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In this thesis, a recently developed particle-based method called multiparticle collision

dynamics (MPC) is used to simulate steady flows through three-dimensional constricted

axisymmetric cylinders. The work is motivated by complex particle interactions in blood

flow such as aggregation and the need to be able to capture these effects in physiolog-

ically relevant complex flow geometries. This is the first time that MPC dynamics has

been applied to simulate flows through constrictions. The particle collisions in MPC

dynamics are numerically more efficient than other particle-based simulation methods.

Particle interactions with the cylinder walls are modeled using bounce-back (BB) and

loss in tangential,reversal of normal (LIT) boundary conditions. BB is an analog of the

macroscopic no-slip boundary condition, and LIT gives slip. Finally, an averaging proce-

dure is employed to make a connection with the solution to the Navier-Stokes equations.

Interesting differences have been found in the velocity profiles obtained using MPC with

BB and LIT, compared to Navier-Stokes.
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ω̂ Stochastic rotation operator
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T System temperature
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m Particle mass

v′′
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v′
i Pre-collision velocity of particle i
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V′
ξ Average cell velocity

p Momentum vector

µ Dynamic viscosity

ν Kinematic viscosity

ρ Density
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Chapter 1

Introduction

1.1 Biological Motivations

The complex nature of blood flow can largely be attributed to the cellular components of

blood and the complex physiological geometries. In a 1 mm3 volume of blood, there are

millions of red blood cells (RBCs) that interact with each other and can stick together

to form larger clusters in a process called aggregation. In flow, the shear-dependent

aggregation and break-up of RBC clusters is believed to lead to non-Newtonian flow

behaviour. The RBC aggregates can create a solid core, and in order to break up this core

for blood to flow, a minimum amount of stress is required. This minimum stress is known

as the yield stress [2] and is a non-Newtonian property. Whether or not blood has a yield

stress is a controversial issue that needs to be resolved. The experimental determination

of yield stress is based on extrapolation procedures, and hence their accuracy also depends

on the particular extrapolation procedure used. Particle-based simulation methods can

be used to shed light on the yield stress issue.

In the process of RBC aggregation and break-up, the total number of clusters before

and after the break-up need not be conserved. The fluctuations in particle numbers can

not be handled by the traditional kinetic theory descriptions in the form of the Boltzmann

equation. In this case the reactive multiparticle collision dynamics is an appropriate

formalism. The RBC aggregation and break-up can be treated like chemical reactions

where reaction rates now depend on the shear rate. Rohlf has extended multiparticle

collision dynamics to chemical reactions where the total number of particles can change
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CHAPTER 1. INTRODUCTION 1.1. BIOLOGICAL MOTIVATIONS

in time [3]. The reaction rates used in this work are constant and the case of no flow is

considered. It has been shown that with an appropriate averaging procedure, macroscopic

rate laws for chemical reactions can be recovered.

Complex geometries, such as local constrictions in blood vessels, can also cause RBC

aggregation. The ultrasonic measurements of RBC aggregation in constricted tubes have

been reported [4] and it was found that RBCs form clusters in the post-constriction

region. In vitro experiments have been performed to investigate haemodynamic and

haemorheological behaviours of hameodiluted blood flow through microstenosis using

a micro-particle image velocimetry (PIV) method [5]. In addition to reported RBC

aggregation, it was found that the mean velocity of blood was symmetric with respect

to the channel centerline and in the contraction region of the channel. Additionally, the

maximum velocity in the constriction was found to be 5 times greater than that of the

straight channel without stenosis [5]. Rolling, tumbling and twisting motions of red blood

cells were also observed due to the flow choking characteristics in the stenotic region [5].

These aspects can only be captured by using discrete particle-based simulation methods.

Flows through constrictions are of primary importance in physiology. In general, flow

speeds up through the constriction, and decreases once it has passed through. The sudden

increase of flow speed gives rise to adverse pressure gradients, causing low shear regions

near the vessel wall. Platelets trapped in low shear zones form aggregates and adhere

to the vessel wall leading to thrombus (or clot) formation. The dynamics of blood flow

through constricted channels has been studied numerically [6, 7, 8] and experimentally

[9] by several researchers. In most of the published numerical work, flow behaviour is

investigated using no-slip boundary conditions where fluid velocity is zero at the solid

boundaries.

Nubar [10] has suggested the possibility of slip for blood in viscometers. Hershey and

Cho performed an experimental study of blood flow in rigid tubes [11]. They found that

the thickness of the plasma film increased rapidly with increasing flow rate, and that the

effective slip velocity of the plasma film also increased monotonically with the flow rate

and was a linear function of shear stress at high flow rates. Velocity profiles of blood

flow in rat mesentery arterioles with bifurcation and confluence have been measured by

particle image velocimetry by Nakano et. al [12]. In this experiment, images of red blood

cells in flow were recorded. The time averaged cross-section velocity profiles obtained in

this experiment showed an appearance of slip near the vascular wall. Misra and Shit [13]
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CHAPTER 1. INTRODUCTION 1.2. PARTICLE-BASED METHODS

have performed a numerical study of blood flow through stenosed arteries using a non-

Newtonian model. Their results show an enhancement in volumetric flow rate with an

increase in slip velocity. Picart et.al [14] have reported the slip at the walls in viscometric

measurements of the yield stress of the blood. Based on these reports, the possibility of

slip in case of blood flow studies can not be ruled out. In case of flows through stenosis

with slip at the wall, the flow rate would be higher than that of the no-slip case. If a

drug is injected in the blood stream so that it increases the slip at the wall [15], then

even in the presence of stenosis, one could recover a proper flow rate of blood. The wall

shear stress in case of no-slip would be higher than that of slip. So by injecting a drug

as mentioned above, one could minimize the risk of plaque rupture as well.

The slip can also be incorporated in the Navier-Stokes equations. Since blood is

a suspension of cells and complex geometries like stenosis affect the cell interactions

that in turn affect the flow dynamics, discrete particle-based methods that are capable

of incorporating slip boundary conditions are an appropriate choice to capture these

mesoscale processes. This way the effect of slip on the particle interactions can also be

studied.

1.2 Particle-Based Methods

Computer simulations play a very important role in our understanding of complex sys-

tems. They act as a virtual laboratory and also allow us to validate experimental data.

There are many fields where computer simulations are essential. They include dynamics

of biomolecules, equilibrium and non-equilibrium transport phenomena, virology, elec-

tronic structure calculations, astrophysical processes and many more. One of the most

challenging applications of computer simulations are fluid systems, as the structure and

dynamics of complex fluids comprises many phenomena that are not very well under-

stood. The most challenging task in simulations of complex fluids is to capture the

diverse spatial and temporal scales.

In colloidal suspensions a typical micron sized particle diffuses over the length of its

diameter in one second but displaces the billions of solvent molecules in a few picoseconds.

The multiscale hierarchy of the blood circulatory system is another example of a complex

flow system. Depending on the diameter of the vessel, blood shows different behaviour.
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CHAPTER 1. INTRODUCTION 1.2. PARTICLE-BASED METHODS

In larger arteries blood can be regarded as a continuum, while in capillaries, where

the diameter is of the order of the red blood cell, particulate effects dominate and the

continuum approximation is no longer appropriate.

Many phenomena of interest in complex fluids appear at time scales much larger than

the motion of individual solvent molecules. In this case, irrelevent microscopic degrees of

freedom need to be removed and only relevant variables, that evolve on a suitable time

scale, are retained. This procedure is called coarse graining and is the basis of discrete

particle-based simulation methods.

Today, a wide variety of discrete particle-based simulation methods exist for complex

flow phenomena. These methods can be classified into two main categories, namely

lattice and off-lattice methods. Lattice Boltzmann and lattice gas automata are two

popular lattice-based simulation methods. In these methods, point-like particles reside

on a regular lattice where they move from node to node and undergo collisions only

when their trajectories meet. These collisions occur under simple collision rules. As long

as these collision rules obey symmetry and invariance principles, correct hydrodynamic

behaviour can be recovered at macroscopic scales. These methods are easy to implement

and computationally inexpensive. A major drawback of lattice-based methods is that

the dynamics are constrained by the configuration of the lattice [1].

The off-lattice particle-based methods include dissipative particle dynamics (DPD),

direct simulation Monte-Carlo methods (DSMC), and multiparticle collision dynamics

(MPC) that is also known as stochastic rotation dynamics (SRD). Dissipative particle

dynamics was originally introduced by Hoogerbrugge and Koelman in 1992 [16]. This

method combines molecular dynamics and Langevin dynamics. The system consists

of a set of particles with continuous positions and velocities, whose time evolution is

described by Newton’s equations of motion. The force terms in DPD make it different

from molecular dynamics. The force acting on a particle has three parts, each of which

is a sum of pair forces. The three forces are a conservative force, a dissipative force and

a random force. In traditional DPD, the conservative force is chosen to be soft repulsive,

which makes it posssible to use a large time step and achieve rapid equilibration. The

dissipative force is the friction force that acts on the relative velocities of the particles.

The random force compensates the loss of kinetic energy due to dissipative forces. Both

dissipative and random forces together ensure that collision of particles is an isothermal

process.
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CHAPTER 1. INTRODUCTION 1.2. PARTICLE-BASED METHODS

The direct simulation Monte-Carlo (DSMC) method was proposed by Bird [17]. This

algorithm is a stochastic particle-based method to solve nonlinear time-dependent Boltz-

mann equations. In DSMC simulations, the state of the system is given by positions

and velocities of the particles. Like DPD, positions and velocities of the particles here

are continuous variables. The geometry under consideration is divided into small cubical

volumes called collision cells, which is a coarse-graining of the system. The algorithm

consists of two steps: free-streaming and collisions. In the free-streaming step, particles

are moved as if they do not interact, and their positions are updated based on their ve-

locities. In the collision step, particles within the cells are randomly selected for collision

partners. According to kinetic theory, the collision probability for hard spheres is directly

proportional to their relative velocity. If the particles i and j are selected as candidates

for the collision, they are accepted as collision partners if |vi − vj| > Rvmax
r where vmax

r

is the local maximum relative speed and R is a random number chosen uniformly on

the interval [0, 1). Since only the magnitude of the relative velocity between particles is

used in determining the collision probability, particles that are moving away from each

other may also collide. Imposing conservation of momentum and energy provides four

of six equations to determine post-collision velocities. The remaining two conditions are

selected randomly, assuming that the direction of the post-collision relative velocity is

uniformly distributed on the unit sphere.

In this thesis, multiparticle collision dynamics (MPC) developed by Malevanets and

Kapral [18] is used. This method shares many features with DSMC described above.

An important difference between DSMC and MPC is the collision step. In the MPC

collision step, the pre-collision velocity vector v′
i of particle i in collision cell ξ is rotated

by a randomly chosen rotation operator ω̂ξ relative to the average cell velocity V′
ξ to give

the post-collision velocity

v′′
i = V′

ξ + ω̂ξ(v
′
i −V′

ξ). (1.1)

Here ω̂ξ is a stochastic rotation matrix that rotates the velocities by either +α or −α

and varies both in time and from cell to cell. This way of performing collisions is much

more numerically efficient than DSMC.

MPC dynamics has been used by Lamura and Gompper [19] to simulate two-dimensional

fluid flow past a circular and square cylinder. Following this work, Allahyarov and Gomp-

per have simulated three-dimensional flow past a sphere by MPC dynamics [20]. In this

7



CHAPTER 1. INTRODUCTION 1.3. SPECIFIC AIM AND METHODOLOGY

work, they have pointed out the limitations of the reservoir method, which is a pressure-

driven method that contains a reservoir of particles, and used gravity-driven flow with

periodic boundary conditions instead. It has been found that flow profiles generated by

gravity-driven flow are much more stable than those from the reservoir method. Reid et.

al have simulated flow around fish-like shapes using MPC dynamics [21]. Simulation of

a model microswimmer has been recently done by using MPC dynamics [22]. Results of

all these simulations have been found to be in good agreement with empirical data and

the Navier-Stokes equations.

Flows through axisymmetric stenosis have been simulated by using the axisymmet-

ric lattice Boltzmann method recently [23]. DPD has been applied to simulate flows

through the constriction by Darias [24]. In this work the periodic boundary conditions

are employed along the flow direction and particle wall interactions are modeled by using

the bounce-back boundary condition. The density and velocity profiles have also been

presented in this work, though it is not a detailed study.

Motivated by the works mentioned above, in this thesis MPC dynamics is applied to

simulate three-dimensional flows through geometries with and without local constrictions.

The case of particle aggregation is not considered in this study, but as a first step towards

it, MPC dynamics is applied to simulate flows through cylindrical geometries and the

results are compared with the incompressible Navier-Stokes equation. It is the first time

since the development of MPC dynamics, that it is applied to simulate steady flows

through a three-dimensional axisymmetric constricted cylinder.

1.3 Specific Aim And Methodology

The specific aim of this thesis is to study dynamics of steady flows through an axisym-

metric constricted cylinders with no-slip and slip boundary conditions using MPC. To

implement these boundary conditions the particle interactions with the cylider wall are

modeled by bounce-back (BB) and loss in tangential (LIT) boundary conditions.

In the BB boundary condition, both tangential and normal components of particle

velocities are reversed when particles hit the solid wall. In case of LIT, particles lose the

tangential component of velocity after hitting the solid wall and the normal component

of velocity is reversed. The first boundary condition is equivalent to macroscopic no-slip

8



CHAPTER 1. INTRODUCTION 1.4. THESIS ORGANIZATION

and the second one leads to slip. Interesting differences have been found in the veloc-

ity profiles obtained from these two boundary conditions. This is the first time MPC

dynamics has been applied to simulate steady flows through three-dimensional axisym-

metric constricted cylinders. The constriction is represented by a smooth cosine shaped

function [6] that can serve as an idealized model of vascular constrictions. The MPC

dynamics simulates compressible flows. In order to be in the regime of incompressibility,

the Mach number, which is defined as the ratio of the mean fluid speed to the speed

of sound in a given fluid medium, should be much less than one. This means that the

incoming fluid velocity must be low enough to satisfy this requirement. Increasing the

Reynolds number without changing the mean fluid velocity would require larger system

sizes, and hence more number of particles in the system, which amounts to requiring

large computer memory and long simulation times. For these reasons simulations are

performed at low values of the Reynolds number. The author would like to mention

that it is not impossible to perfom simulations at high values of the Reynolds number

using MPC dynamics, though they are computationally demanding for the geometries

considered in this work.

1.4 Thesis Organization

In Chapter two, the fundamental equations of incompressible fluid dynamics, namely

Navier-Stokes and the continuity equation are discussed. The standard Poiseuille flow

equation is derived from the Navier-Stokes equations under appropriate assumptions.

Dynamic similarity and the Reynolds number are discussed as well. Next the numerical

details of MPC dynamics are discussed. MPC dynamics consists of a multiparticle colli-

sion step followed by gravity- driven flow, thermostatting, free-streaming, and averaging

to obtain the macroscopic flow field. Finally, finite element and MPC simulation param-

eters,and flow geometry are discussed briefly. Chapter three contains the results followed

by a summary of key findings and a discussion. Chapter four contains a summary, con-

clusions and future work. A dimensionalization scheme is explained in Appendix A.

9



Chapter 2

Fluid Dynamics

2.1 Chapter Overview

In this chapter the basic equations of continuum fluid dynamics are discussed first and

then the numerical implementation of MPC dynamics is explained. The derivations of

some of the standard fluid dynamics equations are skipped as they can be found in classic

fluid dynamics textbooks [25]. Navier-Stokes equations for viscous incompressible fluids

are discussed first. Then a case of steady flow of a Newtonian fluid through a cylindrical

geometry is discussed and the concepts of the Reynolds number and dynamic similarity

are introduced. Numerical implementation of MPC dynamics is explained next. The

MPC dynamics is based on rigorous principles of statistical mechanics. It is not possible

to cover all of these principles here, however some of those are briefly explained whenever

necessary. The multiparticle collision step is explained, and then it is shown that the

collisions conserve momentum and energy. The method of force driven flow using a Verlet

algorithm and the Galilean invariant thermostat are introduced next. It is shown that

collisions and free-streaming conserve the phase space volume, which is nothing but a

Liouville theorem in classical statistical mechanics. The discussion then continues with a

brief mention of the Boltzmann H theorem. The boundary conditions to model particle

wall interactions are discussed next. The cumulative averaging procedure used to make a

connection with the solution of the Navier-Stokes equations, and expressions to compute

the viscosity for MPC fluid are discussed briefly. Finally the finite element simulation

parameters and flow geometry are discussed briefly.

10



CHAPTER 2. FLUID DYNAMICS 2.2. CONTINUUM FLUID DYNAMICS

2.2 Continuum fluid dynamics

Fluid dynamics is the theory of motion of liquids and gases. A typical fluid system

consists of the billions of atoms or molecules. It is very difficult to keep track of each

individual atom or molecule. Since fluid motion is a collective phenomenon, it is quite

often really a waste of time to keep track of trajectories of individual atoms or molecules.

In the continuum picture, the fluid can be thought of as made up of small volumes called

fluid elements or fluid particles which themselves contain many atoms or molecules. The

state of the fluid is determined by the density ρ(r, t), the velocity vector v(r, t) and the

pressure p(r, t), where r = (x, y, z) are the spatial coordinates and t is the time. Please

note that throughout the thesis, bold-faced quantities denote vectors.

The fundamental equations of motion in incompressible viscous fluid dynamics are

Navier-Stokes equations (2.1). These equations are nothing but Newton’s second law

applied to the motion of a fluid element. The equation (2.2) is the continuity equation.

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p + µ∇2v, (2.1)

ρ∇ · v = 0. (2.2)

In (2.1), the first term in the brackets is the usual acceleration term, and the second

term represents convective acceleration that makes the entire equation non-linear. The

convective acceleration is caused by the change in velocity over position. The first term

on the right-hand side is the pressure gradient. The second term is the viscous force

where µ is the dynamic viscosity of a given fluid, and is a measure of resistance. The

CGS units of dynamic viscosity are ”Poise” and the MKS unit is Pa·s. Poise is defined

as 1 P=1 g · cm−1 · s−1 and the relation to SI units is 1 P=0.1 Pa · s. Equations (2.1)

and (2.2) are a system of four equations with four unknowns (v and p) and can be solved

numerically with appropriate boundary conditions.

There are very few situations where equations (2.1) and (2.2) can be solved analyti-

cally. The flows of viscous fluids can be very complex, ranging from laminar to turbulent

flows. The principle of dynamic similarity and dimensional analysis can be used to con-

struct the solutions of the Navier-Stokes equations. Generally, in fluid dynamics, one

deals with flows through different geometries, or the flow past different geometrical ob-
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jects, that introduce a characterstic linear dimension that is often the diameter D of the

tube, or that of an object. Another important quantity in fluid dynamics is the kine-

matic viscosity, and is defined as ν = µ
ρ
. The kinematic viscosity is measured in m 2/s

which are the units of a diffusion coefficient, and hence kinematic viscosity is also called

momentum diffusivity. Let us consider a stationary flow with velocity scale U, from these

parameters, a dimensionless number called the Reynolds number can be defined as

Re =
DU

ν
. (2.3)

Using the dimensionless quantities r
D

and v
U

the solution of the steady Navier-Stokes

equation can be written in the form

v

U
= f

(
r

D
, Re

)
. (2.4)

This holds for every flow with the same Reynolds number. Such flows are called dynam-

ically similar flows, and the respective solutions can be simply obtained by rescaling.

From equation (2.3), it can be seen that the Reynolds number is a ratio of inertial to

viscous forces and equation (2.4) shows that the solution of the Navier-Stokes equations

only depends on this dimensionless number.

A flow of fluid through a pipe of uniform cross-section is known as Hagen-Poiseuille

flow. The velocity profile of Hagen-Poiseuille flow can be derived by using the Navier-

Stokes equation in a cylindrical coordinate system under the following assumptions:

• The flow is steady.

• Radial and azimuthal components of fluid velocity are zero.

• Flow is axisymmetric and fully developed.

With these assumptions, the Navier-Stokes equations become

1

r

∂

∂r

(
r
∂vy

∂r

)
=

1

µ

∂p

∂y
, (2.5)

where vy is the only non-vanishing velocity component along the axial y-direction. The

12
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solution of (2.5) can be written as

vy =
1

4µ
r2 ∂p

∂y
+ A ln r + B, (2.6)

where A and B are constants. Since the velocity should be finite at r = 0, A = 0 and

imposing no-slip boundary conditions at the walls, which requires vy = 0 at r = R, where

R is the radius of the pipe gives,

B = − 1

4µ

∂p

∂y
R2 (2.7)

Putting the values of the constants in equation (2.7), we get the famous parabolic velocity

profile,

vy = − 1

4µ

∂p

∂y

(
R2 − r2

)
. (2.8)

Note that the maximum velocity occurs at the centre, and has the value

vmax
y = −R2

4µ

∂p

∂y
, (2.9)

and is commonly referred to as the centerline velocity Uc. Note that in these equations,

the pressure gradient is typically imposed as a driving force of the fluid, and hence is

known. The pressure p can then be found by simple integration.

In the subsequent simulations, the centerline velocity is changed by changing the

pressure gradient, and it is also used as velocity scale to determine the Reynolds number.

2.3 MPC dynamics

2.3.1 Multiparticle collision

The system is made up of N identical point particles of unit mass m that are uniformly

distributed over cells on a regular lattice. There are Lx, Ly and Lz cells in the x,

y and z-directions respectively, and each cell ξ contains n particles on average. The

continuous positions ri and velocities vi of the particles (i = 1, 2, . . . , N) are updated at

discrete time intervals ∆t. The particle positions and momenta together form a phase

13
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space that is denoted by Γ = (rN
i ,pN

i ) = (r1, mv1, . . . , rN , mvN). There are N particles

in the system, each particle has three position and three momentum coordinates and

hence the dimension of phase space is 6N . The MPC algorithm in this work consists

of a numerically efficient mass, momentum and energy-conserving collision rule [1, 18]

followed by acceleration, thermostatting and free-streaming. In the collision rule, the

pre-collision velocity vector v′
i of particle i is rotated by a randomly chosen rotation

operator ω̂ξ relative to the average cell velocity (or center of mass velocity) V′
ξ to give

the post-collision velocity

v′′
i = V′

ξ + ω̂ξ(v
′
i −V′

ξ). (2.10)

Here ω̂ξ is a stochastic rotation operator that rotates the velocities by either +α or −α

and varies both in time and from cell to cell. The rotations here are not performed

by using the Euler angles as it is difficult numerically, and can induce errors as well.

Instead quaternions [1] have been used here to perform rotations. The quaternions are

non-commutative extensions of complex numbers, sometimes also called hypercomplex

numbers.

It can also be shown that the above transformation conserves momentum and energy.

The proof is as follows: multiplying (2.10) by m and summing over the number of particles

Nξ in a given cell, and using the fact that the rotation operator is the same for all the

particles in a given cell, gives

Nξ∑
i=1

mv′′
i =

Nξ∑
i=1

m(V′
ξ + ω̂ξ(v

′
i −V′

ξ)) =
Nξ∑
i=1

mv′
i. (2.11)

Nξ∑
i=1

m

2
|v′′

i |2 =
Nξ∑
i=1

m

2
|V′

ξ + ω̂ξ(v
′
i −V′

ξ)|2 =
Nξ∑
i=1

m

2
|v′

i|2 (2.12)

Figure 2.1 shows the diagrammatic representation of a collision for two particles in

two dimensions as a demonstration of the rule, although the rule works for any number

of particles in a given collision cell. Note that in the diagram, the ξ subscript has been

dropped for clarity. Note that the collisions in MPC dynamics are not pairwise collisions

as used in DSMC, and hence much more efficient numerically.

14



CHAPTER 2. FLUID DYNAMICS 2.3. MPC DYNAMICS

  

Figure 2.1: Diagrammatic representation of the multiparticle collision rule. The upper
pannel shows the center of mass velocity and the pre-collision velocities of two particles
relative to the center of mass. The lower pannel shows the result of adding back the
center of mass velocities to get post-collision velocities. The figure is adapted from
Anatoly Malevanets and Raymond Kapral [1]
.
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2.3.2 Gravity-Driven Flow and Thermostatting

The direction of flow in section (2.2) was z direction and in MPC simulations it is along

y direction. To create flow, a constant force F = mg = (0, mg, 0) is applied along the

y-direction to all the fluid particles and the periodic boundary conditions are imposed

along the y direction. The post-collision velocities of the particles are then updated by

means of a Verlet algorithm according to

v′′′
i = v′′

i +
Fi

m
∆t. (2.13)

When an external force is applied to the system this way, energy is pumped into the sys-

tem and consequently the actual temperature, T ′, of the system increases. For isothermal

flow at temperature T , the system has to be coupled to a thermostat. In this work a

velocity profile unbiased Galilean invariant thermostat [26, 27] is used to achieve isother-

mal flow conditions. The thermostat relates the instantaneous local temperature in a cell

to the mean square deviation of the particle velocities computed from the center of mass

velocity of that cell. Mathematically, thermostatting scales the velocities according to

kBT ′ =
m

Nfree

∑
ξ

∑
iεξ

(v′′′
i −V′′′

ξ )2, (2.14)

Nfree =
∑
ξ

 3(Nξ − 1) (Nξ > 1),

0 (Nξ ≤ 1).
(2.15)

vi = V′′′
ξ +

√
T

T ′ (v
′′′
i −V′′′

ξ ) (2.16)

In equations (2.14) and (2.15), recall that Nξ is the number of particles in cell ξ. Note

that the local temperature is not defined in cells that have one or no particles. The

thermostat acts by rescaling the relative velocities (v′′′
i −V′′′

ξ ) by
√

T
T ′ at each time step

according to equation (2.16).
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2.3.3 Free-streaming, Liouville and H-Theorems

Free-streaming updates the positions of particles according to

ri = r′i + vi∆t, (2.17)

where r′i is the position of particle i at the beginning of the time step and vi is the velocity

after collision, acceleration and thermostatting have taken place. It can be verified that

the transformation corresponding to free-streaming has unit Jacobian determinant and

hence the transformation is canonical.

It can be shown that the collision and free-streaming preserves the phase space volume,

which is nothing but a Liouville theorem. Let the phase point of the system at time t

and t + ∆t be (r′i
N ,v′

i
N) and (ri

N ,vi
N). The phase space volume at time t + ∆t can be

written as,

dxN = drNdvN . (2.18)

Now let p(ω̂|v′N) be the conditional probability of rotation given the velocity. Using this,

equation (2.18) can be written as

dxN = drN
∑
v′N

p(ω̂|v′N)dv′N = dx′N ∑
v′N

p(ω̂|v′N) = dx′N , (2.19)

where drN = dr′N and
∑

v′N p(ω̂|v′N) = 1 which follows from the principle of semi-

detailed balance and the fact that velocities do not depend on the rotations. Finally it

can be shown [1] that the MPC dynamics algorithm satisfies a Boltzmann H-theorem if

the collision rule satisfies the principle of semi-detailed balance, and if the assumption of

molecular chaos is valid. The Boltzmann H-functional has the form,

H =
∫

dvdrf(v, r, t) ln f(v, r, t), (2.20)

where f(v, r, t) is the reduced single particle distribution function. The H-functional

decreases in time and attains the minimum value for the equilibrium Maxwell-Boltzmann

distribution,

f(v, r, t) =
N

V

(
m

2πkBT

) d
2

e−m||v−V||2/2kBT , (2.21)
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where N is the average number of particles in the system, V is the system volume, V

is the average velocity of particles, kB is the Boltzmann constant, and T is the sys-

tem temperature. The H-theorem guarantees that the dynamical system relaxes to the

thermodynamically correct Gibbs equilibrium state. Please note that the other popu-

lar particle-based methods, such as lattice Boltzmann and lattice gas, exhibit numerical

instabilities because of nonmonotonic decay of the H-functional.

It has also been shown that the hydrodynamic equations can be derived from the

reduced probability distribution by invoking a Chapman-Enskog expansion [18]. The

second-order terms in the Chapman-Enskog expansion give the familiar Navier-Stokes

equations after averaging.

2.3.4 Boundary conditions

The dynamics of fluid flows is strongly affected by the presence of interfaces. On the

macroscopic scale, for the fluids in contact with a solid phase, the normal component of

velocity at the interface must be zero. This represents an impenetrable boundary. The

tangential velocity inherently depends upon the molecular interactions at the interface.

There are two ideal situations: no-slip (or stick) and slip boundary conditions. In case

of no-slip, the tangential velocity of the fluid relative to that of the boundary vanishes.

In case of slip, the tangential component of the fluid velocity is non-zero.

There are several ways of implementing these boundary conditions at the mesoscopic

level. In this work, two boundary conditions, namely the bounce-back (BB) and loss of

tangential and reversal of normal (LIT) are used. The BB boundary condition was first

proposed for MPC dynamics by Malevanets and Kapral [1, 18]. This boundary condition

is an analog of no-slip boundary conditions used in lattice Boltzmann simulations [23].

In BB, the normal and tangential components of particle velocities are reversed after

the collision with the wall. As a result, the average relative velocity of the fluid near

the wall is zero since the relative velocity distribution of particles reflected from the wall

mirrors the distribution of particles approaching the wall [28]. This case corresponds to a

perfectly rough wall (or frictional wall). In case of LIT, the tangential component of the

particle velocity is lost and the normal component is reversed. As a result, the average

fluid velocity near the wall is non-zero which results in slip. Such type of wall is called

a rough wall which is different from a perfectly rough wall. Since blood vessel walls are
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not very smooth because of endothelium and other layers and porous in nature, a small

slip may be present at the wall. Instead of a perfectly rough wall, one may regard the

vessel wall as a rough wall. The boundary conditions in particle-based simulations can

be written in a more general mathematical form

vn = −v′
n, (2.22)

vt = (2λ− 1)v′
t. (2.23)

The subscripts n and t refer to normal and tangential components and v, v′ represent

post and pre-collision velocities of an individual particle hitting the wall. From the above

equations, it can be seen that λ = 0 corresponds to BB, and λ = 0.5 corresponds to LIT.

Note that the degree of slip can be varied by changing values of (2λ−1). The perfect slip

can be achieved by λ = 1 and would lead to a uniform flow. Please note that the LIT

is a dissipative boundary condition and does not conserve energy. Since a thermostat is

employed in these simulations, this is not an issue.

2.3.5 Grid-shifting

If the system temperature and hence the average distance travelled by a particle between

two successive collisions (eg. the mean free path) are low, that is if the mean free path

is less than the cell size, then the same particles could collide more than once with

each other. Multiple collisions can also happen near boundaries in the flow domain.

This would break Galilean invariance, violating the molecular chaos assumption. To

solve this problem, the grid shifting mechanism proposed by Ihle and Kroll [29, 30] is

employed. In the grid shifting, all particles are shifted by the same uniformly distributed

random translation vector before the collision step. The shift randomizes the positions

of the particles in a cell and provides an isotropic collision environment so that Galilean

invariance is restored.

2.4 Averaging Procedure

In particle-based simulations of fluid flow, computation of mean fluid velocity is very easy

but can induce measurement bias as has been explained by Tysanner and Garcia [31].
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The two commonly used averaging methods are known as sample average measurement

(SAM) and cumulative average measurement (CAM). The SAM obtains the average

particle velocity in each cell at each sample, and then averages these over all the samples.

The CAM sums the velocities of all particles in a cell over all the samples, and then divides

this cumulative total by the cumulative total number of particles in the cell to get the

mean velocity per cell. It has been shown in reference [31] that SAM can have bias due

to the correlations of fluctuations in the system. To avoid these correlations CAM is

adopted in this work. CAM can be mathematically described as,

〈uξ〉 =

∑S
j=1

∑Nξ(tj)
iεξ vi(tj)∑S

j=1 Nξ(tj)
. (2.24)

In the above equation ξ again refers to the cell number, iεξ means that particle i is

inside cell number ξ at time tj, Nξ(tj) is the number of particles in cell ξ at time tj and

〈uξ〉 is the macroscopic velocity vector for the particles in the same cell. In addition,

S represents the number of samples used in the averaging process. Rather than using

different samples for fixed time intervals, we assume ergodicity and use one very long

simulation instead. Computing averages from one simulation is common [1, 18, 19] and

preliminary tests for a slightly smaller geometry using five different initial conditions

showed no changes in the observed features in the results reported in this thesis. It has

been argued that the stochastic nature of multiparticle collision dynamics leads to noisy

averages [27]. The averages obtained by the CAM method are smooth. The latter is

further evidenced in the surface velocity plots and velocity profiles shown in Chapter

three.

2.5 Transport Coefficients

The beauty of the MPC dynamics is that analytic calculation of viscosity and other

transport coefficients is possible. It has been shown by Noguchi and Gompper[32] that

the fluid viscosity µ consists of the sum of a kinetic component µkin and a collisional part

µcoll. For the α = π
2

rule (which is the rule used in this work), the simple 3-d expressions

are given by
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µkin =

(
ρkBT

m

)
∆t

[
5n

6(n− 1 + e−n)
− 1

2

]
, (2.25)

µcoll =
m

18a0∆t

(
n− 1 + e−n

)
, (2.26)

µ = µkin + µcoll (2.27)

where n is the average number of particles in a cell, a0 is the length of the MPC cell

and ρ = mn/a0
3 is the mass density. In an unconstricted tube, the constant force

corresponds to a pressure drop per unit length of dP/dy = −ρmg, where dP/dy is the

pressure gradient in our flow geometry. When the gravitational force balances the shear

force, the system becomes stable and the velocity profile settles to the laminar Poiseuille

flow, equation (2.8) or in the flow geometry used, (see Figure 2.2),

vy(r) =
1

4µ

dP

dy
(r2 −R2), (2.28)

where vy(r) is the non-vanishing component of the macroscopic flow velocity which de-

pends only on the radial distance r from the y-axis, and µ is the dynamic viscosity

computed from (2.27). Note that in the unconstricted geometry, the y-component of the

average velocity of (2.24) should agree with that of (2.28), and the x and z components

should vanish.

To vary the Reynolds number in the simulations, the centerline velocity Uc can be

obtained from (2.28) giving,

Uc = −dP

dy

D2

16µ
=

ρmgD2

16µ
. (2.29)

Thus, by varying the value of g, the Reynolds number

Re =
ρUcD

µ
(2.30)

is changed in the subsequent simulations.
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2.6 Finite element simulation

Two-dimensional axisymmetric steady-state Navier-Stokes equations are solved using the

finite element package called Comsol Multiphysics (Comsol Inc., Burlington, MA, USA).

The direction of flow in these simulations is along the y axis. The density and temperature

of the fluid are assumed to be uniform in the flow field and the viscosity of the fluid is

constant. The walls are assumed to be rigid with no-slip boundary conditions. The

inlet boundary condition is fully developed Poiseuille flow, and at the outlet, boundary

condition is pressure with no viscous stress. The simulations in Comsol Multiphysics are

for realistic dimensionful blood flow parameters, and using the non-dimensionalization

explained in an Appendix allows to compare the Comsol Multiphysics results with the

MPC simulations.

The density of the fluid is taken to be ρ = 1000 kg/m3, the dynamic viscosity µ =

1.238X10−3 Pa.s, the diameter D = 4 mm, and the centerline velocity Uc = 2.18811 mm/s

which gives Re ≈ 7. The geometry of the stenosis was generated using MATLAB,

and then imported into Comsol multiphysics to generate the finite element mesh using

Lagrange P2P1 elements. The resulting linear system of equations is then solved using

the parallel direct sparse solver interface (PARDISO). Number of degrees of freedom used

were 549336, number of elements were 120904 and minimum element quality was 0.608.

For further details on this, please refer to the Comsol Multiphysics Modeling guide [33].

2.7 Geometry and MPC Parameters

The flow geometry is shown in Figure 2.2. The radius of the cylinder, R(y), is a function

of the longitudinal coordinate y, with cross-section in the xz-plane. Following Varghese,

Frankel and Fischer [6], the geometry as chosen,

R(y) =
D

2

[
1− sc(1 + cos(

4π(y − yc)

D
))

]
(2.31)

x = R(y) cos θ (2.32)

z = R(y) sin θ (2.33)
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L

A B

Figure 2.2: Flow Geometry

Parameter Symbol value

Temperature kBT 1.0
Lattice cell size a0 1.0
rotational angle α π/2
particle mass m 1.0

Average particles per cell n 15.0
time step ∆t 1.0

Number of Cells along X direction Lx 17
Number of Cells along Y direction Ly 1200
Number of Cells along Z direction Lz 17

Center of the stenosis yc 226.5

Table 2.1: Simulation Parameters
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where D is the diameter of the unconstricted section, yc is the location of the center

of the stenosis, the length of the stenosis is taken to be equal to D/2, and the value

for sc controls the severity or degree of the constriction. The degree of constriction is

defined as the change in diameter per unit original diameter. For a 40% constriction,

sc = 0.2. The cross- section velocity profiles, radial velocity profiles and the cross section

density profiles presented in this work correspond to axial locations y = 222.5 (upstream

of yc = 226.5) and y = 229.5 (downstream of yc = 226.5) for a cylinder of length

1200. These points are labeled in Figure 2.2 as A and B. The geometry is imposed on a

rectangular grid and in the unconstricted portion there are 17 collision cells along X and

Z directions, refer to Table 2.1. The centerline velocity in MPC simulations is denoted

by < uξ(0) >y = < uξ(0, y, 0) > and in Comsol Multi-physics simulations, it is denoted

by v(r = 0), where r = 0 represents the y axis (an axis of symmetry). Both of these are

scaled by Uc defined earlier. In the cross-section velocity profiles, < uξ >y represents the

y component of the averaged velocity. In the radial velocity plots, < uξ >z represents

the z component of the averaged velocity. In the centerline density plots, n∗ represents

number of particles along the centerline scaled by average number of particles n in the

MPC cell.

In these simulations, there are a number of parameters whose values remain fixed and

they are listed in the table 2.1. The rotation angle α = π
2

is used, since it is computa-

tionally very fast and the value of the kinematic viscosity is the lowest, maximizing the

Reynolds number [20]. All parameters are in nondimensional form and the consistent

dimensionalization procedure is explained in an Appendix. In this work the case of 40

percent constriction with Reynolds numbers 4, 7 and 15 were considered for LIT and

BB. Next, the Reynolds number was fixed (Re = 7) and cases of 30 and 60 percent

constrictions were considered for LIT only. The Mach numbers in these simulations were

0.098, 0.27 and 0.42 and they can be computed using (2.34)

Ma =
Uc√
3kBT

m

. (2.34)
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Chapter 3

Results and Discussion

3.1 Poiseuille flow

To test the method, simulations of steady flow through an unconstricted cylinder (sc = 0,

Re ≈ 7, g = 0.005) are performed using the MPC algorithm. The gravity-driven method

as explained in the Section 2.3.2 was used to drive flow. The known case of Poiseuille

flow was recovered successfully using MPC.

To further test the numerical implementation, the system was started from rest in the

unconstricted cylinder and let to evolve to the parabolic profile described by equation

(2.28). At rest means placing the particles uniformly in the flow domain, assigning

velocities from a Maxwell-Boltzmann distribution (2.21) with mean zero at a temperature

T . The simulation for g = 0.005 (Re = 7) showed that 8000 time steps were required to

reach steady-state.

To speed up the simulations, an initial condition is used, in which the velocity in the

y-direction is assigned according to (2.28). It was found that steady-state was reached

after 3000 time-steps without affecting the final velocity profile. The Figure-3.1 shows

the velocity profiles for a cylinder without constriction. Note that with g = 0.005,

ρ = 15, D = Lz = 17 and µ = 6.668 ( computed from (2.27)), the theoretically predicted

centerline velocity using equation (2.28) is Uc = 0.20, but the centerline velocities that

are actually observed in these simulations (Uc = 0.192) are 4 percent less than the

theoretically predicted values.

The Reynolds number calculated using the theoretical value of centerline velocity is
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Figure 3.1: Cross-section velocity profiles for Poiseuille flow with Re=7

7.7 and the one based on the observed centerline velocity is 7.4. In subsequent MPC

simulations, the Reynolds numbers were computed based on the observed centerline

velocity in the unconstricted portion of the cylinder and then the same Reynolds numbers

are used in Comsol Multiphysics (described in section 2.6) so that the two simulations

have the same Reynolds numbers. Figure 3.1 shows three velocity profiles LIT, BB, and

Navier-Stokes with no slip. The slip can be seen in the case of LIT, and the BB data

points are in good agreement with Navier-Stokes (no-slip). It is worth noting that the

cumulative averaging procedure used in this work gives better no-slip without using any

artificial trick such as filling boundary cells by virtual particles [19].

The Figure 3.2 shows contour velocity plots for Poiseuille flow simulations for LIT

and BB simulations.
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Figure 3.2: Contour velocity plots for Poiseuille flow using MPC with Re=7 using (A)
LIT and (B)BB boundary conditions.
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3.2 Re ≈ 4, g = 0.0025, sc = 0.2

Figure 3.3 shows the scaled centerline velocity profiles as a function of scaled axial co-

ordinate. The figure shows that BB and Navier-Stokes are in fairly good agreement. It

can be seen in Figure 3.3 that after passing through the constriction, the centerline

velocity in case of LIT shows a larger decrease as compared to BB and Navier-Stokes.

This is referred as a dip in subsequent discussions. The Figure 3.4 shows the cross-section

velocity profiles upstream of the stenosis at A(see Figure 2.2). The Figure 3.4 shows,

negative velocities near wall in case of the LIT. The maximum standard deviations for

all the data points in the velocity profiles were found to be much less than 1%. The

standard deviations were determined by computing the ratio of root mean squared devi-

ations of average velocity divided by the square root of the sample size. Note that there

is a slight asymmetry in the LIT data near the center region (see Figure 3.4) which is

likely a consequence of small fluctuations in the system at this low Reynolds number.

Please note that MPC describes fluctuating hydrodynamics. Figure 3.5 shows the cross

section velocity profiles downstream of the constriction at location B. Figure 3.5 shows

some distinct features in the case of LIT, where the velocity profile is flat near the wall

and shows slip.

3.3 Re ≈ 7, g = 0.005, sc = 0.2

The Reynolds number is increased further by increasing the value of g. Figure 3.6 shows

the scaled centerline velocity profiles as a function of scaled axial coordinate. It can

be seen that the centerline velocities drop upstream of the constriction in case of both

LIT and BB. This could be a weak compressibility effect since the constriction can cause

density variations. The centerline velocity profile in case of LIT again shows a dip in the

post-constriction region. Figure 3.7 shows the cross-section velocity profiles upstream of

the constriction, where negative velocities can be seen near the wall in the case of LIT.

The Figure 3.8 shows the velocity profiles downstream of the constriction at B. The slip

velocity can be seen in the case of LIT and is slightly higher than for Re = 4. Figure 3.9

shows the cross-section density profiles upstream and downstream of the constriction at

A and B respectively. The BB gives more stable density profiles along the cross-section

as compared to LIT. The radial velocity plots are also presented in Figures 3.10 and
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Figure 3.3: Centerline velocity profiles for 40 percent stenosis with Re=4

3.11. The radial profiles in case of BB are in good agreement to that of Navier-Stokes

equations. The radial flow profiles for Re = 4 and Re = 15 are not presented here as

they are similar to the one shown. In case of the cylinder without constriction, there is

no radial flow.

3.4 Re ≈ 15, g = 0.01, sc = 0.2

The Reynolds number is increased to 15. Figure 3.12 shows the scaled centerline velocity

profiles as a function of scaled axial coordinate. Compared to Re = 4 and Re = 7, a

larger drop in centerline velocities upstream of the constriction can be seen in case of LIT

and BB, and the dip in the centerline velocity profile in the post-constriction region can

be seen in case of LIT. Figure 3.13 shows the cross section velocity profiles upstream of

the constriction. It can be seen that the velocities are no longer negative for this larger
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Figure 3.4: Cross-section velocity profiles upstream of the 40 percent stenosis at A with
Re=4
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Figure 3.5: Cross-section velocity profiles downstream of the 40 percent stenosis at B
with Re=4
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Figure 3.6: Centerline velocity profiles for 40 percent stenosis with Re=7

Reynolds number. Figure 3.14 shows the cross-section velocity profiles downstream of

the constriction. The slip is clearly seen in the case of LIT.

3.5 Additional tests

For MPC simulations, plots of x,y and z components of momentum of the particle system

are shown as a function of time, and temperature of the system as a function of time in

Figures 3.15 to 3.18. It can be seen that the x and z components of momentum of particle

system fluctuate about zero, and the y component of momentum becomes constant after

the initial transients have died out. The temperature of the system also remains constant

with small fluctuations after dissipation of initial transients showing that the thermostat

is working properly.
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Figure 3.7: Cross-section velocity profiles upstream of the 40 percent stenosis at A with
Re=7
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Figure 3.8: Cross-section velocity profiles downstream of the 40 percent stenosis at B :
Re=7
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Figure 3.9: Cross-section density profiles (A) upstream of yc = 226.5 at point A and (B)
downstream at point B for the 40 percent stenosis :Re=7
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Figure 3.10: Radial velocity plot upstream of the 40 percent constriction at A : Re=7
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Figure 3.11: Radial velocity plots downstream of the 40 percent constriction at B : Re=7
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Figure 3.12: Centerline velocity profiles for 40 percent stenosis : Re=15

3.6 Contour plots

Contour plots are shown for Re = 7 to visualize the overall flow pattern, Figure 3.19. A

nice laminar axisymmetric jet can be seen in the stenotic region. The contour plots for

Re = 4 and Re = 15 look similar and hence are not presented here.

3.7 LIT Comparison

To investigate the extent of the dip in the centerline velocity profiles (observed in the post-

constriction region) in the case of LIT, plots of scaled centerline velocities as a function

of scaled axial coordinate are presented in Figure 3.20 . The figure shows that for a given

degree of constriction (sc = 0.2), the dip is more severe for the lower Reynolds number.

Figure 3.21 shows that for a given Reynolds number (Re = 7), the drop in the centerline

velocity in the pre-stenotic region or (upstream) is more severe for higher degrees of

constriction. In order to investigate the observed drop in centerline velocities upstream

of the constriction, scaled centerline density profiles are presented in Figures 3.22 and
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Figure 3.13: Cross-section velocity profiles upstream of the 40 percent stenosis at A :
Re=15
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Figure 3.14: Cross-section velocity profiles downstream of the 40 percent stenosis at B :
Re=15
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Figure 3.15: x-component of momentum as a function of time
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Figure 3.17: z-component of momentum as a function of time
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Figure 3.18: Temperature as a function of time
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Figure 3.20: Centerline velocity profiles for LIT, 40 percent stenosis

3.23 for different values of Reynolds numbers. It can be seen that, in both the cases

of LIT and BB, the density upstream increases with increasing Reynolds number. This

could be a compressibility effect and might lead to the observed decrease of centerline

velocity upstream of the constriction.

3.8 Summary of Key Findings

• MPC dynamics using BB agrees well with incompressible Navier-Stokes (no-slip)

for a cylinder without constriction.

• Both the boundary conditions used in MPC simulations (BB and LIT) show devi-

ations from the incompressible Navier-Stokes in the pre-stenotic and post-stenotic

region.

• In the case of LIT, for a given constriction, the post-stenotic differences (dip) in

centerline velocity profiles increase with decreasing Reynolds number.
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Figure 3.21: Centerline velocity profiles in case of LIT : Re=7

• In case of LIT, for a given Reynolds number, the drop in the centerline velocity in

the pre-stenotic region, increases with increasing the degree of constriction

• In a given constriction, the drop in centerline velocity in the pre-stenotic region

increases with increasing Reynolds number for both boundary conditions.

• The cross-section velocity profiles obtained using LIT and BB show different flow

profiles at the entrance of the constriction: negative velocities are observed near

the wall in the case of LIT.

• In case of the LIT, particle density is higher near the wall and in case of BB, the

density profile is fairly uniform across the cross-section.

• The density along the centerline increases with increasing Reynolds number possibly

being the reason for the drop in the centerline velocity upstream of the constriction.

• The radial flow profiles in case of BB and LIT show differences near the wall regions
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Figure 3.22: Scaled density along centerline as a function of scaled axial coordinate for
LIT
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Figure 3.23: Scaled density along centerline as a function of scaled axial coordinate for
the BB rule
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• The radial velocity profiles obtained using BB are in good agreement to those of

Navier-Stokes equations.

3.9 Discussion

A brief discussion of the key findings now follow. The discussion mainly revolves around

the observed pre-and post-stenotic differences in centerline velocity profiles, the observed

negative velocities upstream of the constriction and the density profiles in both the cases

and the radial velocity profiles.

The observed post-stenotic dip in the case of LIT may be a consequence of slip

or a combination of slip and viscous dissipation. Since the LIT boundary condition

is a dissipative boundary condition, it may modify the properties of the fluid. More

rigorous investigations are needed in the future to resolve this issue. The presence of

negative velocities in case of the LIT for lower Reynolds numbers considered in this work,

(at location A in Figure 2.2) has not been reported elsewhere for the same geometry.

The absence of negative velocities at higher Reynolds number for LIT (location A in

Figure 2.2) could be a consequence of slip and compressibility. Increasing the Reynolds

number means increasing the flow rate and hence the slip.

In case of LIT, since the tangential component of particle velocity is lost at the

wall, the particles tend to reside near the wall, which leads to the formation of a layered

structure, and the momentum in this layer is constantly being rearranged by the incoming

flow momentum. This could possibly be the reason for differences in the cross-section

density profiles reported in Figure 3.9. The radial velocity profiles obtained using both

these boundary conditions have significantly different shapes. In case of LIT radial

velocities near the wall are non-zero. The radial velocity profiles obtained using BB are

in good agreement with Navier-Stokes equations. The slip in case of LIT may cause

these differences. In both these cases, the radial velocity profiles have symmetric shapes

except a non-zero velocity near the walls in case of LIT. The radial flow profile in case of

BB is qualitatively in good agreement to that of axisymmetric lattice Boltzmann method

reported in [23] by Zhou.

The Mach number defined in equation (2.34) seems to play an important role in

observed decrease of the centerline velocities upstream of the constriction as seen in
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Reynolds numbers Centerline velocity in constriction Local Mach number

4 0.17 0.098
7 0.36 0.27
15 0.72 0.42

Table 3.1: Local Mach numbers in the constriction

Figures 3.6 and 3.12. The non-dimensional speed of sound in a MPC fluid is given

by the simple expression
√

3kBT/m and in this simulation is simply equal to
√

3 =

1.73. For the ranges of Reynolds numbers considered in these simulations for the case

of 40% constriction, the local Mach numbers in the constricted region are computed

by using equation (2.34) and are given in the table 3.1. It can be seen that, as the

Reynolds number increases, the local Mach number also increases. Please note that

for an incompressible fluid, the Mach number is less than one (Ma << 1), and when

Ma ≈ 1 the compressibility effects become dominant. It is very well known that when

compressible fluids encounter the sudden contraction, the mass flow rate decreases [25].

The rapid increase of density upstream of the constriction along the centerline is shown

in Figures 3.22 and 3.23. The compressibility effects in case of flow past a cylinder using

MPC dynamics have been observed for Mach number as low as 0.17 [19]. The equation

of state for the MPC fluid is an ideal gas equation and hence compressibility effects are

built in. The increased density upstream could cause the decrease in mass flow rate, and

hence in the centerline velocity. The slip may also affect the centerline velocity, but it is

not yet clear exactly how.
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Chapter 4

Conclusion and Future Work

4.1 Summary

In Chapter 1, the biological motivations of this study have been briefly discussed. Since

MPC dynamics can be extended to model chemical reactions where particle numbers can

fluctuate, this feature of MPC dynamics makes it more suitable to simulate red blood

cell aggregation and break-up in presence of shear flow and possibly clarify the yield

stress issue. The slip at the wall has been reported in the viscometric measurements

and may also affect the measurements of yield stress [14]. However, simulations can

help to validate the viscometric data and possibly help to understand the effects of slip

on yield stress if any. The possibility of slip in flows through vascular constrictions is

also discussed. Since the red blood cell aggregation has been reported in presence of

the constrictions, it is necessary to simulate red blood cell aggregation and break-up

explicitly. It is argued that in order to simulate red blood cell aggregation in constricted

channels using MPC dynamics, it is first necessary to test MPC dynamics in the same

geometry without aggregation using no-slip and slip boundary conditions.

Different particle-based simulation methods such as lattice Boltzmann, dissipative

particle dynamics, direct simulation Monte-Carlo and multiparticle collision dynamics

were also briefly discussed in the Introduction. The collision step in MPC dynamics

is numerically more efficient than those of other methods mentioned above, and is also

very easy to implement numerically. To test the MPC dynamics algorithm, the case of

a cylinder without constriction was considered. Simulations of flow through the cylinder
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were performed using BB and LIT boundary conditions. The known case of Poiseuille

flow was recovered using MPC dynamics. The gravity driven flow was adapted with

periodic boundary conditions along the flow direction. The velocity profiles obtained

using this method are very stable and in good agreement with the theoretical Poiseuille

flow profile.

Next an axisymmetric cosine shaped geometry was taken as an idealized model of a

vascular constriction. Simulations of steady flow through this geometry were performed

using BB and LIT boundary conditions for three different Reynolds numbers. The LIT

boundary conditions showed interesting differences in the centerline and cross-section

velocity profiles. Finally, the results of MPC simulations are compared to those of the

incompressible Navier-Stokes equations solved using the finite element package COMSOL

Multiphysics. The results are found to be in good qualitative agreement.

4.2 Conclusion

The MPC dynamics has been successfully applied to simulate steady flows through an

axisymmetric constricted cylinder. The BB boundary conditions agree well with the

solutions of incompressible Navier-Stokes (no-slip) for a cylinder without a constriction.

Both boundary conditions show deviations from the incompressible Navier-Stokes, in

the pre-and post-stenotic regions. The density variations due to the constriction could

lead to a drop in the centerline velocity as observed in the pre-stenotic regime. The

observed dip in centerline velocity (in the post-constriction region) in case of LIT could

be a consequence of slip. The cross-section density profiles in case of BB and LIT differ

significantly. In case of LIT, the particle density is higher near the wall and in case of BB,

the density profile is fairly uniform across the cross-section. The radial velocity profiles

in case BB and LIT show differences near the wall. The difference between radial velocity

profiles in BB and LIT could also be the consequence of slip. The radial velocity profiles

obtained using BB are in good agreement with Navier-Stokes (no-slip). The presence of

negative velocities upstream of the constriction (point A) in case of LIT at low values of

Reynolds number is not yet fully understood. The major conclusions of this study are,

• Cumulative averaging gives macroscopic no-slip in case of BB without using artifi-

cial tricks.
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• The BB boundary condition should be used to model blood flow if no-slip boundary

condition is to be used.

• The LIT boundary condition can be used to incorporate slip.

4.3 Future Work

The most immediate future work is to simulate flows through the same geometry

using Navier-Stokes equations with slip at the wall and compare the results with

LIT. The comparison of the reported results with compressible Navier-Stokes would

also be required. Recently a thermodynamically consistent particle-based model for

fluid dynamics with continuous velocities and non-ideal gas equation of state has

been constructed [34]. In this model the MPC collision rule is modified to mimic

hard sphere collisions on a coarse grained level. The model is developed to minimize

the compressibility effects in MPC dynamics. Such a model could be well suited

for dense liquids. It would be interesting to simulate flows through constrictions

using this model and to compare it with the work presented in the previous chapter.

The effect of length of the stenosis on the velocity profiles should be studied using

the boundary conditions employed in this work. The degree of slip can be varied

using λ in equation (2.23). It would be very interesting to see the effect of different

values of λ on the centerline velocities in case of LIT. The postulate that the dip

in the post-constriction region is a consequence of slip could be explicitly verified

by varying λ.

The MPC algorithm used in this work does not conserve angular momentum. The

angular momentum conserving MPC dynamics has been constructed recently [35]

and found to be useful to model suspensions containing finite size particles with

rotational component of motion. An interesting application of angular momentum

conserving MPC dynamics is to simulate flows of suspensions in a Couette rheome-

ter. The Couette rheometer is basically a rotating co-axial rheometer. The sample

under consideration is placed between two concentric cylinders. The inner cylinder

is attached to the torque transducer of the unit centered in the outer cylinder. The

outer cylinder is rotated by using a motor and the shear stress is measured from
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the resulting torque. In this set-up a slip has been reported [14] to occur at the

cylinder walls and may affect the yield stress measurements. In the angular momen-

tum conserving MPC dynamics, the collision rule needs to be modified to include

angular momentum. Computationally it is easy to implement and requires knowl-

edge of the moment of inertia tensor for a given geometrical size of the particle.

In these simulations, the shear rate can be varied to obtain the shear stress. The

relation between shear stress and shear rate is called the constitutive relation and

is linear for Newtonian fluids and, in general non-linear for non-Newtonian fluids.

The constitutive relation can be obtained from such a simulation. The comparison

between a numerically obtained constitutive equation to that of experimental data

may help to quantify a yield stress as well as effects of slip on the yield stress. The

aggregation of particles with constant aggregation rate in presence of flow would

be the next step. In this case, more species of particles with different masses need

to be included in the simulation along with the reactive collisions [2]. The shear

rate dependent aggregation of particles is a challenge since the functional form of

shear dependent aggregation rates is not known. Numerically, the relative velocity

differences can be used to simulate shear rate dependent aggregation and break-up.

The flows through other physiological complex geometries such as bifurcation of

vessels and inflated blood vessels would be some other interesting applications to

study using MPC dynamics.

The voyage of science is never-ending, for the sake of space and time I take a pause

here by quoting Albert Einstein, who once said that ”The most incomprehensible

thing about our universe is, it is comprehensible.” I appreciate the simplicity in the

complexity of nature and salute an imagination of mother nature.
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Appendix A

All simulations with the MPC dynamics use non-dimensional parameters. In order

to make a connection with relevant length and time scales in physical systems, it

is necessary to convert the non-dimensional parameters into dimensional ones. In

these simulations, 17 cells are taken along the z direction, each of size one in non-

dimensional units. The width of 17 cells along z corresponds to a diameter of 4

mm, which gives a dimensional cell size a∗ = 0.235294117mm. All the dimensional

quantities are denoted with asterisks. The non-dimensional energy of the system is

kBT =
k∗

BT ∗

m∗(a∗)2/(τ ∗)2
. (1)

The temperature is taken to be T ∗ = 300K, mass m∗ = 3×10−17 kg and the Boltz-

mann constant k∗
B = 1.3806503× 10−23 J/K. The substitution of these parameters

in equation (1) gives the dimensional time step to be τ ∗ = 0.019699219 sec. The

dimensional centerline velocity is then obtained as,

U∗
c = Uc

a∗

τ ∗ . (2)

The dimensional centerline velocity in the uncostricted region for g = 0.005 (Re ≈
7) works out to 2.18811 mm/s.
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