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In this thesis we studied the stability of a binary liquid film flowing down a heated porous inclined

plate. It is assumed that the heating induces concentration differences in the liquid mixture (Soret

effect), which together with the differences in temperature affects the surface tension. A mathematical

model is constructed by coupling the Navier-Stokes equations governing the flow with equations for

the concentration and temperature. The effect of substrate permeability is incorporated by applying a

specific slip condition at the bottom of the liquid layer. We carry out a linear stability analysis in order

to obtain the critical conditions for the onset of instability. We used a Chebyshev spectral collocation

method to obtain numerical solutions to the resulting Orr-Sommerfeld type equations. We also obtained

an asymptotic solution which yielded an expression for the state of neutral stability of long perturbations

as a function of the parameters controlling the problem. We present our findings by illustrating and

interpreting our results for the critical Reynolds number for instability.
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Chapter 1

Introduction

1.1 Background

Liquid films flowing down an inclined plane have widespread applications in both environmental phe-

nomena and industrial settings. The formation of interfacial waves due to hydrodynamic instability

exhibits complicated dynamics in spite of the simplicity of the flow configuration. Therefore, this type

of flow has received significant interest and has fascinated many researchers.

The first experiment was conducted by Kapitza [1] in 1948 who investigated the development of inter-

facial waves in the flow of thin films down an inclined plate. In 1949, an additional study was performed

experimentally and theoretically by Kapitza and Kapitza [2]. They succeeded in establishing the basic

fundamental systematic study in this type of problem. Furthermore, they identified a dimensionless flow

parameter known as the Kapitza number which is considered a significant parameter in the study of

the formation of interfacial waves. This Kapitza number is defined by a combination of surface tension,

kinematic viscosity and gravitational force. Later, more studies were conducted by Benjamin [3] and Yih

[4] who performed a linear stability analysis to investigate the long-wave instability of isothermal falling

films. The critical Reynolds number was calculated using a perturbation solution to the Orr-Sommerfeld

equation. Since then, many researchers have pursued various extensions to the original problem estab-

lished by the Kapitza father and son team.

The impact of heating on the flow down an inclined plate has recently been investigated. In 2003,

Kalliadasis et al. [5] assumed that surface tension depends linearly on temperature and examined the

instability of the flow over a uniformly heated inclined plate using a first order integral-boundary-layer

approximation. This yields a reduced-dimensionality model that is amenable to linear and nonlinear

analyses, however it does not provide good accuracy in predicting the onset of instability when com-

pared to the linear analysis of the full equations and experimental observations. The work presented

by Ruyer-Quil et al. [6] and Scheid et al. [7] used a second-order weighted residual approach to obtain
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CHAPTER 1. INTRODUCTION 1.1. BACKGROUND

a more accurate reduced model that exactly reproduces the critical Reynolds number for the onset of

instability. Trevelyan et al. [8] applied the weighted residual model assuming both constant tempera-

ture and constant heat flux as a bottom boundary condition. They found that in the long-wave limit,

heating destabilizes the flow in both cases. The study presented by D’Alessio et al. [9] showed that the

thermocapillary effect destabilizes the flow over a heated wavy inclined surface.

The first study on the linear stability of a thin Newtonian flow down a porous incline plate was

presented by Pascal [10]. He constructed a theoretical model by using a ”one-sided” model which is

an incorporation of the flow equations and a boundary condition describing the permeability of the

substrate. He used the slip condition formulated by Beavers and Joseph [11] to describe the boundary

condition at the porous substrate and discarded the filtration flow in the porous medium assuming that

it is much slower than the clear flow. Later, Sadiq et al. [12] investigated the effect of surface tension

on the Newtonian film flow using an extension to the one-sided model taken by Pascal. They obtained

a Benney-type equation, then a weakly nonlinear analysis was carried out to determine how the per-

meability of the porous medium impacts the formation of the interfacial waves. The accuracy of the

one-sided model was examined by Liu and Liu [13] who concluded that using this approach generates

more accurate results when the permeability is low or moderate, particularly if the porous substrate is

sufficiently thin.

In addition, Pascal [14] implemented the one-sided model to examine the instability of a nonNew-

tonian flow over a porous inclined plate. He performed a depth integrating strategy to obtain a one-

dimensional model, then a linear and nonlinear analysis were conducted to determine the onset of

instability. In another study, Pascal and D’Alessio [15] performed the weighted residual method to in-

vestigate the instability in a gravity-driven flow over a permeable wavy surface. They found that the

bottom topography coupled with strong surface tension destabilizes the flow. Sadiq et al. [16] presented

a paper investigating the influence of heating and permeability on the instability of the flow. They

obtained an Orr-Sommerfeld type equation and both numerical and asymptotic solutions were calcu-

lated to investigate the influences of heating and permeability on the onset of instability. Their research

includes an important comparison between their results and previous results obtained by applying the

weighted residual method.

Binary liquids refer to mixtures of two liquids such as ethanol-water mixtures and liquid-metal alloys.

The liquid comprising the largest part of the mixture acts as the solvent, while the other is the solute. It

turns out that, if heated, binary liquids are subject to the Soret effect, whereby temperature differences

induce a flux of molecules of the solute leading to concentration variations. The influence of the Soret

effect in the horizontal case has been presented in several studies. In 1979, Takashima [17] examined the

impact of the Soret effect on the P-mode by extending Pearson’s linear stability analysis [18] to binary

liquid. More recently, another study was performed by Joo [19] who used a model with a deformable free

surface heated from above or below and investigated the influence of the Soret effect on the proposed

instability, however the hydrostatic effect was not included in his model. Podolny et al. [20] published a
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CHAPTER 1. INTRODUCTION 1.2. DESCRIPTION OF THE PROBLEM

paper investigating the influence of the Soret effect on the S-mode in the presence of heat flux. The first

work to examine the instability of a binary liquid film flow over an uniformly heated inclined plane was

presented by Hu et al. [21]. In their work, the system of equations for linear stability was solved using

the Chebyshev collocation method. They found that the flow become more unstable with increasing the

Soret number or increasing the Marangoni number.

The present study represents an extension of the work by Hu et al. [21] to also include the permeability

of the plate. The objective of this thesis is to establish a theoretical model and investigate the interaction

of thermosolutal-capillary effects combined with bottom permeability on the instability of the flow. We

model this problem by coupling the governing flow equations with the temperature and concentration

equations and employ the Beavers-Joseph condition to describe the porosity of the plate. In chapter

2 we introduce the governing equations and the corresponding boundary conditions. In chapter 3, a

linear stability analysis is conducted resulting in a Orr-Sommerfeld type equation. A numerical method

is performed to produce a solution of the eigenvalue problem. An asymptotic solution is also presented

in this chapter which also includes a presentation and discussion of the results, while the conclusions of

the study are summarized in chapter 4.

1.2 Description of the problem

Figure 1.1: Schematic representation of a thin film flowing down a porous inclined heated plane.

We consider the gravity-driven two dimensional laminar flow of a binary liquid film over a uniformly

heated porous plate inclined at an angle θ with respect to the horizontal as shown in Figure 1.1. The

x-axis points down the incline and the z-axis points upwards. The velocity components in the x and z

directions are given by u and w respectively while z = h(x, t) refers to the thickness of the fluid. The

3



CHAPTER 1. INTRODUCTION 1.2. DESCRIPTION OF THE PROBLEM

temperature of the porous plate is maintained at a prescribed constant value denoted by Tw, while the

ambient gas which is assumed to be motionless has a constant temperature T∞ < Tw and pressure p∞.
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Chapter 2

Governing Equations

2.1 Dimensional equations

We consider a binary liquid film flowing down a slippery inclined heated plate as illustrated in Figure

1.1. The two-dimensional equations which describe the motion of the fluid are obtained from the Navier-

Stokes equations and continuity equation. The x−momentum equation can be written as

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ g sin θ +

µ

ρ

(
∂2u

∂x2
+
∂2u

∂z2

)
(2.1)

while the z−momentum equation is given by

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g cos θ +

µ

ρ

(
∂2w

∂x2
+
∂2w

∂z2

)
(2.2)

where p is the pressure, u and w are the streamwise velocity and cross-stream velocity respectively. The

density is given by ρ while µ is the dynamic viscosity. The gravitational acceleration is denoted by g

while θ represents the angle of inclination of the plate. The continuity equation is expressed as

∂u

∂x
+
∂w

∂z
= 0. (2.3)

According to Fourier’s law the heat flux is proportional to the temperature gradient, and similarly, by

Fick’s law the mass flux is proportional to the concentration gradient. However, when both temperature

and concentration differences exist, the heat and mass fluxes can be affected by both the temperature

and concentration gradients. The dependence of the mass flux on the temperature gradient is referred

to as the Soret effect, while the dependence of the heat flux on the concentration gradient is known as

the Dufour effect. However, in liquid mixtures only the Soret effect is significant. Consequently the heat

flux Jh and mass flux Jm will be expressed as

Jh = −λ∇T (2.4)
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CHAPTER 2. GOVERNING EQUATIONS 2.1. DIMENSIONAL EQUATIONS

Jm = −ρ Dm (∇C + α∇T ) (2.5)

where C is the solute concentration, T is the temperature of the liquid mixture, λ > 0 is the thermal

conductivity, Dm > 0 is the mass diffusivity, α is the Soret coefficient and ∇ = ( ∂
∂x ,

∂
∂z ). We point out

that, depending on the nature of the binary liquid, the temperature-induced solute flux can be towards

warmer or colder regions, and consequently the Soret coefficient can take on negative or nonnegative

values.

Introducing the heat and mass fluxes into the basic advection-diffusion transport equation we obtain

the following equations governing the temperature and concentration

DT

Dt
= δ ∇2T (2.6)

DC

Dt
= Dm

(
∇2C + α∇2T

)
(2.7)

where δ is the thermal diffusivity and D
Dt = ∂

∂t + u ∂
∂x + w ∂

∂z .

To determine the dynamical conditions at the surface of the liquid layer, we first point out that,

assuming the liquid is Newtonian, the total stress tensor can be expressed as
−→−→s = −p

−→−→
I +
−→−→τ , where

−→−→τ = µ

[
2∂u∂x

∂u
∂z + ∂w

∂x
∂u
∂z + ∂w

∂x 2∂w∂z

]
and

−→−→
I =

[
1 0

0 1

]
.

The force exerted by the flow on the free surface z = h (x, t), can be written as
−→−→s n̂ where n̂ is the unit

normal vector which is given by

n̂ =
1√

1 +
(
∂h
∂x

)2
[
−∂h∂x

1

]
.

We assume the viscous stress acting on the surface due to the ambient gas to be negligible. Therefore,

the force on the surface due to the flow of the liquid film is balanced by the ambient pressure and the

effect of surface tension. Then the total force balance at the surface of the liquid layer can be expressed

as

−→−→s . n̂ = − (p∞ + 2σ K) n̂+
−→
∇sσ (2.8)

where p∞ is the ambient pressure, σ is the surface tension, ∇s is the surface gradient operator which is

defined as

−→
∇s =

1

n2


∂
∂x + ∂h

∂x
∂
∂z

∂h
∂x

∂
∂x +

(
∂h
∂x

)2 ∂
∂z

 ,
and K is the average of the mean curvature of the free surface which is given by K = − 1

2

(−→
∇s. n̂

)
. The
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CHAPTER 2. GOVERNING EQUATIONS 2.1. DIMENSIONAL EQUATIONS

normal component of the equation (2.8) yields to the following equation

p = p∞ +
2µ

1 +
(
∂h
∂x

)2
[(

∂h

∂x

)2
∂u

∂x
− ∂h

∂x

(
∂u

∂z
+
∂w

∂x

)
+
∂w

∂z

]

−
σ ∂

2h
∂x2(

1 +
(
∂h
∂x

)2) 3
2

at z = h (x, t) . (2.9)

The tangential component of the equation (2.8) can be obtained by multiplying the equation by t̂, the

unit tangent vector, which can be written as

t̂ =
1√

1 +
(
∂h
∂x

)2
[

1
∂h
∂x

]
.

We thus obtain

[
∂σ

∂x
+
∂h

∂x

(
∂σ

∂z

)]√
1 +

(
∂h

∂x

)2

= µ

[(
1−

(
∂h

∂x

)2
)(

∂u

∂z
+
∂w

∂x

)
+ 2

∂h

∂x

(
∂w

∂z
− ∂u

∂x

)]
at z = h (x, t) . (2.10)

The left-hand side of this equation corresponds to the so-called Marangoni stress which is due to variation

in surface tension, and pulls fluid along the surface in the direction of increasing surface tension.

The surface tension is assumed to depend linearly on both the temperature and the solute concen-

tration and is expressed as

σ = σ∞ − σt (T − T∞) + σc (C − C0) (2.11)

where σ∞ is the surface tension of the fluid at the reference values T = T∞ and C = C0. The parameters

σt and σc are defined as

σt = − ∂σ
∂T

, σc =
∂σ

∂C
(2.12)

which are positive for nearly all binary liquids. So surface tension increases with concentration and

decreases with temperature.

A kinematic condition for the free surface of the liquid layer can be derived from the assumption

that evaporation will be neglected, i.e. the fluid particles on the surface must remain on the surface as

fluid flows. The kinematic condition at the surface can be expressed as

w =
∂h

∂t
+
∂h

∂x
u at z = h(x, t). (2.13)

The relation between the heat flux normal to the surface and the difference in the temperature of the

7



CHAPTER 2. GOVERNING EQUATIONS 2.1. DIMENSIONAL EQUATIONS

liquid and the ambient gas can be expressed through Newton’s law of cooling which is given by

−λ∇T · n̂ = χ (T − T∞) at z = h(x, t) (2.14)

where χ is the heat transfer coefficient and T∞ is the ambient temperature.

Also, using the fact that the normal mass flux of solute vanishes at the free surface, we obtain the

boundary condition

−∂h
∂x

∂C

∂x
+
∂C

∂z
+ α

(
−∂h
∂x

∂T

∂x
+
∂T

∂z

)
= 0 at z = h (x, t) . (2.15)

At a fluid-porous medium interface, Beavers and Joseph [11] established experimentally that the

appropriate boundary condition can be written as

∂u

∂z
=

$√
κ

(u− up) at z = 0, (2.16)

w = wp at z = 0, (2.17)

where κ is the permeability of the porous medium, $ is a dimensionless parameter related to the structure

of the porous medium, while (up, wp) is the Darcian mean filtration velocity in the porous medium. For

sufficiently low permeability the filtration velocity can be neglected since the flow of the fluid through

the porous medium is much slower than that of the clear fluid layer, then the equations (2.16) and (2.17)

can be used to define boundary conditions for the velocity of the clear fluid:

∂u

∂z
=

$√
κ
u at z = 0, (2.18)

w = 0 at z = 0. (2.19)

Since the normal velocity is negligible at the bottom, we also have a zero normal solute flux, which is

expressed as

∂C

∂z
+ α

∂T

∂z
= 0 at z = 0. (2.20)

And finally, since the substrate is maintained at temperature Tw, we have the condition

T = Tw at z = 0.

8
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2.2 Non-Dimensional equations

The governing equations can be written in dimensionless form by using an appropriate scaling. For the

length scale we choose

H =

(
3µQ

ρg sin θ

) 1
3

(2.21)

which is the Nusselt thickness of an isothermal flow along a non-permeable surface if the flow rate is

prescribed to be Q. As a result, we will introduce the following transformation

(x, z) = H (x∗, z∗) , h = Hh∗, (u,w) = U (u∗, w∗) , t =
H

U
t∗,

p− p∞ = ρ U2p∗, T = T∞ + ∆T T ∗, C = C0 +
σt
σc

∆T C∗ (2.22)

where U = Q/H and ∆T = Tw−T∞. Applying the scaling described above to the momentum equations

in the x and z directions gives respectively

∂(Uu∗)

∂(HU t
∗)

+ (Uu∗)
∂(Uu∗)

∂(Hx∗)
+ (Uw∗)

∂(Uu∗)

∂(Hz∗)
= −1

ρ

∂(ρU2p∗)

∂(Hx∗)
+ g sin θ +

µ

ρ

(
∂2(Uu∗)

∂(Hx∗)2
+
∂2(Uu∗)

∂(Hz∗)2

)
and

∂(Uw∗)

∂(HU t
∗)

+ (Uu∗)
∂(Uw∗)

∂(Hx∗)
+ (Uw∗)

∂(Uw∗)

∂(Hz∗)
= −1

ρ

∂(ρU2p∗)

∂(Hz∗)
− g cos θ +

µ

ρ

(
∂2(Uw∗)

∂(Hx∗)2
+
∂2(Uw∗)

∂(Hz∗)2

)
which simplify to

Re

(
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ w∗

∂u∗

∂z∗

)
= −Re∂p

∗

∂x∗
+
∂2u∗

∂x∗2
+
∂2u∗

∂z∗2
+ 3 (2.23)

Re

(
∂w∗

∂t∗
+ u∗

∂w∗

∂x∗
+ w∗

∂w∗

∂z∗

)
= −Re∂p

∗

∂z∗
+
∂2w∗

∂x∗2
+
∂2w∗

∂z∗2
− 3 cot θ, (2.24)

where Re is the Reynolds number which is given by Re = ρQ
µ . Scaling the continuity equation gives

∂(Uu∗)

∂(Hx∗)
+
∂(Uw∗)

∂(Hz∗)
= 0

which reduces to

∂u∗

∂x∗
+
∂w∗

∂z∗
= 0. (2.25)

9



CHAPTER 2. GOVERNING EQUATIONS 2.2. NON-DIMENSIONAL EQUATIONS

Scaling the temperature and concentration equations yields

D(∆TT ∗)

D( UH t
∗)

= δ

(
∆T

H2
∇2
∗T
∗
)

D( σt

σc
∆TC∗)

D( UH t
∗)

= Dm

(
σt∆T

σcH2
∇2
∗C
∗ + α

∆T

H2
∇2
∗T
∗
)
.

These simplify to become

PrRe

(
∂T ∗

∂t∗
+ u∗

∂T ∗

∂x∗
+ w∗

∂T ∗

∂z∗

)
=
∂2T ∗

∂x∗2
+
∂2T ∗

∂z∗2
(2.26)

ScRe

(
∂C∗

∂t∗
+ u∗

∂C∗

∂x∗
+ w∗

∂C∗

∂z∗

)
=
∂2C∗

∂x∗2
+
∂2C∗

∂z∗2
+ So

(
∂2T ∗

∂x∗2
+
∂2T ∗

∂z∗2

)
(2.27)

where Pr is the Prandtl number defined as Pr = ν
δ while ν is the kinematic viscosity, Sc is called the

Schmidt number which is given by Sc = ν
Dm

and So = ασc

σt
is the Soret number. Applying the scaling

to the continuity of normal stress condition at the free surface yields

ρU2p∗ =
2µ(

1 +
(
∂(Hh∗)
∂(Hx∗)

)2)
[(

∂(Hh∗)

∂(Hx∗)

)2
∂(Uu∗)

∂(Hx∗)
− ∂(Hh∗)

∂(Hx∗)

(
∂(Uu∗)

∂(Hz∗)
+
∂(Uw∗)

∂(Hx∗)

)
+
∂(Uw∗)

∂(Hz∗)

]

−

(
σ∞ − σt (∆T T ∗) + σc

(
σt

σc
∆TC∗

))
∂2(Hh∗)
∂(Hx∗)2(

1 +
(
∂(Hh∗)
∂(Hx∗)

)2) 3
2

at z∗ = h∗(x∗, t∗),

which becomes

p =
2

Re
[
1 +

(
∂h∗

∂x∗

)2]
[(

∂h∗

∂x∗

)2
∂u∗

∂x∗
− ∂h∗

∂x∗

(
∂w∗

∂x∗
+
∂u∗

∂z∗

)
+
∂w∗

∂z∗

]

−We−M (T ∗ − C∗)(
1 +

(
∂h∗

∂x∗

)2) 3
2

∂2h∗

∂x∗2
at z∗ = h∗(x∗, t∗) (2.28)

where the dimensionless parameters M and the Weber number, We, are defined as

M =
σt∆T

ρU2H
and We =

σ∞
ρU2H

.
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CHAPTER 2. GOVERNING EQUATIONS 2.2. NON-DIMENSIONAL EQUATIONS

Scaling the continuity of tangential stress condition at the free surface leads to∂
(
σ∞ − σt (∆T T ∗) + σc

(
σt

σc
∆TC∗

))
∂(Hx∗)

+
∂(Hh∗)

∂(Hx∗)

∂
(
σ∞ − σt (∆T T ∗) + σc

(
σt

σc
∆TC∗

))
∂(Hz∗)

√1 +

(
∂(Hh∗)

∂(Hx∗)

)2

= µ

[(
1−

(
∂(Hh∗)

∂(Hx∗)

)2
)(

∂(Uu∗)

∂(Hz∗)
+
∂(Uw∗)

∂(Hx∗)

)
+ 2

∂(Hh∗)

∂(Hx∗)

(
∂(Uw∗)

∂(Hz∗)
− ∂(Uu∗)

∂(Hx∗)

)]
at z∗ = h∗ (x∗, t∗)

which gives

−MRe

√
1 +

(
∂h∗

∂x∗

)2 [
∂ (T ∗ − C∗)

∂x∗
+
∂h∗

∂x∗

(
∂ (T ∗ − C∗)

∂z∗

)]
=

(
1−

(
∂h∗

∂x∗

)2
)(

∂w∗

∂x∗
+
∂u∗

∂z∗

)
−4

(
∂h∗

∂x∗

)(
∂u∗

∂x∗

)
at z∗ = h∗ (x∗, t∗) . (2.29)

The kinematic condition transforms into

Uw∗ =
∂(Hh∗)

∂
(
H
U t
∗
) +

∂(Hh∗)

∂(Hx∗)
(Uu∗) at z∗ = h∗(x∗, t∗)

which simplifies to

w∗ =
∂h∗

∂t∗
+ u∗

∂h∗

∂x∗
at z∗ = h∗(x∗, t∗). (2.30)

Applying the scaling to the Newton’s law of cooling yields

− λ√
1 +

(
∂(Hh∗)
∂(Hx∗)

)2
[
−∂(∆TT ∗)

∂(Hx∗)

∂(Hh∗)

∂(Hx∗)
+
∂(∆TT ∗)

∂(Hz∗)

]
= χ (∆TT ∗) at z∗ = h∗(x∗, t∗),

which reduces to

BT ∗

√
1 +

(
∂h∗

∂x∗

)2

=

(
∂h∗

∂x∗

)(
∂T ∗

∂x∗

)
− ∂T ∗

∂z∗
at z∗ = h∗(x∗, t∗) (2.31)

where B = χH
λ . The zero mass flux condition at the free surface and at the bottom will be scaled as

−∂(Hh∗)

∂(Hx∗)

∂
(
σt

σt
∆TC∗

)
∂(Hx∗)

+
∂
(
σt

σt
∆TC∗

)
∂(Hz∗)

+ α

(
−∂(Hh∗)

∂(Hx∗)

∂ (∆TT ∗)

∂(Hx∗)
+
∂ (∆TT ∗)

∂(Hz∗)

)
= 0 at z∗ = h∗ (x∗, t∗) ,

∂
(
σt

σt
∆TC∗

)
∂(Hz∗)

+ α
∂ (∆TT ∗)

∂(Hz∗)
= 0 at z∗ = 0.
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CHAPTER 2. GOVERNING EQUATIONS 2.2. NON-DIMENSIONAL EQUATIONS

These simplify to give

−
(
∂h∗

∂x∗

)(
∂C∗

∂x∗

)
+
∂C∗

∂z∗
+ So

[
−
(
∂h∗

∂x∗

)(
∂T ∗

∂x∗

)
+
∂T ∗

∂z∗

]
= 0 at z∗ = h∗ (x∗, t∗) , (2.32)

∂C∗

∂z∗
+ So

∂T ∗

∂z∗
= 0 at z∗ = 0. (2.33)

The remaining boundary conditions at z∗ = 0 are non-dimensionalized to give

∂u∗

∂z∗
=

1

β
u∗ at z∗ = 0, (2.34)

w∗ = 0, T ∗ = 1 at z∗ = 0. (2.35)

where β =
√
κ

$H represents the permeability effect of the porous medium.

Equations (2.23)-(2.35) represent the dimensionless form of the governing equations and the boundary

conditions. In the next chapter we will employ this model to investigate the instability of the flow.
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Chapter 3

Linear Stability Analysis

The problem (2.23) - (2.35) governing a falling binary liquid film along a slippery heated inclined plate

admits a simple solution corresponding to a steady flow uniform in the streamwise direction. In this

chapter we obtain this equilibrium solution and investigate its stability by means of a linear analysis.

For notational convenience we drop the asterisks in equations (2.23) - (2.35).

3.1 Equilibrium solution

The equilibrium solution is obtained by solving the problem under the assumption of x and t indepen-

dence. Equations (2.23) - (2.35) then reduce to

∂w

∂z
= 0,

∂2u

∂z2
= −3,

∂p

∂z
= −3

cot θ

Re
,

∂2T

∂z2
= 0 and

∂2C

∂z2
= 0,

while at z = hs the conditions are given by

∂u

∂z
= 0, p = 0,

∂C

∂z
+ So

∂T

∂z
= 0 and

∂T

∂z
= −BT,

where hs is the equilibrium thickness of the liquid film. At z = 0 the conditions become

∂u

∂z
=

1

β
u, w = 0, T = 1 and

∂C

∂z
+ So

∂T

∂z
= 0.

Also, without loss of generality we can impose the condition C = 0 at z = 0. This corresponds to setting

the reference concentration C0 to be the concentration at the plate induced by the Soret effect.
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CHAPTER 3. LINEAR STABILITY ANALYSIS 3.2. LINEAR STABILITY THEORY

As a result, the equilibrium solution can be written as

w = ws(z) ≡ 0 (3.1)

u = us(z) ≡ −
3

2
z2 + 3hsz + 3βhs (3.2)

p = ps(z) ≡ −3
cot θ

Re
(z − hs) (3.3)

T = Ts(z) ≡ 1−
(

B

1 +Bhs

)
z (3.4)

and

C = Cs(z) ≡ So
(

B

1 +Bhs

)
z. (3.5)

We can determine hs by setting the scaled flow rate to unity, i.e.∫ hs

0

us(z)dz = 1.

This yields

h3s + 3βh2s − 1 = 0, (3.6)

and solving for hs gives

hs =
1

2

(
4− 8β3 + 4

√
−4β3 + 1

) 1
3

+
2β2(

4− 8β3 + 4
√
−4β3 + 1

) 1
3

− β. (3.7)

3.2 Linear stability theory

Based on the steady-state solution given by equations (3.1) - (3.5), we can express the perturbed equi-

librium solution as follows

h = hs + η(x, t), u = us(z) + ũ(x, z, t), w = w̃(x, z, t),

p = ps(z) + p̃(x, z, t), T = Ts(z) + T̃ (x, z, t) and C = Cs(z) + C̃(x, z, t),

where η, ũ, w̃, p̃, T̃ and C̃ are the added infinitesimal perturbation quantities. We employ this perturbed

state into the governing equations (2.23) - (2.35) then linearize with respect to the perturbation variables
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to obtain

∂ũ

∂x
+
∂w̃

∂z
= 0 (3.8)

Re

(
∂ũ

∂t
+ us

∂ũ

∂x
+ w̃

dus
dz

)
= −Re∂p̃

∂x
+
∂2ũ

∂x2
+
∂2ũ

∂z2
(3.9)

Re

(
∂w̃

∂t
+ us

∂w̃

∂x

)
= −Re∂p̃

∂z
+
∂2w̃

∂x2
+
∂2w̃

∂z2
(3.10)

PrRe

(
∂T̃

∂t
+ us

∂T̃

∂x
+ w̃

dTs
dz

)
=
∂2T̃

∂x2
+
∂2T̃

∂z2
(3.11)

and

ScRe

(
∂C̃

∂t
+ us

∂C̃

∂x
+ w̃

dCs
dz

)
=
∂2C̃

∂x2
+
∂2C̃

∂z2
+ So

(
∂2T̃

∂x2
+
∂2T̃

∂z2

)
. (3.12)

Transferring the boundary conditions at z = hs + η to z = hs and linearizing yields the following

conditions at z = hs

p̃− 3
cot θ

Re
η − 2

Re

∂w̃

∂z
+ (We−M (Ts − Cs))

∂2η

∂x2
= 0 (3.13)

−MRe

[
∂T̃

∂x
− ∂C̃

∂x
− B(1 + So)

1 +Bhs

∂η

∂x

]
=
∂w̃

∂x
+
∂ũ

∂z
− 3η (3.14)

∂C̃

∂z
+ So

∂T̃

∂z
= 0 (3.15)

w̃ =
∂η

∂t
+ us

∂η

∂x
(3.16)

and

∂T̃

∂z
=

B2η

1 +Bhs
−BT̃ . (3.17)
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While at z = 0 the conditions are

∂C̃

∂z
+ So

∂T̃

∂z
= 0 (3.18)

∂ũ

∂z
=

1

β
ũ (3.19)

and

w̃ = T̃ = 0. (3.20)

We next employ normal modes into the linearized perturbation equations which are defined as(
ũ, w̃, p̃, T̃ , C̃, η

)
=
(
û(z), ŵ(z), p̂(z), T̂ (z), Ĉ(z), η̂

)
eik(x−ct),

where k represents the perturbation wavenumber which is a real positive number, c is a complex number

whose real part <(c) denotes the phase speed of the perturbation while the product of the imaginary

part =(c) and k represents the growth rate. Then the linearized perturbation equations (3.8) - (3.12)

can be written as

Dŵ + ikû = 0 (3.21)

Re [ik (us − c) û+Dusŵ] = −ikRep̂+D2û− k2û (3.22)

ikRe (us − c) ŵ = −ReDp̂+D2ŵ − k2ŵ (3.23)

PrRe
[
ik (us − c) T̂ +DTsŵ

]
= D2T̂ − k2T̂ (3.24)

ScRe
[
ik (us − c) Ĉ +DCsŵ

]
= D2Ĉ − k2Ĉ + So

(
D2T̂ − k2T̂

)
, (3.25)

where D denotes the differentiation with respect to z operator. Applying the normal modes defined

above to the boundary conditions at z = hs gives

p̂− 3

Re
cot θη̂ − 2

Re
Dŵ − k2

[
We−M

(
1− Bhs(1 + So)

1 +Bhs

)]
η̂ = 0 (3.26)

−MReik

[
T̂ − Ĉ − B(1 + So)

1 +Bhs
η̂

]
= −3η̂ +Dû+ ikŵ (3.27)
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DĈ + SoDT̂ = 0 (3.28)

ŵ = ik(us − c)η̂ (3.29)

DT̂ =
B2

1 +Bhs
η̂ −BT̂ . (3.30)

While the boundary conditions evaluated at z = 0 will take the following form

ŵ(0) = T̂ (0) = 0 (3.31)

DĈ + SoDT̂ = 0 (3.32)

and

Dû =
1

β
û. (3.33)

The pressure p̂ can be eliminated from equations (3.22) and (3.23) to give

Re [ikûDus + ik (us − c)Dû+DusDŵ − 3ŵ] + k2Re (us − c) ŵ

= D3û− k2Dû− ikD2ŵ + ik3ŵ (3.34)

Similarly, eliminating p̂ from equations (3.22) and (3.26) gives

−k2û+D2û− 3ik cot θη̂ − 2ikDŵ − ik3Re
[
We−M

(
1− Bhs (1 + So)

1 +Bhs

)]
η̂

= Re (ik (us − c) û) at z = hs (3.35)

In order to satisfy the perturbed continuity equation (3.8) we introduce the stream function ψ, which is

related to the velocity disturbances ũ, w̃ by

ũ(x, z, t) =
∂ψ

∂z
, w̃(x, z, t) = −∂ψ

∂x
.

In terms of the normal modes, ψ can be written as

ψ = Ψ(z)eik(x−ct).

Then û and ŵ can be expressed as

û(z) = DΨ, ŵ(z) = −ikΨ.

17



CHAPTER 3. LINEAR STABILITY ANALYSIS 3.2. LINEAR STABILITY THEORY

Consequently, we have the following Orr-Sommerfeld type equations

D4Ψ−
[
ikRe (us − c) + 2k2

]
D2Ψ +

[
ik3Re (us − c) + k4 − 3ikRe

]
Ψ = 0, (3.36)

D2T̂ − k2T̂ − PrRe
[
ik (us − c) T̂ + ik

(
B

1 +Bhs

)
Ψ

]
= 0, (3.37)

D2Ĉ − k2Ĉ − ScRe
[
ik (us − c) Ĉ − ik

SoB

1 +Bhs
Ψ

]
+ So

(
D2T̂ − k2T̂

)
= 0. (3.38)

The boundary conditions at z = hs are

D3Ψ−
[
ikRe (us − c) + 3k2

]
DΨ−

[
3ik cot θ + ik3Re

(
We−M

(
1−BhsSo

1 +Bhs

))]
η̂ = 0, (3.39)

D2Ψ + k2Ψ + ikMRe
(
T̂ − Ĉ

)
−
(

3 + ikMRe
B(1 + So)

1 +Bhs

)
η̂ = 0, (3.40)

DĈ + SoDT̂ = 0, (3.41)

(us − c) η̂ + Ψ = 0, (3.42)

DT̂ +BT̂ − B2

1 +Bhs
η̂ = 0. (3.43)

While the conditions at z = 0, are

Ψ = T̂ = 0, (3.44)

DĈ + SoDT̂ = 0, (3.45)

D2Ψ− 1

β
DΨ = 0. (3.46)

The problem given by equations (3.36) - (3.46) constitutes an eigenvalue problem with c being the

parameter that is to be assigned characteristic values. Solving for c provides the growth rate of the

perturbation with wavenumber k for a given set of flow parameters (Re, Pr,B, Sc, So,M, θ, β,We). A

positive value of =(c) indicates that the perturbation amplitude grows in time, while if =(c) is negative
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then the perturbation is damped. A set of flow parameters for which =(c) = 0 is referred to as the state

of neutral stability for the perturbation with wavenumber k, and corresponds to the threshold between

stability and instability for this perturbation. Regarding the stability of the flow, if all the perturbations

are damped then the flow is stable, otherwise it is unstable.

3.3 Asymptotic solution

The solution of the eigenvalue problem (3.36) - (3.46) can be obtained by carrying out an asymptotic

analysis as k → 0. First, we expand the perturbations Ψ, T̂ , Ĉ, η̂ and the eigenvalue c in powers of k as

follows

Ψ =Ψ0(z) + ikΨ1(z)− k2Ψ2(z),

T̂ =T̂0(z) + ikT̂1(z)− k2T̂2(z),

Ĉ =Ĉ0(z) + ikĈ1(z)− k2Ĉ2(z),

η̂ =η̂0 + ikη̂1 − k2η̂2,

c =c0 + ikc1 − k2c2.

Substituting into the system of equations (3.36) - (3.46), then we have a hierarchy of problems at different

orders of k. For O(1), we obtain

D4Ψ0 = 0, D2T̂0 = 0, D2Ĉ0 = 0. (3.47)

the boundary conditions at z = hs become

D3Ψ0(hs) = 0, (3.48)

D2Ψ0(hs)− 3η̂0 = 0, (3.49)

DĈ0(hs) + SoDT̂0(hs) = 0, (3.50)

(us(hs)− c0) η̂0 − Ψ̂0(hs) = 0, (3.51)

DT̂0(hs) +BT̂0(hs)−
B2

1 +Bhs
η̂0 = 0, (3.52)

while the boundary conditions at z = 0 will take the following form

Ψ0(0) = T̂0(0) = 0, (3.53)
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DĈ0(0) + SoDT̂0(0) = 0, (3.54)

D2Ψ0(0)− 1

β
DΨ0(0) = 0. (3.55)

From equation (3.47), T̂0 can be expressed as

T̂0 = Ā1z + Ā2, (3.56)

where the constants Ā1, Ā2 are determined using the boundary conditions (3.52) and (3.53) giving

T̂0 =
B2η̂0

(1 +Bhs)2
z. (3.57)

Similarly, Ĉ0 can be written as

Ĉ0 = C1z + C2. (3.58)

The boundary condition (3.50) is used to determine the constant C1;

C1 = − SoB2η̂0
(1 +Bhs)2

, (3.59)

while C2 will be determined from O(k) problem as explained later.

Integrating the differential equation D4Ψ0 = 0 and using the boundary conditions (3.48), (3.49),

(3.53) and (3.55), we obtain

Ψ0 =
3

2
η̂0z

2 + 3βη̂0z. (3.60)

Furthermore, c0 can be determined using the condition (3.51) and we thus have

c0 = 3hs (2β + hs) . (3.61)

For O(k) terms, the concentration equation (3.38) is reduced to

D2Ĉ1(z)− ScRe
[(
−3

2
z2 + 3hsz + 3βhs − c0

)
Ĉ0(z)− SoB

1 +Bhs
Ψ0(z)

]
+ SoD2T̂1(z) = 0, (3.62)

integrating this differential equation then substituting for Ĉ0(z) and Ψ0(z) as given by equations (3.58),
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(3.59) and (3.60), we obtain

DĈ1(z) =− 1

8(B2h2s + 2Bhs)

(
− 24B2C2ReScβh

3
s − 12B2C2ReSch

3
sz

2 + 4B2C2ReSch
2
sz

3

+ 24B2ReScSoβη̂0hsz
2 + 12B2ReScSoη̂0hsz

3 − 3B2ReScSoη̂0z
4 + 8B2C2ReSc c0h

2
sz

− 4B2ReScSo c0η̂0z
2 − 48BC2ReScβh

2
sz − 24BC2ReSc h

2
sz

2 + 8BC2ReSc hsz
3

+ 12BReScSoβη̂0z
2 + 4BReScSoη̂0z

3 + 8B2Soh2sDT̂1(z) + 16BC2ReSc c0hsz

− 24C2ReScβhsz − 12C2ReSchsz
2 + 4C2ReScz

3 + 16BSohsDT̂1(z) + 8C2ReScc0z

+ 8SoDT̂1(z)
)
.

(3.63)

Form the O(k) terms, the mass flux conditions (3.41) and (3.45) can be written as

DĈ1(hs) + SoDT̂1(hs) = DĈ1(0) + SoT̂1(0) = 0, (3.64)

substituting equation (3.63) into the above conditions, then C2 can be determined as

C2 =
BSoη0hs(−24Bβhs − 9Bh2s + 4Bc0 − 12β − 4hs)

8(Bhs + 1)2(−3βhs − h2s + c0)
. (3.65)

Consequently, Ĉ0 can be expressed as

Ĉ0 =
1

8(Bhs + 1)2(−3βhs − h2s + c0)

(
η̂0SoB(−24Bβh2s + 24Bβhsz − 9Bh3s + 8Bh2sz

+ 4Bc0hs − 8Bc0z − 12βhs − 4h2s)
)
.

(3.66)

At O(k), we have the following system of equations for Ψ1

D4Ψ1(z)−Re
(
us(z)− c0

)
D2Ψ0(z)− 3ReΨ0(z) = 0, (3.67)

D3Ψ1(hs)−Re
(
us(hs)− c0

)
DΨ0(hs)− 3 cot θ η̂0 = 0, (3.68)

D2Ψ1(hs) +MRe
(
T̂0(hs)− Ĉ0(hs)

)
−MRe

B(So+ 1)

(Bhs + 1)
η̂0 − 3η̂1 = 0, (3.69)

Ψ1(hs) +
(
us(hs)− c0

)
η̂1 − c1η̂0 = 0, (3.70)

Ψ1(0) = 0, (3.71)
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D2Ψ1(0)− 1

β
DΨ1(0) = 0. (3.72)

Substituting us(z), Ψ0(z) and c0 as given by equations (3.2), (3.60) and (3.61) respectively into the

differential equation (3.67) we get

D4Ψ1(z)− 9Re η̂0(β + hs)z + 9Re η̂0 hs(β + hs) = 0. (3.73)

Solving the differential equation leads to

Ψ1(z) = e1z
3 + e2z

2 + e3z + e4 +
3

40
Re η̂0(β + hs)z

5 − 3

8
Re η̂0 hs(β + hs)z

4. (3.74)

where e1, e2, e3 and e4 are integration constants.

Using the condition (3.71) gives e4 = 0 while using the condition (3.72) leads to

e3 = 2βe2,

similarly, using the condition (3.68) and substituting for us(z), Ψ0(z) and c0 we then have

e1 = −3

2
Reβ2η̂0hs −

3

2
Reβ η̂0 h

2
s +

1

2
cot θ η̂0.

The shear stress condition (3.69) is used to determine the constant e2:

e2 =
1

16(3B2βh2s + 2B2h3s + 6Bβhs + 4Bh2s + 3β + 2hs)

(
216B2Reβ3η̂0h

4
s + 432B2Reβ2η̂0h

5
s

+ 264B2Reβη̂0h
6
s + 48B2Reη̂0h

7
s + 432BReβ3η̂0h

3
s + 864BReβ2η̂0h

4
s + 528BReβη̂0h

5
s

+ 96BReη̂0h
6
s + 3b2MReSoη̂0h

2
s − 72B2 cot θβη̂0h

3
s − 48B2 cot θη̂0h

4
s + 216Reβ3η̂0h

2
s

+ 432Reβ2η̂0h
3
s + 264Reβη̂0h

4
s + 48Reη̂0h

5
s + 72B2βη̂1h

2
s + 48B2η̂1h

3
s + 12BMReSoβη̂0

+ 12BMReSoη̂0hs − 144B cot θβη̂0h
2
s − 96B cot θη̂0h

3
s + 24BMReβη̂0 + 16BMReη̂0hs

+ 144Bβη̂1hs + 96Bη̂1h
2
s − 72 cot θβη̂0hs − 48 cot θη̂0h

2
s + 72βη̂1 + 48η̂1hs

)
.

As a result, the solution of Ψ1(z) is evaluated by substituting the constants e1, e2, e3 and e4 into the
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equation (3.74). Furthermore, the kinematic condition (3.70) will be used to determine c1 then we get

c1 =
hs
80

(
2160B2Reβ4h4s + 5040B2Reβ3h5s + 4128B2Reβ2h6s + 1440B2Reβh7s + 192B2Reh8s

+ 4320BReβ4h3s + 10080BReβ3h4s + 8256BReβ2h5s + 2880BReβh6s + 384BReh7s

+ 30B2MReSoβh2s + 15B2MReSoh3s − 720B2 cot θβ2h3s − 720B2 cot θβh4s − 160B2 cot θh5s

+ 2160Reβ4h2s + 5040Reβ3h3s + 4128Reβ2h4s + 1440Reβh5s + 192Reh6 + 120BMReSoβ2

+ 180BMReSoβhs + 60BMReSoh2s − 1440B cot θβ2h2s − 1440B cot θβh3s − 320B cot θh4s

+ 240BMReβ2 + 280BMReβhs + 80BMReh2s − 720 cot θβ2hs − 720 cot θβh22 − 160 cot θh3s

)/
(

3B2βh2s + 2B2h3s + 6Bβhs + 4Bh2s + 3β + 2hs

)
.

The neutral stability state occurs when =(c) = 0 which is equivalent to c1 = 0. Solving for Re, then we

have the following expression for the critical Reynolds number

Recrit =
(

80(3β + hs) cot θhs(3B
2βh2s + 2B2h3s + 6Bβhs + 4Bh2s + 3β + 2hs)

)/
(

2160B2β4h4s + 5040B2β3h5s + 4128B2β2h6s + 1440B2βh7s + 192B2h8s + 4320Bβ4h3s

+ 10080Bβ3h4s + 8256Bβ2h5s + 2880Bβh6s + 384Bh7s + 30B2MSoβh2s + 15B2MSoh3s

+ 2160β4h2s + 5040β3h3s + 4128β2h4s + 1440βh5s + 192h6s + 120BMSoβ2 + 180BMSoβhs

+ 60BMSoh2s + 240BMβ2 + 280BMβhs + 80BMh2s

)
.

(3.75)

For the impermeable substrate case, β = 0, this expression reduces to

Recrit =
10(1 +B)2 cot θ

12(1 +B)2 + 5
12MB(16 + 12So+ 3SoB)

, (3.76)

which is in full agreement with the result obtained by Hu et al. [21] provided the difference in scaling is

taken into account. The Soret effect can be discarded by setting So = 0, in which case we obtain

Recrit =
5

6
cot θ

[
(hs + 3β)hs

1
2h

2
s(β + hs)(2h2s + 10βhs + 15β2) + 5MB(hs+2β)

12(1+Bhs)2

]
. (3.77)

If we use the thickness of equilibrium flow as the length scale, in which case hs = 1, this expression for

the critical Reynolds number will take the following form

Recrit =
5

6
cot θ

[
(1 + 3β)

1 + 6β + 25
2 β

2 + 15
2 β

3 + 5MB(1+2β)
12(1+B)2

]
, (3.78)

which is in full agreement with the result found by Sadiq et al. [16]. If we set M = So = β = 0, the

expression in (3.75) reduces to Recrit = 5
6 cot θ, which is the well known isothermal result obtained by
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Benjamin [3] and Yih [4].

3.4 Numerical solution

The eigenvalues of the problem (3.36) - (3.46) will be calculated by employing a Chebyshev spectral

collocation method. First, the equations (3.36) - (3.38) will be rewritten as

D4Ψ−
(
ikReus + 2k2

)
D2Ψ +

(
ik3Reus + k4 − 3ikRe

)
Ψ = c

(
ik3ReΨ− ikReD2Ψ

)
, (3.79)

D2T̂ − k2T̂ − ikPrReusT̂ − ikPrRe
B

1 +Bhs
Ψ = c

(
−ikPrReT̂

)
, (3.80)

D2Ĉ − k2Ĉ − ikScReusĈ + ikScRe
SoB

1 +Bhs
Ψ + SoD2T̂ − Sok2T̂ = c

(
−ikScReĈ

)
. (3.81)

The domain z ∈ [0, hs] is shifted to ξ ∈ [−1, 1], by means of the transformation

ξ =
2

hs
z − 1 ,

d

dz
= S

d

dξ
where S =

2

hs
.

We discretize the interval ξ ∈ [−1, 1] using the Chebyshev points

ξl = − cos

(
lπ

N

)
, l = 0, 1, 2, ..., N

and expand the variables Ψ(z), T̂ (z), Ĉ(z) in terms of the cardinal functions relative to these points as

Ψ =

N∑
j=0

wjPj(ξ) , T̂ =

N∑
j=0

vjPj(ξ) , Ĉ =

N∑
j=0

ujPj(ξ),

where

Pj(ξ) =

N∏
n=0
n 6=j

(ξ − ξn)

N∏
n=0
n6=j

(ξj − ξn)

, j = 0, 1, 2, · · · , N.
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Substituting into equation (3.79) and evaluating at the grid points ξl , l = 0, 1, 2, ..., N , then we have

S4
N∑
j=0

wjP
(iv)
j (ξl)− S2a1(ξl)

N∑
j=0

wjP
′′
j (ξl) + a2(ξl)

N∑
j=0

wjPj(ξl)

= c

a3 N∑
j=0

wjPj(ξl)− a4S2
N∑
j=0

wjP
′′
j (ξl)

 , (3.82)

where a1(ξ), a2(ξ), a3 and a4 are defined as

a1(ξ) =ikReus(ξ) + 2k2,

a2(ξ) =ik3Reus(ξ) + k4 − 3ikRe,

a3 =ik3Re,

a4 =ikRe.

Now, in terms of ξ the equilibrium velocity is given by

us(ξ) =

(
−3

8
ξ2 +

3

4
ξ +

9

8

)
h2s + 3βhs.

Furthermore, equation (3.82) can be written in matrix form as

S4D
4
w̄ − S2A1D

2
w̄ +A2w̄ = c (A3 −A4) w̄, (3.83)

where w̄ =
[
w0 w1 w2 · · · wN

]T
and D denotes the differentiation matrix which is defined as

D =


P ′0(ξ0) P ′1(ξ0) P ′2(ξ0) . . . P ′N (ξ0)

P ′0(ξ1) P ′1(ξ1) P ′2(ξ1) . . . P ′N (ξ1)
...

...
...

...
...

P ′0(ξN ) P ′1(ξN ) P ′2(ξN ) . . . P ′N (ξN )

 , (3.84)

while the matrices A1, A2, A3 and A4 are given by

A1 =diag (a1(ξ0), a1(ξ1), · · · , a1(ξN )) ,

A2 =diag (a2(ξ0), a2(ξ1), · · · , a2(ξN )) ,

A3 =a3I,

A4 =a4S
2D

2
.

where I is the (N + 1)× (N + 1) identity matrix.
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Similarly, equation (3.80) can be expressed as

−S2
N∑
j=0

vjP
′′
j (ξl) + a5(ξl)

N∑
j=0

vjPj(ξl) + a6

N∑
j=0

wjPj(ξl) = ca7

N∑
j=0

vjPj(ξl), l = 0, 1, 2, · · · , N (3.85)

where

a5(ξ) =ikPrReus(ξ) + k2,

a6 =ikPrRe
B

1 +Bhs
,

a7 =ikPrRe.

Expressing equation (3.85) in matrix form, then we have

−S2D
2
v̄ +A5v̄ +A6w̄ = cA7v̄, (3.86)

where v̄ =
[
v0 v1 v2 · · · vN

]T
while the matrices A5, A6 and A7 are given by

A5 =diag (a5(ξ0), a5(ξ1), · · · , a5(ξN )) ,

A6 =a6I,

A7 =a7I.

Substituting the expansions now into equation (3.81) we obtain

S2
N∑
j=0

ujP
′′
j (ξl)− a8(ξl)

N∑
j=0

ujPj(ξl) + a9

N∑
j=0

wjPj(ξl) + SoS2
N∑
j=0

vjP
′′
j (ξl)− Sok2

N∑
j=0

vjPj(ξl)

= ca10

N∑
j=0

ujPj(ξl), l = 0, 1, 2, · · · , N, (3.87)

where

a8(ξi) =ikScReus(ξ) + k2,

a9 =ikScRe
SoB

1 +Bhs
,

a10 =− ikScRe.

Equation (3.87) can be written in matrix form as

S2D
2
ū−A8ū+A9w̄ + SoS2D

2
v̄ − Sok2v̄ = cA10ū, ū =

[
u0 u1 u2 · · · uN

]T
(3.88)
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where the matrices A8, A9 and A10 are defined by

A8 =diag (a8(ξ0), a8(ξ1), · · · , a8(ξN )) ,

A9 =a9I,

A10 =a10I.

We now incorporate the equations (3.83), (3.86) and (3.88) into one system of equations which is of

the form L¯̄u = cM ¯̄u where

¯̄u =
[
w0 w1 · · · wN v0 v1 · · · vN u0 u1 · · · uN η̂

]T
(3.89)

The vector ¯̄u has 3(N + 1) + 1 components. The matrix L can be written as

L =



S4D4 − S2A1 +A2 0 0 0

A6 −S2D2 +A5 0 0

A9 SoS2D2 − Sok2 S2D2 −A8 0

0 0 0 0



, (3.90)

while the matrix M is expressed as

M =



A3 −A4 0 0 0

0 A7 0 0

0 0 A10 0

0 0 0 0



. (3.91)

Furthermore, the boundary condition (3.39) can be written in terms of Chebyshev points as follows

S3
N+1∑
j=0

[
D

3
]
N+1,j

wj − a11S
N+1∑
j=0

[
D
]
N+1,j

wj − a12η̂ = −ca13S
N+1∑
j=0

[
D
]
N+1,j

wj , (3.92)

27



CHAPTER 3. LINEAR STABILITY ANALYSIS 3.4. NUMERICAL SOLUTION

where a11, a12 and a13 are defined as

a11 =ikReus(ξN+1) + 3k2,

a12 =3ik cot θ + ik3Re

(
We−M

(
1−BhsSo

1 +Bhs

))
,

a13 =ikRe.

The boundary conditions given by equations (3.40)-(3.43) are expressed as

S2
N+1∑
j=0

[
D

2
]
N+1,j

wj + k2wN+1 + a14 (vN+1 − uN+1)− a15η̂ = 0, (3.93)

,

S

N+1∑
j=0

[
D
]
N+1,j

uj + SoS

N+1∑
j=0

[
D
]
N+1,j

vj = 0, (3.94)

wN+1 + us(ξN+1)η̂ = cη̂, (3.95)

S

N+1∑
j=0

[
D
]
N+1,j

vj +BvN+1 − a16η̂ = 0, (3.96)

where a14, a15 and a16 are given by

a14 =ikMRe,

a15 =3 + ikMRe

(
B(1 + So)

1 +Bhs

)
,

a16 =
B2

1 +Bhs
.

Similarly, expanding the conditions at z = 0, we obtain

w0 = v0 = 0, (3.97)

S

N+1∑
j=0

[
D
]
1,j
uj + SoS

N+1∑
j=0

[
D
]
1,j
vj = 0, (3.98)

βS2
N+1∑
j=0

[
D

2
]
1,j
wj − S

N+1∑
j=0

[
D
]
1,j
wj = 0. (3.99)

The transformed boundary conditions (3.92)-(3.99) can be incorporated into the system L¯̄u = cM ¯̄u by

replacing certain rows in the system.

It turns out that the parameters We , M and B are implicity dependent on the Reynolds number.

Thus, in order to determine the solution for the critical Reynolds number we introduce new parameters
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Ka , Ma and Bi related to the previous ones by

We =

(
3

sin θ

)1/3
Ka

Re5/3
,

M =

(
3

sin θ

)1/3
Ma

Re5/3
,

B =

(
3

sin θ

)1/3

BiRe1/3,

where Ka , Ma and Bi are defined as

Ka =
σ∞ρ

1/3

g1/3µ4/3
is the Kapitza number,

Ma =
σt∆Tρ

1/3

g1/3µ4/3
is the Marangoni number, and

Bi =
χµ2/3

λ g1/3ρ2/3
is the Biot number.

In terms of the new parameters, the asymptotic expression for neutral stability yields two solutions for

the critical Reynolds number. These correspond to the so-called S and H modes of instability. For

small Reynolds numbers, inertial forces are insufficient to amplify waves on the surface of the fluid layer.

However, the equilibrium flow may still be unstable due to flow induced by Marangoni stresses resulting

from surface tension variation caused by perturbations in temperature and solute concentration. The

amplification of perturbations much longer than the thickness of the layer by this type of instability is

referred to as the S mode.

For sufficiently strong inertia perturbations in the elevation of the surface of the liquid are amplified

leading to a hydrodynamic instability referred to as the H mode. Thermocapillary and solutocapillary

effects can enhance the instability of the H mode if the variation in surface tension results in stronger

surface tension at the crests of surface waves than at the troughs. Marangoni stresses then pull fluid

towards the crests thus amplifying the amplitude.

Neutral stability curves in the k −Re plane are shown in Figures 3.1 - 3.4. The intercepts with the

Re-axis correspond to the critical Reynolds number for the onset of instability of perturbations with

k = 0. These are in excellent agreement with the result from the asymptotic analysis when the param-

eters are O(1). The results reveal that as Ma is increased, both the S and H modes are destabilized

and the two modes eventually merge indicating that the equilibrium flow is unstable for all Reynolds

numbers. The parameter Ma is a measure of thermocapillarity, so as it is increased temperature per-

turbations cause greater surface tension variation which destabilizes the flow. Furthermore, if the free

surface is undulated, then the troughs are warmer than the crests due to their proximity to the heated

bottom. As a result surface tension is stronger at the crests and thus the resulting Marangoni stresses

act to amplify the undulations and as such the H mode is destabilized.
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Figure 3.1: Neutral stability curves for different values of Ma with cot θ = 1, P r = 7, Bi = 1, Ka =
100, Sc = 700, So = 0.5 and β = 0.

The results in Figure 3.1 and 3.2 correspond to the impermeable substrate case, β = 0. Note that

in Figure 3.1 the onset of instability of the equilibrium flow is due to the amplification of infinitely long

perturbations. However, it turns out that if So is negative and of sufficiently large absolute value, the

onset of instability is due to the amplification of a perturbation of finite wavelength as shown in Figure

3.2. The results in Figures 3.3 and 3.4 correspond to a case with a permeable bottom, respectively for

a positive and negative value for So. As it can be seen, like in the impermeable case, with negative

So instability of the equilibrium flow is due to finite wavelength perturbations. We conclude that this

phenomenon is not qualitatively affected by substrate permeability.

Another observation from the neutral stability curves is that for a given Marangoni number the

interval of Reynolds numbers for which the flow is stable is smaller if the substrate is permeable suggesting

that substrate permeability is a destabilizing factor. To better determine how permeability affects the

stability of the flow, in Figure 3.5 we display the critical Reynolds number as a function ofMa for different

values of the permeability of the substrate parameter β. The upper branch of the curve describes the

onset of the instability of the H mode while the S mode is described by the lower branch of the curve,

and the region inside the curve indicates the Reynolds numbers for which the flow is stable. It can be

seen that the region of stability shrinks as β is increased, as a result we conclude that increasing the
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Figure 3.2: Neutral stability curves for different values of Ma with cot θ = 1, P r = 7, Bi = 1, Ka =
100, Sc = 700, So = −0.5 and β = 0.

permeability of the substrate destabilizes the flow for both the S and H modes. These conclusions are

the same as those observed by Sadiq et al. [16] for the thermo-porous problem without the Soret effect.
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Figure 3.3: Neutral stability curves for different values of Ma with cot θ = 1, P r = 7, Bi = 1, Ka =
100, Sc = 700, So = 0.5 and β = 0.2.
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Figure 3.4: Neutral stability curves for different values of Ma with cot θ = 1, P r = 7, Bi = 1, Ka =
100, Sc = 700, So = −0.5 and β = 0.2.
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Figure 3.5: Recrit as function of Ma with cot θ = 1, P r = 7, Bi = 1, Ka = 100, Sc = 700 and So =
−0.5.

34



CHAPTER 3. LINEAR STABILITY ANALYSIS 3.4. NUMERICAL SOLUTION

Figure 3.6: Recrit as function of Ma with cot θ = 1, P r = 7, Ka = 100, Sc = 700, So = −0.5 and β =
0.2.

The effect of the Biot number on the critical Reynolds number is illustrated in Figure 3.6. In fact

when Bi = 0 the equilibrium temperature is constant for the fluid layer including the surface. As a result

the surface temperature and the concentration of solute are uniform. Consequently, the Marangoni effect

and the Soret effect are neutralized.

On the other hand, for large Biot numbers the surface temperature approaches that of the ambient

gas which is constant and as such the Marangoni effect and the Soret effect are again neutralized.

Therefore, there is a critical Biot number for which surface tension varies the most because of largest

temperature and concentration variations. At this value the Marangoni effect is maximized resulting in

the most unstable flow. As observed from the curves in Figure 3.6, when Bi increases from zero the

region of stability shrinks, reaches a minimum and then increases. As a result we conclude that both

S and H mode experience a destabilizing effect with small values of Bi and a stabilizing effect with

sufficiently large values of Bi.
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Figure 3.7: Recrit as function of Ma with cot θ = 1, P r = 7, Bi = 1, Ka = 100, Sc = 700 and β = 0.2.

Figure 3.7 shows Recrit versus Ma for different values of the Soret number holding the other flow

parameters constant. The results illustrate that increasing the Soret number destabilizes the flow. More

specifically, if So is positive increasing the magnitude of the Soret effect, measured by the absolute

value of So, destabilizes the flow, and if So is negative increasing the Soret effect stabilizes the flow. In

fact, increasing the magnitude of the Soret effect results in greater concentration differences induced by

temperature perturbations and thus amplifies the Marangoni stresses. However, if So is negative a mass

flux is induced towards warmer regions and as a result we have a higher concentration of solute at the

troughs of surface perturbations than at the crests. But surface tension increases with concentration so,

with negative values for So, the Soret effect acts to increase surface tension at the troughs and lower it

at the crests which acts to dampen surface undulations and stabilize the flow.

We next consider the effect of the magnitude of the surface tension which is measured by the Kapitza

number. Now, it is well known that surface tension dampens surface waves, but it has very little effect

on very long waves. For cases when So is positive we do not expect any effect of the Kapitza number

on the onset of instability since it is due to the amplification of infinitely long perturbations. For cases

when So is negative, like the one considered in Figure 3.8, the onset of instability is due to perturbations

of finite wavelength. So the region of stability increases with Ka.
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Figure 3.8: Recrit as function of Ma with cot θ = 1, P r = 7, Bi = 1, Sc = 700, So = −0.5 and β = 0.2.

37



Chapter 4

Conclusions

In this thesis we studied the instability of the flow of a binary liquid film down a uniformly heated

porous inclined plane. A mathematical model was constructed by coupling the Navier-Stokes equations

governing the flow with concentration and temperature equations. The permeability of the substrate was

incorporated by applying a slip condition at the bottom of the liquid layer. Our goal was to determine

the effect of various flow parameters such as the Soret number, permeability of the substrate, Biot

number and Kapitza number on the critical Reynolds number for instability.

The solution for the equilibrium state was obtained, then we introduced a perturbed state imposed

on the equilibrium solution into the governing equations. We linearized the perturbation equations and

obtained an eigenvalue problem with an Orr-Sommerfeld type equation. A Chebyshev spectral collo-

cation method was carried out to determine the critical Reynolds number and reveal more information

about the onset of instability associated with the various flow parameters. An asymptotic solution was

also performed resulting in an excellent agreement with the numerical solution.

Neutral stability curves for flow over permeable and impermeable substrates were obtained for various

values of the Marangoni number, Ma. Our investigation showed that the Marangoni number, which is

a measure of thermocapillarity, plays a destabilizing role on the flow. More specifically increasing Ma

destabilizes both the S and H modes, and for sufficiently large values of Ma the two modes merge

rendering the flow unstable for all Reynolds number. Moreover, the results revealed that the onset

of instability is because of the amplification of infinitely-long perturbation when the Soret number is

positive. However, when the Soret number is negative the onset of instability is due to the amplification

of a perturbation of finite wavelength. It turns out that permeability of the substrate does not change

this phenomena.

Our results also indicate that the Soret effect acts as a destabilizing factor when the Soret number is

positive, and a stabilizing factor when it is negative. While the permeability of the substrate was found

to play a destabilizing role in all cases, as revealed by the fact that the interval of Reynolds numbers for

which the equilibrium flow is stable shrinks as β is increased.

An important aspect that we found is how the instability of the flow is affected by increasing the Biot

number. The results we obtained show that increasing the Biot number has different effects according
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to its value. When Bi = 0 or when Bi is very large both the Marangoni effect and the Soret effect are

neutralized since the surface temperature and concentration of the fluid are uniform and as a result the

flow is more stable. As such the critical Reynolds number reaches a minimum at an intermediate Biot

number. As a result increasing the Biot number from zero to this value destabilizes the flow while a

stabilizing effect occurs with larger values of Bi.

We also found that when the onset of instability is due to infinitely long perturbations, increasing the

Kapitza number has no effect. This is due to the fact that the Kapitza number measures the magnitude

of surface tension which does not impact long waves due to their reduced curvature. On the other hand,

when the Soret number is negative, and the onset of instability is due to the amplification of waves with

finite wavelength, the effect of the Kapitza number is significant with increased values resulting in a

more stable flow.
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