Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2003
Prediction of sea ice concentration using artificial
neural networks

Mohammed Kandil El-Emam El-Diasty
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Civil Engineering Commons

Recommended Citation

El-Diasty, Mohammed Kandil El-Emam, "Prediction of sea ice concentration using artificial neural networks" (2003). Theses and
dissertations. Paper 11.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.


http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/11?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

Prediction of Sea Ice Concentration Using Artificial

Neural Networks

By
Mohammed Kandil El-Emam El-Diasty

B.Sc.(Eng.) - Civil Engineering, Mansoura University, Egypt (1997)

A THESIS
SUBMITTED TO RYERSON UNIVERSITY
SCHOOL OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR
THE DEGREE OF MASTER OF APPLIED SCIENCE
IN THE PROGRAM OF
CIVIL ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING,
RYERSON UNIVERSITY, TORONTO, ONTARIO.

RYERSON UNIVERSITY

September, 2003

© Mohammed El-Diasty 2003



g

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

[ Dot ]

Canada

Your file Votre référence
ISBN: 0-612-85315-2
Our file  Notre référence
ISBN: 0-612-85315-2

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.



DECLARATION

I hereby declare that I am the sole author of the thesis. I authorize Ryerson University
to lend this thesis to other institutions or individuals for the purpose of scholarly
research. 1 further authorize Ryerson University to reproduce this thesis by
photocopying or by other means, in total or part, at the request of other institutions or

individuals for the purpose of scholarly research.

Mohammed El-Diasty

i



APPROVAL

Ryerson University

School of Graduate Studies

The undersigned certify that they have read, and recommend to the School of
Graduate Studies for acceptance, a thesis entitled “Prediction of Sea Ice
Concentration Using Artificial Neural Networks” submitted by Mohammed Kandil
El-Emam El-Diasty in partial fulfillment of the requirements for the degree of Master

of Applied Science.

APPROVED:

Dr. Mohamed Lachemi, Committee Chair

Department of Civil Engineering

Dr. Ahmed El-Rabbany, Supervisor

Department of Civil Engineering

Dr. Said Easa, Chairman

Department of Civil Engineering

Dr. Songnian Li

Department of Civil Engineering

iti



ABSTRACT

Prediction of Sea Ice Concentration Using Artificial Neural Networks
Mohammed Kandil E. El-Diasty
B.Sc. (Eng.) - Civil Engineering, Mansoura University, Egypt (1997)
Master of Applied Science
In the Program of Civil Engineering
Ryerson University (2003)
Artificial neural networks are computational models capable of solving complex
problems through learning, or training, and then generalizing the network solution for
other inputs. This thesis examines the performance of two neural network-based models,
which were developed for predicting the ice concentration in the Gulf of St. Lawrence in
Eastern Canada. The first is a batch model which uses time to predict future ice
concentration, while the second model predicts the ice concentration sequentially. It is
shown that the performance of the two models is almost identical, as long as no abrupt
changes occur in the ice conditions. If, however, the ice condition changes suddenly, only
the sequential model is proved to be capable of predicting the ice condition without
noticeable accuracy degradation. A performance comparison is made between the

developed neural network model and coupled ice-ocean model for ice concentration

prediction to further validate the model.
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1 INTRODUCTION

1.1 Motivation

Electronic Chart Display and Information System (ECDIS) was introduced over a decade
ago to provide the mariners with the required information for efficient and safe marine
navigation. Unfortunately, however, in ice-infested waters, the use of ECDIS as a
standalone information system would not provide sufficient information for safe
navigation. Shipborne radar may be used to detect the navigation hazards, e.g. icebergs,
which could be superimposed on the ECDIS display (Randell et al., 1998). Although this
process may improve the safety of navigation in open waters, it is of limited use in ice-

infested waters as the coverage of the shipborne radar is limited to the radar horizon.

Safe and efficient marine navigation require that comprehensive and timely information
on the ice conditions be available over a region extending well beyond the shipborne
radar horizon (El-Rabbany, 2000). Validation experiments have shown that radar remote
sensing, particularly RADARSAT, has the capability of providing such comprehensive
information. The ScanSAR modes of RADARSAT are recommended for comprehensive
monitoring of the sea ice conditions. The Canadian Ice Service (CIS) is primarily using
these modes, along with other sources of information such as airborne and other satellite
remote sensing, for extracting the sea ice information in the form of daily ice charts
(Ramsay et al., 1998; Canadian Ice Service, 2002). The ice charts contain information

such as the ice concentration and type, ice edge location, icebergs, and open leads. The



total concentration of the sea ice is the most important element of the ice information
required to support vessels with no ice capability (Haykin et al., 1994). Unfortunately,
although the ice charts are highly useful in providing comprehensive ice information,
they may not fulfil the requirements for safe and efficient marine navigation, even if they
are used side-by-side with ECDIS. For example, a route may be identified as an ice-free
or a least hazardous through an ice chart, while it may not necessarily be a suitable route

for marine navigation due to, e.g. shallow water depth.

El-Rabbany (2000) is carrying out a multidisciplinary, multi-university research project
to enhance safety of marine navigation in ice-infested waters. The research project
develops an integrated navigational chart system, which combines the sea ice information
and ECDIS (Figure 1.1). It has three distinct, albeit linked, objectives: (1) to develop a
neural network-based model for reliable prediction of the sea ice conditions; (2) to
integrate sea ice information into ECDIS through the development of International
Hydrographic Organization (IHO)-compliant ECDIS standards for the ice information
(i.e., extension of S-57 and S-52 standards); and (3) to develop an integrated navigational
chart system, which automatically recommends optimal navigation routes based on
informed decision. Integrating the ice information into the ECDIS system has not only
safety and economic impacts, but also environmental impacts, for example, through the

reduction of fuel consumption. The purpose of this research is to develop the first
component of the project, namely, a neural network-based model for predicting the sea

ice concentration over time.



W Weather info

Ice info

Notice
to Mariners

ECDIS updates
Tide info
Currents

Figure 1.1 Components of Integrated Navigational Chart System (From El-Rabbany,

2000).

Unfortunately, due to the time difference between the production and the use of the ice
charts, the ice information is always out of date, which jeopardizes the safety of marine
operations (Canadian Ice Service, 2002). To overcome this problem, Saucier et al. (2000)
developed a coupled ice-ocean prediction method, which allows the prediction of ice
concentration by coupling a Flato's multi-category Particle-In-Cell ice model with a
developed Backhaus’s ocean model (Saucier et al., 2000). The model was developed at
the Institute Maurice Lamontagne where it is also used for climate studies. However, this

model is still being investigated and implemented at Canadian Ice Services.



To overcome the above limitations efficiently, an Artificial Neural Network (ANN)-

based model was developed for predicting the sea ice co

nditions (concentrations) over time. Two neural network-based models were developed
for predicting the ice concentration in the Gulf of St. Lawrence, using the CIS’s weekly
ice charts. The first is a batch model that uses past ice information to predict future ice
conditions, and the second model predicts the ice conditions sequentially. The motivation
behind the selection of ANNG lies in their robustness in modeling and their ability to
model highly non-linear functions and achieve mapping through supervised learning by
example (El-Rabbany et al., 2002). Moreover, ANN does not need such specific complex
equations as are embedded in the coupled ice-ocean model; instead, it needs sufficient
input-output data. Also, it can continuously re-train the new data; therefore, it can

conveniently adapt to new data.

1.2 Previous Studies

Progress has been made in the evolution of completely coupled ice-ocean numerical
models. At first, decoupled models were the general rule. There are many more modeling
studies that have explicitly modeled ice and described oceanic parameters. Maykut and
Understrein (1971) developed a one-dimensional thermodynamic ice model which was
simplified by Semtner (1976a) and shown to perform well even if the ice was presented
by a low-resolution vertical grid. Parkinson and Washington (1979) used Semtner’s
model and the simplified ice dynamic model to simulate the yearly ice cycle. Hibler

(1979) developed a horizontal two-dimensional transport model which exhibited realistic



properties, based on the viscous-plastic rheology. Moreover, he used ice growth rates,
which were prescribed as a function of ice thickness and time of year; such a formulation

is, of course, limited to specific geography and excludes processes such as oceanic

feedback.

Hibler and Bryan (1984) and Semtner (1987) presented the next step in model evolution
with their coupled ice-ocean models, using seasonal forcing. Hibler and Bryan (1984)
coupled a fully dynamic-thermodynamic ice model with the Bryan-Cox 14 level ocean
model. Semtner’s model was similarly a multi-level ocean model coupled to an ice
model, with a few important differences. The model simplified the ice dynamics by using
bulk viscosity as the only internal sink for ice energy, a three-level thermodynamic model
of snow-covered ice (Semtner 1976b), a long-term monthly mean, atmospheric forcing
fields, and most important, removed the relaxation of oceanic temperature and salinity

values to climatology.

Hakinnen and Mellor (1992) adapted the Princeton Ocean Model (POM) to the Arctic
and North Atlantic Oceans in the form of a 20 sigma level, an approximately 8/10 degree
resolution model. Recent use of their sigma coordinate model is reported by Mauritzen
and Hakinnen (1997), where they present a reasonably realistic representation of large-

scale features. Yao et al. (2000) coupled a multi-category, variable thickness sea ice

[}
model to a 16-sigma level, 1/6 version of POM for their study of sea ice in the Labrador

Sea, currently used in Canadian Ice Service for East Coast Zone.



Gulf of St. Lawrence sea ice has been the subject of a number of studies with numerical
models by Institute Maurice Lamontagne (IML). Recently, Saucier et al. (2000) coupled
Flato’s McPIC (multi-category particle-in-ice-cell model) ice model with a derivative of
Backhaus’s ocean model. However, these models require a realistic description of the
initial ice and ocean conditions in order to achieve acceptable accuracy. Such traditional
prediction models have been developed with a fixed equation form based on limited
number of data and parameters. If new data is much different from original data, then the

model should update not only its coefficients but also its equation form.

Later, neural networks were first applied to predict the ice conditions by using the weekly
ice charts data of the Gulf of St. Lawrence (El-Rabbany et al., 2002). However, their
model, which is feedforward neural network in the batch mode, is applicable only for
predicting one point, and without abrupt changes within the data over the time. In fact,
abrupt changes are more likely to occur in the field data. Thus, a more advanced ANN

model for modeling ice conditions is needed.

1.3 Methodology

As mentioned above, two neural network-based models were developed for predicting the
ice concentration in the Gulf of St. Lawrence using the CIS’s ice charts. The first is a
batch model which usés past ice information to predict future ice conditions, and the

second model predicts the ice conditions sequentially.

Initially, in batch model, the time, which consists of two inputs (i.e., week and year

numbers), was used as the only input to the network, the process usually followed in the
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literature (see, for example, El-Rabbany et al., 2002). Then, another approach was
followed, proposed by El-Diasty et al. (2002), and El-Rabbany and El-Diasty (2003). In
this approach, the immediate and past values of the ice concentration were used as input
to the network, while future values of the ice concentration were used as the desired (i.e.,
actual) output. In the subsequent epochs, the training patterns were shifted ahead by one

value.

One method of determining the modeling power of the developed artificial neural
networks is to compare the prediction capabilities of ANN with some other established
prediction tool. Since Canadian Ice Service uses coupled ice-ocean model in predicting
the ice conditions, this research compares the prediction abilities of the developed ANN
with the operational coupled ice-ocean model. This comparison involves three steps.
First,. appropriate datasets are obtained. Second, two neural network models are built
using a commercially available software product, NeuralWorks Proffissional II/Plus, and
the best model is selected. Third, the results of the best neural network model are

compared with that of the coupled ice-ocean model.

1.4 Outline of the Thesis

The research was performed according to the main objectives and methodology described
in the first chapter. The second chapter begins with a brief description of ice charts. Data
reconnaissance from Spaceborne, Airborne, and In-situ observations are presented. Data
analysis in Canadian Ice Service is then explained. An importance of these products for

the clients is also given. The traditional ice condition prediction method is described in



the third chapter, extracting the main benefits and limitations of the coupled ice-ocean
model application on ice conditions modeling of the Gulf of St. Lawrence are employed
in this chapter. The fourth chapter provides a description of the fundamentals of ANN
methodology used in the predictions research, including two ANN algorithms, namely
feedforward and modular neural networks, and discusses the advanced optimizing
techniques conducted in order to establish the best structure and parameters of ANNS.
The fifth chapter describes the data and modeling strategy used in our experiments,
discusses the results of two different ANN architectures in relation to two proposed
models (i.e., batch and sequential model), and compares the resuits of ANN tests with the
results of coupled ice-ocean model. The sixth chapter presents the conclusions and
suggests guidelines for future investigations. Finally, all references and appendixes are

supplemented at the end of the thesis.

1.5 Contributions of the Research

The contributions of the research can be summarized as follows:

e The research developed a novel artificial neural network-based model to predict

the total ice concentrations in the Gulf of St. Lawrence in Eastern Canada;

e The research thoroughly investigated the effect of changing the neural network

structure on the performance of the model;

e The research developed a methodology to find the optimal number of points for

regional modeling and predicting of sea ice concentration;



e The research significantly improved the accuracy of predicting the total ice

concentrations compared with previous work.



2 PRODUCTION AND FORMAT OF THE ICE CHARTS

Canada has the largest ice areas in the world, which requires an extensive national ice
service (Haykin et al., 1994). Operational ice monitoring is performed in ten regions by
the Canadian Ice Service (CIS). The Canadian Ice Service is responsible for collecting
and analysing data on ice conditions in all regions of the country where sea ice is present.
In summer, CIS focuses on ice conditions in the Arctic and the Hudson Bay region. In
winter and spring, attention shifts to the Labrador coast and East Newfoundland waters,
the Gulf of St. Lawrence, the St. Lawrence SeaWay, and the Great Lakes (Haykin et al.,

1994).

2.1 Whatis an Ice Chart?

The Canadian Ice Service is responsible for providing the ice information in the Canadian
waters, mainly through its daily ice charts (Figure 2.1). To do this, the CIS uses various
space-borne and airborne remote sensors, shore station observations, and shipboard ice
observations (Canadian Ice Service, 2002). The charts use the North American Datum
1927 (NAD 27) and the Lambert conical projection. The World Meteorological
Organization (WMO) symbolization for ice information, frequently referred to as the
“Egg Code,” is used to describe the ice conditions (see Figure 2.2). Boundaries are drawn

around the ice areas with different concentrations; each is represented by an egg code

(Canadian Ice Service, 2002).
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Figure 2.1 An example of the CIS ice chart for the Gulf of St. Lawrence (Courtesy of

CIS).

An egg code is an oval shaped symbol, which contains three parts that describe the
concentration of the ice, the stage of development (age) of the ice concentration, and the
predominant form of ice (floe size). These are expressed by up to 12 numerical values.
The concentration of the ice represents the ratio between the area of the water surface
covered by ice and the total area, and is expressed in tenths. The value of the ice
concentration varies from 10/10 for consolidated ice to 1/10 for open water. The single

uppermost parameter in the egg code represents the total concentration, which includes
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all stages of development. The second row in the egg code matrix contains the partial
concentration for the thickest (left), the second thickest (middle), and the third thickest
(right) ice types (see Figure 2.2). The partial concentration field may contain two
numbers if only two ice types are present in the area. If there is one ice type only, the
partial concentration field will be left blank, as the concentration will be presented by the

total concentration (see Figure 2.2).

Total concentration

iy //——___
//f9+\>§ Partial concentration
rs \ P
f127°
1,2 4 14
H\\ Stages of developement

Floe sizes

Figure 2.2 An example of the WMO egg code.

The third field in the ice code contains the stages of development (age) for the ice types
reported in the partial concentration field. Thicker ice refers to older ice, and vice versa.
Various codes are used, depending on the stage of development. For example, a code of
“1” 1s assigned to the new ice (less than 10 cm in thickness), while a code of “9” is
assigned to the second stage thin first-year ice (50-70 cm in thickness). Medium/thick

first-year ice, as well as old ice, are assigned a dot (-) as part of their code.

The last field in the code represents the predominant forms of the sea ice (floe sizes)

corresponding to the stages of development identified in the previous field. Various codes
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are given to various floe sizes, which vary from “0” for the pancake ice to 7" for the
giant floe (width greater than 10 km). Fast ice and icebergs are given the codes of “8” and
“9” respectively. Undetermined ice forms, unknown forms, or no forms are assigned the

code of “X” (see Canadian Ice Service, 2002 for more details).

2.2 Data Reconnaissance

Until recently the sea ice charting was mainly based on reconnaissance flights using a
combination of visual interpretation of the ice conditions and radar identification of the
ice edge (Haykin et al., 1994). Presently, the ice charts are based mainly on three sources,
as shown in Figure 2.3: (1) space-borne sources (e.g., NOAA AVHRR, DMSP SSM/I,
RADARSAT-1 SAR, ERS-2 SAR and ENVISAT ASAR); (2) airborne sources (e.g.,
Aircraft SLAR and SAR, visual observations of ice type and concentration, and ice
thickness measurements from helicopter reconnaissance flights); and (3) in-situ sources
(e.g., visual observations of ice type and thickness from ships, visual observations, and

ice thickness measurements from shore station) (Canadian Ice Service, 2002).

2.3 Space-borne Data Reconnaissance.

Satellite data have been used as part of the data sources in ice monitoring for many years.
During the last decade, sea ice charting based on satellite imagery has become gradually
more important. Since 1990, visible and infrared data from NOAA-AVHRR, and passive
microwave data from DMSP-SSM/I have been used as an important complement to

Aircraft-based radar reconnaissance. However, these data have limitations due to cloud
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cover and coarse resolution, and they are therefore not optimal for regional ice mapping,

which requires detailed and regular data (Haykin et al., 1994).
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Figure 2.3 Data sources and analysis.

In 1991, ERS-1 SAR data represented an improvement of ice monitoring quality. With

space-borne SAR data, which combines high spatial resolution with independence of

cloud cover and light conditions, it is possible to observe sea ice with much better

accuracy than when using visible and passive microwave methods (Haykin et al., 1994).

The satellite SAR technology is being improved, and SAR systems offered by the
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Canadian RADARSAT and the European ENVISAT satellites have wide-swath,

multimode, and dual polarization.

A number of satellite data are used to provide the best available data set for analysis of
the ice conditions. The most important satellites and sensors used in operational ice
monitoring are shown in Figure 2.3. Predominately, satellite imagery from RADARSAT
ScanSAR, as well as from NOAA-AVHRR, DMSP-SSM/I, ERS-2 and ENVISAT-

ASAR, are used (Canadian Ice Service, 2002).

2.3.1 Visible and Infrared Satellite Data

National Oceanic and Atmospheric Administration (NOAA) satellites provide imagery
from sensors operating in the visible and infrared band of the electromagnetic spectrum.
The most common satellite instrument used for measuring visible and infrared bénds is
the NOAA’s Advanced Very High Resolution Radiometer (AVHRR) which provides
images in different frequency channels (Haykin et al., 1994). The first operational NOAA
satellite (NOAA-6) was launched in 1979. This was followed by a series of additional
NOAA satellites, with the latest launch being NOAA-17 in June 2002. NOAA's 12, 14,
15, 16, and 17 are currently remaining operational (see Figure 2.4) (Bertoia and Manore,
2001; NOAA Satellites and Information, 2003a). The latest AVHRR sensor is a six-
channel scanner that senses the visible, near-infrared, and thermal infrared portions of the
electromagnetic spectrum. The latest AVHRR/3 is used to produce images with a spatial

resolution of 0.5 km for visible or 1.0 km for infrared and swath width of 2940 km (see
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Table 2.1) (Canadian Centre for Remote Sensing, 2003; NOAA Satellites and
Information, 2003a). As shown in Figure 2.5, the AVHRR resolution and swath is good
for general ice mapping (Haykin et al., 1994). The processed NOAA AVHRR data are
received at the CIS by means of a data communication from Edmonton, Alberta

(Ramsay, 2000; Bertoia and Manore, 2001).

0 s

A AVHRR Instrumént -

. Solar Array*

Figure 2.4 Conceptual view of NOAA Satellite. (Courtesy of NASA's Goddard Space

Flight Center, 2003)

Figure 2.5 An example of a part from NOAA AVHRR image. (Courtesy of CIS)
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Table 2.1 Advanced Very High Resolution Radiometer (AVHRR).

Band # NOAA-6,8,10 | NOAA-7,9,11,12,14) NOAA-15,16,17 Spectral
AVHRR AVHRR/2 AVHRR/3 region
2
1 0.58-0.68 pm | 0.58-0.68 um | 0.58-0.68 pm | Visible
2 0.725-1.10 pm | 0.725-1.10 HM | 0.72-1.00 um near - IR
3A (day) - - 1.58-1.64 pm | thermal - IR
3B (night)| 3.44-393 MHm  344-393 Hm | 355-393 um | thermal - IR
4 10.30-11.30 um | 1030-11.30 Mm | 10.30-11.30 Hm | thermal - [R
5 11.50-12.5 um | 11.50-12.4 Km | 11.50-12.5 Hm | thermal - IR
Swath 2940 km 2600 ki 2940 km -
. visible: 1.10km | visible: 0.50km | wvisible: 0.50 km
Resolution . ) ) ———
infrared: 1.10 km | infrared: 1.00km | infrared: 1.00 km
Notes 1.) NOAA-13 failed
2.) Channels 3A and 3B are time shared

2.3.2 Passive Microwave Satellite data

Passive microwave remote sensors are radiometers that measure the thermal emission

from the ground at microwave wavelengths. The first and most common satellite

instrument used for providing passive microwave imagery is Special Sensor Microwave

Imager (SSM/T). SSM/I on board U.S. Defence Meteorological Satellite Program

(DMSP) satellites has provided data since 1987. The first SSM/I instrument was launched

in June 1987; aboard the DMSP 5D2-F8. This was followed by a series of additional

DMSP satellites, the latest launch being DMSP 5D3-F15 in December 1999 (see Figure
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2.6). Since the SSM/I satellites are subject to limited operational lifespans, only three
SSM/I satellites, namely F13, F14, and F15, currently remain operational (Global

Hydrology Research Center, 2003; NOAA Satellites and Information, 2003b).

Figure 2.6 Conceptual view of DMSP 5D3-F15 Satellite (Courtesy of Gunter’s Space

Page, 2003).

The DMSP 5D3-F15 SSM/I is a seven-channel, four-frequency, linearly polarized,
passive microwave radiometer, which measures radiation emitted from the earth at 19.35,
22.235, 37.0, and 85.5 GHz. The SSM/I radiometer simultaneously measures the
microwave emission originating from the earth’s surface and the intervening atmosphere.
The SSM/I receives both horizontally and vertically linearly polarized radiation at 19, 37,
and 85 GHz. The 22 GHz frequency receives only vertically polarized radiation. The
SSM/I ground resolution varies in the range 10 to 50 km, depending on the wavelength,

and Swath width is 1400 km (Global Hydrology Research Center, 2003). The SSM/1 is
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the only satellite system that provides regular and girded data sets that are useful in sea
ice forecasting models (Haykin et al., 1994). The U.S. National Ice Centre (NIC)
provides the DMSP SSM/I data to the CIS over the North American Ice Link (NAIL)

(Bertoia and Manore, 2001).

2.3.3 Active Microwave Satellite data

Active microwave remote sensors are known as radars, from the acronym for Radio
Detection And Ranging. A typical radar sensor consists of a transmitter and an antenna.
The transmitter produces pulses of electromagnetic energy at microwave wavelengths,
which are timed by a synchroniser and standardised to a known power by a modulator.
The spatial resolution of radar data is controlled by the pulse length and the antenna beam
width, which is governed by the length of the antenna. Thus, by increasing the length of

the antenna, radar data with a finer resolution may be obtained (Haykin et al., 1994).

Active microwave observations can be obtained by several types of instruments. The
most common are Synthetic Aperture Radars (SAR), Side-Looking Radars (SLR), and
Scatterometers. The SAR instruments provide high resolution images, with pixel size
down to about 10 m, while the SLR provides medium resolution images with resolution
of 1 - 2 km. Scatterometer data have coarser resolution, varying from 10 km to about 50

km. The most common wavelengths for active microwave instruments are 2.3 cm (X-

band), 5.6 cm (C-band), and 23 cm (L-band) (Haykin et al., 1994).
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SAR data are ideal for regional and local ice monitoring because of the high resolution
(about 100 m), which gives detailed images of the ice cover (Table 2.2). SAR data are
much more challenging to use in operational ice monitoring because raw SAR data from
the satellite needs to be transformed to SAR images, which is a computer demanding
process, and delivery of SAR data in near real-time is provided by only a few receiving
and processing stations (Haykin et al., 1994). Routinely available active microwave
satellite data consist of imagery from RADARSAT, ERS-2, and ENVISAT satellites, as

reviewed in Table 2.2.

Table 2.2 Satellite active microwave-based data sets used by Canadian Ice Service.

Mission Country |Frequancy | Band  Polarization Swath ress,}:) lelt.litzili)n
or Agency | (GHz) (km) (m)
RADARSAT-1 SAR Canada 5.300 (;;lt){a‘id HH 35-500 10-100
microwave
C-band
ERS-2 SAR ESA 5.300 active \aY% 100 100
| microwave
C-band HH, vV
ENVISAT ASAR ESA 5.300 . HH/VV 100- 400 30-1000
a}ctlve HH/HV
microwave ;g

Electromagnetic waves may be either horizontally (H) or vertically (V) polarised, with H
polarised waves having an electric field parallel to the target and V polarised waves
having an electric field perpendicular to the target. Radars are capable of measuring the
backscattering response for various polarisation configurations. A polarimetric radar is

capable of measuring the radar response for VV, HH, HV, and VH, where the first letter
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denotes the polarisation of the transmit antenna and the second letter denotes the

polarisation of the receive antenna (Haykin et al., 1994).

2.3.3.1 RADARSAT

The first Canadian RADAR SATellite (RADARSAT-1) was developed by the Canadian
Space Agency (CSA) and was launched in November 1995, containing a C-band (5.3
GHz) HH polarisation SAR instrument (Figure 2.7). It was the most advanced SAR yet to
go into permanent orbit (Flett et al., 2001). The RADARSAT SAR has the unique ability
to shape and direct its radar beam to image swaths from 35 km to 500 km, with
resolutions of from 10 m to 100 m, respectively. Incidence angles can be varied from less
than 20° to more than 50°. RADARSAT is in a sun-synchronous polar orbit at an altitude
of approximately 798 km, with a repeat cycle every 6 days using the 500 km swath, and
every 24 days using the standard 100 km swath mode (Nazarenko et a., 1995; Parashar,

1994).

Solar Array

Figure 2.7 Conceptual view of RADARSAT-1 satellite. (Courtesy of CIS)
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The RADARSAT SAR is very flexible and is capable of acquiring data at seven different
beam modes, which have different resolutions and areas of coverage on the earth’s
surface. The CIS makes frequent use of the ScanSAR of RADARSAT which provide
nominal swaths, ScanSAR wide mode of 500 km at 100 m resolution, or ScanSAR
narrow mode of 300 km at 50 m resolution. These modes are preferred because of the
excellent geographic coverage and revisit capabilities at sufficient resolution for
interpretation of significant ice features, as shown in Figure 2.8 (Ramsay et al., 1998;

2001).

Canadian data reception from the RADARSAT is provided by two Canada Centre for
Remote Sensing (CCRS) facilities at Gainteau, Quebec and at Prince Albert,
Saskatchewan. All data are processed into image products at the Canadian Data
Processing Facility (CDPF), Gatineau, Quebec. An Anik satellite link is used to move
signal data from the Prince Albert site to Gatineau prior to processing (Ramsay et al.,
1998; 2001). The processed data are received at the CIS in Ottawa by means of a
dedicated T1 connection, the Image Transfer Network (ITN), within 2-3 hours of image

acquisition (Ramsay et al., 1998; Flett, 2002).
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Figure 2.8 An example of a part from RADARSAT SAR image. (Courtesy of CIS)

2.3.3.2 ERS-2

The European Remote Sensing (ERS-2) satellite was developed by the European Space
Agency (ESA). It was launched in April 1995 and carried on board various advanced
instruments for earth observation (Figure 2.9). Of interest to ice applications is the Active
Microwave Instrument (AMI), which comprises two separate radars: a SAR and a wind
scatterometer. The AMI-SAR instrument operates in the C-band at 5.3 GHz with a VV
polarisation. The synthetic aperture radar on board ERS-2 is used to produce images with
a spatial resolution of 50 m and swath width of 100 km (Attema et al., 1998). The ERS
satellite has a sun-synchronous orbit of approximately 785 km with a repeat cycle of 35
days (Canadian Centre for Remote Sensing, 2003). The processed ERS-2 data are

received at the CIS by means of a dedicated T1 connection, the ITN from Gatineau,

Quebec (Ramsay, 2000; Bertoia and Manore, 2001).
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Figure 2.9 Conceptual view of ERS satellite. (Courtesy of CIS)

2.3.3.3 ENVISAT

The European Space Agency launched another advanced SAR satellite in April 2002, the
earth and atmospheric ENVIronmental SATellite (ENVISAT). It carries on board various
advanced instruments for earth observation (Figure 2.10). A C-band Advanced Synthetic
Aperture Radar (ASAR) is a major instrument on ENVISAT. The flexible swath width
(100-400 km), spatial resolution (30-1000 m), incidence angle (10°-60°), and polarization
diversity provide users with many data options suited to a variety of applications
(Canadian Centre for Remote Sensing, 2003). ASAR exploits its intrinsic design
flexibility through five operational modes. The Alternating polarization mode provides
images with high spatial resolution data products of 30 m in HH and VV, HH and HV or

VV and VH (Densos et al., 2000; Mancini et al., 1996). The Alternating polarisation

mode can help better identify the boundaries between sea ice and open water.
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Solar Array

ASAR Antenna

Figure 2.10 Conceptual view of ENVISAT. (Courtesy of CIS)

ENVISAT operates in a sun-synchronous pblar orbit at an altitude of approximately 800
km, and the ground track of the satellite is repeated every 35 days. The processed
ENVISAT data is received at the CIS by means of a dedicated T1 connection, the Image
Transfer Network (ITN), from Gatineau, Quebec (Ramsay, 2000; Bertoia and Manore,

2001).

2.4 Airborne Data Reconnaissance

Aerial reconnaissance data generally provides reliable high quality information about ice
conditions over portions of regional areas such as the Gulf of St. Lawrence. Using aircraft
as platforms from which to conduct ice reconnaissance, a nearly synoptic description of
ice conditions can be obtained. Aerial imaging radars can be classified into two types as
shown in Table 2.3, where Aircraft-SLAR and SAR are active microwave sensors using
X band, HH polarised. The first type is the Side Looking Airborne Radar (SLAR), in
which a radar pulse is transmitted by an antenna fixed below a Canadian Ice Center's
Dash 7 aircraft to image large ground areas adjacent to the flight line. The echoes are

processed to produce an amplitude/time video signal which is then recorded as an image
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line, with brighter pixels indicating higher energy returns. With SLAR, imagery may be
acquired as the total swath coverage varies from 50 to 200 km, and the resolution from 25

to 400 m. (Canadian Ice Service, 2002; Haykin et al., 1994).

The second type of airborne imaging radar is the Synthetic Aperture Radar. This radar
forms an image by a different process; it uses a relatively short antenna to produce a wide
beam. The image is built up by successive scans, but the radar also makes use of the
Doppler history of the surface being scanned as the aircraft moves forward. The Canadian
Ice Service uses, under contract, the aircraft SAR system, namely, the Sea Ice and Terrain
Assessment system. The aircraft SAR operates in the X-band at 3.2 c¢cm with HH
polarization. The total swath coverage is 200 km with a resolution of 25 m (Canadian Ice

Service, 2002; Haykin et al., 1994).

Table 2.3 Airborne data sets used by Canadian Ice Service.

Source/Sensor Country |Frequancy | Band Polarization, Swath Spatiql
resolution
or Agency | (GHz) (km) (m)
) X-band
Aircraft SLAR CIS 9.600 active HH 200 25-400
microwave
Aireraft S Intermap X-band
ircraft SAR Technologies 9.600 active HH 200 25
microwave

Reports about the ice cover taken from helicopters have the advantage of a much better
viewing angle. In addition the platform's flying speed allows much more of the sea ice to

be reported. The ice observers are trained to recognize the various stages of development
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of sea ice, to estimate its amount, and to record its deformation and the snow-cover or
stage of decay. All these data are provided by visual estimates, and both training and

experience are required to make the information reliable (Canadian Ice Service, 2002).

2.5 In-Situ Observations

Although the broad knowledge of the extent of sea ice cover has been revolutionized by
satellite imagery, observations from shore stations and ships are still of great importance

in establishing the “ground truth” of satellite observations.

Reports about the ice cover taken from the ships provide very detailed ice observations,
as well as information on the characteristics of the ice not acquired by aerial
reconnaissance methods — such as snow depth, ice thickness, and ice behaviour. On a
ship station, it is obvious that a better view of the ice is obtained if the observation is
made from a point as far above the sea as possible. These detailed observations of the ice
are used to make more accurate interpretations of aerial charts and for climatological
studies. Therefore, shipboard ice observers should always record ice conditions to the

maximum detail possible (Canadian Ice Service, 2002).

Ice observations from shore stations are similar to those from ships since the area being
observed is limited. The exception exists for ground level stations that are placed high
above the area being observed, where the petspective becomes more like a low-level
aerial view. The observer should follow the guidelines previously described for
identifying ice types and ice boundaries and for estimating ice concentrations (Canadian

Ice Service, 2002).
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2.6 Data Processing (Integration and Analysis)

When satellite data arrive at the ice centres, a number of data processing steps must be
performed to develop the final product. Normally, the ice centres produce ice charts —
interpreted images or special ice reports which are sent out to the end users. The main
processing steps include: (1) geolocation and transformation of the image to a map
projection (for example a Lambert Conic Conformal map projection); (2) integration of
satellite data with other ice data (aircraft observation, ship observation, etc.),
meteorological data, and oceanographical data, which is usually done in a Geographic
Information System (GIS); (3) image interpretation; and (4) production of ice charts

(Haykin et al., 1994).

The Geographic Information System (GIS) capabilities of the display system are used to
produce the final “ice chart” as well as a variety of other image and map products. The
Canadian Ice Service uses a software package developed by the Environment Systems
Research Institute (ESRI) — called Ice Service Integrated System (ISIS) — for data
handling, interpretation, and analysis. The charts use the North American Datum 1927
(NAD 27) and the Lambert conical projection. Once the data sets have been geo-
referenced, ISIS can display them as images (Figure 2.11) (Ramsay et al., 1998). Then,
ice image analysts perform integration of the data sets in ISIS environment. The image
interpretation is still done visually by experienced ice analysts, as shown in Figure 2.12.
Finally, ice chart analysis is performed, and the World Meteorological Organization

(WMO) symbolization for ice information, frequently referred to as the “Egg Code,” is
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used to describe the ice conditions (Figure 2.13) (Ramsay et al., 1998; Canadian Ice

Service, 2002).

Figure 2.11 Example of ISIS composite image of the Gulf of St. Lawrence. (Courtesy of

CIS)
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Figure 2.12 Example of image interpretation. (Courtesy of CIS, 2002)

Due to the large volumes of SAR data now available, developing algorithms for
automated information extraction, such as ice classification and ice-motion measurement,
is urgently needed to assist the ice analyst in fully exploiting these complex data sources.
Therefore, the CIS, through the contract with Noetix Research, has developed an ice
tracking algorithm and an ice/no-ice classifier, which is presently operational. These
algorithms, along with a NOAA AVHRR Sea Surface Temperature (SST) extraction
algorithm and an SSM/I Passive Microwave ice concentration algorithms, have been
integrated into a Marine Analysis System (MAST) package that is still being investigated

and implemented at Canadian Ice Services (Ramsay et al., 1998; 2001).
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Figure 2.13 Example of an ice chart (Courtesy of CIS, 2002).

The CIS uses the Climatological Ice Data Archive System (CIDAS) to archive all the
relevant ice information it acquired as well as all products produced. These include all
image products sent to the Canadian Coast Guard and other clients; these are stored on-
line and are available to clients in a variety of common formats. All chart products are
also stored as Arc/Info format within CIDAS, and are available to clients in this and other

data formats (Ramsay et al., 1998; 2001).
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2.7 Products and Users

Charts available from the Canadian Ice Service include Regional Weekly Ice Charts,
Daily Iceberg Analysis Charts; Daily Ice Analysis Charts, Ice Reconnaissance Charts,
and Radarsat Image Analysis Charts. In addition, raw images are also available to users,
depending on their ability to receive image data: SLAR images from Ice Reconnaissance
Aircraft; Visual/Infrared Satellite Imagery; and SAR images from RADARSAT.
Moreover, bulletins provide advice on Both present and forecast ice and iceberg

conditions in simple text format (Canadian Ice Service, 2002).

The CIS’s products are relayed to marine customers by satellite, cellular phone, and land
line links. The major user of ice information issued by CIS is the Canadian Coast Guard
(CCG). All major CCG icebreakers and the Ice Operation Offices are equipped with a
communication and display system application (Ice-VU) developed by CIS, designed to
capture and display RADARSAT, airborne SLAR, and other data. The data are received
within hours of capture, allowing Ice Operations Officers to more effectively deploy their
ships to areas where ice poses a hazard. Experienced users like the CCG demand a
broader range and more detailed and accurate products. Other users have almost no
requirements as they simply follow ice routing guidance with icebreaker support

(Canadian Ice Service, 2002; Asmus et al., 1996).
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3 TRADITIONAL ICE CONDITION PREDICTION METHOD

The Canadian Ice Service has several ice models currently in operation at its center, and
several new ice models are under development. The model described here is the coupled
ice-ocean model of the Gulf of St. Lawrence. In this chapter, I present the ice model and
the method used to couple the thermodynamic and dynamic ice model to the ocean
model, which was developed by Saucier et al. (2000). The dynamic ice model is a multi-
category Particle-In-Cell model used by Flato and Hibler (1992) and Flato (1994). The
thermodynamic model was developed based on the work of a zero-layer Semtner (1976a)
thermodynamic sea ice model. Backhaus (1983, 1985) and Stronach et al. (1993)

baroclinic ocean model reproduces the ocean properties (Saucier et al., 2000).

3.1 1Ice Model

The multi-category Particle-In-Cell method presented by Flato and Hibler (1992), and
Flato (1994) built the ice dynamic. The momentum equation for the ice field driven by

wind and water drag forces, Coriolis forces and ice interactions, as expressed in Figure

3.1, is given by (Hibler, 1979):

ou -
ma—tlztAI+r,O—mkaU1—mgVH+V-G 3.1)

where m is mass per unit area, f is the carioles parameter, £ is a unit vector normal to

the ice surface, U, is the ice velocity vector, g is the gravitational acceleration, V is the
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substantial derivative, H is the sea surface elevation, t,, and t,, are the wind and the

water drag stresses and ¢ is the horizontal component of the internal stress tensor.

Figure 3.1 A schematic view of the force balance on a sea ice cover. (After Zhang,

2000)

1, and T,, are assumed to be quadratic functions of the wind and ice velocities and are

expressed respectively as:
T = pACDA1|UA|(UA) 3.2)
To = pICDIO|U{ - U0|(U1 _Uo) (3.3)

where U, is the wind velocity, U, is the ocean surface layer velocity, p, and p, are

the air and the ice density respectively, C,,, and C,, are the respective wind and water
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drag coefficients. The numerical values of the parameters for the ice, air, water, and

Coriolis force are given in Appendix I.

The internal ice stress & is derived from the Mohr-Coulomb rheology in which the shear
strength is proportional to the pressure from an internal friction. This rheology is
implemented in Flato and Hibler (1992). The Mohr-Coulomb failure criterion is a linear
relationship between pressure and shear strength and plots as two lines in principal stress

space, as shown in Figure 3.2.

Mohr-Coulomb

failure curve

Figure 3.2 The Mohr-Coulomb failure curve. (After Flato and Hibler, 1992.)

The angle between the two failure lines 8 is related to the more common “angle of

shearing resistance” ¢ by the following definition (Flato, 1993):
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sing = tan(%] (3.4

The maximum pressure, P, ., beyond which compressive failure occurs is parameterized

in terms of empirical constants p* = 2.5x104 Nm™ and C =20, the mean ice thickness

h , and ice concentration A4, as (Hibler, 1979):
P =P hexp(-C(1- A)) (3.5)

As mentioned above, the thermodynamic model of a zero-layer Semtner (1976a, 1987) is
used in this model. In any thermodynamic ice model, two quantities are calculated: ice
concentration, A, and ice thickness, #. Hence, the two continuity equations can be

presented as (Haapala, 2002):

o4,

e V(U A )+vy, +9, (3.6)
% = VAU, k) + v, + 9 3.7

where 4, is the ice concentration at particular category i, A, is the thickness for the same

category, y,, and vy, are the thermodynamic growth rate source terms of ice

concentration and thickness. 9, and 9,, are the redistribution terms of ice concentration

and thickness.
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3.2 Ocean Model

The Backhaus (1983, 1985) and Stronach et al. (1993) baroclinic ocean model was
considered. The ocean model is layered in the vertical, with a uniform resolution of 5 m
down to 300 m depth, and 10 m below 300 m, except that the surface and bottom layers
adjust to the local water level and depth respectively (Saucier et al., 2000). The ocean
variables, which are of great important for ice-ocean coupling, are salinity, S,

temperature, T , velocities, U, = (u,v,w), and the vertical turbulent mixing coefficients
for momentum K, , and for density K,_ . The respective equations for the conservation

of mass, momentum, heat, and salt are:

V.(u,v,w)=0 (3.8)
oU, 1oP 0O ou 0 oUu 0 ou
+U,Vu- +—————(A, —)——(4 9)-—(K,,, —2%)=0
" oVu-—fU, o ox 8x( H ax) 5}’( H oy ) 8:( oo )

(3.9)
oT 0 oT 0 oT 0 oT
— +uVT-—(A4, —)——(A, —)—-——(K, —)=0 3.10
ot " 8x( H8x) 8y( Hay) 82( re 62) ( )
oS 0 A 0 oS 0 oS
—+uVS——(A, —)——(A, —)——(K, —)=0 3.11
P ax( " 8x) Gy( n Gy) az( Vo 82) (3.11)
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where A, is the horizontal turbulent mixing coefficient for momentum and density,

QEZ—Pg , P is the pressure, and p is the density. The vertical turbulent mixing

oz

coefficients for momentum K,,,, and for density K, are respectively:
K = Koo 1S, (3.12)
K, =K, +gS, (3.13)

where / is the turbulent length scale, ¢ is twice the turbulent kinetic energy, S,, and S
are stability factors, and K,,,, and K, , are background diffusivities. The stability

factors, S,, and S, are dependent upon the flux Richardson number (Saucier et al.,

2000). The turbulent kinetic energy is determined from the super equilibrium
approximation, that is, an instantaneous and local balance between turbulent energy
production and dissipation. A convective diffusive adjustment is applied to statically
unstable water columns (Saucier et al., 2000). Then, the horizontal eddy viscosity and

diffusivity coefficient for momentum and density is described by (Saucier et al., 2000):

2| (6u)’ oY’ ou 8v20’5
Ay =v(Ax) [(5;) +[5j +0.5(5)—/+5J } (3.14)

where y =0.10 and Ax =5x10° m.
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3.3 Coupling of Ice and Ocean Models

The coupling between the ocean and ice is accomplished through the consistent boundary
conditions, and source terms in the salt, and heat equations accounting for frazil ice
formulation in the water column (Saucier et al., 2000). The respective surface boundary

conditions on temperature, salinity, and momentum are:

KVG%T={ 1 [(I—A)QAO+AQ,O]} (3.15)

z PoCro

KP’G%?:_[(I_A)(fAI(SI —SO)+(P—_E)SO)+AfIO(SIO "So)] (3-16)

Ky %U— S (EVV LN (3.18)
z Po .

where f,, is the ice growth rate (melt) over open ocean areas, f,, is the ice growth over

ice covered areas, A4 is the ice concentration, P is the observed precipitation,

E=0,,,/L, is the evaporation, Q,,, is the latent heat flux, L, is the latent heat of
evaporation, S, is the sea surface salinity, S, is the ice salinity, and S,, is the salinity at

an ice-ocean interface.

The exchanges of heat and salt fluxes follow the Parkinson and Washington (1979). At

the atmosphere-ice boundary, the net heat fluxes Q,, is expressed as:

Qu = Qs + Qi = OGswar ~Powiar + Ciwrar 3.19)
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where Q,,, and Q,, are the latent and sensible heat fluxes at the atmosphere-ocean
boundary, Qg ,, and O, = are the short-wave and long-wave download incident

fluxes, and @, , . is the outgoing long-wave radiation. These terms are expressed as:

QL =P 4LsCrulU |, - a.) (3.20)
Our =P4CriCsulUNT = T,) (3.21)
Qg =(1—a,)SW (3.22)
0., = 1057, (0.68+0.0036¢,% J1+0.18¢,*) (3.23)
Oyt =€, T, (3.24)

where SW is the short-wave radiation, «, is the ice/snow albedo, U , is the atmospheric
current, T, is the surface air temperature, €, the ice emissivity, and &, is the Stefan
Boltzmann’s constant (Saucier et al., 2000). The specific humidity at temperature 7, is
g, while it is g, at temperature T,. The specific heat of air is Cp, and Ly is the latent

heat of ocean ice sublimation. The thermal coupling coefficients C,,, and Cg,, are

considered constants, and are included in Appendix 1.

At the atmosphere-ocean boundary, the net heat fluxes Q ,, is expressed as:
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Q10 =540 + Qrio — 9w A0 QLW»LAO + QLWTAO (3.25)

where Q,,, and Q,,, are the latent and sensible fluxes at the atmosphere-ocean
boundary, Qg ,, and Q,, = are the short-wave and long-wave download incident

fluxes, and Q, . . is the outgoing long-wave radiation. These terms are expressed as:

Osi0 =P 4CrsCosolU ulTo ~T,) (3.26)

Orio =Pl CriolUl(a0 ~4.,) (3.27)

Oy =(1-0,))SW (3.28)

0., =6,05T," (0.68 10.0036¢ /2 )(1 +0.18¢,%) (3.29)
.

Ot =€00 5710 (3.30)

in which o, is the ocean Albedo, ¢, is the ocean emissivity, and L, is the latent heat

of vaporization.

At the ice-ocean interface, the heat flux from ice Q,, is expressed as:

Op = pOCPOCSIO|UI - Uol(To - Tf) (3.31)
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where T, is the fusion temperature for ocean water and is expressed as (Saucier et al.,

2000):

T, = (— 0.05755 +1.710523x 10§72 — 2.154996 x 104S2) oc
| (3.32)

Finally, within the ice cover, the conductive heat flux through the ice Q, (T, ) is expressed

as:
0,(T,)=k,h (T, = T}p) (3.33)

where k, is the ice thermal conductivity (computed below), T, is the temperature at the

base of the ice, and % is the ice thickness.

The atmosphere-ice heat flux is assumed to balance the conductive heat flux through the

ice, Q,. The atmosphere at the surface of the ice, 7,, is then obtained at every time step

for each thickness category from the implicit solution to Q,, (7, )-Q,(T,)=0.

3.4 Numerical Solution

The ice model in the Gulf of St. Lawrence (GSL) study is solved numerically following
Flato (1993). The ice velocity field is obtained by solving the momentum equations by
the Eulerian finite difference method on underlying fixed Eulerian grid. Then, the ice

concentration 4 and ice thickness 7 are calculated by solving the continuity equations
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by the Particle-In-Cell method (PIC). The PIC method converts the ice volume into
individual particles whose motions are integrated in a quasi-Lagrangian mode. Each
particle is associated with a constant ice volume in modeling. The particle velocities are
then evaluated by interpolating the velocities at the nodes onto the particle positions. The
ice concentration and thickness are associated with the local particle distribution within a

region (Flato, 1993).

The ocean model in the GSL study is solved numerically following Stronach et al.
(1993). The solution technique for ocean model is based on the model developed by
Backhaus (1985). The finite difference method is used to solve the ocean model and has
the same grid size as the corresponding ice model. It should be noted that in the coupled
model run, when integrating the ice model the variables in the ocean model remain

unchanged, and vise versa, as shown in Figure 3.3.

In fact, atmospheric forcing — from reliable weather models — of coupled ice-ocean model
is very important to couple the weather model with the coupled ice-ocean model. At the
Canadian Ice Service, the operational coupled ice-ocean model of the Gulf of St.
Lawrence operates during the wintertime. The atmospheric forcing comes from Canadian
Meteorological Centre (CMC) through the regional Canadian operational weather
forecast model developed by Cote et al. (1997a, 1997b), namely, Global Environmental
Multi-scale/Numerical Weather Prediction (GEM/NWP) model. The model has been

operational in CMC since September 15, 1998 (Canadian Meteorological Centre, 2003).

43



Ice model
- M&iél N Ice Dynamic Ice thermodynamic
2 S (Momentum equation) (Continuity equation)
)
s o T ~.
— E " Solution f/# 3d- finite difference method i Particle-In-Cell method (PIC)  |-—
E I S . -
Coupler
( VOutput‘ ) _____1 Uxy,2).h& A ‘
Interpolation from the ocean grid to ice grid 2
and viseversa ’g_
e ——— — £ |
Compute fluxes o
Ocean model
8 T T Backhaus mo?iel (G8 model)
= ¢ Model — )
& N (Momentum equation)
s e <
g {_Solution 3d- finite difference method
5 e
- (Ouput ——— Uxy2). Txy.2) & S(xy.2)

Figure 3.3 Solution strategy of GSL’s coupled ice-ocean model.

3.5 Results of Coupled Ice-Ocean Model

In the ice-ocean model of the Gulf of St. Lawrence, which was developed by Saucier et
al. (2000), the depth coordinate baroclinic ocean model developed from Backhaus (1985)
and Stronach et al. (1993), coupled to zero-layer Semtner (1976a) thermodynamic sea ice
model with cavitating fluid, pack ice dynamics using Mohr-Coulomb rheology developed
by Flato and Hibler (1992). The ocean is layered in the vertical with a uniform resolution

of 5 m down to 300 m depth, and 10 m below 300 m, except that the surface and bottom
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layers adjust to the local water level and depth respectively. The model was applied over
a period starting in December 1996 and ending in March 1998, and then compared with
available observations. The atmospheric forcing was provided by the Canadian
operational weather forecast model. Prior to February 24, 1997, the model was the
regional finite element model developed by Mailhot et al. (1997), and thereafter it was
the hydrostatic primitive equations GEM developed by Cote et al. (1997a, 1997b). The
result showed that the mean concentration is well reproduced. It is undervalued by 10 to
15% during winter, and 10 to 50% during the spring. In other words, the average

prediction accuracy is undervalued by 20% on average (Saucier et al., 2000).
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4 ARTIFICIAL NEURAL NETWORK MODELING

In this chapter, the theory of Artificial Neural Networks (ANNs) is described and their
main elements are demonstrated. Then two kinds of networks are reviewed in detail: the
feedforward neural network and the modular neural network trained by backpropagation
of error. Model architectures, training methods, and learning processes are also discussed.

Finally, two techniques to measure the success of prediction models are discussed.

4,1 Whatis a Neural Network?

Artificial neural networks (ANN) are artificial intelligence (Al) methods structured
according to the human brain. ANNs are computational models that imitate the human
brain in performing a particular task (Haykin, 1999). From the time they were introduced
to the scientific field, ANNs have been invéstigated according to two different scientific
approaches. First, the biological aspect explores ANNs as simplified simulations of the
human brain and uses them to test the hypotheses on human brain functioning. The
second approach treats ANNs as technological systems for complex information
processing (Haykin, 1999). This work focuses on the second approach in which ANNs
are evaluated according to their efficiency in dealing with complex problems, especially

in the area of prediction.

The reason why ANNSs often outperform traditional methods lies in their ability to
analyse incomplete, noisy data, to deal with problems that have no clear-cut solution, and

to learn from historical data. Because of those advantages, ANNs have successfully
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predicted ice conditions data series that have a high degree of volatility and fluctuation.
The disadvantages of ANNs include the lack of tests of statistical significance of the
ANNs model and estimated parameters (Haykin, 1999). Furthermore, there are no
established paradigms for deciding which architecture is the best for certain problems and
data types — the main subject of this work. Despite those disadvantages, many research
results show that neural networks can solve almost all problems more efficiently than
traditional modeling. It has been mathematically proven that three-layer neural networks
having arbitrarily activating function are capable of approximating any nonlinear function

(Haykin, 1999).
4.2 Processing Elements (Artificial Neurons)

ANN consists of processing elements, or neurons, that are massively interconnected.
Each of the connecting links is characterized by its own weight, or strength. Figure 4.1
represents a block diagram of a simple model of a neuron, showing the weights of the

various links. An activation function (p(vk( n )), such as a sigmoid function or a

hyperbolic target function, is applied to limit the amplitude of the neuron (Haykin, 1999).

Finally, an external bias, b, , is applied to increase or lower the net input of the activation

function. The neural network is trained to find the optimal values for weights and biases.

The above structure for a neuron &k can be represented mathematically as:

n m
LV = Zwkixi +b, = Zwkij “.1)
P =0

47



v =0(v,) (4.2)

where x,, x,, x,,--,x,, are the input signals; v, is the activation potential of neuron & ;
y, is the output signal, and 1wy, W,,, W,,, -+, W, are the weights of the neuron k. It

should be noted in equation 4.1 that the values of x, = +1 and w,, = b, , respectively.

Uk
5 . g
ok )
i
# %
// \
,/’,
Yy /1 y
“1k/ 2k WA mk
7
v/// l‘\\

Figure 4.1 Simple neuron model.
4.3 Activation Functions

There are many possible activation functions. The most frequently used activation
functions are a step, a signum, a linear, a threshold linear, a sigmoid, and a hyperbolic

tangent.
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The step function produces only two values (0 or 1). If I is the predefined threshold
value, the output in the step function is computed according to the formula (Bishop,

1995):

4.3)

_JOif v <
EN i v, > 1

A signum function is a special form of the step function, when the threshold / = 0

(Bishop, 1995):

yk:{—l if v, <0 (4.4)

1 if v, >0

The signum function was used in the first neural network-Perceptron. Step and signum
functions are rarely used at the present time since they cannot approximate the majority

of real-world continuous functions.

A linear, and linear threshold functions have the following forms respectively (Bishop,

1995):

Y, =ov, 4.5)

I

(4.6)

0 if v,<0
Vi

vi—1 if v,>0
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It should be noted that the linear threshold is a special form of the linear function, and
according to this function, a neuron has a non-zero output only when its input reaches the

threshold 1.

A sigmoid (or logistic) function is one of the most used activation functions in ANN
modeling. It is shown in Figure 4.2(a), and its formula is described by (Haykin, 1999;
Kamruzzaman and Aziz, 2002):

1
), = ———— 4.7
Vi 1+ exp(—av, ) @7

where the parameter o represents the slope of the sigmoid function. The function results
in continuous value in [0,1] interval. It is used, for example, in feedforward and modular

networks and is, together with hyperbolic tangent, one of the most frequently used

functions in ANN modeling.
o(2) @24
+14 o +1, _
e .

/ /
s
// 7
- » e -1
v
\J |
a. Sigmoid function b. Hyperbolic tangent

Figure 4.2 Activation functions - sigmoid and hyperbolic tangent function.

50



A special form of a sigmoid function is the hyperbolic tangent function. It is shown in
figure Figure 4.2(b) and is described by (NeuralWare, 2001a; Kamruzzaman and Aziz,

2002):

_ exp(ocvk )— exp(— vy ) (4.8)

Ve = exp(ocvk )+ exp(— av, )

The graph of the hyperbolic tangent function is similar to the graph of the sigmoid
function, except the value of interval is here [-1,1]. Because of its ability to map values

into positive as negative regions, this function was used in all our experiments.

Finally, the most recently used activation functions are the Logarithmic and Arctangent

functions, and their respective formulas can be defined as (Kamruzzaman and Aziz,

2002):
B In(v, +1) v, 20
Ve = —In(-v, + 1) v, <0 (4.9)
Vi = arctan(vk) (4.10)

4.4 Architecture of Neural Networks

The natural neurons, when connected, form the neural nerves. In ANN modeling, the
artificial neurons are connected in many different ways, forming architectural
characteristics. The learning algorithms and the architectures are closely related. It is

important to clearly understand how the artificial neurons are interconnected to form the
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specific architectures, because this aspect defines how the computer implements the
architectures. Artificial neural networks can be designed in various ways depending on
how the neurons are structured and the learning algorithms, or rules, used. Network
architectures may be classified as single-layer feedforward, multi-layer feedforward, and

recurrent networks (Haykin, 1999)

4.4.1 Single-Layer Feedforward Networks

In this simple network, a layer of input neurons is connected to a layer of output neurons.
The single-layer designation refers to the output layer. The layer of input neurons is not
considered because it does not process computation over the input values (Haykin, 1999).

Figure 4.3 shows a single-layer network of 3 inputs and 2 output nodes.

Output layer

N \ e
\ < /
\
e FAN .
NS s
. _ :

PAAVARN
Input layer @ ® o

Figure 4.3 Single layer network [3-2].

4.4.2 Multi-layer Feedforward Networks

In this architecture, one or more hidden layers of neurons are present. Those networks are

able to deal with higher-order problems because of the extra set of connections and the
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extra dimension of neural iterations (Haykin, 1999). Figure 4.4(a) shows a multi-layer 3-
3-2 network; that means a network formed by an input layer with 3 neurons, one hidden
layer with 3 neurons and an output layer with 2 neurons. The network is fully connected
because each neuron in one layer is connected to all neurons in the next layer. It may
also happen that not all the neurons of one layer are connected to all neurons of the
subsequent layer (Haykin, 1999); this may occur when the user has a certain previous
knowledge about the pattern being classified. Figure 4.4(b) shows a semi connected

multi-layer [3-3-2] network.

Output layer % % g ®
\\\\\\ ) / ’ // \\\ / \\\\

>
. / ) N
/ XAl / o
g \\ / \\ \ / S .
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Hidden layer ‘ | ' |
) S S S
A NS N
/\& //><\ 3 >\\ /\>< \\ |
SCOA \ | SN
/- AN ./ N N\
/ SN v
Input layer (@ [ ® ® @ @
a. Fully connected FFNN b. Semi connected FFNN

Figure 4.4 Multilayer FFNN [3-3-2] — Fully and semi connected networks.
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4.4.3 Recurrent Neural Network

This network model has at least one feedback loop. It may have the same architecture as
a layered netwofk, but the feedback is needed. The feedback can occur from the output of
one neuron back to the input of another neuron, among neurons of the same layer or
neurons of different layers. The feedback may also happen as a self-feedback when the
output of the neuron is returned to its own input. The feedback greatly influences the
network learning capability performance (Haykin, 1999). Figure 4.5 shows a single-layer
recurrent network where the output signals of the neurons are fed into the input of the

other neurons in the same layer.

Output layer

Input layer

Figure 4.5 Recurrent network [3-2].

4.5 ANN Learning Algorithms

Learning is the process of calculating the weights among neurons in a network. Weights

are an important factor; they determine the value of a neuron input and indirectly affect a
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neuron output. There are two main types of learning in network: supervised and

unsupervised (Haykin, 1999).

The difference between those two types of learning lies in the availability of known
output in the training sample. In supervised learning, the set of training data consists of
previous cases with known input and output values. The neural network system receives
the actual output, computes the error, and adjusts the weights according to the error

(Haykin, 1999).

On the other hand, the actual outputs are not known in unsupervised learning. Inputs are
available to the network, and the weights cannot be adjusted based on the actual output.
This type of learning is commonly used for pattern recognition problems and clustering.

Kohonen’s self-organizing network is based on unsupervised learning (Haykin, 1999).

Every ANN goes through three phases (NeuralWare, 2001a): (1) learning (training)
phase, in which network learns on the training sample and the weights are being adjusted
in order to minimize the objective function (e.g., root mean square error (RMS)); (2)
testing phase, in which network is tested on the testing sample while the weights are
fixed; and (3) validation (recall) phase, in which network is applied to the new cases with

unknown results and in which weights are also fixed.

A learning rule represer;ts the formula used within ANN to adjust the connection weights
among neurons. Among various learning rules developed so far, three of them are
commonly used in supervised ANNs (NeuralWare, 2001a): (1) Delta rule; (2)
Generalized Delta rule; and (3) Delta-Bar-Delta and Extended Delta-Bar-Delta rules.
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4.5.1 Delta rule

Widrow and Hoff developed a Delta rule in 1960 (Bishop, 1995). Delta rule is well
known as the rule of least mean squares, because it aims to minimize the objective
function by determining the weights values. The aim of Delta rule is to minimize the sum
of error squares, while error is defined as the difference between the computed and

desired output of a neuron, for the given input data (Haykin, 1999). Delta rule form can

be defined as:

Aw, =me,y, “.11)

where Aw is the weight correction from neuron j to neuron i , 7 is the learning
coefficient, y; is the output value computed in the neuron j, and e, is the raw error

computed by :

e.=d -y, (4.12)

where d; is the desired output. The raw error is very rarely backpropagated; more often,
the other error forms (e.g., global error E) are used. In classical FFNN, the global error,
E, is backpropagated through the network using the gradient descent algorithm described

in section 4.7 below.

Since Delta rule is commonly used in supervised networks, it is necessary to mention the
main problem that can occur in backpropagating the error, i.e. the local minima. The local

minima problem occurs when the minimum error of the function is found only for the
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local area and learning is stopped without reaching a global minimum (Figure 4.6). Since

the problem is mainly connected to the backpropagation algorithm, it will be discussed in

details later in section 4.7.

)
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Figure 4.6 Error function plot.

4.5.2 Generalized Delta rule

A generalized form of the delta rule, developed by Rumelhart et al. (1986), is needed for
networks with hidden layers. Generalized delta rule is obtained by adding a derivation of

input neurons into a Delta rule equation such that weight adjustment is computed

according to the formula (Neural Ware, 20012):
Aw,; =ne,y,;9'(v,) (4.13)

where v, is the input into neuron i. This rule is appropriate for non-linear activation

functions.
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4.5.3 Delta-Bar-Delta and Extended Delta-Bar-Delta rules

As can be seen from the previous section, learning coefficient n is an important
parameter for the speed and efficiency of ANNs learning, and is typically determined as
single learning rate for all connections in the network. Delta-Bar-Delta learning rule was
developed in 1988 by Jacobs to improve the convergence speed of the classical Delta

rule. It localizes the learning rate 1} in a way that allows each connection in the network

to have its own learning rate, changing those rates continuously as the learning progresses
(NeuralWare, 2001a; Sidani and Sidani, 1994). Thus, Delta rule equation 4.11 is

modified so that the learning rate is different for each connection:
Aw,(r)=n(T)e,y, (4.14)

Despite its advantages over the classical Delta rule, Delta-Bar-Delta has some limitations;
for example, it does not include momentum term in the learning equations, and some

large jumps can occur in training, skipping important regions of the error surface.

To overcome these shortcomings, Extended-Delta-Bar-Delta rule (EDBD), proposed by

Minai and Williams (1990), introduces a momentum term p which also varies with time.

The momentum term is used to prevent the network weights from saturation, and the

EDBD rule enables local adjustment of this parameter such that the learning equation

becomes (NeuralWare, 2001a):

AW, (r)=n(r ey, +u(r)Aw,(r) (4.15)
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where p(r) is the momentum of the connection 7 in the network, and ¢ is the time point

when the weights of the connection ¢ are adjusted.

The above learning rules use the desired output to compute the error, thus they learn in
the supervised manner. If the desired output is not known, one of the unsupervised

learning rules should be used, such as the Kohonen’s rule.

4.6 Feedforward Neural Network Structure and Training

A three-layer feedforward neural network trained using the backpropagation algorithm is
used for various areas of applications. Originally developed by Paul Werbos in 1974, and
extended by Rumbelhart et al. in 1986, this was the first network with more than one
hidden layer. Its role was imposed primarily by the Precepton network. The suggested
learning of the network was to localize the error by computing it at the output layer and
backpropagating the error to each hidden layer such that weights of connections were

being adjusted until the input layer reached (Haykin, 1999).

Multi-layer feedforward networks consist of the input layer, output layer, and at least one
hidden layer with feedforward connection. The hidden layers help the network in
extracting higher order statistics (Haykin, 1999). Figure 4.7 shows an example of fully
connected three-layer feedforward network, referred to as m-s-c (m source neurons, s

hidden neurons, and ¢ output neuron).
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Figure 4.7 Three-Layer Feedforward Neural Network with Structure [m-s-c].

With this architecture, the source neurons in the input layer (i.e., first layer) provide the
input vector to the hidden layer (i.e., second layer). The output vector of the hidden layer
is then used as input to the third layer (i.e., output layer), which outputs the overall
network solution. Recurrent neural networks are similar to the feedforward networks,'
except that the former have at least one feedback loop. According to Schuch et al. (2002),
feedforward networks have better prediction capabilities than recurrent networks. In our
prediction model, the feedforward neural network was used. In this case, the output signal

at aneuron j (either a hidden neuron or an output node) can be written as:
v,(m)=olv,(n)) (4.16)

where v, (n) is the activation potential of neuron j, which is defined by:
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vi(n)= _Iiwj,-(n)y,-(n) (4.17)

where m is the total number of inputs (without the bias) applied to neuron j; w,(n)
represents the weight connecting the output of neuron 7 to the input of neuron j at
iteration n (n’h training example); and y,(n) is the output signal of neuron 7 (i.e., the
input signal of neuron ;). It should be clear that if neuron j is in the first hidden layer,

y.(n)=x,(n),the i"” element is in the input vector.
4.7 The learning Process (backpropagation algorithm) of FFNN

As stated above, neural networks solve complex problems through learning .(i.e.,
training), and then generalizing the network outputs for other inputs. Training the neural
network is accomplished through iterative adjustments of the free parameters, i.e., the
weights and bias, of the network until the optimal values are obtained. There exist various
learning algorithms, which are fundamental to the design of neural networks. Of these,
the backpropagation-learning algorithm is the most widely used for feedforward neural

networks (Schuch et al., 2002), which is discussed here.

As can be seen in Figure 4.8, the backpropagation learning algorithm allows the output
signal of a neuron j, y,(n), to be compared with a desired (target) output, d,(n). The

error signal at the output of neuron j, e,(n), is defined as:

e,(n)=d,(n)-y,(n) (4.18)
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where n represents n” training example (i.e., n” pattern). The objective of the iterative

adjustments is to make y,(n) as close as possible to d,(n), which can be achieved by

minimizing a cost function (total instantaneous error energy over all neurons in the output

layer) defined as:

1 2
E(n)=526_,-(n) (4.19)

jeC

where C represents all neurons in the output layer. The weight correction Aw,(#) can

be defined according to the Delta rule as (Haykin, 1999):

OE(n)
Gwﬁ(n)

Aw,(n)=-m =nd,(n)y,(n) (4.20)

where 1 is the learning rate parameter, and 8;(n) is the local gradient defined by:

5,(n)=n SVE_((’;) = e (mo v, (n) (421)

J

where (pfi (v ,(n) is the derivative of the associated activation function. This means that

for 6 ,(n) to exist, the activation function must be continuous, which is satisfied by both

the sigmoid and hyperbolic tangent functions presented in section 4.3 above.
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Figure 4.8 Backpropagation of error.

The selection of learning rate parameters m affects the rate of learning of the neural
network. The smaller the value of 7 is, the smaller the changes to the weights and
network rate of learning. Smaller n} values result in smaller changes to weight in the
network, and consequently slower rate of learning. If, on the other hand, the n values are

too large, the network may become unstable (i.e., oscillatory) and the algorithm diverges.
To overcome this problem, the Extended Dalta-Bar-Delta rule is used, which introduces
an additional term to equation (4.20), known as the momentum term (NeuralWare,

2001a; Haykin, 1999), so that the current adjustment becomes:

Aw'.(n) =8 (n)y,(n)+pAw’ (n) (4.22)
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where p is the momentum term, making learning faster when the learning coefficient is

low. Because of its advantages in the local adjustment of learning rates as well as

momentum, the EDBD rule was used in our experiments.

Another problem that can occur in backpropagation algorithm is that some processing
elements may stop to learn whether their incoming weights are large. In such a case, the
summation values become large and the weights become saturated (e.g., value 0 or 1),
leading the derivation to 0 and the scaled error to 0. Such saturation can be prevented by
adding a small “F’offset” value to the derivative of the activation function. It has been
experimentally proved that the value 0.10 is adequate for the sigmoid function and 0.30

for the hyperbolic tangent function (NeuralWare, 2001a).

The weights will be adjusted iteratively by presenting new epochs of training examples to
the neural network. Unfortunately, there is no clear-cut criterion for deciding when to
stop the training, i.e., to consider whether the backpropagation algorithm has converged
(Haykin, 1999). If the training is not stopped at the right point, an over-fitting of the
training data (i.e., model does not interpolate well between points) might occur. One
approach to this problem is to create a test data set that tests the neural network for its

generalization performance (NeuralWare, 2001a).

4.8 Modular Neural Network Structure and Training

Under certain circumstances — for example, when encountering a prediction problem, it

may be better to use the modular neural networks. A modular neural network (MNN) was
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presented by Jacobs et al. (1991). This network has the capability of dividing a problem
into sub-problems and resolving each sub-problem well. It consists of a group of FFNNs,
sometimes referred to as “local experts,” each having the same architecture. This group
of networks competes to learn the various aspects of the problem, which is then
controlled by a “gating network”. The number of local experts is determined by the
number of output neurons of the gating network (NeuralWare, 2001a). F iguré 4.9 shows
an example of a modular neural network, referred to as m-s-q-1 (m source neurons, s
hidden neurons for both local experts and the gating network, q “gating” output neurons,

and one network output neuron).
Figure 4.9 represents the architecture of a MNN. Learning is conducted as follows:

1) The input vector is distributed from the input layer to each local expert and the gating
network. Each expert is a FFNN. Output of the local experts depends on the

feedforward architecture incorporated in the expert.

2) The gating network sends output to an intermediate layer (called gate) where the

probabilities sent by the gating network are used to correct the local expert outputs.

3) The final output is that of the local expert with the highest probability; the error is
computed according to the formulas in the next section and backpropagated to the

local experts and the gating network.
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Figure 4.9 A modular neural network with the structure [m-s-q-1].

4.9 Modular Neural Network Computations

As stated above, the network consists of several networks, called “local experts,”
connected by a gating network that allocates each case into one of the local experts. The
output of that local expert is compared with the actual output, and weights are changed
locally only for that expert and the gating network. In that way, the gating network
“encourages” a particular local expert to specialize in similar cases. The weights of other

experts specialize in other cases. The decision of the gating network is made stochastically.
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Jacobs et al. (1991) use a stochastic selector, and they compute the error according to the

formula:

E:zgi“d_yi ’

icq

(4.23)

where y, is the output vector of expert i, g is the proportional contribution of expert i on

the combined output vector, and d is the desired output vector. In such a process, each
local expert produces the whole output and the aim of one local expert is not directly
affected by weights of the other local experts. Although some indirect coupling can occur
if the gating network alters the responsibilities from one local expert to another, the sign of

the local expert error is still not influenced.

The number of local experts in the network is determined in advance based on the assumed
number of subsets or local regions in the input spaces of the sample. Each local expert is a
FFNN, and all experts have the same number of input and output units. Local experts, as
well as the gating network, receive the same input. Of course, their outputs differ. Output

of the gating network is the probability (Jacobs et al., 1991):

exp(zj )

5T ez,

ieq

(4.24)

where z . is the total weighted input received by outputj of the gating network, and g is

J

the probability that the switch selects the output from local experts j. This output is
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normalized to equal 1. The output of local expert y, is then corrected by the probability

above, and the final output of the network is:

y=>.58 (4.25)

ieq

Unlike FFNN, where the objective function is to minimize a global error function £, MNN

tries to maximize the following objective function J:

ieq

J= lr{z g, exp[ -, );(d —%i )D (4.26)

for

-

.o e s
Then, the error that is backpropagated for the i” local expert is — , while it is

the gating network; where v, is the input to the i” local expert output node and =z, is the

input to the gating network output node.

According to the learning process just described, if an expert gives less error than the
weighted average of the error of all experts, its responsibility for that case will be
increased, and vise versa. In our experiments, the error is backpropagated and the weights

are updated according to EDBD rule.
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4.10 Measures of Accuracy

In a range involving a huge number of neural networks, it is extremely difficult to find
which types of neural networks are suitable for predicting ice conditions. To evaluate the
performance of different types of networks, two statistical indicators were used: Common
Mean Correlation Coefficient (CORR), and Normalized Root Mean Square (NRMS)

Error (NeuralWare, 2001a).

Each of the performance measures represents a precise method of measuring how well a
model performs. No one measure can tell how well one model fares against another;
instead, all of these two numbers should generally be considered together. The Common
Mean Correlation Coefficient in equation 4.27 shows how well trends, i.e., bumps and
valleys, were picked up (NeuralWare, 2001a). The Correlation Coefficient is a number

ranging from -1 to 1.

CORR = d ' (4.27)

where d and 7 are the means of the actual and predicted values, respectively. These

values can be represented as:

—_ 1 N
d=—)>d, 4.28
NZ 7 ( )

i=1
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N

1
F= 2 (4.29)

i=1

If the model predicts bumps and valleys perfectly, then the corresponding Correlation

Coefficient will be 1.

The Normalized Root Mean Square (NRMS) Error in equation 4.30 is a method to
compare the mean of a series with the predicted values. If the NRMS is greater than 1,
then the predictions are worse than the series mean; if the NRMS is less than 1, then the
forecasts are better than the series mean (NeuralWare, 2001a). The NRMS is a measure

widely used in many research studies to evaluate how well a neural network performs.

(4.30)

Finally, It should be noted that NRMS and CORR measures provide useable statistics to
verify model predictions, and they are applicable to a large number of analyses,

prediction elements, and model types.

4.11 Performance Measure

The performance of the network can be measured based on the percentage of correct
prediction — the ratio of the correct network output values and the actual values at the

various points in the test area.
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The prediction is considered as correct if:
~0.50 < (d, —y,) < 0.50 (4-31)
The prediction is considered as false if:

~0.50>(d,-y,) or 050<(d -y,) (4-32)
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5 RESULTS AND DISCUSSION

This chapter describes how to apply neural networks to the prediction of total ice
concentration. First, a brief description of the used package is provided, and then I
describe the study area of interest in the Gulf of St. Lawrence. Next I demonstrate the
use of two different artificial neural network models in identifying the major independent
variables to optimize the model performance. In addition, the developed neural network-

based model is compared with the traditional model — the coupled ice-ocean model.

5.1 Software Review

The structure of the neural network model used in this investigation was built using the
NeuralWorks Professional/ll plus (NeuralWare, 2001b). NeuralWorks Professional/ll
(hereafter NeuralWorks) is based on the artificial neural network algorithms described in
the previous chapter. NeuralWorks is a comprehensive development package
incorporating many types of neural networks. It provides the capability to train and test a
network, monitor progress, debug, customize standard neural network models, and save

and implement trained networks.

NeuralWorks contains 22 different architectures or learning algorithms, including Multi-
Layer Perceptron (MLP), Self-Organizing Map (SOM), Radial Basis Function (RBF),
Modular Neural Network (MNN), Probabilistic Neural Network (PNN), Fuzzy ARTmap,
genetic reinforcement, generalized regression, recurrent, and reinforcement networks.

The package also includes networks of historical importance such as the Perceptron,
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ADALINE, and bi-directional associative memory. There are two add-on packages: User-
Defined Neuro-Dynamics that lets the user change any aspect of network architecture or
learning algorithm, and Designer Pack that allows the user to create source code of the

untrained network so that it can be trained as part of a custom application.

S5 NeuralWarks Professional TE 701 : =i8fxi
File Instafet I Instrument -Run Utlities

I

RMS Error 0.3924 Correlation 0.8144

5
;o

b4 i1z
mEHiddenl

Biaz

Figure 5.1 The user interface in NeuralWorks Professional I1/Plus package.

The interface in NeuralWorks (Figure 5.1) shows the Processing Elements (PEs) and
connection weights for the network architecture. PEs are color coded and sized according
to their value during training, and the connection weights are color coded according to
values that enable the user to quickly see the state of the network. The user specifies the
number of input, output and hidden PEs, selects the cost function, activation function,
starting values for the learning rate and momentum. The user further decides whether on-

line or batch learning is to be used and whether the training set should be randomized,
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and selects how the input data scaling should be performed. The user can also set up a
learn/recall schedule that allows the learning rate and momentum values for each layer to
change over time. The data input and output is from and to an ASCII text file, which is

not always as convenient as using Microsoft Excel.

Visual reinforcement of the training process is supported by a variety of graphical
instruments, allowing a user to quickly monitor progress in training. For example, as seen
in Figure 5.1, the root mean square error (RMS) graph shows the changes in the RMS
error as training progresses. A number of other graphical instruments are used with
specific network paradigms, which can be attached to any node or layer of nodes to allow
monitoring of the intermediate results. The numeric values that produce the graphs can
also be saved to ASCII format files for use with other software packages, allowing, for

example, the error values to be input to a spreadsheet for further analysis.

5.2 Study Area

As mentioned earlier and as shown in Figure 5.2, a supervised neural network was trained
to predict sea ice concentrations at a selected location in the Gulf of St. Lawrence.
Canadian Ice Service provided us with grid-point ice conditions for the regional ice
charts of the East Coast of Canada. Weekly data series of 200 points within of the Gulf of
St. Lawrence were used to validate the ANN models. The data series consisted of the
weekly ice concentration throughout 11 years (1987-1998). The total size of the available

dataset was 603 records for each data series. The study area was divided into seven sub-
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regions (Figure 5.3). The results of the first sub-region are shown and discussed in this

chapter; the results of other sub-regions are recorded in Appendix II.
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Figure 5.2 Study area (200 points).
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Figure 5.3 Regions locations.
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5.3 Modeling Strategies of Total Ice Concentration

In this work neural networks were developed for modeling and predicting of ice
concentration. In developing an efficient neural-network model, it is essential to
determine what the neural network is expected to do; for the model to improve prediction
performance, I need to perform extensive data analysis and preparation prior to training
the neural network. Two approaches were considered for ice concentration modeling: the
batch method and the sequential method. Figure 5.4 illustrates the strategies used for

developing a neural network model based on the two proposed methods.

Initially the batch method was tested, in which the time (year and week numbers) is the
only input to the network, as suggested by El-Rabbany et al. (2002). Then the sequential
method, which was suggested by El-Diasty et al. (2002) and El-Rabbany and El-Diasty
(2003), was used. In this approach, the immediate past values of the ice concentration are
used as input to the network, while future values of the ice concentration are used as the
desired (i.e., actual) output. Both Feedforward Neural Network (FFNN) and Modular
Neural Network (MNN) structures were tested, using the same datasets, for both models.
Finally, the best ANN model was selected based on the lowest root mean square (RMS)

and highest correlation coefficient (CORR), discussed in a previous chapter.
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Figure 5.4 Strategies for selecting the best ANN.

5.4 Results and Discussion of Batch Method

The batch method was suggested by El-Rabbany et al. (2002). In this approach, the time

variables are used as the only input to the network, and the ice concentration is assigned
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as the desired output. In other words, the input layer consists of two neurons — the year

and week number — and the output layer consists of only one neuron.

As seen in Figure 5.5, for each test point in the Gulf of St. Lawrence the size of the

available dataset a total of 603 different patterns were created. In the pre-processing

stage, the dataset was divided into three subsets: testing, training, and validation (Figure

5.5). The first 50 patterns were assigned to the testing subset and the last 50 patterns were

assigned to the validation subset. The training subset was selected to represent the middle

portion of the dataset, i.e., 503 patterns. The training was stopped based on testing the

“generalization” performance of the neural network using the testing subset. After

training and testing the network, the model was generalized to predict the last 50 patterns

of the dataset and compared the results with the actual values of the ice concentration.
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Figure 5.5 Selection of testing, training and validation data subsets.
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Two artificial neural network structures, FFNN and MNN, were constructed using
NeuralWorks. The networks are similar in design, the main difference between them
being the network structure. In Figure 5.6, the FFNN structure [2-s-1] consists of “2”

66177

input neurons (time variables), “s” hidden neurons (unknown variables), and output
neuron (predicted ice concentration). Figure 5.7 shows the MNN structure [2-s-g-1]; it
represents “2” source neurons, “s” hidden neurons for both the local experts and the

gating network (unknown variable), “q” gating output neurons (unknown variable), and

“1” network output neurons.
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Figure 5.6 FFNN structure of batch model [2-s-1].
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Figure 5.7 MNN structure of batch model [2-s-q-1].

Consider the prediction network for a single poiﬁt without abrupt changes in the values of
the ice concentration over a short time period. In the processing stage of both FFNN and
MNN, I used the backpropagation learning algorithm, the Extended-Delta-Bar-Delta
(EDBD) learning rule, the hyperbolic tangent transfer function, a learning rate of 0.3, and

a momentum coefficient of 0.4. Based on the size of the available dataset, a total 603

different patterns were created.

Several tests were conducted to optimize the structure of the neural network. As specified
in Table 5.1, it was concluded that the optimal structure of feedforward neural network

was [2-8-1], and of the modular neural network was [2-8-5-1]; meaning it has the lowest

root-mean-square (RMS) error. Table 5.1 and
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Figure 5.8 illustrate the batch model network results for both FFNN and MNN. The
results show that the MNN network performs better than the FFNN, a conclusion that

agrees with that of El-Rabbany et al. (2002) concluded.

Table 5.1 Results of batch model for a single point (without abrupt changes).

Sympols Without abrupt changes
FFNN MNN

N (Total set) : 603 603
Ng ( Testing set ) 50 50
Nep( Training set ) 503 503
Ny/( Validation set ) 50 50
Strucure [2-8-1] [2-8-5-1]
RMS ( Testing ) 0.1530 0.2410
RMS ( Training ) 0.2318 0.2204
RMS ( Validation ) - 0.2744 02118
CORR ( Testing ) 0.9696 0.9323
CORR ( Training ) 0.9307 0.9377
CORR ( Validation )  0.8983 0.9438

Several tests were conducted to optimize the structure of the neural network. As specified
in Table 5.1, it was concluded that the optimal structure of feedforward neural network
was [2-8-1], and of the modular neural network was [2-8-5-1]; meaning it has the lowest

root-mean-square (RMS) error. Table 5.1 and

Figure 5.8 illustrate the batch model network results for both FFNN and MNN. The
results show that the MNN network performs better than the FFNN, a conclusion that

agrees with that of El-Rabbany et al. (2002) concluded.
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Figure 5.8 Actual versus predicted ice concentration values of batch model for the year

1998 — a single point (without abrupt change).

Table 5.2 Results of batch model for a single point (with abrupt changes).

Sympols With abrupt changes
FFNN MNN

N (Total set) 603 603
Ng ( Testing set ) 50 50
Np( Training set ) 503 503
Ny/( Validation set ) 50 50
Strucure [2-10-1] [2-8-5-1]
RMS ( Testing ) 0.2735 0.2750
RMS ( Training ) 0.2762 0.2550
RMS ( Validation ) 0.2827 0.2640
CORR ( Testing ) 0.9088 0.9079
CORR ( Training ) 0.9007 0.9158
CORR ( Validation 0.8880 0.9058
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Consider the prediction network for a single point with abrupt changes in the values of
the ice concentration over short time periods. In the processing stage of both FFNN and
MNN, I used the same design aspects (mentioned above) as were used throughout the
work. Several tests were conducted to optimize the structure of the neural network. It was
concluded that the optimal structure of feedforward neural network was [2-10-1] and of

the modular neural network was [2-8-5-1] as specified in Table 5.2.
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Figure 5.9 Actual versus predicted ice concentration values of batch model for the
year 1998 a single point (with abrupt changes).

Table 5.2 and

Figure 5.9 illustrate the batch model network results for both FFNN and MNN, showing
that the performances of both networks were almost the same. However, although the
trained network represented the training dataset reasonably well, the network prediction
was rather poor: The average value of the normalized RMS exceeded 0.25 because of the

abrupt changes in the values of the ice concentration. 1 therefore followed another
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approach — the sequential approach, proposed by El-Diasty et al. (2002) and El-Rabbany
and El-Diasty (2003).

5.5 Results and Discussion of Sequential Method

In this approach, the immediate past values of the ice concentration are used as input to
the network, while future values of the ice concentration are used as the desired (i.e.,
actual) output. In the subsequent epochs, the training patterns are time-shifted as shown

in Figure 5.10. Based on the size of the available dataset, a total 599 different patterns

were created.

Entire training dataset

¢ = Total concentration
z_= Input value

4 = Output value

Pattern number

Figure 5.10 Training patterns used in the sequential approach.

The dataset was divided into three subsets: training, testing, and validation (Figure 5.11).
The first 50 patterns were assigned to the testing subset, while the last 50 patterns were
assigned to the validation subset. The training subset was selected to represent the middle
portion of the dataset, i.e., 499 patterns. The training was stopped based on testing the
generalization performance of the neural network using the testing subset. After training
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and testing the network, the model was generalized to predict ahead the last 50 patterns of

the dataset and compared the results with the actual values of the ice concentration. This

was done in a sequential manner to emulate the real-time condition.
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Testing dataset

Training dataset

Validation dataset

P = Pattern number

S = Test number
T = Train number
V = Valid number
in = Input value
out = Output value

Figure 5.11 Selection of testing, training and validation data subsets.

This method was applied in two cases. The first case is a single-point modeling, in which

the ANN was established based on the entire dataset for the records of one point only.

The second case is regional modeling, in which the ANN was constructed based on the

entire datasets for the records of a number of points in the Gulf of St. Lawrence.

5.5.1 Single-Point Modeling in Sequential Method

The two artificial neural network structures, FFNN and MNN, were built using

NeuralWorks. As shown in Figure 5.12, the FFNN structure [4-s-1] consists of “4” input

neurons (past values of ice concentration), “s” hidden neurons (unknown variable), and

“1” output neuron (predicted ice concentration). Figure 5.13 shows the MNN structure
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[4-s-g-1]. This structure represents “4” source neurons, “s” hidden neurons for both the
_local experts and the gating network (unknown variable), “q” gating output neurons

(unknown variable), and “1” network output neurons.

xo=h =41
Output Layer @ 0 0
AAK &, = Input neuron
7
Wi / \\ Wi ( Past values )
\\ /= Hidden neuron
o s (v Y. = Output neuron

Hidden Layer
1= weight between

neuron (i) and (j)
S = Number of hidden

neurons

/
Input Layer |j
“o 1 3 Ta

Figure 5.12 FFNN structure of sequential mode [4-s-1] — single-point modeling.

Consider the prediction network for a single point without abrupt changes in the values of
the ice concentration over a short time period. In the processing stage of both FFNN and
MNN, I used the same design aspects as mentioned above in section 5.4. Several tests
were conducted to optimize the structure of the neural network. It was concluded that the
optimal structure of the feedforward neural network was [4-15-1] and of the modular

neural network was [4-20-5-1], as specified in Table 5.3.
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Figure 5.13 MNN structure of sequential mode [4-s-q-1] — single-point modeling.

Table 5.3 Results of sequential model for a single point (without abrupt changes).

Sympols Without abrupt changes
FFNN MNN

N (Total set ) 599 599
Ng( Testing set ) 50 50
Np( Training set ) 499 499
Ny,/( Validation set ) 50 50
Strucure [ 4-15-1 ] [ 4-20-5-1 ]
RMS ( Testing ) 0.2256 0.1971
RMS ( Training ) 0.2715 0.2644
RMS ( Validation ) 0.2154 0.2164
CORR ( Testing ) 0.9324 0.9487
CORR ( Training ) 0.9041 0.9094
CORR ( Validation 0.9384 0.9378
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Table 5.3 and Figure 5.14 illustrate the sequential model network results for both FFNN
and MNN. The results show that the performances of FFNN and MNN networks were

almost the same.
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Figure 5.14 Actual versus predicted ice concentration values of sequential model for

the year 1998 — a single point (without abrupt changes).

Consider the prediction network for a single point with abrupt changes in the values of
ice concentration over a short time period. In the processing stage of both FFNN and
MNN, I used the same design aspects as mentioned above in section 5.4. Several tests
were conducted to optimize the structure of the neural network. It was concluded that the
optimal structure of feedforward neural network was [4-15-1] and of the modular neural

network was [4-15-5-1], as specified in Table 5.4.

Table 5.4 and
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Figure 5.15 illustrate the sequential model network results for both FFNN and MNN. The
results show that the MNN network performs slightly better than the FFNN. However,
although the trained network represented the training dataset reasonably well, the
network prediction was still rather poor: The value of the normalized RMS exceeded 0.25
due to the abrupt changes in the values of the ice concentration over a short time period.
This conclusion agrees with what El-Diasty et al. (2002) and El-Diasty and El-Rabbany
(2003a; 2003b) concluded. Therefore, T followed the regional mode of the sequential

model, which was proposed by El-Diasty and El-Rabbany (2003a; 2003b).

Table 5.4 Results of sequential model for a single point (with abrupt changes).

Sympols With abrupt changes
FFNN MNN

N ( Total set ) 599 599
NS ( Testing set ) 50 50
N ( Training set ) 499 499
Ny( Validation set ) 50 50
Strucure [4-15-1] [ 4-15-5-1]
RMS ( Testing ) 0.2033 0.2173
RMS ( Training ) 0.2963 0.2740
RMS ( Validation ) 0.3268 0.2677
CORR ( Testing ) 0.9545 0.9453
CORR ( Training ) 0.8852 0.9019
CORR ( Validation 0.8488 0.9028
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Figure 5.15 Actual versus predicted ice concentration values of sequential model for

the year 1998- a single point (with abrupt changes).

5.5.2 Regional Modeling in Sequential Method

In this section I tried to model 200 points in one structure. The two artificial neural
network structures, FFNN and MNN, were.built using NeuralWorks. As shown in Figure
5.16, the FFNN structure [m-s-c] consists of “m” input neurons (past values of ice
concentration, which equal four times the number of points included in the tested region),
“s” hidden neurons (unknown variable), and “c” output neuron (predicted ice
concentration, which equals the number of points). Figure 5.17 shows the MNN structure
[m-s-q-c]; it represents “m™ source neurons, “s"’ hidden neurons for the local experts and

the gating network (unknown variable), “q” gating output neurons, and “c” network

output neurons.
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Figure 5.17 MNN structure of sequential mode [m-s-q-c] — regional modeling.

Consider the prediction network for a selected region, which includes data with abrupt

changes in the values of ice concentration. In the processing stage of both FFNN and
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MNN, I used the same design aspects mentioned above in section 5.4. Several tests were
conducted to optimize the optimal number of points included in the tested region and the
optimal structure of the neural network. It was concluded that the optimal method to
model 200 points was to divide the study area into sub-regions. The optimal number of
points and the optimal structure of feedforward neural network and modular of seven

regions are specified in Table 5.5.

In this section the results of the first sub-region, namely Region-C.1, are illustrated in
Table 5.6, and results of other sub-regions from Region-C.2 to Region-C.7 are recorded
in Appendix II. It was concluded that the optimal number of points for Region-C.1 equals
30 points, the optimal structure of feedforward neural network is [120-180-30], and of the

modular neural network is [120-60-5-30].

Figure 5.18 and Figure 5.19 illustrate the sequential model network results for both
FFNN and MNN, respectively. It is shown for a randomly selected point without abrupt
changes with in Region-C.1 that the MNN network performs significantly better than the

FFNN.

Figure 5.20 and Figure 5.21 illustrate the sequential model network results for both
FFNN and MNN, respectively, when a point with abrupt changes is considered. The

results show that the MNN network performs significantly better than the FFNN.
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Table 5.5 Summary results of sequential model for all sub-regions.

Sub-regions Optimall FFNN MNN
number structure structure

Region-C.1 30 [ 120-180-30] [120-60-5-30]
Region-C.2 25 [ 100-150-25] [ 100-150-5-25 }
Region-C.3 35 [ 140-210-35] [ 140-280-5-35 ]
Region-C.4 30 [ 120-120-30] [ 120-120-5-30 §
Region-C.5 30 [ 120-270-30 ] [ 120-270-5-30 ]
Region-C.6 25 [ 100-150-25] [ 100-100-5-25 ]
Region-C.7 25 [ 100-150-25 ] [ 100-100-5-25]

Table 5.6 Results of sequential model for the Region-C.1.

Sympols Region-C.1 (30 points)
FFNN MNN
N (Total set ) 599 599
NS( Testing set ) 50 50
NT( Training set ) 499 499
NV( Validation set ) 50 50
Strucure [ 120-180-30 ] [ 120-60-5-30 }
RMS ( Testing ) 0.124 0.089
RMS ( Training ) 0.143 0.095
RMS ( Validation ) 0.163 0.144
CORR ( Testing ) 0.978 0.989
CORR ( Training ) 0.965 0.982
CORR ( Validation 0.958 0.967
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Figure 5.18 Actual versus predicted ice concentration values from FFNN sequential

model for the year 1998 (regional modeling of Region-C.1) — without abrupt changes.
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Figure 5.19 Actual versus predicted ice concentration values from MNN sequential

model for the year 1998 (regional modeling of Region-C.1)— without abrupt changes.
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Figure 5.20 Actual versus predicted ice concentration values from FFNN sequential

model for the year 1998 (regional modeling of Region-C.1) — with abrupt changes.
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Figure 5.21 Actual versus predicted ice concentration values from MNN sequential

model for the year 1998 (regional modeling of Region-C1) — with abrupt changes.
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5.6 Performance of the Best ANN Model

Two approaches were considered in predicting ice concentration in this investigation,
namely the batch and sequential methods. It has been shown that both approaches are
capable of modeling sea ice concentrations. However, a sequential model that uses the
modular neural network structure to model the ice concentrations over a region gave the

best performance results — the average value of the normalized RMS was 0.098.

Table 5.7 The performance of the best ANN model for all sub-regions (sequential

method).

Sub-regions Optimal MNN Average , Training period

number structure performance (%) ( hh:mm:ss )
Region-C.1 30 [ 120-60-5-30 ] 0.911 (00:56:23)
Region-C.2 25 [ 100-150-5-25] 0.902 (01:22:11)
Region-C.3 35 [ 140-280-5-35 ] 0.908 (02:30:41)
Region-C.4 30 [ 120-120-5-30] 0.900 (01:51:35)
Region-C.5 30 [ 120-270-5-30] 0.886 (02:26:45)
Region-C.6 25 [ 100-100-5-25] 0.929 (01:01:01)
Region-C.7 25 [ 100-100-5-25] 0.902 (01:01:01)

Overall - -- 0.905 ---

The performance of the network was measured based on the percentage of correct
prediction — the ratio of the correct network output values and the actual values at the
various points in the test area. The network solutions show that the prediction

performance of the neural network varied between 84% (42 out of 50 were correct) and
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98% (49 out of 50 were correct). Table 5.7 summarizes the average overall performance

of the network over the entire test area (200 points) was 90.5%.

5.7 Comparison of ANN Model with Coupled Ice-Ocean Model

A performance comparison was made between the developed neural network model and
coupled ice-ocean model for ice concentration prediction. For that purpose, the accuracy
of a model simulation throughout 1997-98 was checked against available data on ice
concentration. It was shown in this study that, despite the absence of the environmental
data, the average overall performance of the network over the entire test area (200 points)
was 90.5%, while Saucier et al., (2000) concluded that the average performance of the
coupled ice-ocean model was undervalued by 20% (80% accuracy). This result shows
that with regional modeling, the developed neural network model has the capability to
predict the ice concentration values more accurately; even when environmental data are

not available.

97



6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

A batch and a sequential neural network-based model for ice concentration prediction
were developed in this research. In batch model, comparison of feedforward neural
network against modular network was done. It is shown that, batch modular neural
network structure gave the best performance (i.e., the minimum RMS), and therefore was
used in comparison with sequential approach. In Sequential modeling, single-point and
regional modeling were investigated. In both cases, comparison of feedforward neural
network against modular network was done. It has been shown that both approaches are
capable of modeling sea ice concentrations. However, a sequential model that uses the
modular neural network structure to model the ice concentrations over a region gave the

best performance results — the average value of the normalized RMS was 0.098.

The neural network results on batch and sequential models showed that the regional
sequential is significantly better than the Batch model. The regional sequential modular
neural network structure gave the best performance results and therefore was used in
predicting the ice concentration values at a selected test area within the Gulf of St.
Lawrence. It is shown that, despite the absence of the environmental data, the prediction

performance of the neural network varied between 84% and 98%. The average overall

performance of the network over the entire test area of the 200 points was 90.5%.
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The best performed neural network-based model for regional modeling and prediction of
sea ice concentration was a model that uses: (1) initial number of points of 25; (2) the
sequential method for input variables with initial window size of 4; (3) modular neural
network structure with an architecture consisting of half of input nodes in hidden layer
and 5 expert networks; (4) a hyperbolic tangent transfer function; and (5) initial values of

0.3 and 0.4 for the learning rate and the momentum, respectively.

A performance comparison was made between the developed neural network model and
the coupled ice-ocean model for ice concentration prediction. The accuracy of a model
simulation for 1997-98 was checked against available data on ice concentration for that
purpose. It is shown that, despite the absence of the environmental data, the average
overall performance of the network over the entire test area (200 points) was 90.5%,
whilé Saucier et al. (2000) concluded that the average performance of the coupled ice-
ocean model was 80%. This finding shows that the developed neural network model has
the capability to precisely predict the ice concentration values in a sequential manner,

even when environmental data are not available.

6.2 Recommended Future Works

As illustrated in third chapter, changes in environmental conditions such as temperature
and salinity are of major importance as they directly influence the ice formulation. To
further enhance the prediction capability, a future version of the model should include
environmental data and other ice parameters, e.g., the partial ice concentrations and the

stages of development of the ice types.
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A hybrid model, which integrates artificial neural network and wavelet method, should be

tested for predicting total ice concentration.
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APPENDIX I: COUPLED ICE-OCEAN PARAMETERS

Parameters

i Values

1) Sea water density

p, =10 kg m™

2) Air density

p,=12kgm”

3) Ice density

p, =0.92x10° kg m”

4) Bottom drag coefficient

C, =2x10°

5) Air-ocean drag coefficient

Cppo =2.6x107° , when
0<|UA|<11ms"1

6) Air-ocean drag coefficient

Cpo =(1.89+0.065)x107°|U
|UA|211 ms'

, when

7) Ice-ocean drag coefficient

Cpp =1.52x107

8) Air-ice drag coefficient

Cpyr = Chio

9) Specific heat of sea water

Cpp =3.99x10° J kg™ K

10) Specific heat of air

C,, =1008x10° J kg K™

11) Air-ocean sensible heat transfer

Cyp =3.5x107 , when T, > T,

12) Air-ocean sensible heat transfer

Cy =0.66x107°, when T, 2T,

13) Air-ice sensible heat coefficient

C,, =3.9%x107

14) Ice-ocean sensible heat coefficient

Cgp =4x% 107

15) Air-ocean latent heat transfer

C,o=115x10"

coefficient

16) Air-ice latent heat transfer C  =C
coefficient Lal Lao

17) Solar constant S°=1353W m”’

18) Stefan Boltzmann,s constant

G =5.68x10°*Wm?* K™
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19) Emissivity of sea water, ice, and
Snow

20) Ice salinity

21) Background viscosity coefficient

22) Background diffusion coefficient

23) Von Karman constant k=04

24) Gravitational acceleration g=9.8ms™
25) Albedo of ice o, =0.64
26) Albedo of sea water a, =010
27) Albedo of Snow ay, =0.75

28) Latent heat of vaporization of sea
water

L, =2.501x10° J kg

29) Latent heat of fusion of the sea
water

L, =3.347x10°J kg™’

30) Latent heat of ice/snow
sublimation

L, =2.834x10° J kg™’

31) Snow thermal conductivity

K. =031W m'K™'

32) Ice thermal conductivity

K,=217W m™K"'
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APPENDIX II: SUPPLEMENTRY RESULTS

1. Results of Region-C.2.

Results of sequential model for the Region-C.2.

Sympols Il;{;ii;n-c.z 25 I\]jI(I)\iIrI:s)
N (Total set) 599 599
NS( Testing set ) | 50 50
Ny ( Training set ) 499 499
Ny( Validation set ) 50 50
Strucure [ 100-150-25 ] [ 100-150-5-25 ]
RMS ( Testing ) 0.1691 0.1261
RMS ( Training ) 0.14055 0.0856
RMS ( Validation ) 0.2219 0.2040
CORR ( Testing ) 0.9614 0.977
CORR ( Training ) 0.9750 0.9900
CORR ( Validation)  0.929 0.9373
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2. Results of Region-C.3.

Results of sequential model for the Region-C.3.

Sympols Region-C.3 (35 points)
FFNN MNN

N (Total set) 599 599
NS( Testing set ) 50 50
Np( Training set ) 499 499
Ny/( Validation set ) 50 50
Strucure [ 140-210-35 ] |[ 140-280-5-35 ]
RMS ( Testing ) 0.1392 0.1084
RMS ( Training ) 0.1102 0.0810
RMS ( Validation ) 0.2040 0.1947
CORR ( Testing ) 0.973 0.986
CORR ( Training ) 0.980 0.989
CORR ( Validation)  0.9353 0.943
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3. Results of Region-C.4.

Results of sequential model for the Region-C.4.

Sympols ;{glg\;;n-c.4 (30 l\I/)I(I)\']u;\;s)
N ( Total set) 599 599
Ng ( Testing set ) 50 50
N ( Training set ) 499 499
NV( Validation set ) 50 50
Strucure [ 120-120-30 ] [ 120-120-5-30 |
RMS ( Testing ) 0.1635 0.157
RMS ( Training ) 0.1146 0.071
RMS ( Validation ) 0.2814 0.235
CORR ( Testing ) 0.964 0.970
CORR ( Training ) 0.981 0.992
CORR ( Validation)  0.882 0.924
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4. Results of Region-C.5.

Results of sequential model for the Region-C.5.

Sympols ;{;Ig\lil(\)ln-C.S (30 mw)
N ( Total set) 599 599
NS( Testing set ) 50 50
N ( Training set ) 499 499
Ny( Validation set ) 50 50
Strucure [ 120-270-30 ] |[ 120-270-5-30 |
RMS ( Testing ) 0.193 0.1563
RMS ( Training ) 0.160 0.1222
RMS ( Validation ) 0.267 0.2679
CORR ( Testing ) 0.947 0.955
CORR ( Training ) 0.963 0.978
CORR ( Validation 0.878 0.878
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5. Results of Region-C.6.

FFNN results of sequential mode for the Region-C.6.

Sympols }l};ﬁ;n—Cﬁ 25 hﬁ;i;m)
N (Total set) 599 599
NS ( Testing set ) 50 50
N ( Training set ) 499 499
Ny/( Validation set ) 50 50
Strucure [ 100-150-25 ] { 100-100-5-25 ]
RMS ( Testing ) 0.157 0.0958
RMS ( Training ) 0.139 0.089
RMS ( Validation ) 0.237 0.219
CORR ( Testing ) 0.957 0.985
CORR ( Training ) 0.972 0.987
CORR ( Validation 0.864 0.885
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6. Results of Region-C.7.

Results of sequential model for the Region-C.7.

Sympols Region-C.7 (25 points)
FFNN MNN
N (Total set) 599 599
Ng ( Testing set ) 50 50
N ( Training set ) 499 499
NV( Validation set ) 50 50
Strucure [ 100-150-25 ] [ 100-100-5-25]
RMS ( Testing ) 0.0908 0.063
RMS ( Training ) 0.1069 0.082
RMS ( Validation ) 0.2081 0.205
CORR ( Testing ) 0.981 0.993
CORR ( Training ) 0.976 0.985
CORR ( Validation 0.7730 0.786
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