

MODELING HYBRID METAHEURISTIC OPTIMIZATION ALGORITHM FOR

CONVERGENCE PREDICTION

By

Noel Jose Thengappurackal Laiju

Bachelor of Technology in Electronics & Communication Engineering

Cochin University of Science and Technology, India, 2008

A project

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Engineering

In the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2019

© Noel Jose Thengappurackal Laiju 2019

ii

 AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this project. This is a true copy of the project,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this project to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this project by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my project may be made electronically available to the public.

iii

Project: MODELING HYBRID METAHEURISTIC OPTIMIZATION

 ALGORITHM FOR CONVERGENCE PREDICTION.

Degree: Master of Engineering

Year of convocation: 2019

Name: Noel Jose Thengappurackal Laiju

Program: Electrical and Computer Engineering

University: Ryerson University

 ABSTRACT

The project aims at the design and development of six hybrid nature inspired algorithms based

on Grey Wolf Optimization algorithm with Artificial Bee Colony Optimization algorithm

(GWOABC), Moth Flame Optimization Algorithm with Ant Lion Optimization algorithm

(MFOALO), Cuckoo Search Optimization algorithm with Fire Fly Optimization

Algorithm(CSFFA), Multi-Verse Optimization algorithm with Particle Swarm Optimization

Algorithm (MVOPSO), Grey Wolf Optimization algorithm with Whale Optimization

Algorithm (GWOWOA), and Binary Bat Optimization Algorithm with Particle Swarm

Optimization Algorithm(BATPSO). Hybrid optimizations assume the implementation of two

or more algorithms for the same optimization problem. "Hybrid algorithm" does not refer to

simply combining multiple algorithms to solve a different problem but rather many algorithms

can be considered as combinations of simpler pieces. The hybrid approach combines

algorithms that solve the same problem but differs in other characteristics notably performance.

A hybrid optimization uses a heuristic to choose the best of these algorithms to apply in a given

situation. The proposed hybrid algorithms are benchmarked using a set of 23 classical

benchmark functions employed to test different characteristics of hybrid optimization

algorithms. The results of the fitness functions prove that the proposed hybrid algorithms are

able to produce better or more competitive output with respect to improved exploration, local

optima avoidance, exploitation, and convergence. All these hybrid algorithms find superior

iv

optimal designs for quintessential engineering problems engaged, showcasing that these

algorithms are capable of solving constrained complex problems with diverse search spaces.

Optimization results demonstrate that all hybrid algorithms are very competitive compared to

the state-of-the-art optimization methods and validated by fitness function. The hybrid

algorithms are applied for optimal efficiency determination in various design challenges based

on cantilever beam problem.

v

 ACKNOWLEDGEMENT

In my journey towards this degree, I have found my mentor and inspiration, Professor Dr. Reza

Sedaghat for continuous support and encouragement throughout this project. I had an

opportunity to learn under his mentorship the subject of optimization which spurred us to

pursue further on the subject and experience practical implementation in the real-life project.

He consistently guided me in the research and steered me in the right the direction whenever

he thought I needed it.

This project would not have been materialized without the great help and guidance of Prathap

(Patrick) Siddavaatam. The door to Patrick’s office was always open whenever I ran into a

trouble spot or had a question about my research. I am extremely thankful and indebted to him

for sharing expertise, and sincere and valuable guidance and encouragement extended to me.

I would like to dedicate this work to my mother Mrs. Mary Nelbi whose dreams for me have

resulted in this achievement and without her loving upbringing and nurturing; I would not have

been where I am today and what I am today. Had it not been for my mother’s unflinching

insistence and support, my dreams of excelling in education would have remained mere

dreams. I am grateful to my sibling Naveen and father Laiju, who have provided me through

moral and emotional support in my life.

I would like to thank my wife Aswathy, for all her love and support. She was always keen to

know what I was doing and how I was proceeding, although it is likely that she has never

grasped what it was all about! I will miss your screams of joy whenever a significant

momentous was reached.

Finally, I would like to thank my friends for their support, patience and encouragement. This

accomplishment would not have been possible without them. Thank you.

vi

 TABLE OF CONTENTS

AUTHOR'S DECLARATION ... ii

ABSTRACT .. iii

ACKNOWLEDGEMENT .. v

TABLE OF CONTENTS .. vi

LIST OF TABLES .. x

LIST OF FIGURES ... xi

NOMENCLATURE .. xii

1 INTRODUCTION.. 1

1.1 Overview .. 1

1.2 What is Optimization? .. 2

1.3 Optimization Problems ... 2

1.4 Types of Optimization Algorithms ... 4

2 HYBRIDIZATION .. 8

2.1 Motivation .. 8

2.2 Objective and method of hybridization. ... 10

3 LITERATURE REVIEW ... 17

4 HYBRID GREY WOLF OPTIMIZATION ALGORITHM AND ARTIFICIAL BEE

COLONY OPTIMIZATION ALGORITHM ALGORITHM (GWOABC)...................... 20

4.1 Grey Wolf Optimization algorithm (GWO) ... 20

4.2 Artificial Bee Colony algorithm (ABC) ... 22

4.3 Mathematical Modeling of GWOABC... 23

vii

4.4 Computational Procedure of GWOABC Algorithm .. 25

5 HYBRID GREY WOLF OPTIMIZATION ALGORITHM AND WHALE

OPTIMIZATION ALGORITHM (GWOWOA) ... 27

5.1 Whale Optimization Algorithm (WOA) ... 27

5.2 Mathematical Modeling of GWOWOA ... 28

5.3 Computational Procedure of GWOWOA ... 30

6 HYBRID MOTH FLAME OPTIMIZATION ALGORITHM AND ANT LION

OPTIMIZATION ALGORITHM (MFOALO).. 32

6.1 Moth Flame Optimization Algorithm (MFO) .. 32

6.2 Ant Lion Optimization Algorithm (ALO) .. 33

6.3 Mathematical Modelling of MFOALO .. 35

6.4 Computational Procedure of MFOALO ... 40

7 HYBRID CUCKOO SEARCH OPTIMIZATION ALGORITHM AND FIRE FLY

OPTIMIZATION ALGORITHM (CSFFA) ... 42

7.1 Cuckoo Search Algorithm (CS) .. 42

7.2 Fire Fly Optimization (FFA) .. 43

7.3 Mathematical Modelling of CSFFA ... 45

7.4 Computational Procedure of CFFFA .. 48

8 HYBRID MULTI-VERSE OPTIMIZATION ALGORITHM AND PARTICLE

SWARM OPTIMIZATION ALGORITHM (MVOPSO) ... 49

8.1 Multi-Verse Optimization algorithm Algorithm (MVO) ... 49

8.2 Particle Swarm Optimization algorithm Algorithm (PSO) .. 51

8.3 Mathematical Modelling of MVOPSO ... 54

viii

8.4 Computational Procedure of MVOPSO .. 59

9 HYBRID BINARY BAT OPTIMIZATION ALGORITHM AND PARTICLE

SWARM OPTIMIZATION ALGORITHM(BATPSO). ... 60

9.1 Binary Bat Optimization Algorithm (BAT) ... 60

9.2 Mathematical Modelling of BATPSO .. 63

9.3 Computational Procedure of BATPSO ... 65

10 FITNESS FUNCTIONS AND ANALYSIS .. 68

10.1 Unimodal Fitness Functions ... 69

10.2 Multimodal Fitness Functions .. 74

10.3 Fixed-dimension Multimodal Fitness Functions .. 78

10.4 Composite Benchmark Functions ... 83

11 RESULTS AND DISCUSSION... 85

11.1 GWOABC fitness convergence graphs .. 85

11.2 GWOWOA fitness convergence graphs ... 86

11.3 MFOALO fitness convergence graphs ... 87

11.4 CSFFA fitness convergence graphs. ... 89

11.5 MVOPSO fitness convergence graphs. .. 90

11.6 BATPSO fitness convergence graphs... 90

11.7 Result Analysis ... 91

12 HYBRID ALGORITHMS FOR CLASSICAL ENGINEERING DESIGN

PROBLEM ... 97

12.1 Cantilever Beam Design ... 97

13 CONCLUSION ... 100

ix

APPENDIX – A ... 102

REFERRENCES ... 107

x

 LIST OF TABLES

Table 1 - Unimodal Functions .. 70

Table 2- Multimodal Fitness Functions .. 75

Table 3-Fixed-dimension Multimodal Fitness Functions .. 79

Table 4-Composite Benchmark Functions ... 84

Table 5-Comparison of results obtained for unimodal fitness functions. 93

Table 6-Comparison of results obtained for multimodal and fixed-dimension multimodal

fitness functions. .. 94

Table 7-Comparison of results obtained for Composite benchmark fitness functions. 96

Table 8- Cantilever Beam Design results using hybrid algorithms. 99

xi

 LIST OF FIGURES

Figure 1-F1(x) .. 71

Figure 2-F2(x) .. 71

Figure 3-F3(x) .. 72

Figure 4-F4(x) .. 72

Figure 5-F5(x) .. 73

Figure 6-F6(x) .. 73

Figure 7- F7(x) ... 74

Figure 8 -F8(x) ... 75

Figure 9-F9(x) .. 76

Figure 10-F10(x) .. 76

Figure 11 – F11(x) ... 77

Figure 12-F12(x) .. 77

Figure 13-F13(x) .. 78

Figure 14-F14(x) .. 80

Figure 15-F15(x) .. 80

Figure 16-F16(x) .. 81

Figure 17-F17(x) .. 81

Figure 18-F18(x) .. 82

Figure 19-F19(x) .. 83

Figure 20-Fitness Function (23) GWOABC ... 86

Figure 21- Fitness Function (23) GWOWOA ... 87

Figure 22-Fitness Function (8) MFOALO .. 88

Figure 23- Fitness Function (8) CSFFA .. 89

Figure 24-Fitness Function (23) PSOMVO .. 90

Figure 25-Cantilever Design Problem ... 98

xii

NOMENCLATURE

GWO Grey Wolf Optimization algorithm

ABC Artificial Bee Colony Optimization

WOA Whale Optimization Algorithm

MFO Moth Flame Optimization Algorithm

ALO Ant Lion Optimization algorithm

CS Cuckoo Search Optimization algorithm

FFA Fire Fly Optimization

MVO Multi-Verse Optimization algorithm

BAT Binary Bat Optimization Algorithm

PSO Particle Swarm Optimization Algorithm

GWOABC Hybrid Grey Wolf Optimization algorithm and

Artificial Bee Colony Optimization algorithm

GWOWOA Hybrid Grey Wolf Optimization algorithm and

Whale Optimization Algorithm

MFOALO Hybrid Moth Flame Optimization Algorithm

and Ant Lion Optimization algorithm

CSFFA Hybrid Cuckoo Search Optimization

algorithm and Fire Fly Optimization

Algorithm

MVOPSO Hybrid Multi-Verse Optimization algorithm

and Particle Swarm Optimization Algorithm

BATPSO Hybrid Binary Bat Optimization Algorithm

and Particle Swarm Optimization Algorithm

DA dragonfly algorithm

1

 1 INTRODUCTION

1.1 Overview

In the recent years, metaheuristic algorithms are employed as primary techniques for obtaining the

optimal solutions of real-world engineering design optimization problems [1-3]. The optimization

process is initialized by creating a set of random solutions. These initial solutions are then united,

reallocated or derived over a pre-determined number of steps termed as iterations. An algorithm

becomes unique in terms of its characteristics in mixing, allocating or evolving these initial

solutions during the optimization process. Most of these algorithms take advantages of stochastic

operators which makes them unique from deterministic approaches.

A deterministic algorithm arrives at similar results for a given problem with identical initial

starting point as these algorithms often get entrapped in a local minimum and fails to arrive at

global minimum. Since real world problems have innumerous local solutions, deterministic

algorithms are futile and unreliable in find true global optimum. Randomness is the main trait of

stochastic algorithms. They employ random operators in order to avoid local minimums and

stochastic operators which enable algorithms to obtain different solutions for a given problem in

each run.

Meta-heuristic algorithms search for the global optimum in a search space by creating one or more

random solutions for a given problem [4]. Hence, these algorithms have following advantages:

problem independency, evolution independency, local minimum evasion and natural optimization

inspirations makes these algorithms makes it simple and follow a general and common framework,

which imparts us scope to improve these algorithms with hybridization. Some of the most popular

algorithms in this field used in this paper are: Grey Wolf Optimization algorithm(GWO)[5],

2

Artificial Bee Colony Optimization (ABC)[6], Whale Optimization Algorithm (WOA)[7], Moth

Flame Optimization Algorithm (MFO)[8], Ant Lion Optimization algorithm (ALO)[9], Cuckoo

Search Optimization algorithm (CS)[10], Fire Fly Optimization (FFA)[11], Multi-Verse

Optimization algorithm (MVO)[12], Binary Bat Optimization Algorithm (BAT)[13] and Particle

Swarm Optimization Algorithm (PSO)[14].

1.2 What is Optimization?

Mathematical optimization or programming is the study of planning and design problems using

mathematical tools to find solutions to optimally use resources, time and money under various

constraints. With the advent of computers, optimization has become a part of computer-aided

design activities. An optimization algorithm is a procedure which is executed iteratively by

comparing various solutions till an optimum or a satisfactory solution is found.

The generalization of optimization theory and techniques to other formulations constitutes a large

area of applied mathematics. More generally, optimization includes finding "best available" values

of some objective function given a defined domain (or input), including a variety of different types

of objective functions and different types of domains.

1.3 Optimization Problems

An optimization problem can be represented in the following generic form

Minimize x Є Rn 𝑓𝑖(x), (i = 1,2,…, M) (1.2.1)

subject to ℎ𝑗(x) = 0, (j = 1,2,…, J) (1.2.2)

3

 𝑔𝑘(x)≤ 0, (k = 1,2,…, K) (1.2.3)

Where, 𝑓𝑖(x), ℎ𝑗(x) and 𝑔𝑘(x) are the functions of design vector

x = (x1, x2,…, xn)
T (1.2.4)

Here, the components of xi of x are called design or decision variables, and they belongs to real

continuous, discrete or mixed of these two types.

The functions 𝑓𝑖(x)where i = 1, 2, …, M are called the objective functions or cost functions, where

when M = 1 , there is only one single objective. The space occupied by the decision variables are

termed as design space or search space Rn, while the space spanned by the objective functions are

named response or solution space. The equalities of ℎ𝑗(x) and 𝑔𝑘(x) are termed as constraints.

In mathematics, conventional optimization problems are usually stated in terms of minimization.

a local minimum is:

f(a) ≤ f(x) for all x in the interval (1.2.5)

While a local minimum is at least as good as any nearby elements, a global minimum is at least as

good as every feasible element. Generally, unless both the objective function and the feasible

region are convex in a minimization problem, there may be several local minimum. In a convex

problem, if there is a local minimum that is interior (not on the edge of the set of feasible elements),

it is also the global minimum, but a nonconvex problem may have more than one local minimum

not all of which need be global minimum.

A large number of algorithms proposed for solving nonconvex problems – including the majority

of commercially available solvers – are not capable of making a distinction between locally

4

optimal solutions and globally optimal solutions and will treat the former as actual solutions to the

original problem. Global optimization is the branch of applied mathematics and numerical analysis

that is concerned with the development of deterministic algorithms that are capable of guaranteeing

convergence in finite time to the actual optimal solution of a nonconvex problem.

A naive optimal design is achieved by comparing a few(limited up to ten or so) alternative

solutions created by using a priority problem knowledge. In this method feasibility of each design

solution is first investigated. Thereafter an estimate of underlying objective (cost, profit, etc.,) of

each solution is compared and best solution is adopted. It is impossible to apply single formulation

procedure for all engineering design problems, since the objective in a design problem and

associated therefore, design parameters vary product to product different techniques are used in

different problems. Purpose of formulation is to create a mathematical model of the optimal design

problem, which then can be solved using an optimization algorithm.

1.4 Types of Optimization Algorithms

Classification of optimization algorithms can be done in a number of ways. There are two types of

distinct types of optimization algorithms used today on the basis of nature of algorithm.

1.4.1 Deterministic Algorithms

They use specific rules for moving one solution to other. These algorithms are in use to suite

sometimes and have been successfully applied for many engineering design problems. These

algorithms adopt a rigorous method and its path and values of both design variables and repeatable

functions. Rigorous methods converge to the global optimum in finite time. Deterministic global

optimization methods are typically used when locating the global solution is a necessity (i.e. when

the only naturally occurring state described by a mathematical model is the global minimum of an

optimization problem), when it is extremely difficult to find a feasible solution, or simply when

the user desires to locate the best possible solution to a problem.

5

1.4.2 Stochastic Algorithms

The stochastic algorithms are in nature with probabilistic translation rules. These are gaining

popularity due to certain properties which deterministic algorithms do not have. Randomness is

the main trait of stochastic algorithms. They employ random operators in order to avoid local

minimums and stochastic operators which enable algorithms to obtain different solutions for a

given problem in each run. Stochastic Algorithms are classified into two:

1.4.2.1 Heuristic Algorithms

The word heuristic refers to ‘to find’ or to ‘discover by trial and error’. Quality solutions to a

complex optimization problem can be achieved in a reasonable amount of time, but there is no

guarantee that optimal solutions are obtained. These algorithms work most of the time, however

not at every instance.

1.4.2.2 Meta-Heuristic Algorithms

These algorithms simply perform better than heuristics, hence named meta-heuristic algorithm.

They produce acceptable solutions within a reasonable feasible time frame. The complexity of

the problem of interest makes it impossible to search every possible solution or combination and

the goal is to find acceptable solution within specified time frame.

Nature-inspired meta-heuristic algorithms solve optimization problems by mimicking biological

or physical phenomena. They can be grouped in three main categories.

6

1.4.2.2.1 Evolution based Meta-Heuristic Algorithms

Evolution-based methods are inspired by the laws of natural evolution. The search process starts

with a randomly generated population which is evolved over subsequent generations. The strength

point of these methods is that the best individuals are always combined together to form the next

generation of individuals. This allows the population to be optimized over the course of

generations. The most popular evolution-inspired technique is Genetic Algorithms (GA) [43] that

simulates the Darwinian evolution. Other popular algorithms are Evolution Strategy (ES) [44] ,

Probability-Based Incremental Learning (PBIL) [45] , Genetic Programming (GP) [46] , and

Biogeography-Based Optimization algorithm (BBO) [47] .

1.4.2.2.2 Physics based Meta-Heuristic Algorithms

Physics-based methods imitate the physical rules in the universe. The most popular algorithms are

Simulated Annealing (SA) [48] , Gravitational Local Search (GLSA) [49] , Big-Bang Big-Crunch

(BBBC) [50] , Gravitational Search Algorithm (GSA) [51] , Charged System Search (CSS) [52] ,

Central Force Optimization (CFO) [10] , Artificial Chemical Reaction Optimization Algorithm

(ACROA) [53] , Black Hole (BH) [54] algorithm, Ray Optimization (RO) [55] algorithm, Small-

World Optimization Algorithm (SWOA) [56] , Galaxy-based Search Algorithm (GbSA) [57] , and

Curved Space Optimization (CSO) [58] .

1.4.2.2.3Nature inspired Meta-Heuristic Algorithms

The third group of nature-inspired methods includes swarm- based techniques that mimic the social

behavior of groups of animals. Meta-heuristic algorithms search for the global optimum in a search

space by creating one or more random solutions for a given problem [4]. Hence, these algorithms

have following advantages: problem independency, evolution independency, local minimum

evasion and natural optimization inspirations makes these algorithms makes it simple and follow

7

a general and common framework, which imparts us scope to improve these algorithms with

hybridization. Some of the most popular algorithms in this field used in this paper are: Grey Wolf

Optimization algorithm(GWO)[5], Artificial Bee Colony Optimization (ABC)[6], Whale

Optimization Algorithm (WOA)[7], Moth Flame Optimization Algorithm (MFO)[8], Ant Lion

Optimization algorithm (ALO)[9], Cuckoo Search Optimization algorithm (CS)[10], Fire Fly

Optimization (FFA)[11], Multi-Verse Optimization algorithm (MVO)[12], Binary Bat

Optimization Algorithm (BAT)[13] and Particle Swarm Optimization Algorithm (PSO)[14].

This paper proposes following six hybrid algorithms: Hybrid Grey Wolf Optimizer and

Artificial Bee Colony Optimizer (GWOABC), Hybrid Grey Wolf Optimizer and Whale

Optimization Algorithm (GWOWOA), Hybrid Moth Flame Optimization Algorithm and Ant

Lion Optimizer (MFOALO), Hybrid Cuckoo Search Optimizer and Fire Fly Optimization

Algorithm(CSFFA), Hybrid Multi-Verse Optimizer and Particle Swarm Optimization

Algorithm (MVOPSO), Hybrid Binary Bat Optimization Algorithm and Particle Swarm

Optimization Algorithm(BATPSO). Section 2 of this paper state the objective, concept and

motivation of project. Section 3 discusses literature review. Section 4, 5, 6, 7, 8, and 9

deals with the concept of hybridization and implementation of hybrid algorithms. Section 11

of this paper showcases benchmarking and results of 23 fitness functions used. Section 12, the

hybrid algorithms are applied for optimal efficiency determination in various design challenges

based on cantilever beam problem. Section 13 concludes the paper and discusses possible

future scope and improvements.

8

 2 HYBRIDIZATION

A hybrid algorithm is an algorithm that combines two or more other algorithms that solve the same

problem, either choosing one (depending on the data), or switching between them over the course

of the algorithm. This is generally done to combine desired features of each, so that the overall

algorithm is better than the individual components.

"Hybrid algorithm" does not refer to simply combining multiple algorithms to solve a different

problem – many algorithms can be considered as combinations of simpler pieces – but only to

combining algorithms that solve the same problem, but differ in other characteristics, notably

performance.

Section 2 of this paper discusses literature review. Section 3 deals with the concept of hybridization

and implementation of hybrid algorithms. Section 4 of this paper showcases benchmarking and

results of 23 fitness functions used. Section 5 concludes the paper and discusses possible future

scope and improvements.

2.1 Motivation

Many researchers have attempted the use of hybridization in order to enhance the performance of

these algorithms. This paper proposes following six hybrid algorithms: Hybrid Grey Wolf

Optimization algorithm with Artificial Bee Colony Optimization algorithm (GWOABC), Hybrid

Grey Wolf Optimization algorithm with Whale Optimization Algorithm (GWOWOA), Hybrid

Moth Flame Optimization Algorithm with Ant Lion Optimization algorithm (MFOALO), Hybrid

Cuckoo Search Optimization algorithm with Fire Fly Optimization Algorithm(CSFFA), Hybrid

Multi-Verse Optimization algorithm with Particle Swarm Optimization Algorithm (MVOPSO),

Hybrid Binary Bat Optimization Algorithm with Particle Swarm Optimization

9

Algorithm(BATPSO). We have selected the above meta-heuristics for hybridization due to the

following reasons.

• No free lunch theorem for optimization - This theorem has logically proved a particular

meta-heuristic may show very promising results on a set of problems, but the same

algorithm may show poor performance on a different set of problems.

• Combination of algorithmic ideas - Since there is not a single strategy which can be used

to solve all kinds of optimization problems.

• Individual optimization algorithm performance -Any superior performance in one class

of problems generally results in inferior performance over another class.

• Nature-inspired (simplicity) - They all share a common idea of using social behavior

presented by species for survival or a natural phenomena and are put in as mathematical

code to solve engineering problems. Therefore, easy to hybrid both algorithms.

• Main objective of Hybridization - the percentage of successful convergence to global

optimum should increase as opposed to those obtained by standalone algorithm.

• Popular Hybrid Algorithms – Most hybrid algorithms available now are based on

Genetic Algorithm (GA) and Particle Swarm Optimization Algorithm (PSO) only as they

are the simplest meta-heuristic algorithms. Very few researches have been performed on

optimization algorithms we have taken in our project.

We have selected the most popular and most promising meta-heuristic algorithms for hybridization

– GWO, ABC, WOA, MFO, ALO, CS, FFA, MVO and BAT algorithms. There are other meta-

heuristic algorithms modelled such as Ray Optimization (RO) [55] algorithm, Small-World

Optimization Algorithm (SWOA) [56] , Galaxy-based Search Algorithm (GbSA) [57] , Curved

Space Optimization (CSO) [58] .etc, but they have a poor rate of convergence, results and also

have less real world applications.

Moreover, algorithms we have hybrid together share a similar mathematical model or structure as

meta-heuristic algorithms are nature inspired and share a common idea of using social behavior

10

presented by species for survival or a natural-phenomena. This similarity makes meta-heuristic

algorithms easy to hybrid, provided they share identical mathematical modelling structure.

2.2 Objective and method of hybridization.

All metaheuristic algorithm share a common search process divided into two phases

• Exploration phase: the process of investigating the promising area(s) of the search space

as broadly as possible. Algorithm uses stochastic operators at this phase.

• Exploitation phase: refers to the local search capability around the promising regions

obtained in the exploration phase.

The goal of hybridization is to find a proper balance between these two phases; as it is considered

a challenging task due to the stochastic nature of meta-heuristics. The resultant hybrid algorithm

combines two or more other algorithms that solve the same problem, either choosing one

(depending on the data), or switching between them over the course of the algorithm. This is

generally done to combine desired features of each, so that the overall algorithm is better than the

individual algorithms used for hybridization.

We hybridize different meta-heuristics in order to improve the balance between exploitation and

exploration phase. We propose six hybrid optimization algorithms in this paper and their methods

of hybridization to improve exploration-exploitation balance are explained below.

11

2.2.1 GWOABC

 In GWO, hunting (exploitation process are guided by alpha, beta and delta wolves who

save first 3 best solutions and oblige the other search agents (including the omegas) to update

their positions according to the average position of the alpha, beta and delta wolves give by

the equation. �⃗�(𝑡 + 1) =
�⃗⃗�1+�⃗⃗�2+�⃗⃗�3

3
 . When the algorithm fails to find three best solutions

namely alpha, beta and delta; the algorithm tends to fall in local minima and fails to update the

position at lower fitness values. i.e. �⃗�(𝑡 + 1) =
�⃗⃗�1+�⃗⃗�2+�⃗⃗�3

3
 remains same over n iteration. If the

solution does not improve after a limited set of trials (t) or iterations, we incorporate scout bee

mechanism in ABC algorithm with which ABC algorithm avoids local minima entrapment.

During scout bee phase, scout bee sends alpha, beta and delta wolves repeatedly to generate a

new solution if the current solution is not improved within a limited set of trials. (i.e. change

of exploitation to exploration phase to find a better global minimum). The scout generated

solution inherits some good structures from the discarded solutions and the new solution is

better than a randomly generated fitness value.

We also use adaptive parameters of ABC in GWO than relying random numbers to smoothly

transit between exploration and exploitation.

Prob = (random.random() * fitness / Alpha_score)+0.1

Advantages of GWOABC hybridization

• Avoid local minima entrapment tendency in GWO by using scout bee exploitation.

• GWO have a better rate of convergence than swarm based ABC optimizer where

all fitness of employed bees and onlooker bees are taken into account than 3 best

solutions in GWO.

12

2.2.2 GWOWOA

In WOA, unlike GWO, the position of a search agent in the exploration phase is done according

to a randomly chosen search agent instead of the best search agent found so far. At exploitation

phase , whales follow a Spiral updating position. This approach assumes that the prey is still

moving and therefore we calculate the distance between the whale located at (X , Y) and prey

located at (X ∗, Y ∗). A spiral equation is then created between the position of whale and prey to

mimic the helix-shaped movement of humpback whales as follows : �⃗�(𝑡 + 1) =

𝐷′⃗⃗ ⃗⃗ . 𝑒𝑏𝑙. cos(2𝜋𝑙) + 𝑋 ∗⃗⃗⃗⃗⃗⃗⃗ (𝑡).

We integrate the shrinking encircling mechanism of bubble-net attacking method in WOA to GWO

prey chasing, tracking and encircling phase in this hybrid optimization algorithm; as they both

share identical mathematical modelling with different coefficient vectors. We also adapt the spiral

updating position of whale and prey to mimic the helix shaped movement of humpback whales at

higher values of co-efficient vector (𝐴). ⃗ This bubble-net foraging method is more sophisticated

prey encircling method than just updating position vectors with respect to the three best fitness

solutions, we were able to achieve faster convergence and better global optimum in most cases.

Advantages of GWOWOA hybridization

• GWO has faster rate of convergence at higher fitness values; WOA stagnates due to its poor

randomization technique.

• Encircling mechanism of GWO and WOA has less capability of jumping out of local minima

which was overcome by spiral updating position technique to cover a wider search-space to

avoid local minima entrapment.

13

2.2.3 MFOALO

MFO is a population based algorithm inspired by the peculiar navigational habit of a moth called

Transverse Orientation. ALO algorithm is inspired by the foraging behavior of antlion’s larvae.

At MFO exploration phase, in addition to transverse navigation method of moths, we also create

the random walk of antlions and normalize it according to MFO parameters given by

𝑋𝑖
𝑡 =

(𝑋𝑖
𝑡− 𝑎𝑖)𝑥 (𝑑𝑖− 𝑐𝑖

𝑡)

(𝑑𝑖
𝑡− 𝑎𝑖)

+ 𝑐𝑖

The best antlion obtained so far in each iteration is saved and considered as an elite. Elite antlion

position is calculated and is compared with that of moth position as given by the logarithmic spiral

equation(exploitation) : �⃗�(𝑡 + 1) = 𝐷′⃗⃗ ⃗⃗ . 𝑒𝑏𝑙. cos(2𝜋𝑙) + 𝑋 ∗⃗⃗⃗⃗⃗⃗⃗ (𝑡). If Elite antlion fitness is greater

than that of moth-flame fitness; position vectors are updated using both moth flame position and

elite ant-lion position.

Advantages of MFOALO hybridization

• High probability of resolving local optima stagnation due to the use of random walks.

• Both are population-based algorithms – easy to hybrid, better exploitation search

characteristics.

• The MFO algorithm is a gradient-free algorithm and considers problem as a black box. (less

parameters to adjust).

• Elitism maintains best solution attained so far and affects the movement of moths and antlions

in subsequent iteration to find better global optimum.

14

2.2.4 CSFFA

CS algorithm is inspired by the obligate brood parasitism of some cuckoo species by laying their

eggs in the nests of other host birds (of other species). FFA is a population algorithm inspired by

flashing characteristics of fireflies.

In FFA we assume that the attractiveness of a firefly is determined by its brightness which in turn

is associated with the encoded objective function. Instead of using a random probability Pa Є (0,1)

at exploitation phase at CS, we use light intensity I(r) and attractive coefficient 𝜷 of FFA at

exploitation to facilitate proper balance between exploitation and exploration. I(r) =
𝑰𝒔

𝒓𝟐
 ,

𝜷 = 𝜷𝟎 𝒆− 𝜸𝒓𝒎 where m ≥ 1

In CS, movement of cuckoos to generate new solution is a random pattern. It adversely affects its

local exploitation capability. Hence, instead of random movement we integrate Cartesian or

Euclidean distance maintained by fireflies at higher brightness in order to improve local minima

avoidance at exploitation phase - 𝑟𝑖𝑗 = |𝑥𝑖 − 𝑥𝑗| = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2
𝑑

𝑖=1

Advantages of CSFFA hybridization

• Improving the balance of exploration and exploitation in CS.

• Elitism characteristics of CS retain best solution found so far.

• Adaptive parameters with respect to best solution in search space provide better exploitation

capability.

15

2.2.5 MVOPSO

MVO is a population-based algorithm are based on three concepts in cosmology: white hole, black

hole and wormhole. PSO is a population based meta-heuristics inspired by social behavior of bird

flocking or fish schooling.

In PSO, velocity of each agent can be modified by the following equation in inertia weight

approach. v[] = w* v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]),

‘w’ is called as the inertia factor which controls the influence of previous velocity on the new

velocity : 𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

Mathematical modeling of MVO consists of two main coefficients - wormhole existence

probability (WEP) and travelling distance rate (TDR). 𝑊𝐸𝑃 = 𝑚𝑖𝑛 + 𝑙 ∗ (
𝑚𝑎𝑥−𝑚𝑖𝑛

𝑙
),

TDR = 1 -
𝑙1/𝑝

𝐿1/𝑝
 . We use this inertia factor w in MVO in order to substitute WEP at exploration

phase to improve rate of convergence and modify the wormhole tunnel exchange mechanism with

respect to TDR to explore search space faster.

Advantages of MVOPSO hybridization

• Computational procedure framework remains intact with that of MVO as PSO is a very simple

algorithm based on just relative velocity of search agents.

• Very fast convergence rate inherited by PSO at exploration phase.

• PSO is the simplest optimization algorithm, easy to hybrid and have less computational

complexity.

• Overcome premature local minima convergence of PSO.

16

2.2.6 BATPSO

BAT algorithm is Inspired by the echolocation behavior of bats. PSO is a population based meta-

heuristics inspired by social behavior of bird flocking or fish schooling.

In BAT minimum fitness function is located by an array-based greedy algorithm (works best in

faster exploitation in high dimensional fitness values and are more stochastic). PSO is based on

element-wise pos[I,j] search and updating the velocity to converge to a global minimum. (works

best in faster exploitation in lower fitness values and have a tendency to get trapped in local

minimum). Both PSO and BAT are run in parallel and they perform a comparison between both

minimum fitness function at each iteration. The lowest value is taken and both PSO and BAT is

updated with the lowest value and respective positions are updated simultaneously.

Advantages of BATPSO hybridization

• Jumping out of local minima – disadvantage of PSO

• Faster rate of convergence – disadvantage of BAT.

• Accuracy of BAT may be limited if the number of function evaluations is not high which is

dealt by PSO.

• BAT algorithm – still in primitive stage and requires more testing and tuning.

Inspiration, mathematical modelling and computational procedure of all hybrid algorithms are

explained in detail in subsequent chapters.

17

 3 LITERATURE REVIEW

Most of the hybrid optimization algorithms available at present are based on particle swarm

optimization (PSO). These algorithms take advantage of fast convergence speed of PSO and

minimize its defects such as premature convergence and local minimum stagnation. Mr. Jianwen

Guo proposed a hybrid optimization algorithm based on PSO and Cuckoo Search (CS) algorithm

for solving a preventive maintenance period optimization model problem [15].

A hybrid Firefly-Particle Swarm Optimization (FAPSO) is proposed in a paper in which the

population of FAPSO is divided into two sub-populations selecting FA and PSO as their basic

algorithm to carry out the optimization process, respectively. To exchange the information of the

two sub-populations and then efficiently utilize the merits of PSO and FA, the sub-populations

share their own optimal solutions while they have stagnated more than a predefined threshold.

Secondly, each dimension of the search space is divided into many small-sized sub-regions, based

on which much historical knowledge is recorded to help the current best solution to carry out a

detecting operator [16].

A hybrid DAPSO algorithm combines the frameworks of the dragonfly algorithm (DA) and

particle swarm optimization (PSO) to find the optimized solutions for the power system. The

hybrid algorithm adopts the exploration and exploitation phases of the DA and PSO algorithms,

respectively, and was implemented to solve the multi-objective optimal power flow problem [17].

A hybrid algorithm based on using moth-flame optimization (MFO) algorithm with simulated

annealing (SA), namely (SA-MFO) is explained in one paper. The proposed SA-MFO algorithm

takes the advantages of both algorithms. It takes the ability to escape from local optima mechanism

of SA and fast searching and learning mechanism for guiding the generation of candidate solutions

of MFO [18].

The hybrid algorithm has been constructed using Mean Grey Wolf Optimization algorithm

(MGWO) and Whale Optimization algorithm (WOA) utilizing the spiral equation of Whale

Optimization algorithm for two procedures in the Hybrid Approach GWO (HAGWO) algorithm:

18

(i) firstly, the spiral equation in Grey Wolf Optimization algorithm for balance between the

exploitation and the exploration process in the new hybrid approach; and (ii) secondly, the equation

in the whole population in order to refrain from the premature convergence and trapping in local

minimum. [19]

A hybrid algorithm for feature subset selection in high-dimensional datasets using FICA and

IWSSr algorithm was developed by Mostafa Moradhkhani. A hybrid method is proposed for

efficient subset selection in high-dimensional datasets. The proposed algorithm runs filter-wrapper

algorithms in two phases. The symmetrical uncertainty (SU) criterion is exploited to weight

features in filter phase for discriminating the classes. In wrapper phase, both FICA (fuzzy

imperialist competitive algorithm) and IWSSr (Incremental Wrapper Subset Selection with

replacement) in weighted feature space are executed to find relevant attributes. The new scheme

is successfully applied on 10 standard high-dimensional datasets, especially within the field of

biosciences and medicine, where the number of features compared to the number of samples is

large, inducing a severe curse of dimensionality problem. The comparison between the results of

our method and other algorithms confirms that our method has the most accuracy rate and it is also

able to achieve to the efficient compact subset [60].

The optimal coordination of Directional Overcurrent Relays (DOCRs) is a nonlinear and non-

convex optimization problem integrating large number of constraints. In a paper, the hybrid

Cuckoo Search Algorithm (CSA) - Firefly Algorithm (FFA) approach is implemented to solve

coordination problem of DOCRs. The Artificial Intelligence (AI) based method such as FFA

searches large solution space with large deviation in results with different number of simulations.

Also it is not assured that result given by FFA is global best. To solve this problem, the preliminary

optimal value of Time Multiplier Setting (TMS) and pickup current (Ip) are determined using CSA.

The values of these variables are used in FFA as upper bounds which reduce the solution space

and give a global optimal solution with very minimum deviation. The obtained results using

proposed method are compared with hybrid Genetic Algorithm-Nonlinear Programming (GA-

NLP) as well as with conventional CSA and FFA methods. The outcome demonstrates that the

proposed method can obtain realizable and global best solution with minimum deviation in results

and improved computational efficiency for this complex problem [61].

19

In a paper, hybrid clustering algorithm that integrates Fuzzy C-Means (FCM) and Whale

Optimization Algorithm (WOA) using the Chebshev distance function is proposed. The FCM

algorithm uses Euclidean distance to measure the similarity between the data. To avoid the existing

disadvantages of the Euclidean distance, all distances in the FCM algorithm is calculated with the

Chebsyhev distance function. The BOA algorithm is used to optimize the initial cluster centers.

The proposed hybrid algorithm is tested with three different sets of data selected from UCI

Machine Learning Repository database. As a result, it is seen that the clustering performance of

the proposed algorithm is much better than the FCM algorithm [62].

Real Time Processor Scheduling with no preemption of tasks is a class NP-hard problem. We have

attempted to get the best task allocation schedule for sporadic tasks, such that all the tasks are

being scheduled without missing its deadline. Bat algorithm was proposed from the motivation

behind the bat's echolocation behavior. Bat Searches for the prey in the given search location once

found it tries to catch it by converging towards the direction of the prey. The existing system

comprises of multiprocessor scheduling using bat algorithm which has been proved to be very

efficient. Based on it, proposed modernistic algorithm used to solve the Multi-objective

multiprocessor scheduling algorithm of a soft real time scheduling system for both periodic and

sporadic tasks that is completely scalable in nature [63].

Gravitational search algorithm (GSA) is an optimization algorithm inspired from Newton's law of

gravitation. Moth flame optimization (MFO) is another optimization algorithm, motivated by the

locomotion of moths around a light source. Both of these algorithms have tried to model the search

agents and altered properties like mass, gravitational constant, fitness, location, etc. in order to find

the most optimal value. By hybridizing MFO and GSA, the performance is expected to improve

across various measures. This paper presents a hybrid optimization algorithm by using concepts

of moth flame optimization and gravitational search algorithm and applies this hybrid algorithm

to image segmentation. An optimized K-means algorithm and an optimized thresholding algorithm

have been proposed. The results of the segmentation are then used to classify apples into different

classes [64]. The concept of hybridization, mathematical modeling and implementation of hybrid

algorithms are discussed in next section 3 to 8.

20

 4 HYBRID GREY WOLF OPTIMIZATION ALGORITHM AND

ARTIFICIAL BEE COLONY OPTIMIZATION ALGORITHM

ALGORITHM (GWOABC)

4.1 Grey Wolf Optimization algorithm (GWO)

Grey wolf (Canis lupus) is from the Canidae family. Grey wolves are declared as apex predators,

which means they are at the top of the food chain. Generally Grey wolves lives in pack, with

average group size of 5- 12 in one group. Interesting thing is that they have a very strict social

dominant hierarchy.

Both Female and Male Leaders are called alphas, on the top hierarchy, who generally take

decisions about hunting, sleeping place, time to wake up etc. The Alphas generally command to

the pack. Still there are some typo behavior where an Alpha Wolf follows other Wolves in the

pack. The gatherings called by Alpha Wolf are acknowledged by other wolves in the pack holding

their tail down. The Alpha Wolf are also known as Dominant Wolf as they command orders which

are to be followed by other wolves in the pack. The Alpha Wolves can only mate within their pack.

Alpha Wolves need not be the strongest in the group, it is just for maintaining the discipline and

organization of the pack. The alpha wolves are only allowed to mate in the pack.

Beta, the next level of hierarchy, are subordinate wolves that help the alpha in decision-making or

other pack activities. They can be either male or female wolf and is the next choice in case if the

alpha wolves becomes old or dies. The beta wolf should control the lower level wolves and also

obey the alpha wolves. In fact, they should play an advisory role to the alpha wolves and be

commanding to the other wolves in the lower level. They have to actually convey the messages

and concern between alpha wolves and the lower level wolves.

21

The lowest wolves in the hierarchy are the omega. The omega plays the role of scapegoat. Omega

wolves have to take upon everything what the other wolves does. In fact they are always the last

to eat. Even though this category omega, doesn’t seems to be important in the pack, they are the

cause for all fights in the pack as they vent out violence and frustration of all wolves by the omega.

This Omega category assists satisfying the entire pack and maintaining the dominance structure.

In some cases, the omega wolves babysit too.

There is one more category in this hierarchy which is neither Alpha, Beta nor Omega and is called

subordinate (also known as delta). Delta wolves report to alphas and betas, but they dominate the

omega. Scouts, sentinels, elders, hunters, and caretakers belong to this category. Scouts do the job

of alerting the pack in case of any danger hence they protect the boundary of the territory. Sentinels

protect and guarantee the safety of the pack. Elders are those experienced wolves who used to be

alpha or beta. Hunters help the alphas and betas when hunting prey and providing food for the

pack. Finally, the care takers are responsible for caring for the weak, ill, and wounded wolves

in the pack.

Grey Wolf Optimization algorithm imitate the leadership hierarchy and hunting mechanism of

gray wolves. In designing GWO, we consider the fittest solution as the alpha (α), second and third

best solutions are named beta (β) and delta (δ) respectively. The rest of the candidate solutions are

omega (ω). The GWO optimization hunting mechanism is ruled by α, β and δ. The ω wolves

follow these three wolves.

The three main stages of grey wolves hunting mechanism are as follows:

• Chasing, Tracking and drawing near the prey.

• Pursuing, encircling and hassling the pray until it halts.

• Attacking towards the prey.

This hunting technique and the social hierarchy of grey wolves are mathematically modeled in

order to design GWO and perform optimization.

22

4.2 Artificial Bee Colony algorithm (ABC)

The ABC Algorithm was developed by Karaboga in 2005 and it is Swarm based meta- heuristic

Algorithm. Foraging behavior of honey bees is how this algorithm got inspired by. This Algorithm

consists of 3 categories of bees, they are – Employed Bees, Onlooker bees and the scout bees.

Employed bees are those connected with specific food sources, onlooker bees monitor the dance

of employed bees within the hive and scout bees are those of which who search for food sources

in a different pattern. Every food source has only one employed bee. There is only one employed

bee for every food source. Which finally means that the number of employed bees are equal to the

number of food sources in the hive. The employed bee whose food source has been finished by the

bees becomes a scout.

There are basically three steps combined in the cycle. Firstly, moving the onlooker and employed

bee’s food sources and watching their nectar amounts and counting taking count of the scout bees

and directing them to the possible and available food sources. A food source arrangement reflects

a possible solution to the problem to be solved. The quality of solution points to the amount of

nectar of a food source. For placing Onlookers on the food source Probability- based selection

process is used. The probability value with which the food source is preferred by onlookers

increases as the nectar amount of food source rises. Every Bee colony has scouts that are the

colony’s explorers.

The explorers look for food in any pattern, not in any method. First, they are concerned mainly in

finding the kind of food source. The scouts are characterized by low search costs and a low average

in food source quality as a result of such behavior. Sometimes, the scouts can also discover rich,

entirely unknown food sources. The artificial scouts could have the fast discovery of the group of

feasible solutions as a task in the case of artificial bees. In ABC, the scout bee is classified by

selecting one of the employed bee. The selection is done by a control parameter "limit". The food

source is ignored by its employed bee if a solution representing a food source is not improved by

a predetermined number of trials and the employed bee is converted to a scout.

23

An important control parameter of ABC is the number of trials for releasing a food source is equal

to the value of "limit". Exploration and exploitation processes must be carried out together in a

robust search process. In the ABC algorithm, the scouts control the exploration process while

onlookers and employed bees carry out the exploitation process in the search space.

The recruitment rate represents a “measure” of how quickly the bee swarm locates and exploits

the newly discovered food source in the case of real honey bees. Artificial recruiting process could

similarly represent the “measurement” of the speed with which the feasible solutions or the optimal

solutions of the difficult optimization issues can be identified. The survival and progress of the

real bee swarm can be based upon the rapid discovery and efficient utilization of the best food

resources. Also, the optimal solution of difficult engineering problems is connected to the

relatively fast discovery of “good solutions” especially for the problems that need to be solved in

real time.

4.3 Mathematical Modeling of GWOABC

We take the advantage of scout bees in ABC, so that we can jump out from local minimum at

lower fitness values in GWO.A scout is used to generate a new solution in the predefined search

scope in the scout bee phase. For a new better solution, we take advantage of the discarded solution.

The newly generated solution makes use of some good structures from the discarded solutions and

the new solution is always better than a randomly generated fitness value.

In order to mathematically model the algorithm, following equations are used:

�⃗⃗⃗� = |𝐶.⃗⃗⃗⃗ 𝑋𝑝⃗⃗⃗⃗⃗⃗ (𝑡) − �⃗�(𝑡)| (3.3.1)

�⃗�(𝑡 + 1) = 𝑋𝑝⃗⃗⃗⃗⃗⃗ (𝑡) − 𝐴 ⃗⃗⃗⃗ . �⃗⃗⃗� (3.3.2)

24

Where t denotes the current iteration, 𝐴 ⃗⃗⃗⃗ and 𝐶 ⃗⃗⃗⃗ are co-efficient vectors, 𝑋𝑝⃗⃗⃗⃗⃗⃗ (𝑡) is the prey position

vector and �⃗� indicates position of grey wolf

Vectors 𝐴 ⃗⃗⃗⃗ and 𝐶 ⃗⃗⃗⃗ are calculated using below equations:

𝐴 = 2�⃗�. 𝑟1− �⃗� (3.3.3)

𝐶 = 2. 𝑟2 (3.3.4)

Where �⃗� linearly decreases from to 2 to 0 and r1 and r2 are random vectors in [0,1]

The fittest solution is saved as alpha. Beta is between alpha and delta, which has lower value than

alpha. Once we get the three best solutions after all this we then instruct the other agents in order

to update their positions according to the best search agents. For this, the following equations are

used.

�⃗⃗⃗� α = | 𝐶1⃗⃗⃗⃗⃗�⃗� α−�⃗�|, �⃗⃗⃗� β= | 𝐶2⃗⃗⃗⃗⃗�⃗� β−�⃗�|, �⃗⃗⃗� δ = | 𝐶3⃗⃗⃗⃗⃗�⃗� δ−�⃗�| (3.3.5)

�⃗�1 = �⃗� α -𝐴 1. (�⃗⃗⃗� α), �⃗�2= �⃗� β - 𝐴2 .(�⃗⃗⃗� β), �⃗�3 = �⃗� δ - 𝐴 3 .(�⃗⃗⃗� δ) (3.3.6)

�⃗�(𝑡 + 1) =
�⃗⃗�1+�⃗⃗�2+�⃗⃗�3

3
 (3.3.7)

The algorithm fails to update position and fall in local minimum when the algorithm fails to find

three best solutions namely alpha, beta and delta. We incorporate scout bee mechanism in ABC

algorithm with which ABC algorithm avoids local minimum entrapment if the solution does not

improve after a limited set of trials or iterations.

25

Scout bee sends alpha, beta and delta wolves repeatedly to generate a new solution if the current

solution is not improved within a limited set of trials during scout bee phase. The discarded

solution provides some good structures to the scout generated solution the new solution is better

than a randomly generated fitness value. The above process is repeated multiple times to generate

several new solutions and finally choose the fittest solution among them and update alpha, beta

and delta solution fitness accordingly.

Moreover, instead of using random numbers in determining the values of co-efficient vectors 𝐴 ⃗⃗⃗⃗ and

𝐶; we assign random numbers as a function of current fitness and best fitness based on probability

equation in ABC.

prob=(random.random()*fitness/Alpha_score)+0.1 (3.8)

4.4 Computational Procedure of GWOABC Algorithm

Initialize grey wolf population Xi (i = 1,2,3,..,n)

Initialize α, A and C

Calculate fitness for each search agent

X α = best search agent, X β = second best search agent

X δ = third best search agent

While(t < Max number of iterations)

 For each search agent

 Update the position of each search agent by eq 3.3.7

26

 End For

 Update α, A and C

 Update/reset trial counter if better α not found/found

 Calculate the fitness of each search agents

 Update X α, X β, X δ

 For trial exceed limit(n)

 If α not improved in ‘n’ continuous iterations then

 Scout α solution generated

 Update α, A and C

 End For

 Reset trial

 t = t+1

End While

Return X α

27

 5 HYBRID GREY WOLF OPTIMIZATION ALGORITHM AND

WHALE OPTIMIZATION ALGORITHM (GWOWOA)

5.1 Whale Optimization Algorithm (WOA)

Whales being the biggest mammals are considered fancy creatures. An adult whale can grow up

to 180 t weight and 30 m long. This giant mammals consists 7 different main such as killer, Minke,

Sei, humpback, right, finback, and blue. Whales are mostly considered as predators. They have to

breathe from the surface of the oceans which is why they never sleep. Actually, half of the brain

only sleeps. The interesting thing about the whales is that they are considered as highly intelligent

animals with emotions.

According to Hof and Van Der Gucht, whales have spindle cells in certain areas of their brains

similar to those of human. These cells are responsible for emotions, judgment and social behaviors

in humans. In other words, the spindle cells make us different from other creatures. Whales have

twice number of these cells than an adult human which is the main cause of their smartness. It has

been proven that whale can think, learn, judge, communicate, and become even emotional as a

human does, but obviously with a much lower level of smartness. It has been observed that whales

are able to develop their own dialect as well.

The social behavior of whales is another interesting point. They either live alone or in groups.

Even though, they are mostly observed living in groups. Some of their species, killer whales for

instance, can live in a family over their entire life period. One of the biggest baleen whales is the

humpback whales (Megaptera novaeangliae). An adult humpback whale is as big as a school bus.

Their favorite preys are krill and small fish herds. The special hunting method is another interesting

thing about the humpback whales. This foraging behavior is called bubble-net feeding method.

Humpback whales generally prefer hunting school of krill or small fishes that are close to the

surface. It has been analyzed that this foraging is done by creating distinctive bubbles along a circle

or ‘9’-shaped path. This behavior was only determined based on the observation from surface

28

before 2011. However, Goldbogen investigated this behavior utilizing tag sensors. They conquered

300 tag-derived bubble-net feeding events of 9 individual humpback whales. They named them

‘upward-spirals’ ‘double- loops’ after finding two maneuvers associated with bubble.

Humpback whales dive around12 m down in the former maneuver and then start to create bubble

in a spiral shape around the prey and swim up towards the surface. The later maneuver combines

three different stages: lobtail, coral loop and capture loop. It is worth mentioning here that Bubble-

net feeding is a unique behavior that can only be observed in humpback whales. The spiral bubble-

net feeding maneuver is mathematically modeled in order to perform WOA optimization.

The three main phases of Whale Optimization Algorithm are given below:

• Encircling prey

• Bubble-net attacking method (exploitation phase)

• Search for prey (exploration phase)

 GWO optimization is already discussed in section 3.1.

5.2 Mathematical Modeling of GWOWOA

Encircling prey method in WOA is almost as similar to tracking, chasing and drawing near the

prey in GWO. Encircling prey in WOA is represented by following equations:

�⃗⃗⃗� = |𝐶.⃗⃗⃗⃗ 𝑋 ∗⃗⃗⃗⃗⃗⃗⃗ (𝑡) − �⃗�(𝑡)| (4.2.1)

�⃗�(𝑡 + 1) = 𝑋 ∗⃗⃗⃗⃗⃗⃗⃗ (𝑡) − 𝐴 ⃗⃗⃗⃗ . �⃗⃗⃗� (4.2.2)

29

Where t denotes the current iteration, 𝐴 ⃗⃗⃗⃗ and 𝐶.⃗⃗⃗⃗ are co-efficient vectors, 𝑋 ∗⃗⃗⃗⃗⃗⃗⃗ is the position vector of

best solution obtained so far and �⃗� indicates the position vector, | | is the absolute value and is an

element -by- element multiplication.

Vectors 𝐴 ⃗⃗⃗⃗ and 𝐶 ⃗⃗⃗⃗ are calculated using below equations:

𝐴 = 2�⃗�. 𝑟1− �⃗� (4.2.3)

𝐶 = 2. 𝑟2 (4.2.4)

We integrate the shrinking encircling mechanism of bubble-net attacking method in WOA to GWO

prey chasing, tracking and encircling phase in this hybrid optimization algorithm. The shrinking

encircling mechanism of bubble-net attacking method is achieved by decreasing the value of �⃗� in

equation (4.2.3). Note that the fluctuation range of 𝐴is also decreased by �⃗�. Shrinking encircling

mechanism is represented by the equation below:

�⃗�(𝑡 + 1) = 𝑋 ∗⃗⃗⃗⃗⃗⃗⃗ (𝑡) − 𝐴 ⃗⃗⃗⃗ . �⃗⃗⃗� (4.2.5)

We also adapt the spiral updating position of whale and prey to mimic the helix shaped movement

of humpback whales as given below:

�⃗�(𝑡 + 1) = 𝐷′⃗⃗ ⃗⃗ . 𝑒𝑏𝑙. cos(2𝜋𝑙) + 𝑋 ∗⃗⃗⃗⃗⃗⃗⃗ (𝑡) (4.2.6)

In search for prey (exploration phase); we update the position of a search agent in the exploration

phase by selecting a search agent in a random fashion instead of choosing the search agent with

the best solution obtained so far. This technique and |A|>1 underline exploration and allow WOA

to carry out a global search.

30

�⃗⃗⃗� = |𝐶.⃗⃗⃗⃗ 𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − �⃗�| (4.2.7)

�⃗�(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝐴 ⃗⃗⃗⃗ . �⃗⃗⃗� (4.2.8)

We use equation (4.2.1), (4.2.5), (4.2.6), (4.2.7) and (4.2.8) to modify and adapt to equation (3.3.1),

(3.3.2), (3.3.5) and (3.3.6) in GWO. Since bubble-net foraging method is more sophisticated prey

encircling method than just updating position vectors with respect to the three best fitness

solutions, we were able to achieve faster convergence and better global optimum in most cases.

5.3 Computational Procedure of GWOWOA

Initialize grey wolf population Xi (i = 1,2,3,..,n)

Initialize α, A and C

Calculate fitness for each search agent

X α = best search agent, X β = second best search agent

Xδ = third best search agent

While(t < Max number of iterations)

 If p < 0.5

 If (|A|<1)

 Update the position of each search agent by eq (4.2.1)

 Else

 Select random search agent (Xrand)

 Update the position of each search agent by eq (4.2.5)

 If p > 0.5

31

 Select random search agent (Xrand)

 Update the position of search agent by eq (4.2.5) & (4.2.6)

 Re-initiate search iteration if no better solution found

 End If

 Check if any search agent goes beyond the search space and amendit.

 Update α, A and C

 Calculate the fitness of each search agents

 Update X α, X β, Xδ

 t = t+1

End While

Return X α

32

 6 HYBRID MOTH FLAME OPTIMIZATION ALGORITHM AND

ANT LION OPTIMIZATION ALGORITHM (MFOALO)

6.1 Moth Flame Optimization Algorithm (MFO)

Moths are fancy insects, which are highly similar to the family of butterflies. Basically, there are

over 160,000 various species of this insect in nature. They have two main milestones in their

lifetime: adult and larvae. In Cocoons, larvae are converted to moth. Moths have this special

navigation method in the night which is the most interesting fact about them. They have been

formed to fly in night under the moon light. They follow a mechanism called transverse orientation

for navigation in which a moth flies by maintaining a fixed angle with respect to the moon which

is a very effective mechanism for travelling long distances in a straight path. As the moon is far

away from the moth, this mechanism ensures flying in straight-line.

The same navigation method can be followed by humans as well. Suppose if the moon is in the

south side of the sky and a human wants to go the east side, while walking if human keeps moon

on his left side, he can move towards the east on a straight line. It is generally observed that moths

fly spirally around the lights, despite the effectiveness of transverse orientation. In fact, moths are

tricked by artificial lights and then they react with such behavior, this is due to the inefficiency of

the transverse orientation. The Moths try to maintain a similar angle with the light to fly in straight

line, when they see human-made artificial light.

Compared to the moon since such a light is extremely close, maintaining a similar angle to the

light source causes deadly spiral fly path for moths. It may be observed in that the moth eventually

intersects towards the light. An optimization algorithm called Moth-Flame Optimization (MFO)

is modeled mathematically to capture this behavior.

33

The navigation method of moths in nature called transverse orientation is the inspiration for Moth

Flame Optimization algorithm (MFO).In this method, a moth flies uses a very productive

technique in travelling by maintaining a fixed angle with respect to the moon. This mechanism

guarantees flying in a straight path as the moon lies at very large distance from the moth fly. But

then, this straight path travelling is hugely affected by man-made artificial light. Since these

artificial lights are so close to moths, they often end up in flying spirally around these lights as

they may get tricked.

6.2 Ant Lion Optimization Algorithm (ALO)

Antlions (doodlebugs) belong to the Myrmeleontidae family and Neuroptera order (net-winged

insects). The lifecycle of antlions includes two main phases: larvae and adult. A natural total

lifespan can be up to 3 years, which mostly covers in larvae. Antlions undergo metamorphosis in

a cocoon to become adult (only3–5 weeks for adulthood).They mostly hunt in larvae and the

adulthood period is only for reproduction.

Their names are extracted from their unique way of hunting behavior and based on their favorite

prey. An antlion larvae digs a cone-shaped pit in sand with its massive jaw by moving along a

circular path and throwing out sands. After digging the trap, the larvae hide underneath the bottom

of the cone and waits for insects (preferably ant) to be trapped in the pit.

As the edge of the cone is sharp, insects fall to the bottom of the trap easily. Once the antlion

realizes that a prey is in the trap, it tries to catch it. Generally insects usually are not caught

immediately and try to escape from the trap. In this case, antlions intelligently throw sands towards

the edge of the pit in order to slide the prey into the bottom of the pit. When the prey is caught

into the jaw, it is pulled under the soil and eaten up. After eating the prey, antlions throw the

leftovers outside the pit and prepare the pit for the next hunt.

34

Another interesting characteristic that has been observed in lifestyle of antlions is the relevancy of

the size of the trap and another two things: level of hunger and shape of the moon. Antlions tend

to dig out larger traps as they become hungrier and/or when the moon is full .They have been

evolved and adapted this way to improve their chance of survival. It also has been discovered that

an antlion does not directly observe the shape of the moon to decide about the size of the trap, but

it has an internal lunar clock to make such decisions.

The main inspiration of the ALO algorithm comes from the foraging behavior of antlion’s larvae.

Ant Lion Optimization algorithm (ALO) is a meta-heuristic algorithm based on the interaction of

ants and antlions in nature. Antlions belongs to Myrmeleontidae family and live in two phases of

larvae and adult. During their larvae phase, antlions make a small cone shaped trap in order to trap

ants. Antlions sit under the pit and wait for ants to be trapped. After feeding on trapped ants,

antlions throw the leftovers outside the pit and prepare the pit for the next hunt. It has been

observed that antlions dig a bigger bit when they are hungry, and this is the main concept of ALO

optimization algorithm.

During optimization, the following conditions are applied:

1. Ants use different random walks to move around the search space.

2. Random walks are applied to all the dimension of every ants.

3. Random walks are affected by the traps of antlions.

4. Antlions can build pits proportional to their fitness (the higher fitness, the larger pit).

5. Antlions having larger pits have the higher probability to catch ants.

6. Each ant can be caught by an antlion in each iteration and the elite (fittest antlion).

7. The range of random walk is decreased adaptively to simulate sliding ants towards

antlions.

8. If an ant becomes fitter than an antlion, this means that it is caught and pulled under the

sand by the antlion.

35

9. An antlion repositions itself to the latest caught prey and builds a pit to improve its change

of catching another prey after each hunt.

6.3 Mathematical Modelling of MFOALO

In the proposed MFO algorithm, it is assumed that the candidate solutions are moths and the

problem’s variables are the position of moths in the space. Therefore, the moths can fly in 1-D, 2-

D, 3-D, or hyper dimensional space with changing their position vectors. Since the MFO algorithm

is a population-based algorithm, the set of moths is represented in a matrix as follows:

𝐌 = ||

𝑀1,1 𝑀1,2… . . . 𝑀1,𝑑
𝑀2,1

:
:
:

𝑀2,1
:
:
:

… . . 𝑀2,𝑑
:
:
:

𝑀𝑛,1 𝑀𝑛,2… . 𝑀𝑛,𝑑

|| (5.3.1)

where n is the number of moths and d is the number of variables (dimension).

For all the moths, we also assume that an array exists which holds the related fitness solutions of

the moths and it is given by the following equation:

𝐎𝐌 = ||

𝑂𝑀1
𝑂𝑀2

:
:
:

𝑂𝑀𝑛

|| (5.3.2)

Where n denotes the number of moths.

36

Another important characteristics of the algorithm are the moth-flames and is given by the below

equation:

𝐅 = ||

𝐹1,1 𝐹1,2… . . . 𝐹1,𝑑
𝐹2,1
:
:
:

𝐹2,1
:
:
:

… . . 𝐹2,𝑑
:
:
:

𝐹𝑛,1 𝐹𝑛,2… . 𝐹𝑛,𝑑

|| (5.3.3)

For the flames , the corresponding fitness values are stored in the below matrix:

𝐎𝐅 = ||

𝑂𝐹1
𝑂𝐹2

:
:
:

𝑂𝐹𝑛

|| (5.3.4)

Similarly for ALO, the algorithm mimics the interaction between the antlions and ants in the trap.

In its mathematical model, ants are required to move over the search space, and antlions are

allowed to hunt them and become fitter using traps. Since ants move stochastically in nature when

searching for food, a random walk is chosen for model lignans movement. The position of ants are

stored and used during optimization in the below matrix equation:

𝐌𝐚𝐧𝐭 = ||

𝐴1,1 𝐴1,2… . . . 𝐴1,𝑑
𝐴2,1
:
:
:

𝐴2,1
:
:
:

… . . 𝐴2,𝑑
:
:
:

𝐴𝑛,1 𝐴𝑛,2… . 𝐴𝑛,𝑑

|| (5.3.5)

The corresponding fitness function are stored in following equation in order to evaluate the fitness

of each ant

𝐌𝐎𝐀 = ||

𝑓([𝐴1,1, 𝐴1,2, … . . . 𝐴1,𝑑])

𝑓([𝐴2,1
:
:
:

, 𝐴2,1
:
:
:

, … . . 𝐴2,𝑑
:
:
:

])

𝑓([𝐴𝑛,1 𝐴𝑛,2… . 𝐴𝑛,𝑑])

|| (5.3.6)

37

We assume that antlions are hiding at some places in the search space and their positions and

fitness solutions are saved in below matrix:

𝐌𝐚𝐧𝐭𝐥𝐢𝐨𝐧 = ||

𝐴𝑙1,1 𝐴𝑙1,2… . . . 𝐴𝑙1,𝑑
𝐴𝑙2,1

:
:
:

𝐴𝑙2,1
:
:
:

… . . 𝐴𝑙2,𝑑
:
:
:

𝐴𝑙𝑛,1 𝐴𝑙𝑛,2… . 𝐴𝑙𝑛,𝑑

|| (5.3.7)

where Mantlion is the matrix for saving the position of each antlion,𝐴𝑙𝑖,𝑗 shows the j-th dimension’s

value of i-th antlion, n is the numberof antlions, and d is the number of variables (dimension).

 MOAL is the matrix for saving the fitness of each antlion,𝐴𝑙𝑖,𝑗 shows the j-th dimension’s value of

i-th antlion, n is the numberof antlions, and f is the fitness function.

𝐌𝐎𝐀𝐋 = ||

𝑓([𝐴𝑙1,1, 𝐴𝑙1,2, … . . . 𝐴𝑙1,𝑑])

𝑓([𝐴𝑙2,1
:
:
:

, 𝐴𝑙2,1
:
:
:

, … . . 𝐴𝑙2,𝑑
:
:
:

])

𝑓([𝐴𝑙𝑛,1 𝐴𝑙𝑛,2… . 𝐴𝑙𝑛,𝑑])

|| (5.3.8)

In MFOALO; we extract the elitism characteristics of ALO algorithm and harmonize it into MFO

algorithm. Elitism is an important characteristic of evolutionary algorithms that allows them to

maintain the best fitness(s) obtained at any stage of optimization process. In ALO, the best antlion

obtained so far in each iteration is saved and considered as an elite. Since elite is the fittest antlion,

it can influence the movements of all ants during iteration. Therefore, we assume that every ants

random walks around a selected antlion by the roulette wheel and the elite simultaneously as given

by the equation:

𝐴𝑛𝑡𝑖
𝑡 =

𝑅𝐴
𝑡 +𝑅𝐸

𝑡

2
 (5.3.9)

38

Where, where 𝑅𝐴
𝑡 is the random walk around the antlion selected by the roulette wheel at t-th

iteration, 𝑅𝐸
𝑡 is the random walk around the elite at t-th iteration, and 𝐴𝑛𝑡𝑖

𝑡 indicates the position of

i-th ant at t-th iteration [28].

The ALO algorithm can be deduced to a three-tuple function that search for global minimum for

optimization as follows:

ALO(A,B,C)

where A is a function that generates the random initial solutions, B manipulates the initial

population provided by the function A, and C returns true when the end criterion is satisfied. The

functions A, B, and C are defined as follows:

ϴ A {MAnt, MOA, MAntlion, MOAL} (5.3.10)

{MAnt, MAntlion} B {MAnt, MAntlion} (5.3.11)

{MAnt, MAntlion} C {true, false} (5.3.12)

where MAnt t is the matrix of the position of ants, MAntlion includes the position of antlions, MOA

contains the corresponding fitness of ants, and MOAL has the fitness of antlions.

MFO is also three-tuple function that approximates the global optimal of optimization problems.

This uncanny similarity between ALO and MFO serves as the basis of our hybridization and is

defined as follows:

Where I is a function that generates a random population of moths and corresponding fitness

values. P function, which is the main function, moves the moths around the search space. This

39

function received the matrix of M and returns its updated one eventually. The T function returns

true if the termination criterion is satisfied and false if the termination criterion is not satisfied. The

position of each moth is updated with respect to a flame using the following equation:

𝑀𝑖 = 𝑆(𝑀𝑖, 𝐹𝑗) (5.3.13)

Where 𝑀𝑖 indicate the i-th moth, 𝐹𝑗 indicates the j-th flame, and S is the spiral function.

In MFOALO in addition to navigation method of moths, we also create the random walk of

antlions and normalize it using following equations:

𝑐𝑡 =
𝐶𝑡

I
 (5.3.14)

𝑑𝑡 =
𝑑𝑡

I
 (5.3.15)

where I is a ratio, 𝑐𝑡 is the minimum of all variables at t-th iteration, and 𝑑𝑡 indicates the vector

including the maximum of all variables at t-th iteration [29].

Elite antlion position is calculated and is compared with that of moth position as given by the

logarithmic spiral equation below:

�⃗�(𝑡 + 1) = 𝐷′⃗⃗ ⃗⃗ . 𝑒𝑏𝑙. cos(2𝜋𝑙) + 𝑋 ∗⃗⃗⃗⃗⃗⃗⃗ (𝑡) (5.3.16)

where 𝐷𝑖 . indicates the distance of the i-th moth for the j-th flame, b is a constant for defining

the shape of the logarithmic spiral, and t is a random number in [-1, 1].

D is calculated as follows:

40

𝐷𝑖 = |𝐹𝑗 −𝑀𝑖| (5.3.17)

where 𝑀𝑖 indicate the i-th moth, 𝐹𝑗 indicates the j-th flame, and 𝐷𝑖 indicates the distance of the i-

th moth for the j-th flame.

If Elite antlion fitness is greater than that of moth-flame fitness; position vectors are updated

using equation (5.3.9) using both moth flame position and elite ant-lion position.

6.4 Computational Procedure of MFOALO

Initialize the number of flames(flame number)

Initialize moth population.

Calculate fitness values.

For all moths

 For all parameters

 Update r and t

 Calculate D using Eq. (5.3.17) with respect to the corresponding moth.

 Update the matrix M with respect to the corresponding moth using Eq(5.3.13)& Eq (5.3.16)

 Select an antlion using roulette wheel

 Update c and d

 Create random walk and normalize it.

41

 Update elite antlion and compare with moth fitness with Eq(5.3.9)

 Update position

 End For

Calculate all fitness values

Update flames

End

42

 7 HYBRID CUCKOO SEARCH OPTIMIZATION ALGORITHM

AND FIRE FLY OPTIMIZATION ALGORITHM (CSFFA)

7.1 Cuckoo Search Algorithm (CS)

Cuckoo Search Algorithm is developed by Xin-she Yang and Suash Deb in 2009. The algorithm

is inspired by the obligate brood parasitism of certain cuckoo species by laying their eggs in the

nests of other host birds belonging to different species. Cuckoo search mimics the breeding

behavior of some female parasitic cuckoo species which mimics the colors and pattern of eggs of

hosts birds, thereby avoiding host birds from identifying their eggs which results in tossing alien

eggs or abandoning nests. On top of it, this algorithm is enhanced by incorporating Levy flights

rather than just using isotropic random walks.

Cuckoo are fascinating birds, not solely as a result of the attractive sounds they'll build, also

additionally as a result of their aggressive replica strategy. Some species like the cuckoo and Guira

cuckoos lay their eggs in communal nests, though they may remove other’s eggs to increase the

hatching probability of their own eggs. Quite a variety of species interact the obligate brood

interdependence by birth their eggs within the nests of different host birds (often different species).

There are 3 basic styles of brood interdependence: intra specific brood parasitism, cooperative

breeding, and nest takeover. Some host birds will interact direct conflict with the intrusive cuckoos.

If a bunch bird discovers the eggs don't seem to be their owns, they'll either throw these alien eggs

away or just abandon its nest and build a replacement nest elsewhere. Some cuckoo species just

like the New World brood-parasitic Tapera have evolved in such the manner that female parasitic

cuckoos are generally very specialized among the mimicry in color and pattern of the eggs of a

number of chosen host species . This reduces the likelihood of their eggs being abandoned and

therefore will increase their reproductivity. In addition, the temporal arrangement of egg-laying of

some species is additionally superb. Parasitic cuckoos usually opt for a nest wherever the host bird

43

simply set its own eggs. In general, the cuckoo eggs hatches lightly earlier than their host eggs.

Once the primary cuckoo chick is hatched, the first instinct action it will take is to evict the host

eggs by blindly propelling the eggs out of the nest, which will increase the cuckoo chick’s share

of food provided by its host bird. Studies also show that a cuckoo chick can also mimic the call of

host chicks to gain access to more feeding opportunity’s algorithm is based on three rules

• Each cuckoo lays one egg at a time, and dumps its egg in a randomly chosen nest.

• The best nests with high quality of eggs will carry over to the next generation.

• The number of available hosts nests is fixed, and the egg laid by a cuckoo is discovered by

the host bird with a probability pa Є (0,1). Discovering operate on some set of worst nests,

and discovered solutions dumped from farther calculations [30].

6.1.1Lévy Flights

On the other hand, various studies have shown that flight behavior of many animals and insects

has demonstrated the typical characteristics of Lévy flights. A recent study by Reynolds and Frye

shows that fruit flies or Drosophila melanogaster, explore their landscape using aseries of straight

flight paths punctuated by a sudden 90o turn, leading to a Lévy -flight-style intermittent scale free

search pattern. Studies on human behavior such as the Ju/’hoansi hunter-gatherer foraging patterns

also show the typical feature of Lévy flights. Even light can be related to Lévy flights [30].

7.2 Fire Fly Optimization (FFA)

The flashing light of fireflies is an amazing sight in the summer sky in the tropical and temperate

regions. There are about two thousand firefly species, and most fireflies produce short and

rhythmic flashes. The pattern of flashes is often unique for a particular species. The flashing light

is produced by a process of bioluminescence, and the true functions of such signaling systems are

still debating. However, two fundamental functions of such flashes are to attract mating partners

(communication), and to attract potential prey. In addition, flashing may also serve as a protective

44

warning mechanism. The rhythmic flash, the rate of flashing and the amount of time form part of

the signal system that brings both sexes together. Females respond to a male’s unique pattern of

flashing in the same species, while in some species such as photuris, female fireflies can mimic

the mating flashing pattern of other species so as to lure and eat the male fireflies who may mistake

the flashes as a potential suitable mate.

The flashing light can be formulated in such a way that it is associated with the objective function

to be optimized, which makes it possible to formulate new optimization algorithms. In the rest of

this paper, we will first outline the basic formulation of the Firefly Algorithm (FA) and then discuss

the implementation as well as analysis in detail.

Fire-fly optimization Algorithm is also developed by Xin-she Yang inspired by the flashing

characteristics of fireflies. The main objective of flashing by a firefly is to act as a signal system

to attract other fireflies. FFA algorithm is formulated according following assumptions:

• All fireflies are unisexual, so that any individual firefly will be attracted to all other

fireflies.

• Attractiveness is proportional to their brightness, and for any two fireflies, the less bright

one will be attracted by (and thus move towards) the brighter one; however, the intensity

(apparent brightness) decrease as their mutual distance increases.

• If there are no fireflies brighter than a given firefly, it will move randomly [31].

For a maximization problem, the brightness can simply be proportional to the value of the objective

function. Other forms of brightness can be defined in a similar way to the fitness function in

genetic algorithms or the bacterial foraging algorithm (BFA) [69].In the firefly algorithm, there

are two important issues: the variation of light intensity and formulation of the attractiveness. For

45

simplicity, we can always assume that the attractiveness of a firefly is determined by its brightness

which in turn is associated with the encoded objective function.

7.3 Mathematical Modelling of CSFFA

CS algorithm is based on three rules

• Each cuckoo lays one egg at a time, and dumps its egg in a randomly chosen nest.

• The best nests with high quality of eggs will carry over to the next generation.

• The number of available hosts nests is fixed, and the egg laid by a cuckoo is discovered by

the host bird with a probability pa Є (0,1). Discovering operate on some set of worst nests,

and discovered solutions dumped from farther calculations [30].

In CS algorithm, when generating new solutions x(t+1), lets take for cuckoo ‘i’, Levi flight is

performed:

 xi
(t+1) = xi

(t) + α ⊗ Levy(λ) (6.3.1)

where α > 0 is the step size. We use α = O(L/10) where L is the characteristic scale of the problem

of interest. In CS, Levy flight performs the random walk whose random step size or length is

inherited from a Levy distribution which has infinite mean and infinite variance. The above

equation is essentially the stochastic equation for random walk. In general, a random walk is a

Markov chain whose next status/location only depends on the current location (the first term in the

above equation) and the transition probability (the second term). The product ⊕ means entry wise

multiplications. This entry wise product is similar to those used in PSO, but here the random walk

via Lévy flight is more efficient in exploring the search space as its step length is much longer in

the long run.

Levy ~ u = t- λ (1 < λ <3) (6.3.2)

46

Here the steps essentially form a random walk process with a power-law step-length distribution

with a heavy tail. Some of the new solutions should be generated by Lévy walk around the best

solution obtained so far, this will speed up the local search. However, a substantial fraction of the

new solutions should be generated by far field randomization and whose locations should be far

enough from the current best solution, this will make sure the system will not be trapped in a local

optimum.

In the firefly algorithm, there are two important issues: the variation of light intensity and

formulation of the attractiveness. For simplicity, we can always assume that the attractiveness of

a firefly is determined by its brightness which in turn is associated with the encoded objective

function. In the simplest case for maximum optimization problems, the brightness Iof a firefly at

a particular location x can be chosen as I(x) ∝ f(x). However, the attractiveness β is relative, it

should be seen in the eyes of the beholder or judged by the other fireflies. Thus, it will vary with

the distance rij between firefly i and firefly j.

 In addition, light intensity decreases with the distance from its source, and light is also absorbed

in the media, so we should allow the attractiveness to vary with the degree of absorption. In FFA,

the light intensity I(r) varies according to the inverse square law.

I(r) =
𝐼𝑠

r2
 (6.3.3)

Where I_s is the intensity of the source, r is the distance.β is defined as the attractiveness of a

firefly and can be approximated as:

β =
β0

1+ 𝛾𝑟2
 (6.3.4)

47

In the implementation, the actual form of attractiveness function β(r) can be any monotonically

decreasing functions such as the following generalized form:

β0𝑒
−𝛾𝑟𝑚 where m ≥ 1 (6.3.5)

For a fixed γ, the characteristic length becomes Γ = γ −1/m → 1 as m → ∞. Conversely, for a given

length scale Γ in an optimization problem, the parameter γ can be used as a typical initial value.

That is γ = 1 Γm.

The distance between any two fireflies i and j at xi and xj , respectively, isthe Cartesian distance:

𝑟𝑖𝑗 = |𝑥𝑖 − 𝑥𝑗| = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2
𝑑

𝑖=1
 (6.3.6)

The movement of a fire-fly ‘i’ is attracted to another more attractive (brighter) butterfly j is

determined by :

𝑥𝑖 = 𝑥𝑖 + β0𝑒
−𝛾𝑟𝑖𝑗

2

(𝑥𝑗 − 𝑥𝑖) + 𝛼Є𝑗 (6.3.7)

Where rij is the Cartesian distance between any two fireflies. The β coefficient is determined as

3/2 is CS algorithm which is responsible for controlling the Lewy flights in CS algorithm.

Attractiveness of the firefly ‘β’ is responsible for the movement of firefly in FFA algorithm;

instead of relying on an arbitrary chosen fraction component; we use attractiveness (6.3.4) and

luminous intensity coefficients (6.3.3) of fireflies to perform Levy flights, sigma factor and also to

determine step-size in CS algorithm and the hybrid algorithm is realized.

48

7.4 Computational Procedure of CFFFA

Objective function f(x), x = (x1, x2,…, xd)

Generate an initial population of n host nests xi;

While (t<MaxGeneration) or (stop criterion)

 Get a cuckoo randomly/generate a solution by Levy flights and then evaluate its

 quality/fitness Fi.

 Choose a nest among n (say, j) randomly.

 Vary attractiveness with distance r via exp[-𝛾𝑟]

 Evaluate new solutions and update light intensity.

 If (Fi> Fj)

 Replace j by the new solution

 End

 A fraction (pa) of worse nests are abandoned and new ones/solutions are

 built/generated.

 Keep the best solutions (or nests with quality solutions)

 Rank the solutions and find the current best

End While

Post process results

49

 8 HYBRID MULTI-VERSE OPTIMIZATION ALGORITHM

AND PARTICLE SWARM OPTIMIZATION ALGORITHM

(MVOPSO)

8.1 Multi-Verse Optimization algorithm Algorithm (MVO)

The big bang theory discusses that our universe starts with a massive explosion. According to this

theory, the big bang is the origin of everything in this world, and there was nothing before that.

Multi-verse theory is another recent and well-known theory between physicists. It is believed in

this theory that there are more than one big bang and each big bang causes the birth of a universe.

The term multi-verse stands opposite of universe, which refers to the existence of other universes

in addition to the universe that we all are living in . Multiple universes interact and might even

collide with each other in the multi-verse theory. The multi-verse theory also suggests that there

might be different physical laws in each of the universes.

We chose three main concepts of the multi-verse theory as the inspiration for the MVO algorithm:

white holes, black holes, and wormholes. A white hole has never seen in our universe, but

physicists think that the big bang can be considered as a white hole and may be the main component

for the birth of a universe. It is also argued in the cyclic model of multi-verse theory. that big

bangs/white holes are created where the collisions between parallel universes occur. Black holes,

which have been observed frequently, behave completely in contrast to white wholes. They attract

everything including light beams with their extremely high gravitational force. Wormholes are

those holes that connect different parts of a universe together. The wormholes in the multi-verse

theory act as time/space travel tunnels where objects are able to travel instantly between any

corners of a universe (or even from one universe to another).

50

Every universe has an inflation rate (eternal inflation) that causes its expansion through space.

Inflation speed of a universe is very important in terms of forming stars, planets, asteroids, black

holes, white holes, wormholes, physical laws, and suitability for life. It is argued in one of the

cyclic multi-verse models that multiple universes interact via white, black, and wormholes to reach

a stable situation. This is the exact inspiration of the MVO algorithm, which is conceptually and

mathematically modelled in the following subsection.

As discussed, a population-based algorithm divides the search process into two phases: exploration

versus exploitation. We utilize the concepts of white hole and black hole to explore search spaces

by MVO. In contrast, the wormholes assist MVO in exploiting the search spaces. We assume that

each solution is analogous to a universe and each variable in the solution is an object in that

universe. In addition, we assign each solution an inflation rate, which is proportional to the

corresponding fitness function value of the solution. We also use the term time instead of the

iteration in this paper since it is a common term in multi-verse theory and cosmology.

The following rules are applied to the universes of MVO during optimization:

• The more inflation rate, the more probability of having white hole.

• The higher inflation rate, lesser the probability of having black holes.

• Universes with higher inflation rate tend to send objects through the white holes.

• Universes with lower inflation rate tend to receive more objects through the black holes.

• The objects in all universes may face random movement towards the best universe through

the wormholes regardless of the inflation rate.

When a white/black tunnel is established between two universes, the universe with higher inflation

rate is considered to have white hole, wherein the universe with lesser inflation rate is assumed to

have black holes. The objects are then transferred from the white holes of the source universe to

the black holes of the destination universe. This mechanism allows the universes to easily

51

exchange objects. To improve the whole inflation rate of the universes, we assume that the

universes with high inflation rates are highly probable to have white holes. In opposition, the

universes with low inflation rates have a high probability of having black holes. Therefore, there

is always high possibility to move objects from a universe with high inflation rate to a universe

with low inflation rate. This guarantees the improvement of the average inflation rates of the whole

universes over the iterations.

8.2 Particle Swarm Optimization algorithm Algorithm (PSO)

Particle swarm optimization (PSO) is described as population based stochastic optimization

technique which is developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by the social

behavior of fish schooling or bird flocking.

PSO have got many similarities with evolutionary computation techniques such as Genetic

Algorithms. A population of random solutions and searches for optima by updating generations

initializes the system. Though, unlike GA, PSO has no evolution operators such as crossover and

mutation. In PSO, the potential solutions, which are called particles, fly through the problem space

by following the current optimum particles. The detailed information will be given in following

sections as below.

Compared to GA, the advantages of PSO are that PSO is easy to implement and there are few

parameters to adjust. PSO is applied in many areas such as function optimization, artificial neural

network training, fuzzy system control, and other areas where GA can be applied.

Particle Swarm Optimization can sound complicated even though it's really a very simple

algorithm. Over many iterations, a group of variables have their values adjusted closer to the

member whose value is closest to the target at any given moment. Suppose a flock of birds circling

over an area where they can smell a hidden source of food, the one who is closest to the food chirps

52

will be the loudest and the other birds swing around in his direction. If any of the other circling

birds comes closer to the target than the first, it chirps louder, and the others move towards him.

This pattern continues until one of the birds happens upon the food. It's an algorithm that's simple

and easy to implement.

The algorithm keeps track of three global variables:

• Target value or condition

• Global best (gBest) value indicating which particle's data is currently closest to the Target

• Stopping value indicating when the algorithm should stop if the Target isn't found [35].

Each particle consists of:

• Data representing a possible solution

• A Velocity value which indicates how much the Data can be changed

• A personal best (pBest) value indicating the closest the particle's Data has ever come to the

Target

The particles' data could be anything. In the flocking birds example on top of, the data would be

the X, Y, Z coordinates of each bird. The individual coordinates of every bird would try and move

nearer to the coordinates of the bird that is nearer to the food's coordinates (gBest). If the

information could be a pattern or sequence, then individual pieces of the data would be

manipulated until the pattern matches the target pattern.

The velocity worth is calculated in line with however way somebody's information is from the

target. The additional it's, the larger the velocity value. In the birds example, the people furthest

53

from the food would create an endeavor to stay up with the others by flying quicker toward the

gBest bird. If the information could be a pattern or sequence, the speed would describe however

totally different the pattern is from the target, and thus, what proportion it has to be modified to

match the target.

Each particle's pBest value only indicates the closest the data has ever come to the target since the

algorithm started. The gBest value only changes when any particle's pBest value comes closer to

the target than gBest. Through every iteration of the algorithmic rule, gBest step by step moves

nearer and nearer to the target till one in all the particles reaches the target.

It's also common to envision PSO algorithms mistreatment population topologies, or

"neighborhoods", which can be smaller, localized subsets of the global best value. These

neighborhoods will involve 2 or additional particles that area unit planned to act along, or subsets

of the search space that particles happen into during testing. The use of neighborhoods usually

facilitate the algorithmic rule to avoid obtaining stuck in native minimum.

A group of birds area unit arbitrarily looking out food in a neighborhood. There is only one food

source and all birds do not know location of the food source. But, they know how far is the food

source in each iteration and they tend to follow the bird which is nearest to the food source. PSO

is perhaps the simplest optimization algorithm and have faster rate of convergence, however PSO

often tends to suffer from premature convergence and local minimum stagnation. In PSOMVO,

we use the same computational framework as MVO however we fine tune controlling parameters

to that of PSO in order to impart the algorithm the advantage of faster convergence speed.

54

8.3 Mathematical Modelling of MVOPSO

In order to mathematically model the white/black hole tunnels and exchange the objects of

universes, we utilized a roulette wheel mechanism. At every iteration, we sort the universes based

of their inflation rates and chose one of them by the roulette wheel to have a white hole. The

following steps are done in order to do this.

Assume that,

𝐔 = |

𝑥1,1 𝑥1,2… . . . 𝑥1,𝑑
𝑥2,1
:
:
:

𝑥2,2
:
:
:

… . . 𝑥2,𝑑
:
:
:

𝑥𝑛,1 𝑥𝑛,2… . 𝑥𝑛,𝑑

| (7.3.1)

where d is the number of parameters (variables) and n is the number of universes (candidate

solutions),𝑥𝑖,𝑗 indicates the jth parameter of ith universe, Ui shows the ith universe, NI(Ui) is

normalized inflation rateof the ith universe, r1 is a random number in [0, 1], and 𝑥𝑗,𝑘indicates the

jth parameter of kth universe selected by aroulette wheel selection mechanism.

The selection and determination of white holes are done by the roulette wheel, which is based on

the normalized inflation rate. The less inflation rate, the higher probability of sending objects

though white/black hole tunnels. Please note that -NI should be changed to NI for the maximization

problems. The exploration can be guaranteed using this mechanism since the universes are

required to exchange objects and face abrupt changes to explore the search space.

With the above mechanism, the universes keep exchanging objects without perturbations. To

maintain the diversity of universes and perform exploitation, we consider that each universe has

wormholes to transport its objects through space randomly. It may be observed that the

wormholes randomly change the objects of the universes without consideration of their inflation

rates. To provide local changes for each universe and have high probability of improving the

55

inflation rate using wormholes, we assume that worm hole tunnels are always established between

a universe and the best universe formed so far. The formulation of this mechanism is as follows:

xi
j = xj+ TDR * ((ubj – lbj) * r4 + lbj) r3 <0.5 , r2 < WEP (7.3.2)

xi
j = xj- TDR * ((ubj – lbj) * r4 + lbj) r3 > 0.5 , r2 < WEP (7.3.3)

xi
j = xi

j , r2 > WEP (7.3.4)

where xj indicates the jth parameter of best universe formed so far, TDR is a coefficient, WEP is

another coefficient, lbj shows the lower bound of jth variable, ubj is the upper bound of jth variable,

xj,I indicates the jth parameter of ith universe, and r2, r3, r4 are random numbers in [0, 1].

It may be inferred from the pseudocodes and mathematical formulation that there are two main

coefficients herein: wormhole existence probability (WEP) and travelling distance rate (TDR).

The former coefficient is for defining the probability of wormhole’s existence in universes. It is

required to increase linearly over the iterations to emphasize exploitation as the progress of

optimization process. Travelling distance rate is also a factor to define the distance rate (variation)

that an object can be teleported by a wormhole around the best universe obtained so far. In contrast

to WEP, TDR is increased over the iterations to have more precise exploitation/local search around

the best obtained universe.

The adaptive formula for both coefficients are given as follows:

𝑊𝐸𝑃 = 𝑚𝑖𝑛 + 𝑙 ∗ (
𝑚𝑎𝑥−𝑚𝑖𝑛

𝑙
) (7.3.5)

where min is the minimum (0.2 in this paper), max is the maximum (1 in this paper), l indicates

the current iteration, and L shows the maximum iterations.

56

TDR = 1 - l^(1/p)/L^(1/p) (7.3.6)

where p (in this paper equals 6) defines the exploitation accuracy over the iterations. The higher

p, the sooner and more accurate exploitation/local search.

Note that WEP and TDR can be considered as constants as well, but we recommend adaptive

values according to the results of this hybrid algorithm realized.

In the MVO algorithmic program, the optimization method starts with making a group of

random universes. At each iteration, objects in the universes with high inflation rates tend to

move to the universes with low inflation rates via white/black holes. Meanwhile, every single

universe faces random teleportation in its objects through wormholes towards the best

universe. This process is iterated until the satisfaction of an end criterion (a pre-defined

maximum number of iterations, for instance).

The computational complexity of the proposed algorithms depends on number of iterations,

number of universes, roulette wheel mechanism, and universe sorting mechanism. Sorting

universe is done in every iteration, and we employ the Quicksort algorithm, which has the

complexity of O(n log n) and O(n2) in the best and worst case, respectively. The roulette wheel

selection is run for every variable in every universe over the iterations and is of O(n) or O(log

n) based on the implementation.

To see how the proposed algorithm theoretically has the potential to solve optimization

problems, some observations are as follows:

White holes are more possible to be created in the universes with high inflation rates, so they

can send objects to other universes and assist them to improve their inflation rates.

57

where p (in this paper equals 6) defines the exploitation accuracy over the iterations. The

higher p, the sooner and more accurate exploitation/local search. Note that WEP and TDR

can be considered as constants as well, but we recommend adaptive values according to

the results of this hybrid algorithm realized.

In the MVO formula, the optimization process starts with creating a set of random

universes. At each iteration, objects in the universes with high inflation rates tend to move

to the universes with low inflation rates via white/black holes. Meanwhile, every single

universe faces random teleportation in its objects through wormholes towards the best

universe. This process is iterated until the satisfaction of an end criterion (a pre-defined

maximum number of iterations, for instance).

The computational complexity of the proposed algorithms depends on number of iterations,

number of universes, roulette wheel mechanism, and universe sorting mechanism. Sorting

universe is done in every iteration, and we employ the Quicksort algorithm, which has the

complexity of O(n log n) and O(n2) in the best and worst case, respectively. The roulette

wheel selection is run for every variable in every universe over the iterations and is of O(n)

or O(log n) based on the implementation.

To see how the proposed algorithm theoretically has the potential to solve optimization

problems, some observations are as follows:

White holes are more possible to be created in the universes with high inflation rates, so

they can send objects to other universes and assist them to improve their inflation rates.

Black holes are more likely to be appeared in the universes with low inflation rates so they

have higher probability to receive objects from other universes. This again will increase

the possibility of up inflation rates for the universes with low inflation rates. White/black

hole tunnels tend to transport objects from universes with high inflation rates to those with

low inflation rates, so the overall/average inflation rate of all universes is improved over

the course of iterations. Wormholes tend to appear randomly in any universe regardless of

inflation rate, so the diversity of universes can be maintained over the course of iterations.

58

In PSO, W parameter is given by below equation:

w=wMax-(current-iter)*((wMax-wMin)/Max-iter) (7.3.8)

where wMaxis 0.9, wMin is 0.2 . This w parameter is responsible for updating velocity in PSO

given by :

v[] = w* v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (7.3.9)

present[] = present[] + v[] (b) (7.3.10)

v[] is the particle velocity, persent[] is the current particle (solution). pbest[] and gbest[] are defined

as stated before. rand () is a random number between (0,1). c1, c2 are learning factors. usually c1

= c2 = 2 [35].

We use ‘w’ parameter in PSO in equation 7.3.2, 7.3.3 and 7.3.4 and modify TDR parameters

according to PSO velocity parameters eq (7.3.8) in order to determine the travelling distance rate

to the best possible solution/universe at each iteration. Computational procedure framework

remains intact with that of MVO as PSO is a very simple algorithm based on just relative velocity

of search agents.

59

8.4 Computational Procedure of MVOPSO

for each universe indexed by i

 for each object indexed by j

 r2=random([0,1]);

 if r2<Wormhole_existance_probability

 r3= random([0,1]);

 r4= random([0,1]);

 if r3<0.5

 U(i,j)=Best_universe(j) + Travelling_distance_rate * ((ub(j) -

 lb(j)) * r4 + lb(j));

 // adaptive parameters used

 else

 U(i,j)=Best_universe(j) - Travelling_distance_rate * ((ub(j) -

 lb(j)) * r4 + lb(j));

 // adaptive parameters used

 end if

 end if

 end for

end for

60

 9 HYBRID BINARY BAT OPTIMIZATION ALGORITHM AND

PARTICLE SWARM OPTIMIZATION

ALGORITHM(BATPSO).

9.1 Binary Bat Optimization Algorithm (BAT)

Bats are fascinating animals. They are the sole mammals with wings and that they conjointly

have advanced capability of fix. It is estimated that there are about 996 different species which

account for up to 20% of all mammal species. Their size ranges from the small bee bat (of

regarding one.5 to 2g) to the enormous round the bend with length of regarding 2m and weight

up to regarding one metric weight unit. Microbats typically have forearm length of about 2.2

to11cm. Most round the bend uses fix to a definite degree; among all the species, microbats

are a celebrated example as microbats use fix extensively whereas mega-bats do not.

Most microbats are insectivores. Microbats use a kind of measuring system, called, fix, to

detect prey, avoid obstacles, and locate their roosting crevices in the dark. These bats emit a

really loud sound pulse and listen for the echo that bounces back from the sur-rounding objects.

Their pulses vary in properties and may be related to with their looking ways, reckoning on

the species. Most round the bend uses short, frequency-modulated signals to comb through

regarding AN octave, while others more often use constant-frequency signals for echolocation.

Their signal information measure varies depends on the species, and often redoubled by

victimization a lot of harmonics.

Though each pulse only lasts a few thousandths of a second (up to about 8 to 10 ms),

61

however, it's a continuing frequency that is typically within the region of 25kHz to a hundred

and fifty kHz. the everyday vary of frequencies for many bat species ar within the region

between25kHz and 100kHz, though some species can emit higher frequencies up to 150 kHz.

Each unbearable burst might last usually five to twenty ms, and microbats emit regarding ten

to 20such sound bursts each second. When attempting to find prey, the rate of pulse emission

can be sped up to about 200 pulses per second when they fly near their prey. Such short sound

bursts imply the fantastic ability of the signal processing power of bats. In fact, studies show

the combination time of the bat ear is usually regarding 300 to 400 μs.

Amazingly, the emitted pulse may be as loud as one hundred ten dB, and, fortuitously, they

are in the ultrasonic region. The loudness conjointly varies from the loudest once searching for

prey and to a quieter base once orienting towards the prey. The travelling range of such short

pulses are typically a few metres, depending on the actual frequencies.

Microbats will manage to avoid obstacles as tiny as skinny human hairs. Studies show that

microbats use the time delay from the emission and detection of the echo, the time difference

between their 2 ears, and the loudness variations of the echoes to build up three-dimensional

scenario of the surrounding. They can detect the distance and orientation of the target, the type

of prey, and even the moving speed of the prey such as small insects. Indeed, studies suggested

that bats seem to be able to discriminate targets by the variations of the Doppler effect induced

by the wing-flutter rates of the target insects.

Obviously, some round the bend have sensible sight, and most bats also have very sensitive

smell sense. In reality, they're going to use all the senses as a mix to maximize the efficient

detection of prey and sleek navigation. However, here we are only interested in the

echolocation and the associated behavior. Such echolocation behavior of microbats can be

62

formulated in such a way that it can be associated with the objective function to be optimized,

and this make it possible to formulate new optimization algorithms.

Bat Algorithm (BAT) was proposed by Xin-She Yang based on the echolocation behavior of bats.

The capability of location of microbats is fascinating as these bats can find their prey and

discriminate different types of insects. BAT algorithm is based on following assumptions

• All bats use echolocation to sense distance, and they also ‘know’ the difference between

food/prey and background barriers in some magical way.

• Bats fly randomly with velocity vi at position xi with a fixed frequency fmin, varying

wavelength λ and loudness A0 to search for prey. They can automatically adjust the wavelength

(or frequency) of their emitted pulses and adjust the rate of pulse emission r Є [0, 1], depending

on the proximity of their target.

• Although the loudness can vary in many ways, we assume that the loudness varies from a

large (positive) A0 to a minimum constant value Amin [36].

Another obvious simplification is that no ray tracing is employed in estimating the time delay and

3-dimensional topography. Though this might be a good feature for the application in

computational geometry, however, we will not use this as it is more computationally extensive in

multidimensional cases.

In addition to those simplified assumptions, we also use the following approximations, for

simplicity. In general, the frequency f in an exceedingly vary [fmin, fmax] corresponds toa range

of wavelengths [λmin, λmax]. For example a frequency vary of [20kHz, 500kHz] corresponds to

a range of wavelengths from 0.7mm to 17mm.

For a given downside, we are able to additionally use any wavelength for the benefit of

implementation. In the actual implementation, we are able to regulate the vary by adjusting the

wavelengths(or frequencies), and therefore the detectable vary (or the most important wavelength)

ought to be chosen.

Particle Swarm Algorithm (PSO) is already discussed in section 7.2

63

9.2 Mathematical Modelling of BATPSO

In simulations, we use virtual bats naturally. We have to define the rules how their positions xi and

velocities vi in a d-dimensional search space are updated. The new solutions xi
t and velocities vi

t

at time step t are given by:

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + β (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) (8.2.1)

vi
t = vi

t-1+ (xi
t – x*)𝑓𝑖 (8.2.2)

xi
t = xi

t-1+ vi
t (8.2.3)

where, β Є [0, 1], is a random vector drawn from a uniform distribution. Here x*is the current

global best location (solution) which is located after comparing all the solutions amongst all the n

bats.

As the product λifi is the velocity increment, we can use either fi(or λi) to adjust the velocity

change while fixing the other factor λi (or fi), depending on the type of the problem of interest. In

our implementation, we will use fmin = 0 and fmax = 100, depending the domain size of the

problem of interest. Initially, each bat is randomly assigned a frequency which is drawn uniformly

from [fmin, fmax].

For the local search part, once a solution is selected among the current best solutions, a new

solution for each bat is generated locally using random walk

Xnew = xold+ЄAt (8.2.4)

where Є = [−1, 1] is a random number, while At =<Ati>is the average loudness of all the bats at

this time step.

64

The update of the velocities and positions of bats have some similarity to the procedure in the

standard particle swarm optimization [82] as fi essentially controls the pace and range of the

movement of the swarming particles. To a degree, BAT can be considered as a balanced

combination of the standard particle swarm optimization and the intensive local search

controlled by the loudness and pulse rate. This is the core basis of our hybridization.

Furthermore, the loudness Ai and rate ri of pulse emission is given by:

xi
t = xi

t-1 + vi
t (8.2.5)

Ai
t+1 = α Ai

t (8.2.6)

ri
t+1 = ri

0[1-e-γt] (8.2.7)

where α and γ are constants. In fact, it is similar to the cooling factor of a cooling schedule in the

simulated annealing.

PSO learned from the scenario and used it to solve the optimization problems. In PSO, each single

solution is a "bird" in the search space. We call it "particle". All of particles have fitness values

which are evaluated by the fitness function to be optimized, and have velocities which direct the

flying of the particles. The particles fly through the problem space by following the current

optimum particles.

PSO is initialized with a group of random particles (solutions) and then searches for optima by

updating generations. In every iteration, each particle is updated by following two "best" values.

The first one is the best solution (fitness) it has achieved so far. (The fitness value is also stored.)

This value is called pbest. Another "best" value that is tracked by the particle swarm optimization

algorithm is the best value, obtained so far by any particle in the population. This best value is a

global best and called gbest. When a particle takes part of the population as its topological

neighbors, the best value is a local best and is called lbest.

After finding the two best values, the particle updates its velocity and positions with following

equation (a) and (b).

65

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (8.2.8)

present[] = present[] + v[] (8.2.9)

v[] is the particle velocity, present[] is the current particle (solution). pbest[] and gbest[] are defined

as stated before. rand () is a random number between (0,1). c1, c2 are learning factors. usually c1

= c2 = 2 [35].

In BATPSO, In BAT minimum fitness function is located by an array-based greedy algorithm. All

fitness function of array pos[i:] parameters are calculated and 'min' function is used to find the

fitness minimum. According to the observation, this greedy algorithm works best in higher values;

however, finds it difficult in finding the global minimum as it reaches lower values; especially

fractional fitness value. PSO is based on element-wise pos[I,j] search and updating the velocity to

converge to a global minimum. PSO works best at lower bound boundary fitness values. Therefore,

in this hybrid, both PSO and BAT are run in parallel and they perform a comparison between both

minimum fitness function at each iteration. The lowest value is taken and both PSO and BAT is

updated with the lowest value and respective positions are updated simultaneously.

The numerical efficiency of the WOA algorithm developed in this study was tested by solving 23

mathematical optimization problems explained in the next section. The next section investigates

the effectiveness of all hybrid algorithms realized in practice with respect to these 23 benchmark

functions.

9.3 Computational Procedure of BATPSO

Objective function f(x), x = (x1, ..., xd)T

Initialize the bat population xi (i = 1, 2, ..., n) and vi

Define pulse frequency fi at xi

66

Initialize pulse rates ri and the loudness Ai

while (t <Max number of iterations)

 Generate new solutions by adjusting frequency, and updating velocities and locations/solutions

[equations (8.2.1) to (8.2.4)]

 if (rand >ri)

 Select a solution among the best solutions

 Generate a local solution around the selected best solution

 end if

 Generate a new solution by flying randomly

 if (rand < Ai& f(xi) < f(x*))

 Accept the new solutions

 Increase ri and reduce Ai

 end if

 for each dimension d = 1, ..., n do

 Pick random numbers: rp, rg ~ U(0,1)

 Update the particle's velocity: vi,d← ω vi,d+ φprp (pi,

 d-xi,d) + φgrg (gd-xi,d)

 Update the particle's position: xi ← xi + vi

 if f(xi) < f(pi) then

 Update the particle's best known position: pi ← xi

67

 if f(pi) < f(g) then

 Update the swarm's best known position: g ← pi

 End if

 End For

 Rank the bats and find the current best x*

 Compare PSO and BAT solution and update position

end while

Postprocess results

68

 10 FITNESS FUNCTIONS AND ANALYSIS

A fitness function is a particular type of objective function that is used to summarize, as a single

figure of merit, how close a given design solution is to achieving the set aims. Fitness functions

are used in genetic programming and genetic algorithms to guide simulations towards optimal

design solutions.

In particular, in the fields of genetic programming and genetic algorithms, each design solution is

commonly represented as a string of numbers (referred to as a chromosome). After each round of

testing, or simulation, the idea is to delete the n worst design solutions, and to breed n new ones

from the best design solutions. Each design solution, therefore, needs to be awarded a figure of

merit, to indicate how close it came to meeting the overall specification, and this is generated by

applying the fitness function to the test, or simulation, results obtained from that solution.

The reason that genetic algorithms cannot be considered to be a lazy way of performing design

work is precisely because of the effort involved in designing a workable fitness function. Even

though it is no longer the human designer, but the computer which comes up with the final design,

it is still the human designer who has to design the fitness function. If this is designed badly, the

algorithm will either converge on an inappropriate solution, or will have difficulty converging at

all.

The fitness function must not only correlate closely with the designer's goal, it must also be

computed quickly. Speed of execution is very important, as a typical genetic algorithm must be

iterated many times in order to produce a usable result for a non-trivial problem.

Fitness approximation may be appropriate, especially in the following cases:

• Fitness computation time of a single solution is extremely high

• Precise model for fitness computation is missing

• The fitness function is uncertain or noisy.

69

Two main classes of fitness functions exist: one where the fitness function does not change, as in

optimizing a fixed function or testing with a fixed set of test cases; and one where the fitness

function is mutable, as in niche differentiation or co-evolving the set of test cases.

Another way of looking at fitness functions is in terms of a fitness landscape, which shows the

fitness for each possible chromosome.

In this section, 23 classical benchmark functions are discussed which used by many researchers

[37- 42] for benchmarking optimization algorithms. all the hybrid algorithms are benchmarked

together with their parent algorithms on 23 classical benchmark functions. Despite the simplicity,

we have selected the fitness functions to be able to evaluate our results with those of current

metaheuristic and evolutionary optimization algorithms. These functions are listed in the table 1-

3 below; where ‘dim’ indicates the dimension of the function, range is the boundary of the

functions search space and fmin is the global optimum.

The test functions used in benchmarking are basically minimization functions and can be divided

into four groups: unimodal, multimodal, fixed dimension multimodal and composite functions.

10.1 Unimodal Fitness Functions

Functions F1–F7 are unimodal since they have only one global optimum. These functions allow

to evaluate the exploitation capability of the investigated meta-heuristic algorithms.

70

Function Dim Range fmin

𝑓1(𝑥) =∑𝑥𝑖
2

𝑛

𝑖=1

30 [-100,

100]

0

𝑓2(𝑥) =∑|𝑥𝑖|

𝑛

𝑖=1

+ 𝛱𝑖=1
𝑛 |𝑥𝑖|

30 [-10, 10] 0

𝑓3(𝑥) =∑(∑𝑥𝑗
2

𝑖

𝑗−1

)

𝑛

𝑖=1

30 [-100,

100]

0

𝑓4(𝑥) = max
 𝑖

 {|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} 30 [-100,

100]

0

𝑓5(𝑥) = ∑ [100(𝑥𝑖+1 −
𝑛−1

𝑖=1
𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2] 30 [-30, 30] 0

𝑓6(𝑥) = ∑ [
𝑛

𝑖=1
(𝑥𝑖 + 0.5)

2] 30 [-100,

100]

0

𝑓7(𝑥) =∑𝑖𝑥𝑖
4

𝑛

𝑖=1

+ 𝑟𝑎𝑛𝑑𝑜𝑚[0,1]
30 [-1.28,

1.28]

0

Table 1 - Unimodal Functions

Their 3D representation of above unimodal fitness functions are given below:

71

Figure 1-F1(x)

𝒇𝟏(𝒙) =∑𝒙𝒊
𝟐

𝒏

𝒊=𝟏

Figure 2-F2(x)

𝑓2(𝑥) =∑|𝑥𝑖|

𝑛

𝑖=1

+ 𝛱𝑖=1
𝑛 |𝑥𝑖|

72

Figure 3-F3(x)

𝑓3(𝑥) =∑(∑𝑥𝑗
2

𝑖

𝑗−1

)

𝑛

𝑖=1

Figure 4-F4(x)

𝑓4(𝑥) = max
 𝑖

 {|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛}

73

Figure 5-F5(x)

𝑓5(𝑥) = ∑ [100(𝑥𝑖+1 −
𝑛−1

𝑖=1
𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]

Figure 6-F6(x)

𝑓6(𝑥) = ∑ [
𝑛

𝑖=1
(𝑥𝑖 + 0.5)

2]

74

Figure 7- F7(x)

𝑓7(𝑥) =∑𝑖𝑥𝑖
4

𝑛

𝑖=1

+ 𝑟𝑎𝑛𝑑𝑜𝑚[0,1]

10.2 Multimodal Fitness Functions

In contrast to the unimodal functions, multimodal functions have many local optima with the

number increasing exponentially with dimension. This makes them suitable for benchmarking the

exploration ability of an algorithm. Functions F8–F13 are multimodal and are specified in the table

below:

75

Function Dim Range fmin

𝑓8(𝑥) = ∑ −𝑥𝑖
𝑛
𝑖=1 sin (√|𝑥𝑖|) 30 [-500, 500] -418.9289

x5

𝑓9(𝑥) =∑[𝑥𝑖
2

𝑛

𝑖=1

− 10 cos(2𝜋𝑥𝑖) + 10

30 [-5.12,

5.12]

0

𝑓10(𝑥) = −20exp(−0.2√
1

𝑛∑ 𝑥𝑖
2𝑛

𝑖=1

− exp (1𝑛∑ cos(2𝜋𝑥𝑖))
𝑛

𝑖=1
+

20+e

30 [-32, 32] 0

𝑓11(𝑥) =
1

4000
∑ 𝑥𝑖

2𝑛

𝑖=1
− Πi=1

n cos (
𝑥𝑖

√𝑖
) + 1 30 [-600, 600] 0

𝑓12(𝑥) = 0.1 {sin
2(3𝜋𝑥𝑖) + ∑(𝑥𝑖 − 1)

2 + [1 + sin(3𝜋𝑥𝑖 + 1)]

𝑛

𝑖=1

+ (𝑥𝑛 − 1)
2 + [1 + sin2(2𝜋𝑥𝑛)]} +∑𝑢(𝑥𝑖 , 5,100,4)

𝑛

𝑖=1

30 [-50, 50] 0

𝑓13(𝑥) = ∑𝑠𝑖𝑛

𝑛

𝑖=1

(𝑥𝑖). (sin (
𝑖. 𝑥𝑖

2

𝜋
))

2𝑚

, 𝑚 = 10
30 [0, 𝜋] -4.687

Table 2- Multimodal Fitness Functions

Figure 8 -F8(x)

𝑓8(𝑥) = ∑ −𝑥𝑖
𝑛
𝑖=1 sin (√|𝑥𝑖|)

76

Figure 9-F9(x)

𝑓9(𝑥) =∑[𝑥𝑖
2

𝑛

𝑖=1

− 10 cos(2𝜋𝑥𝑖) + 10

Figure 10-F10(x)

Fig 9.2.3 𝑓10(𝑥) = −20exp(−0.2√1/𝑛∑ 𝑥𝑖
2𝑛

𝑖=1
− exp (1/𝑛∑ cos(2𝜋𝑥𝑖))

𝑛

𝑖=1
+ 20+e

77

Figure 11 – F11(x)

𝒇𝟏𝟏(𝒙) =
𝟏

𝟒𝟎𝟎𝟎
∑ 𝒙𝒊

𝟐𝒏

𝒊=𝟏
− 𝚷𝐢=𝟏

𝐧 cos (
𝒙𝒊

√𝒊
) + 1

Figure 12-F12(x)

𝑓12(𝑥) = 0.1 {sin
2(3𝜋𝑥𝑖) + ∑(𝑥𝑖 − 1)

2 + [1 + sin(3𝜋𝑥𝑖 + 1)]

𝑛

𝑖=1

+ (𝑥𝑛 − 1)
2 + [1 + sin2(2𝜋𝑥𝑛)]}

+∑𝑢(𝑥𝑖 , 5,100,4)

𝑛

𝑖=1

78

Figure 13-F13(x)

𝑓13(𝑥) =∑𝑠𝑖𝑛

𝑛

𝑖=1

(𝑥𝑖). (sin(
𝑖. 𝑥𝑖

2

𝜋
))

2𝑚

, 𝑚 = 10

10.3 Fixed-dimension Multimodal Fitness Functions

Unlike unimodal functions, fixed-dimension multimodal functions include many local optima

whose number increases exponentially with the problem size (number of design variables).

Therefore, this kind of test problems turns very useful if the purpose is to evaluate the exploration

capability of an optimization algorithm.

79

Function Dim Range fmin

𝑓14(𝑥) =

(

 1

500
∑

1

𝑗 +∑ (𝑥𝑖 − 𝑎𝑖𝑗)6
2

𝑖=1

25

𝑗=1)

−1

2 [-65,65] 1

𝑓15(𝑥) =∑(𝑎𝑖 −
𝑥1(𝑏𝑖

2 + 𝑏𝑖𝑥2)

𝑏𝑖
2 + 𝑏𝑖𝑥3 + 𝑥4

)

2
11

𝑖=1

4 [-5,5] 0.00030

𝑓16(𝑥) = 4𝑥1
2 + 2.1𝑥1

4 +
1

3
𝑥1
6 − 4𝑥2

2 + 𝑥1𝑥2 + 4𝑥2
4

2 [-5,5] -1.0316

𝑓17(𝑥) =∑𝑐𝑖exp (−∑𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

3

𝑗=1

4

𝑖=1

)

2 [1,3] -3.86

𝑓18(𝑥) =∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

5

𝑖=1

4 [0,10] -10.1532

𝑓19(𝑥) =∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

10

𝑖=1

4 [0, 10] -10.5363

Table 3-Fixed-dimension Multimodal Fitness Functions

80

Figure 14-F14(x)

𝑓14(𝑥) =

(

 1

500
∑

1

𝑗 +∑ (𝑥𝑖 − 𝑎𝑖𝑗)6
2

𝑖=1

25

𝑗=1)

−1

Figure 15-F15(x)

𝑓15(𝑥) =∑(𝑎𝑖 −
𝑥1(𝑏𝑖

2 + 𝑏𝑖𝑥2)

𝑏𝑖
2 + 𝑏𝑖𝑥3 + 𝑥4

)

2
11

𝑖=1

81

Figure 16-F16(x)

𝑓16(𝑥) = 4𝑥1
2 + 2.1𝑥1

4 +
1

3
𝑥1
6 − 4𝑥2

2 + 𝑥1𝑥2 + 4𝑥2
4

Figure 17-F17(x)

82

𝑓17(𝑥) =∑𝑐𝑖exp (−∑𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

3

𝑗=1

4

𝑖=1

)

Figure 18-F18(x)

𝑓18(𝑥) =∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

5

𝑖=1

83

Figure 19-F19(x)

𝑓19(𝑥) =∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

10

𝑖=1

10.4 Composite Benchmark Functions

The fourth class of benchmark functions employed includes composite functions, generally very

challenging test beds for meta-heuristic algorithms. So, exploration and exploitation can be

simultaneously benchmarked by the composite functions. Moreover, the local optima avoidance

of an algorithm can be examined due to the massive number of local optima in such test functions.

84

Function Dim Range fmin

𝑓20(𝐶𝐹1):
𝑓1, 𝑓2, 𝑓3, 𝑓4, … , 𝑓10 = 𝑆𝑝ℎ𝑒𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
[ϐ1, ϐ2, ϐ3, …, ϐ10] = [1,1,1,…,1]
[λ 1, λ 2, λ 3, …, λ 10] = [5/100, 5/100, 5/100,…,5/100]

10 [-5,5] 0

𝑓21(𝐶𝐹2):
𝑓1, 𝑓2, 𝑓3, 𝑓4, … , 𝑓10 = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
[ϐ1, ϐ2, ϐ3, …, ϐ10] = [1,1,1,…,1]
[λ 1, λ 2, λ 3, …, λ 10] = [5/100, 5/100, 5/100,…,5/100]

10 [-5,5] 0

𝑓22(𝐶𝐹3):
𝑓1, 𝑓2 = 𝐴𝑐𝑘𝑙𝑒𝑦

′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓3, 𝑓4, = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛

′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓5, 𝑓6, = 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎

′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓7, 𝑓8, = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓9, 𝑓10, = 𝑆𝑝ℎ𝑒𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
[ϐ1, ϐ2, ϐ3, …, ϐ10] = [1,1,1,…,1]
[λ 1, λ 2, λ 3, …, λ 10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100 ,5/100, 5/100, 5/100]

10 [-5,5] 0

𝑓23(𝐶𝐹4):
𝑓1, 𝑓2 = 𝐴𝑐𝑘𝑙𝑒𝑦

′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓3, 𝑓4, = 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛

′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓5, 𝑓6, = 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎

′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓7, 𝑓8, = 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑓9, 𝑓10, = 𝑆𝑝ℎ𝑒𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
[ϐ1, ϐ2, ϐ3, …, ϐ10] = [1,1,1,…,1]
[λ 1, λ 2, λ 3, …, λ 10] = [5/32, 5/32, 1, 1, 5/0.5, 5/0.5, 5/100 ,5/100, 5/100, 5/100]

10 [-5,5] 0

Table 4-Composite Benchmark Functions

85

 11 RESULTS AND DISCUSSION

In this section, all the hybrid algorithms are benchmarked together with their parent algorithms on

23 classical benchmark functions used by many researchers [37- 42]. Despite the simplicity, we

have selected the fitness functions to be able to evaluate our results with those of current

metaheuristic and evolutionary optimization algorithms.

The test functions used in benchmarking are basically minimization functions. Unimodal functions

allow to evaluate the exploitation capability of the investigated meta-heuristic algorithms.

Multimodal and fixed-dimension multimodal functions are used for benchmarking the exploration

ability of an algorithm as they include many local optima whose number increases exponentially

with the problem size (number of design variables).The fourth class of benchmark functions

employed includes composite functions, generally very challenging test beds for meta-heuristic

algorithms. So, exploration and exploitation can be simultaneously benchmarked by the composite

functions. Moreover, the local optima avoidance of an algorithm can be examined due to the

massive number of local optima in such test functions.

We have run our hybrids along with their parent algorithms with which the hybrid algorithm is

fabricated. The graphs are plotted below:

11.1 GWOABC fitness convergence graphs

Here, GWOABC (green), GWO (blue) and ABC (red) algorithms are run concurrently, and we have obtained

following outputs.

86

Figure 20-Fitness Function (23) GWOABC

From the graph it is evident that the proposed hybrid algorithm have faster convergence rate and

have obtained better global optimum in most of the test function analysis. The graph illustrates the

convergence rate in composite constrained benchmark function F23. Composite benchmark

functions investigate both exploitation and exploration ability of an optimizer. The convergence

line graph shows that GWO-ABC have very acute convergence rate towards lower fitness values

and demonstrates better local minima avoidance at lower fitness values.

11.2 GWOWOA fitness convergence graphs

Here, GWOWOA (green), GWO (blue) and WOA (red) algorithms are run concurrently, and we

have obtained following outputs.

87

Figure 21- Fitness Function (23) GWOWOA

From the graph it is evident that the proposed hybrid algorithm have faster convergence rate and

have obtained better global optimum in most of the test function analysis. The graph illustrates the

convergence rate in composite constrained benchmark function F23. Composite benchmark

functions investigate both exploitation and exploration ability of an optimizer. The convergence

line graph shows that GWO-WOA have very acute convergence rate towards lower fitness values

and demonstrates better local minima avoidance at lower fitness values. It starts very slowly and

outpace GWO at 80th iteration and WOA around 100th iteration and achieves a superior global

optimum value compared to both GWO and WOA.

11.3 MFOALO fitness convergence graphs

Here, MFOALO (green), MFO (blue) and ALO (red) algorithms are run simultaneously, and we

have obtained following outputs.

88

Figure 22-Fitness Function (8) MFOALO

MFOALO has the best performance for this multimodal benchmark function F8. MFOALO

achieves a final fitness value of -8892 followed by ALO at -8703, whereas, MFO was able to

obtain a value of only -7384. Multimodal functions allow to evaluate the exploration capability of

the investigated meta-heuristic algorithms. Exploration consists of probing a much larger portion

of the search space with the hope of finding other promising solutions that are yet to be refined.

This operation amounts then to diversifying the search in order to avoid getting trapped in a local

optimum. The graphical analysis clearly shows that MFOALO showcases immaculate exploration

capability in order to jump outside from a local optimum. From the graph it is evident that the

proposed hybrid algorithm have faster convergence rate and have obtained better global optimum

in most of the test function analysis.

89

11.4 CSFFA fitness convergence graphs.

Here, CSFFA (green), CS (blue) and FFA (red) algorithms are run simultaneously, and we have

obtained following outputs.

Figure 23- Fitness Function (8) CSFFA

Fig shows the line graphs of convergence of CSFFA hybrid algorithm with respect to their

parent CS and FFA algorithms. From the graph, it can be observed that initially CSFFA have

the slowest convergence rate compared to CS and FFA. However, CSFFA acquire high

convergence rate and outpace both CS and FFA before 50th iteration and obtain a global

optimum.

90

11.5 MVOPSO fitness convergence graphs.

Here, MVOPSO (green), PSO (blue) and MVO (red) algorithms are run concurrently, and we have

obtained following outputs.

Figure 24-Fitness Function (23) PSOMVO

From the graph it is evident that the proposed PSOMVO hybrid algorithm have faster convergence

rate and have obtained better global optimum the test function analysis. MVO get stuck in local

minima however PSO experience premature convergence.

11.6 BATPSO fitness convergence graphs.

Here, BATPSO (green), PSO (blue) and BAT (red) algorithms are run concurrently, and we have

obtained following outputs.

91

Figure 25-Fitness Function (23) BATPSO

The graph shows the rate of convergence on BATPSO, BAT and PSO algorithms in composite

fitness function F23. These constrained benchmark functions test exploration ability of an

optimization algorithm in a more complex search space. From the graph it is observed that BAT

the fastest and sharp convergence rate in the beginning. PSO has the slowest convergence

graph and very bottom out result compared to BAT and BATPSO. BATPSO arrives at improved

global minimum than the other algorithm at the end.

11.7 Result Analysis

We use unimodal functions allow to evaluate the exploitation capability, multimodal functions

have many local optima with the number increasing exponentially with dimension of the which

enable us to assess the exploration capability of algorithm, composite functions which has

challenging search space to investigate exploitation, exploration and local minimum avoidance

capability of algorithms. A convergence behavior analysis is also investigated in proposed hybrid

meta-heuristic algorithms. These hybrids are run 30 times continuously and their convergence

graph and results obtained are also considered to verify the robustness of the algorithms proposed.

Roman letters in table 5,6 and 7 denotes the rank of algorithm according to their fitness values.

92

10.7.1 Exploitation Analysis

Unimodal functions are the most suitable for evaluating exploitation ability of an optimization

algorithm. Exploitation is to search the surrounding search area nearby the current solution,

something like local search. Finding an algorithm that could handle both (exploitation and

exploration) is challenging because they are two different objectives.

According to results in Table 5; all hybrid algorithms were able to provide either better or very

competitive results compared to their parent algorithms

Hybrid

Algorithm,

Parent1, Parent

2

Grouping and ranking fitness functions according to performance of

algorithms

Hybrid Parent1 Parent 2

GWOABC,

GWO, ABC

F1(i), F2(i), F3(i), F4(ii),

F5(i), F6(i), F7(iii)

F1(ii), F2(ii), F3(iii),

F4(i), F5(ii), F6(iii),

F7(ii)

F1(iii), F2(iii), F3(ii),

F4(iii), F5(iii), F6(ii),

F7(i)

GWOWOA,

GWO, WOA

F1(ii), F2(i), F3(i),

F4(ii), F5(i), F6(i), F7(i)

F1(i), F2(iii), F3(iii),

F4(iii), F5(iii), F6(i),

F7(ii)

F1(iii), F2(ii), F3(iii),

F4(i), F5(ii), F6(ii),

F7(iii)

MFOALO,

MFO, ALO

F1(iii), F2(i), F3(i),

F4(ii), F5(i), F6(ii),

F7(ii)

F1(ii), F2(iii), F3(ii),

F4(ii), F5(ii), F6(i),

F7(ii)

F1(i), F2(ii), F3(iii),

F4(ii), F5(iii), F6(iii),

F7(i)

CSFFA,

CS, FFA

F1(i), F2(i), F3(i), F4(i),

F5(ii), F6(ii), F7(i)

F1(iii), F2(ii), F3(ii),

F4(ii), F5(i), F6(i),

F7(iii)

F1(ii), F2(iii), F3(iii),

F4(iii), F5(iii), F6(iii),

F7(ii)

PSOMVO,

MVO, PSO

F1(i), F2(i), F3(i), F4(i),

F5(ii), F6(ii), F7(ii)

F1(iii), F2(ii), F3(ii),

F4(iii), F5(iii), F6(iii),

F7(i)

F1(ii), F2(iii), F3(iii),

F4(ii), F5(i), F6(i),

F7(iii)

93

PSOBAT,

BAT, PSO

F1(iii), F2(i), F3(i),

F4(ii), F5(i), F6(iii),

F7(ii)

F1(ii), F2(iii), F3(ii),

F4(ii), F5(ii), F6(ii),

F7(ii)

F1(i), F2(ii), F3(iii),

F4(ii), F5(iii), F6(i),

F7(i)

Table 5-Comparison of results obtained for unimodal fitness functions.

Exploitation refers to the local search capability around the promising regions obtained in the

exploration phase. Finding a proper balance between these two phases is considered a challenging

task due to the stochastic nature of meta-heuristics. From the table we find that the hybrid performs

the best in at least four to five out of seven unimodal functions and have given competitive results

in the remaining unimodal test functions.

10.7.2 Exploration Analysis

In short, exploration is the ability of the algorithm to search for new individuals far from the current

individual (current solution in the search space). Multimodal and fixed-dimension multimodal

functions have many local optima with the number increasing exponentially with dimension of the

which enable us to assess the exploration capability of algorithm. According to results in Table 6

all hybrid algorithms were able to provide either better or very competitive results compared to

their parent algorithms.

Hybrid

Algorithm,

Parent1, Parent

2

Grouping and ranking fitness functions according to performance of

algorithms

Hybrid Parent1 Parent 2

GWOABC,

GWO, ABC

F8(i), F9(i), F10(i),

F11(ii), F12(i), F13(i),

F14(i), F15(i), F16(iii),

F17(ii), F18(i), F19(i),

F8(ii), F9(ii), F10(ii),

F11(iii), F12(ii),

F13(iii), F14(iii),

F15(iii), F16(i), F17(i),

F18(ii), F19(ii),

F8(iii), F9(iii),

F10(iii), F11(i),

F12(iii), F13(ii),

F14(ii), F15(ii),

F16(ii), F17(ii),

F18(iii), F19(iii),

94

GWOWOA,

GWO, WOA

F8(i), F9(i), F10(iii),

F11(ii), F12(i), F13(i),

F14(ii), F15(i), F16(iii),

F17(i), F18(i), F19(i),

F8(ii), F9(ii), F10(i),

F11(iii), F12(ii),

F13(iii), F14(iii),

F15(iii), F16(i),

F17(ii), F18(ii),

F19(ii),

F8(iii), F9(iii), F10(ii),

F11(i), F12(iii),

F13(ii), F14(i), F15(ii),

F16(ii), F17(iii),

F18(iii), F19(iii),

MFOALO,

MFO, ALO

F8(i), F9(i), F10(ii),

F11(i), F12(i), F13(ii),

F14(iii), F15(ii), F16(iii),

F17(ii), F18(i), F19(ii),

F8(ii), F9(iii), F10(i),

F11(iii), F12(ii),

F13(iii), F14(i),

F15(iii), F16(ii),

F17(iii), F18(iii),

F19(iii),

F8(iii), F9(ii), F10(iii),

F11(ii), F12(iii),

F13(ii), F14(ii),

F15(ii), F16(i), F17(i),

F18(ii), F19(i),

CSFFA,

CS, FFA

F8(iii), F9(i), F10(ii),

F11(i), F12(i), F13(i),

F14(iii), F15(i), F16(iii),

F17(ii), F18(i), F19(iii),

F8(ii), F9(iii), F10(i),

F11(iii), F12(ii),

F13(ii), F14(i), F15(ii),

F16(ii), F17(iii),

F18(iii), F19(i),

F8(i), F9(ii), F10(iii),

F11(ii), F12(iii),

F13(i), F14(ii),

F15(iii), F16(i), F17(i),

F18(ii), F19(ii),

PSOMVO,

MVO, PSO

F8(i), F9(i), F10(ii),

F11(i), F12(i), F13(ii),

F14(iii), F15(i), F16(iii),

F17(ii), F18(i), F19(iii),

F8(ii), F9(iii), F10(i),

F11(iii), F12(ii),

F13(iii),

F14(i),F15(ii),

F16(ii),F17(iii),

F18(iii), F19(i),

F8(iii), F9(ii), F10(iii),

F11(ii), F12(iii),

F13(ii), F14(ii),

F15(iii), F16(i), F17(i),

F18(ii), F19(ii),

PSOBAT,

BAT, PSO

F8(iii), F9(i), F10(ii),

F11(i), F12(i), F13(i),

F14(ii), F15(i), F16(iii),

F17(ii), F18(i), F19(iii),

F8(ii), F9(iii), F10(i),

F11(iii), F12(ii),

F13(ii), F14(iii),

F15(ii), F16(ii),

F17(iii), F18(iii),

F19(i),

F8(i), F9(ii), F10(iii),

F11(ii), F12(iii),

F13(i), F14(i), F15(iii),

F16(i), F17(i), F18(ii),

F19(ii),

Table 6-Comparison of results obtained for multimodal and fixed-dimension

multimodal fitness functions.

95

The exploration phase refers to the process of investigating the promising area(s) of the

search space as broadly as possible. An algorithm needs to have stochastic operators to randomly

and globally search the search space in order to support this phase. From the table we find that the

hybrid performs the best in at least four to 8 out of 11 various multimodal functions and have given

competitive results in the remaining test functions.

10.7.3Local Minimum Avoidance and Convergence behavior analysis

The fourth class of benchmark functions employed includes composite functions, generally very

challenging test beds for meta-heuristic algorithms. So, exploration and exploitation can be

simultaneously benchmarked by the composite functions. Moreover, the local optima avoidance

of an algorithm can be examined due to the massive number of local optima in such test functions.

According to table 7, all hybrid algorithm provides very competitive results on the composite

benchmark functions. This demonstrates that hybrid algorithms show a good balance between

exploration and exploitation that results in high local optima avoidance. From all the convergence

graphs, hybrids show exceptional faster convergence rate compared to their parent hybrids.

Hybrid

Algorithm,

Parent1, Parent

2

Grouping and ranking fitness functions according to performance of

algorithms

Hybrid Parent1 Parent 2

GWOABC,

GWO, ABC

F20(i), F21(i), F22(i),

F23(ii),

F20(ii), F21(ii),

F22(iii), F23(i)

F20(iii), F21(iii),

F22(ii), F23(iii)

GWOWOA,

GWO, WOA

F20(i), F21(i), F22(i),

F23(i),

F20(ii), F21(ii),

F22(ii), F23(i)

F20(iii), F21(iii),

F22(iii), F23(ii)

MFOALO,

MFO, ALO

F20(i), F21(i), F22(i),

F23(i),

F20(ii), F21(ii),

F22(iii), F23(i)

F20(iii), F21(iii),

F22(ii), F23(iii)

CSFFA,

CS, FFA

F20(i), F21(i), F22(i),

F23(ii),

F20(ii), F21(iii),

F22(iii), F23(i)

F20(iii), F21(ii),

F22(ii), F23(iii)

96

PSOMVO,

MVO, PSO

F20(i), F21(ii), F22(i),

F23(i),

F20(ii), F21(i),

F22(iii), F23(i)

F20(iii), F21(iii),

F22(ii), F23(iii)

PSOBAT,

BAT, PSO

F20(i), F21(i), F22(i),

F23(ii),

F20(ii), F21(ii),

F22(iii), F23(iii)

F20(iii), F21(iii),

F22(ii), F23(i)

Table 7-Comparison of results obtained for Composite benchmark fitness functions.

Optimization results reported in Table 7 show that the hybrid algorithms were the best optimization

algorithm in four test problems and was very competitive in the other cases. This proves that the

hybrids can well balance exploration and exploitation phases.

97

 12 HYBRID ALGORITHMS FOR CLASSICAL ENGINEERING

DESIGN PROBLEM

Engineering design is the method that engineers use to identify and solve problems. In constrained

engineering design process, engineers must identify solutions that include the most desired features

and fewest negative characteristics. They should also specify the cost functions and their

limitations of the given scenario, which could include time, cost, and the physical limits of tools

and materials. Constrained engineering design optimization problems are usually computationally

expensive due to non-linearity and non convexity of these constraint functions. Evolutionary

population based algorithms are widely used to solve constrained optimization problems. Many

researchers have implemented many heuristic and meta-heuristic optimization algorithms to solve

constrained optimization problems in engineering design.

These meta-heuristic optimization algorithms are of great research interest in recent times due to

their ability in finding optimal solutions within short time especially when these real world

engineering design problems consists of large number of design variables and multiple constraints

which makes the solution search-space larger, complicated and non-linear. Penalty function

methods are found to be quite popular due to their simplicity and ease of implementation. In this

method, search agents are assigned big objective function values if they violate any of the specified

constraints. In this section, we try to solve a real world engineering design problem using hybrid

algorithms in order to observe the performance and benchmark the performance .

12.1 Cantilever Beam Design

This is a structural optimization problem [12]. The objective is to design a minimum-mass cantilever

beam. A cantilever beam includes five hollow elements with square-shaped cross-section. Since

the mass is proportional to the cross-sectional area of the beam, the objective function for the

problem is taken as the cross-sectional area. Assuming thickness is constant, there are a total of 5

structural parameters. The mathematical formulation of this problem can be described as follows:

98

Consider,

𝑧 = [𝑧1𝑧2𝑧3𝑧4𝑧5]

Minimize the function,

𝑓(𝑧) = 0.6224(𝑧1 + 𝑧2 + 𝑧3 + 𝑧4 + 𝑧5)

Subject to,

ℎ1(𝑧) =
61

𝑧1
3 +

37

𝑧2
3 +

19

𝑧3
3 +

4

𝑧4
3 +

1

𝑧5
3 ≤ 1

Where,

0.01 ≤ 𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5 ≤ 100

Figure 25-Cantilever Design Problem

99

Parameters GWOABC MFOALO MVOPSO CSFFA GWOWOA BATPSO

𝑧1 6.0089 6.0100 6.0101 6.0097 6.0089 6.0091

𝑧2 5.3001 5.3000 5.02999 5.0300 5.02999 5.03004

𝑧3 4.4900 4.4900 4.4900 4.49001 4.4899 4.4900

𝑧4 3.4904 3.4900 3.49006 3.4901 3.4900 3.4900

𝑧5 2.1601 2.1500 2.1506 2.1508 2.1509 2.1600

Optimum

Weight

 𝑓(𝑧)

1.3400 1.3400 1.3399 1.3401 1.3399 1.3399

Table 8- Cantilever Beam Design results using hybrid algorithms.

Table 8 compares the best solutions for Cantilever Beam Design problem obtained by the proposed

hybrid algorithms. As per the result, all hybrid algorithms was able to find the optimal solution

which is very competitive to its other benchmarked algorithms. This evidences that the proposed

algorithm is able to effectively optimize challenging constrained problems as well. All algorithms

100

 13 CONCLUSION

This paper proposes following six hybrid algorithms: Hybrid Grey Wolf Optimization algorithm

and Artificial Bee Colony Optimization algorithm (GWOABC), Hybrid Moth Flame Optimization

Algorithm and Ant Lion Optimization algorithm (MFOALO), Hybrid Cuckoo Search

Optimization algorithm and Fire Fly Optimization Algorithm(CSFFA), Hybrid Multi-Verse

Optimization algorithm and Particle Swarm Optimization Algorithm (MVOPSO), Hybrid Grey

Wolf Optimization algorithm and Whale Optimization Algorithm (GWOWOA), Hybrid Binary

Bat Optimization Algorithm and Particle Swarm Optimization Algorithm(BATPSO). Twenty-

three test functions were employed in order to benchmark the performance of the proposed

algorithms in terms of exploration, exploitation, local optima avoidance, and convergence.

The results showed that the hybrids were able to provide highly competitive results compared to

well known parent heuristics such as GWO, ABC, WOA, MFO, ALO, CS, FFA, PSO, MVO and

BAT. First, the results on the unimodal functions showed the superior exploitation of the

hybrid algorithms. Second, the exploration ability of hybrids were confirmed by the results on

multimodal functions. Third, the results of the composite functions showed high local optima

avoidance. Finally, the convergence analysis of hybrids were confirmed by the comparative

convergence of this algorithm. Statistical testing is performed on all hybrid algorithm to validate

the results and will be discussed in publishable papers.

Moreover, we used these proposed hybrid optimization algorithms to solve a real-world

engineering design problem – Cantilever beam design, with large number of variables and

constraints. The results show the capability of hybrid algorithms in handling various real-world

con-junctional optimization problems under lower computational efforts. All hybrid algorithms

were able to attain the optimal or near optimal solutions better than to most of the existing

optimization algorithms subjected to the study. For future work, large scale optimization problems

101

can be studied and realized using these algorithms. A self-adaptive method of choosing parameters

can be developed in order to further improve the efficiency of these optimization algorithms. A

multi-objective version of these algorithms can also be developed which find itself immense scope

in diverse real-world optimization applications

102

 APPENDIX – A

Benchmark Functions Python Code

-*- coding: utf-8 -*-
"""
Created on May 17 12:46:20 2018

@author: Noel Jose ThengappurackalLaiju
"""

import numpy
import math

define the function blocks
def prod(it):
 p= 1
 for n in it:
 p *= n
 return p

def Ufun(x,a,k,m):
 y=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<(-a));
 return y

def F1(x):
 s=numpy.sum(x**2);
 return s

def F2(x):
 o=sum(abs(x))+prod(abs(x));
 return o;

def F3(x):
 dim=len(x)+1;
 o=0;
 for i in range(1,dim):
 o=o+(numpy.sum(x[0:i]))**2;
 return o;

def F4(x):
 o=max(abs(x));
 return o;

def F5(x):
 dim=len(x);
 o=numpy.sum(100*(x[1:dim]-(x[0:dim-1]**2))**2+(x[0:dim-1]-1)**2);
 return o;

def F6(x):

103

 o=numpy.sum(abs((x+.5))**2);
 return o;

def F7(x):
 dim=len(x);

 w=[i for i in range(len(x))]
 for i in range(0,dim):
 w[i]=i+1;
 o=numpy.sum(w*(x**4))+numpy.random.uniform(0,1);
 return o;

def F8(x):
 o=sum(-x*(numpy.sin(numpy.sqrt(abs(x)))));
 return o;

def F9(x):
 dim=len(x);
 o=numpy.sum(x**2-10*numpy.cos(2*math.pi*x))+10*dim;
 return o;

def F10(x):
 dim=len(x);
 o=-20*numpy.exp(-.2*numpy.sqrt(numpy.sum(x**2)/dim))-
numpy.exp(numpy.sum(numpy.cos(2*math.pi*x))/dim)+20+numpy.exp(1);
 return o;

def F11(x):
 dim=len(x);
 w=[i for i in range(len(x))]
 w=[i+1 for i in w];
 o=numpy.sum(x**2)/4000-prod(numpy.cos(x/numpy.sqrt(w)))+1;
 return o;

def F12(x):
 dim=len(x);
 o=(math.pi/dim)*(10*((numpy.sin(math.pi*(1+(x[0]+1)/4)))**2)+numpy.sum((((x[1:dim-
1]+1)/4)**2)*(1+10*((numpy.sin(math.pi*(1+(x[1:dim-1]+1)/4))))**2))+((x[dim-
1]+1)/4)**2)+numpy.sum(Ufun(x,10,100,4));
 return o;

def F13(x):
 dim=len(x);
 o=.1*((numpy.sin(3*math.pi*x[1]))**2+sum((x[0:dim-2]-1)**2*(1+(numpy.sin(3*math.pi*x[1:dim-1]))**2))+
 ((x[dim-1]-1)**2)*(1+(numpy.sin(2*math.pi*x[dim-1]))**2))+numpy.sum(Ufun(x,5,100,4));
 return o;

def F14(x):
 aS=[[-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32],[-32,-32,-32,-
32,-32,-16,-16,-16,-16,-16,0,0,0,0,0,16,16,16,16,16,32,32,32,32,32]];
aS=numpy.asarray(aS);
bS = numpy.zeros(25)
 v=numpy.matrix(x)
 for i in range(0,25):
 H=v-aS[:,i];

104

bS[i]=numpy.sum((numpy.power(H,6)));
 w=[i for i in range(25)]
 for i in range(0,24):
 w[i]=i+1;
 o=((1./500)+numpy.sum(1./(w+bS)))**(-1);
 return o;

def F15(L):
 aK=[.1957,.1947,.1735,.16,.0844,.0627,.0456,.0342,.0323,.0235,.0246];
bK=[.25,.5,1,2,4,6,8,10,12,14,16];
aK=numpy.asarray(aK);
bK=numpy.asarray(bK);
bK = 1/bK;
 fit=numpy.sum((aK-((L[0]*(bK**2+L[1]*bK))/(bK**2+L[2]*bK+L[3])))**2);
 return fit

def F16(L):
 o=4*(L[0]**2)-2.1*(L[0]**4)+(L[0]**6)/3+L[0]*L[1]-4*(L[1]**2)+4*(L[1]**4);
 return o

def F17(L):
 o=(L[1]-(L[0]**2)*5.1/(4*(numpy.pi**2))+5/numpy.pi*L[0]-6)**2+10*(1-
1/(8*numpy.pi))*numpy.cos(L[0])+10;
 return o

def F18(L):
 o=(1+(L[0]+L[1]+1)**2*(19-14*L[0]+3*(L[0]**2)-14*L[1]+6*L[0]*L[1]+3*L[1]**2))*(30+(2*L[0]-
3*L[1])**2*(18-32*L[0]+12*(L[0]**2)+48*L[1]-36*L[0]*L[1]+27*(L[1]**2)));
 return o
map the inputs to the function blocks
def F19(L):
aH=[[3,10,30],[.1,10,35],[3,10,30],[.1,10,35]];
aH=numpy.asarray(aH);
cH=[1,1.2,3,3.2];
cH=numpy.asarray(cH);
 pH=[[.3689,.117,.2673],[.4699,.4387,.747],[.1091,.8732,.5547],[.03815,.5743,.8828]];
 pH=numpy.asarray(pH);
 o=0;
 for i in range(0,4):
 o=o-cH[i]*numpy.exp(-(numpy.sum(aH[i,:]*((L-pH[i,:])**2))));
 return o

def F20(L):
 aH=[[10,3,17,3.5,1.7,8],[.05,10,17,.1,8,14],[3,3.5,1.7,10,17,8],[17,8,.05,10,.1,14]];
aH=numpy.asarray(aH);
cH=[1,1.2,3,3.2];
cH=numpy.asarray(cH);

pH=[[.1312,.1696,.5569,.0124,.8283,.5886],[.2329,.4135,.8307,.3736,.1004,.9991],[.2348,.1415,.3522,.28
83,.3047,.6650],[.4047,.8828,.8732,.5743,.1091,.0381]];
 pH=numpy.asarray(pH);
 o=0;
 for i in range(0,4):
 o=o-cH[i]*numpy.exp(-(numpy.sum(aH[i,:]*((L-pH[i,:])**2))));
 return o

105

def F21(L):
 aSH=[[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]];
cSH=[.1,.2,.2,.4,.4,.6,.3,.7,.5,.5];
aSH=numpy.asarray(aSH);
cSH=numpy.asarray(cSH);
 fit=0;
 for i in range(0,4):
 v=numpy.matrix(L-aSH[i,:])
 fit=fit-((v)*(v.T)+cSH[i])**(-1);
 o=fit.item(0);
 return o

def F22(L):
 aSH=[[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]];
cSH=[.1,.2,.2,.4,.4,.6,.3,.7,.5,.5];
aSH=numpy.asarray(aSH);
cSH=numpy.asarray(cSH);
 fit=0;
 for i in range(0,6):
 v=numpy.matrix(L-aSH[i,:])
 fit=fit-((v)*(v.T)+cSH[i])**(-1);
 o=fit.item(0);
 return o

def F23(L):
 aSH=[[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]];
cSH=[.1,.2,.2,.4,.4,.6,.3,.7,.5,.5];
aSH=numpy.asarray(aSH);
cSH=numpy.asarray(cSH);
 fit=0;
 for i in range(0,9):
 v=numpy.matrix(L-aSH[i,:])
 fit=fit-((v)*(v.T)+cSH[i])**(-1);
 o=fit.item(0);
 return o

def getFunctionDetails(a):

 # [name, lb, ub, dim]
 param = { 0: ["F1",-100,100,30],
1 : ["F2",-10,10,30],
2 : ["F3",-100,100,30],
3 : ["F4",-100,100,30] ,
4 : ["F5",-30,30,30],
5 : ["F6",-100,100,30],
6 : ["F7",-1.28,1.28,30],
7 : ["F8",-500,500,30],
8 : ["F9",-5.12,5.12,30],
9 : ["F10",-32,32,30],
10 : ["F11",-600,600,30] ,
11 : ["F12",-50,50,30],
12 : ["F13",-50,50,30],
13 : ["F14",-65.536,65.536,2],
14 : ["F15",-5,5,2],
15 : ["F16",-5,5,4],

106

16 : ["F17",-5,15,2],
17 : ["F18",-2,2,2] ,
18 : ["F19",0,1,3],
19 : ["F20",0,1,6],
20 : ["F21",0,10,4],
21 : ["F22",0,10,4],
22 : ["F23",0,10,4],
 }
 return param.get(a, "nothing")

107

 REFERRENCES

1. John H (1992) Holland, adaptation in natural and artificial systems. MIT Press, Cambridge.

2. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE

international conference on neural networks, pp 1942–1948.

3. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm.

Inf Sci 179:2232–2248

4. Holland JH. Genetic algorithms. Sci Am 1992; 267:66–72.

5. Liang J, Suganthan P, Deb K. Novel composition test functions for numerical global

optimization. In: Proceedings 2005 IEEE swarm intelligence symposium, 2005. SIS 2005;

2005. p. 68–75.

6. Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies. In:

Proceedings of the first European conference on artificial life; 1991. p. 134–42.

7. The Whale Optimization Algorithm. SeyedaliMirjalili , Andrew Lewis a School of

Information and Communication Technology, Griffith University, Nathan Campus,

Brisbane, QLD 4111, Australia b Griffith College, Mt Gravatt, Brisbane, QLD 4122,

Australia :1744-1765

8. K.D. Frank, C. Rich, T. Longcore, Effects of artificial night lighting on moths, in:

Ecological Consequences of Artificial Night Lighting, 2006, pp. 305–344.

9. Griffiths D. Pit construction by ant-lion larvae: a cost-benefit analysis. J Anim, Ecol

1986:39–57.

10. Yang X-S , Deb S . Cuckoo search via Lévy flights. In: Proceedings of the world congress

on nature & biologically inspired computing, NaBIC 20 09; 20 09. p. 210–14 .

11. Yang X-S . Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-

Inspired Comput2010;2:78–84 .

12. Multi-Verse Optimization algorithm: a nature-inspired algorithm for global optimization.

SeyedaliMirjalili • Seyed Mohammad Mirjalili •AbdolrezaHatamlou 2015:205-268

13. Yang X-S. A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative

strategies for optimization (NICSO 2010). Springer; 2010. p.65–74.

108

14. Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings IEEE, international

conference on neural networks, 1995; 1995. p. 1942–8.

15. Hybrid Optimization Algorithm of Particle Swarm Optimization and Cuckoo Search for

Preventive Maintenance Period Optimization, Jianwen Guo,1 Zhenzhong Sun, Hong Tang,

Xuejun Jia, Song Wang, Xiaohui Yan, Guoliang Ye, and Guohong Wu. P. 158-178

16. Xia, Xuewen&Gui, Ling & He, Guoliang& Xie, Chengwang& Wei, Bo & Xing, Ying &

Wu, Ruifeng& Tang, Yichao. (2017). A hybrid optimization algorithm based on firefly

algorithm and particle swarm optimization algorithm. Journal of Computational Science.

26. 10.1016/j.jocs.2017.07.009.

17. A Hybrid DA-PSO Optimization Algorithm for Multiobjective Optimal Power Flow

Problems. Khunkitti, Sirote. 85-91

18. A hybrid SA-MFO algorithm for function optimization and engineering design problems

by Sayed, Gehad Ismail and Hassanien, Aboul Ell p. 05-09

19. A New Hybrid Whale Optimization algorithm Algorithm with Mean Strategy of Grey Wolf

Optimization algorithm for Global Optimization, Narinder Singh and HanaaHachimi, p.

38-45

20. Grey Wolf Optimization algorithm, SeyedaliMirjalilia,⇑, Seyed Mohammad Mirjalili b,

Andrew Lewis, a School of Information and Communication Technology, Griffith

University, Nathan Campus, Brisbane QLD 4111, Australia, 1755-1799

21. Muro C, Escobedo R, Spector L, Coppinger R. Wolf-pack (Canis lupus) hunting, strategies

emerge from simple rules in computational simulations. Behav, Process 2011;88:192–7.

22. Chong, C. S., Sivakumar, A. I., Malcolm Low, Y. H., Gay, K. L. (2006). A bee colony

optimization algorithm to job shop scheduling. In Proceedings of the 38th conference on

Winter simulation WSC '06, pages 1954-1961, California.95-101

23. A Discrete Artificial Bee Colony for Distributed Permutation Flowshop Scheduling

Problem with Total Flow Time Minimization Jia-Qi Pan , Wen-Qiang Zou, Jun-huaDuan

24. Watkins WA ,Schevill WE . Aerial observation of feeding behavior in four baleen whales:

Eubalaenaglacialis ,Balaenoptera borealis , Megapteranovaean- gliae , and

Balaenopteraphysalus . J Mammal 1979:155–63.

109

25. Goldbogen JA, Friedlaender AS, CalambokidisJ ,Mckenna MF , Simon M , Nowacek DP

. Integrative approaches to the study of baleen whale diving be- havior, feeding

performance, and foraging ecology. BioScience2013;63:90–100.

26. Gaston, Kevin J., et al. "The ecological impacts of nighttime light pollution: a mechanistic

appraisal." Biological reviews 88.4 (2013): 912-927

27. Scharf I, Ovadia O. Factors influencing site abandonment and site selection in a sit-and-

wait predator: a review of pit-building antlion larvae. J Insect Behav, 2006;19:197–218.

28. Kaveh A, Mahdavi V. Colliding bodies optimization: a novel meta-heuristic method.

Comput Struct 2014;139:18–27.

29. Derrac J, García S, Molina D, Herrera F. A practical tutorial on the use of nonparametric

statistical tests as a methodology for comparing evolutionary and swarm intelligence

algorithms. Swarm EvolutComput2011;1:3–18.

30. X.-S. Yang; S. Deb (December 2009). Cuckoo search via Lévy flights. World Congress on

Nature & Biologically Inspired Computing (NaBIC 2009). IEEE Publications. pp. 210–

214. arXiv:1003.1594v1.

31. Yang, X. S. (2008). Nature-Inspired Metaheuristic Algorithms. Luniver Press. ISBN 1-

905986-10-6.

32. X. S. Yang, Metaheuristic optimization: algorithm analysis and open problems, in:

Experimental Algorithms (SEA2011), Eds (P. M. Pardalos and S. Rebennack), LNCS

6630, pp.21-32 (2011).

33. Multi-Verse Optimization algorithm: a nature-inspired algorithm for global optimization,

SeyedaliMirjalili • Seyed Mohammad Mirjalili • AbdolrezaHatamlou, pp-301-322

34. J. Kennedy and R. Eberhart. Particle swarm optimization. Proceeding of IEEE International

Conference on Neural Networks, 1995, 1942-1948.

35. Eberhart, R. C. and Kennedy, J. A new optimization algorithm using particle swarm theory.

Proceedings of the sixth international symposium on micro machine and human science

pp. 39-43. IEEE service center, Piscataway, NJ, Nagoya, Japan, 1995.

36. A New Metaheuristic Bat-Inspired Algorithm, Xin-She Yang. Department of Engineering,

University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK, pp. 12-34

37. Yao X, Liu Y, Lin G. Evolutionary programming made faster. EvolutComput, IEEE Trans

1999;3:82–102.

110

38. Digalakis J, Margaritis K. On benchmarking functions for genetic algorithms. Int J Comput

Math 2001;77:481–506.

39. Molga M, Smutnicki C. Test functions for optimization needs. Test functions for

optimization needs; 2005. 156-171

40. Yang X-S. Test problems in optimization, arXiv, preprint arXiv:1008.0549; 2010.1056-

1088

41. Mirjalili S, Lewis A. S-shaped versus V-shaped transfer functions for binary Particle

Swarm Optimization. Swarm EvolutComput2013;9:1–14.

42. Mirjalili S, Mirjalili SM, Yang X. Binary bat algorithm. Neural ComputAppl, in press,

DOI: 10.1007/s00521-013-1525-5.

43. Holland JH. Genetic algorithms. Sci Am 1992;267:66–72.

44. RechenbergI .Evolutionsstrategien. Springer Berlin Heidelberg; 1978. p. 83–114.

45. Dasgupta D, Zbigniew M, editors. Evolutionary algorithms in engineering ap- plications.

Springer Science & Business Media; 2013. Pp 91-133

46. J.R. Koza, “Genetic programming,”1992. Pp 08-31

47. Simon D . Biogeography-based optimization. IEEE Trans EvolComput2008;12:702–13.

48. Kirkpatrick S ,Gelatt CD , Vecchi MP . Optimization by simmulated annealing. Science

1983;220:671–80.

49. Webster B , Bernhard PJ . A local search optimization algorithm based on natural principles

of gravitation. In: Proceedings of the 2003 interna- tional conference on information and

knowledge engineering (IKE’03); 2003. p. 255–61.

50. Erol OK ,Eksin I . A new optimization method: big bang–big crunch. Adv

EngSoftw2006;37:106–11.

51. RashediE ,Nezamabadi-Pour H , Saryazdi S . GSA: a gravitational search algo- rithm. Inf

Sci 2009;179:2232–48.

52. Kaveh A ,Talatahari S . A novel heuristic optimization method: charged system search.

Acta Mech 2010;213:267–89 .

53. FormatoRA . Central force optimization: A new metaheuristic with applica- tions in

applied electromagnetics. Prog Electromag Res 2007;77:425–91.

54. AlatasB . ACROA: Artificial Chemical Reaction Optimization Algorithm for global

optimization. Expert Syst Appl 2011;38:13170–80.

111

55. HatamlouA . Black hole: a new heuristic optimization approach for data clus- tering. Inf

Sci 2013;222:175–84.

56. Kaveh A ,Khayatazad M . A new meta-heuristic method: ray optimization. Comput Struct

2012;112:283–94.

57. Du H , Wu X , Zhuang J . Small-world optimization algorithm for function opti- mization.

Advances in natural computation. Springer; 2006. p. 264–73.

58. Shah-Hosseini H . Principal components analysis by the galaxy-based search algorithm: a

novel metaheuristic for continuous optimisation. Int J Comput Sci Eng2011;6:132–40.

59. Moghaddam FF, Moghaddam RF, Cheriet M. Curved space optimization: A random search

based on general relativity theory. 2012. arXiv: 1208.2214.

60. A hybrid algorithm for feature subset selection in high-dimensional datasets using FICA

and IWSSr algorithm by Mostafa Moradkhania, Ali Amiria, Mohsen Javaherian, Hossein

Safarib.pp. 56-61

61. V. N. Rajput, K. S. Pandya and K. Joshi, "Optimal coordination of Directional Overcurrent

Relays using hybrid CSA-FFA method," 2015 12th International Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and Information Technology

(ECTI-CON), Hua Hin, 2015, pp. 1-6.

62. H. Arslan and M. Toz, "Hybrid FCM-WOA data clustering algorithm," 2018 26th Signal

Processing and Communications Applications Conference (SIU), Izmir, 2018, pp. 1-4.

63. N. B. Arunekumar, A. Kumar and K. S. Joseph, "Hybrid bat inspired algorithm for

multiprocessor real-time scheduling preparation," 2016 International Conference on

Communication and Signal Processing (ICCSP), Melmaruvathur, 2016, pp. 2194-2198.

64. A. Sarma, A. Bhutani and L. Goel, "Hybridization of moth flame optimization and

gravitational search algorithm and its application to detection of food quality," 2017

Intelligent Systems Conference (IntelliSys), London, 2017, pp. 52-60.

65. Grey Wolf Optimization algorithm by SeyedaliMirjalili, Seyed Mohammad Mirjalili,

Andrew Lewis. pp 2103-2205

66. T. D. Seeley, Visscher P.K., “Assessing the benefits of cooperation in honeybee foraging:

search costs, forage quality, and competitive ability”, Behav. Ecol.

Sociobiol., 22: 229-237, 1988.

112

67. Hof PR , Van Der Gucht E . Structure of the cerebral cortex of the humpback whale,

Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec 2007;290:1–31

.

68. Payne R. B., Sorenson M. D., and Klitz K., The Cuckoos, Oxford University Press, (2005)

69. Passino, K. M.: Biomimicrt of Bacterial Foraging for Distributed Optimization, University

Press, Princeton, New Jersey (2001). Pp 134-138

70. Khoury J, Ovrut BA, Seiberg N, Steinhardt PJ, Turok N (2002), From big crunch to big

bang. Phys Rev D 65:086007

71. Tegmark M (2004) Parallel universes. In: Barrow JD, Davies, PCW, Harper CL Jr (eds)

Science and ultimate reality: Quantum theory, cosmology, and complexity. Cambridge

University Press, pp 459–491

72. Eardley DM (1974) Death of white holes in the early Universe. Phys Rev Lett 33:442

73. Steinhardt PJ, Turok N (2002) A cyclic model of the universe. Science 296:1436–1439

74. Davies PC (1978) Thermodynamics of black holes. Rep Prog Phys 41:1313

75. Morris MS, Thorne KS (1988) Wormholes in spacetime and their use for interstellar travel:

a tool for teaching general relativity. Am J Phys 56:395–412

76. Guth AH (2007) Eternal inflation and its implications. J Phys A, Math Theor 40:6811

77. Steinhardt PJ, Turok N (2005) The cyclic model simplified. New, Astron Rev 49:43–57

78. Altringham, J. D.: Bats: Biology and Behaviour, Oxford Univesity Press, (1996).21-35

79. Colin, T.: The Varienty of Life. Oxford University Press, (2000). Pp405-452

80. Richardson, P.: Bats. Natural History Museum, London, (2008).pp.15-23

81. Richardson, P.: The secrete life of bats. http://www.nhm.ac.uk pp-08-16

82. Kennedy, J. and Eberhart, R.: Particle swarm optimization, Proc. IEEE Int. Conf. Neural

Networks. Perth, Australia, 1942-1945 (1995). Pp -53-59

83. Cavazos, John & Moss, Eliot & F. P. O'Boyle, Michael. (2006). Hybrid Optimizations:

Which Optimization Algorithm to Use?. Pages 34-43

