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Abstract

In this thesis, we explore the uncertainty issues in risk modelling arising from the different

approaches proposed in the literature and currently being used in the industry.

The first type of methods that we discuss assume that the returns of the stocks follows a

generalized hyperbolic distribution. Data is calibrated by the Expectation-Maximization

(EM) algorithm in order to estimate the parameters in the underlying distribution. Once

we have the parameters, we estimate the Value at Risk (VaR) and Expected Shortfall

(ES) by using Monte Carlo simulations.

Furthermore, we calibrate data to different copulas, including the Gauss Copula, the

t Copula and the Gumbel Copula for estimation of VaR and ES using these copula

structures.

The results from both methods are then compared. It can be concluded that uncertainty

issues in risk modelling are very significant and can be troublesome as the values of the

same risk measure computed using different methods demonstrate great oscillations.
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Chapter 1

Introduction

According to the Cambridge dictionary, risk is“the possibility of something bad happen-

ing.” In financial terms, risk is defined as “the potential for financial loss and uncertainty

about its extent” [15]. The crucial part for companies and regulators is precisely the ex-

tent of risk. Let us first begin with some definitions in order to quantify this risk.

1.1 Risk Measure

1.1.1 Basic Properties

Mathematically speaking, a risk measure is defined as a mapping from a set of random

variables to the real numbers. In practice, the random variables are generally representa-

tive of portfolio returns. We represent a risk measure associated with a random variable

X as ρ(X). A risk measure ρ : L → R∪{+∞} has the following properties each with its

own financial interpretation [3]:

• Normalized, i.e.

ρ(0) = 0.

From a financial perspective, normalization is equivalent to saying that a portfolio
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1.1. RISK MEASURE

with no holding has zero risk.

• Translation invariance, i.e.

If a ∈ R and X ∈ L, then ρ(X + a) = ρ(X)− a.

From a financial perspective, translation invariance says that adding a fixed amount

of capital to the portfolio will decrease the risk of the portfolio by the same amount.

• Monotonicity, i.e.

If X1, X2 ∈ L and X1 ≤ X2, then ρ(X2) ≤ ρ(X1).

Viewed from the lens of finance, monotonicity has the interpretation that if a

portfolio performs better than another one almost surely, then the first portfolio

has less risk.

• Law invariance under P, i.e.

If X1, X2 ∈ L have the same distribution with respect to P, then ρ(X1) = ρ(X2).

Law-invariant risk measures allot the same level of risk to financial portfolios that

have an identical distribution with respect to P a priori. In reality, it is the most

pervasive type of risk measures that are used. Principally, any risk measure whose

computation relies on statistical methods and thus depends on distributions of

random variables must be law-invariant.

• Sub-additivity, i.e.

If Z1, Z2 ∈ L, then ρ(Z1 + Z2) ≤ ρ(Z1) + ρ(Z2).

2



1.1. RISK MEASURE

This alludes to the principle commonly known as the diversification effect in finance,

i.e. a portfolio that are well diversified carry lower risk than their counterparts.

The idea is that the bad events for different assets in the portfolio may not happen

simultaneously.

• Positive homogeneity, i.e.

If α ≥ 0 and Z ∈ L, then ρ(αZ) = αρ(Z).

This implies that the risk scaling is linear, i.e. doubling your financial position

doubles risk.

• Convexity, i.e.

If Z1, Z2 ∈ L and λ ∈ [0, 1] then ρ(λZ1 + (1− λ)Z2) ≤ λρ(Z1) + (1− λ)ρ(Z2).

Convexity incorporates both sub-additivity and positive homogeneity and states

that a linear combination (with non-negative weights) of two financial positions

has less risk than the corresponding linear combination of risks associated with the

financial positions.

Not all properties are satisfied by all risk measures. In particular, a risk measure

ρ that satisfies monotonicity, sub-additivity, homogeneity, and translation invariance is

called a coherent risk measure [3].

1.1.2 Examples of Risk Measures

A commonly used example of a risk measure is Value-at-Risk or VaR. Widely believed

to be developed by JP Morgan during the late 1980’s [2], VaR estimates the loss of a set

of investments, given a certain probability and time interval. Mathematically speaking,

3



1.1. RISK MEASURE

Figure 1.1: Graph highlighting Value-at-Risk.

if α ∈ (0, 1) represents the level of confidence that we seek, then

VaRα(X) =− inf
{
x ∈ R : FX(x) > α

}
(1.1)

=F←−X(1− α), (1.2)

= inf{m ∈ R : P(X +m ≤ 0) ≤ α}, (1.3)

where FX is the cumulative distribution function (cdf) associated with the random

variable X and F←−X is the generalized inverse of the cumulative distribution function

associated with -X. Hence, VaRα(X) is the minimal amount of cash that needs to be

raised and added to the position X to make it “acceptable”.

VaR has remained the industry standard for Basel regulators till recently, but it is

4



1.1. RISK MEASURE

Figure 1.2: Graph highlighting shortcomings of VaR (does not capture tail-risk).

gradually being phased out in favour of Expected Shortfall (ES), which is another risk

measure. Over the next few paragraphs, we discuss shortcomings of VaR and how ES

elegantly takes care of those limitations.

We begin by observing that VaR is not a coherent risk measure. Indeed, it does not

satisfy the sub-additivity property in some scenarios. In addition to this, it does not

capture tail-risk, i.e. even if the distribution is heavy-tailed with a lot of large losses

beyond the quantile level, the VaR does not change.

To account for these shortcomings, Expected Shortfall was introduced. Expected

shortfall at α % level is the expected return on the portfolio in the worst α% of cases.

Mathematically speaking, if X is the payoff of a portfolio at some future time and

0 < α < 1 then we define the expected shortfall as

ESα(X) = − 1

α

∫ α

0

VaRγ(X)dγ (1.4)

Finally, we define the entropic risk measure, which uses the exponential utility func-

5



1.2. RISK MEASURE CALCULATION

Figure 1.3: Graph highlighting Expected Shortfall.

tion in order to quantify risk. The entropic risk measure with the risk aversion parameter

β > 0 is defined as

ρent(X) =
1

β
log
(
E[e−βX ]

)
. (1.5)

Different from Expected Shortfall, the entropic risk measure is convex but not coherent.

We refer to [6] to a more comprehensive treatment of risk measures.

1.2 Calculating Risk Measures for Portfolios

There are several approaches to calculate risk measures. We highlight a couple of them

in this section. In addition we discuss the data set that we will use to model returns and

6



1.2. RISK MEASURE CALCULATION

subsequently estimate corresponding risk of the portfolio.

1.2.1 Methods to calculate Risk Measures

Of the few approaches that can be used to estimate risk measures, two are prominent in

existing literature and practice. The first one is a direct approach, involving knowledge

of the underlying joint distribution. The other one is an indirect approach, and models

dependence using copulas. We discuss them one by one.

Direct approach: Modelling Joint Distribution

Generally speaking, the marginal distributions (probability density functions) of the con-

stituents of the portfolio are known (or can be safely assumed) a priori and can be cali-

brated using well known univariate techniques. A simple example is the return distribu-

tion underlying the Black-Scholes option pricing model. In the Black-Scholes framework,

an asset is assumed to have log returns that are normally distributed [4], thereby allow-

ing pricing of options on the asset. In such a framework, once the return distribution is

established beforehand, it is simply a question of calibrating the empirical data set for

the unknown parameters, i.e. the mean and the variance. Following this, we can also

check if our assumptions about the distribution were valid using, for example, tests of

normality [8]. Finally, once we are convinced that the return distribution is indeed as

expected, we may plug in the calibrated parameters to obtain the required answer which,

in this case, is the option price.

On the other hand, the joint distribution of the portfolio may be sufficiently complex

to preclude such an exercise. However, under certain assumptions, we can calibrate the

joint distribution of the portfolio and subsequently estimate risk measures. This is the

approach that we follow in Chapter 2, where we assume that the joint distribution is a

Generalized Hyperbolic Distribution and is subsequently calibrated using the Expecta-

7



1.2. RISK MEASURE CALCULATION

tion Maximization (EM) algorithm.

Once we know the underlying joint distribution, and have calibrated it, we may then

begin calculating risk measures. For this, we simulate a return from the distribution n

times, where n is a sufficiently large number (in practice, n > 1, 000, 000). These num-

bers are then stored in a vector, following which Value-at-Risk and Expected Shortfall

are calculated using quantiles [7].

Indirect approach: Modelling Dependence via Copulas

Sometimes, it may be difficult to directly model the joint distribution of the portfolio. In

this case, we rely on an implicit measure of dependence, i.e. the copula associated with

that portfolio. Copulas capture the dependence structure of the joint distribution, and

using this information we can evaluate risk measures. This is explained in greater detail

in Chapter 3.

1.2.2 Data

The data that we use to perform analyses in this thesis consists of weekly returns of

four stocks that trade on NASDAQ. These four stocks are Apple Inc. (ticker: AAPL),

Ford Motor Company (ticker: F), Suncor Energy Inc. (ticker: SU) and Bank of America

(ticker: BAC). The reason these particular stocks were chosen is that they represent four

different sectors of the stock market, and thus their returns should, in general, be different

over time. A portfolio consisting of these stocks will also be fairly representative of the

entire stock market since the sectors are different. The reason weekly returns are chosen is

to avoid the issue of volatility clustering that would be present in noisy daily return data.

We use the last 20 years of data (from May 1998 to May 2018), in order to have a

sufficient number of weeks to conduct our analyses (1045 data points per stock). Instead

8



1.2. RISK MEASURE CALCULATION

of prices, we employ log returns of closing prices to quantify movements allowing us to

compare stocks at different price levels. Adjusted prices are used to account for stock

splits and dividends.

We also assume an equal investment of $10,000 in each of the stocks at inception and

track the movement of the portfolio with this as the reference point.

9



Chapter 2

Risk modelling via joint distribution

Generalized hyperbolic distributions are a large class of normal mixture distributions,

containing as special and limiting cases many well-known classes of distributions, such

as Student’s t-distributions, variance-gamma distributions, normal-inverse Gaussian dis-

tributions, and hyperbolic distributions. More importantly, compared to normal dis-

tributions, generalized hyperbolic distributions generally have semi-heavy tails and can

accommodate skewness. Thus it has been very appealing to use them to model various

real-life phenomena. Their use in financial modelling started in the 1990s. See, for ex-

ample, [11, 16]. As for the case of finite Gaussian mixture models, it is conventional to

use the Expectation-Maximization Algorithm or its variants to estimate the parameters

in generalized hyperbolic distributions. See, for example, [9, 15]. In this chapter, we fit

a generalized hyperbolic distribution to return data of four stocks to model their joint

distribution. After estimating the parameters using our modified MCECM algorithm,

we use the Monte Carlo methods to evaluate various risk measures of a portfolio of these

four stocks.

10



2.1. ALGORITHMIC SETUP

2.1 Algorithmic Setup

2.1.1 Generalized Hyperbolic Distributions

Earlier risk models were often based on multivariate normal distributions. In recent

decades, more advanced distributions are demanded, among which normal mixture mod-

els have become increasingly popular. Pioneering mixture models introduce mixture to

variance only, resulting in, e.g., a already very large classes of spherical and elliptical

distributions. More generally, one can introduce mixtures to both mean and variance,

which produces in particular generalized hyperbolic distributions.

We refer to [15] for basic properties of generalized hyperbolic distributions. A d-

dimensional random vector X is said to follow a generalized hyperbolic distribution if

X
def
= (µ+Wγ) +

√
WΣ

1
2Z, (2.1)

where µ, γ ∈ Rd, Σ is a positive-definite d× d matrix, Z ∼ Nd(0, Id) follows the standard

d-dimensional multivariate normal distribution, and

W ∼ N−(λ, χ, ψ)

follows a generalized inverse Gaussian (GIG) distribution and is independent of Z. Fol-

lowing the convention, we write

X ∼ GHd(λ, χ, ψ, µ,Σ, γ).

To be specific, W has the following density:

fW (w) =
χ−

λ
2ψ

λ
2

2Kλ(χ
1
2ψ

1
2 )

wλ−1 exp
(
− χ

2

1

w
− ψ

2
w
)
, w > 0, (2.2)

11



2.1. ALGORITHMIC SETUP

whereKλ is a modified Bessel function of the second kind with index λ. In some literature,

Kλ is also called modified Bessel function of the third kind. It can be explicitly written

for example as follows. For any λ ∈ R and x > 0,

Kλ(x) =
1

2

(x
2

)λ ∫ ∞
0

exp
(
− t− x2

4t

) dt

tλ+1

=
1

2

∫ ∞
0

tλ−1 exp
(
− x

2

(
t+ t−1

))
dt. (2.3)

We refer to [1, 12] for basic facts on Bessel functions.

The appearance of Kλ in fW is due to normalization:
∫∞

0
fW (w)dw = 1. In other

words, it holds that

∫ ∞
0

wλ−1 exp
(
− χ

2

1

w
− ψ

2
w
)
dw = 2

(χ
ψ

)λ
2
Kλ(χ

1
2ψ

1
2 ), (2.4)

which follows easily from (2.3) by a change of variable. Thus, by a simple computation

using (2.2) and (2.4), one easily sees that

E[Wα] =
χ−

λ
2ψ

λ
2

2Kλ(χ
1
2ψ

1
2 )

∫ ∞
0

wα+λ−1 exp
(
− χ

2

1

w
− ψ

2
w
)
dw (2.5)

=
(χ
ψ

)α
2 Kλ+α(χ

1
2ψ

1
2 )

Kλ(χ
1
2ψ

1
2 )

. (2.6)

By the definition of X, it is clear that X|W is normally distributed with the following

density:

fX|W (x|w)

=
1

(2π)
d
2 det(wΣ)

1
2

exp
(
− (x− µ− wγ)′(wΣ)−1(x− µ− wγ)

2

)
(2.7)

=
1

(2π)
d
2 det(Σ)

1
2w

d
2

exp
(
− (x− µ)′Σ−1(x− µ)

2

1

w
− γ′Σ−1γ

2
w + (x− µ)′Σ−1γ

)
.

12



2.1. ALGORITHMIC SETUP

Therefore, by (2.4), X has the following density:

fX(x) =

∫ ∞
0

fX|W (x|w)fW (w) dw

=
exp((x− µ)′Σ−1γ)

(2π)
d
2 det(Σ)

1
2

· χ−
λ
2ψ

λ
2

2Kλ(χ
1
2ψ

1
2 )

(2.8)

×
2Kλ− d

2

((
χ+ (x− µ)′Σ−1(x− µ)

) 1
2 (ψ + γ′Σ−1γ)

1
2

)
(
χ+ (x− µ)′Σ−1(x− µ)

)−λ− d
2

2 (ψ + γ′Σ−1γ)
λ− d

2
2

Consequently, W |X has the following density:

fW |X(w|x) =
fX|W (x|w)fW (w)

fX(x)

=

(
χ+ (x− µ)′Σ−1(x− µ)

)−λ− d
2

2 (ψ + γ′Σ−1γ)
λ− d

2
2

2Kλ− d
2

((
χ+ (x− µ)′Σ−1(x− µ)

) 1
2 (ψ + γ′Σ−1γ)

1
2

) (2.9)

× wλ−
d
2
−1 exp

(
− χ+ (x− µ)′Σ−1(x− µ)

2

1

w
− ψ + γ′Σ−1γ

2
w
)
,

and therefore,

W |X = x ∼ N−
(
λ− d

2
, χ+ (x− µ)′Σ−1(x− µ), ψ + γ′Σ−1γ)

)
. (2.10)

2.1.2 The Expectation-Maximization Algorithm

A comprehensive treatment in the EM algorithm can be found in [9, 14]. We now

use it to fit a multivariate generalized hyperbolic distribution GHd(λ, χ, ψ, µ,Σ, γ) to n

observations

x = (x1, . . . , xn)

13



2.1. ALGORITHMIC SETUP

that are independently produced from an iid experiment. For this purpose, let Xi be the

random outcome at the i-th observation, and write

X = (X1, . . . , Xn).

Let

W = (W1, . . . ,Wn)

be the corresponding mixtures. Then

Xi ∼ GHd(λ, χ, ψ, µ,Σ, γ), Wi ∼ N−(λ, χ, ψ), i = 1, . . . , n.

Moreover, (Xi,Wi), i = 1, . . . , n, are independent random pairs.

In the EM algorithm, we regard (X,W) as the complete information, X as the ob-

servable information, and W as the missing information. Put θ = (λ, χ, ψ, µ,Σ, γ), the

parameter collection in the model. Given an estimate θ(m) of θ at the m-th step, the

estimate of θ at the (m+1)-th step is given by the argument in maximizing the following

Q-function:

Q(θ|θ(m))

= EX,W|x,θ(m) [ln fX,W(X,W|θ)]

=
n∑
i=1

EXi,Wi|xi,θ(m)

[
ln fXi,Wi

(Xi,Wi|θ)
]

(2.11)

=
n∑
i=1

EXi,Wi|xi,θ(m)

[
ln fXi|Wi

(Xi|Wi, µ,Σ, γ)
]

+
n∑
i=1

EXi,Wi|xi,θ(m)

[
ln fWi

(Wi|λ, χ, ψ)
]

=
n∑
i=1

EWi|xi,θ(m)

[
ln fXi|Wi

(xi|Wi, µ,Σ, γ)
]

+
n∑
i=1

EWi|xi,θ(m)

[
ln fWi

(Wi|λ, χ, ψ)
]

:= Q1(µ,Σ, γ|θ(m)) +Q2(λ, χ, ψ|θ(m)),
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2.1. ALGORITHMIC SETUP

where the second equality is due to independence of the pairs (Xi,Wi)’s and [9, Propo-

sition 1.1].

The E-step. Here E stands for expectation. This step deals with computing Q.

Recall from (2.10) that

Wi|xi, θ(m) ∼ N−
(
λ(m)−d

2
, χ(m)+(xi−µ(m))′(Σ(m))−1(xi−µ(m)), ψ(m)+(γ(m))′(Σ(m))−1γ(m)

)
.

Thus by (2.6), we have the following

a
(m)
i :=EWi|xi,θ(m)

[
Wi] (2.12)

=
(χ(m) + (xi − µ(m))′(Σ(m))−1(xi − µ(m))

ψ(m) + (γ(m))′(Σ(m))−1γ(m)

) 1
2

×
Kλ(m)− d

2
+1(
√

(χ(m) + (xi − µ(m))′(Σ(m))−1(xi − µ(m)))(ψ(m) + (γ(m))′(Σ(m))−1γ(m)))

Kλ(m)− d
2
(
√

(χ(m) + (xi − µ(m))′(Σ(m))−1(xi − µ(m)))(ψ(m) + (γ(m))′(Σ(m))−1γ(m)))

b
(m)
i :=EWi|xi,θ(m)

[
W−1
i ] (2.13)

=
(χ(m) + (xi − µ(m))′(Σ(m))−1(xi − µ(m))

ψ(m) + (γ(m))′(Σ(m))−1γ(m)

)− 1
2

×
Kλ(m)− d

2
−1(
√

(χ(m) + (xi − µ(m))′(Σ(m))−1(xi − µ(m)))(ψ(m) + (γ(m))′(Σ(m))−1γ(m)))

Kλ(m)− d
2
(
√

(χ(m) + (xi − µ(m))′(Σ(m))−1(xi − µ(m)))(ψ(m) + (γ(m))′(Σ(m))−1γ(m)))

Also, put

c
(m)
i = EWi|xi,θ(m)

[
lnWi].

The computation of c
(m)
i is more sophisticated, and we will deal with it in the next
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2.1. ALGORITHMIC SETUP

section. By (2.7), we have

Q1(µ,Σ, γ|θ(m))

=
n∑
i=1

EWi|xi,θ(m)

[
ln fXi|Wi

(xi|Wi, µ,Σ, γ)
]

=
n∑
i=1

(xi − µ)′Σ−1γ − γ′Σ−1γ

2

n∑
i=1

a
(m)
i −

n∑
i=1

(xi − µ)′Σ−1(xi − µ)

2
b

(m)
i − n

2
ln det(Σ) + C,

where C is a constant independent of µ,Σ, γ.

By (2.2), we have

Q2(λ, χ, ψ|θ(m))

=
n∑
i=1

EWi|xi,θ(m)

[
ln fWi

(Wi|λ, χ, ψ)
]

= − n

2
λ lnχ+

n

2
λ lnψ − n ln

(
2Kλ(χ

1
2ψ

1
2 )
)
− ψ

2

n∑
i=1

a
(m)
i − χ

2

n∑
i=1

b
(m)
i + (λ− 1)

n∑
i=1

c
(m)
i .

The M-step. This step deals with finding the argument when maximizing Q. Namely,

(µ(m+1),Σ(m+1), γ(m+1)) = arg max
µ,Σ,γ

Q1(µ,Σ, γ|θ(m))

(λ(m+1), χ(m+1), ψ(m+1)) = arg max
λ,χ,ψ

Q2(λ, χ, ψ|θ(m)).

Monotonicity of Likelihood. Define the likelihood function as follows:

l(θ) = log fX(x|θ).

[9, Theorem 2.1] assets that each step in the EM algorithm increases the likelihood:

l(θ) ≥ l(θ(m)) whenever Q(θ|θ(m)) ≥ Q(θ(m)|θ(m)). (2.14)
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2.2. A MODIFIED EM ALGORITHM

We refer to [10] and [14, Chapters 3 & 4] for convergence properties of the EM algorithm.

2.2 A Modified EM Algorithm

2.2.1 Modified MCECM Algorithm

Many variants of the EM algorithm have been introduced. See, e.g., [14, Chapters 5 &

6]. Since the maximization of Q is split into two components Q1 and Q2 which separate θ

into two independent components (µ,Σ, γ) and (λ, χ, ψ), one sees that the EM algorithm

coincides with the Expectation-Conditional Maximization algorithm (ECM), in which

following each E-step the M-step (now called the CM-step) consists of a few consecutive

maximizations subject to updated constraints on prescribed subsets of the parameter

collection. If one also updates the E-step whenever a conditional maximization in the

CM-step is conducted, we come to the MCECM algorithm (It should be alerted that

MCECM also refers to Monte Carlo ECM in some literature). In what follows, we

describe a modified version of the MCECM algorithm.

Suppose we have finished the m-th step and obtain θ(m). After updating the E-step

of computing Q(θ|θ(m)), we have the option to first maximize Q1 to obtain

(µ(m+1,1),Σ(m+1,1), γ(m+1,1))

, and then partially update the known parameters from θ(m) to

θ(m,0,1) = (λ(m), χ(m), ψ(m), µ(m+1,1),Σ(m+1,1), γ(m+1,1)).

Then we continue to update the E-step, namely, calculate Q(θ|θ(m,0,1)), and then maxi-

17



2.2. A MODIFIED EM ALGORITHM

mize Q1 again to partially update the known parameters from θ(m,0,1) to

θ(m,0,2) = (λ(m), χ(m), ψ(m), µ(m+1,2),Σ(m+1,2), γ(m+1,2)).

Repeating this process, one obtains

θ(m,0,k) = (λ(m), χ(m), ψ(m), µ(m+1,k),Σ(m+1,k), γ(m+1,k)), k ∈ N.

Intuitively,

θ(m,0,∞) := lim
k→∞

θ(m,0,k) = (λ(m), χ(m), ψ(m), µ(m+1,∞),Σ(m+1,∞), γ(m+1,∞))

gives the best fit of the model to the n observations, when (λ(m), χ(m), ψ(m) is fixed,

subject to the initial value (µ(m),Σ(m), γ(m)) of (µ,Σ, γ).

Next, we update the E-step, calculatingQ(θ|θ(m,0,∞)), and maximizeQ2(λ, χ, ψ|θ(m,0,∞))

to update the parameters from θ(m,0,∞) to

θ(m,1,∞) = (λ(m+1,1), χ(m+1,1), ψ(m+1,1), µ(m+1,∞),Σ(m+1,∞), γ(m+1,∞)).

We continue to update the E-step, calculatingQ(θ|θ(m,1,∞)), and maximizeQ2(λ, χ, ψ|θ(m,1,∞))

to update the parameters from θ(m,1,∞) to

θ(m,2,∞) = (λ(m+1,2), χ(m+1,2), ψ(m+1,2), µ(m+1,∞),Σ(m+1,∞), γ(m+1,∞)).

Repeating the process, we obtain

θ(m,k,∞) = (λ(m+1,k), χ(m+1,k), ψ(m+1,k), µ(m+1,∞),Σ(m+1,∞), γ(m+1,∞)), k ∈ N,
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and

θ(m,∞,∞) := lim
k→∞

θ(m,k,∞) = (λ(m+1,∞), χ(m+1,∞), ψ(m+1,∞), µ(m+1,∞),Σ(m+1,∞), γ(m+1,∞)).

Finally, we complete the (m+ 1)-th step by setting

θ(m+1) := θ(m,∞,∞).

In reality, it may be unfeasible or unnecessary to obtain θ(m,0,∞)) and then θ(m,∞,∞).

Instead, one may stop first at θ(m,0,k1) and turn to work on Q2 and stop at θ(m,k2,k1). In

practice, k1 = k2 = 1 is used. We will stick to k1 = k2 = 3. Repeatedly using (2.14), one

sees that

l(θ(m+1)) ≥ l(θ(m)).

It deserves mentioning that, alternatively, one can first work on Q2 and then on the

partially updated Q1. However, we will not take this alternative.

2.2.2 A further CM split of λ, χ, ψ

We will use the MATLAB tool “fmincon” to optimize Q2. In Section 2.1.2, one sees that

Q2 is highly nonlinear and has three variables λ, χ, ψ. These two factors add a significant

level of difficulties, instability and inaccuracy into the optimization task. Indeed, if one

assumes the true values of µ,Σ, γ are known (and thus never update them in the EM

algorithm), then simulation studies often reveal that the estimates of λ, χ, ψ produced

by the EM algorithms may be wrong, in particular, when the true values of λ, χ, ψ are

somewhat extreme. We include the MATLAB codes for these simulation studies on EM

estimates of W , i.e., estimates of λ, χ, ψ in Appendix A.2. One reason for such failures

is that “fmincon” can only find local minimums and has reduced efficiency over high-

dimensional regions.
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2.2. A MODIFIED EM ALGORITHM

On the other hand, if one assumes the true values of all parameters but λ (respectively,

χ, ψ) are known (and thus never update them in the EM algorithm), then simulation

studies show that the EM algorithm produces expected estimates of λ (respectively,

χ, ψ). We include the MATLAB codes for these simulation studies on EM estimates of

W , i.e., estimates of λ, χ, ψ in Appendix A.3.

Due to the above reasons, we modify the CM-step in the maximization of Q2. Namely,

we optimize Q2(λ, θ
(m,k)
∗ |(λ(m+1,k), θ

(m,k)
∗ ), where

θ(m,k)
∗ = (χ(m+1,k), ψ(m+1,k), µ(m+1,∞),Σ(m+1,∞), γ(m+1,∞)),

over λ to update the parameters to the following:

(λ(m+1,k+1), χ(m+1,k), ψ(m+1,k), µ(m+1,∞),Σ(m+1,∞), γ(m+1,∞)).

Then we optimize Q2(χ, θ
(m,k)
∗∗ |(χ(m+1,k), θ

(m,k)
∗∗ ), where

θ(m,k)
∗∗ = (λ(m+1,k+1), ψ(m+1,k), µ(m+1,∞),Σ(m+1,∞), γ(m+1,∞)),

over χ to update the parameters to the following:

(λ(m+1,k+1), χ(m+1,k+1), ψ(m+1,k), µ(m+1,∞),Σ(m+1,∞), γ(m+1,∞))

Finally, we optimize Q2(ψ, θ
(m,k)
∗∗∗ |(ψ(m+1,k), θ

(m,k)
∗∗∗ ), where

θ(m,k)
∗∗∗ = (λ(m+1,k+1), χ(m+1,k+1), µ(m+1,∞),Σ(m+1,∞), γ(m+1,∞)),

over ψ to update the parameters to the following:

(λ(m+1,k+1), χ(m+1,k+1), ψ(m+1,k+1), µ(m+1,∞),Σ(m+1,∞), γ(m+1,∞))
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2.3 Computational considerations

2.3.1 Initial values

For X ∼ GHd(λ, χ, ψ, µ,Σ, γ) as defined in (2.1), we have

E[X] = µ+ E[W ]γ, (2.15)

V[X] = V[W ]γγ′ + E[W ]Σ. (2.16)

In practice, one usually starts with

γ(0) = 0,

which corresponds to the special class of symmetric generalized hyperbolic distributions.

Thus by (2.15), we set

µ(0) =
1

n

n∑
i=1

xi,

and by (2.16), we set

Σ(0) = S,

where S is the sample covariance matrix. Now a second application of (2.16) inspires to

restrict

E[W ] =
(χ
ψ

) 1
2 Kλ+1(χ

1
2ψ

1
2 )

Kλ(χ
1
2ψ

1
2 )

= 1.

We set

χ(0) = ψ(0) = 1,

and set λ(0) by solving

Kλ(0)+1(1) = Kλ(0)(1),

which by inspection has the solution λ(0) = −0.5.
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2.3.2 Computing c
(m)
i

The computation of c
(m)
i involves evaluating E[lnW ], where W ∼ N−(λ, χ, ψ). We have

at least three methods to do this. The first one is to use Monte Carlo simulation, namely,

simulating iid Wi ∼ N−(λ, χ, ψ), i = 1, . . . , N , and estimating

E[lnW ] ≈ 1

N

N∑
i=1

Wi.

A drawback is that the convergence is quite slow, with rate O(N−
1
2 ).

Alternatively, by (2.5),

E[lnW ] =
χ−

λ
2ψ

λ
2

2Kλ(χ
1
2ψ

1
2 )

∫ ∞
0

(lnw)wλ−1 exp
(
− χ

2

1

w
− ψ

2
w
)
dw (2.17)

=
∂E[Wα]

∂α
(0). (2.18)

Thus one may compute E[lnW ] via differentiation in (2.18) or via integration via im-

proper integration in (2.17). To avoid numerical instability of differentiation, we will

use integration, which can be easily done by implementing the integral command in

MATLAB.

Therefore, since

Wi|xi, θ(m) ∼ N−
(
λ(m)−d

2
, χ(m)+(xi−µ(m))′(Σ(m))−1(xi−µ(m)), ψ(m)+(γ(m))′(Σ(m))−1γ(m)

)
,
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we have

c
(m)
i =

( ψ(m) + (γ(m))′(Σ(m))−1γ(m)

χ(m) + (xi − µ(m))′(Σ(m))−1(xi − µ(m))

)λ(m)− d
2

2

× 1

2Kλ(m)− d
2
(
√

(χ(m) + (xi − µ(m))′(Σ(m))−1(xi − µ(m)))(ψ(m) + (γ(m))′(Σ(m))−1γ(m)))

×
∫ ∞

0

(lnw)wλ
(m)− d

2
−1 exp

(
− χ(m) + (xi − µ(m))′(Σ(m))−1(xi − µ(m))

2

1

w

− ψ(m) + (γ(m))′(Σ(m))−1γ(m)

2
w
)

dw

2.3.3 Maximizing Q1

We refer to [19] for basics on vector and matrix differentiation. Differentiating Q1 we

have

∂Q1

∂µ
=− nΣ−1γ +

n∑
i=1

Σ−1(xi − µ)b
(m)
i ,

∂Q1

∂γ
=

n∑
i=1

Σ−1(xi − µ)− Σ−1γ
n∑
i=1

a
(m)
i ,

∂Q1

∂Σ−1
=

n∑
i=1

(xi − µ)γ′ − 1

2
γγ′

n∑
i=1

a
(m)
i − 1

2

n∑
i=1

(xi − µ)(xi − µ)′b
(m)
i +

n

2
Σ.

Setting the partial derivatives to 0 and solving the equations, we obtain

γ(m+1) =
1
n

∑n
i=1 b

(m)
i (xi − x)

1− 1
n

∑n
i=1 b

(m)
i · 1

n

∑n
i=1 a

(m)
i

,

µ(m+1) =

∑n
i=1 xi
n

−
∑n

i=1 ai
n

γ,

Σ =
1

n

n∑
i=1

(xi − µ(m+1))(xi − µ(m+1))′b
(m)
i − 1

n

n∑
i=1

a
(m)
i · γ(m+1)(γ(m+1))′

23



2.4. NUMERICAL RESULTS

2.3.4 Maximizing Q2

In practice, one shall maximize 2Q2/n to remove the magnitude n in case the data

size is very large and unnecessary constants. Namely, we need to find the argument in

minimizng the following function:

Q′2(λ, χ, ψ|θ(m))

= λ lnχ− λ lnψ + 2 ln
(
Kλ(χ

1
2ψ

1
2 )
)

+ ψ

∑n
i=1 a

(m)
i

n
+ χ

∑n
i=1 b

(m)
i

n
− 2λ

∑n
i=1 c

(m)
i

n
.

We will use the MATLAB tool “fmincon” to solve this nonlinear optimization problem

with constraints: χ ≥ 0 and ψ ≥ 0. Note that the precise constraints of the parameters

λ, χ, ψ are as follows: χ ≥ 0, ψ > 0 if λ > 0; χ > 0, ψ > 0 if λ = 0; χ > 0, ψ ≥ 0 if λ < 0.

2.4 Numerical Results

In this section, we discuss the results from calibrating and simulating Generalized Hy-

berbolic Distributions with our sample data.

2.4.1 EM Estimates of Parameters

Running the code in Appendix A.1 enables us to calculate the best estimates of the

parameters involved in the Generalized Hyperbolic Distribution. We list them here.

λ = −1.8552

χ = 2.2326

ψ = 5.1476 ∗ 10−5
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γ′ =


3.5261 ∗ 10−3

2.4177 ∗ 10−3

1.0796 ∗ 10−3

2.6350 ∗ 10−3



µ′ =


−1.0028 ∗ 10−2

−3.739 ∗ 10−3

−1.2105 ∗ 10−3

−6.1779 ∗ 10−3



Σ =


2.9068 ∗ 10−3 6.0378 ∗ 10−4 6.8643 ∗ 10−4 5.7658 ∗ 10−4

6.0378 ∗ 10−4 2.1498 ∗ 10−3 9.8082 ∗ 10−4 6.0630 ∗ 10−4

6.8643 ∗ 10−4 9.8082 ∗ 10−4 2.4551 ∗ 10−3 6.4051 ∗ 10−4

5.7658 ∗ 10−4 6.0630 ∗ 10−4 6.4051 ∗ 10−4 2.1930 ∗ 10−3


2.4.2 Simulation Results

The parameters are then used in conjunction with Monte Carlo simulations to generate

1,000,000 simulations of the stock return values. Following this, we take the rowsums to

evaluate the loss for the portfolio. For this, we assume that we have invested $10,000 in

each of the four stocks. The results are listed in Table 2.1

Expected Shortfall Value at Risk

$4,793 $4,352

Table 2.1: ES and VaR based on Generalized Hyperbolic Distribution

We will come back to these numbers in Chapter 4, where we will discuss results along

with conclusions and inferences.
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Chapter 3

Risk Modelling via Marginal

Distributions

If we have a joint distribution function corresponding to a risk factor random vector, we

have a dependence structure that is implicit in it. Copulas help us in the isolation of this

dependence structure.

Dependence and correlation may seem synonymous at first glance, however, a deeper

look reveals that linear correlations are inadequate to measure dependence. To this end,

we can discuss alternative dependence measures including coefficients of tail dependence

using copulas. The latter is of particular interest in the study of financial market crashes,

since there may be a high degree of dependence in the tails which represent extreme

events.

3.1 Basic Copula Theory

In this section we review the definition of a copula, some basic properties that a copula

must satisfy and some examples of copulas. We refer to [18] for a comprehensive account

of copulas. Throughout this chapter, all distributions are continuous, unless specified
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otherwise.

3.1.1 Definitions

Definition 1. A d-dimensional copula is a function C : [0, 1]d → [0, 1] satisfying the

following conditions:

(i) C(u1, . . . , ud) is increasing in each component ui;

(ii) C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, . . . , d} and ui ∈ [0, 1];

(iii) For any (a1, . . . , ad), (b1, . . . , bd) ∈ [0, 1]d with ai ≤ bi for all 1 ≤ i ≤ d, it holds that

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+ ...+idC(u1i1 , . . . , udid) ≥ 0,

where uj1 = aj and uj2 = bj for all j ∈ {1, . . . , d}.

As is well-known from distribution theory, copulas can be equivalently defined as

follows.

Definition 2. A function C : [0, 1]d → [0, 1] is a copula if and only if there exists a

random vector U = (U1, . . . , Ud) such that Ui is a standard uniform distribution on [0, 1]

for each 1 ≤ i ≤ d and that

C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud), ∀(u1, . . . , ud) ∈ [0, 1]d.

We call this random vector U , although not unique, a generating random vector of C.

It often plays a useful role in simulations.
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3.1.2 Basic Properties

Next we proceed to discuss some properties of copulas. Before we do that, we observe

the following properties for distribution functions.

Let F be a continuous distribution function and let F− denote the left continuous

quantile of F , i.e.,

F−(y) = inf{x : F (x) ≥ y}.

Then the following hold:

(a) If U is a random variable following standard uniform distribution, then the distri-

bution function of F−(U) is F ;

(b) If X is a random variable with distribution function F , then F (X) follows the

standard uniform distribution.

We refer to [6] for detailed discussions of these properties.

The primary importance of copulas in isolating dependence structure from marginal

distributions is illustrated in the celebrated theorem of Sklar.

Theorem 3 (Sklar). Let F be a joint distribution function with marginals F1, . . . , Fd.

Then there exists a unique copula C : [0, 1]d → [0, 1] such that, for all x1, . . . , xd ∈ R,

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (3.1)

Clearly, by (3.1), for any u1, . . . , ud ∈ [0, 1],

C(u1, . . . , ud) = F (F−1 (u1), . . . , F−d (ud)). (3.2)

Definition 4. We call C in Theorem 3 the copula of F . If F is the distribution of a

random vector (X1, . . . , Xd), we also call C the copula of (X1, . . . , Xd), or (X1, . . . , Xd)

an associated random vector of C.
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We now make two useful remarks regarding generating and associated random vectors,

combining which gives the standard procedures to simulate random vectors with a given

copula and given marginals.

Remark 5. Let C be a copula with associated random vector (X1, . . . , Xd). Let Fi be the

distribution of Xi. Note that each Fi(Xi) is a standard uniform distribution and that

P
(
F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud

)
=P
(
F−1 ◦ F1(X1) ≤ F−1 (u1), . . . , F−d ◦ Fd(Xd) ≤ F−d (ud)

)
=P(X1 ≤ F−1 (u1), . . . , Xd ≤ F−d (ud))

=F (F−1 (u1), . . . , F−d (ud))

=C(u1, . . . , ud).

Therefore, (F1(X1), . . . , Fd(Xd)) is a generating random vector of C

Remark 6. Let C be a copula with a generating random vector (U1, . . . , Ud). Let F1, . . . , Fd

be given marginals. Note that each F−i (Ui) has distribution function Fi and

P
(
F−1 (U1) ≤ x1, . . . , F

−
d (Ud) ≤ xd

)
=P
(
U1 ≤ F1(x1), . . . , Ud ≤ Fd(xd)

)
=C(F1(x1), . . . , Fd(xd)).

Therefore, by (3.1), (F−1 (U1), . . . , F−d (Ud)) is an associated random vector of C with

prescribed marginals Fi’s.

We end this subsection with a useful result that allows us to simplify the associated

random vector when determining its copula. This result demonstrates again the fact that

copulas capture the essential dependence structure in a joint distribution.
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Proposition 7. Let (X1, . . . , Xd) be a random vector with copula C and let T1, . . . , Td

be strictly increasing functions on R. Then (T1(X1), . . . , Td(Xd)) also has copula C.

3.1.3 Examples of Copulas

We provide a number of examples of copulas in this section and these are subdivided

into three categories: fundamental copulas represent a number of important special de-

pendence structures; implicit copulas are extracted from well-known multivariate dis-

tributions using Sklar’s Theorem, but do not necessarily possess simple closed- form

expressions; explicit copulas have simple closed-form expressions and follow general math-

ematical constructions known to yield copulas.

Independence Copula

As a first example of fundamental copulas, the independence copula is defined by

Π(u, ., u) =
d∏
i=1

ui. (3.3)

By Sklar’s Theorem, it is clear that a random vector has the independence copula if

and only if its marginals are independent.

Comonotonicity Copula

The comonotonicity copula is another basic example of fundamental copulas. It is defined

by

M(u1, . . . , ud) = min{u1, . . . , ud}. (3.4)

Observe that this copula has a generating random vector (U, . . . , U), where U follows

a standard uniform distribution on [0, 1].

Let X be a random variable and Ti, i = 1, . . . , d, be strictly increasing functions
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on R. Then by Proposition 7, the copula of (T1(X), . . . , Td(X)) is the same as that of

(X, . . . , X), which in turn is the same as that of (U, . . . , U), where U = F (X). Hence,

the copula is in fact just the comonotonicity copula.

Gauss Copula

Gauss copula is one of the most important implicit copulas. By Proposition 7, X ∼

Nd(µ,Σ) and Y ∼ Nd(0, P ) have the same copula, where P is the corresponding corre-

lation matrix of Σ. Their copula is called a Gauss copula. Specifically, by Remark 5, we

have

CGa
P (u1, . . . , ud)

= P(Φ(Y1) ≤ u1, . . . ,Φ(Xd) ≤ ud)

= ΦP (Φ−1(u1), . . . ,Φ−1(ud))

=

∫ Φ−1(u1)

−∞
· · ·
∫ Φ−1(ud)

−∞
det(2πP )−

1
2 exp

{
− 1

2
y′P−1y

}
dy.

Gauss copulas were most popular in risk modelling. But some academics and practition-

ers attribute the 2007-2008 crisis to its wide use in credit risk modelling and its weakness

to capture dependence, and since then its use has been greatly reduced.

t Copula

In the same way that we can extract a copula from the multivariate normal distribution,

we can extract an implicit copula from any other distribution with continuous marginal
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dfs. For example, the d-dimensional t copula takes the form

Ct
v,P (u1, . . . , ud)

= tv,P (t−1
ν (u1), . . . , t−1

ν (ud))

=

∫ Φ−1(u1)

−∞
· · ·
∫ Φ−1(ud)

−∞

Γ [(ν + d)/2]

Γ(ν/2)νd/2πd/2 |Σ|1/2

[
1 +

1

ν
(x− µ)TΣ−1(x− µ)

]−(ν+d)/2

dx.

t copulas capture both upper and lower tail dependence. Their capture of dependence

are stronger than Gauss copula but weaker than the following two copulas each of which

only capture one-sided tail dependence for the upper and lower tail dependence.

Gumbel Copula

The Gumbel copula is a typical explicit copula, which captures upper tail-dependence.

CGu
θ (u1, . . . , ud) = exp

{
−
( d∑
i=1

(− lnui)
θ
) 1
θ

}
, 1 ≤ θ <∞. (3.5)

Clayton Copula

The last example is the Clayton copula, which is also an explicit copula but captures

lower tail-dependence.

CCl
θ (u1, . . . , ud) = (u−θ1 + · · ·+ u−θd − d+ 1)−1/θ, 0 < θ <∞. (3.6)

3.2 Marginal Distributions of stocks

We will work with 20 years of data for 4 stocks, which are Apple (AAPL), Bank of America

(BAC), Ford (F) and Suncor Energy (SU). The reason for choosing these particular

stocks was that they are among the largest in their respective sectors and hail from
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Figure 3.1: Marginal distributions of individual stocks.

different sectors, thereby allowing for some diversification. We assume that the marginal

distributions of the stocks are normal. This assumption is chosen for simplicity, but may

be relaxed to include any other distribution with no change in the procedure. Under this

assumption, we calibrate the data set and obtain the distributions for the four stocks in

Figure 3.1. The corresponding values are listed in Table 3.1.

Next, we assume that we have invested $10,000 in each of the four stocks. In accor-

dance with Basel regulations, we use the 99th percentile for VaR and 97.5th percentile
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Stock µ σ
AAPL -0.0053 0.0585
BAC -0.0005 0.0629
F 0.0002 0.0618
SU -0.0027 0.0500

Table 3.1: Mean and standard deviation of log returns of marginal distributions of stocks

onwards for ES. The ES and VaR values based on 1,000,000 simulations are tabulated in

Table 3.2.

Stock Expected Shortfall Value at Risk
AAPL $1,312 $1,311
BAC $1,415 $1,310
F $1,378 $1,323
SU $1,076 $1,056
Sum $5,178 $4,999

Table 3.2: ES and VaR based on marginal distributions of stocks

3.3 Empirical Results

For each of the four copulas defined in Section 2.1.3, and for the empirical marginal

distributions determined in Section 2.2, we evaluate the results of plugging in the marginal

distributions into the copulas.

3.3.1 Gauss Copula

We start with the Gauss Copula. For this, we need a correlation matrix. As suggested

in [15], the following is a close approximation to the calibrated correlation matrix:

ρS(Xi, Xj) = (6/π) arcsin
1

2
ρij ≈ ρij,

34



3.3. EMPIRICAL RESULTS

where ρS is the matrix formed by taking the pairwise Spearman’s rank correlation co-

efficients between the stock return vectors. The matrix ρ then takes the following form

based on the empirical data:

ρ =


1.0000 0.2713 0.2843 0.2329

0.2713 1.0000 0.4137 0.2439

0.2843 0.4137 1.0000 0.2650

0.2329 0.2439 0.2650 1.0000



We then simulate the copula by the following steps:

Algorithm 2.1 (simulation of Gauss copula).

(1) Generate Z ∼ Nd(0, P );

(2) Return U = (Φ(Z1), . . . ,Φ(Zd))
′, where Φ is the standard normal df. The random

vector U has df CGa
P ;

(3) Apply Remark 6 with the marginal distributions of the stocks as calculated in

section 3.2 to obtain a random vector with CGa
P .

Once we have the copula, and plugged in the marginals, we take the rowsums to

evaluate the loss for the portfolio. For this, we assume that we have invested $10,000 in

each of the four stocks. The results are listed in Table 3.3

Expected Shortfall Value at Risk

$3,388 $3,303

Table 3.3: ES and VaR based on Gauss Copula

As expected, both VaR and ES decrease when the stocks are put in a portfolio. The

number for Value at Risk is $3,303 and for Expected Shortfall is $3,388, down from $4,999

and $5,178 respectively.
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3.3.2 t Copula

The next copula that we discuss is the t Copula. For this, we need a correlation matrix

and degrees of freedom. We may choose any arbitrary correlation matrix, however, as

suggested in [15] the following relation holds:

ρτ (Xi, Xj) = (2/π) sin−1 ρij,

where ρτ is the matrix formed by taking the pairwise Kendall’s rank relation coefficients

between the stock return vectors.

It then follows, that our matrix may be estimated by multiplying both sides by π/2 and

subsequently taking the sine of both sides leading to the following for the purposes of

this simulation:

ρ =


1.0000 0.2866 0.3007 0.2477

0.2866 1.0000 0.4415 0.2612

0.3007 0.4415 1.0000 0.2858

0.2477 0.2612 0.2858 1.0000


We also choose ν to be 5. The reasoning behind this is that we want to differentiate this

from the Gauss Copula (since t Copula converges asymptotically to the Gauss Copula as

degrees of freedom increase) and in order to observe the strong tail dependence present

in the t Copula by design.

We then simulate the copula by the following steps:

Algorithm 2.2 (simulation of t copula).

(1) Generate X ∼ td(ν, 0, P ).

(2) Return U = (tν(X1), . . . , tν(Xd))
′, where tν denotes the df of a standard univariate

t distribution. The random vector U has df Ct
v,P .
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(3) Apply Remark 6 with the marginal distributions of the stocks as calculated in

section 3.2 to obtain a random vector with Ct
v,P .

Once we have the copula, and plugged in the marginals, we take the rowsums to evaluate

the loss for the portfolio. For this, we assume that we have invested $10,000 in each of

the four stocks. The results are listed in Table 3.4.

Expected Shortfall Value at Risk

$3,700 $3,660

Table 3.4: ES and VaR based on t Copula

As expected, both VaR and ES decrease when the stocks are put in a portfolio even

for the t Copula. The number for Value at Risk is $3,660 and for Expected Shortfall is

$3,700, down from $4,999 and $5,178 respectively. Also note that while the Value at Risk

increasing by using a t Copula as opposed to a Gauss Copula, the Expected Shortfall

actually goes down. This is due to the fact that for the same correlation matrix ρ, the t

Distribution has heavier tails than the Normal Distribution.

3.3.3 Gumbel Copula

Another copula that we discuss in greater detail is the Gumbel copula. The interesting

feature about this copula is that it captures upper tail-dependence. A Gumbel copula is

uniquely characterized by the parameter θ ≥ 1.

Calibrating θ in the two-dimensional case boils down to a one-to-one mapping between

the Kendall’s rank correlation coefficient and θ, however, it is not trivial to calibrate in

the d-dimensional case. For the purpose of our simulations, we choose θ = 3, and then

run the following algorithm to simulate the Gumbel Copula:

Algorithm 2.3 (simulation of Gumbel copula).
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(1) First, generate a variate V with df G such that Ĝ, the Laplace-Stieltjes transform

of G, will be the inverse of the generator φ of the required copula.

(2) Next, generate independent uniform variates X1, . . . , Xd.

(3) Return U = (Ĝ(− ln(X1)/V ), . . . , Ĝ(− ln(Xd)/V where V is a positive stable

variate V ∼ St(1/θ, 1, γ, 0) , where γ = (cos(π/(2θ)))θ and θ > 1. The resultant

df has Laplace transform Ĝ(t) = exp(−t1/θ) which is what we wanted.

(4) Apply Remark 6 with the marginal distributions of the stocks as calculated in

section 3.2 to obtain a random vector with CGu
θ .

Once we have the copula, and plugged in the marginals, we take the rowsums to evaluate

the loss for the portfolio. For this, we assume that we have invested $10,000 in each of

the four stocks. The results are listed in Table 3.5.

Expected Shortfall Value at Risk

$5,613 $5,544

Table 3.5: ES and VaR based on Gumbel Copula

Due to high dependence in the upper tails, we have that the Value at Risk and

Expected Shortfall increase from $4,999 and $5,178 to $5,544 and $5,613 respectively.

This can also partly be explained by the instability of the random number generator for

Positive Stable Variates in MATLAB.

We will come back to these numbers in Chapter 4, where we will discuss results along

with conclusions and inferences.
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Chapter 4

Conclusions and Inferences

This chapter is dedicated to summarizing and dissecting the results obtained in Chapters

2 and 3, and attempting to explain them using both Mathematics and Finance. We will

begin with numerical comparisons, and then proceed to inferences. Finally, we will finish

by discussing potential for future research.

4.1 Numerical Comparisons

First, we summarize the results obtained by the various copulas in Table 4.1.

Copula Name Expected Shortfall Value at Risk

Gauss Copula $3,388 $3,303

t Copula $3,700 $3,660

Gumbel Copula $5,613 $5,544

Table 4.1: ES and VaR based on various Copulas

It is evident from the table that both Gauss Copula and t Copula are able to capture

the concept of risk reduction due to diversification [13], whereas the Gumbel Copula

amplifies upper tail risk.
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Next, we compare this with the numbers obtained by using the Generalized Hyperbolic

Distribution. Recall that the values for the Value at Risk and Expected Shortfall were

$4,352 and $4,793 respectively. While these are higher than those obtained by using

the Gauss and t Copulas, they are significantly lower than the values of the Gumbel

Copula. It is worth stressing again that this is the most generic version of the Generalized

Hyperbolic Distribution, with all parameters being free.

Another comparison can be drawn between the values obtained by using the sum of the

individual Value at Risk and Expected Shortfall for the various stocks versus the values

obtained by putting them in a portfolio first and subsequently applying either Copulas

or Generalized Hyperbolic Distributions to the complete portfolio. Recall that the sum

of the individual values was $5,178 and $4,999 for the Expected Shortfall and Value at

Risk respectively. While the Generalized Hyperbolic Distribution, and the Gauss and t

Copulas result in a reduction of risk, the Gumbel Copula results in an increase in risk.

4.2 Inferences

The class of Generalized Hyperbolic Distributions encompasses a wide range of distribu-

tions due to the fact that there are six parameters in total. This inherently allows for

tweaking and fitting according to real life needs. This customization is useful when a

simple explanatory model (for example, the Multivariate Normal Model), may be insuf-

ficient to capture the intricacies of the data set.

Copulas are an elegant way of measuring and allowing for dependence in portfolios that

may otherwise be difficult to capture. Different copulas have different properties, and

we have to find one that suits our needs. Often, the most extreme case (in this case,

the Gumbel Copula) can be taken from the point of view of a conservative risk-adverse

investor. For other practical purposes (for example, internal and external reporting),
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other copulas like the Gauss and the t Copulas may be better fits.

4.3 Future Research

The following are questions that can be considered extensions to the work done in this

thesis and may be suitable for researching further:

1. Is it worth defining the Generalized Hyperbolic Distribution in its most generic form

(using all six parameters), or is there merit to simplifying the problem by fixing

one or more parameters, thereby specifying a subset of Generalized Hyperbolic

Distributions (several of which are named distributions)?

2. How do these two methods, namely using Copulas or Generalized Hyperbolic Distri-

butions, stack against other known methods of estimation in literature, for example,

the Rearrangement Algorithm proposed in [17]?

3. How well do these methods capture risk in real life? This is a question that is quite

open-ended and subjective, but having a metric that quantifies and compares the

performance of different methods in the existing financial markets can be useful.

4. What other risk measures (for example, the Entropic Risk measure [5]) can be

suitable for quantifying financial risk? What properties do these risk measures

satisfy when applied to individual stocks? More importantly, what properties still

hold (or come into existence) while discussing portfolio risk?
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Appendix A

Codes for Chapter 2

A.1 EM algorithm: Calibration and Simulation

1 % c l e a r v a r s −except returnmatr ix

2

3 X = returnmatr ix ;

4 [ n , d ] = s i z e ( returnmatr ix ) ; % c a l c u l a t e dimensions o f r e turn

matrix

5

6 ns imu la t i ons = 1000000; % number o f s imu la t i on s to run

7 con f idence l eve l VaR = 0 . 9 9 ; % con f idence l e v e l f o r VaR

8 c o n f i d e n c e l e v e l E S = 0 . 9 7 5 ; % con f idence l e v e l f o r ES

9 d o l l a r v a l u e = 10000 ; % amount inve s t ed in each stock

10

11 % i n i t i a l va lue s

12

13 gamma = ze ro s (1 , d ) ;

14 mu = mean(X) ;
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15 Sigma = cov (X) ;

16 p s i = 1 ;

17 ch i = 1 ;

18 lambda = −0.5;

19 i t e r a t i o n s = 100 ;

20 klambda = 5 ;

21 kchi = 5 ;

22 kps i = 5 ;

23 kW = 5 ;

24 f o r i t e r = 1 : i t e r a t i o n s

25 % lambda opt imiza t i on

26 chiwx = ch i+sum(((−mu+X) /Sigma ) .∗(−mu+X) ,2) ; % t h i s i s nx1

matrix

27 psiwx = p s i+gamma/Sigma∗ t ranspose (gamma) ;

28

29 f o r j =1:klambda

30

31 %compute the dens i ty o f W i | x i

32 lambdawx = lambda−d /2 ;

33

34 %compute c

35 c = ze ro s (n , 1 ) ;% t h i s i s nx1 matrix : E [ ln W]

36 f o r i =1:1 :n

37 fun1 = @(w) log (w) .∗w. ˆ ( lambdawx−1) .∗ exp (−0.5∗

psiwx∗w) .∗ exp (−0.5∗ chiwx ( i , 1 ) ∗w.ˆ(−1) ) ;

38 c ( i , 1 ) = 0 . 5∗ ( psiwx/chiwx ( i , 1 ) ) ˆ (0 . 5∗ lambdawx ) /

b e s s e l k ( lambdawx , s q r t ( chiwx ( i , 1 ) ∗psiwx ) ) ∗
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i n t e g r a l ( fun1 , 0 , I n f ) ;

39 c l e a r fun1 ;

40 end

41

42 %update lambda , chi , p s i

43 opt ions = opt imopt ions ( ’ fmincon ’ , ’ Algorithm ’ , ’ sqp ’ , ’

Display ’ , ’ o f f ’ ) ;

44 fun2 = @( t ) t ∗ l og ( ch i )−t ∗ l og ( p s i )+2∗ l og ( b e s s e l k ( t ,

s q r t ( ch i ∗ p s i ) ) )−2∗t ∗mean( c ) ;

45 A = [ ] ;

46 B = [ ] ;

47 Aeq = [ ] ;

48 beq = [ ] ;

49 lb = [ ] ;

50 ub = [ ] ;

51 nonlcon = [ ] ;

52 t0 = lambda ;

53 t = fmincon ( fun2 , t0 ,A,B, Aeq , beq , lb , ub , nonlcon ,

opt ions ) ;

54 c l e a r fun2 ;

55

56 %pr in t out the r e s u l t

57 s tep = j ;

58 lambda = t ;

59 end

60 % chi opt imiza t i on

61 lambdawx = lambda−d /2 ;
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62 psiwx = p s i+gamma/Sigma∗ t ranspose (gamma) ;

63 f o r j =1: kch i %work on Q2 and p a r t i a l l y update lambda , chi , p s i

f o r k t imes

64

65 %compute the dens i ty o f W i | x i

66 chiwx = ch i+sum(((−mu+X) /Sigma ) .∗(−mu+X) ,2) ; % t h i s i s

nx1 matrix

67

68 %compute a , b , c

69 b = s q r t ( psiwx . / chiwx ) .∗ b e s s e l k ( lambdawx−1, s q r t ( chiwx∗

psiwx ) ) . / b e s s e l k ( lambdawx , s q r t ( chiwx∗psiwx ) ) ;% t h i s

i s nx1 matrix : E [Wˆ(−1) ]

70

71

72 %update lambda , chi , p s i

73 opt ions = opt imopt ions ( ’ fmincon ’ , ’ Algorithm ’ , ’ sqp ’ , ’

Display ’ , ’ o f f ’ ) ;

74 fun2 = @( t ) lambda∗ l og ( t )+2∗ l og ( b e s s e l k ( lambda , s q r t ( t ∗

p s i ) ) )+t ∗mean(b) ;

75 A = −1;

76 B = 0 ;

77 Aeq = [ ] ;

78 beq = [ ] ;

79 lb = [ ] ;

80 ub = [ ] ;

81 nonlcon = [ ] ;

82 t0 = ch i ;
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83 t = fmincon ( fun2 , t0 ,A,B, Aeq , beq , lb , ub , nonlcon , opt ions ) ;

84

85 %pr in t out the r e s u l t

86 s tep = j ;

87 ch i = t ;

88

89 end

90 % p s i opt imiza t i on

91 lambdawx = lambda−d /2 ;

92 chiwx = ch i+sum(((−mu+X) /Sigma ) .∗(−mu+X) ,2) ; % t h i s i s nx1

matrix

93 f o r j =1: kps i

94

95 %compute the dens i ty o f W i | x i

96

97 psiwx = p s i+gamma/Sigma∗ t ranspose (gamma) ;

98

99 %compute a , b , c

100 a = s q r t ( chiwx/psiwx ) .∗ b e s s e l k ( lambdawx+1, s q r t ( chiwx∗

psiwx ) ) . / b e s s e l k ( lambdawx , s q r t ( chiwx∗psiwx ) ) ;% t h i s

i s nx1 matrix : E [W]

101

102 %update lambda , chi , p s i

103 opt ions = opt imopt ions ( ’ fmincon ’ , ’ Algorithm ’ , ’ sqp ’ , ’

Display ’ , ’ o f f ’ ) ;

104 fun2 = @( t ) −lambda∗ l og ( t )+2∗ l og ( b e s s e l k ( lambda , s q r t ( ch i

∗ t ) ) )+t ∗mean( a ) ;
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105 A = −1;

106 B = 0 ;

107 Aeq = [ ] ;

108 beq = [ ] ;

109 lb = [ ] ;

110 ub = [ ] ;

111 nonlcon = [ ] ;

112 t0 = p s i ;

113 t = fmincon ( fun2 , t0 ,A,B, Aeq , beq , lb , ub , nonlcon , opt ions ) ;

114

115 %pr in t out the r e s u l t

116 s tep = j ;

117 p s i = t ;

118 end

119 % mu, sigma , gamma opt imiza t i on

120 f o r i = 1 :kW

121 lambdawx = lambda−d /2 ;

122 chiwx = ch i+sum(((−mu+X) /Sigma ) .∗(−mu+X) ,2) ; % t h i s i s

nx1 matrix

123 psiwx = p s i+gamma/Sigma∗ t ranspose (gamma) ;

124 j ;

125 %compute the dens i ty o f W i | x i

126 chiwx = ch i+sum(((−mu+X) /Sigma ) .∗(−mu+X) ,2) ; % t h i s i s

nx1 matrix

127 psiwx = p s i+gamma/Sigma∗ t ranspose (gamma) ;

128

129 %compute a , b
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130 a = s q r t ( chiwx/psiwx ) .∗ b e s s e l k ( lambdawx+1, s q r t ( chiwx∗

psiwx ) ) . / b e s s e l k ( lambdawx , s q r t ( chiwx∗psiwx ) ) ;% t h i s

i s nx1 matrix : E [W]

131 b = s q r t ( psiwx . / chiwx ) .∗ b e s s e l k ( lambdawx−1, s q r t ( chiwx∗

psiwx ) ) . / b e s s e l k ( lambdawx , s q r t ( chiwx∗psiwx ) ) ;% t h i s

i s nx1 matrix : E [Wˆ(−1) ]

132

133 %update mu, Sigma , gammas

134 gamma = mean(b . ∗ (X−mean(X) ) ) /(1−mean(b) ∗mean( a ) ) ;

135 mu = mean(X)−mean( a ) ∗gamma;

136 Sigma = transpose (X−mu) ∗(b . ∗ (X−mu) ) /n−mean( a ) ∗ t ranspose (

gamma) ∗gamma;

137

138 end

139 i f i t e r == i t e r a t i o n s − 1

140 gamma n 1 = gamma;

141 mu n 1 = mu;

142 Sigma n 1 = Sigma ;

143 c h i n 1 = ch i ;

144 p s i n 1 = p s i ;

145 lambda n 1 = lambda ;

146 end

147 i f i t e r == i t e r a t i o n s

148 gamma n = gamma;

149 mu n = mu;

150 Sigma n = Sigma ;

151 ch i n = ch i ;
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152 p s i n = p s i ;

153 lambda n = lambda ;

154 end

155 end

156 % e r r o r san i ty checks

157 error gamma = norm ( ( gamma n . / gamma n 1 − 1) ) ;

158 error mu = norm ( ( mu n . / mu n 1 − 1) ) ;

159 er ror S igma = norm ( ( Sigma n . / Sigma n 1 − 1) ) ;

160 e r r o r c h i = norm ( ( ch i n . / c h i n 1 − 1) ) ;

161 e r r o r p s i = norm ( ( p s i n . / p s i n 1 − 1) ) ;

162 error lambda = norm ( ( lambda n . / lambda n 1 − 1) ) ;

163

164 %simula t i on o f f i n a l d i s t r i b u t i o n

165

166 W = gigrnd ( lambda , ps i , chi , n s imu la t i ons ) ; % generate W

167 Z = mvnrnd( z e ro s (1 , d ) , Sigma , ns imu la t i ons ) ; % generate Z with

des igned Sigma

168 Xsim = mu+W∗gamma+s q r t (W) .∗Z ; % combine to g ive X

169

170 Xsimsum = sum(Xsim , 2 ) ; % f i n d rowsums to c a l c u l a t e p o r t f o l i o

l o s s e s

171 s o r t ed l o s s e sX s im = s o r t (Xsimsum , ’ descend ’ ) ; % s o r t p o r t f o l i o

l o s s e s

172 num losses = numel ( s o r t ed l o s s e sX s im ) ; % count p o r t f o l i o l o s s e s

173 VaR index = f l o o r ((1− con f idence l eve l VaR ) ∗ num losses ) +1; %

Calcu la te the index o f the so r t ed l o s s e s that w i l l be VaR

174 ES index = f l o o r ((1− c o n f i d e n c e l e v e l E S ) ∗ num losses ) +1; %
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Calcu la te the index o f the so r t ed l o s s e s that w i l l c on t r i bu t e

to ES

175 VaRsumXsim = so r t e d l o s s e sX s im ( VaR index ) ∗ d o l l a r v a l u e ; % Use the

index to ex t r a c t VaR from sor t ed l o s s e s

176 ES1Xsim =( s o r t ed l o s s e sX s im ( 1 : ES index−1) ) ; % Extract the l o s s

t a i l

177 ESsumXsim = mean(ES1Xsim) ∗ d o l l a r v a l u e ; % average o f l o s s t a i l to

c a l c u l a t e ES

A.2 EM algorithm: testing on W

1 %This i s the EM algor i thm f o r e s t imat ing lambda , ch i and p s i

whi l e mu, Sigma , gamma are f i x e d .

2

3 format long ;

4

5

6 %Simulat ing X f o r data

7

8 d = 4 ; %number o f s t o ck s

9 n = 1000 ; % number o f data po in t s

10 % Important : a l a r g e r n a l l ows to see the est imated parameters

c l o s e r to t rue va lue s !

11

12 gamma = [0 , 1 , 4 , −2 ] ;

13 mu = [2 , 1 , −1 , 0 ] ;

14 A = [ 2 0 0 1 ; 0 1 0 0 ; 0 0 4 1 ; 1 0 1 4 ] ;
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15 Sigma = A/ nthroot ( det (A) ,d ) ; %f o r purpose o f comparison , we

adopt det ( Sigma )=1

16 ch i = 2 ;

17 p s i = 0 . 5 ;

18 lambda = −1;

19 W = gigrnd ( lambda , ps i , chi , n ) ; % generate W

20 Z = mvnrnd( z e ro s (1 , d ) , Sigma , n) ; % generate Z with des igned

Sigma

21 X = mu+W∗gamma+s q r t (W) .∗Z ; % combine to g ive X

22 c l e a r W;

23 c l e a r Z ;

24

25

26 %i n i t i a l va lue s

27

28 ch i = 1 ;

29 p s i = 1 ;

30 %s e t t l e i n i t i a l va lue o f lambda

31 fun = @( lambda ) b e s s e l k ( lambda+1 ,1)−b e s s e l k ( lambda , 1 ) ∗ nthroot (

det ( cov (X) ) ,d ) ;

32 lambda = f z e r o ( fun ,−0.5) ;

33 c l e a r fun ;

34

35 %Excute the EM algor i thm

36

37

38 k = 1000 ; % number o f p a r t i a l updates on Q2
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39 % Important : a l a r g e k w i l l a l low us to see whether the

a lgor i thm converges !

40

41 f o r j =1:k %work on Q2 and p a r t i a l l y update lambda , chi , p s i f o r k

t imes

42

43 %compute the dens i ty o f W i | x i

44 lambdawx = lambda−d /2 ;

45 chiwx = ch i+sum(((−mu+X) /Sigma ) .∗(−mu+X) ,2) ; % t h i s i s

nx1 matrix

46 psiwx = p s i+gamma/Sigma∗ t ranspose (gamma) ;

47

48 %compute a , b , c

49 a = s q r t ( chiwx/psiwx ) .∗ b e s s e l k ( lambdawx+1, s q r t ( chiwx∗

psiwx ) ) . / b e s s e l k ( lambdawx , s q r t ( chiwx∗psiwx ) ) ;% t h i s

i s nx1 matrix : E [W]

50 b = s q r t ( psiwx . / chiwx ) .∗ b e s s e l k ( lambdawx−1, s q r t ( chiwx∗

psiwx ) ) . / b e s s e l k ( lambdawx , s q r t ( chiwx∗psiwx ) ) ;% t h i s

i s nx1 matrix : E [Wˆ(−1) ]

51 c = ze ro s (n , 1 ) ;% t h i s i s nx1 matrix : E [ ln W]

52 f o r i =1:1 :n

53 fun1 = @(w) log (w) .∗w. ˆ ( lambdawx−1) .∗ exp (−0.5∗ psiwx∗

w) .∗ exp (−0.5∗ chiwx ( i , 1 ) ∗w.ˆ(−1) ) ;

54 c ( i , 1 ) = 0 . 5∗ ( psiwx/chiwx ( i , 1 ) ) ˆ (0 . 5∗ lambdawx ) /

b e s s e l k ( lambdawx , s q r t ( chiwx ( i , 1 ) ∗psiwx ) ) ∗ i n t e g r a l

( fun1 , 0 , I n f ) ;

55 c l e a r fun1 ;
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56 end

57

58 %update lambda , chi , p s i

59 opt ions = opt imopt ions ( ’ fmincon ’ , ’ Algorithm ’ , ’ sqp ’ ) ;

60 fun2 = @( t ) t (1 ) ∗ l og ( t (2 ) )−t (1 ) ∗ l og ( t (3 ) )+2∗ l og ( b e s s e l k (

t (1 ) , s q r t ( t (2 ) ∗ t (3 ) ) ) )+t (3 ) ∗mean( a )+t (2 ) ∗mean(b)−2∗t

(1 ) ∗mean( c ) ;

61 A = [0 , −1 ,0 ;0 ,0 , −1 ] ;

62 B = [ 0 ; 0 ] ;

63 Aeq = [ ] ;

64 beq = [ ] ;

65 lb = [ ] ;

66 ub = [ ] ;

67 nonlcon = [ ] ;

68 t0 = [ lambda , chi , p s i ] ;

69 t = fmincon ( fun2 , t0 ,A,B, Aeq , beq , lb , ub , nonlcon , opt ions ) ;

70 c l e a r fun2 ;

71 c l e a r a ;

72 c l e a r b ;

73 c l e a r c ;

74 c l e a r lambdawx ;

75 c l e a r chiwx ;

76 c l e a r psiwx ;

77

78 %pr in t out the r e s u l t

79 f p r i n t f (2 , ’\nstep \n ’ )

80 s tep = j
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81 lambda = t (1 )

82 ch i = t (2 )

83 p s i = t (3 )

84 end

85

86

87 %pr in t t rue va lue s o f parameters f o r comparison

88 %f p r i n t f (2 , ’\ ntrue va lue s \n ’ )

89 %chi=3

90 %p s i=2

91 %lambda =−4

A.3 EM algorithm: testing with W as fixed

1 %This i s the EM algor i thm f o r e s t imat ing mu, Sigma , gamma whi le

lambda , ch i and p s i are f i x e d .

2

3 format long

4

5 %Simulat ing X f o r data

6

7 d = 4 ; %number o f s t o ck s

8 n = 100000; % number o f data po in t s .

9 % Important : a l a r g e r n a l l ows to see the est imated parameters

c l o s e r to t rue va lue s !

10

11 gamma = [ 0 , 4 , 0 , 4 ] ;

54



A.3. EM CODES: W FIXED

12 mu = [2 ,10 , −1 ,0 ] ;

13 A = [ 2 0 0 1 ; 0 1 0 0 ; 0 0 4 1 ; 1 0 1 4 ] ;

14 Sigma = A/ nthroot ( det (A) ,d ) ; %f o r purpose o f comparison , we

adopt det ( Sigma )=1

15 ch i =2;

16 p s i =5;

17 lambda =−3;

18 %I t seems some combination o f va lue s o f lambda , chi , p s i can

cause problems f o r the a lgor i thm .

19 W = gigrnd ( lambda , ps i , chi , n ) ; % generate W

20 Z = mvnrnd( z e ro s (1 , d ) , Sigma , n) ; % generate Z with des igned

Sigma

21 X = mu+W∗gamma+s q r t (W) .∗Z ; % combine to g ive X

22

23

24 % i n i t i a l va lue s

25

26 gamma = ze ro s (1 , d ) ;

27 mu = mean(X) ;

28 Sigma = cov (X) / nthroot ( det ( cov (X) ) ,d ) ;

29 %smal l i n f l u e n c e on i n i t i a l va lue s

30

31 %Excute the EM algor i thm

32

33 %compute the dens i ty o f W i | x i

34 lambdawx = lambda−d /2 ;

35
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36 k = 10000 ; % number o f p a r t i a l updates on Q1 ;

37 % Important : a l a r g e k w i l l a l low us to see whether the

a lgor i thm converges !

38

39 f o r j = 1 : k % work on Q 1 and p a r t i a l l y update mu, Sigma ,gamma

f o r k t imes

40 f p r i n t f (2 , ’\nstep \n ’ )

41 j

42 %compute the dens i ty o f W i | x i

43 chiwx = ch i+sum(((−mu+X) /Sigma ) .∗(−mu+X) ,2) ; % t h i s i s

nx1 matrix

44 psiwx = p s i+gamma/Sigma∗ t ranspose (gamma) ;

45

46 %compute a , b

47 a = s q r t ( chiwx/psiwx ) .∗ b e s s e l k ( lambdawx+1, s q r t ( chiwx∗

psiwx ) ) . / b e s s e l k ( lambdawx , s q r t ( chiwx∗psiwx ) ) ;% t h i s

i s nx1 matrix : E [W]

48 b = s q r t ( psiwx . / chiwx ) .∗ b e s s e l k ( lambdawx−1, s q r t ( chiwx∗

psiwx ) ) . / b e s s e l k ( lambdawx , s q r t ( chiwx∗psiwx ) ) ;% t h i s

i s nx1 matrix : E [Wˆ(−1) ]

49

50 %update mu, Sigma , gammas

51 gamma = mean(b . ∗ (X−mean(X) ) ) /(1−mean(b) ∗mean( a ) )

52 mu = mean(X)−mean( a ) ∗gamma

53 Sigma = transpose (X−mu) ∗(b . ∗ (X−mu) ) /n−mean( a ) ∗ t ranspose (

gamma) ∗gamma;

54 Sigma = Sigma/ nthroot ( det ( Sigma ) ,d)
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55

56 end

57

58 %pr in t t rue va lue s o f parameters f o r comparison

59 f p r i n t f (2 , ’\ntrue va lue s \n ’ )

60 gamma = [ 0 , 4 , 0 , 4 ]

61 mu = [2 ,10 , −1 ,0 ]

62 A = [ 2 0 0 1 ; 0 1 0 0 ; 0 0 4 1 ; 1 0 1 4 ] ;

63 Sigma = A/ nthroot ( det (A) ,d ) %f o r purpose o f comparison , we

adopt det ( Sigma )=1s
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Appendix B

Codes for Chapter 3

B.1 Code for Marginals and Copulas

1 c l o s e a l l

2 pr i c emat r ix = [AAPL. AdjClose BAC. AdjClose F . AdjClose SU. AdjClose

] ; % load p r i c e matrix

3 [ n , d ] = s i z e ( p r i c emat r ix ) ; % c a l c u l a t e dimensions o f p r i c e

matrix

4 returnmatr ix = ze ro s (n−1,d) ; % i n i t i a l i z i n g re turn matrix

5 names = { ’AAPL’ , ’BAC’ , ’F ’ , ’SU ’ } ; % names o f s t o ck s

6 ns imu la t i ons = 10000 ; % number o f s imu la t i on s to run

7 con f idence l eve l VaR = 0 . 9 9 ; % con f idence l e v e l f o r VaR

8 c o n f i d e n c e l e v e l E S = 0 . 9 7 5 ; % con f idence l e v e l f o r ES

9 dol laramount = 10000 ; % d o l l a r amount f o r each stock

10 theta = 3 ; % f o r Gumbel Copula

11

12 f o r i = 1 : n−1 % loop over time

13 returnmatr ix ( i , : ) = −l og ( p r i c emat r ix ( i +1 , : ) . / pr i c emat r ix ( i
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, : ) ) ; % c a l c u l a t e l o s s e s

14 end

15 meanvec = mean( returnmatr ix ) ∗ dol laramount ; % f i n d mean o f d o l l a r

l o s s e s

16 s tdvec = std ( returnmatr ix ) ∗ dol laramount ; % f i n d standard

dev i a t i on o f d o l l a r l o s s e s

17 f i g u r e

18 counter = 0 ; % i n i t i a l i z e d counter

19 f o r i = 1 : d % loop over s t o ck s

20 x = [−3∗ s tdvec ( i )+meanvec ( i ) : 0 . 0 0 1 : 3 ∗ s tdvec ( i )+meanvec ( i ) ] ;

% marg ina l s

21 norm = normpdf (x , meanvec ( i ) , s tdvec ( i ) ) ; % c a l c u l a t e dens i ty

22 counter = counter +1; % i n c r e a s e counter

23 subplot (2 , 2 , counter ) % i n i t i a l i z e subplot

24 p lo t (x , norm) % p lo t marginal

25 x l a b e l ( ’ Returns ’ ) ;

26 y l a b e l ( ’ Density ’ ) ;

27 mytit leText = [ ’ Normal D i s t r i b u t i o n p lo t f o r ’ , names ( i ) ] ;

28 t i t l e ( mytit leText , ’ I n t e r p r e t e r ’ , ’ tex ’ ) ;

29 y = meanvec ( i ) + randn ( ns imulat ions , 1 ) ∗ s tdvec ( i ) ; % s imulate

marg ina l s

30 s o r t e d l o s s e s = s o r t (y , ’ descend ’ ) ; % s o r t marginal l o s s e s

31 num losses = numel ( s o r t e d l o s s e s ) ; % count marginal l o s s e s

32 VaR index = f l o o r ((1− con f idence l eve l VaR ) ∗ num losses ) +1; %

Calcu la te the index o f the so r t ed l o s s e s that w i l l be VaR

33 ES index = f l o o r ((1− c o n f i d e n c e l e v e l E S ) ∗ num losses ) +1; %

Calcu la te the index o f the so r t ed l o s s e s that w i l l
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cont r ibu t e to ES

34 VaR( i ) = s o r t e d l o s s e s ( VaR index ) ; % Use the index to

e x t r a c t VaR from sor t ed l o s s e s

35 ES1 =( s o r t e d l o s s e s ( 1 : ES index−1) ) ; % Extract the l o s s t a i l

36 ES( i ) = mean(ES1) ; % average o f l o s s t a i l to c a l c u l a t e ES

37 end

38

39 co r r e l a t i onmat r i xZ = cor r ( returnmatr ix , ’ type ’ , ’ Spearman ’ ) ; %

c o r r e l a t i o n matrix f o r Gauss Copula

40 co r r e l a t i onmatr ixT = s i n (0 . 5∗ pi ∗ co r r ( returnmatr ix , ’ type ’ , ’

Kendall ’ ) ) ; % c o r r e l a t i o n matrix f o r t Copula

41 gamma = ( cos ( p i /(2∗ theta ) ) ) ˆ theta ; % gamma value f o r Gumbel

Copula

42

43 Z = mvnrnd( z e ro s (1 , d ) , co r r e l a t i onmatr ixZ , ns imu la t i ons ) ; %

s imulate m u l t i v a r i a t e random normal f o r Gauss copula

44 T = mvtrnd ( cor re la t ionmatr ixT , 5 , n s imu la t i ons ) ; % s imulate

m u l t i v a r i a t e random t f o r t copula

45 U = rand ( ns imulat ions , 4 ) ;

46 Gu = [ ] ;

47 whi le l ength (Gu) < ns imu la t i ons

48 Gurand = random ( ’ s t a b l e ’ ,1/ theta , 1 ,gamma, 0 , 1 ) ; %s imulate

s t a b l e random v a r i a t e s f o r Gumbel copula

49 i f Gurand > 0

50 Gu = [Gu ; Gurand ] ;

51 end

52 end
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53

54 s imulatedmatr ixZ = normcdf (Z) ; % eva luate normal cumulat ive

d i s t r i b u t i o n func t i on to generate Gauss copula

55 s imulatedmatrixT = t c d f (T, 5 ) ; % eva luate t cumulat ive

d i s t r i b u t i o n func t i on to generate t copula

56 simulatedmatrixGu = exp(−((− l og (U) . /Gu) . ˆ ( 1/ theta ) ) ) ; % get

gene ra t ing vec to r f o r Gumbel copula

57

58 Xz = [ ] ; % i n i t i a l i z e l o s s matrix f o r Gauss copula

59 Xt = [ ] ; % i n i t i a l i z e l o s s matrix f o r t copula

60 Xgu = [ ] ; % i n i t i a l i z e l o s s matrix f o r Gumbel copula

61 f o r i = 1 : d

62 Xz = [ Xz norminv ( s imulatedmatr ixZ ( : , i ) , meanvec ( i ) , s tdvec ( i ) )

] ; % plug in marg ina l s to get l o s s e s f o r Gauss copula

63 Xt = [ Xt norminv ( simulatedmatrixT ( : , i ) , meanvec ( i ) , s tdvec ( i ) )

] ; % plug in marg ina l s to get l o s s e s f o r t copula

64 Xgu = [ Xgu norminv ( simulatedmatrixGu ( : , i ) , meanvec ( i ) , s tdvec (

i ) ) ] ; % plug in marg ina l s to get l o s s e s f o r Gumbel copula

65 end

66 Xzsum = sum(Xz , 2 ) ; % f i n d rowsums to c a l c u l a t e p o r t f o l i o l o s s e s

f o r Gauss copula

67 Xtsum = sum(Xt , 2 ) ; % f i n d rowsums to c a l c u l a t e p o r t f o l i o l o s s e s

f o r t copula

68 Xgusum = sum(Xgu , 2 ) ; % f i n d rowsums to c a l c u l a t e p o r t f o l i o

l o s s e s f o r Gumbel copula

69 s o r t e d l o s s e s z = s o r t (Xzsum , ’ descend ’ ) ; % s o r t p o r t f o l i o l o s s e s

f o r Gauss copula
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70 s o r t e d l o s s e s t = s o r t (Xtsum , ’ descend ’ ) ; % s o r t p o r t f o l i o l o s s e s

f o r t copula

71 s o r t e d l o s s e s g u = s o r t (Xgusum , ’ descend ’ ) ; % s o r t p o r t f o l i o

l o s s e s f o r Gumbel copula

72 num losses = numel ( s o r t e d l o s s e s z ) ; % count p o r t f o l i o l o s s e s

73 VaR index = f l o o r ((1− con f idence l eve l VaR ) ∗ num losses ) +1; %

Calcu la te the index o f the so r t ed l o s s e s that w i l l be VaR

74 ES index = f l o o r ((1− c o n f i d e n c e l e v e l E S ) ∗ num losses ) +1; %

Calcu la te the index o f the so r t ed l o s s e s that w i l l c on t r i bu t e

to ES

75 VaRsumz = s o r t e d l o s s e s z ( VaR index ) ; % Use the index to e x t r a c t

VaR from sor t ed l o s s e s f o r Gauss copula

76 ES1z =( s o r t e d l o s s e s z ( 1 : ES index−1) ) ; % Extract the l o s s t a i l

f o r Gauss copula

77 ESsumz = mean( ES1z ) ; % average o f l o s s t a i l to c a l c u l a t e ES f o r

Gauss copula

78 VaRsumt = s o r t e d l o s s e s t ( VaR index ) ; % Use the index to e x t r a c t

VaR from sor t ed l o s s e s f o r t copula

79 ES1t =( s o r t e d l o s s e s t ( 1 : ES index−1) ) ; % Extract the l o s s t a i l

f o r t copula

80 ESsumt = mean( ES1t ) ; % average o f l o s s t a i l to c a l c u l a t e ES f o r

t copula

81 VaRsumgu = s o r t e d l o s s e s g u ( VaR index ) ; % Use the index to

e x t r a c t VaR from sor t ed l o s s e s f o r Gumbel copula

82 ES1gu =( s o r t e d l o s s e s g u ( 1 : ES index−1) ) ; % Extract the l o s s t a i l

f o r Gumbel copula

83 ESsumgu = mean( ES1gu ) ; % average o f l o s s t a i l to c a l c u l a t e ES
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f o r Gumbel copula
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