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Abstract

In recent years, Learning to Rank has not only shown effectiveness and better suitability for modern

Web Era needs, but also has proved that it outperforms traditional ranking in terms of accuracy and

efficiency. Evolutionary approach to Learning to Rank such as RankGP [37] and RankDE [3]

have shown further improvement over non-evolutionary algorithms. However when Evolutionary

algorithms have been applied to a large volume of data, often they showed they required so much

computational efforts that they were not worth applying to industrial applications. In this thesis, we

present RankGPES: a Learning to Rank algorithm based on a hybrid approach combining Genetic

Programming with Evolution Strategies. Our results not only showed that it outperformed both

RankGP [37] by 20% and RankDE [3] by 6% in terms of accuracy but also it showed it required

significant less amount of time to converge to a near-optimal result.
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Chapter 1

Introduction

The central hypothesis of our research work is that, Hybrid Genetic Programming with Evolu-

tion Strategies can produce a competitive solution in Learning to Rank area while outperforming

previous evolutionary based implementations such as RankGP [37] and RankDE [3] in terms of

accuracy and efficiency.

1.1 Statement of the problem and objectives of the research

Learning to rank refers to a mechanism where a Machine Learning Algorithm is used to train a

model using some training data, and then the trained model is applied to unseen data to rank it.

More formally, it is a type of semi-supervised machine learning problem where the goal is to auto-

matically construct a ranking model from training data [21]. In our model, this solution is achieved

by using a technique from machine learning known as Genetic Programming [25]. Genetic pro-

gramming attempts to search a program space for optimal solutions in a stochastic directed manner.

This search is done in a manner motivated by Darwin’s theory of evolution [33], in that the good

programs are more likely to be combined to form new programs while poor solutions die off. Our

model further enhances classical Genetic Programming model by utilizing the strong evolvability

power of Evolutionary Strategies and using an optimal set of genetic programming parameters.
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1.2 Motivation

Ranking is a very common problem in modern IR (Information Retrieval), NLP (Natural Lan-

guage Processing) and Data Mining applications where it plays a vital role in serving data in a

sorted order so that more relevant data is presented before less relevant one. Typical applications

include: Web Search (Google, Yahoo, Bing), Recommender Systems (Netflix, Amazon, E-Bay),

Social Media (Facebook, Twitter), Question-Answering (IBM Watson), Multimedia Information

Retrieval (Google Image search, You tube), Information Organization (Text Categorization, Doc-

ument Clustering), Machine Translation and so on. With the fast development of today’s World

Wide Web, we are experiencing a huge amount of data being created every second. According

to worldwidewebsize.com, the indexed Web consists of at least 8.32 billion pages and growing

exponentially. Besides data growth, our average data consumption rate is also increasing heavily.

For instance, in 2008 Americans consumed information for about 1.3 trillion hours, an average of

almost 12 hours per day. Consumption totaled 3.6 zetta bytes and 10,845 trillion words, corre-

sponding to 100,500 words and 34 gigabytes for an average person on an average day. This large

volume of data is also known as Big Data and unfortunately, our traditional ranking algorithms fail

in many cases when it comes to process the Big Data.

Furthermore, it is not only the data volume that concerns today’s Web applications but also

increasing complexity of data or unstructured information. These issues lead to a creation of too

many ranking features or parameters when it comes to ranking process. Failing to find out an

optimal set of ranking parameters or a relation between them leads to irrelevant results. With

traditional ranking approach, manual ranking parameter tuning is extremely difficult, especially

when there are many complex ranking parameters and the evaluation measures are non-smooth.

Manual ranking parameter tuning sometimes leads to over fitting and it is non-trivial to combine

a large number of models to obtain an even more effective model [21]. To cope with these issues

Machine Learning-based approaches have been preferred which have been successful in learning
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optimal or near-optimal ranking function from training data.

Learning to Rank documents retrieved for a user query has gained much attention and sev-

eral initiatives have taken place such as the Yahoo’s Learning to Rank Challenge and Microsoft’s

LETOR project where a significant number of Machine Learning Algorithm have been proposed

of which Evolutionary approaches such as RankGP [37] or RankDE [3] showed reasonable im-

provement over non-evolutionary algorithms. However, they not only require very long train-

ing/processing time but also need huge computational resources. Moreover, the work introduced

in [37] did not get experimented with different combination of parameters of Genetic Program-

ming and recommended a few algorithm optimization tasks as future tasks such as: experimenting

with a better fitness function, use of different evolutionary parameters/setting or applying better

evolutionary operators and applying to a different dataset. In our work, we had explored these ar-

eas not only by applying our model to an additional dataset (i.e. OHSUMED (Oregon Health and

Science University Medical Dataset) dataset [23]) which enabled us to see how well the algorithm

performs on different sets of data or whether the algorithm shows a similar pattern of result on

different data sets or not, but also by experimenting with different parameters and discovered an

enhanced parameter setting.

Other motivation to propose this Hybrid approach to Genetic Programming is: Evolutionary

Strategies can help Genetic Programming to evolve aggressively towards a solution and reduce

bloating problem (i.e., generation of a lot of useless solutions that soon get deleted as they are not

good enough to survive, therefore unnecessarily overloads the system) by not generating unneces-

sary candidates which could increase the likelihood of success in Genetic Programming problems

[9].

Our proposed model not only concentrates on better accuracy by using an enhanced form of

Genetic Programming but also focuses on efficiency for large scalability. We have experimented

with NDCG (Normalized Discounted Cumulative Gain) [29] as our fitness function as a substitute

of MAP (Mean Average Precision) [16] used by RankGP, which resulted interesting findings in our
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experiments. Also, to create a broader search space, we have increased number of generations and

to diversify evolution process, we utilized the selection methodology of Evolutionary Strategies

[2]. Our additional parallel model enables to process the evolution task independently in parallel

just like the evolutionary process occurs in nature which is a more natural solution than single

population model.

1.3 Contribution and summary of results

In this work, we have presented a Machine Learned ranking algorithm based on a hybrid approach

by combining Genetic Programming with Evolutionary Strategies. We have experimented with the

algorithm with a few different settings such as varying initial population size, number of genera-

tions, probability of evolutionary operators, use of different fitness functions and using a parallel

approach based on island model. We used LETOR 2.0 [36]: a benchmark dataset for learning to

rank problem and compared against RankGP.

Analyzing the results from our experiments we found out that:

• For our problem, using a very large population size does not improve the accuracy of the

algorithm but what improves is that a large number of generations.

• We discovered that a high probability of crossover and a very low probability of mutation

show better results.

• Use of Evolutionary Strategies in the Genetic Programming Algorithm for Selection task

adds more diversity to our solutions than classic Genetic Programming.

• NDCG as a fitness function showed higher accuracy than MAP in the best case scenarios

(when training data and testing data are similar to each other), however in the worst cases

(when training data and testing data are very different from each other) it resulted poorer so-

lutions. When we averaged the result, MAP is still preferred over NDCG for higher accuracy

for our dataset.
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• Our parallel model showed consistent results in every run, but it created more bloating

problem than single population run because of the particular migration scheme, where only

the best candidates get migrated between islands and survive, that leads to a creation of

more number of less diversified solutions that took huge time and computational resources

to process which soon die off resulting a lot efforts get wasted unnecessarily.

• Out of the five algorithms we have experimented with our proposed algorithm tops in

terms of both accuracy and efficiency. The proposed Algorithm also showed that, it is less

likely to get trapped in local optima, rather it always moves towards a global optima. How-

ever it produced a solution with a complex structure and we have added some suggestion in

our future work section that we think are worth investigating which may enhance solution

further.

1.4 Structure of the thesis

This thesis is organized as follows:

• Chapter 2 discusses some background information about Evolutionary Computing and

Learning to Rank. The chapter also talks about different types of Learning to Rank Algo-

rithm as well as reviews previous research work that has been done in this area.

• Chapter 3 describes our proposed methodology for solving Learning to rank problem

as well as the materials used in our work. It explains how the hybrid algorithm has been

designed and implemented. Furthermore, it also demonstrates the algorithmic flow of the

model.

• Chapter 4 is devoted to the performance evaluation of our solution approaches. The

global and failure-oriented reconfiguration strategies are compared based on predefined per-

formance metrics.

5



• Chapter 5 summarizes the overall contributions of our thesis while discussing possible

future research directions.
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Chapter 2

Background and Related Work

In the work presented here, we present a hybrid Genetic Programming with Evolutionary Strategies

Algorithm to generate or discover a near-optimal ranking function automatically for Learning to

Rank problem. In this chapter, we begin by providing an overview of background concepts, such

as general Evolutionary Algorithms work and how the problem inputs are represented in Genetic

Programming. We also provide details about Learning to Rank mechanism and different types of

Learning to rank approaches. We conclude this chapter by reviewing research works related to this

area.

2.1 Background

2.1.1 Evolutionary Computation

Evolutionary Computing is the collective name for a range of problem-solving methods based on

Darwinian principles of biological evolution, such as natural selection and genetic inheritance.

These techniques are being increasingly widely applied to a variety of problems, ranging from

practical applications in the industry and commerce to leading-edge scientific research [13]. A

typical flow of an Evolutionary algorithm is shown in Algorithm 1. Evolutionary Algorithms start

with a set of initial populations called candidates, where each can candidate could be a potential

solution. A fitness function plays a key role in Evolutionary Systems which measures how good a

candidate is. New solutions are selected according to their fitness the more suitable they are the
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more chances they have to reproduce. Through a number of generations, the candidates get evolved

to improve their fitness by applying some evolutionary operations such as crossover, mutation,

selection etc. and finally the best solution which has the best fitness measure is outputted after

meeting some termination conditions.

Algorithm 1: A typical Evolutionary Algorithm
INPUT: Input Data, Evolutionary Parameters

OUTPUT: An optimal solution

1. Create an initial population of individuals

2. Evaluate the population of individuals using Fitness function

while termination condition not reached do
3. Select individuals using a selection operator.

4. Apply evolutionary operators to selected individuals to obtain offspring.

5. Evaluate offspring

6. Assimilate offspring in the population
7. Output the best result

2.1.2 Genetic Programming

Genetic Programming [25] is an algorithmic resolution of problems based on mechanisms ob-

served on the nature and formalized on Darwin’s Natural Selection Theory. In nature, the individ-

uals that better adapt to the environment that surrounds them have a greater chance to survive. They

pass their genetic characteristics to their descendants and consequently, after several generations,

this process tends to select the best individuals naturally.

2.1.3 Elements of Genetic Programming

The main elements of Genetic Programming are:

8



2.1.3.1 Problem solution representation

A tree is the most used structure for represent programs in GP. Each node can be a function or a

terminal. A function has to be evaluated considering its parameters while a terminal has its own

value. The user needs to provide functions and terminals sets according to the problem.

2.1.3.2 Fitness

In the GP, the entity that reflects the degree of adaptation is the fitness function. The programs that

better solve the problem at hand will receive a better fitness value, and will consequently have a

better chance of being selected. An adequate choosing according to the domain of the problem is

essential to provide good results.

2.1.3.3 Evolutionary Operators

Once the individuals are selected it is time to apply one of the three basic genetic operators. They

are:

a. Selection: An individual is replicated to the next generation.

b. Crossover: Two programs are recombined to generate two offspring.

c. Mutation: New sub-tree replaces a randomly selected part of a program.

2.1.3.4 Parameters of Algorithmic run

The behavior of the algorithm is determined by a set of parameters that define and control how

the search is performed. Some of them are: genetic operator’s rate (reproduction, crossover, and

mutation), population size and number of generations.
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2.1.4 Common Genetic Programming Operators

2.1.4.1 Selection

Selection is an important part of any evolutionary algorithm. Without selection, directing the

algorithm towards fitter solutions there would be no progress. There is no selection operator that is

the best for all problems, but listed below are some of the most common methods. Some of these

methods are mutually exclusive, while others are often used in combination:

a. Elitist selection: In Elitist selection- sometimes called just elitism, a specific number of most

fit candidates goes from one generation to another unmodified. This can sometimes have a

dramatic impact on performance by ensuring that the GP does not waste time re-discovering

previously discarded partial solutions. Usually elitism is used as an additional selection opera-

tor.

b. Fitness-proportionate selection: In Fitness-proportionate selection gives every individual a

chance of being selected to breed, but fitter candidates get more priority to be chosen than

weaker individuals.

c. Roulette-wheel selection: The most common form of fitness-proportionate selection in which

the chance of an individual’s being selected is proportional to the amount by which its fitness

is greater or less than its competitors’ fitness using an imaginary roulette-wheel. Unlike a real

roulette wheel, the sections are different sizes, proportional to the individual’s fitness, such

that the fittest candidate has the biggest slice of the wheel and the weakest candidate has the

smallest. The wheel is then spun and the individual associated with the winning section is

selected. The wheel is spun as many times as is necessary to select the full set of parents for

the next generation. Using this technique it is possible that one or more individuals is selected

multiple times.

d. Tournament selection: Tournament Selection is among the most widely used selection strate-
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gies in evolutionary algorithms. Like a tournament, subgroups of individuals are randomly

chosen from the larger population, and members of each subgroup compete against each other.

Only one individual from each subgroup is chosen to reproduce.

e. Rank selection: Each individual in the population is assigned a numerical rank based on fitness,

and selection is based on this ranking rather than absolute differences in fitness. The advantage

of this method is that it can prevent very fit individuals from gaining dominance early at the

expense of less fit ones, which would reduce the population’s genetic diversity and might hinder

attempts to find an acceptable solution [26].

2.1.4.2 Crossover

The goal of Crossover operation is to create diversified and potentially promising new chromo-

somes by combining genetic material from the parents. Some popular crossover methods include:

a. Single-point Crossover: Single-point crossover works by selecting one common crossover

point in the parent candidates and then swapping the corresponding subtrees as shown in Figure

2.1.

b. Multi-point Crossover: There are two cases in this type of crossover. One is even number of

cross-sites and the other odd number of cross-sites. In the case of an even number of cross-

sites, cross-sites are selected randomly around a circle, and information is exchanged. In the

case of an odd number of cross sites, a different cross-point is always assumed at the root node.

Advantage of having more crossover points are that the problem space may be searched more

thoroughly.

2.1.4.3 Mutation

Mutation prevents the algorithm to be trapped in a local minimum. Mutation plays the role of

recovering the lost genetic materials as well as for randomly disturbing genetic information. Some
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Figure 2.1: Crossover

popular methods of mutation include:

a. Subtree mutation: Like Crossover, subtree mutation works between an individual from the

population and a newly generated individual. A mutation point is chosen and the subtree con-

nected to that point is removed. It is then replaced with a newly generated subtree as shown in

Figure2.2. The new subtree is usually constructed via the grow method, with a maximum depth

near the depth of the tree being replaced.

b. Shrink mutation: Shrink mutation was created with the intent of reducing the complexity

of populations. Shrink works by selecting a random mutation point and removing the subtree

associated with that point. A terminal is then selected from the node factory and inserted into the

empty space in the tree. Subtree mutation proves effective in reducing complexity, particularly

by removing large subtrees of ineffective code.

c. Node replacement mutation: Node replacement mutation picks a mutation point from the

individual. A new node with the same signature (arity, return type, etc.) is selected from the
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Figure 2.2: Mutation

node factory and the node at the mutation point is replaced with the new node [19]

2.1.5 Parallel Genetic Programming Models

Parallel Genetic Programming is an advanced form of Genetic Programming, where multiple ge-

netic programs run in parallel for a number of generations, independent of each other, and at the

end all the results are combined. Some popular Parallel Genetic Programming Implementation

Models are: Island Model, Master-Slave Model and Grid Model [5]. In our work, the parallelism

behavior of Genetic Programming is achieved by using asynchronous Island Model [27] where

individuals are divided up into subpopulations (islands) which evolve in parallel asynchronously.

Each island act as an independent evolutionary algorithm. Individuals are periodically ex-

changed between the islands over the course of the GP run. An obvious advantage of having

parallel model is that if one island prematurely converges on a sub-optimal solution it does not

affect the evolution happening on the other islands; they follows their own paths. A single large

population does not have this feature. The other benefit is that, each island can have completely

different parameter settings such as different crossover/mutation probability, use of different selec-

tion operator or different evolution strategy which results more diverse solutions. The isolation of
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Figure 2.3: Genetic Programming Island Model

the separate populations often leads to different traits originating on different islands. Migration

operation brings these diverse individuals together occasionally to see what happens when they are

combined.

In summary, a parallel GP system has the following additional elements:

a. Island: In the island model, the population is partitioned into sub-populations to evolve inde-

pendently, each of the partition is known as an island.

b. Migration: While evolving, a number of individuals moves from one island to another period-

ically which is known as migration. There are different types of migration topologies such as

ring migration, grid migration, random migration etc.

c. Epoch: In each island, a sub-population evolves independently with respect to other islands for

a number of iterations before migration occurs. Each iteration is called an epoch.
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2.1.6 Evolutionary Strategies

Evolutionary Strategies are inspired by the theory of evolution by means of natural selection,

mostly used as a sibling technique to other Evolutionary Algorithms such as Genetic Algorithms

and Genetic Programming. It is an optimization technique created to optimize parameters by Ingo

Rechenberg and Hans-Paul Schwefel [2], where the selection schema differs from typical Genetic

Programing. The two most simple forms of ES are:

2.1.6.1 (µ + λ) - ES

(µ + λ) - ES specifies that µ parents produce λ descendants, where λ > µ. The descendants compete

with their parents in the selection of the best µ individuals to the creation of the next generation. It

is an elitist strategy.

2.1.6.2 (µ , λ) - ES

(µ , λ) - ES is very similar to (µ + λ)-ES with the exception that only descendants survive and go

through next generation. This strategy is more greedy than (µ + λ) and it allows for more diversity

in the population, thus avoiding the algorithm to get trapped in local optima.

2.1.7 Learning to Rank Framework

A typical Learning to rank architecture is shown in Figure 2.4 . Training data consists of query-

document pairs represented as vectors with some features and relevance judgments. Learning to

rank algorithm uses the training data to learn the ranking model, such that the output of the ranking

model can predict the ground truth label in the training set as accurately as possible, in terms of

a loss function. In the test phase, when a new query comes in, the model learned in the training

phase is applied to sort the documents and return the corresponding ranked list to the user as the

response to the query.
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Figure 2.4: Learning to Rank Architecture [6]

There are three types of Learning to Rank:

2.1.7.1 Pointwise approach

In the pointwise approach, the loss function is defined on the basis of single objects and ranking

score which could be based on regression, classification. One of the problems with these ap-

proaches is that the training model might be biased towards queries with more document pairs.

Example: McRank [20], Subset Ranking [8], Pranking [10] etc.
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2.1.7.2 Pairwise approach

In the pairwise approach, the loss function is defined on the basis of pairs of objects whose labels

are different. The ranking problem is then transformed into the binary classification problem.

One advantage of this approach is Predicting relative order is closer to the nature of ranking than

predicting class label or relevance score. But the major problem with these methods is that the

objective function is formalized as minimizing errors in classification rather than minimizing errors

in ranking of documents. Example: RankSVM [17], RankBoost [14], RankNet [4], and FRank

[28].

2.1.7.3 Listwise approach

Listwise approaches consider document lists instead of document pairs as instances in learning.

This approach has two branches: Direct optimization of IR measures which tries to optimize IR

evaluation measures and Listwise loss minimization which minimizes a loss function as an indirect

way to optimize the IR evaluation metrics. Example: RankGP [37], AdaRank [35], ListNet [6],

and ListMLE [34].

2.2 Literature Review

2.2.1 Related work on Learning to Rank

C. Manning and other researchers from University of California, Berkeley started research in 1990s

but the required technology was unavailable back then to implement such Learning to Rank model.

RankSVM [17] was the first successful initiative of MLR model based on Support Vector Machine

in 2000. Other successful remarkable implementations are: RankBoost [14] in 2003 based on Ada

boosting algorithm, GBRank [38] in 2003 based on Gradient Boosting and RankNet [4] in 2005

based on Neural Network, of which GBRank is currently being used by Yahoo in its search engine

and RankNet is currently being used by Microsoft in its popular search engine: Bing.
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RankGP [37] was the first implementation of Genetic Programming based Learning to Rank

Model. The authors showed in that work that an evolutionary based model can outperform non-

evolutionary models in terms of accuracy (using MAP evaluation method). However the compu-

tation cost was much huge that its not worth comparing it to other non-evolutionary based ap-

proaches.

In 2009 Wang et al. proposed RankIP [32], a ranking function discovery approach using Im-

mune Programming. The authors claimed in their experiment that IP is more diversified than GP

thus produces better results. They conducted their experiment on two datasets: OSUMED and

TREC 2003 which are part of LETOR 2.0 dataset and concluded that both RankIP and RankGP

produced similar accuracy on OSUMED (claiming OSUMED dataset is simple) dataset but on

TREC 2003 dataset RankIP was superior in terms of accuracy.

RankDE [3] was another implementation of MLR model in 2011 based on a popular Evo-

lutionary Algorithm: Differential Evolution. The authors pointed out one fundamental problem

associated with the pair-wise approach (used by non-evolutionary models) is that it only consid-

ers two documents at a time and ignore the other documents retrieved for a query. The authors

used a list-wise approach in their implementation like RankGP and showed it outperforms previ-

ous RankBoost, RankNET, SwarmRank and even RankGP models using MAP evaluation method.

However, like RankGP the authors did not tackle one major problem of evolutionary models which

is huge computation cost issue.

To solve the computation cost issue Verma et al. proposed a parallel model of Genetic Al-

gorithms using Google’s Map-Reduce technology [30]. The authors only applied their model for

the OneMax problem and claimed that their model was capable of handling much larger scale

problems

In 2011, Wang et al. produced CCRank [31]: A Cooperative Co-Evolution based solution to

MLR problem focusing not only accuracy (which was the primary concern of existing research in

MLR up until then) but also efficiency due to the dynamic nature of this kind of problem. The
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authors also discussed potential ways of achieving parallelization for learning to rank, such as

MapReduce, however they only applied the decomposition and combination parallelization tech-

nique provided by the CC framework. The authors conducted their research using MQ2007 and

MQ2008 datasets, compared CCRank with AdaRank [35], RankBoost [14], RankSVM [17] and

ListNet [4], and showed that CCRank is slightly better than other algorithms in terms of accuracy.

But when it comes to efficiency their parallel evolution in CCRank leads to a significant speedup

in the ranking process.

2.2.2 Related work on Genetic Programming with Evolutionary Strategies

Genetic Programming has been successfully combined with Evolutionary Strategies to solve mainly

complex mathematical problems . The authors of [1] used GP algorithm to discover the shape of a

mathematical function while the evolution strategy was used to find its coefficients in a Symbolic

Regression problem. The experiment was compared against classic GP, and showed that their

combined approach was capable of generating better solutions. Authors of [9] also applied (µ+λ)

based ES to a number of solutions such as: Binomial-3 problem, Time Series problem and Santa

Fe Artificial Ant problem. They found excellent improvements over traditional GP for the first two

problems. However, that did not happen with Artificial Ant problem, which generated poor result.

In both papers, it was concluded that the concepts of the Evolutionary Strategies techniques can

be aggregated to the classical GP, which can perform in general in a better or equivalent way and

expressed for further investigation to apply the combined approach to a wide variety of problems.

In our research work, we have extended the work of [9] by investigating and implementing a

GP based on ES for a different type of problem which is Learning to Rank. Furthermore, we have

extended the work of [37], by digging deep into a few un-explored tasks such as experimenting

with OHSUMED dataset [36], more effective algorithmic setting and a different fitness function

in order to increase accuracy as well as to increase efficiency by parallelizing the process of evo-

lution which is achieved by utilizing the power of multi-core processors, mentioned in the future
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work section. In our experiment, we directly compare our result with RankGP and review some

interesting findings.

20



Chapter 3

Materials and Methods

The aim of this research work is to investigate the applicability of our Hybrid Genetic Programming-

Evolutionary Strategies methodology for the Learning to Rank problem (here called RankGPES).

0This chapter continues by describing how the hybrid model is designed and implemented. More-

over, an outline of the algorithm is presented with the experimental setup in later sections, followed

by the evaluation criteria for each experiment are described at the end of the chapter.

3.1 The Hybrid GP System

Motivated by the success of Genetic Programming in a wide range of Machine Learning tasks in

the industrial area, we propose RankGPES: an evolutionary-based learning to rank algorithm for

information retrieval where we have combined Genetic Programming with Evolutionary Strategies.

In order to find a more efficient system, we have also experimented with multiple RankGPES

running in parallel and thus introduced RankPGPES. The goal of the hybrid system is to discover

optimal ranking functions adapted to the properties of a given query-document collection, which

are also able to generalize to unseen new queries and documents retrieved at test times.

RankGPES takes a training dataset T as input that contains query-document pairs (q, d) with

their corresponding feature vectors f(q, d). As an instance of GP, RankGPES learns feature vectors

from dataset and constructs ranking functions using those vectors, which evolve and get optimized

using a fitness function that evaluates how well the rank scores assigned by the learned ranking
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function agree with those assigned by the human evaluators. The final output of Algorithm 2 is an

optimal ranking function that maximizes the fitness function. The main steps of RankGPES are

summarized in Section 3.1.3.1.

As mentioned in the previous chapter, Fitness function plays the most important part in any

Evolutionary Algorithm, which defines how good a solution is and the algorithm tries to optimize

this fitness value over the course of generations. In other words, a solution is more accurate if it’s

fitness function is more effective. Since we are concentrating on an information retrieval problem,

the fitness function is defined as a widely-used effective information retrieval measure, Normalized

Discounted Cumulative Gain (NDCG). Although (MAP) is more frequently used to measure the

accuracy of a document ranking algorithm in information retrieval systems and authors of both

RankGP and RankDE used MAP as a fitness function in their implementations, but it is worth

experimenting the algorithm with NDCG, as in many cases it proved to be more effective than

MAP [29]. Because NDCG directly works with calculating cumulated gain of ranking positions

based on document relevancy of a query result, it emphasizes more on the result relevancy at top

positions than MAP.

3.1.1 Population Representation

In RankGPES, each individual is a potential solution ‘i.e’ ranking functions for our problem. An

individual I is represented as:

I = {Sc,Sop,Sv} (3.1)

Where, Sc={0.1,0.2,0.3......1.0}

Sop={+,-,*}

Sv={ f | f ∈ F },where F is all features
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Like RankGP [37], the proposed algorithm only concentrates on linear function as a solution,

therefore works with only simple arithmetic operators in Sop to avoid huge computational cost

and bloating problem caused by generation of unnecessary or wasteful solutions during evolution

process. Furthermore, it has been shown that these operators are sufficient to achieve good results

in classification problems [18].

An individual is represented as a binary tree structure, in which internal nodes are operators Sop

and leaf nodes are either variables Sv or constants Sc. The maximum number of available nodes of

an individual is determined by the depth of the tree, which is defined before the learning process.

A tree structure example is provided in Figure 3.1 for the function, f : (( f 2×0.9)− (0.3+ f 1)):

Figure 3.1: Individual Representation of f : (( f 2×0.9)− (0.3+ f 1))

3.1.2 Population Generation

In order to create a diverse initial population both in structure and computational complexity, initial

population of RankGPES is generated using Ramped Half and Half [25] method where half of the

individuals are created using the “full method” and the other half are generated using the “grow

method”. In “full method” the structure is generated from root node recursively until depth reaches
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to the maximum depth. The “grow method” is similar to “full method” with the exception of tree

depth which is chosen randomly between minimum depth to maximum depth. It has been shown

in [7] that, Ramped Half and Half is more effective than other population generation methods.

3.1.3 Algorithm

3.1.3.1 RankGPES

In RankGPES (Algorithm 2), we preferred (µ, λ) ES over (µ + λ) ES as (µ, λ) ES is capable of gen-

erating more diversified solutions than (µ + λ) [2]. The Algorithm starts with generating an initial

set of individuals with Ramped half and half method [19], where half of the population guarantees

to be of full depth and half of the population has the flexibility to be of any depth (within maximum

length). Then each of the candidate is evaluated using a fitness function and only µ best candidates

are selected to evolve. The evolution process begins with selecting candidates with Tournament

Selection operator. Then crossover and mutation operations get applied on those candidates until

λ children gets generated. Newly generated candidates are evaluated using fitness function and

best µ children are selected to proceed for next iteration, while remaining candidates gets deleted.

At each generation the most fit solution is added to output set. This evolution process runs until

it satisfies one or more termination conditions. We want to make sure the optimal solution is not

only good for training data, but also works well on validation data, therefore each of the solution

from output set is evaluated on validation data. After validation, the best solution is outputted. All

the parameters used for RankGPES is described in Genetic Programming Parameters section.

3.1.3.2 RankPGPES

RankPGPES (Algorithm 3) is implemented by using an asynchronous island model [27], where

each island runs in parallel independently. To diversify our solution we have initialized each island

with a different setting than other as per [15]. Each island runs the evolution process for a number
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Algorithm 2: RankGP-ES(µ, λ)
INPUT: Training Data
OUTPUT: An Optimal Ranking Function
TRAINING:
1: Initialization:
(a) Generate the initial population.
(b) Calculate fitness.
(c) Select the µ best individuals.
while the maximum number of generations was not reached do

2. Using the Tournament Selection method select parents
3. Apply Crossover and Mutation until λ descendants generated
4. Calculate Fitness.
5. Add the best ranking function to Output Set
6. Select µ best descendants and update population with those for the next iteration.

end
VALIDATION:
7. Each of the solutions in Output Set is evaluated on validation data.
8. The best solution is resulted.

of iterations called epochs. After each epoch, migration process takes place within all islands where

n best solutions migrates from one island to other. The algorithm uses ring migration scheme to

process the migration task. This particular choice of migration scheme is chosen arbitrarily and

because of it’s implantation popularity. Experimenting with different migration scheme would be

another research question. This evolution process is run through a number of generations and at

each generation the most fit solution is added to output set. The process ends when it meets one

or more termination conditions. Like the single population method, we want to make sure the best

solution not only works well on training data but also produce a good result on validation data.

In validation process each solution from output set is evaluation on validation data and finally the

best solution gets outputted. Algorithm 3 shows how island model works.

As mentioned in previous paragraph, we have used different algorithms for different island

inspired by ideas of [15], Algorithm 4 is another Hybrid algorithm combined with Genetic Pro-

gramming and (µ+λ)-ES.
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Algorithm 3: Algorithm:RankPGPES
INPUT: Training Data
OUTPUT: An Optimal Ranking Function
TRAINING:
1. Create multiple islands
while the maximum number of generations was not reached do

foreach island do
2. (a) Generate the initial population
2. (b) Calculate fitness
while the maximum epoch size not reached do

3. (a) Apply Genetic Operators: Selection, Crossover and mutation
3. (b) Calculate Fitness
3. (c) Add the best candidate to output set 3. (d) Pass n best candidates to next
iteration

end
4. Apply Migration: Migrate n individuals to another island

end
end;

end
VALIDATION:
4. Each of the solutions in Output Set is evaluated on validation data.
5. The best solution is resulted.

Algorithm 4: RankGP-ES(µ + λ)
INPUT: Training Data
OUTPUT: An Optimal Ranking Function
1: Initialization:
(a) Generate the initial population.
(b) Calculate fitness.
(c) Select the µ best individuals.
while the maximum number of generations was not reached do

2. Using the Tournament Selection method select parents
3. Apply Crossover and Mutation until λ descendants generated
4. Calculate Fitness.
5. Select best µ parents between (µ + λ)

end
6. Output the best ranking function
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3.1.4 Implementation

In order to implement our GP algorithm we used one of the most popular and powerful Evolu-

tionary Frameworks: “Watchmaker Framework”, which comes with Apache 2.0 license. There are

both advantages and disadvantages using an existing framework, but in our case the main reason

we chose to use it because it comes with a friendly GUI for setting up and testing run parameters,

and rich repertoire of tools to collect and interpret run statistics.

Choosing the appropriate framework for the right problem is the key to better productivity and

efficiency. There are a number of quality frameworks available such as “ECJ [22]” and “EpochX

[24]” which we tested but ended up choosing “Watchmaker Framework [12]” because of it’s exten-

sibility, efficient object-oriented design and support for parallel processing of using Island model

approach. However, the framework only comes with Genetic Algorithm implementation. There-

fore, our implementation includes tree based representations of the candidates, fitness calculations,

Genetic Programming operations such as crossover, mutation etc. from scratch, but the key part

we got benefited from is re-using the evolution engine which defines the flow of the algorithm. We

chose Java to be our preferred language of implementation as it offers a good balance of perfor-

mance, ease-of-use and a rich standard library.

The algorithms were run on a single computer with quad core processors and 6GB ram. On

average, it took approximately 1-2 hours to conduct a single run of RankGPES with 5 fold cross-

validation on TREC1 dataset and 30-50 minutes on OHSUMED2 dataset. On the other hand, the

parallel implementation i.e. RankPGPES took approximately 7 hours to finish a single run with

5 fold cross-validation on TREC dataset and 2-2.5 hours on OHSUMED dataset. The reason

RankPGPES takes more time is that it generates a lot of complex and unnecessary solutions which

requires extra resources and time to process.

The parameters used for RankGPES and RankPGPES are described in Tables 3.1 and 3.2,

1Text REtrieval Conference
2Oregon Health and Science University Medical Dataset
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Table 3.1: Parameters of RankGPES

RankGPES Parameters
No. of generations 500
Initial population size 100
Tree Depth 8
Tournament Selection probability .75
Crossover rate .9
Crossover type Single point
Mutation rate .1
Mutation type Subtree mutation
Elitism 1
Evolutionary Strategies (µ, λ)

respectively.

3.2 The Datasets

We have conducted our experiments using LETOR dataset [36], released by Microsoft Research

Asia for research on learning to rank for IR, which is standard dataset in learning to rank area.

Letor 2.0 contains 2 datasets: OHSUMED and TREC.

3.2.1 OHSUMED

OHSUMED (Oregon Health and Science University Medical Dataset) is a subset of MEDLINE

(Medical Literature Analysis and Retrieval System Online) [23] database used for medical publi-

cations. The collection consists of 348,566 records from 270 medical journals during the period of

1987-1991. The fields of a record include title, abstract, Medical Subject Headings (MeSH) [23],

indexing terms, author, source, and publication type. There are 106 queries. For each query, there

are a number of documents associated. Each query is about a medical search need, and thus is also

associated with patient information and topic information. The relevance degrees of documents

with respect to the queries are judged by humans, on three levels: definitely(2), possibly(1), or not

relevant(0). There are a total of 16,140 query-document pairs with relevance judgments. There are
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Table 3.2: Parameters of RankPGPES

RankPGPES Parameters
No. of generations 100
Initial population size 200
Tree Depth 8
Tournament Selection probability .75
Crossover rate .9
Crossover type Single point
Mutation rate .1
Mutation type Subtree mutation
Elitism 1
No. of Islands 2
Island 1 Algorithm GP with (µ, λ) ES
Island 2 Algorithm GP with (µ + λ) ES
Epoch size 50
Migration Type Ring Migration

25 features or attributes in OHSUMED:
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Table 3.3: OHSUMED Features

Feature ID Descriptions
1 L1 for the T field(Title)
2 L2 for the T field(Title)
3 L3 for the T field(Title)
4 L4 for the T field(Title)
5 L5 for the T field(Title)
6 L6 for the T field(Title)
7 L7 for the T field(Title)
8 L8 for the T field(Title)
9 L9 for the T field(Title)
10 L10 for the T field(Title)
11 L1 for the W field(Abstract)
12 L2 for the W field(Abstract)
13 L3 for the W field(Abstract)
14 L4 for the W field(Abstract)
15 L5 for the W field(Abstract)
16 L6 for the W field(Abstract)
17 L7 for the W field(Abstract)
18 L8 for the W field(Abstract)
19 L9 for the W field(Abstract)
20 L10 for the W field(Abstract)
21 H1 for the joint of T(Title) and W(Abstract) fields
22 H2 for the joint of T(Title) and W(Abstract) fields
23 H3 for the joint of T(Title) and W(Abstract) fields
24 H4 for the joint of T(Title) and W(Abstract) fields
25 H5 for the joint of T(Title) and W(Abstract) fields

Table 3.4: OHSUMED Feature Descriptions

Features Descriptions References
L1 Term Frequency(TF) [36]
L2 Feature in SIGIR paper [36]
L3 Normalized Term Frequency(TF) [36]
L4 Feature in SIGIR paper [36]
L5 Inverse Document Frequency(IDF) [36]
L6 Feature in SIGIR paper [36]
L7 Feature in SIGIR paper [36]
L8 Feature in SIGIR paper [36]
L9 TF*IDF [36]
L10 Feature in SIGIR paper [36]
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Table 3.5: OHSUMED Feature Descriptions 2

Features Descriptions References
H1 BM25 Score [36]
H2 log(BM25 Score) [36]
H3 LMR with DIR Smoothing [36]
H4 LMR with JM Smoothing [36]
H5 LMR with AMS Smoothing [36]

Table 3.6: OHSUMED Record Format

<label> <query id>:<value> <feature id>:<value> .............. <feature id>:<value> # <info>

Identifiers: (L1,L2...L10) and (H1,H2...H5) used in Table 3.3 are explained in Table 3.4 and 3.5

respectively. The structure of each query-document pair is specified in Table 3.6 where <label>

takes values from (0, 1, 2),<query id> is an integer, <feature id> is as shown in Table 3, <value>

is a float value of the corresponding feature, and document id is given at the end of each line as

<info>. An example of a record is shown in Table3.7 It means that for query:1, document:40626

was returned where the label is 2 (definitely relevant). The 25 features extracted for the query-

document pairs are (3.00000000, 2.07944154, ............ -3.87512000) meaning weight of the first

feature is 3.00000000, weight of the second feature is 2.07944154 and so on.

3.2.2 TREC

TREC (Text REtrieval Conference) dataset contains features extracted from query-document pairs

in the topic distillation task of TREC 2003 and TREC 2004. TREC 2003 and TREC 2004 used

the .GOV collection, which is based on a January, 2002 crawl of .gov Web sites. There are in total

Table 3.7: OHSUMED Record example

2 qid:1 1:3.00000000 2:2.07944154 .............. 25:-3.87512000 # docid = 40626
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Table 3.8: TREC Features(1 of 2 tables continued in Table3.9)

Feature ID Descriptions
1 BM25
2 dl of Body
3 dl of Anchor
4 dl of Title
5 dl of URL
6 HITS Authority
7 HITS Hub
8 HostRank
9 IDF of Body
10 IDF of Anchor
11 IDF of Title
12 IDF of URL
13 Sitemap based feature propagation
14 PageRank
15 LMIR.ABS of Anchor
16 BM25 of Anchor
17 LMIR.DIR of Anchor
18 LMIR.JM of Anchor
19 LMIR.ABS of extracted title
20 BM25 of extracted title
21 LMIR.DIR of extracted title
22 LMIR.JM of extracted title
23 LMIR.ABS of title
24 BM25 of title
25 LMIR.DIR of title

1,053,110 html documents in this collection, together with 11,164,829 hyperlinks. There are 50

queries and 75 queries in topic distillation tasks of the Web track in TREC 2003 and 2004. TD2003

contains 49,171 query-document paris and TD2004 contains 74,170 query-document pairs. The

extracted features cover most of the standard IR features, such as classical features (e.g., term fre-

quency, inverse document frequency, and BM25 [24]), and the features proposed in recent SIGIR

papers (e.g., HostRank [27], Feature Propagation [23][25], and Topical PageRank [21]). There are

in total 44 features were extracted in both TD2003 and TD2004. The relevance judgments are on

two levels in TD2003 and TD2004-relevant(1) and not relevant(0).
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Table 3.9: TREC Features(2 of 2 tables)

Feature ID Descriptions
26 LMIR.JR of title
27 Sitemap based feature propagation
28 TF of Body
29 TF of Anchor
30 TF of Title
31 TF of URL
32 TFIDF of Body
33 TFIDF of Anchor
34 TFIDF of Title
35 TFIDF of URL
36 Topical PageRank
37 Topical HITS Authority
38 Topical HITS Hub
39 Hyperlink base score propagation:wighted in link
40 Hyperlink base score propagation:wighted out link
41 Hyperlink base score propagation:uniformed out link
42 Hyperlink base feature propagation:wighted in link
43 Hyperlink base feature propagation:wighted out link
44 Hyperlink base feature propagation:uniformed out link
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Table 3.10: TREC Record Format

<label> <query id>:<value> <feature id>:<value> .............. <feature id>:<value> # <info>

Table 3.11: TREC Record Example

1 qid:41 1:5.022967 2:213.000000 3:0.000000 4:8.000000 5:3.000000 6:0.000000 7:0.000000 8:0.000567
9:0.000013 10:0.000456 11:0.000212 12:0.000678 13:4.642564 14:0.000000 15:-12.201200 16:0.021918
17:-11.595500 18:-8.585960 19:-6.167350 20:1.583980 21:-6.106140 22:-6.104610 23:-6.461410
24:1.341180 25:-6.379590 26:-6.377600 27:4.686737 28:0.000000 29:0.000000 30:0.000000 31:0.000000
32:0.000000 33:0.000000 34:0.000000 35:0.000000 36:0.000000 37:0.000000 38:0.000000 39:0.000000
40:0.000000 41:0.000000 42:0.000000 43:0.000000 44:0.000000 # docid = 96

The structure of each query-document pair is specified in Table 3.10 where <label> takes

values from (0, 1, 2),<query id> is an integer, <feature id> is as shown in Table 3, <value>

is a float value of the corresponding feature, and document id is given at the end of each line as

<info>. An example of a record is shown in 3.11 It means that for query:41, document:96 was

returned where the label is 1(relevant). The 44 features extracted for the current query-document

pair are (5.022967, 213.000000, 0.000000,..............., 0.000000 ) meaning weight of the first feature

is 5.022967, weight of the second feature is :213.000000 and so on.

3.2.3 Dataset Partitioning

Each dataset is partitioned into five subsets: S1, S2, S2, S4 and S5 in order to conduct 5-fold cross

validation. For each fold, 3 subsets are used for training, 1 subset is used for validation and 1 used

for testing as shown in Table 3.12:

3.2.4 Data Normalization

Before applying the algorithm to the training set, a query-based normalization on features is per-

formed in order to normalize all feature values into a range of [0, 1]. For a query qi, the normalized
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Table 3.12: TREC Dataset Partition Scheme

SUBSETS Training Validation Testing
FOLD1 (S1, S2, S3) S4 Set S5
FOLD2 (S2, S3, S4) S5 S1
FOLD3 (S3, S4, S5) S1 Set S2
FOLD4 (S4, S5, S1) S2 Set S3
FOLD5 (S5, S1, S2) S3 S4

value of fk(qi,d j) is calculated by following equation:

fk(qi,d j) =
fk(qi,d j)−min( fk(qi,di))

max( fk(qi,di))−min( fk(qi,di))
(3.2)

Where fk is the feature vector of k-th item, qi is the i-th query, d j is the j-th document,

max( fk(qi,di)) is the maximum value of fk(qi,di) and min( fk(qi,di) is the minimum value of

fk(qi,di) for all di ∈ D and D is all documents.

3.3 Evaluation Metrics

We have utilized the standard evaluation tool provided by LETOR to measure accuracy. The eval-

uation tool provides following IR evaluation measures:

3.3.1 Mean Average Precision (MAP)

Mean average precision (MAP) [21] is the most frequently used accuracy measure of a ranked

retrieval run. It is computed by measuring average for each query also known as Average Precision

(AP) first, then Average Precisions for all queries are added and divided by the total number of

queries as follows:

MAP =
∑

Q
q∈Q AP(q)

|Q|
(3.3)
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Where, q is a query such that q ∈ Q, Q is the set of all the queries and AP(q) is the Average

Precision of query q which is calculated by:

AP(q) =
∑

N
n=1 P@n∗ rel(n)

#rel(q)
(3.4)

Where N is total number of results returned by the query q, rel(n) is relevancy at position n , the

#rel(q) is total number of relevant documents found for this query q and P@n is the precision at

position n is computed by:

P@n =
#rel(n)

n
(3.5)

Where n is the position, and #rel(n) is the number of relevant documents found in top n results.

3.3.2 Normalized Discounted Cumulative Gain (NDCG)

NDCG [21] is an effective accuracy measure of a ranked retrieval run where the focus is more on

relevancy of the results in a way that more relevant results should appear top of less relevant ones.

It is computed by dividing the Discounted Cumulative Gain (DCG) by the Ideal Discounted Cu-

mulative Gain (IDCG), where IDCG refers to the idealized DCG: the DCG of the perfect ranking

of the result and DCG is measured by:

DCG(p) = rel(i)+
p

∑
i=2

rel(i)
log2(i)

(3.6)

Where, p is the result position of a query, rel(i) is the relevancy of a particular result at position i.

NDCG of a query is measured by the expression below:
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NDCG(p) =
DCG(p)
IDCG(p)

(3.7)

Where, p is the result position of a query. The higher the NDCG of a query, the more accurate it’s

ranked list.

3.4 Experimental Design

In our experiments, we aim to obtain satisfactory answers to the following research questions for

which we ran 6 experiments, briefly described in Section 3.4.2. Our experimental setup provided

in Section 3.4.1:

• Does the hybrid approach (combining Genetic Programming with Evolutionary Strate-

gies) evolves solutions more effectively than classical approach on TREC and OHSUMED

dataset?

• Can the hybrid algorithm produce better results by outperforming RankGP and RankDE

in terms of accuracy and efficiency?

• Can we solve learning to rank problem more effectively if we distribute the tasks into

multiple islands and run them in parallel?

• Can NDCG be a better fitness function than MAP for Learning to Rank problem?

• Higher population or higher number of generations, which parameter is more important

that leads to a more accurate solution?

3.4.1 Setup

For simplicity, all of our algorithms target linear solutions, therefore initial maximum tree depth

is set to 8 in order to cover the case that leaf nodes contain 44 features and 44 constants. A full
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binary tree with a depth of 8 can have 128 leaf nodes, which is enough to cover 44+44=88 nodes.

Each algorithm is run 5 times. In each run, 5-fold cross validation was conducted and an average

score was computed. The reported score of each algorithm is the average of those in the 5 runs.

3.4.2 Experiments

In our study, the following tests were performed:

3.4.2.1 Accuracy Test on TREC dataset

In this test, Both classic GP algorithm (RankGP [37]) and Hybrid GP algorithm (RankGPES) is run

by varying 2 fitness functions: MAP and NDCG, which we referred as RankGP-MAP (RankGP

with MAP), RankGP-NDCG (RankGP with NDCG), RankGPES-MAP (RankGPES with MAP)

and RankGPES-NDCG (RankGPES with NDCG). However, The parallel algorithm (RankPGPES)

is run with only one MAP fitness function due to time constraints. Each of the algorithms is run on

TREC dataset and in the end their accuracy, measured in terms of MAP (Mean Average Precision)

and NDCG (Normalized Discounted Cumulative Gain), is evaluated using LETOR evaluation tool

mentioned in Section 3.3. As mentioned in Section 3.4.1, the algorithms are run in 5-fold cross

validation way, where we captured the highest score, the lowest score and averaged out all scores

to determine average score of each of the algorithm. Then we compared against each of the algo-

rithms to determine on average which algorithm provides most accurate result on TREC dataset.

This test gives us the answer if the hybrid approach generates a better ranking function that ranks

documents more accurately than classical approach on TREC dataset. Furthermore, by comparing

MAP-fitness based algorithms: RankGP-MAP and RankGPES-MAP with NDCG-fitness based al-

gorithms: RankGP-NDCG and RankGPES-NDCG respectively, this experiment answers whether

NGDC-fitness based implementations can outperform their MAP-fitness based implementations

in terms of accuracy, therefore if NDCG can be a better fitness function than MAP that results be

more effective solutions.
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3.4.2.2 Average Fitness Growth Test on TREC dataset

In this experiment, we compared Classical GP algorithms: RankGP-MAP and RankGP-NDCG

with Hybrid GP algorithms: RankGPES-MAP and RankGPES-NDCG respectively and inspected

each of their fitness values over the course of generations on TREC dataset. RankPGPES is not

considered for this test as it’s number of generations is different from our other algorithms. The

fitness growth pattern is carefully analyzed and therefore we try to answer if the hybrid approach

can evolve populations more effectively than classical approach. This experiment also tells us, how

many generations do the algorithms take to reach to a converging point and if their fitness growths

are interrupted by any early convergence which leads to non-optimal result.

3.4.2.3 Accuracy Test on OHSUMED dataset

In this test, we perform similar experiment as mentioned in Section 3.4.2.1 (so the description is

not repeated) but on OHSUMED dataset. This experiment answers us how accurate the algorithm

results on OHSUMED dataset and how different are the results from TREC dataset.

3.4.2.4 Average Fitness Growth Test on OHSUMED dataset

Here, we conduct similar experiments as mentioned in Section 3.4.2.2 but on OHSUMED dataset

therefore the description is not repeated. This test helps us to answer, if the fitness growth patterns

are similar or different on OHSUMED dataset. Also, this experiment helps us to decide the hybrid

approach is capable of evolving solutions more effectively than classical approach.

3.4.2.5 Comparison Test of RankGPES with RankDE and RankGP

In this experiment, RankGPES is compared with RankDE [3] and RankGP [37] using their final

MAP (Mean Average Precision) score on TREC dataset. Unlike RankGP, RankDE is not im-

plemented in our work and the results are obtained directly from published work. In our work,

RankGP and RankDE, the same officially released LETOR 2.0 dataset and it’s evaluation tools
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Table 3.13: Parameters of RankGPES-high-pop, RankGPES-mid-pop and RankGPES-low-pop

Parameters RankGPES-mid-pop. RankGPES-low-pop. RankGPES-high-pop.
No. of generations 250 500 100
Initial population size 200 100 400

were used, which enable us to make fair and direct comparison. In this test, we also determine how

fast RankGPES generates the final solution compared to RankGP and RankDE.

3.4.2.6 Population vs Generation

In this experiment, we intend to answer the following research question:“higher population or

higher number of generations, which parameter is more important that results to a better solu-

tion?”. We ran RankGPES-MAP using three different settings: one with higher initial population

and lower number generations referred as “RankGPES-high-pop”, one with higher number of gen-

erations but lower initial population referred as “RankGPES-low-pop” and another with medium

number of initial population and number of generations referred as “RankGPES-med-pop” in this

experiment. All other GP parameters such as crossover rate, mutation rate, selection method etc.

were kept the same for every setting. Table 3.13 shows RankGPES-high-pop’s, RankGPES-mid-

pop’s and RankGPES-low-pop’s number of initial population and number of generations setting.
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Chapter 4

Results and Discussion

This chapter reports the results of work with reference to the methodology mentioned in the previ-

ous chapter. Here, all algorithms that have been used in our experiment are compared and analyzed.

The chapter concludes with a discussion about what we have learned from our experiments.

4.1 Accuracy Test on TREC dataset

In this section, an overview of each Algorithmic run for this test is briefly described first and then

the analysis is summarized in Section 4.1.6.

4.1.1 RankGP-MAP

RankGP is the classical GP implementation using MAP as the fitness function. The highest MAP

and NDCG was reported to be 0.3869 and 0.6778 respectively and the lowest MAP and NDCG

was reported to be 0.2542 and 0.5125 respectively. On average, our experiment showed a similar

result as those in [37], that is: average MAP was 0.2995 and average NDCG was 0.5618. Table 4.1

shows the best, worst and average results in more detail. The Final ranking function generated by

RankGP-MAP was: ((0.4 - f0) * (0.4 - (((f38 + (((((f28 * (f36 + (((f15 * f6) - f38) - f38))) * (f26

+ f0)) - (((f15 * f6) - f38) + ((f15 * f6) - f38))) * f23) - f6)) * f38) + (((((f28 * (f36 + (((f15 * f6) -

f38) - f38)))

Where, f 0 represents feature#1, f 1 represents feature#2 and so on.
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Table 4.1: RankGP-MAP: The highest, the lowest and the average results

MAP Score NDCG Score
Highest 0.3869 0.6778
Lowest 0.2542 0.5125
Average 0.2995 0.5618

Table 4.2: RankGP-NDCG: The highest, the lowest and the average results

MAP Score NDCG Score
Highest 0.3818 0.6661
Lowest 0.1574 0.5037
Average 0.2349 0.5625

4.1.2 RankGP-NDCG

RankGP-NDCG is the classical GP implementation but using NDCG as the fitness function. The

highest MAP and NDCG was reported to be 0.3818 and 0.6661 respectively and the lowest MAP

and NDCG was reported to be 0.1574 and 0.5037 respectively. One thing to notice here, in best

case scenario the NDCG value is higher than MAP but in worst case scenario it is much lower.

On average, our experiment resulted: average MAP:0.2349 and average NDCG: 0.5625. Table 4.2

shows the best, worst and average results in more detail. The final ranking function generated by

RankGP-NDCG is:

((((0.9 - f13) + (f15 - f20)) - ((f37 * f19) - (f35 * 0.2))) + (((f5 * 0.9) + (f36 * f25)) + 0.1)) + ((((f6

- f0) + (f26 + f42)) - ((f9 * f2) - 0.1)) - f6))

Where, f 0 represents feature#1, f 1 represents feature#2 and so on.

4.1.3 RankPGPES

RankPGPES is the island model where multiple islands run in parallel. As mentioned in previ-

ous chapter, we ran 2 islands: 1 island with GP with (µ+λ) and another GP with (µ,λ).For this

experiment the highest MAP and NDCG was reported to be 0.3503 and 0.6511 respectively and
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Figure 4.1: RankPGPES-map fitness vs generation graph

the lowest MAP and NDCG was reported to be 0.3288 and 0.6121 respectively. On average, this

experiment resulted: average MAP: 0.3395 and average NDCG: 0.6417. Figure 4.1 shows fitness

growth by generation and Table 4.3 shows the best, worst and average results in more detail. The

final ranking function generated by RankPGPES is:

(((f38 * ((0.4 + f42) - f12)) + (f37 - (0.4 + f0))) + ((f17 - f15) + f18)) * (((0.4 + f0) + ((0.4 + f0)

- 0.4)) - (f32 * (f12 + f26)))) + (((f0 + (f26 + (0.3 - ((f5 - ((f32 - f37) + f34)) + f34)))) + ((((f25 *

((0.4 + f0) - 0.2)) - (((f34 * f15) + ((f5 - f12) + (f9 - 0.9))) + ((f43 + (0.4 + f32)) + (f37 - (1.0 +

f0))))) - (f43 - f12)) + (f23 - ((f43 + 1.0) + ((0.4 + f0) * f32))))) + ((1.0 - f42) + f5))) + ((((f0 + 0.4)

+ ((f12 + 1.0) + ((f2 * f32) + f5))) - (0.2 * ((f2 * f32) + f23) + ((((f2 * (f7 * f0)) * (0.2 + f6)) - (0.2

* (f43 - f19))) * ((f3 * (0.3 + f6)) - f12)))))

Where, f 0 represents feature#1, f 1 represents feature#2 and so on.
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Table 4.3: RankPGPES: The highest, the lowest and the average results

MAP Score NDCG Score
Highest 0.3503 0.6511
Lowest 0.3288 0.6121
Average 0.3395 0.6417

Table 4.4: RankGPES-MAP: The highest, the lowest and the average results

MAP Score NDCG Score
Highest 0.42035 0.7115
Lowest 0.3394 0.5778
Average 0.360 0.6323

4.1.4 RankGPES-MAP

RankGPES-MAP is the Genetic Programming with Evolutionary Strategies algorithm using MAP

as the fitness function.

The highest MAP and NDCG was reported to be 0.42035 and 0.7115 respectively and the

lowest MAP and NDCG was reported to be 0.3394 and 0.5778 respectively. On average, the

experiment resulted: average MAP:0.3605 and average NDCG: 0.6323 as shown in Table 4.4. The

final ranking function generated by RankGPES-MAP is:

((((f0 - 1.0) + ((f31 * (((((((f40 - f31) * (f36 + f21)) * (f15 - (0.4 - f27))) - 0.8) + ((((f40 - f31) *

(f40 - 0.4)) + ((f6 * f18) - (1.0 - f40))) + f37)) + ((((f40 + (0.4 - f19)) * f36) - f19) - (f15 + f14)))

- (((f14 - 0.8) - (f11 - f42)) * ((((f31 * (f36 + f0)) * f27) * (f27 + (f19 + (f36 + f40)))) * f34)))) *

f15)) * ((f40 - 0.8) + (((f6 - 0.4) + ((f6 * f26) - (1.0 - f5))) + 1.0))))

Where, f 0 represents feature#1, f 1 represents feature#2 and so on.

4.1.5 RankGPES-NDCG

RankGPES-NDCG is the Genetic Programming with Evolutionary Strategies algorithm using NDCG

as the fitness function. This algorithm showed similar aggressive fitness growth per generation as
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Table 4.5: RankGPES-NDCG: The highest, the lowest and the average results

MAP Score NDCG Score
Highest 0.3828 0.6450
Lowest 0.1554 0.4762
Average 0.2600 0.5813

RankGPES-MAP, however like classical RankGP-NDCG it showed fairly high improvement for

best case scenario and very low in worst case scenario. The highest MAP and NDCG was reported

to be 0.3828 and 0.6450 respectively and the lowest MAP and NDCG was reported to be 0.1554

and 0.4762 respectively. On average, the experiment resulted: average map:0.2600 and average

ndcg: 0.5813 as shown in Table 4.5. The final ranking function generated by RankGPES-NDCG

is:

((f41 + (f41 * (f15 * (f6 * (f26 * (f15 * (f6 * (f12 + f15)))))))) - (f15 * (f6 * ((((f2 * (f26 * (f6 *

f41))) * (f26 * (f6 * f26))) * ((((f2 * (f26 * (f6 * f15))) + ((f34 * (f42 * f41)) + f26)) + ((f6 * (f15

* (0.3 * f30))) * f13)) * (f6 + f32))) + (((f23 * ((((f41 * f43) - f6) + f17) * ((f34 * (f15 * f15)) +

0.3))) * 0.3) - ((f1 * ((0.9 + f34) + ((f34 * (f42 * f41)) + f30))) - f6)))))) + (f26 + (f23 * (f41 * f12)

- f26))

Where, f 0 represents feature#1, f 1 represents feature#2 and so on.

4.1.6 Analysis of Accuracy Test on TREC dataset

The analysis of this test is divided in to two evaluation measures:

• Evaluation by MAP Score (Section 4.1.6.1)

• Evaluation by NDCG Score (Section 4.1.6.2)

4.1.6.1 Evaluation by MAP Score

Figure 4.2 shows the highest, the lowest and the average MAP score comparison. As we can

see, Hybrid GP algorithms such as RankGPES-MAP and RankGPES-NDCG resulted better MAP
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score than non hybrid GP algorithms such as RankGP-MAP and RankGP-NDCG respectively.

This was due to RankGPES-MAP and RankGPES-NDCG generated ranking functions that could

rank documents more accurately than RankGP-MAP and RankGP-NDCG, respectively. However,

NDGC-fitness based algorithms such as RankGP-NDCG and RankGPES-NDCG generated both

very high and very low MAP score, therefore on average resulted worse than MAP-fitness based

algorithms such as RankGP-MAP and RankGPES-MAP respectively. This behavior can be ex-

plained by the fact that, the ranking function that RankGP-NDCG or RankGPES-NDCG resulted

could accurately rank some documents only in the best case scenario where training and testing

documents are much similar but also failed to rank some documents properly in the worst case

scenario where training and testing documents are less similar, hence on average case scenario, the

NDCG-fitness based algorithms did not rank documents properly. The Hybrid parallel algorithm,

RankPGPES, resulted not very high but not very low MAP score, therefore averaging a moderate

MAP score. The reason behind the moderate score is due to the particular migration scheme, where

only the best candidates get migrated between islands and survive, resulting each island to have

similar solutions that resulted similar ranking functions at the end in almost every run of folds.

4.1.6.2 Evaluation by NDCG Score

Figure 4.3 shows similar comparison of algorithms as seen in Section 4.1.6.1 but using NDCG

score. We observe similar pattern of result here as well, which is Hybrid GP algorithms RankGPES-

MAP and RankGPES-NDCG outperformed non hybrid GP algorithms RankGP-MAP and RankGP-

NDCG respectively. On average, NDCG-fitness based algorithms resulted worse than MAP-fitness

based algorithms. However only difference in this comparison is the hybrid parallel algorithm.

RankPGPES actually resulted the best NDCG score on average among all 5 algorithms and its

result is better than RankGPES-MAP. The reason could be the presence of outliers in generated

solutions in our experiments, as this is only scenario where RankPGPES slightly outperformed

RankGPES-MAP.
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TREC: Highest, lowest and average MAP comparision
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4.2 Average Fitness Growth Test on TREC dataset

Here, we compare RankGP-MAP with RankGPES-MAP described in Section 4.2.1 and RankGP-

NDCG with RankGPES described in Section 4.2.2 and analyze each of their fitness growth over

the course of generations on TREC dataset.

4.2.1 RankGP-MAP vs RankGPES-MAP

Figure 4.4 shows average fitness growth comparison between RankGP-MAP and RankGPES-

MAP. As we can see RankGP-MAP started with a decent growth in early generations (between gen-

eration 1 and 100) but after some time (after generation 200) it became steady and barely showed

any growth. This behavior was due to the algorithm converged prematurely or got trapped in local

optima and could not evolve efficiently to get out of the trap. On the other hand, RankGPES-MAP

displayed more growth in early generations (between generation 1 and 100), seemed to got trapped

during generation 150 but quickly got out of the trap and showed nearly constant growth in later

generations. This behavior can be explained as RankGPES-MAP evolved more efficiently than

RankGP-MAP, generated more diversified solutions with better fitness values that helped to get

out local optima if got trapped and moved towards global optima more aggressively.

4.2.2 RankGP-NDCG vs RankGPES-NDCG

Figure 4.5 shows average fitness growth comparison between RankGP-NDCG and RankGPES-

NDCG.As we can see RankGP-NDCG showed a moderate growth in early generations but that

growth rate was slowed down heavily in later generations. However, RankGPES-NDCG showed

similar aggressive fitness growth per generation as seen with RankGPES-MAP, although the growth

slowed down slightly in mid generations but it resumed to grow sharply at the end. Again, this can

be explained as RankGPES-NDCG evolved more efficiently and generated more diversified solu-

tions with better fitness value than RankGP-NDCG to get recovered if the growth slowed down
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TREC: RankGP-map vs RankGPES-map avg fitness growth

fit
ne

ss

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

genarations
0 100 200 300 400 500 600

0 100 200 300 400 500 600

RankGP-map
RankGPES-map

Figure 4.4: TREC:RankGP-MAP vs RankGPES-MAP

during the evolution process.

4.3 Accuracy Test on OHSUMED dataset

In this section, an overview of each algorithmic run for this test is briefly described first and then

the analysis is summarized in Section 4.3.6.

4.3.1 RankGP-MAP

The highest MAP and NDCG of RankGP-MAP on OHSUMED dataset was reported to be 0.7386

and 0.7420 respectively and the lowest MAP and NDCG was reported to be 0.5552 and 0.6805

respectively. On average, RankGP-MAP resulted average MAP:0.6720 and average NDCG:0.7287

as shown in Table 4.6. Final ranking function generated by RankGP-MAP is:

(((0.5 * (f6 + 0.9)) + (((0.1 - f9) * 0.1) + ((0.1 + ((f7 + f4) * (f24 + (f9 + f4)))) + (f24 * (f13 +

f10))))) * (f24 + (f7 + f4)))
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TREC: RankGP-ndcg vs RankGPES-ndcg avg fitness growth
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Table 4.6: OHSUMED RankGP-MAP: The highest, the lowest and the average results

MAP Score NDCG Score
Highest 0.7386 0.7420
Lowest 0.5552 0.6805
Average 0.6720 0.7287

Where, f 0 represents feature#1, f 1 represents feature#2 and so on.

4.3.2 RankGP-NDCG

As seen on TREC dataset, RankGP-NDCG implementation followed similar pattern which was: a

good improvement in early generations and less improvement in later generations on OHSUMED

dataset. The highest MAP and NDCG of RankGP-NDCG on OHSUMED dataset was reported

to be 0.7596 and 0.7471 respectively and the lowest MAP and NDCG was reported to be 0.5580

and 0.6083 respectively as shown in Table 4.7. On average, our experiment resulted: average
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Table 4.7: OHSUMED RankGP-NDCG: The highest, the lowest and the average results

MAP Score NDCG Score
Highest 0.7596 0.7471
Lowest 0.5580 0.6083
Average 0.6691 0.6687

Table 4.8: OHSUMED RankPGPES: The highest, the lowest and the average results

MAP Score NDCG Score
Highest 0.7235 0.7411
Lowest 0.6888 0.6941
Average 0.6939 0.7175

MAP:0.6691 and average NDCG: 0.6687. The final ranking function generated by RankGP-

NDCG is:

(((((f9 - (f4 - f3)) - f11) - (f4 - f3)) - f11) + (f3 + ((f20 * f5) * ((f2 * f9) + 0.3))))

Where, f 0 represents feature#1, f 1 represents feature#2 and so on.

4.3.3 RankPGPES

On OHSUMED dataset, RankPGPES reported the highest MAP and NDCG to be 0.7235 and

0.7411 respectively and the lowest MAP and NDCG to be 0.6888 and 0.6941 respectively. On

average, this experiment resulted: average MAP: 0.6939 and average NDCG: 0.7175 as shown

in Table 4.8. Figure 4.6 shows fitness vs generation graph in more detail. Final ranking function

generated by RankGP-NDCG is:

((((((f22 + 1.0) - (f2 + f18)) - ((f19 - f8) * (f17 - f2))) - (((f1 - 0.7) * (f8 + ((f15 - f19) * (f16 +

f15)))) + ((f6 * f17) + (f8 - f2)))) + (((0.2 * ((f23 - f17) - f16)) * ((f15 - f19) * (f16 + f15))) - (((f7

+ f19) * (0.3 - f5)) * ((f14 * f24) * 0.2)))))

Where, f 0 represents feature#1, f 1 represents feature#2 and so on.
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Figure 4.6: OHSUMED RankPGPES-map fitness vs generation graph

4.3.4 RankGPES-MAP

The highest MAP and NDCG of RankGPES-MAP on OHSUMED dataset was reported to be

0.7434 and 0.7632 respectively and the lowest MAP and NDCG was reported to be 0.6432 and

0.6783 respectively. On average, the experiment resulted: average MAP:0.6921 and average ndcg:

0.7425 as shown in Table 4.9. The final ranking function generated by RankGP-NDCG is:

((((f20 * f7) - 0.3) - f3) * (((f14 - f17) * f9) * (((f8 * f2) + 0.1) * ((f5 - 0.7) * (f20 * ((((f8 - 0.3) *

f2) * ((f20 - 0.2) - f10)) + ((f7 * f20) - (f15 + 0.4))))))))

Where, f 0 represents feature#1, f 1 represents feature#2 and so on.

4.3.5 RankGPES-NDCG

The highest MAP and NDCG of RankGPES-NDCG on OHSUMED dataset was reported to be

0.7596 and 0.7699 respectively and the lowest MAP and NDCG was reported to be 0.5581 and
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Table 4.9: OHSUMED RankGPES-MAP: The highest, the lowest and the average results

MAP Score NDCG Score
Highest 0.7434 0.7632
Lowest 0.6432 0.6783
Average 0.6921 0.7425

Table 4.10: OHSUMED RankGPES-NDCG: The highest, the lowest and the average results

MAP Score NDCG Score
Highest 0.7596 0.7699
Lowest 0.5581 0.6383
Average 0.6692 0.6888

0.6383 respectively. On average, the experiment resulted: average MAP:0.6692 and average

NDCG:0.6888 as shown in Table 4.10. The final ranking function generated by RankGP-NDCG

is:

(((((((f9 - f16) + f1) + ((0.6 - ((f21 + f14) - f22)) + f7)) + f7) + (f22 + ((f3 * (f1 - f16)) + f7))) -

(((0.9 + f16) * (f13 - (f22 + f7))) + f3)) - (f22 - (((f7 + ((f22 * f22) + (f7 + f9))) + f1) - 1.0)))

Where, f 0 represents feature#1, f 1 represents feature#2 and so on.

4.3.6 Analysis of Accuracy Test on OHSUMED dataset

The analysis of this test is divided in to two evaluation measures:

• Evaluation by MAP Score (Section 4.3.6.1)

• Evaluation by NDCG Score (Secion 4.3.6.2)

4.3.6.1 Evaluation by MAP Score

Figure 4.7 shows the highest, the lowest and the average MAP score comparison on OHSUMED

dataset. As we can see, Hybrid GP algorithms: RankGPES-MAP and RankGPES-NDCG resulted
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better MAP score than non hybrid GP algorithms: RankGP-MAP and RankGP-NDCG respec-

tively. However, NDGC-fitness based algorithms RankGP-NDCG and RankGPES-NDCG gener-

ated both very high and very low MAP score, therefore on average resulted worse than MAP-fitness

based algorithms:RankGP-MAP and RankGPES-MAP respectively. The Hybrid parallel algorithm

RankPGPES resulted not very high but not very low MAP score, therefore averaging a moderate

MAP score showing a similar result as TREC dataset. As explained in Section 4.1.6.1, this behav-

ior is due to the particular migration scheme, where only the best candidates get migrated between

islands and survive, resulting each island to have similar solutions that resulted similar ranking

functions at the end in almost every run of folds. In comparison with the accuracy test on TREC

dataset mentioned in Section 4.1.6.1, two different patterns were observed in OHSUMED dataset

which are:

• the average MAP score generated by each of the algorithms were much closer to each

other than the average MAP scores were in TREC dataset.

• RankGP-NDCG and RankGPES-NDCG scored much higher than RankGP-MAP and RankGPES-

MAP respectively, but only in the best case scenario.

The more closer average MAP score between algorithms in OHSUMED dataset than TREC dataset

seem to be generated because, OHSUMED dataset has much smaller number of feature parameters

and overall dataset size is much smaller, i.e., total number of (query,document) pairs are much

smaller than TREC, which enable the algorithms to generate more accurate solutions much easily.

Furthermore, The reason of very high MAP score of RankGP-NDCG and RankGPES-NDCG only

in the best case scenario is: in the best case scenario training documents and testing documents

are much similar to each other than in other cases, which is completely opposite for the worst case

scenario where these Algorithms scored much lower. This behavior can be summarized as NDCG-

fitness based algorithms can learn from training data and predict more accurately on testing data
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OHSUMED: Highest, lowest and average MAP comparision
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Figure 4.7: OHSUMED:highest lowest and average MAP comparison

than MAP-fitness based algorithms if both testing and training data are similar and specially when

the dataset is much smaller and less complex.

4.3.6.2 Evaluation by NDCG Score

Figure 4.8 shows similar comparison of algorithms as seen in Section 4.3.6.1 but using NDCG

score. Similar pattern of result can be found here as well, which is Hybrid GP algorithms:

RankGPES-MAP and RankGPES-NDCG outperformed non hybrid GP algorithms RankGP-MAP

and RankGP-NDCG respectively. Although in the best case scenario, RankGP-NDCG and RankGPES-

NDCG seemed to have very high scores, but in the worst case scenario it resulted very poor, im-

plying the ranking function that RankGP-NDCG or RankGPES-NDCG resulted, could correctly

rank some subsets of the dataset much accurately when training and testing datasets were similar

but also failed to rank some subsets of the dataset properly when training and testing datasets were

much different. Hence on average, NDCG-fitness based algorithms resulted worse than MAP-
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OHSUMED: Highest, lowest and average NDCG comparision
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Figure 4.8: OHSUMED:highest lowest and average NDCG comparison

fitness based algorithms. RankPGPES showed similar moderate result in every case meaning not

very high and not very low due to its particular migration scheme. Finally, on average RankGPES-

MAP topped the NDCG score among all 5 algorithms.

4.4 Average Fitness Growth Test on OHSUMED dataset

Here, we compared RankGP-MAP with RankGPES-MAP described in Section 4.4.1 and RankGP-

NDCG with RankGPES described in Section 4.4.2 and analyzed each of their fitness growth over

the course of generations on OHSUMED dataset:

4.4.1 RankGP-MAP vs RankGPES-MAP

Figure 4.9 shows average fitness growth comparison between RankGP-MAP and RankGPES-

MAP. As we can see both RankGP-MAP and RankGPES-MAP showed substantial growth be-

tween generation 1 and 300 but after generation 300 RankGP-MAP got trapped in local optima
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OHSUMED: RankGP-map vs RankGPES-map fitness growth
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Figure 4.9: OHSUMED:RankGP-MAP vs RankGPES-MAP avg fitness growth

and could not recover. On the other hand, RankGPES-MAP seemed to have gotten trapped in local

optima a number of times: during generation 250 and generation 300 but it successfully got out in

every case showed gradual growth. This can be explained as RankGPES-MAP evolved more ag-

gressively and generated solutions which were more diversified with more fitness value with than

RankGP-MAP that helped to get out local optima when got trapped and moved towards global

optima gradually showing no sign of convergence.

4.4.2 RankGP-NDCG vs RankGPES-NDCG

Figure 4.5 shows average fitness growth comparison between RankGP-NDCG and RankGPES-

NDCG.The graph showed similar growth pattern as was shown in Section 4.4.1, which can be

described as both RankGP-NDCG and RankGPES-NDCG showed moderate growth until at gen-

eration 300, then RankGP-NDCG got trapped into local optima where it was stuck for a long time

(until generation 480). RankGP-NDCG finally got out after generation 480 and started to show
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OHSUMED: RankGP-ndcg vs RankGPES-ndcg average fitness growth
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Figure 4.10: OHSUMED:RankGP-NDCG vs RankGPES-NDCG avg fitness growth

some improvement then it reaches maximum number of generations. On the other hand, although

RankGPES-NDCG showed slow growth at times (during generation 80 to 110 and generation

150 to 170) but after that it resumed its moderate growth and did not seem to get stuck at any

point.Again, this can be explained as RankGPES-NDCG evolved more efficiently and generated

more diversified solutions than RankGP-NDCG to get recovered if the growth slowed down during

evolution process.

4.5 Comparison Test of RankGPES with RankDE and RankGP

In this analysis, RankGPES is compared with RankDE [3] which is shown in Table4.11. Unlike

RankGP, RankDE was not implemented in our work and the results were obtained directly from

published work. In both our work and RankDE, the same officially released LETOR 2.0 (only

TREC) dataset and its evaluation tools were used, which enable us to make a direct and a fair

comparison. As we can see from Table 4.11, on average RankGPES outperforms RankGP by
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Table 4.11: Comparison of RankGPES with RankDE and RankGP using MAP score

Algorithm Average MAP Score
RankGPES 0.360
RankGP 0.299
RankDE 0.339

20% and RankDE by 6% in terms of accuracy. Furthermore, RankGPES is significantly more

efficient than RankGP where RankGP took 3 days to complete a single training on TREC dataset,

while RankGPES took only 1-2 hours to complete on the same dataset and 30 to 40 minutes on

OHSUMED dataset. This is achieved by utilizing multi-threading on multi core processors. Again,

RankDE took 10,000 generations to reach to a satisfactory level whereas RankGPES was able to

reach to that level in significantly less number of generations (i.e., only 500 generations).

4.6 Population vs Generation Experiment

As we see in Figure 4.11, RankGPES-MAP-high-population: the algorithm with higher initial

population generated solutions with almost similar fitness values as RankGPES-mid-population

and slightly higher fitness values than RankGPES-low-population. This behavior can be explained

as, a very high population is capable of generating better solutions than lower population, but

not necessarily always. Also having more population requires extra resources to process them,

therefore an optimal number of initial population should be preferred. However, as generations

passed by RankGPES-MAP-mid-population outperformed RankGPES-MAP-high-population and

RankGPES-MAP-low-population outperformed RankGPES-MAP-mid-population by having so-

lutions with higher fitness value. This can be explained as, although a larger number of diversified

initial Population helps to generate good solutions, but if they are efficiently evolved using an

optimal fitness function, those Population are capable or generating better solutions throughout a

longer period of generations until global optima has been reached.
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Figure 4.11: RankGPES-MAP: Population vs Generation comparison

4.7 Discussion

The experiments described in this chapter were run to answer the research questions posed previ-

ously. The following were determined:

• Based on our experiments, we found out higher MAP and NDCG scores on OHSUMED

dataset than TREC dataset with all our algorithms as shown in Figure 4.7, Figure 4.8, Figure

4.2 and Figure 4.3 respectively. Also, it took almost 50% less time to process Algorithms

on OHSUMED dataset than on TREC dataset as shown in Section 3.1.4. That led to a

conclusion that, it is easier to rank OHSUMED data than TREC data and the reason being

that the TREC dataset not only has more features than the OHSUMED dataset, but also it

contains more (query, document) pairs which make overall ranking task more complex than

with OHSUMED dataset.
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• In Learning to Rank Problem, Genetic programming with Evolutionary Strategies tech-

niques can generate a very diversified solution structurally with a very competitive result

(by comparing with baseline results in [36]) in Learning to Rank area, while outperforming

previous Evolutionary based implementations such as RankGP [37] by 20% and RankDE

[3] by 6% in terms of accuracy as shown in Table 4.11.

• In our experiments, we discovered that, although NDCG (Normalized Discounted Cumu-

lative Gain) based fitness functions generated a good solution in the best case, but in the

worst case it generated a very poor solution shown in Figure 4.3 and Figure 4.8 for TREC

and OHSUMED dataset respectively.

• By analyzing Figure 4.2, Figure 4.3, Figure 4.7 and Figure 4.8 for TREC and OHSUMED

respectively it can be finalized that, on average, MAP (Mean Average Precision) based fitness

functions resulted better solution than NDCG (Normalized Discounted Cumulative Gain).

• We found that in our problem, the number of generation is more important than the number

of initial population. Using a large number of generations with a small population showed

better results than using a large number of population with a small number of generations as

shown in Section 4.6. Although it can vary to problem.

• In our experiments, we noticed that classical GP got trapped in local optima very often and

showed early convergence. On the other hand RankGPES tended not to fall under any local

optima and kept moving towards a continuous progress which sometimes created difficulty

to find a converging point as summarized on Section 4.2.1 and Section 4.2.2 for TREC and

Section 4.4.1 and Section 4.4.2 for OHSUMED.

• Both classical approach and hybrid approach showed very different results when ran on

different folds of training data on each dataset, therefore found very high and very low MAP

and NDCG scores at times as explained in Section 4.1.6.1,Section 4.1.6.2, Section 4.3.6.1
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and Section 4.3.6.2 for TREC and OHSUMED respectively. However the parallel model

was found to be the most consistent in every scenario because the algorithm’s migration

mechanism, using which the best solutions from each islands/clusters got transferred to other

islands/clusters, resulting consistent solution at the end in almost every folds of training data.

• However parallel model may not the ideal choice of algorithm, because in our experiment

it created more bloating problem than the single population run by generating more unnec-

essary solutions, because of the particular migration scheme, where only the best candidates

get migrated between islands and survive, that led to a creation of more number of less di-

versified solutions that took huge time and computational resources to process which soon

died off resulting a lot efforts got wasted unnecessarily.

• Overall, out of all the algorithms we have experimented with, RankGPES proved to be

capable of producing results with high precision value while generating most complex re-

lations structurally between program parameters as summarized in Section 4.1.6.1, Section

4.1.6.2, Section 4.3.6.1 and Section 4.3.6.2 for TREC and OHSUMED respectively.
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Chapter 5

Conclusions

This chapter begins by summarizing the research. It then provides suggestions for areas of further

investigation. After examining the contributions of this research, final conclusions are given.

5.1 Summary of research

This research evaluates the effectiveness of an enhanced version of genetic programming by com-

bining with evolutionary strategies in learning to rank problem to generate an near-optimal ranking

function. In total, 5 algorithms (RankGP-MAP, RankGP-NDCG, RankGPES-MAP, RankGPES-

NDCG and RankPGPES) have been tested on 2 datasets (TREC and OHSUMED). MAP fitness

based algorithms have been compared against NDCG fitness based algorithms to see if NDCG can

be used as a better fitness function instead of MAP. Classical GP based implementations have been

compared with Hybrid GP algorithms to see if combining Genetic Programming with Evolution-

ary Strategies helps to evolve solutions more effectively. Moreover, multiple Hybrid GP algorithms

have been run in parallel using Island model approach, to see if solutions can be generated more

efficiently. Furthermore, the Hybrid algorithm RankGPES has been run in multiple settings by

varying number of initial populations and number of generations to see which parameter is more

important for an optimal result. In the end, RankGPES has been compared against RankGP and

RankDE to see if RankGPES can outperform them in terms of accuracy and efficiency.
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5.2 Summary of results and conclusions

The Hybrid approach was shown to be very effective against the tested datasets and produced

high mean average precision score. However, the resulted solution was fairly long and produced

a complex relationship among ranking features structurally. The poor results appeared to have

generated from the worst case scenarios, where the testing query-document pairs were completely

different from training data. This behavior is probably due to the small size of each fold of the

training datasets, where each fold contains very different query-document pairs than other folds.

A bigger fold size might have given us better results but to make the comparisons between algo-

rithms fair, we have used standard fold size set by LETOR. The gain in ranking shown by LETOR

evaluation tool [36] as an indicator of substantial performance improvement over existing RankGP

and RankDE. We have seen TREC dataset is much complex and harder to learn and rank than

OHSUMED dataset based on our tests. Our experiments showed although NDCG is an effective

Information Retrial measure, but it is not quite effective to replace MAP as GP fitness operator

because, on average case scenario NDCG-fitness based algorithms generated less accurate results

(measured by MAP and NDCG) than MAP-fitness based algorithms. Moreover, parallel imple-

mentation of GP algorithms was capable of producing consistent result in almost all scenarios

because of its particular migration scheme, but was not preferred due it’s bloating problem, slow-

ness and requirement of huge computational resources. Moreover, higher number of generations

proved to be more important than higher number of initial populations that generated more accu-

rate results for our algorithm. Finally, some suggestions are provided below that may also aid in

yielding important performance improvements with this approach.

5.3 Future work

While some of the results presented in this report are appealing, a number of areas for future work

exist that may greatly improve the effectiveness of this approach:
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• Genetic Programming parameters: In general, Genetic Programming behaves differently

when experimented with a different set of breeding operators or different probability used by

those operators. A dynamic set of those probabilities that can change overtime automatically

to output maximum fitness value or use of an additional evolutionary algorithm only for these

parameters to find the best setting that outputs maximum fitness value, may significantly

result better convergence and improve overall accuracy.

• Experimenting with enhanced fitness functions: We have used two commonly used In-

formation Retrieval measures which are MAP and NDCG as fitness functions in our exper-

iments. Some researchers already discovered some enhanced versions of these Information

Retrieval measures such as Mean reciprocal rank, Structural Relevance, etc. Using these

enhanced Information Retrieval measures as fitness function may also lead to a better result.

• Use of a different migration scheme for the parallel implementation may produce more

diversified solutions which can result more accurate solutions.

• Increase the number of runs of each algorithm can help to reduce number outliers in the

result significantly. Additionally, use of some outliers removal techniques such as One Class

Support Vector Machines can be used to detect and remove outliers from results, can produce

more accurate results.

• Distributed processing: Evolutionary approaches are computationally expensive in nature.

The island model we presented in our experiment can be implemented effectively to process

in a distributed way across multiple systems using Map/Reduce [11] technology. This can

greatly reduce training time.

• Feature Selection Algorithm: Finally, a use of good feature selection algorithm (i.e., the

process of selecting a subset of the most relevant or important features of the problem) can

reduce unnecessary ranking features and generate a concise and non-complex relationship
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among parameters that impact the ranking process the most.
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