
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2011

Study of estimation of distribution algorithms
applied to neuroevolution
Graham Holker
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Holker, Graham, "Study of estimation of distribution algorithms applied to neuroevolution" (2011). Theses and dissertations. Paper
1058.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1058?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1058&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

STUDY OF ESTIMATION OF DISTRIBUTION ALGORITHMS

APPLIED TO NEUROEVOLUTION

by

Graham Holker

B.Sc., Queen’s University, 2006

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

Toronto, Canada, 2011

c⃝ Graham Holker 2011

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose

of scholarly research.

Signed:

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total

or in part, at the request of other institutions or individuals for the purpose of scholarly research.

Signed:

iii

iv

STUDY OF ESTIMATION OF DISTRIBUTION ALGORITHMS APPLIED TO

NEUROEVOLUTION

Graham Holker

M. Sc. in Computer Science,

Ryerson University, Toronto, Canada

Abstract

This thesis proposes a methodology for the automatic design of neural networks via Estimation of

Distribution Algorithms (EDA). The method evolves both topology and weights. To do so, topol-

ogy is represented with a fixed-length, indirect encoding; weights are represented as a bitwise en-

coding. The topology and weights are searched via an incremental learning algorithm and a Guided

Mutation operator. To explore suitable EDA ensembles, the study presented here interchangeably

combined two representations for topology, two for weights, and two learning algorithms. Tests

used in the analysis include: XOR, 6-bit Multiplexer, Pole-Balancing, and the Retina Problem. The

results demonstrate that: (1) the Guided Mutation operator accelerates optimization on problems

with a fixed fitness function; (2) the EDA approach introduced here is competitive with similar

GP methods and is a viable method for Neuroevolution; (3) our methodology scales well to harder

problems and automatically discovers modularity.

v

vi

Acknowledgements

I am grateful to Marcus dos Santos, my supervisor, whose guidance and encouragement made this

thesis possible.

I am also indebted to the committee, Dr. Harley, Dr. Misic, and Dr. Ferworn, for reading and

providing feedback on my work. It is both intimidating and an honour to have the attention of such

an intelligent group of people.

I am grateful for my family, especially my parents who made it possible for me to explore com-

puters from a young age and to study them in University. I’m appreciative of the accommodations

provided by my brother Brendan.

I’d like to thank the following friends who contributed to my time at Ryerson through support

and inspiration: Elmira Ghoulbeigi, Mahsa Mostowfi, Ervis Sofroni, Leyla Vakilian, Shahin Ta-

laei, Rishabh Saxena, Shermineh Ghasemi, Bart Gajderowicz, Joseph Paes, Joseph Ho, Matthew

Dorrance, Edward Ho, Ian D’Mello, Trevor Park, Brendan Holness, Christopher Shilton, Robert

Galloway, Leanne Idzerda, Heather Wilson, Andrew MacDonald, Tobias Mankis, Kevin Lu, Paul

Grouchy, and Morgan Lincoln (who encouraged me to apply).

Graham Holker

Ryerson University

September 7, 2011

vii

viii

Dedication

For my parents, I strive to make the most of everything you have given me.

ix

x

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Methodology . 4
1.4 Results and Contributions . 6
1.5 Structure of this Thesis . 6

2 Literature Review 9
2.1 Genetic and Evolutionary Algorithms . 9

2.1.1 Machine Learning . 9
2.1.2 Evolutionary Algorithms . 10
2.1.3 Genetic Algorithms and Genetic Programming 11
2.1.4 Genetic Algorithms . 12
2.1.5 Genetic Programming . 12
2.1.6 Gene Expression Programming . 13
2.1.7 Cartesian Genetic Programming . 14
2.1.8 Grammar-Based Genetic Programming 15

2.2 Estimation of Distribution Algorithms . 15
2.2.1 Population-Based Incremental Learning 16
2.2.2 Probabilistic Incremental Program Evolution 16

2.3 Evolution of Artificial Neural Networks . 17
2.3.1 Artificial Neural Networks . 18
2.3.2 Neural Network Training . 18
2.3.3 Weight-Only Evolving Artificial Neural Networks 19
2.3.4 Symbiotic Adaptive Neuro-Evolution . 20
2.3.5 Topology and Weight Evolving Artificial Neural Networks 20

2.4 Modularity . 21

3 Methodology 23
3.1 Structure Representation . 24

3.1.1 The GEP-NN Representation . 24
3.1.2 Cartesian Genetic Programming Representation 26

3.2 Weight Representation . 28
3.2.1 Bitwise Weight Representation . 28
3.2.2 Mean-Variance Pair Representation . 28

3.3 Population Model . 29
3.3.1 GEP Model: The Probabilistic Prototype Chromosome 29

xi

3.3.2 CGP Model: The Probabilistic Prototype Array 30
3.3.3 Bitwise model . 31
3.3.4 Mean-Variance model . 31

3.4 The Estimation of Distribution Algorithm . 32
3.4.1 Probabilistic Incremental Program Evolution (PIPE) 32
3.4.2 Population Based Incremental Learning (PBIL) 34
3.4.3 Stochastic Hill Climbing . 35

3.5 Proximate Optimality Principle and Guided Mutation 35
3.6 Experimental Design . 36

3.6.1 XOR and Six-Bit Multiplexer . 36
3.6.2 Single Pole Balancing . 38
3.6.3 Retina Problem . 40

4 Results 43
4.1 Preamble . 43
4.2 Exclusive OR . 44
4.3 Single Pole Balancing . 49
4.4 Six-Bit Multiplexer . 51
4.5 Retina Problem . 56
4.6 Comparisons . 58

5 Conclusions and Future Work 63
5.1 Contributions . 66
5.2 Future Work . 66

Glossary 69

xii

List of Tables

4.1 Maximum Fitness Values . 43
4.2 Fixed Parameters . 44
4.3 XOR Configuration . 46
4.4 XOR Results . 47
4.5 SPB Configuration . 50
4.6 SPB Results (Part 1) . 52
4.7 SPB Results (Part 2) . 53
4.8 6-MUX Configuration . 54
4.9 6-MUX Results . 55
4.10 Retina Problem Configuration . 57
4.11 Retina Problem Results . 58
4.12 Results Comparison . 59

xiii

xiv

List of Figures

3.1 Sample GEP-NN gene and the represented Neural Network 25
3.2 Sample CGP Graph and CGP array . 27
3.3 Probabilistic Prototype Chromosome . 30
3.4 Probabilistic Prototype Array . 31
3.5 Diagram of the Single Pole Balancing Problem 39
3.6 Diagram of the Retina Problem . 40

4.1 Example Retina Solutions . 61
4.2 Example Retina Solutions from a third-party . 62

xv

xvi

Chapter 1

Introduction

The central hypothesis of this dissertation is that an Estimation of Distribution Algorithm can be

used to efficiently generate Artificial Neural Networks.

Estimation of Distribution Algorithms (EDA) is a new and interesting method of Evolutionary

Computation (EC). EDA are a Machine Learning (ML) approach for optimization. EDA eliminate

the need for powerful search operators for exploring the search space, as in population-based EC

methods, and instead create a probabilistic model of the population. EDA continually refine their

model based on the performance of a population of sampled individuals. Generally, the modifica-

tions are such that the probability of sampling the best performing individual is increased.

An Artificial Neural Network (ANN) is a computer program made of a number of independent

computing devices known as neurons. While inspired by the biological neuron, the function of

an artificial neuron is simplified. An ANN can be seen as a black box with any number of inputs

and outputs. The structure of the neurons, i.e. how they are connected, and the numerical weights

of those connections determine the function performed. ANN are used in applications such as:

function approximation, classification, and robot control tasks.

1.1 Motivation

There are many applications where the employment of human programmers to develop programs

would be inefficient. Such problems as computer vision, character recognition, robot locomotion,

natural language processing, and game playing contain examples of problems with a large space

1

of possible inputs and outputs. For example, a written version of the character ‘A’ when scanned

and digitized can be encoded in many ways. The task of writing a program to recognize the letter

‘A’ (or any letter) would require a standard input method (say 32 by 32 pixels) and a large set of

digitized characters to analyze. Looking at each input and finding patterns would be a laborious

task for a human programmer, but a machine can efficiently process large sets of data. The machine

could do the analysis and write the program in place of a human programmer, as long as we can

provide it an algorithm capable of exploiting that large data set.

Machine Learning employs computers to analyze a great quantity of data and attempt to create

generalized algorithms for pattern recognition and task execution. In the field of ML, the large set

of data provides experiences for the computer to learn from.

A topic such as game playing or robotic control has both the challenge of recognizing the state

of the environment as well as learning to respond correctly to that state. While a portion of the

learning is spent in the recognition of situations, another portion is spent attempting responses to

the situations. While it would be preferable to separate the two learning challenges (recognition

and response), it is only possible when the many permutations of the environment are numerable

(e.g. in the game of Checkers). It would be difficult to separate the two learning activities in

situations where the player (or agent) interacts in an ever-changing environment. Reinforcement

Learning (RL) is the study of such problems.

ANNs present an interesting opportunity for solving Reinforcement Learning problems be-

cause they are computer programs with a number of inputs and outputs that are capable of recog-

nition and response. For example, an agent attempting to keep a pendulum, that is connected

to a cart on a track, balanced and upright could be given the angle and velocity of the pole and

the position and velocity of the cart as inputs. The ANN then attempts to recognize the situation

and decide on an appropriate response, in particular, the ANN agent would provide as output the

direction the cart should move in.

Although we cannot always train the ANN on measured input-output pairs, we can define an

2

appropriate measure of the ANN controller’s performance and use Evolutionary Algorithms (EA)

to search for a well performing ANN. We do this by creating ANN randomly and learning from

the performance of those individuals and generating a new set of individuals based on the well

performing ANN from the previous set.

Evolutionary Algorithms, such as Genetic Algorithms (GA) and Genetic Programming (GP),

are a class of population-based search algorithms that use stochastic processes to find solutions.

An initially random population is created (the first generation) and each individual’s performance

is evaluated to create a numeric value (known as fitness). Individuals are selected based on their

fitness and are then modified and placed into the next generation. The selection scheme creates

selection pressure which is intended to increase the average fitness of the subsequent generations.

The process is eventually stopped, often because an individual reaches the target fitness or the max-

imum number of generations has been reached. It is advantageous to use EA given the challenges

in developing ANNs manually.

Another class of EA, called Estimation of Distribution Algorithms (EDA), replaces the popu-

lation with a probabilistic model. Individuals are generated by sampling the model and a selection

of the best individuals is used to update the model. EDA is an interesting technique because it

captures building blocks. Building blocks are particular values for a portion of the representation

that will result in an above-average fitness for the individual. The model captures a building block

by increasing its likelihood of occurring within sampled individuals.

1.2 Objectives

Our purpose is to study the optimization of Artificial Neural Networks (ANN) using EA, also

known as Neuroevolution (NE). From the perspective of artificial evolution, ANN are simply an-

other type of program and can be induced using EC techniques. NE has the added complexity of

evolving both the topology of the neurons and the weights of the connections.

3

EDA have been shown to improve performance in other problem domains [6, 17, 35]. It is

our goal to evaluate EDA performance in NE for tasks such as classification and reinforcement

learning [31].

The implementation includes two different representations of the network structure, one based

on the Gene Expression Programming (GEP) [5] encoding and the other based on Cartesian Ge-

netic Programming (CGP) [29]. The implementation also includes two different methods of search-

ing network weights, one based on a stochastic hill climbing algorithm [38] and the other based

on a GA applied to a 17-bit real-valued representation. Finally, the implementation includes two

different EDA, namely Population Based Incremental Learning (PBIL) [1] and Probabilistic In-

cremental Program Evolution (PIPE) [40]. The methodologies are tested in combination, one

representation for structure, one for weights, and one EDA to navigate the search-space.

1.3 Methodology

To begin, we required a representation of the ANN’s structure. Early NE systems used a fixed-

topology or had a limited evolvability, such as a number of hidden nodes in a single layer1, but

connection weights were evolved. Current systems, known as Topology and Weight Evolving Ar-

tificial Neural Networks (TWEANN), are capable of defining the structure without constraints.

They can define a number of nodes and connections in any configuration, and the only constraints

come from the choice of representation (e.g. tree or graph). In this study, we used the solution rep-

resentations of GEP and CGP because they are easily mapped to traditional EDA, and they have

a many-to-one genotype to phenotype mapping. As shown in [4, 17, 19], linear representations

that support a many-to-one mapping between the structures subject to genetic modification and

the structures subject to selection have become instrumental for the evolution of highly complex

structures, in particular ANN.

1ANN are often defined as inputs and outputs with a number of hidden layers in between.

4

Next, we defined a probabilistic model of the representations. Since both GEP and CGP encode

a solution to a problem as a fixed-length array of characters or numbers, the probabilistic model

is also a fixed-length array. The fixed-length array introduces a constraint to the size of the ANN

represented, but can be alleviated by using a longer array. In the place where the representation

would store a single character or number, the model stores an unordered set of probabilities repre-

senting the likelihood of a particular value. For example, if the possible values at a particular point

are 1,2,and3, then there would be 3 probabilities, where each represents the probability of one of

the possible values.

To be able to generate the real-valued weights of an ANN (when sampling), the probabilistic

model stores a mean and variance for each weight and, based on the best values (sampled using a

normal distribution), shifts the mean and reduces the variance such that the likelihood of sampling

a good value is increased. This method is known as Stochastic Hill Climbing (SHC). The second

approach uses a binary string encoding of a floating-point value. The model is then an array of

probabilities representing the likelihood of a 1 being sampled at a given point in the array. The

bit-string model is updated using one of the EDA introduced below.

Finally, we decided how to update the probabilistic model such that the search was likely to find

an individual with the target fitness (or maximal fitness) using only previously sampled individuals

as a guide. We chose to explore two different population modelling methods, both of which use the

best individual from the current generation. The probabilities at every point in the representation

are updated such that the likelihood of the best individual being sampled is increased. This is done

by increasing the probability that for each element in the gene the probability of that element being

the one from the best of the current generation is increased. One, PBIL, updates the probability

table based on its learning rate. The other, PIPE, defines a target probability and increments the

probabilities until the target is met.

In our study, we looked at several possible combinations of the methodologies described above.

Each was tested against the following problems: XOR, a simple benchmark that is interesting

5

because it requires a hidden neuron in order to be satisfied; 6-bit Multiplexer, a more challenging

problem used to compare performance with GEP; Pole Balancing, a standard benchmark in NE;

and the Retina Problem, a challenging classification problem. The Retina Problem is meant to

test the ability of EDA to evolve modularity; where modularity is defined as the encapsulation of

functionality [27, 47].

1.4 Results and Contributions

Our results show that EDA for NE is a viable methodology and is actually an advantageous ap-

proach for problems that depend on finding and exploiting modularity. On simple problems the

EDA shows no benefit or reduced performance, but as we move to harder problems, the EDA ap-

proach is able to scale far better than population-based approaches. On a simple problem, specif-

ically XOR, the EDA approach did not perform as well as the population-based alternative. On

pole-balancing, the performance is comparable to population-based approaches. On 6-bit multi-

plexer and the Retina problem, the performance far exceeds other population-based approaches.

A qualitative assessment of Retina solutions shows some modularity. Other approaches, that have

been developed with modularity in mind, have solutions which appear more modular, however, it

is important to note that our approach involved no specific re-tooling in order to induce modularity;

the modularity found is an emergent property of the EDA-based system.

Our contribution is a novel EDA approach to NE and a study showing that EDA can perform

well at NE and can even perform better than population-based approaches. We’ve also shown how

the Guided Mutation operator can accelerate the search on problems with a fixed fitness function.

1.5 Structure of this Thesis

Chapter 2 provides an overview of current research in the fields related to the work presented

6

here. Initially it reviews Evolutionary Computation approaches, viz. Genetic Algorithms, Genetic

Programming, and Grammar-Based Genetic Programming (GBGP). Next it reviews conventional

Estimation of Distribution Algorithms and their GP and GBGP extensions. Lastly, it reviews works

on Neuroevolution.

Chapter 3 begins by presenting the materials that were developed to verify the hypothesis put

forth in this work, viz. ANN, EC (GEP, CGP), and EDA (SHC, PIPE, and PBIL). Chapter 3 ends

with detailed description of the benchmarks and problems we attempted.

Chapter 4 presents the results of testing the digital circuit problems (XOR, 6-Bit Multiplexer),

the Reinforcement Learning problem (Single-Pole Balancing), and the classification task (Retina

Problem).

Finally, chapter 5 discusses the results and their impact, and suggests directions for future

work.

7

8

Chapter 2

Literature Review

This work is a study of Estimation of Distribution Algorithms (EDA) for the discovery of optimal

topology and weights for a Neural Network. This chapter reviews the state of the art of works in

areas of study pertinent to this thesis, namely: Genetic and Evolutionary Algorithms, Estimation

of Distribution Algorithms, and the evolution of Artificial Neural Networks.

2.1 Genetic and Evolutionary Algorithms

2.1.1 Machine Learning

“A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T , as measured by

P, improves with experience E.” (T. Mitchell) [31]

Machine Learning (ML) is the study of computer programs capable of improving their per-

formance at a given task through experience. ML has found success in applications such as data

mining and difficult-to-program applications [30]. There are many approaches to ML and evolving

Neural Networks was chosen because the approach is capable of performing tasks such as robotic

control [2, 22, 33]1, vision [14, 34], game playing [28, 44], and classification [26]. This particular

topic is of interest because there has been limited research in using an EDA for evolving Neural

Networks. EDA have proven to be effective in problems that require structurally modular solutions.

In this work, we explore this feature of EDA when used to evolve ANNs.
1It is possible to approach robotic control from other means, including Genetic Programming [11].

9

2.1.2 Evolutionary Algorithms

This work presents a methodology for developing a computer program that finds a functional

solution to a given task by means of an Evolutionary Algorithm (EA). EA are inspired by processes

found in biological evolution. There are four major components of the algorithm: a population of

candidate solutions (also called individuals), the representation, the fitness test, and the search

operators. The representation is the data structure or encoding of the individuals. The fitness test

is a performance measure that maps individuals to numerical values (the individual’s fitness). The

search operators propose new individuals and guide the search. The basic steps of an EA are shown

in Algorithm 1 [9, 25].

Algorithm 1: Basic EA
1: Create a random set of individuals, the population.
2: repeat
3: Determine the fitness of each individual in the population.
4: if a satisfactory solution is discovered then
5: stop.
6: end if
7: Generate new individuals by applying the search operators to the current population.
8: until Termination Criterion is met

Therefore, in the context of this work, Mitchell’s definition of ML can be applied to EA as

follows: The ML notion of a performance measure maps quite well to the fitness test in EA; the

task in ML can also be the task given to an EA. The ML notion of experience can be mapped

to the fitness test performed on the candidates. The EA does not learn directly from each fitness

test. Instead, the resulting numerical fitness enables the algorithm to improve the performance of

individuals in the subsequent generation and the algorithm eventually finds an adequate individual.

Therefore, an EA can be said to learn by evolutionary means.

10

2.1.3 Genetic Algorithms and Genetic Programming

There are two popular types of EAs known as Genetic Algorithms (GA) [9, 16] and Genetic Pro-

gramming (GP) [23]. The population in GA consists of (traditionally) binary strings, whereas in

GP, the individuals are program trees. Individuals are encoded in a machine readable format which

we shall call the representation or genome (borrowed from the analogous term in genetics). A

population is evolved by applying the search operators (i.e., genetic operators) of selection, muta-

tion, and crossover (also called recombination). The candidates are selected stochastically where

the randomization is weighted based on the candidates fitness. While some individuals will sim-

ply be copied to the next generation, many will have random modifications performed on their

genome (known as mutations). Others will be chosen in pairs to ‘mate’ and their genomes will be

combined, resulting in a child (or multiple children).

The representation used in a GA (or GP) characterizes the search space in which a solution

will be found. The genetic operators determine how the search will proceed by determining the

new individuals to be evaluated. Quite often the population will become stuck in a local max-

imum and will never find the global maximum because the genetic operators, in general, make

small, incremental changes, which combined with selection pressure creates an environment that

is detrimental to exploration. That is, individuals are rewarded for their performance and not for

their location in the search-space. Hence, the individuals may gather around a particularly good

solution where small mutations would only decrease their fitness. The algorithm may never reach

a higher maximum in the search-space if doing so requires traversing an area of low fitness. Thus,

choice of genetic operators is very important to search performance. Given the initial population

is completely random, it is important to be able to avoid local maxima since during any given run

the algorithm may encounter a local maximum before the global maximum. Approaches to the

problem of getting caught in local maxima include niching [9, 41] and speciation [46].

The focus of this work is on a GP system that searches the solution space by sampling a

11

probabilistic model, as opposed to generating new individuals by means of genetic operators. By

using a probabilistic model, the algorithm can more easily sample from throughout the search

space since it is not bound to permutations of the current generation of individuals.

2.1.4 Genetic Algorithms

Genetic Algorithms use a fixed-length, one-to-one encoding of the problem solution and search

the solution-space via genetic operators. Genetic operators include mutation (flipping a bit) and

crossover (one half of individual A is swapped for one half of individual B to create two individu-

als). Of course, there are other possible operators and implementations.

In order to evaluate the performance of a binary string, it must first be decoded into the solution

representation. For example, if we were performing parameter-tuning, the bits may represent a

series of numbers that are the values of the parameters. Each time an individual is evaluated, the

bits are decoded into a series of numbers and performance is measured using those numbers as

parameters. In the biology manner of speaking, such a binary string is known as the genotype and

the array of numbers is known as the phenotype.

Applications for GA include: automated design, parameter tuning, rule-set discovery, and other

search problems.

2.1.5 Genetic Programming

Genetic Programming (GP) is similar to GA except it replaces fixed-length encodings with pro-

gram trees as the solution representation. The tree may have any number of nodes which are either

functions or terminals. Functions are nodes which take a number of inputs and provide some out-

put. Terminals are the leaves of the tree and accept no input; they are usually variables, inputs,

or values2. For example, for symbolic regression, a search for a formula that best fits the curve

2Terminals can also be a function with no input, e.g. a random function that takes no input and returns a random
value.

12

of input data, the functions would likely be any number of mathematical functions (multiply, di-

vide, add, subtract, sine, cosine) and the terminals would be the input variables (X ,Y, ...) or values

(1,2,3, ...).

One can use the operators of mutation and crossover, but they must be modified. For mutation,

the system will randomly select a node in the tree and change its value. In the symbolic regression

example, we can change terminals (X becomes Y) or functions (multiply becomes divide) and even

change a function to a terminal (and vice versa). In the case of a terminal becoming a function,

provisions must be made to add terminals to the new function.

2.1.6 Gene Expression Programming

Gene Expression Programming (GEP) is a GP technique that uses a fixed-length character array

(known in GEP parlance as a gene) to represent a program tree [5]. A gene consists of characters

representing functions and terminals (e.g. +,−,×,÷,X1,X2,1,2). To ensure that a gene represents

a working program, its structure is split into head and tail regions. The head region, the first half

of the gene, can have functions and terminals, whereas the tail can have only terminals. The length

of the tail region is defined based on the length of the head such that there will always be enough

terminals for the functions.

Such a gene simplifies the crossover and mutation operators. In the case of crossover, in place

of traversing a tree, the two genes are lined up and the elements after a randomly selected position

in the gene are swapped. For mutation, a character is simply switched and there is no chance that

a terminal has become a function and requires new nodes to be its inputs. In essence, instead of

manipulating trees as in canonical GP, GEP manipulates arrays.

Another advantage of GEP genes is that they are fixed-length and cannot become excessively

large (i.e. there is no possibility for bloat). In canonical GP, it is possible that trees will become

quite large by swapping large branches during crossover. Large trees become slow to evaluate

13

and this is detrimental to the algorithm’s performance. Much research pertains to mitigating this

problem [36, 52].

One representation studied in this work borrows the GEP representation as it has been modified

for evolving ANN.

2.1.7 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) [29] is a fixed-length array representation that is function-

ally equivalent to GP. The array is the genotype and it encodes a graph structure that consists of

nodes spatially arranged as a two-dimensional grid with a number of rows and columns (thus the

name Cartesian). Each node has access to the inputs and the outputs of the nodes in previous

columns3.

The inputs to the system are numbered starting from 0 and the nodes are numbered starting

from the number of inputs. For each node, there is a series of numbers in the array representing a

node from a previous column, or an input to the network, that represents the incoming connections

to the node. The final numbers are the nodes whose outputs will be used as the program’s output.

CGP arrays are evaluated recursively from the outputs. The output nodes are evaluated first.

When a node is evaluated, it evaluates the value of its inputs; this will continue until all necessary

nodes are evaluated. Alternatively, you could simply evaluate each node in order.

The baseline CGP has been extended in many ways, including: the addition of Automatically

Defined Functions [49], self-modifying programs [13], and the evolution of neural networks [21].

This work focuses on the canonical CGP with inspiration from the neural network extensions.

CGP has some of the same benefits of GEP (fixed-length structure, many-to-one genotype to

phenotype mapping), but with the added benefits of: multiple outputs4, and that a graph represen-

tation is a closer match to an ANN than a tree.

3There is a provision for limiting access to columns based on distance from the current column.
4GEP can provide multiple outputs via multiple genes.

14

2.1.8 Grammar-Based Genetic Programming

It is worth noting another sub-area of Evolutionary Algorithms, although it was not used in this

work. Grammar-Based Genetic Programming (GBGP) is a GP technique that makes use of a

context-free grammar [50]. In the canonical methodology5 the grammar is defined and the repre-

sentation encodes the production rules followed.

The technique has been applied to Neuroevolution [48], but the method was limited to devel-

oping the structure (the weights had to be trained using a data set). Later, an approach for evolving

structure and weights using a grammar approach was developed [12]. We chose to pursue a more

direct representation such that we could evaluate the performance of just EDA on NE.

2.2 Estimation of Distribution Algorithms

Over the last decade an increasing number of works in EC has focused on alternative search strate-

gies based on algorithms that build a probabilistic model of the search space, and sample from that

model to generate individuals. The fittest individual(s) is (are) then used to update the probabilistic

model. This class of algorithms, most popularly known as Estimation of Distribution Algorithms

(EDA)6, has been shown to be successful in a variety of complex optimization applications [35,43].

EDA can be separated into two major categories: those that consider each element an inde-

pendent variable, and those that consider the relationships between the variables. The first class

maintains a probability of an element being a particular value independent of the other elements

sampled, whereas the second class captures dependencies between random variables, such as: what

is the probability of the element being X given the previous element was Y . The methods used in

this study are part of the first class. The study presented in [7] introduced an EDA (from the in-

dependent variable class) for evolving GP-like trees using an indirect representation. That work

5The original description of the CGP algorithm is also known as the Canonical CGP.
6EDA are also known as Probabilistic Model Building Genetic Algorithms (PMBGA).

15

outperformed GEP and PIPE on a selection of nontrivial problems. Also, the approach presented

in [15] was inspired by the EDAs introduced in [7, 40] and on the indirect encoding scheme in-

spired by GEP-NN [4] to evolve ANNs. Unlike PIPE [40], these methods [7,15] use a fixed-length

linear structure for the model, as opposed to a tree.

Next we review other prominent EDA related to this work.

2.2.1 Population-Based Incremental Learning

Population-Based Incremental Learning (PBIL) is an EDA for modeling a population of binary

strings that, in comparison tests, performed better than a similar GA [1]. The model is a probability

vector where each probability represents the chance that a 1 will occur at the given position in the

individual. Initially, each probability is 0.5, representing an equal chance that the bit will be 0 or

1.

After sampling a population and finding the best individual, PBIL updates the probability vec-

tor so as to increase the probability of that individual being sampled. In PBIL this is done by

increasing the probability by a percentage known as the Learning Rate. The probability will de-

crease if the bit was a zero.

In this study, PBIL was tested as a method to learn values for the ANN weights (encoded as

binary strings). It was also modified to be used for more than binary strings. Through modifica-

tion (and inspiration from the method described in section 2.2.2) we were able to use PBIL with

probability tables, such that an integer encoding could be used (as opposed to binary).

2.2.2 Probabilistic Incremental Program Evolution

Since PBIL was created for binary strings, it is appropriate for us to explore the use of an EDA de-

signed for Genetic Programming. Probabilistic Incremental Program Evolution (PIPE) is an EDA

for GP that uses a probabilistic tree structure to model the population [40]; the tree is known as the

16

Probabilistic Prototype Tree (PPT). The tree is similar to a GP program tree, except that each node

contains an array of probabilities. The probabilities are normalized7 and each represent a different

possible element for the node (e.g. for symbolic regression they might be: +,−,×,÷,x1,x2,R)8.

In order to sample the PPT the tree is traversed sampling from each node until all branches end

in terminals. During this process, new nodes are created on the fly as required, i.e. when a function

requires inputs. The newly created node has equal probabilities for each possible element. While

the tree grows during sampling it is pruned during the update phase, if the probability of a node

being a terminal surpasses a given threshold, the nodes beneath it are removed.

To update the PPT, first, the best individual is selected, then a target probability is calculated

based on the learning rate and other factors (details provided in Chapter 3). Next, the probability

for each node is incremented in the program tree. The increments continue until the probability

of generating the chosen individual is equal to the target probability. Finally, the probabilities are

normalized before the next generation is sampled.

In this work, we use PIPE on a GEP-based and a CGP-based representation in order to generate

ANNs. Given that GEP and CGP are fixed-length representations, the model (unlike the PPT) does

not have to grow and shrink. The limited size also has the benefit of requiring less processing time.

Both representations have been successfully used in a variety of applications [5, 20, 29].

2.3 Evolution of Artificial Neural Networks

In this section, we shall describe what Artificial Neural Networks (ANN) are and review works

that have shown that they can be effectively trained to perform many tasks. Then we shall give the

motivation for using Evolutionary Computation approaches to train (or create functional) ANN for

a particular task.

7Normalized probabilities sum to 1.0.
8The R element, the ephemeral constant, mimics the value terminal in GP by providing a random value.

17

2.3.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a computer program based on a mathematical model of

the neurons found in biological nervous systems. They consist of an interconnected group of

nodes. The nodes represent neurons and weighted edges represent the activation level of the neural

synapses (the connections between the neurons).

Each neuron performs a relatively simple function that combined in a network of neurons can

result in complex behaviours. First, it computes a weighted-sum of its inputs. Then it uses an

activation function to determine the neuron’s level of activation (its output). The inputs could

be from outside the network, or the output of another neuron in the network. There are several

possible activation functions, binary or real-valued.

2.3.2 Neural Network Training

Depending on the application domain, three basic learning techniques can be used to tune the

connection weights of the network: supervised learning, unsupervised learning, and reinforcement

learning.

Supervised learning uses a predefined network topology and tunes the weights using the error

between the output and the expected output (from measured input-output data). It is generally used

in pattern recognition and function approximation.

Traditionally ANN are constructed by arranging neurons in a capable topology9 and then em-

ploying a suitable learning algorithm to train the network, such as the back-propagation algorithm

or Hebbian learning. Training a neural network with one of these methods is a type of supervised

learning.

Back-Propagation (BP) [39] uses an input-output set10 and trains the network based on the

9There exists some functions such that a particular topology cannot be trained to approximate it. For example,
XOR (binary exclusive or) requires a hidden neuron.

10Values for the expected output of a network when given the corresponding input.

18

difference between the actual output and the expected output. Moving from the output to the input,

the connection weights are modified, slightly, such that the actual output will be closer to the

expected output. The process is run a predetermined number of times over the set of data. BP is

a capable technique, but is ill-suited to reinforcement learning where input-output sets cannot be

created.

Hebbian learning also uses an input-output set. The connection weights are updated such that

the weight is increased (by a given learning rate) when the input and the output have the same

value.

Unsupervised learning, on the other hand, does not use input-output data. Instead, there is a

cost function (defined by a combination of the input and the networks output) that is minimized

when training the connection weights. It is commonly used in estimation problems.

Reinforcement Learning (RL) uses a specified environment in place of data. The neural network

controlled agent interacts with the environment and learns based on feedback (instantaneous cost)

from the environment. RL can also be done without the use of ANN. In this work, we look at a

system of evolving ANN. Such systems have been shown to be more efficient and powerful than

RL without ANN [10].

2.3.3 Weight-Only Evolving Artificial Neural Networks

Since the advent of evolutionary computation (EC) as a means of solving combinatorial optimiza-

tion problems, researchers have explored evolutionary algorithms (EAs) and RL techniques to

induce ANN [4, 10, 32, 45]. The application of new EC techniques to the evolution of ANN has

attracted increasing interest in the last decade, giving rise to the creation of a sub-area of EC

currently known as Neuroevolution. Early works in this area focused on evolving the weights of

neural networks with a fixed topology as opposed to evolving the complete network (i.e. weights

and topology).

19

2.3.4 Symbiotic Adaptive Neuro-Evolution

The method used in the Symbiotic Adaptive Neuro-Evolution (SANE) approach [32] uses a single

hidden layer topology with an input layer, an output layer, and a hidden layer of neurons. The

algorithm evolves a set of neurons and, simultaneously, a set of network blueprints that encode

which neurons will be used together. When evolving the neurons, the input and output connections

as well as the weights of those connections are evolved.

2.3.5 Topology and Weight Evolving Artificial Neural Networks

Approaches that have focused on the evolution of the full neural network design are known as

Topology and Weight Evolving Artificial Neural Networks (TWEANN). Examples include: Koza’s

approach to evolving neural networks using Genetic Programming (GP-NN) [24], Gene Expression

Programming applied to Neural Networks (GEP-NN) [4], Cartesian Genetic Programming for

Artificial Neural Networks (CGP-ANN) [21], and Neuro-Evolution of Augmenting Technologies

(NEAT) [45].

Competing Conventions is a problem in TWEANN where different individuals use different

methods to perform the same function [42]. Crossover between two ANN using different conven-

tions often creates children of worse fitness than the parents. This problem can be imagined as two

ANN where one is the mirror of the other. When crossover is applied to these mirrored networks,

the offspring may have none of the functionality of their parents.

Neuro-Evolution of Augmenting Technologies (NEAT) [45] uses a dynamically sized genotype

that keeps track of nodes and connections. The initial population is the simplest ANN possible (no

hidden neurons) and over time add connection and add neuron mutations increase the size of the

genome. When these mutations occur the new element (node or connection) is given a number,

known as a historical marking, that tracks when it was created in the hopes that it will represent the

functionality of the node or connection. The historical marking allows NEAT to mitigate problems

20

during crossover due to the competing conventions problem. Historical markings also allow NEAT

to perform speciation, which attempts to protect innovation.

Historical markings are used in the NEAT crossover function to allow the genomes to be

arranged according to functionality. The genes that are transferred between parents are chosen

stochastically. Generally, crossover is a stochastic process based only on the encoding of the indi-

viduals, but with historical markings we are able to perform crossover with some awareness of the

functionality of a given portion of the genotype.

Speciation is the process of placing individuals into sets of similar individuals. NEAT uses the

notion of species to protect innovations. When a new species is started (a mutation or crossover

creates a new gene significantly different from the others) the fitness may still be low. In the hopes

that this new species will eventually supersede the current, its first member(s) is kept and mutated

in the next generation. This is done by including species size in the fitness function, reducing the

fitness of those in a large species, and increasing the fitness of individuals in the new species. By

increasing the fitness of members of a new species we give both species a chance at continued

existence in the population. Again, historical markings allow the genomes to be compared by

functionality and hence the species are defined by function, not by an arbitrary encoding11.

Although NEAT is a powerful TWEANN technique, due to the difficulty of implementing

historical markings in an EDA, we have not implemented such features. While it would be possible

to create a probabilistic model that uses a representation similar to NEAT, in an EDA the nature of

sampling would mean that the historical markings in such a system would not necessarily indicate

functionality so much as order of appearance. It is certainly a potential area of research.

2.4 Modularity

Modularity can be defined as the encapsulation of function. While EC approaches may develop

11NEAT also includes provisions for limiting the number of species.

21

very efficient solutions, it is often the case that the efficient solution lacks modularity [18, 27].

Modularity should not be confused with regularity. Regularity is the repetition or re-use of

form or function. Regularity and modularity can be seen in the wheels of a car where each wheel

provides an encapsulated function and is similar in form. Modularity without regularity would be

something like the steering wheel on a car, the function is encapsulated, but there is only one per

car.

In GP, modularity has been attempted through the use of Automatically Defined Functions

(ADF) [25]. This method forces encapsulation, but does not apply any pressure to find modularity

inherent to the problem being solved.

It is possible to induce modularity by using a fitness function that biases toward modular solu-

tions. One such method switched the fitness function at fixed intervals between two functions that

require similar functionality, e.g., switching between (X XOR Y) OR (Z XOR W) and (X XOR Y

) AND (Z XOR W) [18].

It has been shown that HyperNEAT (an extension of NEAT) was unable to find modular solu-

tions [3]. In response, an extension was proposed that would induce modularity by constraining

connections to geometrically-local neurons, known as HyperNEAT-LEO. HyperNEAT-LEO was

successful in finding modular solutions [47].

Here, on the other hand, we show that modularity is an emergent property of the evolutionary

process used in our approach.

22

Chapter 3

Methodology

The methodology presented in this section aims to provide satisfactory answers for the following

questions: (1) Can an EDA-GP (an EDA for a GP task) methodology that maintains a distribution

of a linear representation of ANN and indirectly searches the solution space of network topology

and weights via a many-to-one genotype-to-phenotype mapping, evolve the necessary structures of

an ANN? (2) Can an EDA-GP find solutions more effectively than state of the art Neuroevolution

systems?

Given that there is no prevalent EDA for ANN in the literature, we have taken the approach

of studying several possible methodologies and comparing them to each other and current NE

techniques. The systems we have defined combine structural representation (GEP or CGP), weight

representation (binary-string representation or mean-variance pairs), and algorithms for estimating

the population (PBIL or PIPE).

We have separated the task into three parts: structure representations, weight representations,

and population models. We present two methods for each part, each of which can be used inter-

changeably with the others. Structure representations include: GEP and CGP; weight representa-

tions include: mean-variance pairs and bitwise representation; population models include: PIPE

and PBIL.

We begin by describing the structure and weight representations of ANN and follow with pop-

ulation modeling techniques for sampling individuals and updating the model. Finally, we present

the experiments used to compare the techniques to each other and current NE systems.

23

3.1 Structure Representation

The structure representation describes the nodes and connections between nodes of the induced

ANN. Here we describe the representations, but how they are modeled is described in section 3.3.

3.1.1 The GEP-NN Representation

In conventional GEP, a gene consists of a fixed-size symbolic string encoding a program tree.

Symbols in the genotype represent terminals and functions of the encoded program tree. A GEP

representation can either be uni-genic, i.e., the GEP chromosome consists of a single gene, or it can

be multi-genic, in which case the chromosome consists of a number of genes. The gene is separated

into two sections known as the head and tail regions. The tail includes only terminals whereas the

head contains functions and terminals. The tail region’s length t is defined as t = h · (amax−1)+1,

where h is the length of the head region and amax is the maximum number of parameters to the

functions (a.k.a. maximum arity). Every gene represents a functionally correct program tree. The

tail is long enough such that in the case that the head consists entirely of functions of maximum

arity there will be enough terminals to place as parameters. The opposing extreme is when the first

portion of the head is a terminal. In that situation the output is the value of that terminal and the

remaining elements of the gene are unused.

In the neural network extension, called GEP-NN [4], the functions and terminals are substituted

for neurons and inputs, respectively. Neurons are functions which perform a weighted sum on the

given inputs. Neurons with 2, 3, and 4 inputs are called D, T , and Q respectively. Also, a third

region of the gene is defined. This region, called the weight region, comes after the head and

tail regions and encodes the weights. The weight region’s length lw is defined by the expression

h · amax. The values of each weight are kept in an array W and are retrieved when necessary. For

simplicity, the elements of the weight region are pointers to, or indices of, weights in W . Figure

(3.1.a) shows an example of an uni-genic GEP-NN chromosome.

24

Before an ANN can be evaluated it must be generated from its gene encoding. The generative

process begins at the left-most element in the gene and constructs a tree in a breadth-first manner.

The weights are then added in a breadth-first manner as well. Figure (3.1.b) shows the ANN

encoded by the uni-genic chromosome shown in Figure (3.1.a).

T Di1i2i3i4i1i2i3W1W2W3W4W5W8W6W9
(a)

(b)

Figure 3.1: (a) Uni-genic GEP-NN chromosome. D and T are neurons with 2 and 3 inputs, respec-
tively, i1 through i4 are inputs to the network, and W1 through W10 represent the weights. (b) The
represented Neural Network.

To combine multiple genes, in a multi-genic system, the networks are generated and their

outputs are combined with an OR function. The OR function, when in a binary ANN, is a neuron

with as many inputs as genes with a weight of 1.0 on each connection.

The representation introduced above constrains the topology of a network in the following

ways: it can only represent feed-forward ANN, meaning they contain no loops, the networks are

limited to having only one output, and the neurons are limited to only having one output.

A network may consist of any number of neurons. The output of a neuron of arity n is defined

by the expression f (i1, · · · , in) = k(
n

∑
j=1

i j · w j), where wi is a real number denoting the weight

associated with the ith input signal to the neuron, and k(x) is the activation function (defined in

Section 3.6).

25

3.1.2 Cartesian Genetic Programming Representation

Cartesian Genetic Programming for Artificial Neural Networks (CGP-ANN) (proposed in: [19])

was used as an alternative to the GEP representation to compare performance. CGP-ANN is similar

to the GEP representation in that it is a fixed-size array, but the genotype encodes a graph, as

opposed to a tree. The graph can have any number of inputs and outputs, which better represents

ANN than a tree since the network and neurons can have multiple outputs, which is often the case.

The graph consists of a number of nodes, organized in rows and columns. Each node receives

an identification number Nid = Nr · c+ r+Ni, where Nr is the number of rows, Ni is the number of

inputs, and c and r are the column number and row number respectively.

Each node has an equal number of inputs (similar to the arity of a GEP function). The possible

input nodes are determined by: 1) whether the graph / neural network is feed-forward or recurrent1

and 2) the levels back parameter, defining the maximum number of columns between the current

column and the input column. However, the inputs are accessible to any node.

The graph is encoded as an array. The array has a set of numbers for each node and a final set

for the outputs. In canonical CGP, each node has a set of indices, one for each input, followed by

a number representing the node’s function (e.g. +,−,×,÷).

Given that the arity is the same for all nodes, and hence all neurons would have the same

number of inputs, CGP-ANN modifies the number of inputs by way of a connection bit. Each

connection is either on or off as dictated by the value of its connection bit. The connection bit is

encoded as the value immediately following the input’s index (as shown in Figure 3.2.c).

The final numbers in the array are the outputs. The value is the index of the node (or input)

whose output value should be the network’s output. There is no connection weight for the outputs.

1This work uses only feed-forward networks.

26

3
Input 0

Input 1

Input 2

Output 1

4

5

6
Output 2

2
0
0

0
1
2

0
3
4

1
4
2

(a)

Node Identifier 3 4 5 6 Outputs
CGP Array 2100010 0011210 0131400 1141200 6 4

(b)

Input Node Conn. Bit Input Node Conn. Bit Input Node Conn. Bit Function
0 1 3 1 4 0 0

(c)

Figure 3.2: Example CGP Graph (a), the corresponding genotype (b), and (c) the genotype of a
neuron (in this case node 5).

27

3.1.2.1 CGP Weights

In CGP-ANN [19], the weights are enumerated based on the input and output of the connection.

For each possible connection there is a weight associated with the type of connection. For example,

take a graph with Nr = 2, Nc = 4, and Ni = 3 as the number of rows, columns, and inputs respec-

tively. The number of possible connections can be calculated as Npc = Ni ·Nr ·Nc+
Nc−1

∑
col=0

col ·N2
r =

24+24 = 48. Therefore, this particular graph would have 48 weights.

Since the number of weights can become quite large in the CGP-ANN method, we experi-

mented with a system similar to GEP where the inputs to each node have a weight index. That

way we can choose the number of weights for the system. The weight index is encoded after the

connection bit in the array.

3.2 Weight Representation

We have implemented two methods for representing the weights: one a bitwise representation

(inspired by CPG-ANN) and another as mean-variance pairs.

3.2.1 Bitwise Weight Representation

In CGP-ANN, the authors of [19] used a 17-bit representation for the weights. However, they did

not specify how this representation worked, so we have provided our own method. The first bit

encodes the sign (+/−) and the rest of the bits encode the value. Such that the weight would be:

W = (−1)b16 · ∑15
i=0 2i·bi

216 , where bi is the bit value at index i.

3.2.2 Mean-Variance Pair Representation

In both GA and GP, real or integer values can be directly encoded in the representation, i.e. simply

place the value (its binary encoding, in the case of GA) into the genome.

28

When creating a probabilistic model, the purpose is to represent the likelihood of a value being

sampled. In the case of a discrete genotype domain, such as that of binary strings, one can use

probabilities to represent the likelihood of each bit being a 1. On the other hand, for a continuous

domain, such as that of real values, one alternative is to use mean-variance pairs as a model, as

shown in the EDA method introduced in [38] for optimizing a vector of real values. The idea is

that the mean-variance pair represents the probability of selecting a floating-point value using a

normal distribution. During learning, one updates the probability by shifting the mean toward the

values with the highest fitness and reducing the variance.

3.3 Population Model

The population model is similar in structure to the representation it models. Here we describe

models for GEP, CGP, Bitwise Weights, and Stochastic Hill Climbing.

3.3.1 GEP Model: The Probabilistic Prototype Chromosome

Inspired by PIPE’s Probabilistic Prototype Tree [40], we represent the probability distribution of

GEP genes via the Probabilistic Prototype Chromosome (PPC) (see Figure 3.3).

The PPC is a linear structure consisting of two sections: the gene section Dg and the weights

section Dw. Dg models the distribution of symbols occurring in the head, tail, and weight regions of

the gene. Its structure is the same length as the GEP-NN genotype presented in Section 3.1.1. The

difference is that it stores a probability table for each gene position. The values in each probability

table are normalized (i.e. sum to 1.0). Note that the weight region of Dg models the distribution of

the indices that point to the weight values stored in the W array of the GEP gene.

When sampled, the PPC produces a GEP-NN gene. The weights for this gene are produced

from another model (configuration dependent).

29

Head Tail Weight Region

P(a) = 0.1
P(b) = 0.1
P(D)= 0.2
P(T)= 0.2
P(Q)= 0.4

P(a) = 0.5
P(b) = 0.5

P(w1) = 0.1
P(w2) = 0.1
P(w3) = 0.1
.
.
.

Figure 3.3: Probabilistic Prototype Chromosome: Head, Tail, and Weight Regions

3.3.2 CGP Model: The Probabilistic Prototype Array

The CGP Model (the Probabilistic Prototype Array) is similar in implementation to the PPC. For

each position in the CGP array we have a probability table. The number of probabilities at any

position is determined by where it is in the graph and what function it serves.

An example PPA segment is shown in Figure 3.4; the segment shows an example of a node

model with arity 1. Generally, nodes will have higher arity and the node, connection bit, and

weight portion will be replicated for each incoming connection; there will only be one probability

table for functions per node2. The node portion will have varying probability tables depending on

the column the modeled node is in. This segment will be replicated for each node in the array and

will be followed by a probability table for each output, which would simply be a table with the

possible output nodes.

When sampled, the PPA produces a CGP-ANN array, and the weights will be sampled from

another model.

2In the figure, b and s, denote binary and sigmoid, but in the experiments of this study we used one or the other.

30

Node Conn. Bit Weight

P(N0) = 0.1
P(N1) = 0.1
P(N2)= 0.2
P(N3)= 0.2

.

.

.

P(0) = 0.5
P(1) = 0.5

P(w1) = 0.1
P(w2) = 0.1
P(w3) = 0.1

.

.

.

Func.

P(b)= 0.4
P(s)= 0.6

Figure 3.4: Probabilistic Prototype Array Segment: a node will have a segment like this except the
node, conn. bit, and weight would be replicated once for each incoming connection.

3.3.3 Bitwise model

A binary string can be modeled as simply as a single array of probabilities representing the prob-

ability of the bit at the given position being 1. Our implementation actually uses two probabilities

for each bit since it made the implementation simpler, and the system is functionally equivalent.

In any system we will have a number of weights. For each weight, there will be a model as

described. When sampled, the Bitwise model produces a set of binary strings, one for each weight.

The binary strings are then decoded into floating-point values.

3.3.4 Mean-Variance model

The model for SHC consists of a list of tuples ⟨µ,σ⟩, one for each weight value; each tuple repre-

sents the mean µ and standard deviation σ of a normal distribution.

When sampled, the tuples become a set of weights.

31

3.4 The Estimation of Distribution Algorithm

Each of the models described (with the exception of SHC) can be updated in a similar fashion. A

given individual (usually the best of the generation) is used as a target. Each probability table in

the model is updated such that the probability of the target individual is increased.

Our implementation includes two methodologies for updating the models: PIPE and PBIL. We

shall conclude with a description of the SHC updating algorithm.

3.4.1 Probabilistic Incremental Program Evolution (PIPE)

The high-level description of PIPE [40] is shown in Algorithm 2.

Algorithm 2: PIPE
1: Initialize the model with uniform probability.
2: repeat
3: Flip a coin with head probability PElitist Learning
4: if the head turns up and this is not the first iteration then
5: Update probabilities based on best individual found so far
6: else
7: Create population from the model
8: Evaluate fitness of individuals
9: Update probabilities based on best individual of generation

10: Mutate the model
11: end if
12: until Termination Criterion is met

Initialization of the PPC: Each list of probabilities in the model is initialized with uniform

probability.

Creation of individuals: The population is created by sampling the model. To create an

individual we sample from the PPC or PPA to generate a gene or array and we sample the weight

model to generate an array of weights. To sample the PPC or PPA or a bitwise model, we perform

roulette wheel selection based on the probability tables for each position.

32

Learning from best individual of generation: Let b denote the best gene found in the current

generation. The idea is to modify the model such that the probability of sampling b increases.

We use the PIPE learning algorithm [40] to adapt the probability distribution of the model of the

structure or the bitwise weights.

Adapting the model (M): Let Pbi denote the probability of the i-th element of b. The expression

below defines Pb, the probability of creating gene b:

Pb =
|M|

∏
i=1

Pbi , where |M| is the length of the model. (3.1)

Ptarget, the target probability we would like an individual to have, is defined as in [40]:

Ptarget = Pb +(1−Pb) ·λ · (ε+ fE)

(ε+ fB)
(3.2)

where λ is the learning rate, ε is the fitness constant, fE is the fitness of the best individual of

all generations (i.e. the elite individual), and fB is the fitness of the best individual of the current

generation.

The structure of b is then learned in the PPC by incrementing the probabilities of the elements

of b towards Ptarget as follows: while Pb < Ptarget, Pbi = Pbi +0.1 ·λ · (1−Pbi), for i = 1 to |M|.

Learning from the elite individual: Let el be the best gene found so far. Similar to the method

shown above to adapt the model, we calculate Pel (instead of Pb) and Ptarget using expressions 3.1

and 3.2, respectively, and use the same process shown above to adapt M towards el. We proceed

likewise to adapt the weight model.

Model Mutation: After every generation the model is mutated as follows:

Mutation of the model: As in [40], first we find the probability of mutating a single element in

the model, defined as: Pme = PM/(Ne ·
√
|b|), where PM is a user-defined parameter defining the

overall mutation probability, |b| denotes the size (number of nodes) of b, and Ne is the number of

33

elements in the table (varies depending on position in the model).

We modify each probability table in the model with probability Pme, but only the tables that

were used in creating the generations best individual b. We add to the probability of the i-th element

selected a small amount: Pbi+= MR · (1−Pbi), where MR is the user-defined mutation rate.

3.4.2 Population Based Incremental Learning (PBIL)

Population Based Incremental Learning (PBIL) is an EDA-GA technique. PBIL is a conventional

EDA that is based on a binary string solution representation. Its methodology is similar to that

of PIPE. A population of individuals is sampled and evaluated and the best of the generation is

found. This best is used to adjust the model. Also, mutations are applied to the model after each

generation.

PBIL differs from PIPE in that the adjustment is made in one calculation, as opposed to defin-

ing a target probability and incrementing toward it. Also, PBIL does not have a notion of elitist

learning.

Adapting the model: We update the probability at index i using the following equation: pi =

pi · (1.0−LR)+besti ·LR . Where pi is the probability at index i, besti is the value (1 or 0) in the

best individual, and LR is the Learning Rate.

Mutating the model: After each generation the model is mutated. Each table in the model

is mutated with probability Pm, as per the following equation: pi = pi · (1.0−MS)+R[0,1] ·MS .

Where MS is the mutation shift parameter and R[0,1] is randomly selected as either 0 or 1.

While PBIL was originally used for binary arrays, we have expanded the usefulness by com-

bining PBIL adaption and PIPE normalization. This works in a manner similar to PIPE except that

that probability is adjusted as per the above equations.

34

3.4.3 Stochastic Hill Climbing

Initializing the model: The mean and standard deviation of each tuple ⟨µ,σ⟩ is initialized as

suggested in [38], more specifically: µ = rmin +
(rmax−rmin)

2.0 and σ = (rmax − rmin) · C , where the

constant C is chosen so that the sampled weight values cover well beyond the user-defined range

rmax − rmin.

Sampling the model: To sample weights, we sample the normal distributions represented by

the given mean and standard deviation tuples.

Adapting Dw: In each generation we adjust each mean to be closer to the mean of the values in

V , where V is a vector storing the three best values found for a given weight. I.e. µi := µi+µmove ·

(
1
n

n

∑
j=1

Vj), for i = 0 to |M|3. And we reduce each standard deviation, as follows: σi := σreduce ·σi.

3.5 Proximate Optimality Principle and Guided Mutation

According to the proximate optimality principle [8], for most combinatorial optimization problems

the solutions for a particular problem will have a similar structure. An ideal genetic operator

should therefore be able to produce an offspring which is close to the best solution found so far.

In evolutionary algorithms (EA), recombination is not an ideal operator, as the resulting offspring

are often less viable than their parents. Conventional mutation is also not ideal. Although it may

produce an offspring similar to the parent, such offspring may be more distant from other better

solutions since the operator does not make use of statistics extracted from the population.

Although EDA are able to cope with this problem, their convergence on a solution may be hin-

dered because the sampling distribution is represented by models with limited degrees of freedom.

For example, in a problem with multiple local optima, the EDA may decide to represent only one

peak or all of the peaks (including the valleys, i.e. the unfit areas). If the algorithm chooses the

wrong peak, it may get stuck and never find the global optimum. If, on the other hand, it tries to

3Where := is the assignment operator.

35

encompass all peaks, it may get bogged down sampling irrelevant, unfit solutions. A special oper-

ator, known as Guided Mutation (GM) [53], is a possible workaround to this problem. GM extends

an EDA with a search mechanism that directly controls the similarity between new solutions and a

given solution.

A percentage of the population is sampled from the model and the remaining individuals are

created through GM [53] which combines global statistical information and a given individual.

To create an individual via GM, we either sample a gene element from the model (based on a

user-defined probability β), or clone (with probability 1−β) a gene location from the best solution

found so far, better known as the elite individual el. Algorithm 3 describes in more detail the

creation of an individual via GM. In the algorithm, T denotes the topology model, W denotes the

weight model, and i subscript denotes the i-th element of a linear structure. For example, T [0]

denotes the probability table at the first position in the topology model and Tnew[0] denotes the

value at the first position in the topology gene or array of the new individual.

The method described in Algorithm 3 describes the weight process with respect to SHC weights.

The entire weight is cloned from the individual. If the weights used a bitwise representation, GM

would be used for each bit in the model same as is done for the structural representation.

3.6 Experimental Design

In our study of EDA-GP techniques for Neuroevolution we used the following benchmarks: XOR,

Six-Bit Multiplexer, Single-Pole Balancing, and the Retina Problem.

3.6.1 XOR and Six-Bit Multiplexer

In order to show a system’s effectiveness in finding appropriate topologies and weights we first

performed the XOR test. In this test the network represents a binary logic function where the

output is true when only one of the inputs is true. This is a good test for topology discovery

36

Algorithm 3: Creation of individual via GM
Let el be the best individual found so far
Let new be the newly created individual
Let |T | be the length of the modeled topology
Let |W | be the number of weights in the model
Let β be the probability of using GM
for i = 1 to |T | do

Flip a coin with head probability β
if head turns up then

Tnew[i] = roulette wheel according to T [i]
else

Tnew[i] = Tel[i]
end if

end for
for i = 1 to |W | do

Flip a coin with head probability β
if head turns up then

Wnew[i] = Norm(W [i])
else

Wnew[i] = Wel[i]
end if

end for

37

because it requires a hidden neuron.

The Six-Bit Multiplexer (6-MUX) test was used as a more challenging binary circuit problem.

The 6-MUX takes six binary inputs, two of which represent an address pointing to one of the other

four inputs. The output will be the same as the input addressed by the two address inputs.

On the XOR and 6-MUX problems the neurons used a discrete activation function defined as:

k(x) = 1, if x ≥ 1; k(x) = 0 otherwise.

In neural networks, the activation function has a threshold parameter. In binary neurons, the

threshold is the value that determines if the neuron’s output is active (value is 1). For some prob-

lems, it is necessary or beneficial to have different threshold values for the neurons in the network.

In NE, either we must evolve a set of theshold values (similarly to the way GEP-NN evolves

weights [4]), or we must introduce an input known as a bias. Generally, the bias is a constant

with value 1.0. Using a bias is as simple as having a connection between the bias and the neuron.

The threshold in neurons with a binary activation function is the value that the weighted sum must

exceed in order for the neuron’s output to be active (value of 1). For example, if the weight is 1.0,

the threshold has been effectively reduced to 0.0 because 1.0 has been added to the sum via the

bias.

3.6.2 Single Pole Balancing

Single Pole Balancing (SPB) is a control theory problem that has become a benchmark of NE

techniques. The test includes a cart with a hinged pole at its centre (Figure 3.5). The pole will

swing down unless the cart, by moving backward and forward on the rail, is able to keep the pole

up.

We set up the SPB experiments as described in [32]. The Euler method was used to calculate

the dynamics of the system, with a step size of 0.02s (seconds). All state variables were scaled

to [0,1] before being fed to the network. The inputs are: cart position x, cart velocity x′, pole

38

x'

x

θ'

θ

Figure 3.5: Diagram of the Single Pole Balancing Problem

position θ, pole velocity θ′, and a bias of 1.0. There are two outputs from the network, one for

‘left’ movement and the other for ‘right’ movement. If the ‘left’ is greater than the ‘right’ then the

force on the cart is -10, otherwise it is +10. In the SPB problem the neurons used a continuous

activation function defined as: k(x) = (1+ e−4.924273x)−1.

For 30 simulated minutes (1500 time steps), the cart must move left or right in order to balance

the pole. The pole must remain within 12 degrees of directly upward and the cart must remain

within 2.4 meters of the origin. The pole position, pole velocity, cart position, and cart velocity all

begin with random values within given ranges. The fitness function consists of the sum of fitness

values from ten random start states and the maximum fitness attainable is 15,000.

In the case of a GEP based solution, multiple outputs are simulated by evolving two genes, one

for each output. CGP, on the other hand, is capable of having multiple outputs without two genes.

The pole and cart are simulated using the following equations:

θ′′ =
−9.8 · sinθ(mp +mc)− cosθ(F +mplpθ′2 sinθ)

lp(
4
3(mp +mc)−mp cos2 θ)

θ′[t + τ] = θ′[t]+ τθ′′[t]

39

Figure 3.6: Diagram of the Retina Problem from [18]. Black indicates that the bit is on.

θ[t + τ] = θ[t]+ τθ′[t]

x′′ =
F +mplpθ′2 sinθ−mp · lpθ′′ cosθ

mp +mc

x′[t + τ] = x′[t]+ τx′′[t]

x[t + τ] = x[t]+ τx′[t]

where x is the cart position (meters), θ is the pole position (radians), τ is the amount of time be-

tween simulated steps (0.02s), mp,mc are the mass of the pole and the mass of the cart, respectively

(Kg), lp is the length of the pole (m), F is the force on the cart (newtons).

3.6.3 Retina Problem

The Retina Problem introduced in [18] is a classification task where the controller must recognize

patterns on two retina (left and right). In this test we were not only evaluating performance, we

also wished to verify if our approach is able to evolve modular solutions.

There are eight inputs, four per retina, that are arranged two high and four wide, see Figure 3.6.

The test is to identify whether the inputs in the left retina represent a left object and the inputs in

40

the right retina are a right object. A left object is defined as one where three or four of the inputs

are on, the two inputs are on in the left-most column, or one input is on in the left-most column.

Conversely the right object is similarly defined, except that if only one or two inputs are on then

they must be in the right-most column.

For this problem, the activation function was binary as in the XOR and 6-MUX problems.

Kashtan and Alon [18] varied the fitness function between identifying Left and Right objects and

identifying a Left or Right object. For this study, the training was done with the Left-and-Right

objects fitness function, as was used to study HyperNEAT-LEO [47]. HyperNEAT is an extension

of NEAT created for the purpose of inducing regularity in the evolved structures. HyperNEAT-

LEO is an extension of HyperNEAT that uses locality information in evolving connections for the

purpose of inducing modularity.

41

42

Chapter 4

Results

4.1 Preamble

The fitness function in each of the binary experiments (XOR, 6-MUX, Retina) is a count of the

number of cases that the solution ANN is able to satisfy. For Pole Balancing, the fitness is defined

as the number of time periods the pole remains balanced (between −12◦ and 12◦) and the cart

stays on the track (between -2.4 and 2.4 m). The maximum fitness values for the fitness tests are

listed in Table 4.1.

Performance measures attempt to show the usefulness of the algorithm. A Neuroevolution

system is useful if it is able to automatically create ANN that satisfy the given task. In our tests,

we performed a number of runs and defined our success rate to be the ratio between runs which

found a solution and the total number of runs. If the system is capable of a 100% success rate,

then the measure used is the number of individuals we need to create and test before we find a

satisfactory individual – known as the mean evaluations.

All charts presented in the results section are an average of 100 runs, unless otherwise stated.

Tables presenting the number of evaluations do not include failed runs when calculating the mean

and standard deviation. Level of significance was calculated with a Z-test with α = 1%.

XOR 4
6-MUX 64
Retina 256
Pole Balancing 15000

Table 4.1: Maximum Fitness Values

43

Parameter Setting

Weights array length 10
CGP:
Levels Back Columns
PIPE:
Fitness Constant, ε 10−6

Probability of elitist learning, PEL 0.01
Stochastic Hill Climbing:
µmove 0.05

σreduce (Where G is number of generations) G
√

1
1000

C 0.25

Table 4.2: Fixed Parameters

Unless otherwise specified, the parameters listed in Table 4.2 remained consistent throughout

experimentation.

As mentioned in Chapter 3, we have taken the approach of studying several possible method-

ologies and comparing them to each other and current NE techniques. We use the following nota-

tion to indicate the system setup: <structure>.<weight >.<EDA>. For example, a test setup

might be GEP.SHC.PBIL, meaning the configuration uses a GEP representation for the struc-

ture, Stochastic Hill Climbing to learn the weight distribution (mean, variance), and PBIL to

model the population structure. There are 8 possible systems; examples include: GEP.BW.PIPE,

CGP.SHC.PBIL, CGP.BW.PIPE.

4.2 Exclusive OR

Results were obtained by doing a number of rounds of experiments. The purpose of the first

round was to find the best performing system so that the subsequent rounds could optimize the

parameters of that system. The parameter settings for the first round were selected from the related

works [1, 4, 29, 38, 40]. It was found that CGP.BW.PIPE was the highest performing system. In

the next round we tested a number of parameters, including: population size, graph size, and PIPE

44

parameters. The third round began with a test of the different systems with the parameters from

the previous run. CGP.BW.PIPE was replaced by CGP.SHC.PIPE as the system being optimized.

For the fourth round, we decided to test CGP.BW.PIPE and CGP.SHC.PIPE after discovering that

SHC had the advantage of unconstrained weights1. A full description follows. The settings of the

rounds can be found in Table 4.3.

The first round, denoted XOR.R1, included a test of each possible system and a calculation

of its mean evaluations and success rate. Possible systems included those using Guided Mutation

(GM), the technique we used for exploring the vicinity of the elite individual. The configuration

using a CGP representation, Bitwise encoded weights, and the PIPE EDA for learning the structure

(CGP.BW.PIPE) and its GM counterpart (CGP.BW.PIPE.GM) had the highest success rate at ap-

proximately 17% (mean), whereas the next best competitor was GEP.BW.PIPE.GM at about 9%.

We performed 100 experiments with 100 runs, and the result was significant, with α = 1%. In the

tests of the mean, since we did not have at least 30 samples (the success rate was less than 30),

statistical significance could not be used. Results can be found in Table 4.4.

The next round of experiments, denoted XOR.R2, took the highest performer (CGP.BW.PIPE)

and tested it with a number of parameter changes. Tests included: population size, graph size,

Guided Mutation, GM on elite or best, PIPE mutation parameters, PIPE learning rate, and using

PIPE or PBIL on the BW weights. Results are shown in Table 4.4. In the table, SR denotes success

rate and Evals denotes mean evaluations.

The most significant result for performance was population size. When changing the popu-

lation size we kept the maximum number of evaluations consistent by changing the number of

generations. GEP-NN used population size 30 and 50 generations, so the maximum number of

evaluations was 1500. Setting the population size to 5 resulted in a 29% success rate. It should be

noted that PIPE used a population size of 10 in some experiments [40].

1The bitwise representation has a strict minimum and maximum; SHC has no restriction for sampled values except
how much it can move the mean each generation.

45

Setting XOR.R1 XOR.R2 XOR.R3 XOR.R4

Struct. Rep. - CGP CGP CGP
Weight Rep. - BW SHC BW, SHC
Struct. Learn. - PIPE PIPE PIPE
Weight Learn. - PIPE SHC PIPE, SHC
GM - No Yes -
BW Range [−2,2] [−2,2] [−2,2] [−8,8]
Experiments 100 100 100 30
Runs 100 100 200 100
Generations 50 50 300 300
Pop. Size 30 30 5 5
GEP:
Min. Arity 2 2 2 2
Max. Arity 3 3 3 3
Head Length 4 4 4 4
Genes 1 1 1 1
CGP:
Arity 5 5 5 5
Rows 3 3 1 1
Columns 2 2 6 4
PIPE:
LR, λ 0.01 0.01 0.005 0.0015
PM 0.4 0.4 0.5 0.5
MR 0.4 0.4 0.4 0.3
PBIL:
LR 0.10 0.10 0.10 0.10
PM 0.02 0.02 0.02 0.02
Mshi f t 0.05 0.05 0.05 0.05
GM:
Probability, β 0.5 0.5 0.5 0.5
Pop. Percent 50% 50% 50% 50%

Table 4.3: XOR Configuration

46

Round Test Measure Mean Best Worst SD Failures

XOR.R1 CGP.BW.PIPE SR 17.0 27 9 4
CGP.BW.PIPE.GM SR 16.4 28 10 3
GEP.BW.PIPE.GM SR 9.4 16 3 2
GEP.BW.PIPE SR 8.7 17 2 2

XOR.R2 Pop. Size
Pop. Size 5 Evals 726 170 1270 257 71
Pop. Size 30 Evals 784 207 1421 336 78
Pop. Size 10 Evals 901 134 1408 336 73

Graph Size
Row,Col: 1,6 Evals 669 272 1243 311 90
Row,Col: 2,6 Evals 726 176 1154 358 91
Row,Col: 1,8 Evals 795 296 1454 370 85

PIPE Mutation
PM = 0.5,MR = 0.4 Evals 716 162 1300 335 76
PM = 0.3,MR = 0.4 Evals 841 233 1499 439 86
PM = 0.4,MR = 0.3 Evals 869 131 1489 481 83

XOR.R3 CGP.SHC.PIPE.GM SR 28.8 41 18 4
GEP.SHC.PIPE.GM SR 24.1 33 12 4
CGP.BW.PIPE.GM SR 22.1 33 13 3
CGP.SHC.PIPE SR 19.9 28 11 3
CGP.BW.PIPE SR 15.3 23 7 3

PIPE LR
λ = 0.02 Evals 806 104 1442 344 151
λ = 0.005 Evals 811 157 1444 370 151
λ = 0.0175 Evals 824 2 1470 411 138

XOR.R4 (λ = 0.015)
GGP.BW.PIPE.GM SR 59.4 66 50 3
GGP.BW.PIPE SR 57.0 71 44 6
GGP.SHC.PIPE.GM SR 23.0 30 12 4
GGP.SHC.PIPE SR 18.6 30 9 4
(λ = 0.0015)
GGP.BW.PIPE.GM SR 64.7 75 56 4
GGP.BW.PIPE SR 63.2 73 52 4
GGP.SHC.PIPE.GM SR 26.5 32 19 3
GGP.SHC.PIPE SR 18.9 27 12 3

Table 4.4: XOR Results (SR denotes success rate and Evals denotes mean evaluations).

47

The PIPE versus PBIL on BW weights result was that PIPE outperforms PBIL. For GM on

elite or best, GM on the elite outperformed using the best by about 200 mean evaluations2. The

graph size showed us that CGP prefers to have a single row with a number of columns (see Table

4.4). Intuitively, we can see that CGP can then use the neurons in any configuration, including one

with a number of rows.

After fixing the parameters to their best performing values a third round was run, denoted

XOR.R3, in which we tested: population size, graph size, PIPE learning rate, and PIPE mutation.

These tests were done with 100 experiments and 100 runs so that we could measure the mean

success rate. Population size 5 achieved a 28% success rate and was better than 10 and 20 with

α = 1%. For graph size, increasing the number of neurons increases the success rate, but because

we want to compare with GEP-NN we kept the size to 1 row, 4 columns. Therefore there are 4

neurons in the graph, similarly GEP-NN was setup to have a maximum of 4 neurons (head size

was 4).

For the learning rate, there was inconsistency in the results, 0.02 and 0.005 had similar results

(see Table 4.4). Therefore the final round tested with a low (0.0015) and a high (0.015) learning

rate. The result showed that the low learning rate outperformed the high.

It is important to note that in GEP-NN tests presented in [4], there is no mention of a bias

or evolved thresholds. For the XOR and 6-Mux experiments, it is possible to solve the problem

without a bias. In the case of XOR, given the pair ⟨0,0⟩ as the input, the ANN must produce 0 at

the output, because no neuron could ever be activated with those inputs. For our tests, we added a

bias and this may affect the result and how compatible they are with GEP-NN. Since we added the

bias, we also went ahead and made our neuron arity one higher to allow use of the bias.

Another point in which we have tainted the comparability of the results is by increasing the

weight range from −2..2 to −8..8. The SHC method of weight learning has no such restraint

on the weight values. It would be challenging (and contrary to performance) to restrain SHC

2Detailed results are not in the table in order to reduce the amount of numbers inundating the reader.

48

from moving the mean and sampling values outside of the range and so we have not done so.

Unfortunately, by restraining BW, we were unable to compare BW and SHC directly. SHC was

performing better (on 6-MUX and Retina) until we discovered that the reason might be its use of

values outside of the range. For the final round, we tested with a range of −8,8 on the BW weights

and its performance vastly improved making it the highest performing system.

For a comparison between GEP-NN and the system presented here see Section 4.6. The

CGP.BW.PIPE.GM result from XOR.R4 was compared with the GEP-NN result.

4.3 Single Pole Balancing

Tests for Single-Pole Balancing (SPB) proceeded just as they did with XOR. For SPB, the max-

imum number of evaluations was chosen to be comparable with SANE [32], and its value was

50,000. In general, a negligible number of runs failed therefore success rate is not considered here,

and in its place we use mean evaluations to measure performance. The failure rate is reported for

completeness.

The first round of experimentation, denoted SPB.R1, was a naive run that tested all possible

systems with parameters chosen based on the previous study of the methods [1, 4, 29, 38, 40].

SPB.R1 revealed CGP.BW.PIPE to have the highest performance and it became the system of

study for the remaining rounds. Round 2 tested CGP.BW.PIPE on several parameters followed by

a third round that used the parameters discovered in the second round. The fourth round illustrates

the complexity of optimizing the parameters: we used the parameters as indicated by SPB.R3 and

this resulted in worse performance. The complexity comes from the interplay of parameters and

from the fact that the results are often not statistically significant and so are not definitive. The

fifth and final round used settings from the SPB.R3 result with the lowest mean evaluations. It was

decided that since the differences were statistically insignificant and not any better than SPB.R3,

it was unlikely we’d find a better result, therefore we halted our optimization. Settings for the five

49

rounds of experimentation can be found in Table 4.5 and a detailed analysis of the results follows.

Setting SPB.R1 SPB.R2 SPB.R3 SPB.R4 SPB.R5

Struct. Rep. - CGP CGP CGP CGP
Weight Rep. - BW BW BW BW
Struct. Learn. - PIPE PIPE PIPE PIPE
Weight Learn. PBIL PIPE PIPE PIPE PIPE
GM - No No No No
BW Range [−2,2] [−2,2] [−2,2] [−2,2] [−2,2]
Runs 100 100 100 100 100
Generations 250 250 5000 3334 5000
Pop. Size 200 200 10 15 10
GEP:
Min. Arity 1 - - - -
Max. Arity 5 - - - -
Head Length 10 - - - -
Genes 1 - - - -
CGP:
Arity 5 5 5 5 5
Rows 3 3 1 1 1
Columns 3 3 12 10 12
PIPE:
LR, λ 0.01 0.01 0.015 0.015 0.015
PM 0.4 0.4 0.5 0.4 0.5
MR 0.4 0.4 0.4 0.3 0.4
PBIL:
LR 0.10 - - - -
PM 0.02 - - - -
Mshi f t 0.05 - - - -
GM:
Probability, β 0.5 - - - -
Pop. Percent 50% - - - -

Table 4.5: SPB Configuration

The first round (SPB.R1) found that CGP.BW.PIPE had the highest performance with 5940

mean evaluations. The difference in mean evaluations between CGP.BW.PIPE.GM and GEP.BW.PBIL.GM

was not statistically significant (α = 1%). See Table 4.6 for the results of the first and second

rounds.

During round 2, the same set of tests was run on SPB as was XOR: population size, graph size,

50

Guided Mutation, using PIPE or PBIL for bitwise weights, GM on best or elite, PIPE mutation,

PIPE learning rate. Results of which can be seen in Table 4.6.

The second round of SPB experiments, denoted SPB.R2 , showed that: small populations

performed better than larger populations, PIPE performed better on the bitwise weights, graphs

perform best with a single row, and that using the best of generation or the elite for GM made a

negligible difference.

For the third round of experiments, denoted SPB.R3, the settings were tuned in accordance with

the results from SPB.R2. We also added a test to see if additional weights would benefit the system.

Performance differences between systems with more weights was not statistically significant with

α = 1% (values tried: 10−25 with an interval of 5). Results for SPB.R3 and the remaining rounds

can be found in Table 4.7.

In SPB.R3, we found that a GM system performed worse than the same system without GM

(with statistical significance, α = 1%). A possible reason is that the SPB fitness function is ran-

domized. It is possible, even likely, that the best of generation or the elite individual, had a higher

fitness by random chance. Using GM with an individual whose fitness is not in proportion to its

performance would be contrary to the purpose of GM.

We further tweaked the PIPE Mutation and Learning Rate. Interestingly, using a combination

of the values from SPB.R3 resulted in a higher mean evaluations in SPB.R4. Therefore, we back

tracked and based SPB.R5 on the settings with the lowest mean. As can be seen in Table 4.7, the

results of SPB.R5 are worse or vary minutely from those of SPB.R3. We used the best result of

SPB.R5 in our comparison to SANE (see Section 4.6).

4.4 Six-Bit Multiplexer

For the Six-Bit Multiplexer benchmark (herein referred to as MUX), there were only two rounds of

experimentation: one naive run without any optimization and one based on optimizations learned

51

Round Test Mean Best Worst SD Failures

SPB.R1 CGP.BW.PIPE 5940 499 24081 3620 0
CGP.BW.PIPE.GM 6847 1158 36508 5136 0
GEP.BW.PBIL.GM 7000 1708 20992 3330 0

SPB.R2 Pop. Size
Population Size 20 2061 211 7414 1514 0
Population Size 10 2076 302 5344 1390 0
Population Size 30 2099 111 10383 1816 0

Graph Size
CGP Rows,Columns: 1,12 4045 594 21563 3944 1
CGP Rows,Columns: 2,6 4285 277 22522 4239 0
CGP Rows,Columns: 2,4 4927 668 34043 5483 0
CGP Rows,Columns: 1,8 5021 802 38389 6308 0

PIPE Mutation
PM = 0.5,MR = 0.4 3592 603 10967 2368 0
PM = 0.5,MR = 0.3 3703 344 13293 2759 0
PM = 0.4,MR = 0.4 3765 524 30636 4433 0

PIPE LR
λ = 0.015 2961 340 12102 2780 0
λ = 0.0175 3807 413 16326 3723 0
λ = 0.0025 3821 781 12620 2565 0

PIPE vs. PBIL on BW
PIPE 5165 624 43871 6041 0
PBIL 5856 454 21440 3371 0

GM on Elite or Best
GM on Elite 6093 524 29638 6119 0
GM on Best 6138 524 23292 5107 0

Table 4.6: SPB Results (Part 1)

52

Round Test Mean Best Worst SD Failures

SPB.R3 CGP.BW.PIPE 1851 332 5905 1323 0
CGP.BW.PIPE.GM 3095 97 18102 3379 1

Pop. Size
Population Size 15 2030 113 6819 1422 0
Population Size 10 2087 189 9426 1485 0
Population Size 20 2261 63 11246 1787 0
Population Size 5 2672 92 15880 2537 0

Graph Size
CGP Rows,Columns: 1,10 2075 164 8351 1514 0
CGP Rows,Columns: 1,12 2133 251 10131 1697 0
CGP Rows,Columns: 1,6 2367 169 8748 1699 0
CGP Rows,Columns: 1,8 2596 275 9356 1706 0

PIPE Mutation
PM0.4,MR0.3 1686 81 9132 1187 0
PM0.6,MR0.3 1882 266 5872 1294 0
PM0.4,MR0.4 1933 133 7864 1338 0

PIPE LR
λ = 0.0175 1949 22 6707 1347 0
λ = 0.015 2027 211 9250 1498 0
λ = 0.02 2066 242 14280 1784 0

SPB.R4 λ = 0.015 2213 117 29697 3284 0
λ = 0.0175 2996 153 40784 4812 0

SPB.R5 PM = 0.6,MR = 0.3 1657 105 8766 1373 0
PM = 0.4,MR = 0.3 2041 108 9587 1615 0
PM = 0.7,MR = 0.3 2138 141 9377 1685 0
Pop. Size 20 1993 89 7784 1573 0
λ = 0.0175 1827 154 7440 1317 0

Table 4.7: SPB Results (Part 2)

53

from the XOR and SPB experiments. Settings for the naive run were gathered from [1,4,29,38,40].

Table 4.8 summarizes the settings for the rounds.

Setting MUX.R1 MUX.R2

Struct. Rep. - CGP
Weight Rep. - BW; SHC
Struct. Learn. - PIPE
Weight Learn. PBIL PIPE
GM - -
BW Range [−2,2] [−8,8]
Experiments 50 30
Runs 50 50
Generations 2000 10000
Pop. Size 50 10
GEP:
Min. Arity 2 -
Max. Arity 3 -
Head Length 5 -
Genes 4 -
CGP:
Arity 5 5
Rows 4 1
Columns 6 20
PIPE:
LR, λ 0.01 0.01
PM 0.4 0.5
MR 0.4 0.3
PBIL:
LR 0.10 0.015
PM 0.02 0.02
Mshi f t 0.05 0.05
GM:
Probability, β 0.5 0.5
Pop. Percent 50% 50%

Table 4.8: 6-MUX Configuration

The MUX results are summarized in Table 4.9. The second round of experiments, denoted

MUX.R2, showed a considerable increase in performance over MUX.R1: for CGP.SHC.PIPE.GM

there was a 40% increase in success rate, and a 30% reduction in mean evaluations. CGP.BW.PIPE

and its GM counterpart showed considerable gains in MUX.R2 over their performance in MUX.R1

54

that do not appear to be the result of the parameter optimization. Instead, it is likely the results are

attributed to the increased range of the bitwise weight encoding from [-2,2] to [-8,8].

Round Test Measure Mean Best Worst SD Failures

MUX.R1 CGP.SHC.PIPE.GM SR 64.3 76 42 7
CGP.SHC.PIPE SR 63.4 74 52 6
GEP.SHC.PIPE.GM SR 42.4 56 26 6
GEP.BW.PIPE.GM SR 38.5 50 24 5
GEP.BW.PBIL.GM SR 34.6 52 22 6
GEP.SHC.PBIL.GM SR 33.7 50 20 7

GEP.BW.PBIL.GM Evals 53K 16K 95K 27K 33
GEP.BW.PIPE Evals 53K 14K 87K 21K 37
CGP.SHC.PIPE Evals 57K 30K 99K 16K 22
CGP.SHC.PIPE.GM Evals 63K 28K 94K 20K 17
GEP.SHC.PIPE.GM Evals 71K 27K 98K 20K 32
GEP.SHC.PBIL.GM Evals 80K 60K 99K 13K 39

MUX.R2 CGP.SHC.PIPE SR 91.7 98 80 4
CGP.SHC.PIPE.GM SR 91.4 98 82 3
CGP.BW.PIPE.GM SR 88.9 96 80 5
CGP.BW.PIPE SR 87.4 92 80 3

CGP.SHC.PIPE Evals 54K 26K 95K 16K 1
CGP.SHC.PIPE.GM Evals 43K 14K 87K 16K 5
CGP.BW.PIPE.GM Evals 30K 5K 87K 15K 9
CGP.BW.PIPE Evals 39K 8K 92K 12K 9

Table 4.9: 6-MUX Results (SR denotes success rate; Evals denotes mean evaluations.)

MUX.R2 results are interesting as a comparison between the systems. SHC based systems

achieved a higher success rate and at the same time, the BW based systems had a lower mean eval-

uations. The success rate is possibly attributable to the unrestricted values of SHC. The difference

may be small because it is so rare to evolve to a solution that requires a weight with absolute value

greater than 8. Other possible reasons for the difference exist, including parameter optimization

that favours SHC. The lower mean evaluations is likely because PIPE compensates for the low

probability of the individual it is adapting toward. SHC will move the mean a set percentage no

55

matter how distant the target mean is.

It is clear from the results that GM was able to reduce the number of evaluations the systems

required to find a solution. A greater than 20% reduction in mean evaluations occurred in both

cases.

4.5 Retina Problem

The Retina Problem had two rounds similar to those of the MUX experiment. The first was naive

(based on [1, 4, 29, 38, 40]), except that the population size was set to 103. We have denoted the

first round: RET.R1, and the second: RET.R2. The settings can be found in Table 4.10.

Figure 4.1.a shows a solution created with CGP.SHC.PIPE.GM and taken from the first round.

The result was arranged to emphasize the modularity of the two networks (one for left and one

for right) which only have a couple of connections crossing between modules. Figures 4.1.b and

4.1.c show results from the second round. There are less distinct layers in these examples because

the structure of the graph was a single row with 13 columns, as opposed to 4 rows and 4 columns

in the first round. There is a similar level of modularity in the networks even without the rows

constraining topology. There is not much difference in modularity when using GM and when not

using GM as shown in Figures 4.1.b and 4.1.c.

Quantitative results for the Retina Problem can be found in Table 4.11 and a qualitative analysis

of the solutions compared to other methods can be found in Section 4.6.

CGP.SHC.PIPE and its GM counterpart performed similarly in both rounds, but there was a

noticeable improvement, likely due to the parameter settings taken from the previous experiments.

CGP.BW.PIPE and its GM counterpart had a vast improvement in the second round. The likely

reason for CGP.BW.PIPE’s improvement is the increase in range of the bitwise weight encoding.

Since there is only one data point for the success rate, we cannot comment on the difference

3We had previously determined that a small population size performed best.

56

Setting RET.R1 RET.R2

Struct. Rep. - CGP
Weight Rep. - BW; SHC
Struct. Learn. - PIPE
Weight Learn. PBIL PIPE
GM - -
BW Range [−2,2] [−8,8]
Runs 100 100
Generations 250000 250000
Pop. Size 10 10
GEP:
Min. Arity 1 -
Max. Arity 5 -
Head Length 13 -
Genes 1 -
CGP:
Arity 5 5
Rows 4 1
Columns 4 13
PIPE:
LR, λ 0.01 0.015
PM 0.4 0.5
MR 0.4 0.3
PBIL:
LR 0.10 -
PM 0.02 -
Mshi f t 0.05 -
GM:
Probability, β 0.5 0.5
Pop. Percent 50% 50%

Table 4.10: Retina Problem Configuration

57

Round Test Mean Best Worst SD Failures

RET.R1 CGP.SHC.PIPE.GM 950K 169K 2.4M N/A 6
CGP.SHC.PIPE 1.4M 455K 2.5M N/A 19
CGP.BW.PIPE.GM 733K 55K 2.3M 11K 21
GEP.SHC.PIPE.GM 1.2M 420K 2.5M 18K 65
CGP.BW.PIPE 1.3M 411K 2.4M N/A 70
GEP.BW.PIPE.GM 995K 75K 2.5M 20K 74
GEP.SHC.PBIL.GM 1.2M 76K 2.0M N/A 94

RET.R2 CGP.SHC.PIPE.GM 928K 149K 2.2M N/A 4
CGP.BW.PIPE.GM 567K 43K 2.3M 4.6K 7
CGP.SHC.PIPE 1.3M 337K 2.5M N/A 20
CGP.BW.PIPE 916K 162K 2.2M N/A 21

Table 4.11: Retina Problem Results

between SHC and BW systems as far as success rate is concerned. However, the results expand on

the MUX results, by stressing the systems on a larger problem.

Performing the Retina Problem, GM reduced the SHC mean evaluations result by approxi-

mately 28% and the BW result by 38%, much more than GM reduced the mean evaluations per-

forming MUX. Even though we only have one data point to consider for success rate, the difference

between the success rate for the systems with GM versus without GM is quite large and is likely

part of a trend. It would be interesting to gather more data points and show that without GM the

success rate is much lower since this is the first problem where GM has made such a a great impact

on success rate.

We used the GM results from RET.R2 in our comparisons with third-party systems in the

following section.

4.6 Comparisons

Table 4.12 summarizes and compares our results for XOR, SPB, MUX, and Retina Problem with

those reported by Ferreira’s GEP-NN [4]; Moriarty and Miikkulainen’s SANE [32]; Kashtan and

58

Alon’s function-switchings [18]; and Verbancsics and Stanley’s HyperNEAT-LEO [47].

Assuming a similar standard deviation to CGP.BW.PIPE.GM for GEP-NN on XOR, the differ-

ence between the two (CGP.BW.PIPE.GM and GEP-NN) is statistically significant with α = 1%.

For SPB, the difference between SANE and CGP.BW.PIPE is not statistically significant, with

α = 1%. For the MUX problem, the difference between CGP.SHC.PIPE and GEP-NN is statis-

tically significant, α = 1% (again assuming a similar standard deviation for both systems). Our

system is worse on XOR, similar on SPB, and better on MUX.

Problem Method Mean Best Worst SD Failures

XOR GEP-NN 77% - - N/A
GGP.BW.PIPE.GM 65% 75 56 4

SPB SANE 1691 46 4461 984 0
CGP.BW.PIPE 1657 105 8766 1373 0

MUX GEP-NN 6% - - N/A
CGP.SHC.PIPE 92% 98 80 4

RET HyperNEAT-LEO 2.5Ma - - - 9
Function-Switching 1.7M - - - -
CGP.SHC.PIPE.GM 928K 149K 2.2M N/A 4
CGP.BW.PIPE.GM 567K 43K 2.3M 4.6K 7

Table 4.12: Results Comparison

aThis is the maximum evaluations used, and a mean evaluations was not reported.

For the Retina Problem, and Kashtan and Alon’s function-switching method [18], our result is

statistically significant, α = 1%, assuming they had a number of runs greater than 30 and a similar

standard deviation. Though it should be noted that the purpose of their result was to illustrate a

method of spontaneously evolving modularity; their resulting solutions also appear more modular

(see rationale in the next paragraph and in Figure 4.1). The function-switching method’s network

appeared similar to that of HyperNEAT-LEO in Figure 4.2.b.

We have insufficient information to make a claim of statistical significance with HyperNEAT-

LEO. We can, however, point out that our system has not been re-tooled in order to induce mod-

59

ularity; it is simply an inherent property of the EDA proposed in this work to capture modularity.

While our sample solution does not appear as modular as those from HyperNEAT-LEO (Figure

4.2.b), it only has two connections crossing between the two sides of the network which indicates

modules for the left and right retinas (see Figure 4.1). This was quite a good result considering

HyperNEAT (without the locality constraints) failed to discover modularity and resulted in a fully

connected network (Figure 4.2.a).

60

(a)

(b)

(c)

Figure 4.1: Example Retina Solutions: (a) from RET.R1, CGP.SHC.PIPE.GM; (b) from RET.R2,
CGP.BW.PIPE.GM; (c) from RET.R2, CGP.BW.PIPE.

61

(a) Without locality constraints.

(b) With locality constraints.

Figure 4.2: Example Solutions from HyperNEAT-LEO. The outline of the node indicates its 3-D
position. [47]

62

Chapter 5

Conclusions and Future Work

This work presented a study of Neuroevolution by means of Estimation of Distribution Algorithms.

The analysis was divided between the representation of the structure (GEP and CGP) and the

weights (Bitwise and Stochastic Hill Climbing) and two learning algorithms for estimating the

population (PBIL and PIPE). Also included was an analysis of how the Guided Mutation operator

could be used to improve the quality of the results.

Experiments showed that the dominant systems were CGP.BW.PIPE and CGP.SHC.PIPE. GM

could be used on either, but results regarding the effectiveness of using GM varied.

On XOR GM improved the success rate of systems using SHC more than for the systems using

BW. On SPB, GM was shown to cause a reduction in performance. The MUX results showed a

negligible difference in success rate for both CGP.BW.PIPE and CGP.SHC.PIPE between the GM

and without GM system, but a reduction in mean evaluations (of about 10,000) for systems with

GM with a negligible difference in standard deviation. Results from the Retina Problem showed

that CGP.BW.PIPE and CGP.SHC.PIPE both demonstrated a considerable improvement in success

rate and a large reduction in mean evaluations with GM.

The XOR result could be related to the mean move parameter of SHC. Given the mean is

slowly moving toward the optimal value, sampling is unlikely to find a good value until enough

generations have passed. GM avoids re-sampling and uses a previously successful weight-value.

Given more evaluations, XOR might not have shown as big a difference in success rate since there

would be enough generations for the mean to move to the appropriate value. The SPB result is

likely attributed to the random nature of the start states of the fitness function. If GM is used on

63

an individual which by chance had an easier1 set of start states, it might be exploring the area

surrounding an individual that does not merit its fitness value. The Retina and MUX problems

both have fixed fitness functions and the results showed how well GM can accelerate optimization

for such problems.

The Bitwise Weight representation outperformed SHC on the XOR problem with a large im-

provement in success rate (140% increase). On the MUX problem there was a negligible differ-

ence in success rate between BW and SHC (though SHC is higher, by more than 3%), but the

mean evaluations was about 10K lower for the BW representation. The Retina Problem showed

similar success rates for SHC and BW, but a significantly lower mean evaluations for the BW

representation.

The XOR result can be attributed to the small number of evaluations available and the slow

speed of the SHC mean move. The MUX and Retina results can be attributed to a slow speed

of mean movement, but might also be affected by the speed at which the standard deviation is

reduced. Tests could be done with a higher mean move value, but it’s likely BW with PIPE will

still outperform it. One reason is that the mean move is based on the mean of the top 3 values,

which can have conflicting values (e.g., -2 and 2), although this is somewhat mitigated by the fact

that there are 3 values and so the third value will likely side with one or the other of the conflicting

values. The second possibility is the method of updating of SHC versus PIPE. When PIPE adapts

to a new best individual that has a low probability it compensates for the low probability and raises

the probabilities considerably. SHC, on the other hand, would require that the good value (or one

in its range) be discovered twice before the mean of the best is closer to the new value, and even

after this, SHC does not compensate for a large difference between the means and will more slowly

move the mean toward the new value.

CGP outperformed GEP in all scenarios. Notwithstanding, considering the no-free-lunch the-

1Easier here means that achieving a higher fitness is made simpler by the nature of the start state. The state could
begin at rest or with the pole at 11◦ with a positive pole velocity (the limit being 12◦).

64

orem [51], it is possible had we optimized a given parameter setting for a GEP system, we could

have found a problem where GEP outperformed CGP.

CGP performed better than GEP, and this can be attributed to a few points. First, the GEP

string: when values in the first couple of elements of the head change, the structure of the tree can

change considerably and this may disrupt the learning process. CGP has no such problem. Second,

CGP can re-use nodes (or nodes can have multiple outputs), therefore GEP might have to evolve

functionality twice where CGP only needs to do so once (plus evolving the second connection).

Third, on multiple output problems, CGP can re-use functional nodes as described previously.

Finally, even if GEP could be made to perform at a similar level, CGP’s ability to have connections

cross multiple levels of the graph makes it a more powerful representation allowing the learning

algorithm to discover structures that do not resemble trees.

PIPE performed better than PBIL. PBIL does not compensate for the current probability of an

individual, therefore it is slower to respond to a new, unlikely solution. If it’s too slow it will lose

that individual if it does not get re-sampled in the next generation.

Therefore, we’ve argued that CGP.BW.PIPE is the most recommendable system of those tested

and that GM should be used for problems with a fixed fitness test, not those with a stochastic fitness

test.

Finally, it is interesting to note the modularity that appeared as an emergent property of using

an EDA to optimize the solution. In population-based methods it is possible that genetic code

can be preserved in a fit individual as long as its presence does not reduce the individual’s fitness

considerably. Since EDAs re-sample the population every generation, this junk code is likely to

be discarded unless it is sampled in good solutions often enough that it becomes represented in

the model. This is one possible explanation why EDA are better at finding modular solutions than

population-based approaches.

65

5.1 Contributions

We have presented CGP.BW.PIPE as a novel, and well performing EDA-NE technique. We’ve

also shown how the Guided Mutation operator can be used to accelerate optimization in EDAs,

particularly in problems with a fixed fitness function.

We have shown that EDAs are particularly good at solving problems that can benefit from the

use of modularity. Also, that EDAs can perform as well as population-based approaches at NE and

scale well to harder problems, likely due to the ability to discover modularity.

This work has illustrated and evaluated several methods of performing Neuroevolution with an

EDA. The work can be used to guide future work in the area.

5.2 Future Work

Our results have shown the performance of an EDA using independent variables; it would be

interesting to see the results of an EDA that is able to capture dependencies between the variables.

Such techniques may be able to address problems that require highly structured solutions.

The approach presented evolved topology and weights simultaneously, but the approach was

unable to determine the contribution by the set of weights or the structure in the chosen individual.

A better approach might be one that promotes cooperation and specialization of topologies and

weights. Previous works have shown that cooperation is key for the induction of ANN topology

and weights [32, 37].

The CGP representation has many benefits that come from its fixed-size indirect encoding, but

a fixed-size can be detrimental to continuous evolution. NEAT has been shown to be a powerful

representation with no limitation to the size of the network and no need to specify the network

size a priori. NEAT is capable of evolving continuously using competitive individuals, creating a

evolutionary technology race. In order to add this feature, we could extend the CGP representation

66

to evolve size simultaneously. It is also possible that the representation used by NEAT could be

optimized with an EDA approach.

Through experimentation, it was shown that starting evolution with minimal structures was

advantageous in Neuroevolution with NEAT. Although the PIPE methodology did not use a fixed-

length, it did not start evolution with minimal size. It would be interesting to see what affect

starting minimally would have on an EDA.

Speciation is also an important part of the NEAT algorithm.When using Guided Mutation, our

system has implemented a simple method of speciation where a species is developed around the

elite individual. This is contrary to the purpose of speciation in NEAT, which is to preserve inno-

vation in low fitness individuals that might be lost to selection. EDA are unlike population-based

methods in that EDA start by representing the entire search-space and incrementally constrain the

space to the area of highest fitness, whereas population-based approaches start with a number of

randomly selected individuals and through mutation and crossover traverse the search-space. Thus

our use of GM on the elite individual.

While population-based methods might use speciation to encourage exploration, an EDA could

use speciation to improve the model’s convergence on a peak. In our case, we have used GM to

represent a species around the current elite. It is possible that we could use more than just the

current elite as a species representative. That way we could explore more peaks and reduce the

risk involved in exploring a single peak. This would be especially beneficial in search-spaces with

many peaks.

EDA-NE has shown strong performance on feed-forward ANN, but we have not examined the

use of recurrent connections. Recurrent connections provide the neuron with its output from the

previous time-step as an input. This allows the network to perform a task such as pole balancing

without the velocity information (for the cart and the pole). The CGP-ANN [20] has an encoding

for recurrent connections, and so it should be trivial to implement with our EDA.

The result of switching the fitness function to induce modularity is quite interesting. It would

67

be of interest to use the same setup with our system. While, the switching may produce better mod-

ularity, the switching fitness function may reduce the performance of GM since it might continue

to explore the area of a solution for the previous fitness function. The simplest solution to that

would be to use GM on the best individual from the previous generation, not the elite individual.

Our EDA-NE study has been limited to only 4 problems thus far. Given this method’s favourable

performance on the Retina Problem, it would be interesting to test it further on other large scale

problems. Of particular interest would be problems requiring the discovery of modular solutions.

68

Glossary

activation function is a mathematical function applied to the weighted sum of the inputs to a

neuron and defines the output of the neuron, i.e. the neuron’s level of activation.

algorithm is a well-defined, ordered set of instructions for performing a task or calculation.

arity refers to the number of inputs to a function, neuron, or node.

Artificial Neural Network (ANN) is a type of computer program inspired by the analogue found

in biological nervous systems. They have a number of inputs and outputs and can be used for

function approximation and as robotic controllers, among other things. In this work, Artificial

Neural Network is a synonym of Neural Network.

building blocks Building blocks are particular values for a portion of the representation that will

result in an above-average fitness for the individual..

Cartesian Genetic Programming (CGP) is a Genetic Programming technique the uses a fixed-

length, indirect encoding of programs structured as graphs. See Section 3.1.2.

CGP-ANN is an extension to Cartesian Genetic Programming (CGP) for the purpose of evolving

Artificial Neural Networks.

controller is software and/or hardware used to coordinate the actions of a robot or simulated agent.

crossover is a genetic operator that combines two genetic encodings resulting in one or more

different encodings; also known as recombination.

encoding is the computerized representation of an individual, e.g. a LISP program tree. An indirect

encoding is an encoding that must be transformed to become the individual whose performance is

evaluated.

Estimation of Distribution Algorithms (EDA) is an Evolutionary Algorithms approach that re-

places genetic operators and populations with a probabilistic model from which to sample individ-

69

uals. See Section 2.2.

Evolutionary Algorithms (EA) is the study of algorithms inspired by natural evolution for use in

optimization problems; i.e. population-based search techniques.

Evolutionary Computation (EC) is a field of Artificial Intelligence that studies population-based

search techniques inspired by biological evolution.

game playing is the participation in a competition with a number of rules and a winning scenario,

including Chess, mazes, and complex simulations.

Gene Expression Programming (GEP) is a Genetic Programming technique that uses a fixed-

length, indirect encoding of program trees. See Section 3.1.1.

Genetic Algorithms (GA) is the subfield of Evolutionary Algorithms that studies the optimization

of a value (or set of values) by manipulating a population of encoded solutions; the population

is manipulated by methods inspired by evolution, e.g., mutation, crossover, and selection of the

fittest. See Section 2.1.4.

genetic operators are methods in population-based search techniques used to manipulate the pop-

ulation through mutating and selecting individuals; see also search operators.

Genetic Programming (GP) is the subfield of Evolutionary Algorithms that optimizes computer

programs to perform a given task. See Section 2.1.5.

genotype is an encoding that represents an individual, but does not get evaluated for fitness. The

genotype is transform in the phenotype which is then evaluated for fitness. Then it is the genotype

which is manipulated to generate new individuals (via crossover and mutation).

GEP-NN is an extension to Gene Expression Programming (GEP) for the purpose of evolving

Neural Networks.

Guided Mutation (GM) is a search operator for Estimation of Distribution Algorithms that is

meant to explore the search space around a given individual or encoding.

hidden neuron is a neuron that is not an input or an output from a neural network.

70

HyperNEAT is an extension to Neuro-Evolution of Augmenting Technologies meant to induce

regularity in solutions.

HyperNEAT-LEO is an extension to Neuro-Evolution of Augmenting Technologies meant to in-

duce modularity by constraining connections to geometrically-local connections (if possible).

input-output pairs are a set of values indicating the input to the program and the expected output

from the program.

Machine Learning (ML) is a field of study that explores technology capable of improving itself

at a given task.

modularity is the encapsulation of function in programs, including Neural Networks. See Section

2.4.

mutation is a genetic operator whose method takes a genetic encoding and changes at least a single

element resulting in a different encoding.

Neuro-Evolution of Augmenting Technologies (NEAT) is a population-based, Neuroevolution

technique capable of evolving Topology and Weights of a Neural Network. See Section 2.3.5.

Neuroevolution (NE) is Genetic Programming applied to the optimization of Artificial Neural

Networks.

neuron is the base computing device in Artificial Neural Networks. They perform a weighted sum

of their inputs and output the result of an activation function applied to that sum.

optimization is any method of finding or selecting a value considered the best by a given measure.

phenotype is the representation of the individual that is evaluated for fitness and is generated

from the genotype. For example, the genotype could be a set of numbers representing the weights

of connections in a neural network. The evolutionary process searches for the correct weights.

The weights are encoded in the genotype, but the fitness value comes from evaluating the neural

network with the genotype’s weights.

71

Population Based Incremental Learning (PBIL) is an Estimation of Distribution Algorithms

approach to Genetic Algorithms canonically used to model bit strings. See Section 3.4.2.

population-based search techniques are methods of finding solutions (optimization) that uses a

set of candidate solutions to aid its search.

Probabilistic Incremental Program Evolution (PIPE) is an Estimation of Distribution Algo-

rithms approach to Genetic Programming canonically used to model program trees. See Section

3.4.1.

program is an implementation of an algorithm.

regularity is the repetition or re-use of form or function. See Section 2.4.

Reinforcement Learning (RL) is a Machine Learning methodology that is concerned with how

an agent can improve its performance at acting on a given environment based on the state of the

environment and occasional rewards.

search operators are methods in population-based search techniques used to generate the individ-

uals and guide the search; see also genetic operators.

selection pressure is the effect created by choosing the best individuals of a population for the

subsequent generation; this effect produces a population of higher fitness than the previous.

stochastic hill climbing is a method of optimizing real values via incrementally updated mean and

standard deviation pairs.

Symbiotic Adaptive Neuro-Evolution (SANE) is a Neuroevolution technique capable of some

topology evolution and full weight evolution. See Section 2.3.4.

72

Bibliography

[1] S. Baluja and R. Caruana. Removing the genetics from the standard genetic algorithm. In

Proceedings of the Twelfth International Conference on Machine Learning, 1995.

[2] R. Barate and A. Manzanera. Evolution of visual controllers for obstacle avoidance in mobile

robotics. Evol. Intel., 2(3):85–102, Dec 2009.

[3] J. Clune, B. Beckmann, P. McKinley, and C. Ofria. Investigating whether hyperneat produces

modular neural networks. In GECCO ’10: Proceedings of the 12th annual conference on

Genetic and evolutionary computation, Jul 2010.

[4] C. Ferreira. Designing neural networks using gene expression programming. In Applied

Soft Computing Technologies: The Challenge of Complexity, volume 34 of Advances in Soft

Computing, pages 517–535. Springer Berlin / Heidelberg, 2006.

[5] C. Ferreira. Gene Expression Programming: Mathematical Modeling by an Artificial Intelli-

gence. Springer, 2006.

[6] E. Ghoulbeigi and M. dos Santos. Probabilistic developmental program evolution. In Pro-

ceedings of the 2010 ACM Symposium on Applied Computing, 2010.

[7] E. Ghoulbeigi and M. Santos. Probabilistic developmental program evolution. In SAC ’10:

Proceedings of the 2010 ACM Symposium on Applied Computing, Mar 2010.

[8] F. Glover and M. Laguna. Tabu search. Modern heuristic techniques for combinatorial

problems, 1993.

[9] D. Goldberg. Genetic algorithms in search, optimization, and machine learning. Addison-

Wesley Professional, 1989.

73

[10] F. Gomez and J. Schmidhuber. Accelerated neural evolution through cooperatively coevolved

synapses. The Journal of Machine Learning Research, 9:937–965, June 2008.

[11] P. Grouchy and G. D’Eleuterio. Supplanting neural networks with odes in evolutionary

robotics. Simulated Evolution and Learning 2010, LNCS 6457, 2010.

[12] F. Gruau, D. Whitley, and L. Pyeatt. A comparison between cellular encoding and direct

encoding for genetic neural networks. In Proceedings of the First Annual Conference on

Genetic Programming, 1996.

[13] S. Harding, J. Miller, and W. Bangzhaf. Self-modifying cartesian genetic programming. In

GECCO’07: Proceedings of the 2007 conference on Genetic and Evolutionary Computation,

Jul 2007.

[14] M. A. Hasanat, S. Harun, D. Ramachandram, and M. Rajeswari. Object class recognition

using neat-evolved artificial neural network. In Fifth International Conference on Computer

Graphics, Imaging and Visualisation, 2008. CGIV ’08.

[15] G. Holker and M. Santos. Toward an estimation of distribution algorithm for the evolution of

artificial neural networks. In Proceedings of the Third C* Conference on Computer Science

and Software Engineering, May 2010.

[16] J. Holland. Genetic algorithms. Scientific American, Jul 1992.

[17] S. Johns and M. Santos. On the evolution of neural networks for pairwise classification using

gene expression programming. In GECCO ’09: Proceedings of the 11th Annual conference

on Genetic and evolutionary computation, Jul 2009.

[18] N. Kashtan and U. Alon. Spontaneous evolution of modularity and network motifs. In

Proceedings of the National Academy of Science, volume 102, Sep 2005.

74

[19] G. Khan, J. Miller, and D. Halliday. A developmental model of neural computation using

cartesian genetic programming. In GECCO ’07: Proceedings of the 2007 GECCO conference

companion on Genetic and evolutionary computation, Jul 2007.

[20] M. Khan and G. Khan. A novel neuroevolutionary algorithm: Cartesian genetic programming

evolved artificial neural network. In FIT ’10: Proceedings of the 8th International Conference

on Frontiers of Information Technology, Dec 2010.

[21] M. Khan, G. Khan, and J. Miller. Evolution of neural networks using cartesian genetic pro-

gramming. In 2010 IEEE Congress on Evolutionary Computation (CEC), pages 1–8, july

2010.

[22] R. Koppejan and S. Whiteson. Neuroevolutionary reinforcement learning for generalized

helicopter control. In Proceedings of the 11th Annual conference on Genetic and evolutionary

computation, pages 145–152, 2009.

[23] J. Koza. Genetic programming as a means for programming computers by natural selection.

Statistics and Computing, 4(2):87–112, 1994.

[24] J. Koza. Genetic programming: On the programming of computers by means of natural

selection. The MIT Press, Cambridge, MA, Dec 1996.

[25] J. Koza and R. Poli. Genetic programming. In Search Methodologies, chapter 5, pages

127–164. 2005.

[26] R. Lippmann. Pattern classification using neural networks. IEEE Communications Magazine,

27:47–50,59–64, Nov 1989.

[27] H. Lipson. Principles of modularity, regularity, and hierarchy for scalable systems. Journal

of Biological Physics and Chemistry, 7(4):125–128, 2007.

[28] R. Miikkulainen. Creating intelligent agents in games. The Bridge, pages 5–13, 2006.

75

[29] J. F. Miller and P. Thomson. Cartesian genetic programming. Genetic Programming, 1802,

2000.

[30] T. Mitchell. Does machine learning really work? AI magazine, 18(3), 1997.

[31] T. Mitchell. Machine learning. McGraw-Hill, 1997.

[32] D. Moriarty and R. Mikkulainen. Efficient reinforcement learning through symbiotic evolu-

tion. Machine learning, 22(1), 1996.

[33] K. Ohkura, T. Yasuda, and Y. Matsumura. Coordinating the adaptive behavior for swarm

robotic systems by using topology and weight evolving artificial neural networks. In 2010

IEEE Congress on Evolutionary Computation (CEC), 2010.

[34] M. Parker and B. Bryant. Lamarckian neuroevolution for visual control in the quake ii envi-

ronment. In 2009 IEEE Congress on Evolutionary Computation, pages 2630–2637, 2009.

[35] M. Pelikan and D. Goldberg. A survey of optimization by building and using probabilistic

models. Computational optimization and applications, 21, 2002.

[36] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic programming. Published

via http://lulu.com and freely available at http://www.gp-field-guide.org.uk ,

2008. (With contributions by J. R. Koza).

[37] M. Potter and K. Jong. Cooperative coevolution: An architecture for evolving coadapted

subcomponents. Evolutionary Computation, 8(1), Mar 2000.

[38] S. Rudlof and M. Köppen. Stochastic hill climbing with learning by vectors of normal distri-

butions. In 1st Online Workshop on Soft Computing, 1996.

[39] D. Rumelhart, G. Hinton, and R. Williams. Learning representations by back-propagating

errors. Nature, 323, Oct 1986.

76

[40] R. Salustowicz and J. Schmidhuber. Probabilistic incremental program evolution. Evolution-

ary Computation, 5(2), 1997.

[41] B. Sareni. Fitness sharing and niching methods revisited. IEEE Transactions on Evolutionary

Computation, 2(3):97–106, 1998.

[42] J. Schaffer, D. Whitley, and L. Eshelman. Combinations of genetic algorithms and neural

networks: A survey of the state of the art. In Proceedings of COGANN ’92: Workshop on

Combinations of Genetic Algorithms and Neural Networks, 1992.

[43] Y. Shan, R. McKay, D. Essam, and H. Abbass. A survey of probabilistic model building

genetic programming. In Scalable Optimization via Probabilistic Modeling, volume 33 of

Studies in Computational Intelligence, pages 121–160. Springer Berlin / Heidelberg, 2006.

[44] K. Stanley. Real-time neuroevolution in the nero video game. IEEE Transactions on Evolu-

tionary Computation, 9(6):653–668, Dec 2006.

[45] K. Stanley and R. Miikkulainen. Efficient evolution of neural network topologies. In Pro-

ceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC ’02., volume 2,

pages 1757–1762, 2002.

[46] K. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies.

Evolutionary Computation, 10(2), 2002.

[47] P. Verbancsics and K. Stanley. Constraining connectivity to encourage modularity in hyper-

neat. In GECCO ’11: Proceedings of the 13th annual conference on Genetic and evolutionary

computation, Jul 2011.

[48] E. Vonk. Using genetic algorithms with grammar encoding to generate neural networks.

Proceedings., IEEE International Conference on Neural Networks 1995, 4, 1995.

77

[49] J. Walker. Evolution and acquisition of modules in cartesian genetic programming. In Pro-

ceedings of the Genetic Programming 7th European Conference, EuroGP 2004, 2004.

[50] P. Whigham. Grammatically-based genetic programming. In Proceedings of the Workshop

on Genetic Programming: From Theory to Real-World Applications, Jul 1995.

[51] Wolpert and MacReady. No free lunch theorems for optimization. IEEE Transactions on

Evolutionary Computation, 1(1), 1997.

[52] B. Zhang and H. Mühlenbein. Balancing accuracy and parsimony in genetic programming.

Evolutionary Computation, 3(1):17–38, Mar 1995.

[53] Q. Zhang, J. Sun, and E. Tsang. An evolutionary algorithm with guided mutation for the

maximum clique problem. IEEE Transactions on Evolutionary Computation, 9(2):192–199,

2005.

78

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2011

	Study of estimation of distribution algorithms applied to neuroevolution
	Graham Holker
	Recommended Citation

	Introduction
	Motivation
	Objectives
	Methodology
	Results and Contributions
	Structure of this Thesis

	Literature Review
	Genetic and Evolutionary Algorithms
	Machine Learning
	Evolutionary Algorithms
	Genetic Algorithms and Genetic Programming
	Genetic Algorithms
	Genetic Programming
	Gene Expression Programming
	Cartesian Genetic Programming
	Grammar-Based Genetic Programming

	Estimation of Distribution Algorithms
	Population-Based Incremental Learning
	Probabilistic Incremental Program Evolution

	Evolution of Artificial Neural Networks
	Artificial Neural Networks
	Neural Network Training
	Weight-Only Evolving Artificial Neural Networks
	Symbiotic Adaptive Neuro-Evolution
	Topology and Weight Evolving Artificial Neural Networks

	Modularity

	Methodology
	Structure Representation
	The GEP-NN Representation
	Cartesian Genetic Programming Representation

	Weight Representation
	Bitwise Weight Representation
	Mean-Variance Pair Representation

	Population Model
	GEP Model: The Probabilistic Prototype Chromosome
	CGP Model: The Probabilistic Prototype Array
	Bitwise model
	Mean-Variance model

	The Estimation of Distribution Algorithm
	Probabilistic Incremental Program Evolution (PIPE)
	Population Based Incremental Learning (PBIL)
	Stochastic Hill Climbing

	Proximate Optimality Principle and Guided Mutation
	Experimental Design
	XOR and Six-Bit Multiplexer
	Single Pole Balancing
	Retina Problem

	Results
	Preamble
	Exclusive OR
	Single Pole Balancing
	Six-Bit Multiplexer
	Retina Problem
	Comparisons

	Conclusions and Future Work
	Contributions
	Future Work

	Glossary

