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Abstract 

Estimation of Weibull Parameters Using Artificial Neural Network 

Master of Engineering Project, 2019 

Md. Sujauddin Mallick 

Mechanical and Industrial Engineering 

Ryerson University 

 

Weibull distribution is an important distribution in the field of reliability. In this distribution 

usually there are two parameters. The usual parameter estimation method is maximum likelihood 

estimation. Maximum likelihood estimation requires mathematical formulation and prior 

assumption. Non parametric method such as neural network does not require prior assumption 

and mathematical formulation. They need data to formulate the model. In this report feed 

forward neural network with back propagation is used to estimate the parameters of a two-

parameter Weibull distribution based on four Scenarios. The Scenario consists of training and 

test data set. Training and test data set generated through simulated time to failure events using 

wblrnd function in MATLAB.  The input to the network is time to failure, and the output is 

shape and scale parameters. The network is trained and tested using trainbr algorithm in 

MATLAB. The network performed better on Scenario 2 which has the larger number of training 

examples of shape and scale. 
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1. Introduction 

There is no denying the fact that Weibull distribution is an essential distribution in the field 

of reliability. It is used to model for not only increasing failures, but also for decreasing 

failures and commonly used in reliability engineering, medical study, quality regulation, 

financial affairs, and particle size explanation. It can take the attributes of other form of 

distributions such as exponential distribution and the normal distribution.  In statistical 

literatures, the Weibull distribution usually appears in the form of two parameters [1]. 

The probability density function is given below [1].  

 
𝑓(𝑡) =

𝛽  

𝜃

𝑡

𝜃
 

   (1) 

 

Then, The Cumulative Density Function will be [1]. 

 
𝐹(𝑡) = ∫  𝑓(𝑡) 𝑑𝑡 = ∫ 𝑓(𝑡) =

  
𝑑𝑡=1-𝑒  

                             

(2) 

 

The Reliability function will be [1]. 

 
𝑅(𝑡)=𝑒  

 

     (3) 

      t=time variable 

ß=Shape Parameter 

Ɵ=Scale Parameter 

For ß=1, The shape of Probability Density Function (PDF) is close to exponential 

distribution. 

For ß>3, The shape of  Probability Density Function (PDF) is close to normal distribution 

The shape parameter is the most important parameter in the Weibull distribution. It explains how 

the data is distributed.  By using this parameter, interpretations can be made about a population’s 
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failure attributes. The scale is also labeled as characteristic life. It is the 63.2 percentile of the 

data. It influences not only the mean but also the spread [1]. 

 

Parameter estimation is the process of estimating parameters from reliability data. It can also be 

expressed as a classification problem.  There are two types of methods in estimating parameters 

in a Weibull distribution. They are graphical and analytical method. Graphical method is simple 

but the possibility of error is higher. Analytical method is of three types. They are maximum 

likelihood estimation, least square method and the method of moments. Maximum likelihood 

estimation is a generally used technique. It is a technique which calculates the parameters of a 

model provided observations.  The maximum likelihood estimator has less chance of error in 

comparison with graphical method, however, it needs a lot of iterations. Method of moments is 

the technique of estimating population parameters.  It begins with deriving equations which is 

linked to population moments. After that sample is drawn and the population moments are 

estimated from the sample. In least square method, vertical distance is minimized between the 

data points. It is introduced in scientific  problems [2].  

There are various literatures which discussed the parameter estimation of a Weibull distribution. 

The commonly used method is the maximum likelihood estimator. Watkins et al. [3] introduced 

maximum likelihood estimator for estimating the Weibull parameters for time to failure data. In 

another work, Flygen et al. [4] presented the maximum likelihood technique for estimating the 

Weibull parameters for interval based data. Least square method is discussed in some studies. 

Zhang et al. [5] used least square technique   to estimate Weibull parameters. He compared two 

Least Square (LS) regression technique for estimating the Weibull parameters. Bütikofer et al. 

[6] used least square technique to compare the assessment of a two-parameter Weibull 

distribution. Murthy et al. [7] used least square fit technique for estimating Weibull parameters to 

investigate wind speed difference. 

The analytical method requires presumption and mathematical formulation. Non- parametric 

method such as artificial neural network does not require the prior assumption and mathematical 

formulation [8].This neural network can do parameter estimation, even if the data is small. An 

Artificial neural network is a data- driven approach. It has the features like estimation, learning 

from instances and simplification. Because of this, it has gained popularity among researchers. 
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There are over fifty categories of ANN. Among them feed forward network is the simplest and 

widely used one [10].   

There is also fewer studies available for parameter estimation of reliability data using a feed 

forward neural network. One such study is the work of Ming C. Liu [9] et al. who used back 

propagation neural network for the parameter estimation of a two-parameter Weibull 

distribution. He generated simulated failure data for training the neural network. 

The report is based on the scientific paper of Liu et al. [9]. In this report, independent failure data 

is generated using Weibull random numbers in MATLAB. After that, feed forward neural 

network was applied to estimate the shape and scale parameter of the Weibull distribution in 

neural network toolbox in MATLAB. This estimation is not done before in MATLAB to the best 

of author’s knowledge.   

The report is organized as follows. Section 2 describes the fundamental of artificial neural 

network. Section 3 discusses the common method of teaching artificial neural network naming 

back propagation algorithm. Neural network tool box and training algorithm in MATLAB are 

discussed in Section 4. Section 5 describes the mechanism of generating simulated data based on 

two scenarios. The constructions of the proposed feed forward neural network and the training 

mechanism are discussed in Section 6. Section 7 displays a snapshot of training in MATAB for 

the two scenarios. Section 8 discusses the performance of the proposed network. Section 9 

concludes with the positive and negative aspects of artificial neural for estimation of two 

parameters of a Weibull distribution. An appendix is given in Section 10. 
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2. Fundamental of Artificial Neural Network 

A neural network is a computer program that is built on the structure of a human brain, and 

simulates its actions. It has a parallel-distributed construction, and, has natural tendency for 

keeping investigational knowledge. This knowledge is used when required [8]. 

2.1 Neurons 

It is the base for functioning of a neural network. Input signal is received here. Then activation 

function handles the signal and generates an output signal [8]. 

2.2 Biological neuron 

There are four basic parts of a biological neuron. They consist of Cell body, Dendrites, Synapse 

and Axon (Figure 1). Cell body of a neuron is termed as soma. Dendrites are like channels. In the 

channels, signals are collected from attached neurons. With these dendrites neurons collect 

signals from several neurons. If the aggregate impulses go above a definite threshold, the neuron 

is likely to stimulate and ‘fire’. After that, the axon is electrically active. It acts as output which 

sent impulse to a neighboring cell. Synapses are the joining points between the dendrites and 

axon [11]. 

 

 

Figure1. Biological Neuron [11]. 
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2.3 A General Artificial Neural Network Model: 

The model of neuron is shown in Figure 2. It is the base for designing artificial neural network 

[12]. 

 

Figure2. Model of neuron [12]. 

Let,  

Input signals         x1, x2,……xm  

Synapic weights                          wk1, wk2, …., wkm  

Bias         bk 

Activation function      Φ (. ) 

Linear output                                                          uk 

Output signal       yk 

Input signal xj is fed into the network. Afterwards, it is multiplied by the synaptic weight wkj. 

The linear output uk and output signal yk can be written as [12]. 

 𝑢 ∑   (4) 

 

 𝑦 = ∅(𝑢 + 𝑏 )   (5) 
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 yk=(uk+bk) 
 

  (6) 

                                                                                 

2.4 Activation functions 

In the activation function multiplication is done between input signals and weights. It is labeled 

as Φ.  It is likely to replicate to simulate the firing attribute of neurons, which is added at output 

end of any neural network. It is also used to determine the output of neural network like yes or 

No [12]. 

There are three types of activation function:  They are Threshold function, Piecewise-linear and 

sigmoid [12]. 

2.4.1 Threshold function: 

      The threshold function is given below in Equation (7) [12]. 

        

 
𝛷(𝑣) =

1, 𝑖𝑓  𝑣 ≥ 0
0,  𝑖𝑓 𝑣 < 0

 
(7) 

 

Figure 3.Threshold function [12]. 

  

In engineering, the above function calls Heaviside function. It can be designated as unit step 

function (Figure 3). By applying this threshold function, the output of neuron k is  
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𝑦 =

1, 𝑖𝑓  𝑣 ≥ 0
0,  𝑖𝑓 𝑣 < 0

 
 (8) 

 

 𝑣     denotes the local field of neuron 

 
𝑣 = 𝑤 𝑥 + 𝑏  

    (9) 

        

2.4.2 Piecewise linear function 

The function is given below (Figure 4) [12]. 

 

(𝑣) =

⎩
⎪
⎨

⎪
⎧

   

1,   𝑖𝑓 𝑣 ≥
1

2

𝑣,      𝑖𝑓 +
1

2
> 𝑥 > −

1

2

1        𝑖𝑓 𝑣 ⩽   −
1

2
    

 

 

 

(10) 

 

                                  

Figure 4.Piece wise function [12]. 

                                                 

2.4.3 Sigmoid function 

Due to its smooth and restricted nature, it is used in neural network. It is monotonic function that 

displays a balance between linear and nonlinear nature (Figure 5). The sigmoid function is given 

below [12]. 
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𝑓(𝑥) =

1

1 + 𝑒
 

(11) 

 

a is the slope parameter 

 

 

Figure 5.Sigmoid function [12]. 

Sigmoid functions with various slopes can be obtained if the slope parameter a  is varied. This 

function will be threshold function when a becomes infinity. It is seen previously that the 

threshold function has the value either 0 or 1. Unlike threshold function, sigmoid function has 

continuous value from 0 to 1. Another aspect of sigmoid function is that it is differentiable; 

however, there is no differentiation in threshold function [12].  

In equation (7), (10) and (11) activation function varies from 0 to +1. Sometimes this range is 

from -1 to +1 [12]. 

 Now from equation (7) the threshold function is given below [12]. 

 
(𝑣) =        

1        𝑖𝑓 𝑣 > 0
 0           𝑖𝑓  𝑣 = 0

    −1            𝑖𝑓 𝑣 < 0     
 

 
(12) 

Equation (12) is also called the signum function. The Hyperbolic tangent function may be used 

for an equivalent form of the sigmoid function.  It is shown below [12]. 

 ∅(𝑣) = tanh (𝑣) (13) 
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2.5 Network architecture: 

The most common type of neural network is called a feed forward neural network. It is shown in 

Figure 6. It may comprise of various neurons. The neurons are labelled as nodes. The nodes are 

organized in layers. A feed –forward neural network is designed in such a way that information 

flow is unidirectional. No cycles formed between the nodes [13]. 

 

Figure 6.Simple feed forward neural network [13]. 

                                      

There are three forms of nodes on a feed –forward neural network   

1. Input Nodes: Data is fed into input nodes. They are jointly depicted as “Input Layer”. 

Calculation is not performed in input nodes [13]. 

2. Hidden Nodes: It has indirect connections with the data.  The hidden node is doing 

calculation and information transmission from the input layer to output layer. The group 

of hidden nodes is called “Hidden Layer”. There may be a one input and output layer in 

feed forward neural network. The network may have zero hidden layer [13] 

3. Output Nodes: The group of output nodes are called Output Layer. Computation and 

information transmission is performed from network to user [13]. 
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3. Learning algorithm in neural network 

Learning is the ability to improve behavior based on learning. The purpose of the learning rule is 

to train the network to perform some task [12]. They are of three types: 

Supervised learning:  Network is given, input and corresponding output.  This is called labeled 

data. External teacher is giving input-output to the network. Input output pattern is fed to the 

network [14]. In this report, supervise learning is used.   

Unsupervised learning: In this case only input is given. There is no label on the data.  The 

Cluster is done based on input data.  It is also called self-organization which means that system 

will likely to develop its representation based on the input data [14]. 

Reinforcement learning: It is the intermediate form of learning between supervised and 

unsupervised learning algorithms. After the feedback response is received by the learning 

machine from the environment, grading is done based on the environmental response [14]. 

There is a different learning algorithm for feed- forward neural network. Back propagation is one 

of the popular algorithms. Here network is provided with some training examples. Then the 

target output is compared with the network output over a definite time through weight 

adjustment. The backward transmission error is performed by correlating the actual output with 

desired output during the training. The network performance is optimized by fine tuning weights 

in the backward route. Training technique is performed as long as the desired output is provided 

by the network.  The algorithm is likely to give reasonable results for the unknown data.  

Because of the generalization property, it can produce good results even if we do not train on all 

possible input output pairs [8]. 

Derivation of back propagation algorithm is given below [12]. Figure 7 shows the flow diagram. 

Notation 

i,j,k                                    represents various  neurons in the neural network 

n                                         no of training examples 

ε(n)                                     squared error function 
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εav(n )                                 average of  squared error function 

ej(n)                                   error signal   

dj(n)                                   expected   output   

 

Figure 7.  Flow diagram of backpropagation algorithm [12]. 

 

yj (n)                                  functional  signal  acting at neuron j    

wji                                     synaptic weight linking  between  the ith neuron to jth neuron 

vj(n)                                   local field    

Φj(.)                                   activation function  

bj                                         bias  

xi (n)                                   input vector   

ok  (n)                                       total  output vector 

ɳj                                        learning rate 
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ml                                      nodes in layer l 

 

The error signal at output j can be expressed as [12]. 

 𝑒 (𝑛) = 𝑑 (𝑛) − 𝑦 (𝑛) (14) 

 

Immediate value of the squared error function for neuron j is [12]. 

 
𝜀(𝑛) =

1

2
 𝑒 (𝑛) 

(15) 

 

C all the neurons in the output layer 

 Summing  𝜀(𝑛)  over n and normalizing regard to the size N, Where N represents the total 

number of instances in the training set [12]. 

 
𝜀  =

1

𝑁
   𝜀  

(16) 

 

𝜀(𝑛) and 𝜀   is a function  of  biases and weights. εav indicates the cost function which is an 

indicator  of learning performance [12].  

Local field of neuron j is given below [12]. 

 
𝑣  ( ) 𝑤 (𝑛)𝑦𝑖(𝑛) 

(17) 

 

At neuron j functional signal on iteration n is [12]. 

 𝑦 𝛷 (𝑣 (𝑛))   (18) 
 

In synaptic weight wji(n),  correction  ∆wji (n) is applied by back propagation algorithm  It is 

relational to the partial derivative. The Gradient is given below by using the chain rule in 

calculus [12] 
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 ð𝜀(𝑛)

ð𝑤 (𝑛)
=

ð𝜀(𝑛)

ð𝑒 (𝑛)
  

ð𝑒 (𝑛)

ð𝑦 (𝑛)

ð𝑦 (𝑛)

ð𝑣 ( 𝑛)

ð𝑣 ( 𝑛)

ð𝑤 (𝑛)
 

 

 (19) 

 

ð ( )

ð ( )
   signifies a sensitivity element.  

Differentiating Equation (15) of both sides, 

 ð𝜀(𝑛)

ð𝑒 (𝑛)
 = 𝑒 (𝑛) 

(20) 

 

Differentiating Equation (14) of both sides, 

 ð𝑒 (𝑛)

ð𝑦 (𝑛)
= −1 

 

 (21) 

 

Differentiating Equation (18), 

 

 ð𝑦 (𝑛)

ð𝑣 ( 𝑛)
= 𝛷 ˈ(𝑣 (𝑛)) 

 

(22) 

 

 prime denotes differentiation with regard to the argument  

Lastly, differentiating Equation (17) with regard to wji(n) 

ð𝑣 ( 𝑛)

ð𝑤 (𝑛)
= 𝑦 (𝑛) 

 

 

Using    Equation   (20),  (21),  (22 ),  and  (23)  in  (19) 

 

  
(23) 

 
 
 

ð𝜀(𝑛)

ð𝑤 (𝑛)
= −𝑒 (𝑛) 𝛷 ˈ(𝑣 (𝑛)) 𝑦 (𝑛) 

  
 (24) 
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According to delta rule, correction of ∆wji (n) applied to wji (n)  

 

 
∆𝑤  (n) = −ɳ

ð𝜀(𝑛)

ð𝑤 (𝑛)
 

 

 

(25) 

 

In Equation (25), ɳ  is learning rate parameter.  The meaning of minus sign that it is searching 

for changing weight, which decrease the value of  𝜀(𝑛).  It is called gradient descent [12]. 

  

From equation (25) & (26), 

 ∆ 𝑤 (n) = ɳ 𝛿 (n) 𝑦  (𝑛) 
 

  (26) 

        

where  𝛿  is   local gradient. The definition of 𝛿   is given below [12]. 

𝛿 (n) = −
ð𝜀(𝑛)

 ð𝑣 (𝑛)
 

 
                                       = − 

ð𝜀(𝑛)

ð𝑒 (𝑛)
  

ð𝑒 (𝑛)

ð𝑦 (𝑛)

ð𝑦 (𝑛)

ð𝑣 ( 𝑛)
 

 

                                      = −𝑒 (𝑛)(−1) 𝛷 ˈ(𝑣 (𝑛)) 

 

 

 

 

(27) 

                          = 𝑒 (𝑛) 𝛷 ˈ(𝑣 (𝑛)) 
 

 

 

There is a need for modifications in synaptic weights. It is called local gradient.  The local 

gradient is the multiplication of error signal and derivative  𝛷 ˈ(𝑣 (𝑛)) of the accompanying 

activation function [12]. 
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It can be seen from equations (26) and (27) that the error signal 𝑒 (𝑛) is the main element in 

computation of weight adjustment∆ 𝑤 (n) [12].  
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4. MATLAB and Neural Network 

MATLAB denotes matrix laboratory. The MATLAB software has an interactive environment. In 

this environment, users can perform various activities, such as, algorithm up gradation, data 

visualization, and numerical calculation. The MATLAB software has toolboxes. The toolboxes 

are a group of functions. The toolbox enables users to apply particular technology [15]. In 

MATLAB, there is a neural network toolbox, which has a collection of functions and structures.  

It is designed in such a way that code is not needed for activation functions and training 

algorithms. It is built on network object. The object has the information, such as, layers structure, 

layers number and linkage between the networks. There are different functions for network 

creation.They are newlin, newp, and newff. Newlin is for generating a new layer; newp is for 

generating a perceptron, and newff is for generating a feed forward backpropagation network. In 

the report, newff function is used to make a feed forward neural network [16]. 

As MATLAB is used to model the feed forward neural network, it is important to know some 

training algorithms with this data mining tool. There are different training algorithms to train a 

neural network. Some of the training algorithms are given below [17]. 

traingd: It is the fundamental Gradient descent algorithm. In this algorithm, output error 

quantified using local search technique. Here gradient error is measured by tuning weights in the 

direction of descending gradient [17].  

traingdm: The algorithm is called Gradient descent back propagation momentum. The algorithm 

has sharp descent to respond to local gradient and error surface [17]. 

traingdx :  It is called adjusting learning rate. It is quicker in training than traingd [17]. 

trainrp: It is called resilience back propagation. The effect of partial derivative magnitude is 

eliminated through this algorithm. The training algorithm is based on batch mode with quick 

convergence. There is a need for less storage [17] 

traincgf: It is called conjugate gradient  with Fletcher-Reeves. It has the minimum   requirements 

for storage among all the conjugate gradient algorithms [17]. 

traincgp: It is called Conjugate Gradient back propagation with Polak-Riebre. There is a need for 

marginally larger storage compared to traincgf. Convergence is usually quicker [17]. 
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trainscg:  It is called Scaled Conjugate Gradient. Line search is not necessary in every iteration. 

As there is no line search, there is a significant reduction of calculation. But more iteration is 

needed compared to the other methods [17]. 

trainbfg: It is called Broyden-Fletcher-Goldfrab-Shanno quasi –Newton method.  There is a need 

for more storage of the estimated Hessian matrix. It has more calculation in each iteration than 

Conjugate Gradient algorithms; however, converge in less iteration [17]. 

trainlm: It is called Levenberg-Marquardt back propagation algorithm. The algorithm is quickest 

for medium sized network. Because of its memory reduction attribute, it is used for large training 

set [17]. 

trainbr: It is called Bayesian Regularization algorithm. The algorithm modifies the trainlm 

algorithm and generate networks that generalize well. Optimum network architecture can be 

determined by this algorithm [17]. 

Reason for chosing trainbr algorithm: 

There are different types of training algorithm. In this report for training neural network, trainbr 

algorithm is used. The reason is as follows: first, it is suitable for noisy and small data; second, 

In the algorithm, weight and bias values are upgraded in line with the Levenberg-Marquardt 

optimization and reduces squared errors and weights; third, for generalization the algorithm 

determines the right combination; fourth, it can give information about effective use of network 

parameters, and finally, there is no need for separating the validation data set from training data 

set [17]. 
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5. Data Description 

Simulation study is conducted to estimate the Weibull parameters. In the simulation study, 

random failure data is generated through wblrnd function by varying actual shape and scale in 

MATLAB. Two scenarios were considered:  

Scenario 1:  It consists of two data sets. They are training and test set. For training, 200 random 

values of shape and scale taken. Shape value varied between 0.9 to 9.99. Scale value varied 

between 120 to 5800. For each shape and scale, 20 times to failure events created using the 

wblrnd function in MATLAB.  It can be denoted as 200-20.  For testing, 50 examples created 

based on actual shape and scale parameters. Each example has 20 times to failure as independent 

events. This is denoted as 50-20. In each scenario, logarithm of scale is taken before training.  

Screenshot of training and test data set are shown in the appendix. 

Scenario 2:  There are two types of data set which are training and testing data. In Training data 

500 random values of shape and scale are taken. Shape value varied between 0.5 to 9.98. Scale 

value varied between  250 to 4900. Each example has 20 times to failure as independent events. 

It can be denoted as 500-20. For testing, 50 examples created based on actual shape and scale 

parameters.  In each scenario, logarithm of scale is taken before training. Screenshot for training 

and test data set are shown in the appendix.        

Scenario 3: It is an extension of Scenario 1. In this Scenario, 30 times to failure events created 

based on each example of shape and scale. This is denoted as 200-30. For testing, 50 examples 

created based on actual shape and scale. It can be denoted as 50-30. 

Scenario 4: It is an extension of Scenario 2. In this Scenario, 30 times to failure events created 

for each example of scale and shape. It is denoted as 500-30. For testing, 50 examples created 

based on actual shape and scale. This is denoted as 50-30. 

Before feeding data in the neural network for training, data is normalized for decreasing the 

convergence time. In this report, scaling is performed in MATLAB by using the function 

mapminmax. The coding of mapminmax function is given below;  

[pn,ps]=mapminmax(p); 

[tn,ts]= mapminmax(t); 
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Input and output are denoted as p and t. pn and tn are normalized input and output. The value of 

this normalization falls in the interval [-1, 1]. ps and ts are the lowest and highest values of the 

original inputs and outputs [18].   
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6. Proposed Neural Network 

Feed forward network with back propagation is used to estimate the Weibull parameters. The 

network structure consists of an input layer, hidden layer and output layer (Figure 8). Input 

values are time to failure and output values are scale and shape parameters.  For the Scenarios, 

two networks proposed. In one network, there are 20 neurons in the input layer as there are 20 

times to failure events in each example of the dataset. In another network, there are 30 neurons in 

the input layer as there are 30 times to failure events in each example of the data set. In both the 

network, there are two neurons in the output layer which are scale and shape. Time to failure 

depicted as TTF.  Scale and shape denoted as Ɵ and ß. Hidden neuron is selected based on trial 

and error. By varying hidden neuron different topology of network created, for example, 20-5-2 

denotes that the network is configured based on twenty inputs, 5 hidden neurons and 2 outputs. 
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Figure8.  Proposed feed forward neural network  
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7. Snapshot in MATLAB 

The snapshot shows the training data set of Scenario 1 and Scenario 2. It shows how the coding 

is done in forming neural network, training progress window, best training performance, training 

state and regression.  

In Scenario 1, training data set is 200-20. It is experimented in neural network tool box in 

MATLAB. The sequence is given in the screen shot below. Coding of the neural network in 

Command window is shown in Figure9. 

 

Figure 9. Code for network 20-5-2 

 

Figure10. Training progress of network 20-5-2 



22 
 

Figure10 represents a summary of the training. In this summary, Epoch, Time, Performance, 

Gradient, Mu, Effective parameter, Sum Squared Parameter, and validation checks are shown. 

Next three useful plots are offered by the training algorithm of neural network which are used to 

evaluate the performance of neural network (Figure 10).  They are:  Performance, Training state 

and Regression. Figure.11 is a performance plot for the best training performance. It shows the 

best training performance is   .0077435 at epoch 513. 

 

Figure 11. Best training performance plot of network 20-5-2 

The training state is shown in Figure 12. It shows graphically the status of the gradient at epoch, 

Mu, Num parameters, Sum Squared Parameters, and Validation checks. 

 

Figure12. Training state plot of network 20-5-2 
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Finally, regression plot is shown in Figure 13. It shows network outputs with targets for training 

and testing data. 

 

Figure13. Regression plot of network 20-5-2 

Similarly, the snapshot is shown in Scenario 2 for training data set 500-20, the network topology 

is 20-7-2. Here Coding for setting neural network, summary of training, best training 

performance, training state, & regression plot are shown sequentially.  

 

Figure 14.Coding for network 20-7-2 
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Figure15. Training progress of network 20-7-2 

 

Figure16. Best training performance plot of network 20-7-2 
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Figure17.Training state of network 20-7-2 

 

Figure18. Regression plot of network 20-7-2 
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8. Results and Discussion 

Different network topology created based on different hidden neurons. Eight network topologies 

created for each of the scenarios. To determine the network performance, average percentage 

error is taken as the indicator of the network performance. It is the sum of the difference between 

actual output and network output. Then, it is divided by the total no of examples. Results are 

shown in Tables 1 and 2. 

Table 1: Results of Scenario 1  

 Network 
Topology 

Training 
algorithm 

Hidden 
Neuron 

Average percentage 
error (Training) 

Average percentage error 
(Testing) 

Scale 
log(Ɵ) 

Shape  
  (β) 

Scale   
 log(Ɵ) 

Shape  
  (β) 

1 20-5-2 trainbr 5 0.9711 13.97 1.127 25.72 
2 20-6-2 trainbr 6 1.157 9.541 1.214 34.35 
3 20-7-2 trainbr 7 0.8600 10.09 0.9051 50.29 
4 20-9-2 trainbr 9 0.6000 5.799 0.7838 38.43 
5 20-11-2 trainbr 11 0.5183 5.025 0.6692 38.65 
6 20-13-2 trainbr 13 0.4575 5.752 0.9933 52.76 
7 20-15-2 trainbr 15 0.3119 6.852 0.6737 38.06 
8 20-17-2 trainbr 17 0.3147 4.667 0.9860 38.97 
 

Table 2: Results of Scenario 2 

 Network 
Topology 

Training 
algorithm 

Hidden 
Neuron 

Average percentage 
error (Training) 

Average percentage error 
(Testing) 

Scale  
log(Ɵ) 

Shape  
  (β) 

  Scale  
 log(Ɵ) 

Shape  
  (β) 

1 20-5-2 trainbr 5 1.139 21.54 0.9828 25.72 
2 20-7-2 trainbr 7 1.020 16.34 0.9212 22.51 
3 20-8-2 trainbr 8 0.9968 16.09 1.209 27.97 
4 20-9-2 trainbr 9 0.8242 13.59 0.9335 33.47 
5 20-11-2 trainbr 11 0.9214 10.35 1.035 30.98 
6 20-13-2 trainbr 13 0.8047 9.961 1.164 33.29 
7 20-15-2 trainbr 15 0.7581 11.92 0.9830 31.56 
8 20-17-2 trainbr 17 .6673 9.924 1.161 36.70 
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Table 3: Results of Scenario 3 

 Network 
Topology 

Training 
algorithm 

Hidden 
Neuron 

Average percentage 
error (Training) % 

Average percentage error 
(Testing) % 

Scale 
log(Ɵ) 

Shape  
  (β) 

Scale   
 log(Ɵ) 

Shape  
  (β) 

1 20-5-2 trainbr 5 1.057 7.363 0.8849 40.45 
2 20-6-2 trainbr 6 0.9395 7.063 1.143 39.17 
3 20-7-2 trainbr 7 0.6774 6.590 1.048 44.55 
4 20-9-2 trainbr 9 0.5545 6.730 1.385 31.79 
5 20-11-2 trainbr 11 0.3295 2.887 2.567 42.66 
6 20-13-2 trainbr 13 0.3842 7.597 1.615 48.18 

 

Table 4: Results of Scenario 4 

 Network 
Topology 

Training 
algorithm 

Hidden 
Neuron 

Average percentage 
error (Training) % 

Average percentage error 
(Testing) % 

Scale  
log(Ɵ) 

Shape  
  (β) 

  Scale  
 log(Ɵ) 

Shape  
  (β) 

1 20-5-2 trainbr 5 1.072 21.18 1.307 51.01 
2 20-7-2 trainbr 7 1.046 16.53 1.321 60.27 
3 20-8-2 trainbr 8 0.9631 17.08 1.174 55.57 
4 20-9-2 trainbr 9 .8494 12.26 1.495 49.36 
5 20-11-2 trainbr 11 0.6588 11.61 1.078 47.10 
 

Table 1 is the result of the first scenario for training and testing data. From the table it is seen 

that the average percentage error for scale varies between 0.3119% to 1.157% and 0.6692% to 

1.214%  in training and testing data. This error is acceptable. But there is variation in average 

percentage error of shape. It is seen from the table that the percentage error for shape is 4.667% 

during training for the network topology 20-17-2.  It is the least error among all the network 

topology, however, when it is tested with new data which is not trained earlier, the average 

percentage error for shape is 38.97%. In another network topology of 20-5-2, the average 

percentage error during training for shape is 13.97% which is higher than 20-7-2. But the 

average percentage error for shape during testing of this network is 25.72% which is better than 

any other network topologies.  For topology 20-6-2 and 20-7-2 poor training performance result 

in poor testing performance of shape. During training, network topology of 20-9-2, 20-11-2 and 

20-13-2 has a similar average percentage error for the shape, the testing performance is good for 

20-9-2. Finally, it had been found that the network topology 20-5-2 is better than any other 

network topologies because it has less average percentage error during testing and better 

prediction capacity. 
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The results of the second scenario are shown in the Table 2. In training and testing data, average 

percentage error for scale varies between 0.6673% to 1.02% and 0.9212 to 1.209% for training 

and testing data. This error is acceptable. There is variation in average percentage error in the 

shape parameter. Among all the network topologies, 20-17-2 has the lowest average percentage 

error for the shape which is 9.924%. But the testing performance of this network is 36.70% 

which is higher than any other network topologies. In another network topology 20-7-2, the 

average percentage error during training is 16.34%, although higher than network topology of 

20-17-2, the prediction performance is the best in comparison with all the other network 

topologies. The testing performance is 22.51 %. Even though the network topology 20-5-2 has 

higher average percentage error during training, it has second best testing performance. The 

training and testing performance respectively are 21.54% and 25.72%.  For topology 20-9-2, 20-

11-2, and 20-15-2, poor training performance result in poor testing performance. So, 20-7-2 is 

considered to be better network topology because of its less percentage error during testing.  

The results of the third Scenario are shown in Table 3. In this scenario the percentage error for 

scale varies between 0.3295% to 1.057% and .8849% to 2.567% during training and testing. But 

the result for shape varies. The network topology 20-11-2 has the minimum percentage error for 

the shape during training which is 2.887%, however, the testing performance of this network is 

42.66%. In another network topology, 20-9-2 the average percentage error for the training is 

6.730%, which is higher than the network topology 20-11-2. But the testing performance of this 

topology is better than any other network topologies. The testing performance is 31.79%. 

Network topology 20-5-2 and 20-6-2 has a similar average percentage error during training; the 

testing performance is good for 20-6-2. So, 20-9-2 is better network topology because of its less 

percentage error during testing. 

The results of the fourth Scenario are shown in Table 4. In this scenario the percentage error for 

scale varies between .6588% to 1.072% and 1.078% to 1.495% during training and testing. This 

error is acceptable. There is variation in average percentage error in the shape parameter. During 

training the network topology 20-11-2 has a minimum average performance error for the shape 

which is 11.61%. The testing performance found in this network is 47.10%, which is better than 

any other network topologies. The second best testing performance found in network topology of 

20-5-2. For network topology of 20-7-2 and 20-8-2, poor training performance results in poor 

testing performance. So in this scenario, 20-11-2 is considered better network because of its 

testing performance. 
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Considering the above mentioned scenario, it can be stated that by increasing the training 

examples, the prediction capacity of the network can be improved. It is due to the fact that when 

the network is presented with a lot of examples, it is likely to memorize less from training data. 

Another point is that less percentage error during training does not necessarily mean that it will 

predict well. It happens because sometimes there is overtraining done to get better training 

performance. When the network is tested with new data, it tries to memorize from the training 

data. As a result the prediction performance got worse. Considering this situation, it is not wise 

to select network only by looking at average percentage error during training unless the network 

is tested with new data.  
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9. Conclusion 

In this report feed forward neural network with back propagation is used to estimate the two 

parameters of a Weibull distribution. The feed forward neural is configured with different hidden 

neurons to create various network topologies. The feed network is trained and tested on the four 

scenarios where simulated failure data generated using wblrnd function.  The training and testing 

performance is measured through average percentage error. The network performed well in the 

second scenario as it has higher no of training examples. 

It is observed that how a simple network can calculate the shape and scale without any 

mathematical model. The network requires only a set of logical training examples which is based 

on input and output.  In the study, the input is considered time to failure data and output is taken 

shape and scale parameters. From that, it can comprehend the complex nonlinear connection 

through training. The trained network has also the capacity to predict the shape and scale on a 

new set of data. The prediction of shape parameter helps experts to make inference on the failure 

attribute of a population.  

Although the neural network has the benefit in understanding the relationship between input and 

output during training, it has drawbacks. Firstly, it needs to train again when there is a change in 

network configuration. Secondly, overtraining sometimes degrades the performance of the 

network as this happened in both the scenarios. Because of this overtraining, the network may 

result in overfitting on the testing data which results in poor prediction. Finally, it is termed as a 

black box system. It is very difficult to explain physical explanation of the network. The model 

developer has the difficulty in finding the optimal neural network architecture.   

The proposed network can be extended for estimation of a three- parameter of the Weibull 

distribution. It can be used to calculate the reliability of repairable systems where failure time 

follows a non-homogenous Poisson process.  It can be further be used for censored data.  
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Appendices 

Sample of training and test data  

Scenario 1 consists of training and test data sets. Training data is marked as 200-20. Testing data 

set marked as 50-20. The sample data set is shown in the screenshot. 

 

Figure19. Screenshot for training data of Scenario1 

 

Figure20. Screenshot for testing data of Scenario 1 

 

 



32 
 

Scenario 2 consists of training and test data sets. Training data are marked as 500-20. Testing 

data set marked as 50-20. The sample data set is shown in the screenshot. 

 

Figure21. Screenshot for training data of Scenario 2 

 

Figure22. Screen shot for testing data of Scenario 2 
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Scenario 3 consists of training and test data sets. Training data are marked as 200-30. Testing 

data set marked as 50-30. The sample data set is shown in the screenshot. 

 

 

Figure23. Screenshot for training data of Scenario 3 

 

 

Figure24. Screenshot for testing data of Scenario 3 
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Scenario 4 consists of training and test data sets. Training data are marked as 500-30. Testing 

data set marked as 50-30. The sample data set is shown in the screenshot. 

 

Figure25. Screenshot for training data of Scenario 4 

 

 

Figure25. Screenshot for testing data of Scenario 4 
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Training and Testing result for Scenario 2  

The topology 20-7-2 has the best prediction performance compared to other topologies in 

Scenario 2. Some snapshots are given during training and testing for the actual and network 

estimated Shape and Scale parameters, and their percentage error.  

Table 3: Percentage error   during training of 500-20 data set 

Sl No Actual output Network output Average Error 

 Scale 
Log(Ɵ) 

Shape  
(β) 

Scale 
Log(Ɵ) 

Shape 
(β) 

Scale 
Log(Ɵ) 

Shape          
(β) 

1 2.477 0.5 2.697 0.8303 0.088 .6606 
2 2.398 0.52 2.648 1.488 .1045 1.862 
3 2.544 0.55 2.654 0.5000 .0433 .0908 
4 2.580 0.57 2.681 0.5368 .0394 .0580 
5 2.602 0.60 2.791 .5478 .0728 .0869 
6 2.778 0.62 2.815 .5361 .0132 .1352 
7 2.628 0.65 2.749 0.5193 0.0462 0.2009 
8 2.653 0.7 2.780 0.6701 .0481 .0426 
9 2.778 .75 2.803 1.073 .0090 .4307 
10 2.845 0.8 2.834 1.082 .0036 .3533 
11 3.000 0.82 3.013 .6170 .0044 .2474 
12 2.813 0.85 2.947 .6068 .0477 .2860 
13 2.903 0.9 2.815 .5319 .0302 .4089 
14 2.954 0.94 2.817 0.5380 .0464 .4275 
15 3.079 0.92 3.327 .5002 .0805 .4562 
16 2.929 .95 2.803 1.058 .0428 .1143 
17 2.954 1 2.998 0.9296 .0149 .0703 
18 2.690 1.1 2.739 .7593 .0182 .3096 
19 2.740 1.12 2.791 .7601 .0187 .3212 
20 2.778 1.14 2.747 1.565 .0109 .3728 
21 2.813 1.16 2.825 .5260 .0046 .5465 
22 3.000 1.18 3.046 .8137 .0156 .3104 
23 3.079 1.2 2.926 .5293 .0494 .5588 
24 2.978 1.24 2.883 .6143 .0315 .5045 
25 3.041 1.26 2.877 .6995 .0539 .4447 
26 3.230 1.28 3.378 .5216 .0457 .5924 
27 3.130 1.3 3.061 .7448 .0218 .4270 
28 3.146 1.32 3.172 .5462 .0083 .5861 
29 3.190 1.34 2.935 .5110 .0797 .6186 
30 3.312 1.35 3.244 1.087 .0204 .1948 
31 3.114 1.36 3.253 .8703 .0448 .3600 
32 3.204 1.38 3.255 .7397 .0161 .463 
33 3.279 1.40 3.219 .5200 .0181 .6285 
34 3.301 1.42 3.279 1.583 .0066 .1151 
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 Actual output Network 
Output 

Average Error 

 Scale  
log(Ɵ) 

Shape  
  (β) 

Scale 
log(Ɵ) 

Shape 
(β) 

Scale 
log(Ɵ) 

Shape 
(β) 

35 3.312 1.44 3.276 1.130 .0106 .2149 
36 3.3222 1.45 3.509 .6672 .0565 .5398 
37 3.380 1.46 3.357 .9385 .0067 .3571 
38 3.267 1.48 3.347 .5061 .0244 .6579 
39 3.371 1.5 3.418 .5701 .0139 .6199 
40 3.230 1.52 3.273 1.405 .0132 .0755 
41 3.217 1.54 3.252 1.081 .0109 .2976 
42 3.230 1.55 3.331 .5065 .0311 .6731 
43 3.301 1.56 3.352 .8753 .0156 .4388 
44 3.279 1.58 3.291 1.483 .0038 .0610 
45 3.389 1.60 3.361 1.495 .0080 .0653 
46 3.477 1.61 3.215 .7119 .0752 .5577 
47 3.462 1.63 3.453 1.951 .0025 .1974 
48 3.447 1.62 3.350 2.156 .0281 .3310 
49 3.602 1.64 3.597 1.795 .0013 .0951 
50 3.544 1.65 3.465 3.651 .0222 1.213 
51 3.477 1.66 3.468 .5461 .0023 .6709 
52 3.462 1.68 3.500 .5289 .0110 .6851 
53 3.431 1.7 3.353 1.664 .0228 .0207 
54 3.407 1.71 3.361 .5246 .0133 .6931 
55 3.255 1.72 3.344 2.137 .0273 .2424 
56 3.505 1.74 3.363 .5234 .0403 .6991 
57 3.531 1.75 3.451 1.712 .0227 .0214 
58 3.470 1.76 3.463 0.5045 .0017 .7133 
59 3.477 1.78 3.506 .5533 .0083 .6880 
60 3.491 1.80 3.512 1.651 .0060 .0822 
61 3.613 1.82 3.492 1.926 .0334 .0582 
62 3.580 1.84 3.550 2.200 .0082 .1960 
63 3.556 1.85 3.408 1.030 .0416 .4430 
64 3.556 1.86 3.485 1.9119 .0199 .0279 
65 3.498 1.90 3.500 .5144 .0006 0.7292 
66 3.352 1.92 3.433 1.504 .0242 .2166 
67 3.538 1.94 3.469 .5018 .0194 .7413 
68 3.519 1.95 3.424 .8091 .0268 .5850 
69 3.389 1.96 3.412 1.813 .0069 .0749 
70 3.447 1.98 3.463 1.708 .0048 .1372 
71 3.477 2 3.404 1.809 .0209 .0953 
72 3.447 2.11 3.427 .5914 .0057 .7197 
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Table 4: Percentage error during testing of 50-20 data set 

Sl 
No 

Actual output Network output Percentage Error 

 Scale 
log(Ɵ) 

Shape   
(β) 

Scale 
log(Ɵ) 

Shape  
(β) 

 Scale  
log(Ɵ) 

Shape 
(β) 

1 2.74 0.75 2.739 .8935 0.0002 .1913 
2 2.875 0.80 3.012 .6773 .0478 .1533 
3 2.954 0.9 2.907 .6562 .0157 .2707 
4 2.929 .95 2.812 1.320 .0399 .3897 
5 3.113 1.2 3.031 .5003 .0264 .5830 
6 3.041 1.25 2.950 .9308 .0298 .2553 
7 3.322 1.4 3.477 .9563 .0467 .3169 
8 3.380 1.5 3.387 1.172 .0022 .2181 
9 3.544 1.85 3.551 4.213 .0020 1.277 
10 3.505 2 3.500 0.6327 .0013 .6836 
11 3.301 2.5 3.301 3.162 .0002 .2649 
12 3.146 2.65 3.128 3.958 .0056 .4938 
13 3.204 2.7 3.170 2.869 .0105 .0629 
14 3.397 2.75 3.396 .9446 .0002 .6564 
15 3.176 2.95 3.134 1.744 .0130 .3984 
16 3.311 3.2 3.298 2.593 .0040 .1895 
17 3.290 3.45 3.334 2.537 .0134 .2645 
18 3.537 3.55 3.428 1.404 .0308 .6043 
19 3.491 3.65 3.503 5.927 .0033 .6238 
20 3.290 3.7 3.315 2.852 .0077 .2290 
21 3.531 4.1 3.534 3.890 .0009 .0509 
22 3.447 4.25 3.434 4.411 .0038 .0378 
23 3.243 4.52 3.240 4.897 .0007 .0835 
24 3.505 4.7 3.521 4.199 .0047 .1065 
25 3.406 4.85 3.395 3.396 .0031 .2996 

 

 

 

 

 

 

 

 

 



38 
 

 

 Actual output Network output Percentage error 
 Scale  

log(Ɵ) 
Shape 

      (β) 
Scale 

log(Ɵ) 
Shape 
  (β) 

Scale 
log(Ɵ) 

Shape 
(β) 

26 3.505 5.15 3.474 4.901 .0087 .0482 
27 3.290 5.3 3.283 6.015 .0019 0.1349 
28 3.371 5.45 3.422 6.536 .0153 .1993 
29 3.322 5.65 3.309 5.390 .0038 .0458 
30 3.406 5.75 3.422 5.323 .0046 .0742 
31 3.511 6.15 3.480 6.536 .0089 .0629 
32 3.491 6.35 3.488 6.793 .0008 .0698 
33 3.371 6.5 3.395 7.729 .0071 .1891 
34 3.311 6.75 3.329 7.892 .0054 .1692 
35 3.498 6.95 3.501 7.647 .0009 .1003 
36 3.380 7 3.390 6.823 .0029 .0252 
37 3.423 7.25 3.462 7.734 .0114 .0667 
38 3.361 7.35 3.413 8.459 .0153 .1510 
39 3.585 7.6 3.580 8.611 .0014 .1331 
40 3.389 7.8 3.427 8.846 .0113 .1341 
41 3.562 8.1 3.566 8.248 .0011 .0183 
42 3.676 8.35 3.649 9.455 .0073 .1324 
43 3.406 8.52 3.423 8.265 .0050 .0298 
44 3.332 8.7 3.345 8.259 .0038 .0506 
45 3.414 8.76 3.418 7.192 .0011 .1789 
46 3.462 9.25 3.493 8.142 .0089 .1197 
47 3.332 9.5 3.354 8.068 .0067 .1506 
48 3.389 9.8 3.391 8.115 .0007 .1719 
49 3.648 9.9 3.630 9.572 .0047 .0330 
50 3.423 9.95 3.439 9.337 .0048 .0615 
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