

ESTIMATION OF WEIBULL PARAMETERS USING ARTIFICIAL NEURAL NETWORK

By

Md. Sujauddin Mallick

B.Sc. in Mechanical Engineering,1998

Bangladesh University of Engineering & Technology

An MRP

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Engineering

in the program of

Mechanical and Industrial Engineering

 Toronto, Ontario, Canada

 © Md. Sujauddin Mallick 2019

ii

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this MRP. This is a true copy of the MRP, including

any required final revisions.

I authorize Ryerson University to lend this MRP to other institutions or individuals for the

purpose scholarly research.

I further authorize Ryerson University to reproduce this MRP by photocopying or individuals or

by other means, in total or part, at the request of other institutions for the purpose of scholarly

research.

I understand that my MRP made electronically available to the public.

iii

Abstract

Estimation of Weibull Parameters Using Artificial Neural Network

Master of Engineering Project, 2019

Md. Sujauddin Mallick

Mechanical and Industrial Engineering

Ryerson University

Weibull distribution is an important distribution in the field of reliability. In this distribution

usually there are two parameters. The usual parameter estimation method is maximum likelihood

estimation. Maximum likelihood estimation requires mathematical formulation and prior

assumption. Non parametric method such as neural network does not require prior assumption

and mathematical formulation. They need data to formulate the model. In this report feed

forward neural network with back propagation is used to estimate the parameters of a two-

parameter Weibull distribution based on four Scenarios. The Scenario consists of training and

test data set. Training and test data set generated through simulated time to failure events using

wblrnd function in MATLAB. The input to the network is time to failure, and the output is

shape and scale parameters. The network is trained and tested using trainbr algorithm in

MATLAB. The network performed better on Scenario 2 which has the larger number of training

examples of shape and scale.

iv

Acknowledgements

The author would like to thank Dr. Sharareh Taghipour for offering a project on artificial neural

network for Weibull parameter estimation. The author would like to express his sincere gratitude

for her time and continued guidance for completing the project. Her timely advice and assistance

kept me inspired and confident to complete the project.

Finally, the author would like to thank his family for their inspiration and support.

v

Table of contents

Abstract…………………………………………………………………………………………...iii

Acknowledgements……………………………………………………………………………… iv

List of Tables……………………………………………………………………………………..vi

List of Figures…………………………………………………………………………………... vii

1. Introduction……………………………………………………………………………………..1

2. Fundamental of Artificial Neural Network……………………………………………………..4

2.1 Neurons………………………………………………………………………………………..4

2.2 Biological Neuron……………………………………………………………………………..4

2.3 A General Artificial Neural Network Model……………………………………………….....5

2.4 Activation functions…………………………………………………………………………..6

2.4.1 Threshold function………………………………………………………………………….6

2.4.2 Piecewise linear function……………………………………………………………………7

2.4.3 Sigmoid function……………………………………………………………………………7

2.5 Network architecture………………………………………………………………………..9

3. Learning algorithm in neural network……………………………………………………….10

4. MATLAB and Neural network………………………………………………………………16

5. Data Description……………………………………………………………………………...18

6. Proposed Neural Network…………………………………………………………………….20

7. Snapshot in MATLAB………………………………………………………………………..21

8. Results and Discussion……………………………………………………………………….26

9. Conclusion……………………………………………………………………………………30

Appendices………………………………………………………………………………….........31

References………………………………………………………………………………….........39

vi

List of Tables

Table 1. Results of scenario 1 …………………………………………………………………...26

Table 2. Results of scenario 2……………………………………………………………………26

Table 3. Results of scenario 3 …………………………………………………………………...27

Table 4. Results of scenario 4……………………………………………………………………27

Table 5: Percentage error during training of 500-20 data set……………………………………35

Table 6: Percentage error during testing of 50-20 dataset…………………………………….....37

vii

List of Figures

Figure 1. Biological Neuron ……………………………………………………………………...4

Figure 2. Model of neuron ………………………………………………………………………..5

Figure 3.Threshold function ……………………………………………………………………...6

Figure 4. Piece wise function ……………………………………………………………..............7

Figure 5. Sigmoid function ……………………………………………………………………….8

Figure 6. Simple feed forward neural network …………………………………………………...9

Figure 7. Flow diagram of backpropagation algorithm ………………………………………....11

Figure 8. Proposed feed forward neural network………………………………………………..20

Figure 9. Code for network 20-5-2……………………………………………………………....21

Figure 10. Training progress of network 20-5-2………………………………………………....21

Figure 11. Best training performance plot of network 20-5-2…………………………………...22

Figure 12. Training state plot of network 20-5-2………………………………………………...22

Figure 13. Regression plot of network 20-5-2…………………………………………………...23

Figure 14.Coding for network 20-7-2……………………………………………………………23

Figure 15. Training progress of network 20-7-2…………………………………………………24

Figure 16. Best training performance plot of network 20-7-2…………………………………...24

Figure 17.Training state of network 20-7-2…………………………………………………….. 25

Figure18. Regression plot of network 20-7-2…………………………………………………....25

Figure 19.Screenshot for training data of Scenario 1……………………………………………31

Figure 20.Screenshot for testing data of Scenario1 ……………………………………………..31

Figure 21.Screenshot for training data of Scenario2…………………………………………….32

Figure 22.Screenshot for testing data of Scenario2……………………………………………...32

Figure 23.Screenshot for training data of Scenario3…………………………………………….33

Figure 24.Screenshot for testing data of Scenario3……………………………………………...33

viii

Figure 25.Screenshot for training data of Scenario4…………………………………………….34

Figure 26.Screenshot for testing data of Scenario4……………………………………………...34

1

1. Introduction

There is no denying the fact that Weibull distribution is an essential distribution in the field

of reliability. It is used to model for not only increasing failures, but also for decreasing

failures and commonly used in reliability engineering, medical study, quality regulation,

financial affairs, and particle size explanation. It can take the attributes of other form of

distributions such as exponential distribution and the normal distribution. In statistical

literatures, the Weibull distribution usually appears in the form of two parameters [1].

The probability density function is given below [1].

𝑓(𝑡) =

𝛽

𝜃

𝑡

𝜃

 (1)

Then, The Cumulative Density Function will be [1].

𝐹(𝑡) = ∫ 𝑓(𝑡) 𝑑𝑡 = ∫ 𝑓(𝑡) =

𝑑𝑡=1-𝑒

(2)

The Reliability function will be [1].

𝑅(𝑡)=𝑒

 (3)

 t=time variable

ß=Shape Parameter

Ɵ=Scale Parameter

For ß=1, The shape of Probability Density Function (PDF) is close to exponential

distribution.

For ß>3, The shape of Probability Density Function (PDF) is close to normal distribution

The shape parameter is the most important parameter in the Weibull distribution. It explains how

the data is distributed. By using this parameter, interpretations can be made about a population’s

2

failure attributes. The scale is also labeled as characteristic life. It is the 63.2 percentile of the

data. It influences not only the mean but also the spread [1].

Parameter estimation is the process of estimating parameters from reliability data. It can also be

expressed as a classification problem. There are two types of methods in estimating parameters

in a Weibull distribution. They are graphical and analytical method. Graphical method is simple

but the possibility of error is higher. Analytical method is of three types. They are maximum

likelihood estimation, least square method and the method of moments. Maximum likelihood

estimation is a generally used technique. It is a technique which calculates the parameters of a

model provided observations. The maximum likelihood estimator has less chance of error in

comparison with graphical method, however, it needs a lot of iterations. Method of moments is

the technique of estimating population parameters. It begins with deriving equations which is

linked to population moments. After that sample is drawn and the population moments are

estimated from the sample. In least square method, vertical distance is minimized between the

data points. It is introduced in scientific problems [2].

There are various literatures which discussed the parameter estimation of a Weibull distribution.

The commonly used method is the maximum likelihood estimator. Watkins et al. [3] introduced

maximum likelihood estimator for estimating the Weibull parameters for time to failure data. In

another work, Flygen et al. [4] presented the maximum likelihood technique for estimating the

Weibull parameters for interval based data. Least square method is discussed in some studies.

Zhang et al. [5] used least square technique to estimate Weibull parameters. He compared two

Least Square (LS) regression technique for estimating the Weibull parameters. Bütikofer et al.

[6] used least square technique to compare the assessment of a two-parameter Weibull

distribution. Murthy et al. [7] used least square fit technique for estimating Weibull parameters to

investigate wind speed difference.

The analytical method requires presumption and mathematical formulation. Non- parametric

method such as artificial neural network does not require the prior assumption and mathematical

formulation [8].This neural network can do parameter estimation, even if the data is small. An

Artificial neural network is a data- driven approach. It has the features like estimation, learning

from instances and simplification. Because of this, it has gained popularity among researchers.

3

There are over fifty categories of ANN. Among them feed forward network is the simplest and

widely used one [10].

There is also fewer studies available for parameter estimation of reliability data using a feed

forward neural network. One such study is the work of Ming C. Liu [9] et al. who used back

propagation neural network for the parameter estimation of a two-parameter Weibull

distribution. He generated simulated failure data for training the neural network.

The report is based on the scientific paper of Liu et al. [9]. In this report, independent failure data

is generated using Weibull random numbers in MATLAB. After that, feed forward neural

network was applied to estimate the shape and scale parameter of the Weibull distribution in

neural network toolbox in MATLAB. This estimation is not done before in MATLAB to the best

of author’s knowledge.

The report is organized as follows. Section 2 describes the fundamental of artificial neural

network. Section 3 discusses the common method of teaching artificial neural network naming

back propagation algorithm. Neural network tool box and training algorithm in MATLAB are

discussed in Section 4. Section 5 describes the mechanism of generating simulated data based on

two scenarios. The constructions of the proposed feed forward neural network and the training

mechanism are discussed in Section 6. Section 7 displays a snapshot of training in MATAB for

the two scenarios. Section 8 discusses the performance of the proposed network. Section 9

concludes with the positive and negative aspects of artificial neural for estimation of two

parameters of a Weibull distribution. An appendix is given in Section 10.

4

2. Fundamental of Artificial Neural Network

A neural network is a computer program that is built on the structure of a human brain, and

simulates its actions. It has a parallel-distributed construction, and, has natural tendency for

keeping investigational knowledge. This knowledge is used when required [8].

2.1 Neurons

It is the base for functioning of a neural network. Input signal is received here. Then activation

function handles the signal and generates an output signal [8].

2.2 Biological neuron

There are four basic parts of a biological neuron. They consist of Cell body, Dendrites, Synapse

and Axon (Figure 1). Cell body of a neuron is termed as soma. Dendrites are like channels. In the

channels, signals are collected from attached neurons. With these dendrites neurons collect

signals from several neurons. If the aggregate impulses go above a definite threshold, the neuron

is likely to stimulate and ‘fire’. After that, the axon is electrically active. It acts as output which

sent impulse to a neighboring cell. Synapses are the joining points between the dendrites and

axon [11].

Figure1. Biological Neuron [11].

5

2.3 A General Artificial Neural Network Model:

The model of neuron is shown in Figure 2. It is the base for designing artificial neural network

[12].

Figure2. Model of neuron [12].

Let,

Input signals x1, x2,……xm

Synapic weights wk1, wk2, …., wkm

Bias bk

Activation function Φ (.)

Linear output uk

Output signal yk

Input signal xj is fed into the network. Afterwards, it is multiplied by the synaptic weight wkj.

The linear output uk and output signal yk can be written as [12].

 𝑢 ∑ (4)

 𝑦 = ∅(𝑢 + 𝑏) (5)

6

 yk=(uk+bk)

 (6)

2.4 Activation functions

In the activation function multiplication is done between input signals and weights. It is labeled

as Φ. It is likely to replicate to simulate the firing attribute of neurons, which is added at output

end of any neural network. It is also used to determine the output of neural network like yes or

No [12].

There are three types of activation function: They are Threshold function, Piecewise-linear and

sigmoid [12].

2.4.1 Threshold function:

 The threshold function is given below in Equation (7) [12].

𝛷(𝑣) =

1, 𝑖𝑓 𝑣 ≥ 0
0, 𝑖𝑓 𝑣 < 0

(7)

Figure 3.Threshold function [12].

In engineering, the above function calls Heaviside function. It can be designated as unit step

function (Figure 3). By applying this threshold function, the output of neuron k is

7

𝑦 =

1, 𝑖𝑓 𝑣 ≥ 0
0, 𝑖𝑓 𝑣 < 0

 (8)

 𝑣 denotes the local field of neuron

𝑣 = 𝑤 𝑥 + 𝑏

 (9)

2.4.2 Piecewise linear function

The function is given below (Figure 4) [12].

(𝑣) =

⎩
⎪
⎨

⎪
⎧

1, 𝑖𝑓 𝑣 ≥
1

2

𝑣, 𝑖𝑓 +
1

2
> 𝑥 > −

1

2

1 𝑖𝑓 𝑣 ⩽ −
1

2

(10)

Figure 4.Piece wise function [12].

2.4.3 Sigmoid function

Due to its smooth and restricted nature, it is used in neural network. It is monotonic function that

displays a balance between linear and nonlinear nature (Figure 5). The sigmoid function is given

below [12].

8

𝑓(𝑥) =

1

1 + 𝑒

(11)

a is the slope parameter

Figure 5.Sigmoid function [12].

Sigmoid functions with various slopes can be obtained if the slope parameter a is varied. This

function will be threshold function when a becomes infinity. It is seen previously that the

threshold function has the value either 0 or 1. Unlike threshold function, sigmoid function has

continuous value from 0 to 1. Another aspect of sigmoid function is that it is differentiable;

however, there is no differentiation in threshold function [12].

In equation (7), (10) and (11) activation function varies from 0 to +1. Sometimes this range is

from -1 to +1 [12].

 Now from equation (7) the threshold function is given below [12].

(𝑣) =

1 𝑖𝑓 𝑣 > 0
 0 𝑖𝑓 𝑣 = 0

 −1 𝑖𝑓 𝑣 < 0

(12)

Equation (12) is also called the signum function. The Hyperbolic tangent function may be used

for an equivalent form of the sigmoid function. It is shown below [12].

 ∅(𝑣) = tanh (𝑣) (13)

9

2.5 Network architecture:

The most common type of neural network is called a feed forward neural network. It is shown in

Figure 6. It may comprise of various neurons. The neurons are labelled as nodes. The nodes are

organized in layers. A feed –forward neural network is designed in such a way that information

flow is unidirectional. No cycles formed between the nodes [13].

Figure 6.Simple feed forward neural network [13].

There are three forms of nodes on a feed –forward neural network

1. Input Nodes: Data is fed into input nodes. They are jointly depicted as “Input Layer”.

Calculation is not performed in input nodes [13].

2. Hidden Nodes: It has indirect connections with the data. The hidden node is doing

calculation and information transmission from the input layer to output layer. The group

of hidden nodes is called “Hidden Layer”. There may be a one input and output layer in

feed forward neural network. The network may have zero hidden layer [13]

3. Output Nodes: The group of output nodes are called Output Layer. Computation and

information transmission is performed from network to user [13].

10

3. Learning algorithm in neural network

Learning is the ability to improve behavior based on learning. The purpose of the learning rule is

to train the network to perform some task [12]. They are of three types:

Supervised learning: Network is given, input and corresponding output. This is called labeled

data. External teacher is giving input-output to the network. Input output pattern is fed to the

network [14]. In this report, supervise learning is used.

Unsupervised learning: In this case only input is given. There is no label on the data. The

Cluster is done based on input data. It is also called self-organization which means that system

will likely to develop its representation based on the input data [14].

Reinforcement learning: It is the intermediate form of learning between supervised and

unsupervised learning algorithms. After the feedback response is received by the learning

machine from the environment, grading is done based on the environmental response [14].

There is a different learning algorithm for feed- forward neural network. Back propagation is one

of the popular algorithms. Here network is provided with some training examples. Then the

target output is compared with the network output over a definite time through weight

adjustment. The backward transmission error is performed by correlating the actual output with

desired output during the training. The network performance is optimized by fine tuning weights

in the backward route. Training technique is performed as long as the desired output is provided

by the network. The algorithm is likely to give reasonable results for the unknown data.

Because of the generalization property, it can produce good results even if we do not train on all

possible input output pairs [8].

Derivation of back propagation algorithm is given below [12]. Figure 7 shows the flow diagram.

Notation

i,j,k represents various neurons in the neural network

n no of training examples

ε(n) squared error function

11

εav(n) average of squared error function

ej(n) error signal

dj(n) expected output

Figure 7. Flow diagram of backpropagation algorithm [12].

yj (n) functional signal acting at neuron j

wji synaptic weight linking between the ith neuron to jth neuron

vj(n) local field

Φj(.) activation function

bj bias

xi (n) input vector

ok (n) total output vector

ɳj learning rate

12

ml nodes in layer l

The error signal at output j can be expressed as [12].

 𝑒 (𝑛) = 𝑑 (𝑛) − 𝑦 (𝑛) (14)

Immediate value of the squared error function for neuron j is [12].

𝜀(𝑛) =

1

2
 𝑒 (𝑛)

(15)

C all the neurons in the output layer

 Summing 𝜀(𝑛) over n and normalizing regard to the size N, Where N represents the total

number of instances in the training set [12].

𝜀 =

1

𝑁
 𝜀

(16)

𝜀(𝑛) and 𝜀 is a function of biases and weights. εav indicates the cost function which is an

indicator of learning performance [12].

Local field of neuron j is given below [12].

𝑣 () 𝑤 (𝑛)𝑦𝑖(𝑛)

(17)

At neuron j functional signal on iteration n is [12].

 𝑦 𝛷 (𝑣 (𝑛)) (18)

In synaptic weight wji(n), correction ∆wji (n) is applied by back propagation algorithm It is

relational to the partial derivative. The Gradient is given below by using the chain rule in

calculus [12]

13

 ð𝜀(𝑛)

ð𝑤 (𝑛)
=

ð𝜀(𝑛)

ð𝑒 (𝑛)

ð𝑒 (𝑛)

ð𝑦 (𝑛)

ð𝑦 (𝑛)

ð𝑣 (𝑛)

ð𝑣 (𝑛)

ð𝑤 (𝑛)

 (19)

ð ()

ð ()
 signifies a sensitivity element.

Differentiating Equation (15) of both sides,

 ð𝜀(𝑛)

ð𝑒 (𝑛)
 = 𝑒 (𝑛)

(20)

Differentiating Equation (14) of both sides,

 ð𝑒 (𝑛)

ð𝑦 (𝑛)
= −1

 (21)

Differentiating Equation (18),

 ð𝑦 (𝑛)

ð𝑣 (𝑛)
= 𝛷 ˈ(𝑣 (𝑛))

(22)

 prime denotes differentiation with regard to the argument

Lastly, differentiating Equation (17) with regard to wji(n)

ð𝑣 (𝑛)

ð𝑤 (𝑛)
= 𝑦 (𝑛)

Using Equation (20), (21), (22), and (23) in (19)

(23)

ð𝜀(𝑛)

ð𝑤 (𝑛)
= −𝑒 (𝑛) 𝛷 ˈ(𝑣 (𝑛)) 𝑦 (𝑛)

 (24)

14

According to delta rule, correction of ∆wji (n) applied to wji (n)

∆𝑤 (n) = −ɳ

ð𝜀(𝑛)

ð𝑤 (𝑛)

(25)

In Equation (25), ɳ is learning rate parameter. The meaning of minus sign that it is searching

for changing weight, which decrease the value of 𝜀(𝑛). It is called gradient descent [12].

From equation (25) & (26),

 ∆ 𝑤 (n) = ɳ 𝛿 (n) 𝑦 (𝑛)

 (26)

where 𝛿 is local gradient. The definition of 𝛿 is given below [12].

𝛿 (n) = −
ð𝜀(𝑛)

 ð𝑣 (𝑛)

 = −

ð𝜀(𝑛)

ð𝑒 (𝑛)

ð𝑒 (𝑛)

ð𝑦 (𝑛)

ð𝑦 (𝑛)

ð𝑣 (𝑛)

 = −𝑒 (𝑛)(−1) 𝛷 ˈ(𝑣 (𝑛))

(27)

 = 𝑒 (𝑛) 𝛷 ˈ(𝑣 (𝑛))

There is a need for modifications in synaptic weights. It is called local gradient. The local

gradient is the multiplication of error signal and derivative 𝛷 ˈ(𝑣 (𝑛)) of the accompanying

activation function [12].

15

It can be seen from equations (26) and (27) that the error signal 𝑒 (𝑛) is the main element in

computation of weight adjustment∆ 𝑤 (n) [12].

16

4. MATLAB and Neural Network

MATLAB denotes matrix laboratory. The MATLAB software has an interactive environment. In

this environment, users can perform various activities, such as, algorithm up gradation, data

visualization, and numerical calculation. The MATLAB software has toolboxes. The toolboxes

are a group of functions. The toolbox enables users to apply particular technology [15]. In

MATLAB, there is a neural network toolbox, which has a collection of functions and structures.

It is designed in such a way that code is not needed for activation functions and training

algorithms. It is built on network object. The object has the information, such as, layers structure,

layers number and linkage between the networks. There are different functions for network

creation.They are newlin, newp, and newff. Newlin is for generating a new layer; newp is for

generating a perceptron, and newff is for generating a feed forward backpropagation network. In

the report, newff function is used to make a feed forward neural network [16].

As MATLAB is used to model the feed forward neural network, it is important to know some

training algorithms with this data mining tool. There are different training algorithms to train a

neural network. Some of the training algorithms are given below [17].

traingd: It is the fundamental Gradient descent algorithm. In this algorithm, output error

quantified using local search technique. Here gradient error is measured by tuning weights in the

direction of descending gradient [17].

traingdm: The algorithm is called Gradient descent back propagation momentum. The algorithm

has sharp descent to respond to local gradient and error surface [17].

traingdx : It is called adjusting learning rate. It is quicker in training than traingd [17].

trainrp: It is called resilience back propagation. The effect of partial derivative magnitude is

eliminated through this algorithm. The training algorithm is based on batch mode with quick

convergence. There is a need for less storage [17]

traincgf: It is called conjugate gradient with Fletcher-Reeves. It has the minimum requirements

for storage among all the conjugate gradient algorithms [17].

traincgp: It is called Conjugate Gradient back propagation with Polak-Riebre. There is a need for

marginally larger storage compared to traincgf. Convergence is usually quicker [17].

17

trainscg: It is called Scaled Conjugate Gradient. Line search is not necessary in every iteration.

As there is no line search, there is a significant reduction of calculation. But more iteration is

needed compared to the other methods [17].

trainbfg: It is called Broyden-Fletcher-Goldfrab-Shanno quasi –Newton method. There is a need

for more storage of the estimated Hessian matrix. It has more calculation in each iteration than

Conjugate Gradient algorithms; however, converge in less iteration [17].

trainlm: It is called Levenberg-Marquardt back propagation algorithm. The algorithm is quickest

for medium sized network. Because of its memory reduction attribute, it is used for large training

set [17].

trainbr: It is called Bayesian Regularization algorithm. The algorithm modifies the trainlm

algorithm and generate networks that generalize well. Optimum network architecture can be

determined by this algorithm [17].

Reason for chosing trainbr algorithm:

There are different types of training algorithm. In this report for training neural network, trainbr

algorithm is used. The reason is as follows: first, it is suitable for noisy and small data; second,

In the algorithm, weight and bias values are upgraded in line with the Levenberg-Marquardt

optimization and reduces squared errors and weights; third, for generalization the algorithm

determines the right combination; fourth, it can give information about effective use of network

parameters, and finally, there is no need for separating the validation data set from training data

set [17].

18

5. Data Description

Simulation study is conducted to estimate the Weibull parameters. In the simulation study,

random failure data is generated through wblrnd function by varying actual shape and scale in

MATLAB. Two scenarios were considered:

Scenario 1: It consists of two data sets. They are training and test set. For training, 200 random

values of shape and scale taken. Shape value varied between 0.9 to 9.99. Scale value varied

between 120 to 5800. For each shape and scale, 20 times to failure events created using the

wblrnd function in MATLAB. It can be denoted as 200-20. For testing, 50 examples created

based on actual shape and scale parameters. Each example has 20 times to failure as independent

events. This is denoted as 50-20. In each scenario, logarithm of scale is taken before training.

Screenshot of training and test data set are shown in the appendix.

Scenario 2: There are two types of data set which are training and testing data. In Training data

500 random values of shape and scale are taken. Shape value varied between 0.5 to 9.98. Scale

value varied between 250 to 4900. Each example has 20 times to failure as independent events.

It can be denoted as 500-20. For testing, 50 examples created based on actual shape and scale

parameters. In each scenario, logarithm of scale is taken before training. Screenshot for training

and test data set are shown in the appendix.

Scenario 3: It is an extension of Scenario 1. In this Scenario, 30 times to failure events created

based on each example of shape and scale. This is denoted as 200-30. For testing, 50 examples

created based on actual shape and scale. It can be denoted as 50-30.

Scenario 4: It is an extension of Scenario 2. In this Scenario, 30 times to failure events created

for each example of scale and shape. It is denoted as 500-30. For testing, 50 examples created

based on actual shape and scale. This is denoted as 50-30.

Before feeding data in the neural network for training, data is normalized for decreasing the

convergence time. In this report, scaling is performed in MATLAB by using the function

mapminmax. The coding of mapminmax function is given below;

[pn,ps]=mapminmax(p);

[tn,ts]= mapminmax(t);

19

Input and output are denoted as p and t. pn and tn are normalized input and output. The value of

this normalization falls in the interval [-1, 1]. ps and ts are the lowest and highest values of the

original inputs and outputs [18].

20

6. Proposed Neural Network

Feed forward network with back propagation is used to estimate the Weibull parameters. The

network structure consists of an input layer, hidden layer and output layer (Figure 8). Input

values are time to failure and output values are scale and shape parameters. For the Scenarios,

two networks proposed. In one network, there are 20 neurons in the input layer as there are 20

times to failure events in each example of the dataset. In another network, there are 30 neurons in

the input layer as there are 30 times to failure events in each example of the data set. In both the

network, there are two neurons in the output layer which are scale and shape. Time to failure

depicted as TTF. Scale and shape denoted as Ɵ and ß. Hidden neuron is selected based on trial

and error. By varying hidden neuron different topology of network created, for example, 20-5-2

denotes that the network is configured based on twenty inputs, 5 hidden neurons and 2 outputs.

.

.

.

.

Figure8. Proposed feed forward neural network

TTF1

TTF2

Ɵ

ß

TTFn

Input Layer Hidden Layer Output Layer

21

7. Snapshot in MATLAB

The snapshot shows the training data set of Scenario 1 and Scenario 2. It shows how the coding

is done in forming neural network, training progress window, best training performance, training

state and regression.

In Scenario 1, training data set is 200-20. It is experimented in neural network tool box in

MATLAB. The sequence is given in the screen shot below. Coding of the neural network in

Command window is shown in Figure9.

Figure 9. Code for network 20-5-2

Figure10. Training progress of network 20-5-2

22

Figure10 represents a summary of the training. In this summary, Epoch, Time, Performance,

Gradient, Mu, Effective parameter, Sum Squared Parameter, and validation checks are shown.

Next three useful plots are offered by the training algorithm of neural network which are used to

evaluate the performance of neural network (Figure 10). They are: Performance, Training state

and Regression. Figure.11 is a performance plot for the best training performance. It shows the

best training performance is .0077435 at epoch 513.

Figure 11. Best training performance plot of network 20-5-2

The training state is shown in Figure 12. It shows graphically the status of the gradient at epoch,

Mu, Num parameters, Sum Squared Parameters, and Validation checks.

Figure12. Training state plot of network 20-5-2

23

Finally, regression plot is shown in Figure 13. It shows network outputs with targets for training

and testing data.

Figure13. Regression plot of network 20-5-2

Similarly, the snapshot is shown in Scenario 2 for training data set 500-20, the network topology

is 20-7-2. Here Coding for setting neural network, summary of training, best training

performance, training state, & regression plot are shown sequentially.

Figure 14.Coding for network 20-7-2

24

Figure15. Training progress of network 20-7-2

Figure16. Best training performance plot of network 20-7-2

25

Figure17.Training state of network 20-7-2

Figure18. Regression plot of network 20-7-2

26

8. Results and Discussion

Different network topology created based on different hidden neurons. Eight network topologies

created for each of the scenarios. To determine the network performance, average percentage

error is taken as the indicator of the network performance. It is the sum of the difference between

actual output and network output. Then, it is divided by the total no of examples. Results are

shown in Tables 1 and 2.

Table 1: Results of Scenario 1

 Network
Topology

Training
algorithm

Hidden
Neuron

Average percentage
error (Training)

Average percentage error
(Testing)

Scale
log(Ɵ)

Shape
 (β)

Scale
 log(Ɵ)

Shape
 (β)

1 20-5-2 trainbr 5 0.9711 13.97 1.127 25.72
2 20-6-2 trainbr 6 1.157 9.541 1.214 34.35
3 20-7-2 trainbr 7 0.8600 10.09 0.9051 50.29
4 20-9-2 trainbr 9 0.6000 5.799 0.7838 38.43
5 20-11-2 trainbr 11 0.5183 5.025 0.6692 38.65
6 20-13-2 trainbr 13 0.4575 5.752 0.9933 52.76
7 20-15-2 trainbr 15 0.3119 6.852 0.6737 38.06
8 20-17-2 trainbr 17 0.3147 4.667 0.9860 38.97

Table 2: Results of Scenario 2

 Network
Topology

Training
algorithm

Hidden
Neuron

Average percentage
error (Training)

Average percentage error
(Testing)

Scale
log(Ɵ)

Shape
 (β)

 Scale
 log(Ɵ)

Shape
 (β)

1 20-5-2 trainbr 5 1.139 21.54 0.9828 25.72
2 20-7-2 trainbr 7 1.020 16.34 0.9212 22.51
3 20-8-2 trainbr 8 0.9968 16.09 1.209 27.97
4 20-9-2 trainbr 9 0.8242 13.59 0.9335 33.47
5 20-11-2 trainbr 11 0.9214 10.35 1.035 30.98
6 20-13-2 trainbr 13 0.8047 9.961 1.164 33.29
7 20-15-2 trainbr 15 0.7581 11.92 0.9830 31.56
8 20-17-2 trainbr 17 .6673 9.924 1.161 36.70

27

Table 3: Results of Scenario 3

 Network
Topology

Training
algorithm

Hidden
Neuron

Average percentage
error (Training) %

Average percentage error
(Testing) %

Scale
log(Ɵ)

Shape
 (β)

Scale
 log(Ɵ)

Shape
 (β)

1 20-5-2 trainbr 5 1.057 7.363 0.8849 40.45
2 20-6-2 trainbr 6 0.9395 7.063 1.143 39.17
3 20-7-2 trainbr 7 0.6774 6.590 1.048 44.55
4 20-9-2 trainbr 9 0.5545 6.730 1.385 31.79
5 20-11-2 trainbr 11 0.3295 2.887 2.567 42.66
6 20-13-2 trainbr 13 0.3842 7.597 1.615 48.18

Table 4: Results of Scenario 4

 Network
Topology

Training
algorithm

Hidden
Neuron

Average percentage
error (Training) %

Average percentage error
(Testing) %

Scale
log(Ɵ)

Shape
 (β)

 Scale
 log(Ɵ)

Shape
 (β)

1 20-5-2 trainbr 5 1.072 21.18 1.307 51.01
2 20-7-2 trainbr 7 1.046 16.53 1.321 60.27
3 20-8-2 trainbr 8 0.9631 17.08 1.174 55.57
4 20-9-2 trainbr 9 .8494 12.26 1.495 49.36
5 20-11-2 trainbr 11 0.6588 11.61 1.078 47.10

Table 1 is the result of the first scenario for training and testing data. From the table it is seen

that the average percentage error for scale varies between 0.3119% to 1.157% and 0.6692% to

1.214% in training and testing data. This error is acceptable. But there is variation in average

percentage error of shape. It is seen from the table that the percentage error for shape is 4.667%

during training for the network topology 20-17-2. It is the least error among all the network

topology, however, when it is tested with new data which is not trained earlier, the average

percentage error for shape is 38.97%. In another network topology of 20-5-2, the average

percentage error during training for shape is 13.97% which is higher than 20-7-2. But the

average percentage error for shape during testing of this network is 25.72% which is better than

any other network topologies. For topology 20-6-2 and 20-7-2 poor training performance result

in poor testing performance of shape. During training, network topology of 20-9-2, 20-11-2 and

20-13-2 has a similar average percentage error for the shape, the testing performance is good for

20-9-2. Finally, it had been found that the network topology 20-5-2 is better than any other

network topologies because it has less average percentage error during testing and better

prediction capacity.

28

The results of the second scenario are shown in the Table 2. In training and testing data, average

percentage error for scale varies between 0.6673% to 1.02% and 0.9212 to 1.209% for training

and testing data. This error is acceptable. There is variation in average percentage error in the

shape parameter. Among all the network topologies, 20-17-2 has the lowest average percentage

error for the shape which is 9.924%. But the testing performance of this network is 36.70%

which is higher than any other network topologies. In another network topology 20-7-2, the

average percentage error during training is 16.34%, although higher than network topology of

20-17-2, the prediction performance is the best in comparison with all the other network

topologies. The testing performance is 22.51 %. Even though the network topology 20-5-2 has

higher average percentage error during training, it has second best testing performance. The

training and testing performance respectively are 21.54% and 25.72%. For topology 20-9-2, 20-

11-2, and 20-15-2, poor training performance result in poor testing performance. So, 20-7-2 is

considered to be better network topology because of its less percentage error during testing.

The results of the third Scenario are shown in Table 3. In this scenario the percentage error for

scale varies between 0.3295% to 1.057% and .8849% to 2.567% during training and testing. But

the result for shape varies. The network topology 20-11-2 has the minimum percentage error for

the shape during training which is 2.887%, however, the testing performance of this network is

42.66%. In another network topology, 20-9-2 the average percentage error for the training is

6.730%, which is higher than the network topology 20-11-2. But the testing performance of this

topology is better than any other network topologies. The testing performance is 31.79%.

Network topology 20-5-2 and 20-6-2 has a similar average percentage error during training; the

testing performance is good for 20-6-2. So, 20-9-2 is better network topology because of its less

percentage error during testing.

The results of the fourth Scenario are shown in Table 4. In this scenario the percentage error for

scale varies between .6588% to 1.072% and 1.078% to 1.495% during training and testing. This

error is acceptable. There is variation in average percentage error in the shape parameter. During

training the network topology 20-11-2 has a minimum average performance error for the shape

which is 11.61%. The testing performance found in this network is 47.10%, which is better than

any other network topologies. The second best testing performance found in network topology of

20-5-2. For network topology of 20-7-2 and 20-8-2, poor training performance results in poor

testing performance. So in this scenario, 20-11-2 is considered better network because of its

testing performance.

29

Considering the above mentioned scenario, it can be stated that by increasing the training

examples, the prediction capacity of the network can be improved. It is due to the fact that when

the network is presented with a lot of examples, it is likely to memorize less from training data.

Another point is that less percentage error during training does not necessarily mean that it will

predict well. It happens because sometimes there is overtraining done to get better training

performance. When the network is tested with new data, it tries to memorize from the training

data. As a result the prediction performance got worse. Considering this situation, it is not wise

to select network only by looking at average percentage error during training unless the network

is tested with new data.

30

9. Conclusion

In this report feed forward neural network with back propagation is used to estimate the two

parameters of a Weibull distribution. The feed forward neural is configured with different hidden

neurons to create various network topologies. The feed network is trained and tested on the four

scenarios where simulated failure data generated using wblrnd function. The training and testing

performance is measured through average percentage error. The network performed well in the

second scenario as it has higher no of training examples.

It is observed that how a simple network can calculate the shape and scale without any

mathematical model. The network requires only a set of logical training examples which is based

on input and output. In the study, the input is considered time to failure data and output is taken

shape and scale parameters. From that, it can comprehend the complex nonlinear connection

through training. The trained network has also the capacity to predict the shape and scale on a

new set of data. The prediction of shape parameter helps experts to make inference on the failure

attribute of a population.

Although the neural network has the benefit in understanding the relationship between input and

output during training, it has drawbacks. Firstly, it needs to train again when there is a change in

network configuration. Secondly, overtraining sometimes degrades the performance of the

network as this happened in both the scenarios. Because of this overtraining, the network may

result in overfitting on the testing data which results in poor prediction. Finally, it is termed as a

black box system. It is very difficult to explain physical explanation of the network. The model

developer has the difficulty in finding the optimal neural network architecture.

The proposed network can be extended for estimation of a three- parameter of the Weibull

distribution. It can be used to calculate the reliability of repairable systems where failure time

follows a non-homogenous Poisson process. It can be further be used for censored data.

31

Appendices

Sample of training and test data

Scenario 1 consists of training and test data sets. Training data is marked as 200-20. Testing data

set marked as 50-20. The sample data set is shown in the screenshot.

Figure19. Screenshot for training data of Scenario1

Figure20. Screenshot for testing data of Scenario 1

32

Scenario 2 consists of training and test data sets. Training data are marked as 500-20. Testing

data set marked as 50-20. The sample data set is shown in the screenshot.

Figure21. Screenshot for training data of Scenario 2

Figure22. Screen shot for testing data of Scenario 2

33

Scenario 3 consists of training and test data sets. Training data are marked as 200-30. Testing

data set marked as 50-30. The sample data set is shown in the screenshot.

Figure23. Screenshot for training data of Scenario 3

Figure24. Screenshot for testing data of Scenario 3

34

Scenario 4 consists of training and test data sets. Training data are marked as 500-30. Testing

data set marked as 50-30. The sample data set is shown in the screenshot.

Figure25. Screenshot for training data of Scenario 4

Figure25. Screenshot for testing data of Scenario 4

35

Training and Testing result for Scenario 2

The topology 20-7-2 has the best prediction performance compared to other topologies in

Scenario 2. Some snapshots are given during training and testing for the actual and network

estimated Shape and Scale parameters, and their percentage error.

Table 3: Percentage error during training of 500-20 data set

Sl No Actual output Network output Average Error

 Scale
Log(Ɵ)

Shape
(β)

Scale
Log(Ɵ)

Shape
(β)

Scale
Log(Ɵ)

Shape
(β)

1 2.477 0.5 2.697 0.8303 0.088 .6606
2 2.398 0.52 2.648 1.488 .1045 1.862
3 2.544 0.55 2.654 0.5000 .0433 .0908
4 2.580 0.57 2.681 0.5368 .0394 .0580
5 2.602 0.60 2.791 .5478 .0728 .0869
6 2.778 0.62 2.815 .5361 .0132 .1352
7 2.628 0.65 2.749 0.5193 0.0462 0.2009
8 2.653 0.7 2.780 0.6701 .0481 .0426
9 2.778 .75 2.803 1.073 .0090 .4307
10 2.845 0.8 2.834 1.082 .0036 .3533
11 3.000 0.82 3.013 .6170 .0044 .2474
12 2.813 0.85 2.947 .6068 .0477 .2860
13 2.903 0.9 2.815 .5319 .0302 .4089
14 2.954 0.94 2.817 0.5380 .0464 .4275
15 3.079 0.92 3.327 .5002 .0805 .4562
16 2.929 .95 2.803 1.058 .0428 .1143
17 2.954 1 2.998 0.9296 .0149 .0703
18 2.690 1.1 2.739 .7593 .0182 .3096
19 2.740 1.12 2.791 .7601 .0187 .3212
20 2.778 1.14 2.747 1.565 .0109 .3728
21 2.813 1.16 2.825 .5260 .0046 .5465
22 3.000 1.18 3.046 .8137 .0156 .3104
23 3.079 1.2 2.926 .5293 .0494 .5588
24 2.978 1.24 2.883 .6143 .0315 .5045
25 3.041 1.26 2.877 .6995 .0539 .4447
26 3.230 1.28 3.378 .5216 .0457 .5924
27 3.130 1.3 3.061 .7448 .0218 .4270
28 3.146 1.32 3.172 .5462 .0083 .5861
29 3.190 1.34 2.935 .5110 .0797 .6186
30 3.312 1.35 3.244 1.087 .0204 .1948
31 3.114 1.36 3.253 .8703 .0448 .3600
32 3.204 1.38 3.255 .7397 .0161 .463
33 3.279 1.40 3.219 .5200 .0181 .6285
34 3.301 1.42 3.279 1.583 .0066 .1151

36

 Actual output Network
Output

Average Error

 Scale
log(Ɵ)

Shape
 (β)

Scale
log(Ɵ)

Shape
(β)

Scale
log(Ɵ)

Shape
(β)

35 3.312 1.44 3.276 1.130 .0106 .2149
36 3.3222 1.45 3.509 .6672 .0565 .5398
37 3.380 1.46 3.357 .9385 .0067 .3571
38 3.267 1.48 3.347 .5061 .0244 .6579
39 3.371 1.5 3.418 .5701 .0139 .6199
40 3.230 1.52 3.273 1.405 .0132 .0755
41 3.217 1.54 3.252 1.081 .0109 .2976
42 3.230 1.55 3.331 .5065 .0311 .6731
43 3.301 1.56 3.352 .8753 .0156 .4388
44 3.279 1.58 3.291 1.483 .0038 .0610
45 3.389 1.60 3.361 1.495 .0080 .0653
46 3.477 1.61 3.215 .7119 .0752 .5577
47 3.462 1.63 3.453 1.951 .0025 .1974
48 3.447 1.62 3.350 2.156 .0281 .3310
49 3.602 1.64 3.597 1.795 .0013 .0951
50 3.544 1.65 3.465 3.651 .0222 1.213
51 3.477 1.66 3.468 .5461 .0023 .6709
52 3.462 1.68 3.500 .5289 .0110 .6851
53 3.431 1.7 3.353 1.664 .0228 .0207
54 3.407 1.71 3.361 .5246 .0133 .6931
55 3.255 1.72 3.344 2.137 .0273 .2424
56 3.505 1.74 3.363 .5234 .0403 .6991
57 3.531 1.75 3.451 1.712 .0227 .0214
58 3.470 1.76 3.463 0.5045 .0017 .7133
59 3.477 1.78 3.506 .5533 .0083 .6880
60 3.491 1.80 3.512 1.651 .0060 .0822
61 3.613 1.82 3.492 1.926 .0334 .0582
62 3.580 1.84 3.550 2.200 .0082 .1960
63 3.556 1.85 3.408 1.030 .0416 .4430
64 3.556 1.86 3.485 1.9119 .0199 .0279
65 3.498 1.90 3.500 .5144 .0006 0.7292
66 3.352 1.92 3.433 1.504 .0242 .2166
67 3.538 1.94 3.469 .5018 .0194 .7413
68 3.519 1.95 3.424 .8091 .0268 .5850
69 3.389 1.96 3.412 1.813 .0069 .0749
70 3.447 1.98 3.463 1.708 .0048 .1372
71 3.477 2 3.404 1.809 .0209 .0953
72 3.447 2.11 3.427 .5914 .0057 .7197

37

Table 4: Percentage error during testing of 50-20 data set

Sl
No

Actual output Network output Percentage Error

 Scale
log(Ɵ)

Shape
(β)

Scale
log(Ɵ)

Shape
(β)

 Scale
log(Ɵ)

Shape
(β)

1 2.74 0.75 2.739 .8935 0.0002 .1913
2 2.875 0.80 3.012 .6773 .0478 .1533
3 2.954 0.9 2.907 .6562 .0157 .2707
4 2.929 .95 2.812 1.320 .0399 .3897
5 3.113 1.2 3.031 .5003 .0264 .5830
6 3.041 1.25 2.950 .9308 .0298 .2553
7 3.322 1.4 3.477 .9563 .0467 .3169
8 3.380 1.5 3.387 1.172 .0022 .2181
9 3.544 1.85 3.551 4.213 .0020 1.277
10 3.505 2 3.500 0.6327 .0013 .6836
11 3.301 2.5 3.301 3.162 .0002 .2649
12 3.146 2.65 3.128 3.958 .0056 .4938
13 3.204 2.7 3.170 2.869 .0105 .0629
14 3.397 2.75 3.396 .9446 .0002 .6564
15 3.176 2.95 3.134 1.744 .0130 .3984
16 3.311 3.2 3.298 2.593 .0040 .1895
17 3.290 3.45 3.334 2.537 .0134 .2645
18 3.537 3.55 3.428 1.404 .0308 .6043
19 3.491 3.65 3.503 5.927 .0033 .6238
20 3.290 3.7 3.315 2.852 .0077 .2290
21 3.531 4.1 3.534 3.890 .0009 .0509
22 3.447 4.25 3.434 4.411 .0038 .0378
23 3.243 4.52 3.240 4.897 .0007 .0835
24 3.505 4.7 3.521 4.199 .0047 .1065
25 3.406 4.85 3.395 3.396 .0031 .2996

38

 Actual output Network output Percentage error
 Scale

log(Ɵ)
Shape

 (β)
Scale

log(Ɵ)
Shape
 (β)

Scale
log(Ɵ)

Shape
(β)

26 3.505 5.15 3.474 4.901 .0087 .0482
27 3.290 5.3 3.283 6.015 .0019 0.1349
28 3.371 5.45 3.422 6.536 .0153 .1993
29 3.322 5.65 3.309 5.390 .0038 .0458
30 3.406 5.75 3.422 5.323 .0046 .0742
31 3.511 6.15 3.480 6.536 .0089 .0629
32 3.491 6.35 3.488 6.793 .0008 .0698
33 3.371 6.5 3.395 7.729 .0071 .1891
34 3.311 6.75 3.329 7.892 .0054 .1692
35 3.498 6.95 3.501 7.647 .0009 .1003
36 3.380 7 3.390 6.823 .0029 .0252
37 3.423 7.25 3.462 7.734 .0114 .0667
38 3.361 7.35 3.413 8.459 .0153 .1510
39 3.585 7.6 3.580 8.611 .0014 .1331
40 3.389 7.8 3.427 8.846 .0113 .1341
41 3.562 8.1 3.566 8.248 .0011 .0183
42 3.676 8.35 3.649 9.455 .0073 .1324
43 3.406 8.52 3.423 8.265 .0050 .0298
44 3.332 8.7 3.345 8.259 .0038 .0506
45 3.414 8.76 3.418 7.192 .0011 .1789
46 3.462 9.25 3.493 8.142 .0089 .1197
47 3.332 9.5 3.354 8.068 .0067 .1506
48 3.389 9.8 3.391 8.115 .0007 .1719
49 3.648 9.9 3.630 9.572 .0047 .0330
50 3.423 9.95 3.439 9.337 .0048 .0615

39

References

[1] Ebeling, C. E. (2004). An introduction to reliability and maintainability engineering. Tata

McGraw-Hill Education.

[2] Nwobi, F. N., & Ugomma, C. A. (2014). A comparison of methods for the estimation of

Weibull distribution parameters. Metodoloski zvezki, 11(1), 65.

[3] Watkins, A. J. (1996). On maximum likelihood estimation for the two parameter Weibull

distribution. Microelectronics Reliability, 36(5), 595-603.

[4] Flygare, M. E., Austin, J. A., & Buckwalter, R. M. (1985). Maximum likelihood estimation

for the 2-parameter Weibull distribution based on interval-data. IEEE transactions on

reliability, 34(1), 57-59.

[5] Zhang, L. F., Xie, M., & Tang, L. C. (2007). A study of two estimation approaches for

parameters of Weibull distribution based on WPP. Reliability Engineering & System

Safety, 92(3), 360-368.

[6] Bütikofer, L., Stawarczyk, B., & Roos, M. (2015). Two regression methods for estimation of

a two-parameter Weibull distribution for reliability of dental materials. dental materials, 31(2),

e33-e50.

[7] Murthy, K. S. R., & Rahi, O. P. (2014, December). Estimation of Weibull parameters using

graphical method for wind energy applications. In Power Systems Conference (NPSC), 2014

Eighteenth National (pp. 1-6). IEEE.

[8] Indhurani, L., & Subburaj, R. (2015). An artificial neural network approach to software

reliability growth modelling. Procedia Computer Science, 57, 695-702.

[9] Liu, M. C., Kuo, W., & Sastri, T. (1995). An exploratory study of a neural network approach

for reliability data analysis. Quality and Reliability Engineering International, 11(2), 107-112.

40

[10]Alsina, E. F., Cabri, G., & Regattieri, A. (2016). A neural network approach to find the

cumulative failure distribution: modeling and experimental evidence. Quality and Reliability

Engineering International, 32(2), 567-579.

[11]Smith, K. A. (1999). Introduction to neural networks and data mining for business

applications. Eruditions Publishing.

[12]Haykin, S. (1999). Neural networks: a comprehensive foundation. Prentice Hall PTR.

[13] A quick introduction to neural network. https://ujjwalkarn.mequick-intro-neural-networks/.

Web accessed on 2019/01/04.

[14] Singh, Y., & Chauhan, A. S. (2009). NEURAL NETWORKS IN DATA MINING. Journal

of Theoretical & Applied Information Technology, 5(1).

[15] Introduction. https://cimss.ssec.wisc.edu/wxwise/class/aos340/spr00/whatismatlab.htm.

Web accessed on 2019/03/12.

[16] Neural Network Toolbox. https://www.spsc.tugraz.at/system/files/nnt_intro.pdf. Web

accessed on 2019/01/07.

[17] Neural Network Toolbox. http://matlab.izmiran.ru/help/toolbox/nnet/backpr26.html.

 Web accessed on 2019/01/12

[18] Mathworks. https://www.mathworks.com/help/deeplearning/ref/mapminmax.html. Web

accessed on 2019/01/13.

