuming no cached image) would be something similar

to what is show in listing 3:

3.9.1 Integration Example with Kubernetes

We will use native integration with Kubernetes (k8s) as an illustrative example of how a bytecode

containers could be integrated with existing container systems, as it is open source and by far one of
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1. Request is sent to OaaS provider to finalize image along with node configuration

2. OaaS provider fetches image from repository and finalizes it

3. OaaS uploads finalized image to repository

4. Request is sent to PaaS to run finalized image

Listing 3: Container-based PaaS and OaaS Workflow

the most popular orchestrators today, with deployments in both Google Cloud Platform (GCP) (where

it was originally developed) and in Microsoft Azure, among other public clouds.

Kubernetes’ support for alternate container engines is in ongoing development, CRI-O is a plugin

attempting to make it easy to incorporate Open Container Initiative (OCI) compliant runtimes into

Kubernetes but it is still an incubating project and has not yet achieved full acceptance. Accordingly

we will only remark on the high level attributes of such an integration.

Kubernetes consists of a control plane, consisting of one or more masters running the API Server

and Controller among other components in containers, and the various nodes systems that actually run

the workload. The node systems run a daemon called the kubelet, which accepts commands from the

master and communicates with the local container runtime to create and take containers scheduled to

the node through their life cycle.

In order for the container images to be finalized we will need to add a custom service to the control

plane that is responsible for building the images when required. When the container runtime is com-

manded to run a container via kublet that contains a manowar image in it’s manifest, it contacts the

service to request a new image be built or a cached one be sent. As finalized Man O’ War containers

are OCI compliant, once a finalize container arrives from the finalization service the image will run as

normal.

In this setup a builder node can be run by the service which fetches the container image as well as

the nodes CPU info JSON blob via an http service running on the node. It then finalizes the various

container images and caches them in the registry for future use. This can be rendered very storage

efficient due to the fact the containers are implemented as change-layers and the additional binaries will

not likely require significant storage.

We have discussed how bytecode techniques may help us to bridge the gap between container-based

applications and exploiting the potential of the heterogeneous cloud. Together the virtual ABI, toolchain

and translator, container finalizer, and novel split C standard library, and miscellaneous tools together

form the components of the Man O’ War system. Together they allow us to compile a standard, POSIX-

compliant C application into a portable bytecode containerized application. The resulting container can

be translated on demand using detailed information about the node/system it will be run on, enabling

localized architectural/micro-architectural optimizations for it’s placement in the heterogeneous cloud.
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We will demonstrate via our experiments in the next chapter that this implementation can achieve

notable performance benefits in a variety of scenarios in the heterogeneous cloud, such as heterogeneous

scaling between architecturally dissimilar nodes. There by we hope to further demonstrate the utility

of bytecode for use with containerized applications in heterogeneous environments. We will also focus

on demonstrating the larger scale optimization/performance potential of portable containers in the

heterogeneous cloud, demonstrating we can use bytecode to optimize in a scalable way and there by

achieve notable improvements in overall resource efficiency.
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Chapter 4

Evaluation and Validation

In order to demonstrate the advantages of a bytecode-based container framework and format in the

heterogeneous cloud we will evaluate our implementation upon a number of benchmarks. The first

experiment deals with that of a heterogeneous scaling scenario involving migrating between architectural

dissimilar node types within the cloud. The second compares the performance of a standard container

built in a traditional fashion with bytecode containers and looks at the impact of any overhead of the

runtime itself and of optimizing locally based on the architecture/microarchitecture available on a node.

We rely on the standard Standard Performance Evaluation Corporation (SPEC) CPU 2017 per-

formance testing benchmarks to compare performance [36]. These benchmarks “focuses on compute

intensive performance” [36] and different versions of them are used for evaluation by various bytecode

works including Lattner et al.[18], Yee et al.[45], and Nuzman et al.[24], which are discussed in our

background chapter. Specifically we use variants of the LBM benchmark from the floating point family

which “implements the so-called ‘Lattice Boltzmann Method’ (LBM) to simulate incompressible fluids

in 3D”[36] according to the SPEC documentation, which implements a fairly typical scientific workload.

Our implementation is limited by design to the C programming language, so only those benchmarks

written exclusively in C are available to be considered and as our current implementation does not im-

plement a complete set of POSIX functionality as of yet a selection of these benchmarks are also not

available, restricting our choices further within the available SPEC benchmarks.

By running them in a containerized environment with both a tradition build with fix optimization

settings and a bytecode build, which allows for flexible optimization to the heterogeneous environment,

we will be able to evaluate potential performance gains made feasible by adopting bytecode containers

as well as potential overheads of our technique. All benchmark trials are setup and run on the same

nodes in the same configuration to minimise and control for effects from variables such as latency to

attached storage and other system behaviours that may vary from instance to instance in the cloud. As

with all benchmarking, specific measurement and improvements depend on a particular workload and

configuration so our goal is not to demonstrate a specific numerical improvement but rather demonstrate

the utility of the method and system in that type of scenario.
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4.1 Evaluation on a Heterogeneous Scaling Scenario between

CPU Architectures

4.1.1 Purpose

Using a repeated test with a synthetic workload, we will compare the performance of a bytecode version

of an application built with our toolchain which is moved from a high power x86 node to a low power

ARM node. This corresponds roughly to the heterogeneous scaling case we considered in our prior

discussions. While we expect a notable degradation in overall execution time due to the use of a low-

power core, we use this data to compute the expected difference in execution costs, a key practical metric

from public cloud systems. This presents a great opportunity for heterogeneous scaling and optimization

as it allows us to dynamically migrate nodes based on their changing performance vs cost requirements,

moving deadline insensitive and non-interactive tasks to where they are cheapest to perform based on

the current (and possibly dynamically changing) cloud pricing.

4.1.2 Experimental Setup

We rely on the standard Standard Performance Evaluation Corporation (SPEC) CPU2017 performance

testing benchmark to compare performance, specifically the 519.lbm r floating performance benchmark

was run. This variant of the benchmark is a completion rate based benchmark measuring the work

completed per unit time. As a rate based experiment it can represent a set of request to a computationally

intensive cloud-based service, for example a number of requests to a video processing web service, or a set

of long-running jobs such as in transaction processing. The rate-based benchmark also has significantly

reduced peak memory requirements however which is important for our memory constrained ARM test

devices.

On x86 we utilized a Digital Ocean performance instance in a 4 virtual core configuration with 8

GB Random Access Memory (RAM) and a Intel(R) Xeon(R) CPU E5-2697A processor. On ARM a

Scaleway C1-type dedicated node which is a 4-core Marvel Armada ARMv7 with 2 GB RAM was used.

The test operating system was Ubuntu 16.04 LTS in both cases.

4.1.3 Methodology

The image was built with with the Man O’ War bytecode toolchain and translator on an x86-based Digital

Ocean public cloud instance while providing the toolchain information about the micro-architecture and

available processor extensions. The SPEC tools were the utilized to run the benchmark 9 times with a

workload size of 4 copies (1 per core) and gather the performance metrics which are recorded bellow.

The process was repeated identically again on the ARM-based Scaleway public cloud instance with the

exception that the benchmark was repeated only 3 times owing to the significantly longer time it takes

to run on ARM1.

1Total execution time for ARM was more than 8 hours.
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4.1.4 Data

Table 4.2 and 4.1 on page 37 contain the results of our experiments. Note again that fewer runs were

able to be preformed on ARM as a result of the longer total execution time. A graphical comparison is

shown in Figure 4.1.

Table 4.1: SPEC CPU 2017 FPRate 519.lbm r with Man O’ War on ARM

Benchmarks Copies Estimated
Run Time

519.lbm r 4 9823
519.lbm r 4 9611
519.lbm r 4 9590

Table 4.2: SPEC CPU 2017 FPRate 519.lbm r with Man O’ War on x86

Benchmarks Copies Estimated
Run Time

519.lbm r 4 900
519.lbm r 4 880
519.lbm r 4 853
519.lbm r 4 742
519.lbm r 4 736
519.lbm r 4 1512
519.lbm r 4 1007
519.lbm r 4 850
519.lbm r 4 894

4.1.5 Analysis

The mean time for the workload on lower power ARM was 9675s with standard deviation of 128.9s

which with a 95% confidence interval gives us a runtime of 9675±145.9s. The mean time on high power

x86 was 930 with standard deviation of 233.1s which with a 95% confidence interval gives us a runtime

of 930 ± 152.3s. This means the overall work per unit time performance drops to an average of 9.62%

of what was available on the x86 version. However, with a cost of €0.006 per hour (approximately US

$0.007 as of August 3rd) for the ARM node vs a cost of US $0.119 per hour the total cost of the job

on average is 63.41% more on x86. We compute the cost-delay product (CDP) as proposed by Roloff et

al.[31], as show in equation 4.1, below as a comparison metric:

CDP = cost of execution × execution time (4.1)
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CDPx86 instance = 0.119× 930

= 110.67

CDParm instance = 0.007× 9675

= 67.725

A comparison of the CDP metric can be seen in Figure 4.2 (lower is better). While the exact ratio is

dependant on provider pricing and other external factors, we argue that this is is no mere coincidence.

Fundamentally we can consider these processor types as points in the engineering design space optimized

for different levels of performance [3]. We note that the Intel Xeon(R) E5 processor family is designed as

a high-performance server process with a thermal design power of 145 W on the E5-2697A. Meanwhile

the Marvel Armada is a much lower power System on Chip (SoC) with a maximum power dissipation

of 1.650W. These power metrics do not capture all the power usage of the system or on our particular

workload (this would be difficult to measure accurately on public cloud), but they give us a general idea

of the relative power consumption which we compute below:

Ex86 instance = 145W × 930s

≈ 135kJ

Earm instance = 1.65× 9675s

≈ 15.9kJ

Given that power utilization is an important cost in modern data centres, it is not surprising that

these lower power processor designs are available at a substantially reduced cost (in addition the System-

on-Chip (SOC) design is also inherently lower cost to produce). Thus we believe there are significant

cost savings that can be achieved by using bytecode systems such as Man O’ War to exploit the diverse

architectural/microarchitecural nature of heterogeneous clouds based on the particular needs of the

workload.
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Figure 4.1: 519.lbm r bytecode Execution Time on ARM and x86
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Figure 4.2: 519.lbm r bytecode Cost Delay Product (CDP)
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4.2 Performance Evaluation between Traditional and Bytecode

Image

4.2.1 Purpose

This scenario explores the performance characteristics of bytecode vs traditionally compiled containerized

applications. In order to be useful in reducing the software development effort for heterogeneous systems

in the cloud, software developers should have confidence that any overheads introduced by the technique

will not results in insurmountable performance costs. Indeed, one of the goals of our approach is to

produce binary containers from bytecode that are utilized and run in exactly the the same manner as

their traditional predecessors.

We will run the workload with a container build in the standard fashion with the default optimizations

for the platform. We will then run the workload with a bytecode container finalized with specific

information about the platform microarchitecture. It is a common scenario that newer cloud servers

underlying the container platform will have available new processor extensions and microarchitectures,

such as for example the Advanced Vector Extensions 2 (AVX2) instructions available starting in Intel’s

Haswell, that may well also for additional optimization. This will let us demonstrate the performance

impact of adopting bytecode-based containers, giving an insight to any overheads of this method while

potentially gaining any benefits from the microarchitectural information available. Again we note that

this evaluation is far from exhaustive given the current preliminary state of our implementation, but it

will serve to illustrate what is possible with familiar workloads using bytecode containers.

4.2.2 Experimental Setup

In this experiment, using a repeated test with a synthetic workload from SPEC CPU2017, we will

compare the performance of natively compiled and bytecode versions of applications built with our

toolchain. We have two goals with this experiment, the first primary goal is to evaluate the overhead

of our split library implementation and other components of our system and to demonstrate the lack

of any potential negative performance impact. The second goal is to see whether passing the processor

information including details on the microarchitecture and instruction set instructions results in any

notable performance improvements or better use of available processor features.

The 619.lbm s floating performance benchmark was select to be run as our performance test. Our

implementation is limited by design to the C programming language, so only those benchmarks written

exclusively in C are available considered and as our current implementation does not implement a

complete set of POSIX functionality as of yet a selection of these benchmarks benchmarks are also not

available restricting our choices further. The 619.lbm s benchmark is a speed based benchmark from

the floating point family. We think this benchmark is suitable and of interest as it is representative of

demanding analytic and scientific tasks and it could potentially benefit from advanced floating point

features such as AVX/AVX2/AVX-512 that are available on newer processors. We choose the speed

variant because we wish to extract detailed performance profiling for a single run of the benchmark with
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minimal interference from competing processes.

4.2.3 Methodology

The benchmark was run in a sixteen thread configuration, with the score (expressed as a ratio to

SPEC’s reference machine) and completion times being the lowest of the three. It was run first with

Clang, LLVM, MuSL and CompilerRT version which are included in or exactly match the ones in our

toolchain, so the performance scores rely on only the available optimizations. We then ran it with the

Man O’ War toolchain and translator, providing the platform information about the microarchitecture

and available processor extensions. The test system was a DigitalOcean Performance cloud instance

with 8 virtual cores and 16GB running an Intel(R) Xeon(R) Platinum 8168 CPU processor and Ubuntu

16.04 with Docker CE.

4.2.4 Data

Table 4.3 and 4.4 on page 42 contain the results of our experiments. A graphical comparison of the same

is shown in Figure 4.3.

Table 4.3: SPEC CPU 2017 FPSpeed 619.lbm s with LLVM+Clang+Musl+CompilerRT
on DigitalOcean

Benchmarks Threads Estimated
Run Time
(s)

Ratio

619.lbm s 16 1808 2.897
619.lbm s 16 1820 2.878
619.lbm s 16 1816 2.884
619.lbm s 16 1839 2.848
619.lbm s 16 1832 2.859

Table 4.4: SPEC CPU 2017 FPSpeed 619.lbm s with Man O’ War

Benchmarks Threads Estimated
Run Time
(s)

Ratio

619.lbm s 16 1807 2.898
619.lbm s 16 1752 2.989
619.lbm s 16 1819 2.879
619.lbm s 16 1822 2.874
619.lbm s 16 1823 2.874

4.2.5 Analysis

The mean for our standard toolchain result was 1823s with a standard deviation of 12.59s and the

bytecode mean was 1805s with a standard deviation of 34.61s which with 5 trials and a 95% confidence
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Figure 4.3: Standard vs Bytecode Performance on x86

interval gives us an average runtime of 1823±11.04s and 1805±30.34 respectively. In Figures 4.4, 4.5 and

4.6 starting on page 45 we can see flame graphs based on measured on CPU-time per function measured

by profiling the two executions using the Linux Perf tool [10]. A enlarged section of the graph is also

shown, indicated just the tops of stacks descending from the main sections of the program. By comparing

these graphs (and the original Perf data) we can see that the programs behaviour and portion of CPU

time spent executing various functions are largely similar, excepting variable system behaviours such as

page faults. LBM performStreamCollideTRT, which is forms a key part of the numerical simulation, is

on CPU in 99.57% of samples in the traditional case and is on CPU in 99.56% percent of samples in the

bytecode case.

Combined with the statistically similar runtime from the SPEC test cases we can assure ourselves

that the execution behaviour of the bytecode version is correct and largely similar and we can conclude

that the overall impact of the bytecode translation and the any overheads added by the split C library

and abstraction layer appears to be very minimal. Even for a program which is I/O-bound rather than

CPU-bound we do not expect a significant change as our implementation does not in fact necessitate

adding additional abstraction-levels to I/O functions, as these are largely independent anyway [8].

Dissasembly of the resulting executable does in fact show the presence of AVX/AVX2 extensions2

not used by the original container. However they are present in a limited fashion that likely had

2When the toolchain was allowed to generate AVX-512 instructions, the compilation failed due to what we suspect are
issues generating these instructions in an x32 environment.
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no measurable impact, and thus passing the detailed architectural information appears to have had

a limited overall performance impact in this case. While this workload does have the appropriate

parallelism under-utilization of available SIMD instructions can occur if the LLVM optimizers are not

able to able to effectively vectorize the operations available and our choice of newer optimizers is limited

by the version of LLVM we utilize3. Overall this shows that automated microarchitectural optimizations

are indeed possible with our bytecode container approach, though their benefits will depend upon the

available translator.

In total, these results are very promising because it means bytecode containers can potentially be

used in place of regular containers even in homogeneous environments with no notable overheads. This

enables their use without concern of performance regressions and enables their use for their many benefits

to the software development process in the presence of heterogeneity. Also there remains the possibility

of optimizations based on the microarchitecture depending on the workload and tooling.

3The older version of LLVM used is caused by the dependencies of various components within our toolchain.
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Figure 4.4:
619.lbm s Flame
Graphs. The
length of a box
along the horizon-
tal axis shows the
portion of time
spent on CPU
out of all sam-
ples. The vertical
axis shows the call
stack. Both calls to
LBM performStream-
CollideTRT in the
traditional Clang
and Man O’ War
version dominate
the execution and
run in the same
proportion of total
samples. Com-
bined with the
SPEC data this
leads us to be-
lieve both versions
are performing
similarly.
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Figure 4.5: 619.lbm s Standard Toolchain Flame Graph but filtered to highlight stack tops by dropping
last several common frames. The length of a box along the horizontal axis shows the portion of time
spent on CPU out of all samples. The vertical axis shows the call stack.
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Figure 4.6: 619.lbm s Manowar Toolchain Flame Graph but filtered to highlight stack tops by dropping
last several common frames. The length of a box along the horizontal axis shows the portion of time
spent on CPU out of all samples. The vertical axis shows the call stack.
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4.3 Discussions and Comparison with Related Work

In this section we make comparison with and discuss related work introduced in our background, re-

flecting on what separates our work and it’s place in the larger context. In this section we give a brief

discussion of some of the design decisions made in our approach and end with a comparison to the related

work we discussed in this section.

We begin by a comparison with existing heterogeneous systems frameworks, discussing what sets our

technique apart from simply using these systems in the cloud. We discuss the Heterogeneous System

Architecture, a new platform for unifying heterogeneous accelerators using IR and shared memory tech-

niques, which uses promising bytecode-based techniques to solve heterogeneous systems problems and

can be used in a containerized setting.

We then discuss several existing bytecode systems related to our work. We begin by discussing

LLVM [18], as it forms a key component of not only our work, but several of the other works discussed

here and the modern computing landscape as a whole. Next we discuss the paper “JIT Technology

with C/C++: Feedback-Directed Dynamic Recompilation for Statically Compiled Languages”[24] which

discusses many of the limitations with current compiler infrastructure which apply equally well to the

heterogeneous cloud and their incorporation of bytecode techniques has strong parallels to parts of our

approach. We then move on to discuss Google Native Client [44], which attempts to target multiple

client-side computing platforms in the web environment using a bytecode-based technique and which

forms a large part of the basis of our toolchain and approach.

4.3.1 Heterogeneous Systems Frameworks

Heterogeneous System Architecture (HSA)

Heterogeneous System Architecture (HSA), discussed in section 2.1.3, is a very promising platform

for supporting parallel accelerators and other types of directly connected, shared memory heterogeneous

architectures and we consider it complementary to our techniques. We see systems such as Heterogeneous

System Architecture (HSA) as a complementary system providing a unified interface for accessing parallel

accelerators via the HSAIL IR. We utilize concepts from their architecture such as the online / offline

finalization and they do much to advance the concept of mixed-architecture heterogeneous systems. It

is also another excellent example of successful bytecode-based techniques for architectural portability.

What sets our container-based heterogenous systems framework for cloud apart from this types of

frameworks is that the focus almost exclusively on parallelization and parallel accelerators. They still

require a traditionally compiled host program to drive the heterogeneous portion of the computations

(they mandate a master-worker architecture) and an consider only single node heterogeneity (i.e. it

requires a physical shared memory model between the host and the executing device).

It is certainly possible to use HSA from with containerized applications and integration of HSA

into the Man O’ War toolchain is an interesting future direction. In our future work section we will

discuss possibilities of incorporating it with our approach. Seeing if such a model can be generalised to

distributed shared memory systems or similar constructions in the cloud is also an interesting question,
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but one that currently remains out of scope for our own work.

4.3.2 Bytecode Systems

LLVM

LLVM and the LLVM bitcode format, discussed in section 2.2.1, forms a core component of our system

and indeed modern computing as Adve, Latner and Cheng won the 2012 ACM System Software Award

for their contributions and Clang4/LLVM is the default compiler for Apple systems and many others.

LLVM forms the basis of our approach and provides key optimization techniques such as FDO but in

comparison to the work presented here does not by itself allow for portability or easy integration into

existing container systems.

Despite clearly separating the front and backends in the LLVM system, there are some limitations

due to the nature of the types of languages LLVM works with (primarily C-like ones). C is not a very

hardware agnostic language, the C Specification [13] leaves a great deal of choice up to implementations

and combined with the need to be compatible with existing libraries, architectures and operating systems

this means that a great deal of platform specific information is passed through Clang and on into

LLVM bitcode. This means that, while the C Specification [13] and the accompanying POSIX portable

operating system interface standard [11] ensure some level of source portability, the resulting bitcode is

not generally portable in of itself.

Let us discuss a brief example, consider the ucontext t structure, defined by POSIX as part of

signal handling “to refer to the receiving thread’s context that was interrupted when the signal was

delivered”[11]. Listing 4 shows the definition in the Musl implementation of the standard library for

i386 and powerpc. We can see from an LLVM perspective bitcode perspective that once lowered these

are not remotely compatible types. Putting aside other concerns such as size, the order of fields is not

the same and getelementptr, which is used to get a pointer into the structure, computes this offset based

on the field number. Since the fields are in different locations, depending on which architectures platform

header was present when we compiled the source we will get very different LLVM bitcode, even if the

input program is the same.

This is partially what motivated us to present a virtual target and split standard library abstraction

layer approach in our implementation. Since we are targeting current containerized applications it is

useful to be compatible with C/POSIX to support unmodified legacy applications but we need to abstract

away these architecture specific details if we are to be fully bytecode portable.

JIT Technology with C/C++ IR

The approach laid out in “JIT Technology with C/C++ IR”[24], discussed in section 2.2.3, attempts

to address some of the optimization cases we wish to target by considering the heterogeneous nature of

hardware, microarchitectural portability and how best to optimize for emerging hardware features.

4Clang is the C/C++/Objective-C frontend developed by the LLVM-Project.
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// i386

typedef struct __ucontext {

unsigned long uc_flags;

struct __ucontext *uc_link;

stack_t uc_stack;

mcontext_t uc_mcontext;

sigset_t uc_sigmask;

unsigned long __fpregs_mem[28];

} ucontext_t;

// powerpc

typedef struct __ucontext {

unsigned long uc_flags;

struct __ucontext *uc_link;

stack_t uc_stack;

int uc_pad[7];

mcontext_t *uc_regs;

sigset_t uc_sigmask;

int uc_pad2[3];

mcontext_t uc_mcontext;

} ucontext_t;

Listing 4: Ucontext t as defined by the Musl C Standard Library

Many of the difficulties we are hoping to address in the container-based cloud are similar. Our

consideration for microarchitectural optimization approaches and the dynamic optimization cases we

consider are inspired by their work. However as their tooling is based on IBM proprietary tools we cannot

directly make use of it. We note their approach considers the case of only a single node optimizations,

where as we consider both single node and cloud scale approaches. Their resulting fat binaries also

correspondingly do not make a claim to be architecturally agnostic/portable, aiming rather for portability

and optimization at the micro-architectural level (they discuss their rational for this and it is inline with

their intended use case as outline above).

They make a key observation that also holds true for the container-based cloud:

“The vast move to cloud and virtual environments results in increased abstraction of performance-

critical information from the static compilation environment. Only upon runtime deployment

do the actual physical resources become known, and these can change during program execu-

tion due to workload migration and consolidation considerations, requiring continuous online

adaptation of programs.”[24]

They attempt to address this with JIT techniques adapted from the JVM. In our case however we note

that that with the use of orchestration systems to manage them the actual physical resources generally

do become known after build time but before actual container runtime, leading to our preference for an
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AOT approach which avoids some of the potential performance pitfalls and scalability costs of JIT.

Their reliance on binary images to offset the startup costs of performing JIT has obvious difficulties

in an architecturally heterogeneous cloud set, and we argue is not as essential in the container-based

cloud case, as there are other ways to offset this cost such as the opportunities to perform idle time

AOT and caching between uploading of an image to a repository and runtime in the cloud, especially

for frequently used images. Accordingly the use of a fat binary and JIT approach may not be an ideal

solution in a heterogeneous cloud setting.

Portable Native Client

Portable Native Client’s (pNaCl) LLVM-based compiler frontend and translator as well as virtual ABI

form a central pilar of our approach. However, their implementation can be simplified by the fact that

they are targeting the Native Client service runtime in a web browser rather that a normal operating

system interface. While this increases their overall portability, the service runtime is intended as an

isolation mechanism which is unneeded in a container context as operating system virtualization is

already fulfilling that role. Where as the service run-time incurs around a 5% overhead, our split library

approach occurs at link and translation time and is optimized as part of the overall application, which

results in no notable overhead in comparison with standard native libraries (as we demonstrate in chapter

4).

The Man O’ War system uses an almost identical virtual ABI that is derived directly from that of

PNaCl. Parts of the PNaCl toolchain and source code (licensed under an Open Source license) along

with their fork of LLVM served as the basis of our own compiler frontend and translator. We note there

are some key difference with our overall system however.

Their portability problem is simplified somewhat, by targeting a ABI which is implemented by

the browser rather than a real operating system, and thus is highly platform agnostic and controlled

to their purpose as we have seen above. In order to be able to be usable for it’s intended purpose our

implementation must be able to run against an unmodified OS ABI. In our case this will be Linux and the

Linux ABI is certainly not uniform across architectures. Our implementation discards many components

intended solely for the browser and it’s security model and we implemented our own novel split C library

approach (described in chapter 3) to support the virtual target and overcome these difficulties on a

traditional operating system. As they are focused on a client computing model, specifically that of the

web, they also choose to make use of JIT techniques restricting the possible optimizations as it can be

difficult to mitigate the cost of heavy optimizations on the client side (increased client-side compilation

times will lead to very noticeable page load delays) where as we prefer AOT techniques for reasons

discussed in the preceding section.

Java Bytecode and JVM

The JVM is a process virtual machine which is designed to execute a Bytecode format (as described in

section 2.2) originally designed for the Java programming language but now targeted by a growing family

of languages. Process virtual machines construct a managed runtime environment based on a virtual
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instruction set tailored to the language they are intended to run, abstracting it away from the hardware

platform. In order to achieve acceptable performance JIT compilation techniques are frequently adopted

to compile frequently used and critical sections of the application.

In many ways this approach share some similarities with ours, bytecode-based container images

resemble JAR files in some ways and Java-based PaaS exist in the cloud space. However, the types of

languages and level of exposure to the hardware normally found on these systems are radically different.

Applications utilising the JVM are known for having large startup costs due to the time required to JIT

important paths in the code on startup [24].

In the cloud, this would involve notable costs on a per-node basis without a specialized PaaS or

other techniques to offset this. This was one of the reasons we choose to favour AOT translation and

aggressive caching. It is worth noting that newer JVM projects such as Graal from Oracle and the

Android Runtime (ART) from Google have recently started supporting AOT compilation and caching

so this may become an interesting area of future work however [16].

4.3.3 Discussion

In this final section we make some overall remarks on our approach and implementation in comparison

to overall trends and reflect on design and testing choices and limitations. In contrast to some of the

other frameworks we have discussed, we are not focusing on data parallel programs. We also do not

focus on addressing the scheduling problem in this work.

While we attempt to be portable, we do not attempt to be operating system agnostic, in fact the

opposite as our current implementation is limited to the Linux ABI using it’s userspace api as a unifying

force across heterogeneous platforms. We feel this harmonizes well with the container-based cloud, since

os-level virtualization occurs as the syscall layer and while container implementations exist for non-Linux

platforms5, the majority of of container implementations and container-based clouds run on top of Linux.

Popular container engines such as Docker originated on the Linux platform and most public container

services are designed with Linux containers in mind.

We target the C language as it is the language of the Linux kernel and a great majority of application

software written for the Linux platform. Since one of the major advantages of containers is being able

to containerize existing Linux applications and libraries, this make for an obvious target. Even the run

times for many higher level languages are implemented in C, so this is a useful target language even for

those use cases. Future version of the toolchain could be extend to support other statically compiled

languages in a similar fashion.

We want a program representation that is both architecture and microarchitecture agnostic as far as

possible to provide the maximum opportunities for optimization in the heterogeneous cloud as seamlessly

as possible. We adopt a number of components including the virtual ABI, LLVM bitcode format and

translator from PNaCl but re-target it to our own split library implementation on top of an unmodified

operating system. This implementation combines some of the approach and as well as heavily modified

tools from the Portable Native Client system with approaches of several other bytecode systems such as

5Indeed some early work on containerization was done in systems such as Solaris Zones [29].
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the Heterogeneous System Architecture’s BRIG framework for portability of parallel applications [42].

We choose to retain the 32-bit nature of the virtual ABI (Native Client mandated/required this in

their runtime). Our motivation for this choice was largely to support some of our experiments which

would only run with 32-bit platforms. This comes largely from the immaturity of 64-bit arm support

on the testing platforms available to us (eg. SPEC is built for ARMv7 by default) as Aarch64 (64-bit

Armv8) software support is not yet standardly supported on many SOC even with Armv8 cores, though

this situation is rapidly improving. Since we wish to perform migration tests from x86 to ARM, this

required limiting our tests to the 32-bit architectures, though all these approaches discussed could equally

be applied to 64-bit architectures. Similarly we consider only the case of little endian architectures as

those are currently some of the most popular and are available to us in the cloud. Many others have

some bi-endian support, often configurable by process, so this implementation can be applied there as

well.

Our earlier experiments lead us to conclude that the overall impact of any overheads added by the

split C library and abstraction layer appears to be very minimal. Even for a program which is I/O

heavy and consequently makes many library and system calls we do not expect a significant change as

our implementation does not in fact necessitate adding additional abstraction-levels to I/O functions,

as these are largely independent anyway [8].

In the next chapter we will consider some directions for future work, possible extensions to the

system, as well as our conclusions based on the results and discussion presented here.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

As we reach the performance limits of modern microprocessor technologies, computing resources are in-

creasingly becoming heterogeneous [42]. In the public cloud various types of accelerators are proliferating

and new hardware designs such as the ARM-based AWS Graviton processor are making the traditionally

architecturally homogeneous cloud increasingly heterogeneous [1]. We have discussed the advantages of

a heterogeneous cloud for being able to exploit hardware at a variety of performance vs power design

points for activities such as “heterogeneous scaling” and utilizing specialized hardware extensions and

accelerators [31].

There are some strong barriers to developers creating applications to make use of such resources

without significant software development effort including creating highly specialized versions of their

applications. Users of computing services provided by container-based cloud providers are required to

provide their application in a format the infrastructure/platform can utilize, typically as a set of OCI

or Docker containers containing Linux binaries. In practice, this means application developers and

Independent Software Vendor (ISV) compile generic, “one size fits all” versions of their container-based

applications that can generally run on any commonly available x86 infrastructure. However, this is is not

necessarily the most efficient way both cost and performance wise and makes exploiting heterogeneity

difficult.

We consider this a notable shortcoming as developers turn to container systems to help isolate them

from the particulars of the underlying node and software configuration [35]. In order to extend container-

ized applications to heterogeneous systems without costly and inflexible customization by the developer

an additional framework is required on top of what is normally provided by container systems. A unified

approach and heterogeneous systems framework for use with container-based application virtualization

in the presence of a potentially heterogeneous cloud environment is required. One which allows the

application images to remain independent of any particular system but allows running applications to

maximally exploit the particular features of the execution environment they are assigned to.
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5.1.1 Our Contributions

We introduce a design for and partial implementation of a heterogeneous systems framework on top

of containers for use in the container-based cloud to address these shortcomings and ease software

development in the heterogeneous cloud. As with all heterogeneous systems frameworks portability is

a major concern. We have shown that we can bridge some of the barriers present with traditionally

compiled containers with a bytecode-based container system, drawing on several established techniques

but tailoring them specifically to the needs of the container based cloud. This design combines some

of the approaches of several other bytecode systems such as the Heterogeneous System Architecture’s

BRIG framework for portability of parallel applications but shifts focus to the heterogeneous cloud as a

whole rather than specifically just accelerating parallel computations.

We have introduced our implementation of this design (that we refer to as Man O’ War), a system

based on LLVM bitcode and apply it to the standard OCI container format to produce a portable

containers suitable for use with unmodified OCI compliant runtimes. Our implementation of this system

creates container images containing binaries in a LLVM-based bitcode format, and then allows them to

be translated on demand to the the specific target architecture and microarchitecture of the host by a

tool we refer to as the container finalizer. Applications are built using a intermediate, virtual ABI (i.e

le32-manowar) and a split standard library which adapts calls to this virtual ABI to the native ABI of

the Linux kernel on the target platform. This system specifically allows for AOT compilation as part of

a container orchestration system customarily found in a container-based cloud with aggressive caching

of built images possible. Resulting container images run directly upon unmodified container systems, a

novel result that eases integration and adoption with existing applications and services in the container

based cloud.

We considered and performed a number of performance experiments which validate the utility of this

design on systems with diverse architectural and microarchitectural configurations in the heterogeneous

cloud. We demonstrated that allowing for seem-less architectural migration can lead to real cost benefits

in certain heterogeneous scaling scenarios. We also demonstrated that our implementation does not have

significant runtime over heads compared to a traditionally compiled C-based containerized application for

a typical test workload. This allows application developers to consider it’s universal application, rather

than making it just another specialized tool. We also demonstrated that in is possible to dynamically

incorporate information about architectural and microarchitectural heterogeneity into the compilation

environment for bytecode containers during code generation, allowing the container image to make use

of new hardware features.

By making these capabilities available transparently to developers of cloud-native applications and

the container ecosystem we remove the burden of handling and optimizing for heterogeneity from the

developer. This opens up the possibilities of exciting new dynamic optimizations and performance

enhancements in the container-based cloud. We hope to see many new container-based applications,

orchestrator plugins, schedulers and other works take advantage of these capabilities in the expanding

heterogeneous cloud.
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5.2 Future Work

Container technology research is still at an early stage [27] and while we have demonstrated some promis-

ing results for using a heterogeneous systems framework based on bytecode-based portable containers to

improve resource utilization and performance optimization in the heterogeneous cloud, there are many

opportunities both to expand our approach and to connect it to other works in this area. In this section

we discuss possible future work and directions.

5.3 Scheduling

While we have focused primarily on the portability requirement of a heterogeneous systems framework for

the container-based cloud, deferring the responsibility of generating schedules to container orchestrators

and other works, generating these would be of great utility to a complete system. Utilizing information

from the Man O’ War toolchain and a heterogeneity-aware scheduling algorithm as set out in these

works it would be interesting to investigate if we can generate deployment configurations and scheduling

plugins for common orchestrators such as Kubernetes.

5.3.1 Feedback-Directed Optimization (FDO)

According to Smith “Feedback-directed optimization (FDO) is a general term used to describe any

technique that alters a program based on information gathered at run time”[34]. Feedback directed

compilation is an FDO method which uses runtime profiling information to guide optimization of the

program during compilation [34].

The Linux kernel supports performance profiling through the it’s perf performance profiling interface

(which we used during our performance experiments). Tools such as Google’s AutoFDO can turn these

profiling traces into a binary profile which can then be utilized LLVM’s built in feedback directed

compilation infrastructure. The Man O’ War translator can easily extended to accept this information

provided this data was collected by nodes. An high level overview of how such a system might be

constructed is featured in Figure 5.1 with performance data being periodical fed back into the finalizer

and updated container images being deployed and cached in the image repository.

In a large cloud setting it is often the case that many containers are created from copies of the same

container image, often with a similar workload. Consider for example a collection of web services running

copies of popular web servers such as Nginx or Apache2. By occasionally instrumenting and profiling

these containers and then provided the profiles to the Man O’ War finalizer to rebuild their container

images we may be able to dramatically boost performance for these types of frequently used images.

5.3.2 Extensions to Other Statically-typed Languages

One of the difficulties that motivates our split library approach is that of the leaky abstractions in the

C programming language. As we have seen earlier much of this information leaks into our bytecode via

the information passed by Clang, thus necessitating a split library approach. This has been a motivating
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Figure 5.1: A Feedback-Directed Optimization (FDO) extension to the container system

factor in other bytecode-based system using primarily much newer language designs with stronger type

systems and abstractions. Future work should include exploring how the bytecode containers technique

and tools can be expanded to include other popular statically compiled languages (eg. Go and Rust)

that also include new language features which may be beneficial in the presence of heterogeneity (such

as, for example, Go’s build-in support for concurrency and garbage collection).

5.3.3 Extensions to Other Bytecode IR

Another difficulty we found is that the LLVM type system, while quite adequate for it’s current use as

a compiler intermediate language, is not powerful enough to easily express all types that might be of

interest to us. For example, if we wanted an approach which targeted both 32-bit and 64-bit systems

it would be very helpful to have, for example, an integral type equal to the platform word size. This

could possibly create more problems than it solves, as C has this sort of type with int, and this is often

the source of portability problems and overflows if used improperly but it would still be of interest to

see what extensions could be made to the bytecode to aid our purpose. Other extensions might include

better support for certain newer concurrency constructs such as transactional memory.
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5.3.4 Extension to Parallel Accelerators

Our approach and the Man O’ War system currently makes it easier to exploit heterogeneity based on

architecture or microarchitecture in cloud environments, but these are not the only types of heterogeneous

processing resources. As discussed in chapter 2, parallel accelerators such as GPGPUs are often found

in the cloud. Integrating systems such as the Heterogeneous System Architecture (HSA) which seek

to provide a similarly portable environment for accelerators based on a shared-memory model [42] and

unified programming model would add this dimension to our approach and is certainly an area of interest.

The HSAIL IR representation and our bytecode-based executable are complementary techniques and

merging them is certainly possible. This would mean extending or superseding the BRIG format as our

binaries are currently not stored in an ELF container when in bytecode form, but this is certainly not an

insurmountable challenge and could lead to many benefits for accessing parallel and many-core processor

designs.
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Glossary

cgroups A Linux kernel process resource limiting and isolation mechanism. A contraction of of control

groups. 17

Fat Binary An executable which contains code for multiple target architectures. 12, 17

Intermediate Representation (IR) An intermediate program form in a compiler system. Often a

bytecode. 17, 69

Just-in-Time Compilation (JIT) A technique consisting of on-demand compile sections of a pro-

gram as they are executed, often used in the context of a VM or an interpreted language for

performance reasons. 12, 69

Utility computing A pay-as-you-go service model for computing that can be purchased as if from a

traditional utility such as power or water. Often attributed to John McCarthy.. 1
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Acronyms

ABI Application Binary Interface. 24, 25, 27

AOT Ahead-of-Time. 12, 51, 52, 56

AVX2 Advanced Vector Extensions 2. 41

CPU Central Processing Unit. 12

CSP Cloud Service Provider. 23

DSP Digital Signal Processor. 12

GPU Graphics Processing Unit. 6, 12, 20

HPC High Performance Computing. 4, 16

HSA Heterogeneous System Architecture. 23

IaaS Infrastructure as a Service. 17, 18, 22

IR Intermediate Representation. 17, 23, 48, Glossary: Intermediate Representation (IR)

ISA Instruction Set Architecture. 2

ISV Independent Software Vendor. 55

JIT Just-in-Time. 12, 14, 17, 50–52, Glossary: Just-in-Time Compilation (JIT)

JVM Java Virtual Machine. 13, 50, 51

LSB Linux Standard Base. 25

LTO Link Time Optimization. 14

NUMA Non-Uniform Memory Access. 20
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OaaS Optimization-as-a-Service. 23, 31, 32

OCI Open Container Initiative. 5, 23, 28, 56

PaaS Platform as a Service. 17, 18, 22, 23, 31, 32, 52

POSIX Portable Operating System Interface. 24

RAM Random Access Memory. 36

SIMD Single Instruction Multiple Data. 6

SLA Service Level Agreement. 11

SOC System-on-Chip. 38, 53

VM Virtual Machine. 15, 67
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