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 ABSTRACT 

The project aims at the design and development of six hybrid nature inspired algorithms based 

on Grey Wolf Optimization algorithm with Artificial Bee Colony Optimization algorithm 

(GWOABC), Moth Flame Optimization Algorithm with Ant Lion Optimization algorithm 

(MFOALO), Cuckoo Search Optimization algorithm with Fire Fly Optimization 

Algorithm(CSFFA), Multi-Verse Optimization algorithm with Particle Swarm Optimization 

Algorithm (MVOPSO), Grey Wolf Optimization algorithm with Whale Optimization 

Algorithm (GWOWOA), and Binary Bat Optimization Algorithm with Particle Swarm 

Optimization Algorithm(BATPSO). Hybrid optimizations assume the implementation of two 

or more algorithms for the same optimization problem. "Hybrid algorithm" does not refer to 

simply combining multiple algorithms to solve a different problem but rather many algorithms 

can be considered as combinations of simpler pieces. The hybrid approach combines 

algorithms that solve the same problem but differs in other characteristics notably performance. 

A hybrid optimization uses a heuristic to choose the best of these algorithms to apply in a given 

situation. The proposed hybrid algorithms are benchmarked using a set of 23 classical 

benchmark functions employed to test different characteristics of hybrid optimization 

algorithms. The results of the fitness functions prove that the proposed hybrid algorithms are 

able to produce better or more competitive output with respect to improved exploration, local 

optima avoidance, exploitation, and convergence. All these hybrid algorithms find superior 
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optimal designs for quintessential engineering problems engaged, showcasing that these 

algorithms are capable of solving constrained complex problems with diverse search spaces. 

Optimization results demonstrate that all hybrid algorithms are very competitive compared to 

the state-of-the-art optimization methods and validated by fitness function. The hybrid 

algorithms are applied for optimal efficiency determination in various design challenges based 

on cantilever beam problem. 
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 1 INTRODUCTION 

 

1.1 Overview 

 

In the recent years, metaheuristic algorithms are employed as primary techniques for obtaining the 

optimal solutions of real-world engineering design optimization problems [1-3]. The optimization 

process is initialized by creating a set of random solutions. These initial solutions are then united, 

reallocated or derived over a pre-determined number of steps termed as iterations. An algorithm 

becomes unique in terms of its characteristics in mixing, allocating or evolving these initial 

solutions during the optimization process. Most of these algorithms take advantages of stochastic 

operators which makes them unique from deterministic approaches. 

A deterministic algorithm arrives at similar results for a given problem with identical initial 

starting point as these algorithms often get entrapped in a local minimum and fails to arrive at 

global minimum. Since real world problems have innumerous local solutions, deterministic 

algorithms are futile and unreliable in find true global optimum. Randomness is the main trait of 

stochastic algorithms. They employ random operators in order to avoid local minimums and 

stochastic operators which enable algorithms to obtain different solutions for a given problem in 

each run. 

Meta-heuristic algorithms search for the global optimum in a search space by creating one or more 

random solutions for a given problem [4]. Hence, these algorithms have following advantages: 

problem independency, evolution independency, local minimum evasion and natural optimization 

inspirations makes these algorithms makes it simple and follow a general and common framework, 

which imparts us scope to improve these algorithms with hybridization. Some of the most popular 

algorithms in this field used in this paper are: Grey Wolf Optimization algorithm(GWO)[5], 
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Artificial Bee Colony Optimization (ABC)[6], Whale Optimization Algorithm (WOA)[7], Moth 

Flame Optimization Algorithm (MFO)[8], Ant Lion Optimization algorithm (ALO)[9], Cuckoo 

Search Optimization algorithm (CS)[10], Fire Fly Optimization (FFA)[11], Multi-Verse 

Optimization algorithm (MVO)[12], Binary Bat Optimization Algorithm (BAT)[13] and Particle 

Swarm Optimization Algorithm (PSO)[14]. 

 

1.2 What is Optimization? 

 

Mathematical optimization or programming is the study of planning and design problems using 

mathematical tools to find solutions to optimally use resources, time and money under various 

constraints. With the advent of computers, optimization has become a part of computer-aided 

design activities. An optimization algorithm is a procedure which is executed iteratively by 

comparing various solutions till an optimum or a satisfactory solution is found. 

 

The generalization of optimization theory and techniques to other formulations constitutes a large 

area of applied mathematics. More generally, optimization includes finding "best available" values 

of some objective function given a defined domain (or input), including a variety of different types 

of objective functions and different types of domains. 

 

 

 

1.3 Optimization Problems 

 

An optimization problem can be represented in the following generic form 

 

Minimize  x Є Rn   𝑓𝑖(x),   (i = 1,2,…, M)  (1.2.1) 

subject  to    ℎ𝑗(x) = 0, (j = 1,2,…, J)  (1.2.2) 
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     𝑔𝑘(x)≤ 0, (k = 1,2,…, K)  (1.2.3) 

 

Where,  𝑓𝑖(x),  ℎ𝑗(x) and  𝑔𝑘(x) are the functions of design vector 

x = (x1, x2,…, xn)
T    (1.2.4) 

Here, the components of  xi of x are called design or decision variables, and they belongs to real 

continuous, discrete or mixed of these two types. 

The functions  𝑓𝑖(x)where  i = 1, 2, …, M are called the objective functions or cost functions, where 

when M = 1 , there is only one single objective. The space occupied by the decision variables are 

termed as design space or search space Rn, while the space spanned by the objective functions are 

named response or solution space. The equalities of  ℎ𝑗(x) and  𝑔𝑘(x) are termed as constraints. 

In mathematics, conventional optimization problems are usually stated in terms of minimization. 

a local minimum is: 

f(a) ≤ f(x) for all x in the interval    (1.2.5) 

 

While a local minimum is at least as good as any nearby elements, a global minimum is at least as 

good as every feasible element. Generally, unless both the objective function and the feasible 

region are convex in a minimization problem, there may be several local minimum. In a convex 

problem, if there is a local minimum that is interior (not on the edge of the set of feasible elements), 

it is also the global minimum, but a nonconvex problem may have more than one local minimum 

not all of which need be global minimum. 

 

A large number of algorithms proposed for solving nonconvex problems – including the majority 

of commercially available solvers – are not capable of making a distinction between locally 
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optimal solutions and globally optimal solutions and will treat the former as actual solutions to the 

original problem. Global optimization is the branch of applied mathematics and numerical analysis 

that is concerned with the development of deterministic algorithms that are capable of guaranteeing 

convergence in finite time to the actual optimal solution of a nonconvex problem. 

A naive optimal design is achieved by comparing a few(limited up to ten or so) alternative 

solutions created by using a priority problem knowledge. In this method feasibility of each design 

solution is first investigated. Thereafter an estimate of underlying objective (cost, profit, etc., ) of 

each solution is compared and best solution is adopted. It is impossible to apply single formulation 

procedure for all engineering design problems, since the objective in a design problem and 

associated therefore, design parameters vary product to product different techniques are used in 

different problems. Purpose of formulation is to create a mathematical model of the optimal design 

problem, which then can be solved using an optimization algorithm. 

1.4  Types of Optimization Algorithms 

 

Classification of optimization algorithms can be done in a number of ways. There are two types of 

distinct types of optimization algorithms used today on the basis of nature of algorithm.  

 

1.4.1 Deterministic Algorithms 

 

They use specific rules for moving one solution to other. These algorithms are in use to suite 

sometimes and have been successfully applied for many engineering design problems. These 

algorithms adopt a rigorous method and its path and values of both design variables and repeatable 

functions. Rigorous methods converge to the global optimum in finite time. Deterministic global 

optimization methods are typically used when locating the global solution is a necessity (i.e. when 

the only naturally occurring state described by a mathematical model is the global minimum of an 

optimization problem), when it is extremely difficult to find a feasible solution, or simply when 

the user desires to locate the best possible solution to a problem. 
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1.4.2 Stochastic Algorithms 

 

The stochastic algorithms are in nature with probabilistic translation rules. These are gaining 

popularity due to certain properties which deterministic algorithms do not have. Randomness is 

the main trait of stochastic algorithms. They employ random operators in order to avoid local 

minimums and stochastic operators which enable algorithms to obtain different solutions for a 

given problem in each run. Stochastic Algorithms are classified into two: 

   

1.4.2.1 Heuristic Algorithms 

 

The word heuristic refers to ‘to find’ or to ‘discover by trial and error’.  Quality solutions to a 

complex optimization problem can be achieved in a reasonable amount of time, but there is no 

guarantee that optimal solutions are obtained. These algorithms work most of the time, however 

not at every instance. 

 

1.4.2.2 Meta-Heuristic Algorithms 

 

These algorithms simply perform better than heuristics, hence named meta-heuristic algorithm. 

They produce acceptable solutions within a reasonable feasible time frame. The complexity of 

the problem of interest makes it impossible to search every possible solution or combination and 

the goal is to find acceptable solution within specified time frame. 

 

Nature-inspired meta-heuristic algorithms solve optimization problems by mimicking biological 

or physical phenomena. They can be grouped in three main categories. 
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1.4.2.2.1 Evolution based Meta-Heuristic Algorithms 

 

Evolution-based methods are inspired by the laws of natural evolution. The search process starts 

with a randomly generated population which is evolved over subsequent generations. The strength 

point of these methods is that the best individuals are always combined together to form the next 

generation of individuals. This allows the population to be optimized over the course of 

generations. The most popular evolution-inspired technique is Genetic Algorithms (GA) [43] that 

simulates the Darwinian evolution. Other popular algorithms are Evolution Strategy (ES) [44] , 

Probability-Based Incremental Learning (PBIL) [45] , Genetic Programming (GP) [46] , and 

Biogeography-Based Optimization algorithm (BBO) [47] .  

 

 

 

1.4.2.2.2 Physics based Meta-Heuristic Algorithms 

 

Physics-based methods imitate the physical rules in the universe. The most popular algorithms are 

Simulated Annealing (SA) [48] , Gravitational Local Search (GLSA) [49] , Big-Bang Big-Crunch 

(BBBC) [50] , Gravitational Search Algorithm (GSA) [51] , Charged System Search (CSS) [52] , 

Central Force Optimization (CFO) [10] , Artificial Chemical Reaction Optimization Algorithm 

(ACROA) [53] , Black Hole (BH) [54] algorithm, Ray Optimization (RO) [55] algorithm, Small-

World Optimization Algorithm (SWOA) [56] , Galaxy-based Search Algorithm (GbSA) [57] , and 

Curved Space Optimization (CSO) [58] . 

 

1.4.2.2.3Nature inspired Meta-Heuristic Algorithms 

 

The third group of nature-inspired methods includes swarm- based techniques that mimic the social 

behavior of groups of animals. Meta-heuristic algorithms search for the global optimum in a search 

space by creating one or more random solutions for a given problem [4]. Hence, these algorithms 

have following advantages: problem independency, evolution independency, local minimum 

evasion and natural optimization inspirations makes these algorithms makes it simple and follow 
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a general and common framework, which imparts us scope to improve these algorithms with 

hybridization. Some of the most popular algorithms in this field used in this paper are: Grey Wolf 

Optimization algorithm(GWO)[5], Artificial Bee Colony Optimization (ABC)[6], Whale 

Optimization Algorithm (WOA)[7], Moth Flame Optimization Algorithm (MFO)[8], Ant Lion 

Optimization algorithm (ALO)[9], Cuckoo Search Optimization algorithm (CS)[10], Fire Fly 

Optimization (FFA)[11], Multi-Verse Optimization algorithm (MVO)[12], Binary Bat 

Optimization Algorithm (BAT)[13] and Particle Swarm Optimization Algorithm (PSO)[14]. 

This paper proposes following six hybrid algorithms: Hybrid Grey Wolf Optimizer and 

Artificial Bee Colony Optimizer (GWOABC), Hybrid Grey Wolf Optimizer and Whale 

Optimization Algorithm (GWOWOA), Hybrid Moth Flame Optimization Algorithm and Ant 

Lion Optimizer (MFOALO), Hybrid Cuckoo Search Optimizer and Fire Fly Optimization 

Algorithm(CSFFA), Hybrid Multi-Verse Optimizer and Particle Swarm Optimization 

Algorithm (MVOPSO), Hybrid Binary Bat Optimization Algorithm and Particle Swarm 

Optimization Algorithm(BATPSO). Section  2 of this paper state the objective, concept and 

motivation of project. Section  3 discusses literature review. Section  4,  5,  6,  7,  8, and  9 

deals with the concept of hybridization and implementation of hybrid algorithms. Section  11 

of this paper showcases benchmarking and results of 23 fitness functions used. Section  12, the 

hybrid algorithms are applied for optimal efficiency determination in various design challenges 

based on cantilever beam problem. Section  13 concludes the paper and discusses possible 

future scope and improvements. 
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 2  HYBRIDIZATION 

 

A hybrid algorithm is an algorithm that combines two or more other algorithms that solve the same 

problem, either choosing one (depending on the data), or switching between them over the course 

of the algorithm. This is generally done to combine desired features of each, so that the overall 

algorithm is better than the individual components. 

"Hybrid algorithm" does not refer to simply combining multiple algorithms to solve a different 

problem – many algorithms can be considered as combinations of simpler pieces – but only to 

combining algorithms that solve the same problem, but differ in other characteristics, notably 

performance. 

Section 2 of this paper discusses literature review. Section 3 deals with the concept of hybridization 

and implementation of hybrid algorithms. Section 4 of this paper showcases benchmarking and 

results of 23 fitness functions used. Section 5 concludes the paper and discusses possible future 

scope and improvements. 

2.1  Motivation 

 

Many researchers have attempted the use of hybridization in order to enhance the performance of 

these algorithms. This paper proposes following six hybrid algorithms: Hybrid Grey Wolf 

Optimization algorithm with Artificial Bee Colony Optimization algorithm (GWOABC), Hybrid 

Grey Wolf Optimization algorithm with Whale Optimization Algorithm (GWOWOA), Hybrid 

Moth Flame Optimization Algorithm  with Ant Lion Optimization algorithm (MFOALO), Hybrid 

Cuckoo Search Optimization algorithm with Fire Fly Optimization Algorithm(CSFFA), Hybrid 

Multi-Verse Optimization algorithm with Particle Swarm Optimization Algorithm (MVOPSO), 

Hybrid Binary Bat Optimization Algorithm with Particle Swarm Optimization 
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Algorithm(BATPSO). We have selected the above meta-heuristics for hybridization due to the 

following reasons. 

• No free lunch theorem for optimization  - This theorem has logically proved a particular 

meta-heuristic may show very promising results on a set of problems, but the same 

algorithm may show poor performance on a different set of problems. 

• Combination of algorithmic ideas - Since there is not a single strategy which can be used 

to solve all kinds of optimization problems. 

• Individual optimization algorithm performance -Any superior performance in one class 

of problems generally results in inferior performance over another class. 

• Nature-inspired (simplicity) - They all share a common idea of using social behavior 

presented by species for survival or a natural phenomena and are put in as mathematical 

code to solve engineering problems. Therefore, easy to hybrid both algorithms. 

• Main objective of Hybridization - the percentage of successful convergence to global 

optimum should increase as opposed to those obtained by standalone algorithm. 

• Popular Hybrid Algorithms – Most hybrid algorithms available now are based on 

Genetic Algorithm (GA)  and Particle Swarm Optimization Algorithm (PSO) only as they 

are the simplest meta-heuristic algorithms. Very few researches have been performed on 

optimization algorithms we have taken in our project. 

We have selected the most popular and most promising meta-heuristic algorithms for hybridization 

– GWO, ABC, WOA, MFO, ALO, CS, FFA, MVO and BAT algorithms. There are other meta-

heuristic algorithms modelled such as Ray Optimization (RO) [55] algorithm, Small-World 

Optimization Algorithm (SWOA) [56] , Galaxy-based Search Algorithm (GbSA) [57] , Curved 

Space Optimization (CSO) [58] .etc, but they have a poor rate of convergence, results and also 

have less real world applications. 

 

Moreover, algorithms we have hybrid together share a similar mathematical model or structure as 

meta-heuristic algorithms are nature inspired and share a common idea of using social behavior 
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presented by species for survival or a natural-phenomena. This similarity makes meta-heuristic 

algorithms easy to hybrid, provided they share identical mathematical modelling structure. 

2.2  Objective and method of hybridization. 

 

All metaheuristic algorithm share a common search process divided into two phases 

• Exploration phase: the process of investigating the promising area(s) of the search space 

as broadly as possible. Algorithm uses stochastic operators at this phase. 

• Exploitation phase: refers to the local search capability around the promising regions 

obtained in the exploration phase. 

The goal of hybridization is to find a proper balance between these two phases; as it is considered 

a challenging task due to the stochastic nature of meta-heuristics. The resultant hybrid algorithm 

combines two or more other algorithms that solve the same problem, either choosing one 

(depending on the data), or switching between them over the course of the algorithm. This is 

generally done to combine desired features of each, so that the overall algorithm is better than the 

individual algorithms used for hybridization. 

We hybridize different meta-heuristics in order to improve the balance between exploitation and 

exploration phase. We propose six hybrid optimization algorithms in this paper and their methods 

of hybridization to improve exploration-exploitation balance are explained below. 
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2.2.1 GWOABC  

 In GWO, hunting (exploitation process are  guided by alpha, beta and delta wolves who 

save first 3 best solutions and oblige the other search agents (including the omegas) to update 

their positions according to the average position of the alpha, beta and delta wolves give by 

the equation. �⃗�(𝑡 + 1) =
�⃗⃗�1+�⃗⃗�2+�⃗⃗�3

3
  . When the algorithm fails to find three best solutions 

namely alpha, beta and delta; the algorithm tends to fall in local minima and fails to update the 

position at lower fitness values. i.e. �⃗�(𝑡 + 1) =
�⃗⃗�1+�⃗⃗�2+�⃗⃗�3

3
 remains same over n iteration. If the 

solution does not improve after a limited set of trials (t) or iterations, we incorporate scout bee 

mechanism in ABC algorithm with which ABC algorithm avoids local minima entrapment. 

During scout bee phase, scout bee sends alpha, beta and delta wolves repeatedly to generate a 

new solution if the current solution is not improved within a limited set of trials. ( i.e. change 

of exploitation to exploration phase to find a better global minimum). The scout generated 

solution inherits some good structures from the discarded solutions and the new solution is 

better than a randomly generated fitness value. 

We also use adaptive parameters of ABC in GWO than relying random numbers to smoothly 

transit between exploration and exploitation.  

Prob = (random.random() * fitness / Alpha_score )+0.1 

Advantages of GWOABC hybridization 

• Avoid local minima entrapment tendency in GWO by using scout bee exploitation. 

• GWO have a better rate of convergence than swarm based ABC optimizer where 

all fitness of employed bees and onlooker bees are taken into account than 3 best 

solutions in GWO. 
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2.2.2 GWOWOA 

In WOA, unlike GWO, the position of a search agent in the exploration phase is done according 

to a randomly chosen search agent instead of the best search agent found so far. At exploitation 

phase , whales follow a Spiral updating position.  This approach assumes that the prey is still 

moving and therefore we  calculate the distance between the whale located at ( X , Y ) and prey 

located at ( X ∗, Y ∗). A spiral equation is then created between the position of whale and prey to 

mimic the helix-shaped movement of humpback whales as follows : �⃗�(𝑡 + 1) =

𝐷′⃗⃗ ⃗⃗ .  𝑒𝑏𝑙. cos(2𝜋𝑙) + 𝑋 ∗⃗⃗⃗⃗⃗⃗⃗ (𝑡). 

We integrate the shrinking encircling mechanism of bubble-net attacking method in WOA to GWO 

prey chasing, tracking and encircling phase in this hybrid optimization algorithm; as they both 

share identical mathematical modelling with different coefficient vectors. We also adapt the spiral 

updating position of whale and prey to mimic the helix shaped movement of humpback whales  at 

higher values of co-efficient vector (𝐴 ). ⃗   This bubble-net foraging method is more sophisticated 

prey encircling method than just updating position vectors with respect to the three best fitness 

solutions, we were able to achieve faster convergence and better global optimum in most cases.  

Advantages of GWOWOA hybridization 

• GWO has faster rate of convergence at higher fitness values; WOA stagnates due to its poor 

randomization technique.  

• Encircling mechanism of GWO and WOA has less capability of jumping out of local minima 

which was overcome by spiral updating position technique to cover a wider search-space to 

avoid local minima entrapment. 

 



13 
 

2.2.3 MFOALO 

MFO is  a population based algorithm inspired by the peculiar navigational habit of a moth called 

Transverse Orientation. ALO algorithm is  inspired by the foraging behavior of antlion’s larvae. 

At MFO exploration phase, in addition to transverse navigation method of moths, we also create 

the random walk of antlions and normalize it  according to MFO parameters given by 

𝑋𝑖
𝑡 =  

( 𝑋𝑖
𝑡− 𝑎𝑖)𝑥 ( 𝑑𝑖− 𝑐𝑖

𝑡)

( 𝑑𝑖
𝑡− 𝑎𝑖)

+ 𝑐𝑖 

The best antlion obtained so far in each iteration is saved and considered as an elite. Elite antlion 

position is calculated and is compared with that of moth position as given by the logarithmic spiral 

equation(exploitation) : �⃗�(𝑡 + 1) = 𝐷′⃗⃗ ⃗⃗ .  𝑒𝑏𝑙. cos(2𝜋𝑙) + 𝑋 ∗⃗⃗⃗⃗⃗⃗⃗ (𝑡). If Elite antlion fitness is greater 

than that of moth-flame fitness; position vectors are updated using both moth flame position and 

elite ant-lion position. 

Advantages of MFOALO hybridization 

• High probability of resolving local optima stagnation due to the use of random walks. 

• Both are population-based algorithms – easy to hybrid, better exploitation search 

characteristics. 

• The MFO algorithm is a gradient-free algorithm and considers problem as a black box. ( less 

parameters to adjust). 

• Elitism maintains best solution attained so far and affects the movement of moths and antlions 

in subsequent iteration to find better global optimum. 
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2.2.4 CSFFA 

CS  algorithm is inspired by the obligate brood parasitism of some cuckoo species by laying their 

eggs in the nests of other host birds (of other species). FFA is a population algorithm inspired by 

flashing characteristics of fireflies. 

In FFA we assume that the attractiveness of a firefly is determined by its brightness which in turn 

is associated with the encoded objective function. Instead of using a random probability Pa Є (0,1) 

at exploitation phase at CS, we use light intensity I(r) and attractive coefficient 𝜷 of FFA at 

exploitation to facilitate proper balance between exploitation and exploration. I(r) = 
𝑰𝒔

𝒓𝟐
 , 

𝜷 =  𝜷𝟎 𝒆− 𝜸𝒓𝒎     where m ≥ 1 

In CS, movement of cuckoos to generate new solution is a random pattern. It adversely affects its 

local exploitation capability. Hence, instead of random movement we integrate Cartesian or 

Euclidean distance maintained by fireflies at higher brightness in order to improve local minima 

avoidance at exploitation phase - 𝑟𝑖𝑗 =  |𝑥𝑖 −  𝑥𝑗| =  √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2
𝑑

𝑖=1
  

Advantages of CSFFA hybridization 

• Improving the balance of exploration and exploitation in CS. 

• Elitism characteristics of CS retain best solution found so far. 

• Adaptive parameters with respect to best solution in search space provide better exploitation 

capability. 
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2.2.5 MVOPSO 

MVO is a population-based algorithm are based on three concepts in cosmology: white hole, black 

hole and wormhole. PSO is a population based meta-heuristics inspired by social behavior of bird 

flocking or fish schooling. 

In PSO, velocity of each agent can be modified by the following equation in inertia weight 

approach.   v[] = w* v[] + c1 * rand() * (pbest[] - present[]) +  c2 * rand() *  (gbest[] - present[]), 

‘w’ is called as the inertia factor which controls the influence of previous velocity on the new 

velocity : 𝑤 = 𝑤𝑚𝑎𝑥 −  
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
 

Mathematical modeling of MVO consists of two main coefficients - wormhole existence 

probability (WEP) and travelling distance rate (TDR). 𝑊𝐸𝑃 = 𝑚𝑖𝑛 + 𝑙 ∗ (
𝑚𝑎𝑥−𝑚𝑖𝑛

𝑙
),                 

TDR = 1 - 
𝑙1/𝑝

𝐿1/𝑝
 . We use this inertia factor w in MVO in order to substitute WEP at exploration 

phase to improve rate of convergence and modify the wormhole tunnel exchange mechanism with 

respect to TDR to explore search space faster. 

Advantages of MVOPSO hybridization 

• Computational procedure framework remains intact with that of MVO as PSO is a very simple 

algorithm based on just relative velocity of search agents. 

• Very fast convergence rate inherited by PSO at exploration phase. 

• PSO is the simplest optimization algorithm, easy to hybrid and have less computational 

complexity. 

• Overcome premature local minima convergence of PSO. 
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2.2.6 BATPSO 

BAT algorithm is Inspired by the echolocation behavior of bats. PSO is a population based meta-

heuristics inspired by social behavior of bird flocking or fish schooling. 

In BAT minimum fitness function is located by an array-based greedy algorithm ( works best in 

faster exploitation in high dimensional fitness values and are more stochastic). PSO is based on 

element-wise pos[I,j] search and updating the velocity to converge to a global minimum. ( works 

best in faster exploitation in lower fitness values and have a tendency to get trapped in local 

minimum). Both PSO and BAT are run in parallel and they perform a comparison between both 

minimum fitness function at each iteration.  The lowest value is taken and both PSO and BAT is 

updated with the lowest value and respective positions are updated simultaneously.  

Advantages of BATPSO hybridization 

• Jumping out of local minima – disadvantage of PSO 

• Faster rate of convergence – disadvantage of BAT. 

•  Accuracy of BAT may be limited if the number of function evaluations is not high which is 

dealt by PSO. 

• BAT algorithm – still in primitive stage and requires more testing and tuning. 

 

Inspiration, mathematical modelling and computational procedure of all hybrid algorithms are 

explained in detail in subsequent chapters. 
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 3 LITERATURE REVIEW 

 

Most of the hybrid optimization algorithms available at present are based on particle swarm 

optimization (PSO). These algorithms take advantage of fast convergence speed of PSO and 

minimize its defects such as premature convergence and local minimum stagnation. Mr. Jianwen 

Guo proposed a hybrid optimization algorithm based on PSO and Cuckoo Search (CS) algorithm 

for solving a preventive maintenance period optimization model problem [15]. 

 

A hybrid Firefly-Particle Swarm Optimization (FAPSO) is proposed in a paper in which the 

population of FAPSO is divided into two sub-populations selecting FA and PSO as their basic 

algorithm to carry out the optimization process, respectively. To exchange the information of the 

two sub-populations and then efficiently utilize the merits of PSO and FA, the sub-populations 

share their own optimal solutions while they have stagnated more than a predefined threshold. 

Secondly, each dimension of the search space is divided into many small-sized sub-regions, based 

on which much historical knowledge is recorded to help the current best solution to carry out a 

detecting operator [16]. 

 

A hybrid DAPSO algorithm combines the frameworks of the dragonfly algorithm (DA) and 

particle swarm optimization (PSO) to find the optimized solutions for the power system. The 

hybrid algorithm adopts the exploration and exploitation phases of the DA and PSO algorithms, 

respectively, and was implemented to solve the multi-objective optimal power flow problem [17]. 

A hybrid algorithm based on using moth-flame optimization (MFO) algorithm with simulated 

annealing (SA), namely (SA-MFO) is explained in one paper. The proposed SA-MFO algorithm 

takes the advantages of both algorithms. It takes the ability to escape from local optima mechanism 

of SA and fast searching and learning mechanism for guiding the generation of candidate solutions 

of MFO [18]. 

 

The hybrid algorithm has been constructed using Mean Grey Wolf Optimization algorithm 

(MGWO) and Whale Optimization algorithm (WOA) utilizing the spiral equation of Whale 

Optimization algorithm for two procedures in the Hybrid Approach GWO (HAGWO) algorithm: 
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(i) firstly, the spiral equation in Grey Wolf Optimization algorithm for balance between the 

exploitation and the exploration process in the new hybrid approach; and (ii) secondly, the equation 

in the whole population in order to refrain from the premature convergence and trapping in local 

minimum. [19] 

 

A hybrid algorithm for feature subset selection in high-dimensional datasets using FICA and 

IWSSr algorithm was developed by Mostafa Moradhkhani. A hybrid method is proposed for 

efficient subset selection in high-dimensional datasets. The proposed algorithm runs filter-wrapper 

algorithms in two phases. The symmetrical uncertainty (SU) criterion is exploited to weight 

features in filter phase for discriminating the classes. In wrapper phase, both FICA (fuzzy 

imperialist competitive algorithm) and IWSSr (Incremental Wrapper Subset Selection with 

replacement) in weighted feature space are executed to find relevant attributes. The new scheme 

is successfully applied on 10 standard high-dimensional datasets, especially within the field of 

biosciences and medicine, where the number of features compared to the number of samples is 

large, inducing a severe curse of dimensionality problem. The comparison between the results of 

our method and other algorithms confirms that our method has the most accuracy rate and it is also 

able to achieve to the efficient compact subset [60]. 

 

The optimal coordination of Directional Overcurrent Relays (DOCRs) is a nonlinear and non-

convex optimization problem integrating large number of constraints. In a paper, the hybrid 

Cuckoo Search Algorithm (CSA) - Firefly Algorithm (FFA) approach is implemented to solve 

coordination problem of DOCRs. The Artificial Intelligence (AI) based method such as FFA 

searches large solution space with large deviation in results with different number of simulations. 

Also it is not assured that result given by FFA is global best. To solve this problem, the preliminary 

optimal value of Time Multiplier Setting (TMS) and pickup current (Ip) are determined using CSA. 

The values of these variables are used in FFA as upper bounds which reduce the solution space 

and give a global optimal solution with very minimum deviation. The obtained results using 

proposed method are compared with hybrid Genetic Algorithm-Nonlinear Programming (GA-

NLP) as well as with conventional CSA and FFA methods. The outcome demonstrates that the 

proposed method can obtain realizable and global best solution with minimum deviation in results 

and improved computational efficiency for this complex problem [61].  
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In a paper, hybrid clustering algorithm that integrates Fuzzy C-Means (FCM) and Whale 

Optimization Algorithm (WOA) using the Chebshev distance function is proposed. The FCM 

algorithm uses Euclidean distance to measure the similarity between the data. To avoid the existing 

disadvantages of the Euclidean distance, all distances in the FCM algorithm is calculated with the 

Chebsyhev distance function. The BOA algorithm is used to optimize the initial cluster centers. 

The proposed hybrid algorithm is tested with three different sets of data selected from UCI 

Machine Learning Repository database. As a result, it is seen that the clustering performance of 

the proposed algorithm is much better than the FCM algorithm [62]. 

 

Real Time Processor Scheduling with no preemption of tasks is a class NP-hard problem. We have 

attempted to get the best task allocation schedule for sporadic tasks, such that all the tasks are 

being scheduled without missing its deadline. Bat algorithm was proposed from the motivation 

behind the bat's echolocation behavior. Bat Searches for the prey in the given search location once 

found it tries to catch it by converging towards the direction of the prey. The existing system 

comprises of multiprocessor scheduling using bat algorithm which has been proved to be very 

efficient. Based on it, proposed modernistic algorithm used to solve the Multi-objective 

multiprocessor scheduling algorithm of a soft real time scheduling system for both periodic and 

sporadic tasks that is completely scalable in nature [63]. 

 

Gravitational search algorithm (GSA) is an optimization algorithm inspired from Newton's law of 

gravitation. Moth flame optimization (MFO) is another optimization algorithm, motivated by the 

locomotion of moths around a light source. Both of these algorithms have tried to model the search 

agents and altered properties like mass, gravitational constant, fitness, location, etc. in order to find 

the most optimal value. By hybridizing MFO and GSA, the performance is expected to improve 

across various measures. This paper presents a hybrid optimization algorithm by using concepts 

of moth flame optimization and gravitational search algorithm and applies this hybrid algorithm 

to image segmentation. An optimized K-means algorithm and an optimized thresholding algorithm 

have been proposed. The results of the segmentation are then used to classify apples into different 

classes [64]. The concept of hybridization, mathematical modeling and implementation of hybrid 

algorithms are discussed in next section 3 to 8. 
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 4 HYBRID GREY WOLF OPTIMIZATION ALGORITHM AND 

ARTIFICIAL BEE COLONY OPTIMIZATION ALGORITHM 

ALGORITHM (GWOABC) 

 

4.1 Grey Wolf Optimization algorithm (GWO) 

 

Grey wolf (Canis lupus) is from the Canidae family. Grey wolves are declared as apex predators, 

which means they are at the top of the food chain. Generally Grey wolves lives in pack, with 

average group size of 5- 12 in one group. Interesting thing is that they have a very strict social 

dominant hierarchy. 

 

Both Female and Male Leaders are called alphas, on the top hierarchy, who generally take 

decisions about hunting, sleeping place, time to wake up etc. The Alphas generally command to 

the pack. Still there are some typo behavior where an Alpha Wolf follows other Wolves in the 

pack. The gatherings called by Alpha Wolf are acknowledged by other wolves in the pack holding 

their tail down. The Alpha Wolf are also known as Dominant Wolf as they command orders which 

are to be followed by other wolves in the pack. The Alpha Wolves can only mate within their pack. 

Alpha Wolves need not be the strongest in the group, it is just for maintaining the discipline and 

organization of the pack. The alpha wolves are only allowed to mate in the pack.  

 

Beta, the next level of hierarchy, are subordinate wolves that help the alpha in decision-making or 

other pack activities.  They can be either male or female wolf and is the next choice in case if the 

alpha wolves becomes old or dies. The beta wolf should control the lower level wolves and also 

obey the alpha wolves. In fact, they should play an advisory role to the alpha wolves and be 

commanding to the other wolves in the lower level. They have to  actually convey the messages 

and concern between alpha wolves and the lower level wolves. 
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The lowest wolves in the hierarchy are the omega. The omega plays the role of scapegoat. Omega 

wolves have to take upon everything what the other wolves does. In fact they are always the last 

to eat. Even though this category omega, doesn’t seems to be important in the pack, they are the 

cause for all fights in the pack as they vent out violence and frustration of all wolves by the omega. 

This Omega category assists satisfying the entire pack and maintaining the dominance structure. 

In some cases, the omega wolves babysit too. 

 

There is one more category in this hierarchy which is neither Alpha, Beta nor Omega and is called 

subordinate (also known as delta). Delta wolves report to alphas and betas, but they dominate the 

omega. Scouts, sentinels, elders, hunters, and caretakers belong to this category. Scouts do the job 

of alerting the pack in case of any danger hence they protect the boundary of the territory. Sentinels 

protect and guarantee the safety of the pack. Elders are those experienced wolves who used to be 

alpha or beta. Hunters help the alphas and betas when hunting prey and providing food for the 

pack. Finally, the care takers are responsible for caring for the weak, ill, and wounded wolves 

in the pack. 

 

Grey Wolf Optimization algorithm imitate the leadership hierarchy and hunting mechanism of 

gray wolves. In designing GWO, we consider the fittest solution as the alpha (α), second and third 

best solutions are named beta (β) and delta (δ) respectively. The rest of the candidate solutions are 

omega (ω). The GWO optimization hunting mechanism is ruled by   α, β and δ. The ω wolves 

follow these three wolves.  

 

The three main stages of grey wolves hunting mechanism are as follows: 

• Chasing, Tracking and drawing near the prey. 

• Pursuing, encircling and hassling the pray until it halts. 

• Attacking towards the prey. 

 

This hunting technique and the social hierarchy of grey wolves are mathematically modeled in 

order to design GWO and perform optimization. 
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4.2 Artificial Bee Colony algorithm (ABC) 

 

The ABC Algorithm was developed by Karaboga in 2005 and it is Swarm based meta- heuristic 

Algorithm. Foraging behavior of honey bees is how this algorithm got inspired by. This Algorithm 

consists of 3 categories of bees, they are – Employed Bees, Onlooker bees and the scout bees. 

Employed bees are those connected with specific food sources, onlooker bees monitor the dance 

of employed bees within the hive and scout bees are those of which who search for food sources 

in a different pattern. Every food source has only one employed bee. There is only one employed 

bee for every food source. Which finally means that the number of employed bees are equal to the 

number of food sources in the hive. The employed bee whose food source has been finished by the 

bees becomes a scout. 

 

There are basically three steps combined in the cycle. Firstly, moving the onlooker and employed 

bee’s food sources and watching their nectar amounts and counting taking count of the scout bees 

and directing them to the possible and available food sources. A food source arrangement reflects 

a possible solution to the problem to be solved. The quality of solution points to the amount of 

nectar of a food source. For placing Onlookers on the food source Probability- based selection 

process is used. The probability value with which the food source is preferred by onlookers 

increases as the nectar amount of food source rises. Every Bee colony has scouts that are the 

colony’s explorers. 

 

The explorers look for food in any pattern, not in any method. First, they are concerned mainly in 

finding the kind of food source. The scouts are characterized by low search costs and a low average 

in food source quality as a result of such behavior. Sometimes, the scouts can also discover rich, 

entirely unknown food sources. The artificial scouts could have the fast discovery of the group of 

feasible solutions as a task in the case of artificial bees. In ABC, the scout bee is classified by 

selecting one of the employed bee. The selection is done by a control parameter "limit". The food 

source is ignored by its employed bee if a solution representing a food source is not improved by 

a predetermined number of trials and the employed bee is converted to a scout. 
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An important control parameter of ABC is the number of trials for releasing a food source is equal 

to the value of "limit". Exploration and exploitation processes must be carried out together in a 

robust search process. In the ABC algorithm, the scouts control the exploration process while 

onlookers and employed bees carry out the exploitation process in the search space. 

 

The recruitment rate represents a “measure” of how quickly the bee swarm locates and exploits 

the newly discovered food source in the case of real honey bees. Artificial recruiting process could 

similarly represent the “measurement” of the speed with which the feasible solutions or the optimal 

solutions of the difficult optimization issues can be identified. The survival and progress of the 

real bee swarm can be based upon the rapid discovery and efficient utilization of the best food 

resources. Also, the optimal solution of difficult engineering problems is connected to the 

relatively fast discovery of “good solutions” especially for the problems that need to be solved in 

real time. 

 

4.3 Mathematical Modeling of GWOABC 

 

We take the advantage of scout bees in ABC, so that we can jump out from local minimum at 

lower fitness values in GWO.A scout is used to generate a new solution in the predefined search 

scope in the scout bee phase. For a new better solution, we take advantage of the discarded solution. 

The newly generated solution makes use of some good structures from the discarded solutions and 

the new solution is always better than a randomly generated fitness value. 

 

In order to mathematically model the algorithm, following equations are used: 

 

�⃗⃗⃗� = |𝐶.⃗⃗⃗⃗ 𝑋𝑝⃗⃗⃗⃗⃗⃗ (𝑡) − �⃗�(𝑡)|      (3.3.1) 

�⃗�(𝑡 + 1) = 𝑋𝑝⃗⃗⃗⃗⃗⃗ (𝑡) − 𝐴 ⃗⃗⃗⃗  . �⃗⃗⃗�      (3.3.2) 
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Where t denotes the current iteration, 𝐴 ⃗⃗⃗⃗  and 𝐶 ⃗⃗⃗⃗   are co-efficient vectors, 𝑋𝑝⃗⃗⃗⃗⃗⃗ (𝑡) is the prey position 

vector and �⃗� indicates position of grey wolf 

 

Vectors 𝐴 ⃗⃗⃗⃗   and 𝐶 ⃗⃗⃗⃗  are calculated using below equations: 

𝐴 = 2�⃗�. 𝑟1− �⃗�       (3.3.3) 

𝐶 = 2. 𝑟2        (3.3.4) 

Where �⃗�  linearly decreases from to 2 to 0 and r1 and r2 are random vectors in [0,1] 

 

The fittest solution is saved as alpha. Beta is between alpha and delta, which has lower value than 

alpha. Once we get the three best solutions after all this we then instruct the other agents in order 

to update their positions according to the best search agents. For this, the following equations are 

used. 

 

�⃗⃗⃗� α = | 𝐶1⃗⃗⃗⃗⃗�⃗� α−�⃗�|,  �⃗⃗⃗� β= | 𝐶2⃗⃗⃗⃗⃗�⃗� β−�⃗�|,  �⃗⃗⃗� δ = | 𝐶3⃗⃗⃗⃗⃗�⃗� δ−�⃗�|     (3.3.5) 

 

�⃗�1 = �⃗� α -𝐴 1. ( �⃗⃗⃗� α), �⃗�2= �⃗� β - 𝐴2 .( �⃗⃗⃗� β), �⃗�3 = �⃗� δ  - 𝐴 3 .( �⃗⃗⃗� δ)      (3.3.6) 

 

�⃗�(𝑡 + 1) =
�⃗⃗�1+�⃗⃗�2+�⃗⃗�3

3
          (3.3.7) 

    

The algorithm fails to update position and fall in local minimum when the algorithm fails to find 

three best solutions namely alpha, beta and delta. We incorporate scout bee mechanism in ABC 

algorithm with which ABC algorithm avoids local minimum entrapment if the solution does not 

improve after a limited set of trials or iterations. 
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Scout bee sends alpha, beta and delta wolves repeatedly to generate a new solution if the current 

solution is not improved within a limited set of trials during scout bee phase. The discarded 

solution provides some good structures to the scout generated solution the new solution is better 

than a randomly generated fitness value. The above process is repeated multiple times to generate 

several new solutions and finally choose the fittest solution among them and update alpha, beta 

and delta solution fitness accordingly. 

 

Moreover, instead of using random numbers in determining the values of co-efficient vectors 𝐴 ⃗⃗⃗⃗ and 

𝐶; we assign random numbers as a function of current fitness and best fitness based on probability 

equation in ABC. 

 

prob=(random.random()*fitness/Alpha_score)+0.1      (3.8) 

 

 

4.4 Computational Procedure of GWOABC Algorithm 

 

Initialize grey wolf population Xi (i = 1,2,3,..,n) 

Initialize α, A and C 

Calculate fitness for each search agent 

X α = best search agent, X β = second best search agent  

X δ = third best search agent 

While(t < Max number of iterations) 

 For each search agent 

  Update the position of each search agent by eq 3.3.7 
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 End For 

 Update α, A and C 

 Update/reset trial counter if better α not found/found 

 Calculate the fitness of each search agents 

 Update X α, X β, X δ 

 For trial exceed limit(n) 

  If α not improved in ‘n’ continuous iterations then 

  Scout α solution generated 

  Update α, A and C 

 End For 

 Reset trial 

 t = t+1 

End While 

Return X α 
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 5 HYBRID GREY WOLF OPTIMIZATION ALGORITHM AND 

WHALE OPTIMIZATION ALGORITHM (GWOWOA) 

 

5.1 Whale Optimization Algorithm (WOA) 

 

Whales being the biggest mammals are considered fancy creatures. An adult whale can grow up 

to 180 t weight and 30 m long. This giant mammals consists 7 different main such as killer, Minke, 

Sei, humpback, right, finback, and blue. Whales are mostly considered as predators. They have to 

breathe from the surface of the oceans which is why they never sleep. Actually, half of the brain 

only sleeps. The interesting thing about the whales is that they are considered as highly intelligent 

animals with emotions. 

 

According to Hof and Van Der Gucht, whales have spindle cells in certain areas of their brains 

similar to those of human. These cells are responsible for emotions, judgment and social behaviors 

in humans. In other words, the spindle cells make us different from other creatures. Whales have 

twice number of these cells than an adult human which is the main cause of their smartness. It has 

been proven that whale can think, learn, judge, communicate, and become even emotional as a 

human does, but obviously with a much lower level of smartness. It has been observed that whales 

are able to develop their own dialect as well.  

 

The social behavior of whales is another interesting point. They either live alone or in groups. 

Even though, they are mostly observed living in groups. Some of their species, killer whales for 

instance, can live in a family over their entire life period. One of the biggest baleen whales is the 

humpback whales (Megaptera novaeangliae). An adult humpback whale is as big as a school bus. 

Their favorite preys are krill and small fish herds. The special hunting method is another interesting 

thing about the humpback whales. This foraging behavior is called bubble-net feeding method. 

Humpback whales generally prefer hunting school of krill or small fishes that are close to the 

surface. It has been analyzed that this foraging is done by creating distinctive bubbles along a circle 

or ‘9’-shaped path. This behavior was only determined based on the observation from surface 
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before 2011. However, Goldbogen investigated this behavior utilizing tag sensors. They conquered 

300 tag-derived bubble-net feeding events of 9 individual humpback whales. They named them 

‘upward-spirals’ ‘double- loops’ after finding two maneuvers associated with bubble. 

 

Humpback whales dive around12 m down in the former maneuver and then start to create bubble 

in a spiral shape around the prey and swim up towards the surface. The later maneuver combines  

three different stages: lobtail, coral loop and capture loop. It is worth mentioning here that Bubble-

net feeding is a unique behavior that can only be observed in humpback whales. The spiral bubble-

net feeding maneuver is mathematically modeled in order to perform WOA optimization. 

 

The three main phases of Whale Optimization Algorithm are given below: 

 

• Encircling prey 

• Bubble-net attacking method (exploitation phase) 

• Search for prey (exploration phase) 

 

 GWO optimization is already discussed in section 3.1. 

 

5.2 Mathematical Modeling of GWOWOA 

 

Encircling prey method in WOA is almost as similar to tracking, chasing and drawing near the 

prey in GWO. Encircling prey in WOA is represented by following equations: 

 

�⃗⃗⃗� = |𝐶.⃗⃗⃗⃗ 𝑋 ∗⃗⃗⃗⃗⃗⃗⃗ (𝑡) − �⃗�(𝑡)|         (4.2.1) 

�⃗�(𝑡 + 1) = 𝑋 ∗⃗⃗⃗⃗⃗⃗⃗ (𝑡) − 𝐴 ⃗⃗⃗⃗  . �⃗⃗⃗�        (4.2.2) 
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Where t denotes the current iteration, 𝐴 ⃗⃗⃗⃗ and 𝐶.⃗⃗⃗⃗ are co-efficient vectors, 𝑋 ∗⃗⃗⃗⃗⃗⃗⃗ is the position vector of 

best solution obtained so far and �⃗� indicates the position vector, | | is the absolute value and is an 

element -by- element multiplication. 

Vectors 𝐴 ⃗⃗⃗⃗   and 𝐶 ⃗⃗⃗⃗  are calculated using below equations: 

𝐴 = 2�⃗�. 𝑟1− �⃗�        (4.2.3) 

𝐶 = 2. 𝑟2         (4.2.4) 

We integrate the shrinking encircling mechanism of bubble-net attacking method in WOA to GWO 

prey chasing, tracking and encircling phase in this hybrid optimization algorithm. The shrinking 

encircling mechanism of bubble-net attacking method is achieved by decreasing the value of �⃗� in 

equation (4.2.3). Note that the fluctuation range of 𝐴is also decreased by �⃗�. Shrinking encircling 

mechanism is represented by the equation below: 

 

�⃗�(𝑡 + 1) = 𝑋 ∗⃗⃗⃗⃗⃗⃗⃗ (𝑡) − 𝐴 ⃗⃗⃗⃗  . �⃗⃗⃗�       (4.2.5) 

We also adapt the spiral updating position of whale and prey to mimic the helix shaped movement 

of humpback whales as given below: 

�⃗�(𝑡 + 1) = 𝐷′⃗⃗ ⃗⃗ . 𝑒𝑏𝑙. cos(2𝜋𝑙) + 𝑋 ∗⃗⃗⃗⃗⃗⃗⃗ (𝑡)     (4.2.6) 

In search for prey (exploration phase); we update the position of a search agent in the exploration 

phase by selecting a search agent in a random fashion instead of choosing the search agent with 

the best solution obtained so far. This technique and |A|>1 underline exploration and allow WOA 

to carry out a global search. 
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�⃗⃗⃗� = |𝐶.⃗⃗⃗⃗ 𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − �⃗�|        (4.2.7) 

�⃗�(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝐴 ⃗⃗⃗⃗  . �⃗⃗⃗�       (4.2.8) 

We use equation (4.2.1), (4.2.5), (4.2.6), (4.2.7) and (4.2.8) to modify and adapt to equation (3.3.1), 

(3.3.2), (3.3.5) and (3.3.6) in GWO. Since bubble-net foraging method is more sophisticated prey 

encircling method than just updating position vectors with respect to the three best fitness 

solutions, we were able to achieve faster convergence and better global optimum in most cases. 

5.3 Computational Procedure of GWOWOA 

 

Initialize grey wolf population Xi (i = 1,2,3,..,n) 

Initialize α, A and C 

Calculate fitness for each search agent 

X α = best search agent, X β = second best search agent  

Xδ = third best search agent 

While(t < Max number of iterations) 

 If p < 0.5 

  If (|A|<1) 

  Update the position of each search agent by eq (4.2.1) 

  Else 

  Select random search agent (Xrand) 

  Update the position of each search agent by eq (4.2.5) 

 If p > 0.5 
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  Select random search agent (Xrand) 

  Update the position of search agent by eq (4.2.5) & (4.2.6) 

  Re-initiate search iteration if no better solution found 

 End If 

 Check if any search agent goes beyond the search space and  amendit. 

 Update α, A and C 

 Calculate the fitness of each search agents 

 Update X α, X β, Xδ  

 t = t+1 

End While 

Return X α 
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 6 HYBRID MOTH FLAME OPTIMIZATION ALGORITHM AND 

ANT LION OPTIMIZATION ALGORITHM (MFOALO) 

 

6.1 Moth Flame Optimization Algorithm (MFO) 

 

Moths are fancy insects, which are highly similar to the family of butterflies. Basically, there are 

over 160,000 various species of this insect in nature. They have two main milestones in their 

lifetime: adult and larvae.  In Cocoons, larvae are converted to moth.  Moths have this special 

navigation method in the night which is the most interesting fact about them. They have been 

formed to fly in night under the moon light. They follow a mechanism called transverse orientation 

for navigation in which a moth flies by maintaining a fixed angle with respect to the moon which 

is a very effective mechanism for travelling long distances in a straight path. As the moon is far 

away from the moth, this mechanism ensures flying in straight-line.  

The same navigation method can be followed by humans as well. Suppose if the moon is in the 

south side of the sky and a human wants to go the east side, while walking if human keeps moon 

on his left side, he can move towards the east on a straight line. It is generally observed that moths 

fly spirally around the lights, despite the effectiveness of transverse orientation. In fact, moths are 

tricked by artificial lights and then they react with such behavior, this is due to the inefficiency of 

the transverse orientation. The Moths try to maintain a similar angle with the light to fly in straight 

line, when they see human-made artificial light. 

Compared to the moon since such a light is extremely close, maintaining a similar angle to the 

light source causes deadly spiral fly path for moths. It may be observed in that the moth eventually 

intersects towards the light. An optimization algorithm called Moth-Flame Optimization (MFO) 

is modeled mathematically to capture this behavior. 
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The navigation method of moths in nature called transverse orientation is the inspiration for Moth 

Flame Optimization algorithm (MFO).In this method, a moth flies uses a very productive 

technique in travelling by maintaining a fixed angle with respect to the moon. This mechanism 

guarantees flying in a straight path as the moon lies at very large distance from the moth fly. But 

then, this straight path travelling is hugely affected by man-made artificial light. Since these 

artificial lights are so close to moths, they often end up in flying spirally around these lights as 

they may get tricked. 

6.2 Ant Lion Optimization Algorithm (ALO) 

 

Antlions (doodlebugs) belong to the Myrmeleontidae family and Neuroptera order (net-winged 

insects). The lifecycle of antlions includes two main phases: larvae and adult. A natural total 

lifespan can be up to 3 years, which mostly covers in larvae. Antlions undergo metamorphosis in 

a cocoon to become adult (only3–5 weeks for adulthood).They mostly hunt in larvae and the 

adulthood period is only for reproduction. 

Their names are extracted from their unique way of hunting behavior and based on their favorite 

prey. An antlion larvae digs a cone-shaped pit in sand with its massive jaw by moving along a 

circular path and throwing out sands. After digging the trap, the larvae hide underneath the bottom 

of the cone and waits for insects (preferably ant) to be trapped in the pit. 

As the edge of the cone is sharp, insects fall to the bottom of the trap easily. Once the antlion 

realizes that a prey is in the trap, it tries to catch it. Generally insects usually are not caught 

immediately and try to escape from the trap. In this case, antlions intelligently throw sands towards 

the edge of the pit in order to slide the prey into the bottom of the pit. When  the prey is caught 

into the jaw, it is pulled under the soil and eaten up. After eating the prey, antlions throw the 

leftovers outside the pit and prepare the pit for the next hunt. 
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Another interesting characteristic that has been observed in lifestyle of antlions is the relevancy of 

the size of the trap and another two things: level of hunger and shape of the moon. Antlions tend 

to dig out larger traps as they become hungrier and/or when the moon is full .They have been 

evolved and adapted this way to improve their chance of survival. It also has been discovered that 

an antlion does not directly observe the shape of the moon to decide about the size of the trap, but 

it has an internal lunar clock to make such decisions. 

The main inspiration of the ALO algorithm comes from the foraging behavior of antlion’s larvae. 

Ant Lion Optimization algorithm (ALO) is a meta-heuristic algorithm based on the interaction of 

ants and antlions in nature. Antlions belongs to Myrmeleontidae family and live in two phases of 

larvae and adult. During their larvae phase, antlions make a small cone shaped trap in order to trap 

ants. Antlions sit under the pit and wait for ants to be trapped. After feeding on trapped ants, 

antlions throw the leftovers outside the pit and prepare the pit for the next hunt. It has been 

observed that antlions dig a bigger bit when they are hungry, and this is the main concept of ALO 

optimization algorithm. 

During optimization, the following conditions are applied: 

1. Ants use different random walks to move around the search space. 

2.  Random walks are applied to all the dimension of every ants. 

3. Random walks are affected by the traps of antlions. 

4.  Antlions can build pits proportional to their fitness (the higher fitness, the larger pit). 

5. Antlions having larger pits have the higher probability to catch ants. 

6. Each ant can be caught by an antlion in each iteration and the elite (fittest antlion). 

7. The range of random walk is decreased adaptively to simulate sliding ants towards 

antlions. 

8.  If an ant becomes fitter than an antlion, this means that it is caught and pulled under the 

sand by the antlion. 
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9. An antlion repositions itself to the latest caught prey and builds a pit to improve its change 

of catching another prey after each hunt. 

 

6.3 Mathematical Modelling of MFOALO 

 

In the proposed MFO algorithm, it is assumed that the candidate solutions are moths and the 

problem’s variables are the position of moths in the space. Therefore, the moths can fly in 1-D, 2-

D, 3-D, or hyper dimensional space with changing their position vectors. Since the MFO algorithm 

is a population-based algorithm, the set of moths is represented in a matrix as follows: 

𝐌 = ||

𝑀1,1 𝑀1,2… . . . 𝑀1,𝑑
𝑀2,1

:
:
:

𝑀2,1
:
:
:

… . . 𝑀2,𝑑
:
:
:

𝑀𝑛,1 𝑀𝑛,2… . 𝑀𝑛,𝑑

||       (5.3.1) 

where n is the number of moths and d is the number of variables (dimension). 

For all the moths, we also assume that an array exists which holds the related fitness solutions of 

the moths and it is given by the following equation: 

 

𝐎𝐌 = ||

𝑂𝑀1
𝑂𝑀2

:
:
:

𝑂𝑀𝑛

||           (5.3.2) 

Where n denotes the number of moths. 
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Another important characteristics of the algorithm are the moth-flames and is given by the below 

equation: 

𝐅 = ||

𝐹1,1 𝐹1,2… . . . 𝐹1,𝑑
𝐹2,1
:
:
:

𝐹2,1
:
:
:

… . . 𝐹2,𝑑
:
:
:

𝐹𝑛,1 𝐹𝑛,2… . 𝐹𝑛,𝑑

||         (5.3.3) 

For the flames , the corresponding fitness values are stored in the below matrix: 

𝐎𝐅 = ||

𝑂𝐹1
𝑂𝐹2

:
:
:

𝑂𝐹𝑛

||           (5.3.4) 

Similarly for ALO, the algorithm mimics the interaction between the antlions and ants in the trap. 

In its mathematical model, ants are required to move over the search space, and antlions are 

allowed to hunt them and become fitter using traps. Since ants move stochastically in nature when 

searching for food, a random walk is chosen for model lignans movement. The position of ants are 

stored and used during optimization in the below matrix equation: 

𝐌𝐚𝐧𝐭 = ||

𝐴1,1 𝐴1,2… . . . 𝐴1,𝑑
𝐴2,1
:
:
:

𝐴2,1
:
:
:

… . . 𝐴2,𝑑
:
:
:

𝐴𝑛,1 𝐴𝑛,2… . 𝐴𝑛,𝑑

||        (5.3.5)  

The corresponding fitness function are stored in following equation in order to evaluate the fitness 

of each ant 

𝐌𝐎𝐀 = ||

𝑓([𝐴1,1, 𝐴1,2, … . . . 𝐴1,𝑑])

𝑓([𝐴2,1
:
:
:

, 𝐴2,1
:
:
:

, … . . 𝐴2,𝑑
:
:
:

])

𝑓([𝐴𝑛,1 𝐴𝑛,2… . 𝐴𝑛,𝑑])

||       (5.3.6) 
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We assume that antlions are hiding at some places in the search space and their positions and 

fitness solutions are saved in below matrix: 

𝐌𝐚𝐧𝐭𝐥𝐢𝐨𝐧 = ||

𝐴𝑙1,1 𝐴𝑙1,2… . . . 𝐴𝑙1,𝑑
𝐴𝑙2,1

:
:
:

𝐴𝑙2,1
:
:
:

… . . 𝐴𝑙2,𝑑
:
:
:

𝐴𝑙𝑛,1 𝐴𝑙𝑛,2… . 𝐴𝑙𝑛,𝑑

||       (5.3.7) 

where Mantlion is the matrix for saving the position of each antlion,𝐴𝑙𝑖,𝑗 shows the j-th dimension’s 

value of i-th antlion, n is the numberof antlions, and d is the number of variables (dimension). 

 MOAL is the matrix for saving the fitness of each antlion,𝐴𝑙𝑖,𝑗 shows the j-th dimension’s value of 

i-th antlion, n is the numberof antlions, and f is the fitness function. 

𝐌𝐎𝐀𝐋 = ||

𝑓([𝐴𝑙1,1, 𝐴𝑙1,2, … . . . 𝐴𝑙1,𝑑])

𝑓([𝐴𝑙2,1
:
:
:

, 𝐴𝑙2,1
:
:
:

, … . . 𝐴𝑙2,𝑑
:
:
:

])

𝑓([𝐴𝑙𝑛,1 𝐴𝑙𝑛,2… . 𝐴𝑙𝑛,𝑑])

||       (5.3.8) 

In MFOALO; we extract the elitism characteristics of ALO algorithm and harmonize it into MFO 

algorithm. Elitism is an important characteristic of evolutionary algorithms that allows them to 

maintain the best fitness(s) obtained at any stage of optimization process. In ALO, the best antlion 

obtained so far in each iteration is saved and considered as an elite. Since elite is the fittest antlion, 

it can influence the movements of all ants during iteration. Therefore, we assume that every ants 

random walks around a selected antlion by the roulette wheel and the elite simultaneously as given 

by the equation: 

𝐴𝑛𝑡𝑖
𝑡 =

𝑅𝐴
𝑡 +𝑅𝐸

𝑡

2
           (5.3.9) 
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Where, where 𝑅𝐴
𝑡  is the random walk around the antlion selected by the roulette wheel at t-th 

iteration, 𝑅𝐸
𝑡 is the random walk around the elite at t-th iteration, and 𝐴𝑛𝑡𝑖

𝑡 indicates the position of 

i-th ant at t-th iteration [28]. 

The ALO algorithm can be deduced to a three-tuple function that search for global minimum for 

optimization as follows: 

 

ALO(A,B,C) 

where A is a function that generates the random initial solutions, B manipulates the initial 

population provided by the function A, and C returns true when the end criterion is satisfied. The 

functions A, B, and C are defined as follows:  

ϴ       A  {MAnt, MOA, MAntlion, MOAL}      (5.3.10) 

{MAnt, MAntlion}   B {MAnt, MAntlion}        (5.3.11) 

{MAnt, MAntlion}   C  {true, false}       (5.3.12) 

where MAnt t is the matrix of the position of ants, MAntlion includes the position of antlions, MOA 

contains the corresponding fitness of ants, and MOAL has the fitness of antlions. 

MFO is also three-tuple function that approximates the global optimal of optimization problems. 

This uncanny similarity between ALO and MFO serves as the basis of our hybridization and is 

defined as follows: 

Where I is a function that generates a random population of moths and corresponding fitness 

values. P function, which is the main function, moves the moths around the search space. This 
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function received the matrix of M and returns its updated one eventually. The T function returns 

true if the termination criterion is satisfied and false if the termination criterion is not satisfied. The 

position of each moth is updated with respect to a flame using the following equation: 

𝑀𝑖 =  𝑆(𝑀𝑖, 𝐹𝑗)         (5.3.13) 

Where 𝑀𝑖 indicate the i-th moth, 𝐹𝑗 indicates the j-th flame, and S is the spiral function. 

 

In MFOALO in addition to navigation method of moths, we also create the random walk of 

antlions and normalize it using following equations: 

𝑐𝑡 =
𝐶𝑡

I
           (5.3.14) 

𝑑𝑡 =
𝑑𝑡

I
          (5.3.15) 

where I is a ratio, 𝑐𝑡 is the minimum of all variables at t-th iteration, and 𝑑𝑡 indicates the vector 

including the maximum of all variables at t-th iteration [29]. 

Elite antlion position is calculated and is compared with that of moth position as given by the 

logarithmic spiral equation below: 

�⃗�(𝑡 + 1) = 𝐷′⃗⃗ ⃗⃗ . 𝑒𝑏𝑙. cos(2𝜋𝑙) + 𝑋 ∗⃗⃗⃗⃗⃗⃗⃗ (𝑡)      (5.3.16) 

where 𝐷𝑖 .  indicates the distance of the i-th moth for the j-th flame, b is a constant for defining 

the shape of the logarithmic spiral, and t is a random number in [-1, 1]. 

D is calculated as follows: 
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𝐷𝑖 = |𝐹𝑗 −𝑀𝑖|          (5.3.17) 

where 𝑀𝑖 indicate the i-th moth, 𝐹𝑗 indicates the j-th flame, and 𝐷𝑖 indicates the distance of the i-

th moth for the j-th flame. 

If Elite antlion fitness is greater than that of moth-flame fitness; position vectors are updated 

using equation (5.3.9) using both moth flame position and elite ant-lion position. 

 

6.4 Computational Procedure of MFOALO 

 

Initialize the number of flames(flame number) 

Initialize moth population. 

Calculate fitness values. 

For all moths 

 For all parameters 

  Update r and t 

 Calculate D using Eq. (5.3.17) with respect to the  corresponding moth. 

 Update the matrix M with respect to the corresponding moth using Eq(5.3.13)& Eq (5.3.16) 

 Select an antlion using roulette wheel 

 Update c and d 

 Create random walk and normalize it. 
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 Update elite antlion and compare with moth fitness  with Eq(5.3.9) 

 Update position 

 End For 

Calculate all fitness values 

Update flames 

End 
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 7 HYBRID CUCKOO SEARCH OPTIMIZATION ALGORITHM 

AND FIRE FLY OPTIMIZATION ALGORITHM (CSFFA) 

 

7.1  Cuckoo Search Algorithm (CS) 

Cuckoo Search Algorithm is developed by Xin-she Yang and Suash Deb in 2009. The algorithm 

is inspired by the obligate brood parasitism of certain cuckoo species by laying their eggs in the 

nests of other host birds belonging to different species. Cuckoo search mimics the breeding 

behavior of some female parasitic cuckoo species which mimics the colors and pattern of eggs of 

hosts birds, thereby avoiding host birds from identifying their eggs which results in tossing alien 

eggs or abandoning nests. On top of it, this algorithm is enhanced by incorporating Levy flights 

rather than just using isotropic random walks. 

Cuckoo are fascinating birds, not solely as a result of the attractive sounds they'll build, also 

additionally as a result of their aggressive replica strategy. Some species like the cuckoo and Guira 

cuckoos lay their eggs in communal nests, though they may remove other’s eggs to increase the 

hatching probability of their own eggs. Quite a variety of species interact the obligate brood 

interdependence by birth their eggs within the nests of different host birds (often different species). 

There are 3 basic styles of brood interdependence: intra specific brood parasitism, cooperative 

breeding, and nest takeover. Some host birds will interact direct conflict with the intrusive cuckoos. 

If a bunch bird discovers the eggs don't seem to be their owns, they'll either throw these alien eggs 

away or just abandon its nest and build a replacement nest elsewhere. Some cuckoo species just 

like the New World brood-parasitic Tapera have evolved in such the manner that female parasitic 

cuckoos are generally very specialized among the mimicry in color and pattern of the eggs of a 

number of chosen host species . This reduces the likelihood of their eggs being abandoned and 

therefore will increase their reproductivity. In addition, the temporal arrangement of egg-laying of 

some species is additionally superb. Parasitic cuckoos usually opt for a nest wherever the host bird 
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simply set its own eggs. In general, the cuckoo eggs hatches lightly earlier than their host eggs. 

Once the primary cuckoo chick is hatched, the first instinct action it will take is to evict the host 

eggs by blindly propelling the eggs out of the nest, which will increase the cuckoo chick’s share 

of food provided by its host bird. Studies also show that a cuckoo chick can also mimic the call of 

host chicks to gain access to more feeding opportunity’s algorithm is based on three rules 

• Each cuckoo lays one egg at a time, and dumps its egg in a randomly chosen nest. 

• The best nests with high quality of eggs will carry over to the next generation. 

• The number of available hosts nests is fixed, and the egg laid by a cuckoo is discovered by 

the host bird with a probability pa Є (0,1). Discovering operate on some set of worst nests, 

and discovered solutions dumped from farther calculations [30]. 

6.1.1Lévy Flights 

On the other hand, various studies have shown that flight behavior of many animals and insects 

has demonstrated the typical characteristics of Lévy flights. A recent study by Reynolds and Frye 

shows that fruit flies or Drosophila melanogaster, explore their landscape using aseries of straight 

flight paths punctuated by a sudden 90o turn, leading to a Lévy -flight-style intermittent scale free 

search pattern. Studies on human behavior such as the Ju/’hoansi hunter-gatherer foraging patterns 

also show the typical feature of Lévy flights. Even light can be related to Lévy flights [30]. 

7.2 Fire Fly Optimization (FFA) 

The flashing light of fireflies is an amazing sight in the summer sky in the tropical and temperate 

regions. There are about two thousand firefly species, and most fireflies produce short and 

rhythmic flashes. The pattern of flashes is often unique for a particular species. The flashing light 

is produced by a process of bioluminescence, and the true functions of such signaling systems are 

still debating. However, two fundamental functions of such flashes are to attract mating partners 

(communication), and to attract potential prey. In addition, flashing may also serve as a protective 
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warning mechanism. The rhythmic flash, the rate of flashing and the amount of time form part of 

the signal system that brings both sexes together. Females respond to a male’s unique pattern of 

flashing in the same species, while in some species such as photuris, female fireflies can mimic 

the mating flashing pattern of other species so as to lure and eat the male fireflies who may mistake 

the flashes as a potential suitable mate. 

 

The flashing light can be formulated in such a way that it is associated with the objective function 

to be optimized, which makes it possible to formulate new optimization algorithms. In the rest of 

this paper, we will first outline the basic formulation of the Firefly Algorithm (FA) and then discuss 

the implementation as well as analysis in detail. 

Fire-fly optimization Algorithm is also developed by Xin-she Yang inspired by the flashing 

characteristics of fireflies. The main objective of flashing by a firefly is to act as a signal system 

to attract other fireflies. FFA algorithm is formulated according following assumptions: 

• All fireflies are unisexual, so that any individual firefly will be attracted to all other 

fireflies. 

• Attractiveness is proportional to their brightness, and for any two fireflies, the less bright 

one will be attracted by (and thus move towards) the brighter one; however, the intensity 

(apparent brightness) decrease as their mutual distance increases. 

• If there are no fireflies brighter than a given firefly, it will move randomly [31]. 

 

For a maximization problem, the brightness can simply be proportional to the value of the objective 

function. Other forms of brightness can be defined in a similar way to the fitness function in 

genetic algorithms or the bacterial foraging algorithm (BFA) [69].In the firefly algorithm, there 

are two important issues: the variation of light intensity and formulation of the attractiveness. For 
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simplicity, we can always assume that the attractiveness of a firefly is determined by its brightness 

which in turn is associated with the encoded objective function. 

7.3 Mathematical Modelling of CSFFA 

CS algorithm is based on three rules 

• Each cuckoo lays one egg at a time, and dumps its egg in a randomly chosen nest. 

• The best nests with high quality of eggs will carry over to the next generation. 

• The number of available hosts nests is fixed, and the egg laid by a cuckoo is discovered by 

the host bird with a probability pa Є (0,1). Discovering operate on some set of worst nests, 

and discovered solutions dumped from farther calculations [30]. 

 

In CS algorithm, when generating new solutions x(t+1), lets take for cuckoo ‘i’, Levi flight is 

performed: 

 

 xi
(t+1) = xi

(t) + α ⊗ Levy(λ)         (6.3.1) 

 

where α > 0 is the step size. We use α = O(L/10) where L is the characteristic scale of the problem 

of interest. In CS, Levy flight performs the random walk whose random step size or length is 

inherited from a Levy distribution which has infinite mean and infinite variance. The above 

equation is essentially the stochastic equation for random walk. In general, a random walk is a 

Markov chain whose next status/location only depends on the current location (the first term in the 

above equation) and the transition probability (the second term). The product ⊕ means entry wise 

multiplications. This entry wise product is similar to those used in PSO, but here the random walk 

via Lévy flight is more efficient in exploring the search space as its step length is much longer in 

the long run. 

 

Levy ~ u = t- λ  (1 < λ <3)         (6.3.2) 
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Here the steps essentially form a random walk process with a power-law step-length distribution 

with a heavy tail. Some of the new solutions should be generated by Lévy walk around the best 

solution obtained so far, this will speed up the local search. However, a substantial fraction of the 

new solutions should be generated by far field randomization and whose locations should be far 

enough from the current best solution, this will make sure the system will not be trapped in a local 

optimum. 

 

In the firefly algorithm, there are two important issues: the variation of light intensity and 

formulation of the attractiveness. For simplicity, we can always assume that the attractiveness of 

a firefly is determined by its brightness which in turn is associated with the encoded objective 

function. In the simplest case for maximum optimization problems, the brightness Iof a firefly at 

a particular location x can be chosen as I(x) ∝ f(x). However, the attractiveness β is relative, it 

should be seen in the eyes of the beholder or judged by the other fireflies. Thus, it will vary with 

the distance rij between firefly i and firefly j. 

 

 In addition, light intensity decreases with the distance from its source, and light is also absorbed 

in the media, so we should allow the attractiveness to vary with the degree of absorption. In FFA, 

the light intensity I(r) varies according to the inverse square law. 

 

I(r) = 
𝐼𝑠

r2
           (6.3.3) 

 

 

Where I_s is the intensity of the source, r is the distance.β is defined as the attractiveness of a 

firefly and can be approximated as: 

 

β =
β0

1+ 𝛾𝑟2
           (6.3.4) 
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In the implementation, the actual form of attractiveness function β(r) can be any monotonically 

decreasing functions such as the following generalized form: 

 

β0𝑒
−𝛾𝑟𝑚      where m ≥ 1         (6.3.5) 

 

For a fixed γ, the characteristic length becomes Γ = γ −1/m → 1 as m → ∞. Conversely, for a given 

length scale Γ in an optimization problem, the parameter γ can be used as a typical initial value. 

That is γ = 1 Γm. 

 

The distance between any two fireflies i and j at xi and xj , respectively, isthe Cartesian distance: 

𝑟𝑖𝑗 = |𝑥𝑖 − 𝑥𝑗| =  √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2
𝑑

𝑖=1
        (6.3.6) 

 

The movement of a fire-fly ‘i’ is attracted to another more attractive (brighter) butterfly j is 

determined by : 

 

𝑥𝑖 = 𝑥𝑖 + β0𝑒
−𝛾𝑟𝑖𝑗

2

(𝑥𝑗 − 𝑥𝑖) + 𝛼Є𝑗        (6.3.7) 

 

Where rij is the Cartesian distance between any two fireflies. The β coefficient is determined as 

3/2 is CS algorithm which is responsible for controlling the Lewy flights in CS algorithm. 

Attractiveness of the firefly ‘β’ is responsible for the movement of firefly in FFA algorithm; 

instead of relying on an arbitrary chosen fraction component; we use attractiveness (6.3.4) and 

luminous intensity coefficients (6.3.3) of fireflies to perform Levy flights, sigma factor and also to 

determine step-size in CS algorithm and the hybrid algorithm is realized. 
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7.4 Computational Procedure of CFFFA 

 

Objective function f(x), x = ( x1, x2,…, xd)  

Generate an initial population of n  host nests xi;  

While (t<MaxGeneration) or (stop criterion) 

 Get a cuckoo randomly/generate a solution by Levy flights  and then evaluate its   

  quality/fitness Fi. 

 Choose a nest among n (say, j) randomly. 

 Vary attractiveness with distance r via exp[-𝛾𝑟] 

 Evaluate new solutions and update light intensity. 

 If (Fi> Fj) 

  Replace j by the new solution 

 End 

 A fraction (pa) of worse nests are abandoned and new ones/solutions are    

  built/generated. 

 Keep the best solutions (or nests with quality solutions) 

 Rank the solutions and find the current best 

End While 

Post process results 

 



49 
 

 8 HYBRID MULTI-VERSE OPTIMIZATION ALGORITHM 

AND PARTICLE SWARM OPTIMIZATION ALGORITHM 

(MVOPSO) 

 

8.1 Multi-Verse Optimization algorithm Algorithm (MVO) 

 

The big bang theory discusses that our universe starts with a massive explosion. According to this 

theory, the big bang is the origin of everything in this world, and there was nothing before that. 

Multi-verse theory is another recent and well-known theory between physicists. It is believed in 

this theory that there are more than one big bang and each big bang causes the birth of a universe. 

The term multi-verse stands opposite of universe, which refers to the existence of other universes 

in addition to the universe that we all are living in . Multiple universes interact and might even 

collide with each other in the multi-verse theory. The multi-verse theory also suggests that there 

might be different physical laws in each of the universes. 

We chose three main concepts of the multi-verse theory as the inspiration for the MVO algorithm: 

white holes, black holes, and wormholes. A white hole has never seen in our universe, but 

physicists think that the big bang can be considered as a white hole and may be the main component 

for the birth of a universe. It is also argued in the cyclic model of multi-verse theory. that big 

bangs/white holes are created where the collisions between parallel universes occur. Black holes, 

which have been observed frequently, behave completely in contrast to white wholes. They attract 

everything including light beams with their extremely high gravitational force. Wormholes are 

those holes that connect different parts of a universe together. The wormholes in the multi-verse 

theory act as time/space travel tunnels where objects are able to travel instantly between any 

corners of a universe (or even from one universe to another).  
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Every universe has an inflation rate (eternal inflation) that causes its expansion through space. 

Inflation speed of a universe is very important in terms of forming stars, planets, asteroids, black 

holes, white holes, wormholes, physical laws, and suitability for life. It is argued in one of the 

cyclic multi-verse models that multiple universes interact via white, black, and wormholes to reach 

a stable situation. This is the exact inspiration of the MVO algorithm, which is conceptually and 

mathematically modelled in the following subsection. 

As discussed, a population-based algorithm divides the search process into two phases: exploration 

versus exploitation. We utilize the concepts of white hole and black hole to explore search spaces 

by MVO. In contrast, the wormholes assist MVO in exploiting the search spaces. We assume that 

each solution is analogous to a universe and each variable in the solution is an object in that 

universe. In addition, we assign each solution an inflation rate, which is proportional to the 

corresponding fitness function value of the solution. We also use the term time instead of the 

iteration in this paper since it is a common term in multi-verse theory and cosmology. 

The following rules are applied to the universes of MVO during optimization: 

• The more inflation rate, the more probability of having white hole. 

• The higher inflation rate, lesser the probability of having black holes. 

• Universes with higher inflation rate tend to send objects through the white holes. 

• Universes with lower inflation rate tend to receive more objects through the black holes. 

• The objects in all universes may face random movement towards the best universe through 

the wormholes regardless of the inflation rate. 

 

When a white/black tunnel is established between two universes, the universe with higher inflation 

rate is considered to have white hole, wherein the universe with lesser inflation rate is assumed to 

have black holes. The objects are then transferred from the white holes of the source universe to 

the black holes of the destination universe. This mechanism allows the universes to easily 
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exchange objects. To improve the whole inflation rate of the universes, we assume that the 

universes with high inflation rates are highly probable to have white holes. In opposition, the 

universes with low inflation rates have a high probability of having black holes. Therefore, there 

is always high possibility to move objects from a universe with high inflation rate to a universe 

with low inflation rate. This guarantees the improvement of the average inflation rates of the whole 

universes over the iterations. 

8.2 Particle Swarm Optimization algorithm Algorithm (PSO) 

 

Particle swarm optimization (PSO) is described as population based stochastic optimization 

technique which is developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by the social 

behavior of fish schooling or bird flocking. 

PSO have got many similarities with evolutionary computation techniques such as Genetic 

Algorithms. A population of random solutions and searches for optima by updating generations 

initializes the system. Though, unlike GA, PSO has no evolution operators such as crossover and 

mutation. In PSO, the potential solutions, which are called particles, fly through the problem space 

by following the current optimum particles. The detailed information will be given in following 

sections as below. 

Compared to GA, the advantages of PSO are that PSO is easy to implement and there are few 

parameters to adjust. PSO is applied in many areas such as function optimization, artificial neural 

network training, fuzzy system control, and other areas where GA can be applied. 

Particle Swarm Optimization can sound complicated even though it's really a very simple 

algorithm. Over many iterations, a group of variables have their values adjusted closer to the 

member whose value is closest to the target at any given moment. Suppose a flock of birds circling 

over an area where they can smell a hidden source of food, the one who is closest to the food chirps 
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will be the loudest and the other birds swing around in his direction. If any of the other circling 

birds comes closer to the target than the first, it chirps louder, and the others move towards him. 

This pattern continues until one of the birds happens upon the food. It's an algorithm that's simple 

and easy to implement. 

The algorithm keeps track of three global variables: 

• Target value or condition 

• Global best (gBest) value indicating which particle's data is currently closest to the Target 

• Stopping value indicating when the algorithm should stop if the Target isn't found [35]. 

Each particle consists of: 

• Data representing a possible solution 

• A Velocity value which indicates how much the Data can be changed 

• A personal best (pBest) value indicating the closest the particle's Data has ever come to the 

Target 

The particles' data could be anything. In the flocking birds example on top of, the data would be 

the X, Y, Z coordinates of each bird. The individual coordinates of every bird would try and move 

nearer to the coordinates of the bird that is nearer to the food's coordinates (gBest). If the 

information could be a pattern or sequence, then individual pieces of the data would be 

manipulated until the pattern matches the target pattern. 

The velocity worth is calculated in line with however way somebody's information is from the 

target. The additional it's, the larger the velocity value. In the birds example, the people furthest 
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from the food would create an endeavor to stay up with the others by flying quicker toward the 

gBest bird. If the information could be a pattern or sequence, the speed would describe however 

totally different the pattern is from the target, and thus, what proportion it has to be modified to 

match the target. 

Each particle's pBest value only indicates the closest the data has ever come to the target since the 

algorithm started. The gBest value only changes when any particle's pBest value comes closer to 

the target than gBest. Through every iteration of the algorithmic rule, gBest step by step moves 

nearer and nearer to the target till one in all the particles reaches the target. 

It's also common to envision PSO algorithms mistreatment population topologies, or 

"neighborhoods", which can be smaller, localized subsets of the global best value. These 

neighborhoods will involve 2 or additional particles that area unit planned to act along, or subsets 

of the search space that particles happen into during testing. The use of neighborhoods usually 

facilitate the algorithmic rule to avoid obtaining stuck in native minimum. 

A group of birds area unit arbitrarily looking out food in a neighborhood. There is only one food 

source and all birds do not know location of the food source. But, they know how far is the food 

source in each iteration and they tend to follow the bird which is nearest to the food source. PSO 

is perhaps the simplest optimization algorithm and have faster rate of convergence, however PSO 

often tends to suffer from premature convergence and local minimum stagnation. In PSOMVO, 

we use the same computational framework as MVO however we fine tune controlling parameters 

to that of PSO in order to impart the algorithm the advantage of faster convergence speed. 
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8.3 Mathematical Modelling of MVOPSO 

In order to mathematically model the white/black hole tunnels and exchange the objects of 

universes, we utilized a roulette wheel mechanism. At every iteration, we sort the universes based 

of their inflation rates and chose one of them by the roulette wheel to have a white hole. The 

following steps are done in order to do this. 

Assume that, 

𝐔 = |

𝑥1,1 𝑥1,2… . . . 𝑥1,𝑑
𝑥2,1
:
:
:

𝑥2,2
:
:
:

… . . 𝑥2,𝑑
:
:
:

𝑥𝑛,1 𝑥𝑛,2… . 𝑥𝑛,𝑑

|        (7.3.1) 

where d is the number of parameters (variables) and n is the number of universes (candidate 

solutions),𝑥𝑖,𝑗 indicates the jth parameter of ith universe, Ui shows the ith universe, NI(Ui) is 

normalized inflation rateof the ith universe, r1 is a random number in [0, 1], and 𝑥𝑗,𝑘indicates the 

jth parameter of kth universe selected by aroulette wheel selection mechanism. 

 

The selection and determination of white holes are done by the roulette wheel, which is based on 

the normalized inflation rate. The less inflation rate, the higher probability of sending objects 

though white/black hole tunnels. Please note that -NI should be changed to NI for the maximization 

problems. The exploration can be guaranteed using this mechanism since the universes are 

required to exchange objects and face abrupt changes to explore the search space. 

With the above mechanism, the universes keep exchanging objects without perturbations. To 

maintain the diversity of universes and perform exploitation, we consider that each universe has 

wormholes to transport its objects through space randomly. It may be observed that the 

wormholes randomly change the objects of the universes without consideration of their inflation 

rates. To provide local changes for each universe and have high probability of improving the 
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inflation rate using wormholes, we assume that worm hole tunnels are always established between 

a universe and the best universe formed so far. The formulation of this mechanism is as follows: 

xi
j = xj+ TDR * ((ubj – lbj)  * r4 + lbj) r3 <0.5 , r2 < WEP     (7.3.2) 

 

xi
j = xj- TDR * ((ubj – lbj)  * r4 + lbj) r3 > 0.5 , r2 < WEP     (7.3.3) 

 

xi
j = xi

j  , r2 > WEP         (7.3.4) 

where xj indicates the jth parameter of best universe formed so far, TDR is a coefficient, WEP is 

another coefficient, lbj shows the lower bound of jth variable, ubj is the upper bound of jth variable, 

xj,I indicates the jth parameter of ith universe, and r2, r3, r4 are random numbers in [0, 1]. 

 

It may be inferred from the pseudocodes and mathematical formulation that there are two main 

coefficients herein: wormhole existence probability (WEP) and travelling distance rate (TDR). 

The former coefficient is for defining the probability of wormhole’s existence in universes. It is 

required to increase linearly over the iterations to emphasize exploitation as the progress of 

optimization process. Travelling distance rate is also a factor to define the distance rate (variation) 

that an object can be teleported by a wormhole around the best universe obtained so far. In contrast 

to WEP, TDR is increased over the iterations to have more precise exploitation/local search around 

the best obtained universe. 

 

The adaptive formula for both coefficients are given as follows: 

 

𝑊𝐸𝑃 = 𝑚𝑖𝑛 + 𝑙 ∗ (
𝑚𝑎𝑥−𝑚𝑖𝑛

𝑙
)       (7.3.5) 

where min is the minimum (0.2 in this paper), max is the maximum (1 in this paper), l indicates 

the current iteration, and L shows the maximum iterations. 
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TDR = 1 - l^(1/p)/L^(1/p) (7.3.6) 

where p (in this paper equals 6) defines the exploitation accuracy over the iterations. The higher 

p, the sooner and more accurate exploitation/local search. 

Note that WEP and TDR can be considered as constants as well, but we recommend adaptive 

values according to the results of this hybrid algorithm realized. 

In the MVO algorithmic program, the optimization method starts with making a group of 

random universes. At each iteration, objects in the universes with high inflation rates tend to 

move to the universes with low inflation rates via white/black holes. Meanwhile, every single 

universe faces random teleportation in its objects through wormholes towards the best 

universe. This process is iterated until the satisfaction of an end criterion (a pre-defined 

maximum number of iterations, for instance). 

The computational complexity of the proposed algorithms depends on number of iterations, 

number of universes, roulette wheel mechanism, and universe sorting mechanism. Sorting 

universe is done in every iteration, and we employ the Quicksort algorithm, which has the 

complexity of O(n log n) and O(n2) in the best and worst case, respectively. The roulette wheel 

selection is run for every variable in every universe over the iterations and is of O(n) or O(log 

n) based on the implementation. 

To see how the proposed algorithm theoretically has the potential to solve optimization 

problems, some observations are as follows: 

White holes are more possible to be created in the universes with high inflation rates, so they 

can send objects to other universes and assist them to improve their inflation rates. 
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where p (in this paper equals 6) defines the exploitation accuracy over the iterations. The 

higher p, the sooner and more accurate exploitation/local search. Note that WEP and TDR 

can be considered as constants as well, but we recommend adaptive values according to 

the results of this hybrid algorithm realized. 

In the MVO formula, the optimization process starts with creating a set of random 

universes. At each iteration, objects in the universes with high inflation rates tend to move 

to the universes with low inflation rates via white/black holes. Meanwhile, every single 

universe faces random teleportation in its objects through wormholes towards the best 

universe. This process is iterated until the satisfaction of an end criterion (a pre-defined 

maximum number of iterations, for instance). 

The computational complexity of the proposed algorithms depends on number of iterations, 

number of universes, roulette wheel mechanism, and universe sorting mechanism. Sorting 

universe is done in every iteration, and we employ the Quicksort algorithm, which has the 

complexity of O(n log n) and O(n2) in the best and worst case, respectively. The roulette 

wheel selection is run for every variable in every universe over the iterations and is of O(n) 

or O(log n) based on the implementation. 

To see how the proposed algorithm theoretically has the potential to solve optimization 

problems, some observations are as follows: 

White holes are more possible to be created in the universes with high inflation rates, so 

they can send objects to other universes and assist them to improve their inflation rates. 

Black holes are more likely to be appeared in the universes with low inflation rates so they 

have higher probability to receive objects from other universes. This again will increase 

the possibility of up inflation rates for the universes with low inflation rates. White/black 

hole tunnels tend to transport objects from universes with high inflation rates to those with 

low inflation rates, so the overall/average inflation rate of all universes is improved over 

the course of iterations. Wormholes tend to appear randomly in any universe regardless of 

inflation rate, so the diversity of universes can be maintained over the course of iterations. 
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In PSO, W parameter is given by below equation: 

 

w=wMax-(current-iter)*((wMax-wMin)/Max-iter)       (7.3.8) 

 

where wMaxis  0.9, wMin is 0.2 . This w parameter is responsible for updating velocity in PSO 

given by : 

 

v[] = w* v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() *  (gbest[] - present[])  (7.3.9) 

   

present[] = present[] + v[] (b)        (7.3.10) 

 

v[] is the particle velocity, persent[] is the current particle (solution). pbest[] and gbest[] are defined 

as stated before. rand () is a random number between (0,1). c1, c2 are learning factors. usually c1 

= c2 = 2 [35]. 

 

We use ‘w’ parameter in PSO in equation 7.3.2, 7.3.3 and 7.3.4 and modify TDR parameters 

according to PSO velocity parameters eq (7.3.8) in order to determine the travelling distance rate 

to the best possible solution/universe at each iteration. Computational procedure framework 

remains intact with that of MVO as PSO is a very simple algorithm based on just relative velocity 

of search agents. 
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8.4 Computational Procedure of  MVOPSO 

 

for each universe indexed by i 

 for each object indexed by j 

  r2=random([0,1]); 

  if r2<Wormhole_existance_probability 

   r3= random([0,1]); 

   r4= random([0,1]); 

   if r3<0.5 

    U(i,j)=Best_universe(j) + Travelling_distance_rate * (( ub(j) - 

    lb(j)) * r4 + lb(j)); 

    // adaptive parameters used 

   else 

    U(i,j)=Best_universe(j) - Travelling_distance_rate * (( ub(j) -  

    lb(j)) * r4 + lb(j)); 

    // adaptive parameters used 

   end if 

  end if 

 end for 

end for 
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 9 HYBRID BINARY BAT OPTIMIZATION ALGORITHM AND 

PARTICLE SWARM OPTIMIZATION 

ALGORITHM(BATPSO). 

 

9.1 Binary Bat Optimization Algorithm (BAT) 

 

Bats are fascinating animals. They are the sole mammals with wings and that they conjointly 

have advanced capability of fix. It is estimated that there are about 996 different species which 

account for up to 20% of all mammal species. Their size ranges from the small bee bat (of 

regarding one.5 to 2g) to the enormous round the bend with length of regarding 2m and weight 

up to regarding one metric weight unit. Microbats typically have forearm length of about 2.2 

to11cm. Most round the bend uses fix to a definite degree; among all the species, microbats 

are a celebrated example as microbats use fix extensively whereas mega-bats do not. 

Most microbats are insectivores. Microbats use a kind of measuring system, called, fix, to 

detect prey, avoid obstacles, and locate their roosting crevices in the dark. These bats emit a 

really loud sound pulse and listen for the echo that bounces back from the sur-rounding objects. 

Their pulses vary in properties and may be related to with their looking ways, reckoning on 

the species. Most round the bend uses short, frequency-modulated signals to comb through 

regarding AN octave, while others more often use constant-frequency signals for echolocation. 

Their signal information measure varies depends on the species, and often redoubled by 

victimization a lot of harmonics. 

Though each pulse only lasts a few thousandths of a second (up to about 8 to 10 ms), 
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however, it's a continuing frequency that is typically within the region of 25kHz to a hundred 

and fifty kHz. the everyday vary of frequencies for many bat species ar within the region 

between25kHz and 100kHz, though some species can emit higher frequencies up to 150 kHz. 

Each unbearable burst might last usually five to twenty ms, and microbats emit regarding ten 

to 20such sound bursts each second. When attempting to find prey, the rate of pulse emission 

can be sped up to about 200 pulses per second when they fly near their prey. Such short sound 

bursts imply the fantastic ability of the signal processing power of bats. In fact, studies show 

the combination time of the bat ear is usually regarding 300 to 400 μs. 

Amazingly, the emitted pulse may be as loud as one hundred ten dB, and, fortuitously, they 

are in the ultrasonic region. The loudness conjointly varies from the loudest once searching for 

prey and to a quieter base once orienting towards the prey. The travelling range of such short 

pulses are typically a few metres, depending on the actual frequencies. 

Microbats will manage to avoid obstacles as tiny as skinny human hairs. Studies show that 

microbats use the time delay from the emission and detection of the echo, the time difference 

between their 2 ears, and the loudness variations of the echoes to build up three-dimensional 

scenario of the surrounding. They can detect the distance and orientation of the target, the type 

of prey, and even the moving speed of the prey such as small insects. Indeed, studies suggested 

that bats seem to be able to discriminate targets by the variations of the Doppler effect induced 

by the wing-flutter rates of the target insects. 

Obviously, some round the bend have sensible sight, and most bats also have very sensitive 

smell sense. In reality, they're going to use all the senses as a mix to maximize the efficient 

detection of prey and sleek navigation. However, here we are only interested in the 

echolocation and the associated behavior. Such echolocation behavior of microbats can be 
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formulated in such a way that it can be associated with the objective function to be optimized, 

and this make it possible to formulate new optimization algorithms. 

Bat Algorithm (BAT) was proposed by Xin-She Yang based on the echolocation behavior of bats. 

The capability of location of microbats is fascinating as these bats can find their prey and 

discriminate different types of insects. BAT algorithm is based on following assumptions 

• All bats use echolocation to sense distance, and they also ‘know’ the difference between 

food/prey and background barriers in some magical way. 

• Bats fly randomly with velocity vi at position xi with a fixed frequency fmin, varying 

wavelength λ and loudness A0 to search for prey. They can automatically adjust the wavelength 

(or frequency) of their emitted pulses and adjust the rate of pulse emission r Є [0, 1], depending 

on the proximity of their target. 

• Although the loudness can vary in many ways, we assume that the loudness varies from a 

large (positive) A0 to a minimum constant value Amin [36]. 

Another obvious simplification is that no ray tracing is employed in estimating the time delay and 

3-dimensional topography. Though this might be a good feature for the application in 

computational geometry, however, we will not use this as it is more computationally extensive in 

multidimensional cases. 

In addition to those simplified assumptions, we also use the following approximations, for 

simplicity. In general, the frequency f in an exceedingly vary [fmin, fmax] corresponds toa range 

of wavelengths [λmin, λmax]. For example a frequency vary of [20kHz, 500kHz] corresponds to 

a range of wavelengths from 0.7mm to 17mm. 

For a given downside, we are able to additionally use any wavelength for the benefit of 

implementation. In the actual implementation, we are able to regulate the vary by adjusting the 

wavelengths(or frequencies), and therefore the detectable vary (or the most important wavelength) 

ought to be chosen. 

Particle Swarm Algorithm (PSO) is already discussed in section 7.2 
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9.2 Mathematical Modelling of BATPSO 

 

In simulations, we use virtual bats naturally. We have to define the rules how their positions xi and 

velocities vi in a d-dimensional search space are updated. The new solutions xi
t and velocities vi

t 

at time step t are given by: 

 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + β  (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)       (8.2.1) 

vi
t = vi

t-1+ (xi
t – x*)𝑓𝑖         (8.2.2) 

xi
t = xi

t-1+ vi
t          (8.2.3) 

where, β Є [0, 1], is a random vector drawn from a uniform distribution. Here x*is the current 

global best location (solution) which is located after comparing all the solutions amongst all the n 

bats. 

 

As the product λifi is the velocity increment, we can use either fi(or λi ) to adjust the velocity 

change while fixing the other factor λi (or fi), depending on the type of the problem of interest. In 

our implementation, we will use fmin = 0 and fmax = 100, depending the domain size of the 

problem of interest. Initially, each bat is randomly assigned a frequency which is drawn uniformly 

from [fmin, fmax]. 

 

For the local search part, once a solution is selected among the current best solutions, a new 

solution for each bat is generated locally using random walk 

 

Xnew = xold+ЄAt         (8.2.4) 

 

where Є = [−1, 1] is a random number, while At =<Ati>is the average loudness of all the bats at 

this time step. 
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The update of the velocities and positions of bats have some similarity to the procedure in the 

standard particle swarm optimization [82] as fi essentially controls the pace and range of the 

movement of the swarming particles. To a degree, BAT can be considered as a balanced 

combination of the standard particle swarm optimization and  the intensive local search 

controlled by the loudness and pulse rate. This is the core basis of our hybridization. 

 

Furthermore, the loudness Ai and rate ri of pulse emission is given by: 

xi
t = xi

t-1 + vi
t          (8.2.5) 

Ai
t+1 = α Ai

t          (8.2.6) 

ri
t+1 = ri

0[1-e-γt ]         (8.2.7) 

 

where α and γ are constants. In fact, it is similar to the cooling factor of a cooling schedule in the 

simulated annealing. 

PSO learned from the scenario and used it to solve the optimization problems. In PSO, each single 

solution is a "bird" in the search space. We call it "particle". All of particles have fitness values 

which are evaluated by the fitness function to be optimized, and have velocities which direct the 

flying of the particles. The particles fly through the problem space by following the current 

optimum particles.  

 

PSO is initialized with a group of random particles (solutions) and then searches for optima by 

updating generations. In every iteration, each particle is updated by following two "best" values. 

The first one is the best solution (fitness) it has achieved so far. (The fitness value is also stored.) 

This value is called pbest. Another "best" value that is tracked by the particle swarm optimization 

algorithm is the best value, obtained so far by any particle in the population. This best value is a 

global best and called gbest. When a particle takes part of the population as its topological 

neighbors, the best value is a local best and is called lbest. 

 

After finding the two best values, the particle updates its velocity and positions with following 

equation (a) and (b). 
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v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[])   (8.2.8) 

present[] = present[] + v[]          (8.2.9) 

 

v[] is the particle velocity, present[] is the current particle (solution). pbest[] and gbest[] are defined 

as stated before. rand () is a random number between (0,1). c1, c2 are learning factors. usually c1 

= c2 = 2 [35]. 

 

In BATPSO, In BAT minimum fitness function is located by an array-based greedy algorithm. All 

fitness function of array pos[i: ] parameters are calculated and  'min' function is used to find the 

fitness minimum. According to the observation, this greedy algorithm works best in higher values; 

however, finds it difficult in finding the global minimum as it reaches lower values; especially 

fractional fitness value. PSO is based on element-wise pos[I,j] search and updating the velocity to 

converge to a global minimum. PSO works best at lower bound boundary fitness values. Therefore, 

in this hybrid, both PSO and BAT are run in parallel and they perform a comparison between both 

minimum fitness function at each iteration. The lowest value is taken and both PSO and BAT is 

updated with the lowest value and respective positions are updated simultaneously. 

 

The numerical efficiency of the WOA algorithm developed in this study was tested by solving 23 

mathematical optimization problems explained in the next section. The next section investigates 

the effectiveness of all hybrid algorithms realized in practice with respect to these 23 benchmark 

functions. 

 

9.3 Computational Procedure of BATPSO 

 

Objective function f(x), x = (x1, ..., xd)T 

Initialize the bat population xi (i = 1, 2, ..., n) and vi 

Define pulse frequency fi at xi 



66 
 

Initialize pulse rates ri and the loudness Ai 

while (t <Max number of iterations) 

 Generate new solutions by adjusting frequency, and updating  velocities and locations/solutions 

[equations (8.2.1) to (8.2.4)] 

 if (rand >ri) 

  Select a solution among the best solutions 

  Generate a local solution around the selected best solution 

 end if 

 Generate a new solution by flying randomly 

 if (rand < Ai& f(xi) < f(x*)) 

  Accept the new solutions 

  Increase ri and reduce Ai 

 end if 

 for each dimension d = 1, ..., n do 

         Pick random numbers: rp, rg ~ U(0,1) 

         Update the particle's velocity: vi,d← ω vi,d+ φprp (pi, 

    d-xi,d) + φgrg (gd-xi,d) 

        Update the particle's position: xi ← xi + vi 

        if f(xi) < f(pi) then 

 Update the particle's best known position: pi ← xi 
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         if f(pi) < f(g) then 

  Update the swarm's best known position: g ← pi 

    End if 

 End For 

 Rank the bats and find the current best x* 

 Compare PSO and BAT solution and update position 

end while 

Postprocess results  
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 10 FITNESS FUNCTIONS AND ANALYSIS 

 

A fitness function is a particular type of objective function that is used to summarize, as a single 

figure of merit, how close a given design solution is to achieving the set aims. Fitness functions 

are used in genetic programming and genetic algorithms to guide simulations towards optimal 

design solutions. 

In particular, in the fields of genetic programming and genetic algorithms, each design solution is 

commonly represented as a string of numbers (referred to as a chromosome). After each round of 

testing, or simulation, the idea is to delete the n worst design solutions, and to breed n new ones 

from the best design solutions. Each design solution, therefore, needs to be awarded a figure of 

merit, to indicate how close it came to meeting the overall specification, and this is generated by 

applying the fitness function to the test, or simulation, results obtained from that solution. 

 

The reason that genetic algorithms cannot be considered to be a lazy way of performing design 

work is precisely because of the effort involved in designing a workable fitness function. Even 

though it is no longer the human designer, but the computer which comes up with the final design, 

it is still the human designer who has to design the fitness function. If this is designed badly, the 

algorithm will either converge on an inappropriate solution, or will have difficulty converging at 

all. 

 

The fitness function must not only correlate closely with the designer's goal, it must also be 

computed quickly. Speed of execution is very important, as a typical genetic algorithm must be 

iterated many times in order to produce a usable result for a non-trivial problem. 

 

Fitness approximation may be appropriate, especially in the following cases: 

 

• Fitness computation time of a single solution is extremely high 

• Precise model for fitness computation is missing 

• The fitness function is uncertain or noisy. 
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Two main classes of fitness functions exist: one where the fitness function does not change, as in 

optimizing a fixed function or testing with a fixed set of test cases; and one where the fitness 

function is mutable, as in niche differentiation or co-evolving the set of test cases. 

 

Another way of looking at fitness functions is in terms of a fitness landscape, which shows the 

fitness for each possible chromosome. 

 

In this section, 23 classical benchmark functions are discussed which used by many researchers 

[37- 42] for benchmarking optimization algorithms. all the hybrid algorithms are benchmarked 

together with their parent algorithms on 23 classical benchmark functions. Despite the simplicity, 

we have selected the fitness functions to be able to evaluate our results with those of current 

metaheuristic and evolutionary optimization algorithms. These functions are listed in the table 1-

3 below; where ‘dim’ indicates the dimension of the function, range is the boundary of the 

functions search space and fmin is the global optimum. 

 

The test functions used in benchmarking are basically minimization functions and can be divided 

into four groups: unimodal, multimodal, fixed dimension multimodal and composite functions. 

 

10.1 Unimodal Fitness Functions 

 

Functions F1–F7 are unimodal since they have only one global optimum. These functions allow 

to evaluate the exploitation capability of the investigated meta-heuristic algorithms. 

 

 

 

 

 

 

 

 

 



70 
 

Function Dim Range fmin 

𝑓1(𝑥) =∑𝑥𝑖
2

𝑛

𝑖=1

 
30 [-100, 

100] 

0 

𝑓2(𝑥) =∑|𝑥𝑖|

𝑛

𝑖=1

+ 𝛱𝑖=1
𝑛 |𝑥𝑖| 

30 [-10, 10] 0 

𝑓3(𝑥) =∑(∑𝑥𝑗
2

𝑖

𝑗−1

)

𝑛

𝑖=1

 

30 [-100, 

100] 

0 

𝑓4(𝑥) = max
             𝑖

 {|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} 30 [-100, 

100] 

0 

𝑓5(𝑥) = ∑ [100(𝑥𝑖+1 −
𝑛−1

𝑖=1
𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2] 30 [-30, 30] 0 

𝑓6(𝑥) = ∑ [
𝑛

𝑖=1
(𝑥𝑖 + 0.5)

2] 30 [-100, 

100] 

0 

𝑓7(𝑥) =∑𝑖𝑥𝑖
4

𝑛

𝑖=1

+ 𝑟𝑎𝑛𝑑𝑜𝑚[0,1] 
30 [-1.28, 

1.28] 

0 

Table 1 - Unimodal Functions 

 

 

Their 3D representation of above unimodal fitness functions are given below: 
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Figure 1-F1(x) 

𝒇𝟏(𝒙) =∑𝒙𝒊
𝟐

𝒏

𝒊=𝟏

 

 

Figure 2-F2(x) 

𝑓2(𝑥) =∑|𝑥𝑖|

𝑛

𝑖=1

+ 𝛱𝑖=1
𝑛 |𝑥𝑖| 
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Figure 3-F3(x) 

𝑓3(𝑥) =∑(∑𝑥𝑗
2

𝑖

𝑗−1

)

𝑛

𝑖=1

 

 

Figure 4-F4(x) 

𝑓4(𝑥) = max
             𝑖

 {|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} 
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Figure 5-F5(x) 

 

𝑓5(𝑥) = ∑ [100(𝑥𝑖+1 −
𝑛−1

𝑖=1
𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2] 

 

Figure 6-F6(x) 

 

𝑓6(𝑥) = ∑ [
𝑛

𝑖=1
(𝑥𝑖 + 0.5)

2] 
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Figure 7- F7(x) 

𝑓7(𝑥) =∑𝑖𝑥𝑖
4

𝑛

𝑖=1

+ 𝑟𝑎𝑛𝑑𝑜𝑚[0,1] 

 

 

10.2 Multimodal Fitness Functions 

 

In contrast to the unimodal functions, multimodal functions have many local optima with the 

number increasing exponentially with dimension. This makes them suitable for benchmarking the 

exploration ability of an algorithm. Functions F8–F13 are multimodal and are specified in the table 

below: 

 

 

 

 

 

 



75 
 

 

 

Function Dim Range fmin 

𝑓8(𝑥) = ∑ −𝑥𝑖
𝑛
𝑖=1 sin (√|𝑥𝑖|) 30 [-500, 500] -418.9289 

x5 

𝑓9(𝑥) =∑[𝑥𝑖
2

𝑛

𝑖=1

− 10 cos(2𝜋𝑥𝑖) + 10 

30 [-5.12, 

5.12] 

0 

𝑓10(𝑥) =  −20exp( −0.2√
1

𝑛∑ 𝑥𝑖
2𝑛

𝑖=1

−  exp (1𝑛∑ cos(2𝜋𝑥𝑖))
𝑛

𝑖=1
+ 

20+e 

30 [-32, 32] 0 

𝑓11(𝑥) =
1

4000
∑ 𝑥𝑖

2𝑛

𝑖=1
− Πi=1

n  cos (
𝑥𝑖

√𝑖
) + 1 30 [-600, 600] 0 

𝑓12(𝑥) = 0.1 {sin
2(3𝜋𝑥𝑖) +  ∑(𝑥𝑖 − 1)

2 + [1 + sin(3𝜋𝑥𝑖 + 1)]

𝑛

𝑖=1

+ (𝑥𝑛 − 1)
2 + [1 + sin2(2𝜋𝑥𝑛)]} +∑𝑢(𝑥𝑖 , 5,100,4)

𝑛

𝑖=1

 

30 [-50, 50] 0 

𝑓13(𝑥) = ∑𝑠𝑖𝑛

𝑛

𝑖=1

(𝑥𝑖). (sin (
𝑖. 𝑥𝑖

2

𝜋
))

2𝑚

, 𝑚 = 10 
30 [0, 𝜋] -4.687 

Table 2- Multimodal Fitness Functions 

 

 

 

Figure 8 -F8(x) 

𝑓8(𝑥) = ∑ −𝑥𝑖
𝑛
𝑖=1 sin (√|𝑥𝑖|) 
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Figure 9-F9(x) 

𝑓9(𝑥) =∑[𝑥𝑖
2

𝑛

𝑖=1

− 10 cos(2𝜋𝑥𝑖) + 10 

 

 

Figure 10-F10(x) 

 

Fig 9.2.3 𝑓10(𝑥) =  −20exp( −0.2√1/𝑛∑ 𝑥𝑖
2𝑛

𝑖=1
−  exp (1/𝑛∑ cos(2𝜋𝑥𝑖))

𝑛

𝑖=1
+ 20+e 
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Figure 11 – F11(x) 

𝒇𝟏𝟏(𝒙) =
𝟏

𝟒𝟎𝟎𝟎
∑ 𝒙𝒊

𝟐𝒏

𝒊=𝟏
− 𝚷𝐢=𝟏

𝐧  cos (
𝒙𝒊

√𝒊
) + 1 

 

Figure 12-F12(x) 

𝑓12(𝑥) = 0.1 {sin
2(3𝜋𝑥𝑖) + ∑(𝑥𝑖 − 1)

2 + [1 + sin(3𝜋𝑥𝑖 + 1)]

𝑛

𝑖=1

+ (𝑥𝑛 − 1)
2 + [1 + sin2(2𝜋𝑥𝑛)]}

+∑𝑢(𝑥𝑖 , 5,100,4)

𝑛

𝑖=1
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Figure 13-F13(x) 

𝑓13(𝑥) =∑𝑠𝑖𝑛

𝑛

𝑖=1

(𝑥𝑖). (sin(
𝑖. 𝑥𝑖

2

𝜋
))

2𝑚

, 𝑚 = 10 

 

10.3 Fixed-dimension Multimodal Fitness Functions 

 

Unlike unimodal functions, fixed-dimension multimodal functions include many local optima 

whose number increases exponentially with the problem size (number of design variables). 

Therefore, this kind of test problems turns very useful if the purpose is to evaluate the exploration 

capability of an optimization algorithm. 
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Function Dim Range fmin 

𝑓14(𝑥) =

(

 
 1

500
∑

1

𝑗 +∑ (𝑥𝑖 − 𝑎𝑖𝑗)6
2

𝑖=1

25

𝑗=1 )

 
 

−1

 

2 [-65,65] 1 

𝑓15(𝑥) =∑(𝑎𝑖 − 
𝑥1(𝑏𝑖

2 + 𝑏𝑖𝑥2)

𝑏𝑖
2 + 𝑏𝑖𝑥3 + 𝑥4

)

2
11

𝑖=1

 

4 [-5,5] 0.00030 

𝑓16(𝑥) =  4𝑥1
2 + 2.1𝑥1

4 +
1

3
𝑥1
6 − 4𝑥2

2 + 𝑥1𝑥2 + 4𝑥2
4 

2 [-5,5] -1.0316 

𝑓17(𝑥) =∑𝑐𝑖exp (−∑𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

3

𝑗=1

4

𝑖=1

)  

2 [1,3] -3.86 

𝑓18(𝑥) =∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

5

𝑖=1

 

4 [0,10] -10.1532 

𝑓19(𝑥) =∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

10

𝑖=1

 

4 [0, 10] -10.5363 

Table 3-Fixed-dimension Multimodal Fitness Functions 
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Figure 14-F14(x) 

𝑓14(𝑥) =

(

 
 1

500
∑

1

𝑗 +∑ (𝑥𝑖 − 𝑎𝑖𝑗)6
2

𝑖=1

25

𝑗=1 )

 
 

−1

 

 

 

 

Figure 15-F15(x) 

𝑓15(𝑥) =∑(𝑎𝑖 − 
𝑥1(𝑏𝑖

2 + 𝑏𝑖𝑥2)

𝑏𝑖
2 + 𝑏𝑖𝑥3 + 𝑥4

)

2
11

𝑖=1
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Figure 16-F16(x) 

𝑓16(𝑥) =  4𝑥1
2 + 2.1𝑥1

4 +
1

3
𝑥1
6 − 4𝑥2

2 + 𝑥1𝑥2 + 4𝑥2
4 

 

 

Figure 17-F17(x) 
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𝑓17(𝑥) =∑𝑐𝑖exp (−∑𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

3

𝑗=1

4

𝑖=1

) 

 

Figure 18-F18(x) 

𝑓18(𝑥) =∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

5

𝑖=1
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Figure 19-F19(x) 

𝑓19(𝑥) =∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

10

𝑖=1

 

10.4 Composite Benchmark Functions 

 

The fourth class of benchmark functions employed includes composite functions, generally very 

challenging test beds for meta-heuristic algorithms. So, exploration and exploitation can be 

simultaneously benchmarked by the composite functions. Moreover, the local optima avoidance 

of an algorithm can be examined due to the massive number of local optima in such test functions. 
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Function Dim Range fmin 

𝑓20(𝐶𝐹1): 
𝑓1, 𝑓2, 𝑓3, 𝑓4, … , 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
[ϐ1, ϐ2, ϐ3, …, ϐ10] = [1,1,1,…,1] 
[λ 1, λ 2, λ 3, …, λ 10] = [5/100, 5/100, 5/100,…,5/100] 
 

10 [-5,5] 0 

𝑓21(𝐶𝐹2): 
𝑓1, 𝑓2, 𝑓3, 𝑓4, … , 𝑓10 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
[ϐ1, ϐ2, ϐ3, …, ϐ10] = [1,1,1,…,1] 
[λ 1, λ 2, λ 3, …, λ 10] = [5/100, 5/100, 5/100,…,5/100] 
 

10 [-5,5] 0 

𝑓22(𝐶𝐹3): 
𝑓1, 𝑓2 = 𝐴𝑐𝑘𝑙𝑒𝑦

′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑓3, 𝑓4, = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛

′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑓5, 𝑓6, = 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎

′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑓7, 𝑓8, = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑓9, 𝑓10, = 𝑆𝑝ℎ𝑒𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
[ϐ1, ϐ2, ϐ3, …, ϐ10] = [1,1,1,…,1] 
[λ 1, λ 2, λ 3, …, λ 10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5,  5/100 ,5/100, 5/100, 5/100] 
 

10 [-5,5] 0 

𝑓23(𝐶𝐹4): 
𝑓1, 𝑓2 = 𝐴𝑐𝑘𝑙𝑒𝑦

′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑓3, 𝑓4, = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛

′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑓5, 𝑓6, = 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎

′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑓7, 𝑓8, = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑓9, 𝑓10, = 𝑆𝑝ℎ𝑒𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
[ϐ1, ϐ2, ϐ3, …, ϐ10] = [1,1,1,…,1] 
[λ 1, λ 2, λ 3, …, λ 10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5,  5/100 ,5/100, 5/100, 5/100] 
 

10 [-5,5] 0 

Table 4-Composite Benchmark Functions 
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 11 RESULTS AND DISCUSSION 

 

In this section, all the hybrid algorithms are benchmarked together with their parent algorithms on 

23 classical benchmark functions used by many researchers [37- 42]. Despite the simplicity, we 

have selected the fitness functions to be able to evaluate our results with those of current 

metaheuristic and evolutionary optimization algorithms. 

The test functions used in benchmarking are basically minimization functions. Unimodal functions 

allow to evaluate the exploitation capability of the investigated meta-heuristic algorithms. 

Multimodal and fixed-dimension multimodal functions are used for benchmarking the exploration 

ability of an algorithm as they include many local optima whose number increases exponentially 

with the problem size (number of design variables).The fourth class of benchmark functions 

employed includes composite functions, generally very challenging test beds for meta-heuristic 

algorithms. So, exploration and exploitation can be simultaneously benchmarked by the composite 

functions. Moreover, the local optima avoidance of an algorithm can be examined due to the 

massive number of local optima in such test functions. 

 

We have run our hybrids along with their parent algorithms with which the hybrid algorithm is 

fabricated. The graphs are plotted below: 

 

11.1 GWOABC fitness convergence graphs 

 

Here, GWOABC (green), GWO (blue) and ABC (red) algorithms are run concurrently, and we have obtained 

following outputs. 
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Figure 20-Fitness Function (23) GWOABC 

 

 

From the graph it is evident that the proposed hybrid algorithm have faster convergence rate and 

have obtained better global optimum in most of the test function analysis. The graph illustrates the 

convergence rate in composite constrained benchmark function F23. Composite benchmark 

functions investigate both exploitation and exploration ability of an optimizer. The convergence 

line graph shows that GWO-ABC have very acute convergence rate towards lower fitness values 

and demonstrates better local minima avoidance at lower fitness values. 

 

 

11.2 GWOWOA fitness convergence graphs 

 

Here, GWOWOA (green), GWO (blue) and WOA (red) algorithms are run concurrently, and we 

have obtained following outputs. 
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Figure 21- Fitness Function (23) GWOWOA 

 

From the graph it is evident that the proposed hybrid algorithm have faster convergence rate  and 

have obtained better global optimum in most of the test function analysis. The graph illustrates the 

convergence rate in composite constrained benchmark function F23. Composite benchmark 

functions investigate both exploitation and exploration ability of an optimizer. The convergence 

line graph shows that GWO-WOA have very acute convergence rate towards lower fitness values 

and demonstrates better local minima avoidance at lower fitness values. It starts very slowly and 

outpace GWO at 80th iteration and WOA around 100th iteration and achieves a superior global 

optimum value compared to both GWO and WOA. 

 

 

11.3 MFOALO fitness convergence graphs 

 

Here, MFOALO (green), MFO (blue) and ALO (red) algorithms are run simultaneously, and we 

have obtained following outputs. 
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Figure 22-Fitness Function (8) MFOALO 

 

MFOALO has the best performance for this multimodal benchmark function F8. MFOALO 

achieves a final fitness value of -8892 followed by ALO at -8703, whereas, MFO was able to 

obtain a value of only -7384. Multimodal functions allow to evaluate the exploration capability of 

the investigated meta-heuristic algorithms. Exploration consists of probing a much larger portion 

of the search space with the hope of finding other promising solutions that are yet to be refined. 

This operation amounts then to diversifying the search in order to avoid getting trapped in a local 

optimum. The graphical analysis clearly shows that MFOALO showcases immaculate exploration 

capability in order to jump outside from a local optimum. From the graph it is evident that the 

proposed hybrid algorithm have faster convergence rate  and have obtained better global optimum 

in most of the test function analysis. 
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11.4 CSFFA fitness convergence graphs. 

 

Here, CSFFA (green), CS (blue) and FFA (red) algorithms are run simultaneously, and we have 

obtained following outputs. 

 

Figure 23- Fitness Function (8) CSFFA 

 

Fig  shows the line graphs of convergence of CSFFA hybrid algorithm with respect to their 

parent CS and FFA algorithms. From the graph, it can be observed that initially CSFFA have 

the slowest convergence rate compared to CS and FFA. However, CSFFA acquire high 

convergence rate and outpace  both CS and FFA before 50th iteration and obtain a global 

optimum. 
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11.5 MVOPSO fitness convergence graphs. 

 

Here, MVOPSO (green), PSO (blue) and MVO (red) algorithms are run concurrently, and we have 

obtained following outputs. 

 

Figure 24-Fitness Function (23) PSOMVO 

 

From the graph it is evident that the proposed PSOMVO hybrid algorithm have faster convergence 

rate and have obtained better global optimum the test function analysis. MVO get stuck in local 

minima however PSO experience premature convergence. 

 

11.6 BATPSO fitness convergence graphs. 

 

Here, BATPSO (green), PSO (blue) and BAT (red) algorithms are run concurrently, and we have 

obtained following outputs. 
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Figure 25-Fitness Function (23) BATPSO 

 

The graph shows the rate of convergence on BATPSO, BAT and PSO algorithms in composite 

fitness function F23. These constrained benchmark functions test exploration ability of an 

optimization algorithm in a more complex search space. From the graph it is observed that BAT 

the fastest and sharp convergence rate in the beginning. PSO has the slowest convergence 

graph and very bottom out result compared to BAT and BATPSO. BATPSO arrives at improved 

global minimum than the other algorithm at the end. 

 

11.7 Result Analysis 

 

We use unimodal functions allow to evaluate the exploitation capability, multimodal functions 

have many local optima with the number increasing exponentially with dimension of the which 

enable us to assess the exploration capability of algorithm, composite functions which has 

challenging search space to investigate exploitation, exploration and local minimum avoidance 

capability of algorithms. A convergence behavior analysis is also investigated in proposed hybrid 

meta-heuristic algorithms. These hybrids are run 30 times continuously and their convergence 

graph and results obtained are also considered to verify the robustness of the algorithms proposed. 

Roman letters in table 5,6 and 7 denotes the rank of algorithm according to their fitness values. 
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10.7.1 Exploitation Analysis 

 

Unimodal functions are the most suitable for evaluating exploitation ability of an optimization 

algorithm. Exploitation is to search the surrounding search area nearby the current solution, 

something like local search. Finding an algorithm that could handle both (exploitation and 

exploration) is challenging because they are two different objectives. 

 

According to results in Table 5; all hybrid algorithms were able to provide either better or very 

competitive results compared to their parent algorithms 

 

Hybrid 

Algorithm, 

Parent1, Parent 

2 

Grouping and ranking fitness functions according to performance of 

algorithms 

Hybrid Parent1 Parent 2 

GWOABC, 

GWO, ABC 

F1(i), F2(i), F3(i), F4(ii), 

F5(i), F6(i), F7(iii) 

F1(ii), F2(ii), F3(iii), 

F4(i), F5(ii), F6(iii), 

F7(ii) 

F1(iii), F2(iii), F3(ii), 

F4(iii), F5(iii), F6(ii), 

F7(i) 

GWOWOA, 

GWO, WOA 

F1(ii), F2(i), F3(i), 

F4(ii), F5(i), F6(i), F7(i) 

F1(i), F2(iii), F3(iii), 

F4(iii), F5(iii), F6(i), 

F7(ii) 

F1(iii), F2(ii), F3(iii), 

F4(i), F5(ii), F6(ii), 

F7(iii) 

MFOALO, 

MFO, ALO 

F1(iii), F2(i), F3(i), 

F4(ii), F5(i), F6(ii), 

F7(ii) 

F1(ii), F2(iii), F3(ii), 

F4(ii), F5(ii), F6(i), 

F7(ii) 

F1(i), F2(ii), F3(iii), 

F4(ii), F5(iii), F6(iii), 

F7(i) 

CSFFA, 

CS, FFA 

F1(i), F2(i), F3(i), F4(i), 

F5(ii), F6(ii), F7(i) 

F1(iii), F2(ii), F3(ii), 

F4(ii), F5(i), F6(i), 

F7(iii) 

F1(ii), F2(iii), F3(iii), 

F4(iii), F5(iii), F6(iii), 

F7(ii) 

PSOMVO, 

MVO, PSO 

F1(i), F2(i), F3(i), F4(i), 

F5(ii), F6(ii), F7(ii) 

F1(iii), F2(ii), F3(ii), 

F4(iii), F5(iii), F6(iii), 

F7(i) 

F1(ii), F2(iii), F3(iii), 

F4(ii), F5(i), F6(i), 

F7(iii) 
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PSOBAT,   

BAT, PSO 

F1(iii), F2(i), F3(i), 

F4(ii), F5(i), F6(iii), 

F7(ii) 

F1(ii), F2(iii), F3(ii), 

F4(ii), F5(ii), F6(ii), 

F7(ii) 

F1(i), F2(ii), F3(iii), 

F4(ii), F5(iii), F6(i), 

F7(i) 

Table 5-Comparison of results obtained for unimodal fitness functions. 

 

Exploitation refers to the local search capability around the promising regions obtained in the 

exploration phase. Finding a proper balance between these two phases is considered a challenging 

task due to the stochastic nature of meta-heuristics. From the table we find that the hybrid performs 

the best in at least four to five out of seven unimodal functions and have given competitive results 

in the remaining unimodal test functions. 

 

10.7.2 Exploration Analysis 

 

In short, exploration is the ability of the algorithm to search for new individuals far from the current 

individual (current solution in the search space). Multimodal and fixed-dimension multimodal 

functions have many local optima with the number increasing exponentially with dimension of the 

which enable us to assess the exploration capability of algorithm. According to results in Table 6 

all hybrid algorithms were able to provide either better or very competitive results compared to 

their parent algorithms. 

 

 

Hybrid 

Algorithm, 

Parent1, Parent 

2 

Grouping and ranking fitness functions according to performance of 

algorithms 

Hybrid Parent1 Parent 2 

GWOABC, 

GWO, ABC 

F8(i), F9(i), F10(i), 

F11(ii), F12(i), F13(i), 

F14(i), F15(i), F16(iii), 

F17(ii), F18(i), F19(i), 

F8(ii), F9(ii), F10(ii), 

F11(iii), F12(ii), 

F13(iii), F14(iii), 

F15(iii), F16(i), F17(i), 

F18(ii), F19(ii), 

F8(iii), F9(iii), 

F10(iii), F11(i), 

F12(iii), F13(ii), 

F14(ii), F15(ii), 

F16(ii), F17(ii), 

F18(iii), F19(iii), 
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GWOWOA, 

GWO, WOA 

F8(i), F9(i), F10(iii), 

F11(ii), F12(i), F13(i), 

F14(ii), F15(i), F16(iii), 

F17(i), F18(i), F19(i), 

F8(ii), F9(ii), F10(i), 

F11(iii), F12(ii), 

F13(iii), F14(iii), 

F15(iii), F16(i), 

F17(ii), F18(ii), 

F19(ii), 

F8(iii), F9(iii), F10(ii), 

F11(i), F12(iii), 

F13(ii), F14(i), F15(ii), 

F16(ii), F17(iii), 

F18(iii), F19(iii), 

MFOALO, 

MFO, ALO 

F8(i), F9(i), F10(ii), 

F11(i), F12(i), F13(ii), 

F14(iii), F15(ii), F16(iii), 

F17(ii), F18(i), F19(ii), 

F8(ii), F9(iii), F10(i), 

F11(iii), F12(ii), 

F13(iii), F14(i), 

F15(iii), F16(ii), 

F17(iii), F18(iii), 

F19(iii), 

F8(iii), F9(ii), F10(iii), 

F11(ii), F12(iii), 

F13(ii), F14(ii), 

F15(ii), F16(i), F17(i), 

F18(ii), F19(i), 

CSFFA, 

CS, FFA 

F8(iii), F9(i), F10(ii), 

F11(i), F12(i), F13(i), 

F14(iii), F15(i), F16(iii), 

F17(ii), F18(i), F19(iii), 

F8(ii), F9(iii), F10(i), 

F11(iii), F12(ii), 

F13(ii), F14(i), F15(ii), 

F16(ii), F17(iii), 

F18(iii), F19(i), 

F8(i), F9(ii), F10(iii), 

F11(ii), F12(iii), 

F13(i), F14(ii), 

F15(iii), F16(i), F17(i), 

F18(ii), F19(ii), 

PSOMVO, 

MVO, PSO 

F8(i), F9(i), F10(ii), 

F11(i), F12(i), F13(ii), 

F14(iii), F15(i), F16(iii), 

F17(ii), F18(i), F19(iii), 

F8(ii), F9(iii), F10(i), 

F11(iii), F12(ii), 

F13(iii), 

F14(i),F15(ii), 

F16(ii),F17(iii), 

F18(iii), F19(i), 

F8(iii), F9(ii), F10(iii), 

F11(ii), F12(iii), 

F13(ii), F14(ii), 

F15(iii), F16(i), F17(i), 

F18(ii), F19(ii), 

PSOBAT,   

BAT, PSO 

F8(iii), F9(i), F10(ii), 

F11(i), F12(i), F13(i), 

F14(ii), F15(i), F16(iii), 

F17(ii), F18(i), F19(iii), 

F8(ii), F9(iii), F10(i), 

F11(iii), F12(ii), 

F13(ii), F14(iii), 

F15(ii), F16(ii), 

F17(iii), F18(iii), 

F19(i), 

F8(i), F9(ii), F10(iii), 

F11(ii), F12(iii), 

F13(i), F14(i), F15(iii), 

F16(i), F17(i), F18(ii), 

F19(ii), 

Table 6-Comparison of results obtained for multimodal and fixed-dimension 

multimodal fitness functions. 
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The exploration phase refers to the process of investigating the promising area(s) of the 

search space as broadly as possible. An algorithm needs to have stochastic operators to randomly 

and globally search the search space in order to support this phase. From the table we find that the 

hybrid performs the best in at least four to 8 out of 11 various multimodal functions and have given 

competitive results in the remaining test functions. 

 

10.7.3Local Minimum Avoidance and Convergence behavior analysis 

 

The fourth class of benchmark functions employed includes composite functions, generally very 

challenging test beds for meta-heuristic algorithms. So, exploration and exploitation can be 

simultaneously benchmarked by the composite functions. Moreover, the local optima avoidance 

of an algorithm can be examined due to the massive number of local optima in such test functions. 

According to table 7, all hybrid algorithm provides very competitive results on the composite 

benchmark functions. This demonstrates that hybrid algorithms show a good balance between 

exploration and exploitation that results in high local optima avoidance. From all the convergence 

graphs, hybrids show exceptional faster convergence rate compared to their parent hybrids. 

 

 

Hybrid 

Algorithm, 

Parent1, Parent 

2 

Grouping and ranking fitness functions according to performance of 

algorithms 

Hybrid Parent1 Parent 2 

GWOABC, 

GWO, ABC 

F20(i), F21(i), F22(i), 

F23(ii),  

F20(ii), F21(ii), 

F22(iii), F23(i) 

F20(iii), F21(iii), 

F22(ii), F23(iii) 

GWOWOA, 

GWO, WOA 

F20(i), F21(i), F22(i), 

F23(i),  

F20(ii), F21(ii), 

F22(ii), F23(i) 

F20(iii), F21(iii), 

F22(iii), F23(ii) 

MFOALO, 

MFO, ALO 

F20(i), F21(i), F22(i), 

F23(i),  

F20(ii), F21(ii), 

F22(iii), F23(i) 

F20(iii), F21(iii), 

F22(ii), F23(iii) 

CSFFA, 

CS, FFA 

F20(i), F21(i), F22(i), 

F23(ii),  

F20(ii), F21(iii), 

F22(iii), F23(i) 

F20(iii), F21(ii), 

F22(ii), F23(iii) 
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PSOMVO, 

MVO, PSO 

F20(i), F21(ii), F22(i), 

F23(i),  

F20(ii), F21(i), 

F22(iii), F23(i) 

F20(iii), F21(iii), 

F22(ii), F23(iii) 

PSOBAT,   

BAT, PSO 

F20(i), F21(i), F22(i), 

F23(ii),  

F20(ii), F21(ii), 

F22(iii), F23(iii) 

F20(iii), F21(iii), 

F22(ii), F23(i) 

Table 7-Comparison of results obtained for Composite benchmark fitness functions. 

 

Optimization results reported in Table 7 show that the hybrid algorithms were the best optimization 

algorithm in four test problems and was very competitive in the other cases. This proves that the 

hybrids can well balance exploration and exploitation phases.  
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 12 HYBRID ALGORITHMS FOR CLASSICAL ENGINEERING 

DESIGN PROBLEM 

 

Engineering design is the method that engineers use to identify and solve problems. In constrained 

engineering design process, engineers must identify solutions that include the most desired features 

and fewest negative characteristics. They should also specify the cost functions and their 

limitations of the given scenario, which could include time, cost, and the physical limits of tools 

and materials. Constrained engineering design optimization problems are usually computationally 

expensive due to non-linearity and non convexity of these constraint functions. Evolutionary 

population based algorithms are widely used to solve constrained optimization problems. Many 

researchers have implemented many heuristic and meta-heuristic optimization algorithms to solve 

constrained optimization problems in engineering design. 

 

These meta-heuristic optimization algorithms are of great research interest in recent times due to 

their ability in finding optimal solutions within short time especially when these real world 

engineering design problems consists of large number of design variables and multiple constraints 

which makes the solution search-space larger, complicated and non-linear. Penalty function 

methods are found to be quite popular due to their simplicity and ease of implementation. In this 

method, search agents are assigned big objective function values if they violate any of the specified 

constraints. In this section, we try to solve a real world engineering design problem using hybrid 

algorithms in order to observe the performance and benchmark the performance . 

12.1 Cantilever Beam Design  

 

This is a structural optimization problem [12]. The objective is to design a minimum-mass cantilever 

beam. A cantilever beam includes five hollow elements with square-shaped cross-section. Since 

the mass is proportional to the cross-sectional area of the beam, the objective function for the 

problem is taken as the cross-sectional area. Assuming thickness is constant, there are a total of 5 

structural parameters. The mathematical formulation of this problem can be described as follows: 
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Consider, 

𝑧 = [𝑧1𝑧2𝑧3𝑧4𝑧5] 

 

Minimize the function, 

𝑓(𝑧) = 0.6224(𝑧1 + 𝑧2 + 𝑧3 + 𝑧4 + 𝑧5) 

Subject to, 

ℎ1(𝑧) =
61

𝑧1
3 +

37

𝑧2
3 +

19

𝑧3
3 +

4

𝑧4
3 +

1

𝑧5
3  ≤  1 

 

Where, 

0.01 ≤ 𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5 ≤ 100 

 

 

Figure 25-Cantilever Design Problem 
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Parameters GWOABC MFOALO MVOPSO CSFFA GWOWOA BATPSO 

𝑧1 6.0089 6.0100 6.0101 6.0097 6.0089 6.0091 

𝑧2 5.3001 5.3000 5.02999 5.0300 5.02999 5.03004 

𝑧3 4.4900 4.4900 4.4900 4.49001 4.4899 4.4900 

𝑧4 3.4904 3.4900 3.49006 3.4901 3.4900 3.4900 

𝑧5 2.1601 2.1500 2.1506 2.1508 2.1509 2.1600 

Optimum 

Weight 

 𝑓(𝑧) 

1.3400 1.3400 1.3399 1.3401 1.3399 1.3399 

       

 

Table 8- Cantilever Beam Design results using hybrid algorithms. 

Table 8 compares the best solutions for Cantilever Beam Design problem obtained by the proposed 

hybrid algorithms. As per the result, all hybrid algorithms was able to find the optimal solution 

which is very competitive to its other benchmarked algorithms. This evidences that the proposed 

algorithm is able to effectively optimize challenging constrained problems as well. All algorithms  
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 13 CONCLUSION 

 

This paper proposes following six hybrid algorithms: Hybrid Grey Wolf Optimization algorithm 

and Artificial Bee Colony Optimization algorithm (GWOABC), Hybrid Moth Flame Optimization 

Algorithm  and Ant Lion Optimization algorithm (MFOALO), Hybrid Cuckoo Search 

Optimization algorithm and Fire Fly Optimization Algorithm(CSFFA), Hybrid Multi-Verse 

Optimization algorithm and Particle Swarm Optimization Algorithm (MVOPSO), Hybrid Grey 

Wolf Optimization algorithm and Whale Optimization Algorithm (GWOWOA),  Hybrid Binary 

Bat Optimization Algorithm and Particle Swarm Optimization Algorithm(BATPSO). Twenty-

three test functions were employed in order to benchmark the performance of the proposed 

algorithms in terms of exploration, exploitation, local optima avoidance, and convergence.  

 

The results showed that the hybrids were able to provide highly competitive results compared to 

well known parent heuristics such as GWO, ABC, WOA, MFO, ALO, CS, FFA, PSO, MVO and 

BAT. First, the results on the unimodal functions showed the superior exploitation of the 

hybrid algorithms. Second, the exploration ability of hybrids were confirmed by the results on 

multimodal functions. Third, the results of the composite functions showed high local optima 

avoidance. Finally, the convergence analysis of hybrids were confirmed by the comparative 

convergence of this algorithm. Statistical testing is performed on all hybrid algorithm to validate 

the results and will be discussed in publishable papers. 

 

Moreover, we used these proposed hybrid optimization algorithms to solve a real-world 

engineering design problem – Cantilever beam design, with large number of variables and 

constraints. The results show the capability of hybrid algorithms in handling various real-world 

con-junctional optimization problems under lower computational efforts.  All hybrid algorithms 

were able to attain the optimal or near optimal solutions better than to most of the existing 

optimization algorithms subjected to the study. For future work, large scale optimization problems 
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can be studied and realized using these algorithms.  A self-adaptive method of choosing parameters 

can be developed in order to further improve the efficiency of these optimization algorithms. A 

multi-objective version of these algorithms can also be developed which find itself immense scope 

in diverse real-world optimization applications 
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 APPENDIX – A 

 

Benchmark Functions Python Code 

# -*- coding: utf-8 -*- 
""" 
Created on May 17 12:46:20 2018 
 
@author: Noel Jose ThengappurackalLaiju 
""" 
 
import numpy 
import math 
 
# define the function blocks 
def prod( it ): 
    p= 1 
    for n in it: 
        p *= n 
    return p 
 
def Ufun(x,a,k,m): 
    y=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<(-a)); 
    return y 
 
def F1(x): 
    s=numpy.sum(x**2); 
    return s 
 
def F2(x): 
    o=sum(abs(x))+prod(abs(x)); 
    return o;      
 
def F3(x): 
    dim=len(x)+1; 
    o=0; 
    for i in range(1,dim): 
        o=o+(numpy.sum(x[0:i]))**2;  
    return o;  
 
def F4(x): 
    o=max(abs(x)); 
    return o;      
 
def F5(x): 
    dim=len(x); 
    o=numpy.sum(100*(x[1:dim]-(x[0:dim-1]**2))**2+(x[0:dim-1]-1)**2); 
    return o;  
 
def F6(x): 
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    o=numpy.sum(abs((x+.5))**2); 
    return o; 
 
def F7(x): 
   dim=len(x); 
 
   w=[i for i in range(len(x))] 
   for i in range(0,dim): 
        w[i]=i+1; 
   o=numpy.sum(w*(x**4))+numpy.random.uniform(0,1); 
   return o; 
 
def F8(x): 
    o=sum(-x*(numpy.sin(numpy.sqrt(abs(x))))); 
    return o; 
 
def F9(x): 
    dim=len(x); 
    o=numpy.sum(x**2-10*numpy.cos(2*math.pi*x))+10*dim; 
    return o; 
 
 
def F10(x): 
    dim=len(x); 
    o=-20*numpy.exp(-.2*numpy.sqrt(numpy.sum(x**2)/dim))-
numpy.exp(numpy.sum(numpy.cos(2*math.pi*x))/dim)+20+numpy.exp(1); 
    return o; 
 
def F11(x): 
    dim=len(x); 
    w=[i for i in range(len(x))] 
    w=[i+1 for i in w]; 
    o=numpy.sum(x**2)/4000-prod(numpy.cos(x/numpy.sqrt(w)))+1;    
    return o; 
 
def F12(x): 
    dim=len(x); 
    o=(math.pi/dim)*(10*((numpy.sin(math.pi*(1+(x[0]+1)/4)))**2)+numpy.sum((((x[1:dim-
1]+1)/4)**2)*(1+10*((numpy.sin(math.pi*(1+(x[1:dim-1]+1)/4))))**2))+((x[dim-
1]+1)/4)**2)+numpy.sum(Ufun(x,10,100,4));    
    return o; 
 
def F13(x):  
    dim=len(x); 
    o=.1*((numpy.sin(3*math.pi*x[1]))**2+sum((x[0:dim-2]-1)**2*(1+(numpy.sin(3*math.pi*x[1:dim-1]))**2))+  
    ((x[dim-1]-1)**2)*(1+(numpy.sin(2*math.pi*x[dim-1]))**2))+numpy.sum(Ufun(x,5,100,4)); 
    return o; 
 
def F14(x):  
     aS=[[-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32],[-32,-32,-32,-
32,-32,-16,-16,-16,-16,-16,0,0,0,0,0,16,16,16,16,16,32,32,32,32,32]];      
aS=numpy.asarray(aS); 
bS = numpy.zeros(25) 
     v=numpy.matrix(x) 
     for i in range(0,25): 
         H=v-aS[:,i]; 
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bS[i]=numpy.sum((numpy.power(H,6)));    
     w=[i for i in range(25)]    
     for i in range(0,24): 
        w[i]=i+1; 
     o=((1./500)+numpy.sum(1./(w+bS)))**(-1); 
     return o;   
 
def F15(L):   
    aK=[.1957,.1947,.1735,.16,.0844,.0627,.0456,.0342,.0323,.0235,.0246]; 
bK=[.25,.5,1,2,4,6,8,10,12,14,16]; 
aK=numpy.asarray(aK); 
bK=numpy.asarray(bK); 
bK = 1/bK;   
    fit=numpy.sum((aK-((L[0]*(bK**2+L[1]*bK))/(bK**2+L[2]*bK+L[3])))**2); 
    return fit 
 
def F16(L):   
     o=4*(L[0]**2)-2.1*(L[0]**4)+(L[0]**6)/3+L[0]*L[1]-4*(L[1]**2)+4*(L[1]**4); 
     return o 
 
def F17(L):   
    o=(L[1]-(L[0]**2)*5.1/(4*(numpy.pi**2))+5/numpy.pi*L[0]-6)**2+10*(1-
1/(8*numpy.pi))*numpy.cos(L[0])+10; 
    return o 
 
def F18(L):   
    o=(1+(L[0]+L[1]+1)**2*(19-14*L[0]+3*(L[0]**2)-14*L[1]+6*L[0]*L[1]+3*L[1]**2))*(30+(2*L[0]-
3*L[1])**2*(18-32*L[0]+12*(L[0]**2)+48*L[1]-36*L[0]*L[1]+27*(L[1]**2))); 
    return o 
# map the inputs to the function blocks 
def F19(L):     
aH=[[3,10,30],[.1,10,35],[3,10,30],[.1,10,35]]; 
aH=numpy.asarray(aH); 
cH=[1,1.2,3,3.2]; 
cH=numpy.asarray(cH); 
    pH=[[.3689,.117,.2673],[.4699,.4387,.747],[.1091,.8732,.5547],[.03815,.5743,.8828]]; 
    pH=numpy.asarray(pH); 
    o=0; 
    for i in range(0,4): 
     o=o-cH[i]*numpy.exp(-(numpy.sum(aH[i,:]*((L-pH[i,:])**2))));    
    return o 
 
 
def F20(L):     
    aH=[[10,3,17,3.5,1.7,8],[.05,10,17,.1,8,14],[3,3.5,1.7,10,17,8],[17,8,.05,10,.1,14]]; 
aH=numpy.asarray(aH); 
cH=[1,1.2,3,3.2]; 
cH=numpy.asarray(cH); 
    
pH=[[.1312,.1696,.5569,.0124,.8283,.5886],[.2329,.4135,.8307,.3736,.1004,.9991],[.2348,.1415,.3522,.28
83,.3047,.6650],[.4047,.8828,.8732,.5743,.1091,.0381]]; 
    pH=numpy.asarray(pH); 
    o=0; 
    for i in range(0,4): 
     o=o-cH[i]*numpy.exp(-(numpy.sum(aH[i,:]*((L-pH[i,:])**2)))); 
    return o 
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def F21(L): 
    aSH=[[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]]; 
cSH=[.1,.2,.2,.4,.4,.6,.3,.7,.5,.5]; 
aSH=numpy.asarray(aSH); 
cSH=numpy.asarray(cSH); 
    fit=0; 
    for i in range(0,4): 
      v=numpy.matrix(L-aSH[i,:]) 
      fit=fit-((v)*(v.T)+cSH[i])**(-1); 
    o=fit.item(0); 
    return o 
 
def F22(L): 
    aSH=[[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]]; 
cSH=[.1,.2,.2,.4,.4,.6,.3,.7,.5,.5]; 
aSH=numpy.asarray(aSH); 
cSH=numpy.asarray(cSH); 
    fit=0; 
    for i in range(0,6): 
      v=numpy.matrix(L-aSH[i,:]) 
      fit=fit-((v)*(v.T)+cSH[i])**(-1); 
    o=fit.item(0); 
    return o   
 
def F23(L): 
    aSH=[[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]]; 
cSH=[.1,.2,.2,.4,.4,.6,.3,.7,.5,.5]; 
aSH=numpy.asarray(aSH); 
cSH=numpy.asarray(cSH); 
    fit=0; 
    for i in range(0,9): 
      v=numpy.matrix(L-aSH[i,:]) 
      fit=fit-((v)*(v.T)+cSH[i])**(-1); 
    o=fit.item(0); 
    return o   
 
def getFunctionDetails(a): 
 
    # [name, lb, ub, dim] 
    param = {  0: ["F1",-100,100,30], 
1 : ["F2",-10,10,30], 
2 : ["F3",-100,100,30], 
3 : ["F4",-100,100,30] , 
4 : ["F5",-30,30,30], 
5 : ["F6",-100,100,30], 
6 : ["F7",-1.28,1.28,30], 
7 : ["F8",-500,500,30], 
8 : ["F9",-5.12,5.12,30], 
9 : ["F10",-32,32,30], 
10 : ["F11",-600,600,30] , 
11 : ["F12",-50,50,30], 
12 : ["F13",-50,50,30], 
13 : ["F14",-65.536,65.536,2], 
14 : ["F15",-5,5,2], 
15 : ["F16",-5,5,4], 
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16 : ["F17",-5,15,2], 
17 : ["F18",-2,2,2] , 
18 : ["F19",0,1,3], 
19 : ["F20",0,1,6], 
20 : ["F21",0,10,4], 
21 : ["F22",0,10,4], 
22 : ["F23",0,10,4], 
            } 
    return param.get(a, "nothing") 
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