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AN INTELLIGENT DECISION SUPPORT SYSTEM FOR 

DESIGN OF BRUSHLESS DIRECT CURRENT MOTORS 

Vahab Akbarzadeh 

Msc, Computer Science, Ryerson University, 2009 

Abstract 

Brushless DC (BLDC) motors are among the most widely used electrical motors. Design of a 

BLDC motor is the most fundamental problem when dealing with the BLDC motors. This thesis 

presents an intelligent decision support system that can be used to design BLDC motors. A 

hybrid approach, that includes an object oriented paradigm using frames and procedural 

attachments together with a rule based mechanism, is used to build the knowledge base of the 

proposed architecture. The design strategy is implemented using a rule-based successive iterative 

method. An evolutionary fuzzy system was used to derive the modification rules of the system. 

The antecedent and consequent of each fuzzy modification rule was encoded as the individual of 

an evolutionary system. The evolutionary system evolves the set of modification rules to find a 

set of optimized rules. The proposed system developed design which had superior efficiency, 

weight and motor constant compared to design developed using the conventional design method. 
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1 Introduction 

1.1 Brushless DC motors 

Application of brushless DC (BLDC) motors has increased significantly over the past decades. 

This is mainly due to high reliability and efficiency of BLDC motors as well as their ability to 

reach very high speed. Brushless DC motors are rotational brushless permanent magnet motors 

which are driven by DC current and use electronic control systems instead of the brushes that are 

usually used in conventional DC motors. Compared to conventional commutator type DC 

motors, both types have straight line speed torque line, but BLDC motors are more efficient, 

need less maintenance and have longer life span. On the other hand, the control system of BLDC 

motors needs a rotor positioning mechanism, and the magnets might gradually demagnetize [19], 

[77]. BLDC motors have been used in a wide variety of applications from industrial to household 

devices. Typical examples include industrial tools (pumps, compressors), power tools (drills, 

hammers), transportation (electric vehicles), and household devices (electric shavers, mixers) 

[28]. Small BLDC motors have also been extensively used in precision devices including 

medical equipment, computer drives, hard disks, and players. 

BLDC motors operate based on electromagnetic principles where the interaction between the 

stator current and the magnetic field of permanent magnets produces the force which drives the 

motor. BLDC motors use Permanent Magnet (PM) material for excitation instead of 

electromagnetic excitation. This substitution brings the benefit of higher efficiency, higher 

torque per volume, better dynamic performance, and simplification of construction and 

maintenance. The permanent magnetic materials are getting stronger and their prices are 

dropping which make PM motors more popular. In BLDC motors the magnet is mounted on the 
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rotor and the current carrying coils are mounted on the stator, so there is no need for brushes to 

change the current of the coils. This will reduce the maintenance cost by 90%, because most of 

the times the maintenance routines are related to the brushes [28]. As the coils are mounted on 

the stators, a cooling system can be easily used to transfer the heat and increase the current 

density of the coils. 

BLDC motors can be classified from different perspectives. From a structural point of view, 

BLDC motors can be classified as: a) Radial Flux Motors and b) Axial Flux Motors. As their 

name suggests, in the radial flux motors the flux crosses in the radial direction from the rotor to 

the stator, while this direction is axial in the axial flux motors. The radial flux motors can be 

further divided into: a) Inner Rotor and b) Outer Rotor structures. In both designs the windings 

are places on the stator and the magnets are bond to the rotor. Comparing the inner rotor and 

outer rotor motors, the outer rotor has more magnetic material so the total flux is higher and 

lower energy magnetic materials can be used. Besides, these types of motors have higher rotor 

inertia, so they can be used in application were this higher inertia is beneficial (e.g. cooling fans). 

On the other hand, the inner rotor motor has small inertia so the acceleration is faster [83]. Also, 

the distributed winding provides a smoother operation and better copper utilization. We focus on 

the design of inner rotor radial flux motors in this thesis, but the principles can be easily 

modified for alternative structures. 

1.2 Design issue 

Design of BLDC motors is the most important and fundamental problem when dealing with 

BLDC motors. Motor design is a sample of routine design process, where the relationship 

between the functional requirements and the structure is known. Also, the parameters which can 
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be varied are also known. The goal of a routine design is to find the optimal value for the 

variable parameters in an attempt to optimize one or more than one objective values. 

Motor design process can be seen as an optimization problem which is subject to a number of 

constraints. The goal of the design process is to maximize, e.g. efficiency, or minimize, e.g. 

weight, some objectives at the same time. This objective can be formalized as a vector­

optimization problem: F(x) = (J; (x),/2 (x),- · ·, fn (x)), where J;(x) represents an objective of the 

design to be optimized, and x is the set of variable design parameters. The final goal of the 

design process is to find the extremum of the F(x) function [28]. This optimization process is 

also subject to a number of constraints. These constraints are defined as Xmin<x<xma.x and gi(x)>O 

, where Xmin and Xma.x are the lower and the upper bounds of design parameters and gi(x) 

represents the performance requirements which have been formulated as an inequality constraint. 

1.3 Existing approaches 

Traditional approaches for the design of electrical motors were based on the implementation of a 

physical model of the motor. This approach had two drawbacks. First, making a physical model 

is very expensive and time consuming. Second, when a physical model is made which does not 

satisfy the required specifications, the designer cannot modify the developed model to comply 

with the given requirements. With the advent of the computers, designers can make a virtual 

model of the motor in the computer. This approach is much faster and less expensive and 

provides an easier way to modify the designs either manually or with the help of optimization 

methods [81]. 

Most designers rely on an iterative design process for the design of electrical motors. In this 

method, the designer adjusts the design parameters recursively until the design constraints are 
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satisfied. In most cases, for a given set of specifications, different designers achieve different 

design details which are attributed with the experience and expertise of the designer in modifying 

a specific set of design parameters. 

The experience related to the design of BLDC motors can be integrated into a computerized 

system in different ways. The first approach is to extract the design knowledge from an expert 

designer and embed this knowledge into a knowledge base. The other approach which uses the 

search abilities of the computers uses an automated method to extract knowledge from a set of 

examples of the previous cases of the design to induce knowledge and automatically construct a 

knowledge base. 

It is not usually a good idea to integrate a fully automated optimization method in the design 

system as a replacement for the human designer, because the design process involves many 

delicate compromises and judgments that a fully automated system is not capable of 

accomplishing. Therefore, usage of an automated method as an assistant to the expert designer 

seems to be the most proper way to incorporate the human expert knowledge and the automatic 

optimization method at the same time. Intelligent Decision Support System (IDSS) is a good 

candidate for a semi-automated system that can help the motor designer during the design 

process. In this approach, the system uses the automated optimization method to provide a 

suggestion to the designer on how to improve the performance of the design. 

1.4 Decision support systems 

Decision Support System (DSS) is a computer based information system which is developed to 

help the decision maker during the decision making process. DSS brings the human judgment 

and computerized information to semi-structured or non-structured situations [79]. IDSS was 
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proposed as an extension to the concept of DSS. IDSS incorporates Artificial Intelligence (AI) 

techniques in order to provide human like behavior. The AI techniques help the DSS to deal with 

complex and uncertain environment and be able to respond to unseen situations without human 

intervention. Evolutionary Fuzzy Systems (EFS) is a branch of Soft Computing (which itself is a 

branch of AI) that could be incorporated into an IDSS. EFSs come from the combination of 

evolutionary algorithms and fuzzy systems. 

Evolutionary Algorithms (EA), [29,39] inspired from the principles of natural evolution dates 

back to the principle of Darwin's theory of evolution "The survival of the fittest". This field of 

study has become an active research area in soft computing with enormous applications. 

Although EA is the simplified model of its biological counterpart, it is a powerful search and 

optimization technique. 

A Fuzzy System (FS) is a rule-based system which is based on the concept of fuzzy logic instead 

of Boolean logic. Fuzzy logic tries to resemble human reasoning method in the way that each 

logical statement can be partially true or false. This approach is an extension of the conventional 

Boolean logic where every statement could be either true or false. 

Evolutionary methods are well-known as strong search methods which can do well in complex 

search environments, and fuzzy systems can provide flexible inference mechanisms in uncertain 

and imprecise environments. A possible combination of these two methods is feasible through 

the concept of Evolutionary Fuzzy System (EFS). EFS is a fuzzy system which uses evolutionary 

methods to learn and tune different parameters of the fuzzy system [16]. 
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1.5 Proposed approach 

The proposed IDSS incorporates EFS to suggest intelligent adaption to an unsatisfactory BLDC 

motor design. The system starts when the user gives the set of specification to the system. These 

specifications are given as input to the EFS to derive a set of modifications to improve the 

performance of an unsatisfactory design. The input specifications are also used to generate an 

initial design using the conventional design strategy. The developed initial design will be tested 

against the given specifications to see if the design satisfies the specifications or not. If the 

design does not satisfy the requirements the modification proposed by the EFS are applied on it 

to generate new models. The system will repeat among the test and modify parts until a set of 

satisfactory designs are generated. At the end of the design session, the system has generated a 

number of models and the system designer can select the one which satisfies his needs as much 

as possible. 

1.6 Methodology 

Sadeghian et al. [68] have developed a knowledge based expert system to design inductors. The 

system imitated the recursive process used by expert designers to design inductors. The 

principles of that system were used here to develop an intelligent decision support system to 

design BLDC motors. 

We propose an intelligent decision support system which can provide alternative choices for the 

design parameters of the BLDC motor to the designer. The designer can make the final decision 

among the proposed models based on the importance of different criteria of the goal motor. The 

knowledge in the underlying system is represented as rules and procedural attachments which are 

understandable for an expert designer. 
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In this system, first an initial design is developed using the conventional design strategy. Then 

the quality of the developed design is compared to the requested criteria. Next, the developed 

design goes under a set of modification rules which changes the design parameters. Afterward, 

iteration starts between the test and the modification phases until the developed design can 

satisfY the requested criteria. Designs that can satisfY the requirements as much as possible are 

given to the designer as the output of the system. 

An evolutionary fuzzy system was developed to derive the modification rules used in the design 

process. The modification rules have different objectives, such as improving the efficiency, 

improving the motor constant or decreasing the weight of the motor. These rules are derived 

from a casebase of possible designs. The fuzzy component of the evolutionary fuzzy system 

gives the capability to incorporate linguistic values in the modification rules so the final derived 

rules are more comprehensible for the designer. On the other hand, the evolutionary computation 

methods are known to be a strong search algorithm. So the final derived rules are more accurate 

and understandable. 

1. 7 Thesis outline 

This thesis proposes the use of an intelligent decision support system for design of brushless DC 

motors. Section 2 provides the background knowledge necessary for the rest of the thesis. 

Section 2.1 provides a brief description about the conventional design methodology of BLDC 

motors. The methodology proposed in this thesis is based on four domains: intelligent decision 

support systems, fuzzy logic, evolutionary algorithms, and evolutionary fuzzy systems. The basic 

notions regarding the concept of intelligent decision support system is given in section 2.2. 

Fuzzy systems and evolutionary computation are two main concepts of soft computing domain 
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which are explained in section 2.3 and 2.4 respectively. Section 2.5 introduces evolutionary 

fuzzy systems which comes from the fusion of evolutionary and fuzzy domains. 

Section 3 provides the literature review of decision support systems applied to the design of 

electromagnetic devices. Intelligent methods applied in the field of electrical machine design can 

be categorized under the concepts of knowledge based expert systems and soft computing 

approaches. Section 3.1 presents the application of Knowledge Based Expert Systems in the 

design of electromagnetic devices. Section 3.2 presents the application of Soft Computing 

approaches in the design of electromagnetic devices. 

Section 4 presents the methodology proposed for the intelligent decision support system. The 

knowledge base structure of the IDSS is presented in section 4.1. The Evolutionary Fuzzy 

System which is used as the optimization method of the IDSS is described in section 4.2. 

Section 5 presents a sample application of the system on the design of a sample BLDC motor. In 

section 5.1 the modification rule derivation subsystem is explained which extracts modification 

rules from a casebase of BLDC motor designs using the methodology explained in section 4.2. 

The knowledge based system is developed in section 5.2, which includes the modification rules 

derived by the EFS, besides the design and test rules. The developed KBS is applied on a sample 

case and the final results are presented and compared to the conventional design method in 

section 5.3. 

Section 6 concludes the thesis, providing the advantages of the system compared to other 

available methods. Also, some possible directions for future work are mentioned in this section. 
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2 Background 

2.1 Design of BLDC motors 

In every design problem, the values for a number of variable parameters need to be determined. 

This value determination is subject to a number of constraints which represents the feasibility 

and the quality of the proposed model. The design process of BLDC motors consists of two 

major steps: selection of the material and computation of geometric properties. 

First, the specification of the requested design is given to the designer. These specifications are 

the constraints that the proposed model should satisfy. In the simplest case, these parameters 

include the available input voltage and the desired output power and speed. The maximum 

allowed physical properties of the motor are also given. Using this information the designer can 

initiate the design process. 

2.1.1 Selection of the material 

The proper material for the permanent magnet (PM) and steel is to be selected first. The designer 

does not always have full control over this step since manufacturing limitations (e.g., 

punchability of steel sheets) and availability of materials influence the range of materials that can 

be used. Cost is another important concern throughout the whole design process. The final 

product cost is representative of the construction and material costs. 

Motor yoke is used to attach the permanent magnet to the shaft and to keep the conductors in 

place. Soft metallic material, such as silicon iron electrical steel, is mainly used for motor yoke 

fabrication. The steel can be in a solid, laminated or pressed soft iron forms. Physical (e.g., 

lamination stacking factor) and magnetic (e.g., saturated flux density, hysteresis energy loss, 
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permeability) properties are the main criteria used for steel selection. Other operation parameters 

such as size, frequency of operation and the length of operation periods also have effect on the 

type of steel recommended for each motor [34]. For example, the pressed soft iron forms provide 

flexibility of design and dramatically reduce the amount of scrap, but the laminated steel has 

lower total core loss in a wider range of operation frequencies. 

Possible materials for the permanent magnet are considered based on their physical (e.g., 

density) and magnetic (e.g., average recoil permeability) properties. Stress effects and 

applicability under high temperature circumstances are the other important properties of PMs 

[34]. Table 1 represents heuristic knowledge that can be used for PM selection in BLDC motors. 

Table 1. Heuristic knowledge for permanent magnet selection and the recommended alternative material 

for different DC motor sizes [34]. 

Application Recommended Primary reason for Alternative Condition or reason favoring 

material selection material selection of alternative material 

Small Bonded Ferrite - Shape favors - Bonded - Higher magnetic energy 

DC motor fabrication NdFeB 
- Adequate magnetic - Sintered 

energy ferrite 
- Low cost 

Large DC SmCo - Maximum energy per NdFeB - Higher magnetic energy 

' ! motor (Samarium unit volume - Less expensive 

! I ' ""'' Cobalt) - Resistant to - Low temperature operation 

demagnetization and - Corrosion prone 

corrosion 
- Expensive material 

2.1.2 Computation of geometric properties 

The geometric parameters of the motor including rotor radius size, stator yoke width, tooth 

width, and magnet length, are calculated using conventional design method [36]. In order to 

calculate some of the geometric parameters, the magnetic field distribution inside the motor 
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needs to be modeled. The modeling can be done using the magnetic circuit or numerical field 

computation (finite element) approaches. Although the finite element method produces more 

accurate results, the magnetic circuit technique is much faster and produces results that are 

acceptable in most engineering applications. Meanwhile, the electrical parameters (e.g., number 

of turns per slot) are to be determined. The cross-sectional view of a BLDC motor is presented in 

Figure 1. 

Outside 

Figure 1. Cross-sectional view of a BLDC motor showing some of the geometrical parameters 

When all the parameters have been decided upon, the quality of the design is measured using 

performance indices such as motor constant and efficiency index. The motor constant index, Km, 

is a performance criterion which is proportional with the amount of torque produced in a motor 

and inversely proportional with the cost of the torque production, i.e., energy dissipated in coils 

and is defined as [35]: 

K =-T-
m ~J2R 

(1) 
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where T is torque; I is the total current in slots, and R is the total slot resistance. Efficiency is 

the other fundamentally important criterion defined as [83]: 

(2) 

where OJm is mechanical speed, and Pr, Pc1, Ps are ohmic motor loss, core loss, and stray loss 

respectively. A simplified version of the conventional BLDC motor design process is shown in 

Figure 2. 

Select material for 

Requested de~ permanent magnet ---+ 
Determine No. poles 

and steel 
and phases 

,, 
Calculate phase Calculate stator back Calculate permeance 

current, slot resistance, ..___ iron width, tooth width ~ coefficient, and air gap 
and phase inductance and total slot depth flux 

l 
Determine losses, 

efficiency, and motor 
constant 

Figure 2. BLDC motor design steps 

2.2 Intelligent decision support systems 

Decision making could be considered as a process of selecting between alternative choices for 

the purpose of attaining a goal or goals. Simon proposed three phases of intelligence, design, and 

choice as a model for decision making [73]. In the intelligence phase, the environment is being 

searched to identify a problem situation. When the problem is identified, the possible problem 

models are generated, developed and analyzed in the design phase. During the choice phase, 
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different solutions for the model are evaluated using the what-if, goal-seeking and sensitivity 

analysis, so that a solution to the problem can be recommended. Note that the decision making is 

an iterative process in which the decision maker may go back and forth between the different 

phases of the process. 

A Decision Support System (DSS) is a computer based information system which is designed to 

support a decision maker to solve a particular problem in an attempt to relax cognitive, temporal, 

spatial and/or economic limits on the decision maker [24,79]. The system will help the decision 

maker to be more innovative and productive, the solution to be more agile and reputable and the 

stakeholders to be more satisfied [24]. The DSS may support one or more than one of the 

previously mentioned decision phases. It might help the decision maker to collect the relevant 

data during the intelligence phase, better understand the important parts of the problem during 

the design phase, or better identifies the correlation between different proposed solutions during 

the choice phase [79]. Note that in all these situations it is the decision maker who makes the 

final and critical decisions. 

Structurally, a DSS is composed of the following components: (1) a user interface, which is 

responsible for communication between the user and the system. It is usually composed of a 

language system which accepts the command from the user and a presentation language which 

includes all the messages that the system can emit. (2) An information and knowledge part which 

is a repository of all the information and knowledge that the system has maintained for the 

problem solving purpose. (3) A problem processing system, which is the active component of the 

system. The problem processing component uses the other components to solve the problem 

during the decision making process [10,24]. 
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The concept of Intelligent Decision Support Systems (IDSS) was first proposed under the 

concept of Knowledge Based Decision Support Systems (KB-DSS) [40]. The KB-DSS was 

defined as the second generation of DSS which has the ability to acquire, maintain, and present 

knowledge in various ways. It also has the ability to reason from the acquired knowledge to 

solve the problems, and interact intelligently with the decision maker. 

The concept of KB-DSS was later extended to incorporate other artificial intelligence techniques 

into a DSS, for the purpose of developing a system which provides human like behavior. An 

IDSS can be defined as an extended DSS which has the ability to: (a) learn from experience; (b) 

respond to new information without human intervention; (c) understand the relative importance 

of different elements in a decision making environment; (d) deal with complex and uncertain 

situations; (e) apply the acquired knowledge as a recommendation to the decision maker. 

[3,18,63]. 

2.3 Fuzzy system 

A fuzzy system is a rule-based system which is based on the concept of fuzzy logic instead of 

· ' :HI 
Boolean logic. Fuzzy logic is a form of multi-valued logic which tries to resemble human 

· !'""' reasoning method in the way that each logical statement can be partially true or false. This 

approach is an extension of the conventional Boolean logic where every statement could be 

either true or false. The concept of fuzzy logic was first proposed by Lotfi A. Zadeh in his 

seminal paper about fuzzy sets [86]. 

Fuzzy set is a special kind of set that has fuzzy boundaries instead of crisp boundaries used in 

conventional sets. More precisely, the boundary which defines if a member belongs or does not 

belong to the set changes gradually. These "fuzzy" boundaries help the system to better model 
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the imprecision and uncertainty that exists m human abstract thoughts [ 44]. These fuzzy 

boundaries are defined through membership functions. 

Membership functions (or characteristic functions) are defined on the universe of discourse (or 

space of objects). Each membership function takes an element from universe of discourse as an 

input and returns a value between [0, 1] which represents the membership grade of that element. 

In this approach, zero indicates that the element does not belong to the set and one indicates that 

the element is a member of the set. In classical binary logic the membership function can only 

return values 0 and 1, but in fuzzy logic intermediate values are also taken into account to 

represent partial fulfillment of the condition. The application of a membership function on an 

element from the universe of discourse is usually referred to as fuzzification. Membership 

functions usually have smooth shapes such as triangular, trapezoidal or bell-shaped [60]. 

The concept of linguistic variables was also developed by Lotfi A. Zadeh [85] to make a more 

human friendly medium for interaction between humans and complex systems. Each linguistic 

variable is composed of a name, a set of linguistic values and a set of membership functions 

defining each linguistic value. For example, the linguistic variable Height could have linguistic 

values Short, Medium and Tall where the membership functions are represented in Figure 3. 

Membership 
degree 

Height 

Figure 3. Membership functions showing three linguistic values of Height 
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IF-THEN rules are one of the most successfully used methods for representation and integration 

of human knowledge into a computational system. The rules have the form IF (antecedent)-

THEN (consequent), where the satisfaction of the antecedent gives rise to the execution of the 

consequent. In a simple fuzzy IF-THEN rule, the antecedent and the consequent are 

propositional statements of the form "x is A", where x is a linguistic variable defined on the 

universe of discourse and A is a linguistic value. The propositions in the antecedent could be 

connected with each other using logical operators. The most common logical operators are 

{AND, OR, NOT}. The AND operator is usually modeled using the triangular norm (T -norm) 

function, and the OR operator is modeled with the T -conorm function. 

Mamdani [53] and TSK [76] are two of the most well-known types of fuzzy rule based systems. 

In the Mamdani model, the consequent of each rule is a fuzzy propositional statement, while the 

consequent of a TSK rule is a function of the input variables. Comparing these methods, 

Mamdani type system is more interpretable and provides a better mechanism for integration of 

the expert 's knowledge into the system, while TSK system is more accurate and derives a set of 

more compact rules [ 16]. 

Implementation of a Mamdani fuzzy rule based system can be broken down into two phases. 

First, the basic fuzzy system characteristics (such as reasoning method, fuzzy operators, and 

defuzzification method) need to be selected. This phase is usually done by the system designer 

based on his experience on problem characteristics [61]. Secondly, the KB (Knowledge Base) of 

the system should be generated. The KB stores the knowledge that exists about the problem in 

the form of fuzzy rules. The KB consists of a DB (Data Base) and aRB (Rule base) [16]. DB 

stores the membership function parameters associated to each linguistic variable, while RB 

defines the specific composition of the antecedent and the consequent of each fuzzy rule. 
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The KB of a fuzzy system can be derived manually by a human expert or automatically using a 

learning method. Automatic learning methods are a good candidate for the problem of deriving 

the KB of a fuzzy system, because the search space of the problem is huge and there exists little 

or no a priori knowledge about the problem. 

Knowledge Base 

lnpul_ Fuzzification +--1 Data Basel !Rule Basel Defuzzification Outp~t 
, 

interface interface ,.. 

t 
I r Inference unit ,.. 

Figure 4. Fuzzy inference system 

The fuzzy inference system is constituted of the following components: a fuzzification interface, 

an inference unit and a defuzzification interface [ 16]. The inference system uses the knowledge 

stored in the KB to make fuzzy inferences. This structure is shown in Figure 4. The fuzzification 

interface gets the crisp input from the universe of discourse and returns a fuzzy value which 

represents the membership degree of the crisp input in the fuzzy sets defined on the universe of 

discourse of that input. The fuzzy values derived by the fuzzification method are fed as an input 

into the inference unit. The inference unit deduces the fuzzy output from the fuzzy input value 

received from the fuzzification interface and the fuzzy relationships defined in the RB and DB of 

the KB. In the defuzzification interface, the fuzzy sets derived from the inference unit are 

aggregated into a crisp value which is the final output of the fuzzy system. For more information 

on the foundation of fuzzy systems, the reader is referred to [87]. 
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2.4 Evolutionary Computation 

Evolutionary Computation (EC) [29,39] refers to a set of population based optimization methods, 

in which the repeated application of genetic operators (inspired from biological evolution) on the 

candidate solutions finds the solution for the optimization problem. Although EA is the 

simplified model of its biological counterpart, it is a powerful search and optimization technique. 

There are different variations of evolutionary techniques namely genetic algorithm [39], 

evolutionary strategies [65,71], evolutionary programming [23], gene expression programming 

[22], and genetic programming [48]. 

All EC methods are based on the same principles. First a set of individuals (also called the 

population) is randomly generated. Each individual represents a potential solution for the user 

defined optimization problem. There are different ways to represent this population. The 

classical genetic algorithm uses a binary string for each member of the population. In the 

problems that the goal is to find an optimum value for the objective function, these binary strings 

encode a value which represents the objective value that the system is looking for. The way that 

each member of the population is encoded has an impact on the way that operators are applied on 

the individuals in the next steps of the algorithm. Therefore, the main factor that differentiates 

between various evolutionary algorithms is the way that each member represents the individuals 

of the population. For example, genetic algorithm uses binary strings, while genetic 

programming uses trees to encode the individuals. 

Next, a number of individuals are selected based on a criterion known as fitness function. The 

fitness function is usually a scalar function which returns the quality of each individual (solution) 

in solving the goal optimization problem of the system. More precisely, the fitness function plays 

the role of environment in distinguishing between good and bad individuals. Individuals with 
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higher fitness values are selected from the previous generation and put into an intermediate 

parent population. This selection can either be stochastic, i.e. one individual can be selected more 

than one time based on a probability function, or deterministic. 

The selected set of individuals is then used as parents for the production phase to produce the 

next generation of individuals. Here, the individuals are combined together in an attempt to 

integrate the advantageous part of each individual into the offspring (this operation is known as 

crossover). During the crossover process in genetic algorithm, two individuals are randomly 

selected from the previous generation, and a position is selected randomly inside the first string. 

Next, all the binary digits following the selected position are swapped between the two strings. 

The two entirely new generated individuals are moved to the next step. It also worth mentioning, 

that the crossover operation takes place with a probability known as the crossover probability. 

This probability determines the probability that a member of the intermediate parent population 

undergoes the crossover operation. 

The new individuals might also undergo some random alterations (known as mutation). In 

genetic algorithm, an individual is randomly selected with a probability known as mutation 

probability, and a bit is randomly selected inside the individual. The randomly selected bit gets 

flipped from 1 to 0 or vice versa to generate a new offspring. Mutation was mainly developed for 

the problem of local minima. Mutation change individuals randomly so the population would not 

converge to a local minimum. 

At the end, the new generated individuals are copied into the next generation. The next 

generation goes under the same process to produce succeeding generations. This process 
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continues until a maximum number of generations or an acceptable level of fitness for the best 

individual is reached [7]. This process is shown in Figure 5. 

Begin EA 
t := 0 
Initialize Population(t) 
While termination criteria not met 

Evaluate Population(t) 
P1(t) :=Select [P(t)] 
P2(t) :=Crossover [P 1(t)] 
P3(t) :=Mutate [P2(t)] 
P(t+ 1) :=Copy (P3(t)] 
t := t+l 

End while 
EndEA 

Figure 5. Structure of an evolutionary algorithm 

EC is based on the fact that in each generation a number of individuals which have the above 

average fitness (i.e. those solutions which got better results on solving the defined optimization 

problem) are selected. These individuals are also combined to produce the next generation. In the 

next generation, individuals which inherited the goodness of their parents have higher chance of 

surviving to the next generations. Therefore, the evolutionary computation method has the ability 

to gather information about the initially unknown search space and guide the further generations 

to focus on promising sections of the search space. 

To design an evolutionary computation method two parts need to be specified by the designer. 

First the genetic representation should be decided. The genetic representation defines the way 

that potential solutions of the problem are encoded. The representation should be able to encode 

possible solutions to the problem and at the same time be evolvable. Differences in the genetic 

representations are usually the main difference between evolutionary techniques. Linear binary 
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representation (used in GA) and tree-like representation (used m GP) are among the most 

common representations used. 

Fitness function is the next main component of each evolutionary system. The fitness function is 

usually an expression which defines the quality of each individual in the population. In 

evolutionary computation the fitness function is used to rank the individuals against other 

individuals of the population. 

2.5 Evolutionary fuzzy system 

Determination of the system parameters is a crucial component of any fuzzy system design 

process. The basic structural parameters of the fuzzy system which deal with the inference 

mechanism are usually determined by an expert, e.g., reasoning method and defuzzification 

mechanism. An automatic mechanism is more suitable for derivation of operational parameters, 

e.g., Membership function values, for the following reasons: (a) System experts generally have 

less accurate assumption for the proper values of the operational parameters, and even if they 

have, the complexity of the problem increases exponentially with the number of attributes and 

fuzzy sets of each attribute. (b) Derivation of the operational parameters can easily be encoded as 

a search problem, where different operational parameters of the fuzzy system constitute the 

search space [ 61]. 

Evolutionary fuzzy methods are categorized under the concept of soft computing methods. Soft 

computing methods were designed to work in the environments with partial and uncertain 

information. These methods, in contrast to hard computing methods, are more flexible and need 

less computation power [16]. Neuro Fuzzy Systems, Genetic Neural Networks, and Genetic 

Bayesian Networks are some common examples of the hybrid soft computing methods. 
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Evolutionary methods are well-known as strong search methods which can do well in complex 

search environments, and fuzzy systems can provide flexible inference mechanisms in uncertain 

and imprecise environments. A possible combination of these two methods is possible through 

the concept of Evolutionary Fuzzy System (EFS). EFS is a fuzzy system which uses evolutionary 

methods to learn and tune different parameters of the fuzzy system. In the design of conventional 

fuzzy systems, the expert designer should design different components of the fuzzy system, but 

in the EFSs, evolutionary methods are used as search mechanism to design a part or the entire 

KB of the fuzzy system [16]. 

In order to use evolutionary methods as a search mechanism to find the KB of a fuzzy system, 

different components of the KB should be represented in a genotype space so that the genetic 

operators can be applied to them. As mentioned before, the KB of a fuzzy system is composed of 

a Rule Base (RB) and a Data Base (DB). The designer should decide which components of the 

KB are subject to the optimization process by the evolutionary method. Among different learning 

methods that have been proposed for KB derivation, the simplest ones use evolutionary 

computation to derive the RB from a predefined DB or vice versa. These methods are 

computationally efficient, but they ignore the mutual relationship that exists between 

components of the KB [ 17]. On the other hand, methods which derive the RB and the DB at the 

same time are computationally expensive, as these methods need to deal with a much bigger 

search space. Besides, a fitness function which defines the objective of the evolutionary process 

should be determined. This objective could be a KB which better solves the given problem when 

embedded into a fuzzy inference system. 
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3 Decision Support Systems for Design - An Overview 

Design of an artifact can be seen as a process of specifying the structural specifications of the 

artifact. This specification should satisfy a number of design constraints and functional 

requirements. This process can be divided into the following steps [75]: 

1. Problem identification: the problem and the available resources are defined. 

2. Specification generation: the performance specifications of the goal artifact are identified. 

3. Concept generation: some possible alternative solutions for the artifact are generated. 

4. Analysis: the performance specifications of the generated alternatives are calculated. 

5. Evaluation: the calculated performance are compared with the given performance 

specifications. If no solution satisfies the performance specifications go back to step 3. 

The loop between steps 3 and 5 continues until a satisfactory design is generated. 

Computers have initially been used as analysis tools in the design process. As computers have 

huge computational power, they were assumed to be more suited to do the burden of calculations 

in the analysis step. In this viewpoint, the designer does the actual design and uses the computer 

as a fast calculator to perform a diagnosis on the proposed design. Although this view provides a 

good balance between human and computer usage, it ignores the searching and pattern matching 

capabilities of the computers. Application of Knowledge Based Expert Systems (KBES) in the 

design process was one of the first attempts to use computers as an intelligent tool to help 

humans. 
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3.1 Application of knowledge based expert systems in the design of 

electromagnetic devices 

Expert System (ES) is a branch of Artificial Intelligence (AI). ESs are defined as intelligent 

computer programs that use knowledge and inference procedures to solve problems which need 

significant human expertise for their solutions [21]. An expert system is composed of a 

knowledge base and an inference engine. The knowledge base stores the expert's knowledge in 

the problem domain which can be represented in a number of ways (such as rules and objects). 

The inference engine uses the knowledge stored in the knowledge base to make conclusions and 

give them as responses to the user's queries for expertise [27]. In general, a knowledge based 

system is suitable for applications which are too complex to be solved with mathematical 

formulations or too difficult to be solved using optimization methods [57]. 

KBESs have been applied for many engineering design problems. CONGEN [75] was one of the 

first applications of a KBES as a framework for conceptual design of buildings. The Knowledge 

\ 

base is divided into several layers, separating the domain knowledge from domain independent 

knowledge. The evaluator, analyzer, constraint manager, synthesizer and the geometric modeling 

constitutes the knowledge independent knowledge sources, while the objects, plans and 

constraints of a specific problem constitute the domain knowledge sources. Design of pneumatic 

systems [72], design of air-cylinders [12] and design of small computers [11] are some other 

applications of KBESs in engineering design tasks. Besides, KBESs have also been applied to 

the design of electrical machines. 

Garrett et al. [26] were among the first to propose the application of knowledge based systems in 

the design of electrical machines. They proposed an object-oriented KBS (called Encore) for the 
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design of transformers and inductors. Encore automated all the steps for the design of an 

electrical machine. The system used "generate and test strategy" in which a rough design was 

generated first and then the heuristic knowledge was used to improve the initial design. All the 

mechanisms for generation, checking and pruning of the designs were implemented as rules. 

Objects in the knowledge base stored the properties of different components of the electrical 

machines used throughout the design process. Groschwitz et al. [30] proposed the application of 

an expert system in the design of transformers. The authors implemented a system which chose 

the optimum magnetic components from a given database. Criteria such as power rating, de 

output voltage, temperature rating, importance of a low-profile core and isolation class were used 

during the design process. 

Lowther [52] developed a hierarchical v1ew as the structure of the knowledge base. He 

represented the structure of the electrical machine in a set of views, where the higher layers give 

more abstract views and the lower ones give more details about the design. He proposed Case 

Based Reasoning (CBR) [ 46] as the starting point for each design. CBR systems are well suited 

for problems that the underlying principles of the problem cannot be easily decomposed into 

linguistic rules or the involved principles are not well understood [ 49]. In this approach, the 

specifications of a new design are compared with a database of previously stored designs. The 

design which best matches the current design is used as rough design for the newly proposed 

design. V o et al. [81] also studied the applications of a CBR approach for the design of 

electromagnetic devices. They proposed a system which had the ability to make structural 

changes to the model if the given specifications are "over-constrained". 

Kwong et al. [49] described a case based reasoning approach for concurrent product and process 

design of low power transformers. Under the current methodology, the design engineer first 
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designs the transformer and then the process engineer makes the process for the design. In the 

proposed approach, a CBR system is used to estimate the activities during the process design of 

low power transformers, e.g. estimation of assembly time and selection of winding machine, 

based on the previous cases stored in the case base of the CBR system. Therefore, the process 

engineer can work concurrently with the design engineer. The case base of the system is 

composed of cases stored using indexes, such as primary and secondary voltage, which are used 

in a similarity measure for later retrieval of the cases. The retrieved cases are adapted by 

changing the number of primary windings, and then the best one is selected based on the distance 

to the given solution. 

Saldanha et al. [69] studied the application of an Algebraic Constraint System (ACS) as part of 

knowledge based system approach for design of electromagnetic devices. The ACS was 

developed to model and manipulate analytical or mathematical equations that are involved in the 

design process. The system has the capability to parse an equation into executable code, apply an 

equation, and solve the equation for each variable in an equation. Therefore, the designer can 

concentrate on generating an accurate model for the electromagnetic device as the code to solve 

the equations for each variable is generated automatically. The system works by building a 

network where each node represents an equation and the links between the nodes represents the 

variables. During the design process, as the user enters values for variables, the ACS checks the 

consistency of the network with the newly entered values. In the case of inconsistency the user is 

notified to modify the value of some design variables. 

Rong et al. [ 67] described a CBR approach for the design of electromagnetic devices. The case-

based engineering design system (CBEDS) that they proposed stores the structural knowledge of 

the devices in a semantic network. Besides, the mathematical knowledge is organized in an 
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equation networks using the concept of algebraic constraint systems. The system uses these 

knowledge types to relate a new set of specifications to a stored case in the case base, and do the 

modifications on the retrieved case. 

Sassine et al. [70] investigated a knowledge-based system based on the concept of blackboard 

architecture to design electromagnetic devices. The proposed system uses the blackboard as a 

mean for coordination and communication between different design tools. Authors classified the 

knowledge needed to complete a design into three categories, namely, knowledge storage, design 

knowledge architecture, and control knowledge. Knowledge storage defines the facts describing 

the current designs and how these facts can represent the design space. Design knowledge 

architecture classifies the design knowledge as device and operational knowledge, where the 

device knowledge stores the physical properties of a device and the operational knowledge 

maintains the relational, behavioral and procedural knowledge of the design tools. Finally, the 

control knowledge identifies the sequence of actions needed to take to focus the search during 

design process. 

Lowther [50] investigated the effects of different design parameter changes on the performance 

of final electromagnetic system. He studied four paradigms for this purpose namely, semantic 

networks, response surfaces, interval mathematics and sensitivity analysis. Semantic network can 

provide qualitative relationships between the design parameters and the performance criteria, 

while the response surface can provide the qualitative and quantitative measures between the 

input and the output parameters. Interval mathematics and sensitivity analysis are two methods to 

measure the effects of an error during the manufacturing process on the performance of the final 

device. These methods can provide feedbacks on the feasibility of the proposed design and can 

reduce the cost of faulty designs in this way. 
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3.2 Application of soft computing approaches in the design of 

electromagnetic devices 

Knowledge based approaches need to have access to an expert in the domain of interest for the 

process of knowledge acquisition. The expert should have experience and expertise in the 

application domain and be available for the knowledge acquisition sessions with the knowledge 

engineer. The knowledge engineer interviews the domain expert to extract the heuristic 

knowledge of the expert, formalize the extracted knowledge, and represents this knowledge in 

the knowledge base of the expert system. There exist some problems in the knowledge 

acquisition problem a number of which includes: a) unavailability of human expert b) inaccuracy 

and inconsistency in the knowledge extracted from expert c) experts having lots of tacit 

knowledge which is hard to describe in a formal format d) the extracted knowledge is constant 

and cannot adapt itself to the changing environment. Due to the problems that exist in the 

elicitation of knowledge from human experts, knowledge acquisition from human experts was 

considered as a major problem in the development of knowledge based systems. These problems 

are usually referred to as knowledge acquisition bottlenecks [41]. 

To overcome the problems of knowledge elicitation form humans, some researchers proposed 

the concept of automatic knowledge acquisition [31]. Automated knowledge acquisition is based 

on machine learning methods. In this approach, an inductive learning algorithm is used to 

generate knowledge from the data. In other words, the system tries to convert the implicit 

knowledge that exists in the set of examples of data into an explicit intentional description. 

Soft Computing (SC) methods are a group of artificial intelligence methods that have been 

applied to the design problem. Compared to conventional symbolic computing methods, SC 
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methods provide more synthesis capabilities, e.g. evolutionary methods can deduce conclusions 

that are not necessarily stored in the knowledge base, or they can deal with the less precise 

inputs, e.g. fuzzy systems can guide a less precise input to a more optimal solution [78]. 

Evolutionary computation [9], fuzzy system [20], and particle swarm optimization method [ 4] 

are some of the most well-known soft computing methods that have been applied to the problem 

of designing electrical machines. 

Chiampi eta 1. [14] presented a fuzzy logic approach for the problem of multiobjective 

optimization. The design of electromagnetic devices usually categorizes under the concept of 

multiobjective optimization where several conflicting goals, e.g. increasing force and decreasing 

the joule loss, are competing with each other. Traditional approach for dealing with 

multiobjective problems is based on definition of a global performance function which tries to 

merge all the objectives in a single scalar function. Converting all the objectives into one scale 

and finding the appropriate weights for different objectives are some of the problems of this 

approach. The authors have proposed the use of fuzzy logic for this problem, where a 

membership function was defined for each objective function and let a scalar optimization 

algorithm to find the optimum results. The system was applied to optimize a DC electromagnet 

and Superconducting Magnetic Energy Storage (SMES) and the results were promising. Park et 

al. [59] also applied the concept of fuzzy decision making to the optimization of an induction 

motor design problem. 

Arkadan et al. [5] presented a fuzzy logic environment to predict the performance characteristics 

of different electromagnetic devices for variant design parameters. The system had the capability 

to optimize the performance of permanent magnet generators by reducing the weight, 

minimizing total losses, and lowering total harmonic distortions. Francois et al. [25] introduced a 
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fuzzy expert system for designing electrical appearances. The proposed system permits 

imprecision and uncertainty to be included in the rules intended for the preliminary design 

stages. 

Lowther [51] studied the application of Artificial Neural Networks (ANN) as an assistant for the 

numerical processes used in the electromagnetic device design. He investigated the application 

of ANN for the mesh generation process, and application of Self Organizing Feature Maps to 

predict the field structure. 

Renyuan et al. [66] introduced a new intelligent simulated annealing algorithm for the optimal 

design of electromagnetic devices. The proposed algorithm combines fuzzy logic with simulated 

annealing algorithm in an attempt to identify infeasible solutions before objective function 

computation. In this approach, a number of initial simulated annealing points are randomly 

chosen to infer fuzzy relationship between the point's variable values and the feasibility of the 

point. This relationship is later applied to remove the need for objective function computation for 

the points that the fuzzy relationship system detects them as infeasible. The system was applied 

to the design of a BLDC motor and it reduced the computation time by 60 percent. 

, !!~Ill I I 

Guimaraes et al. [33] mentioned that in most cases the membership functions and the T-norm 

aggregation functions used as a part of fuzzy systems are not differentiable. This fact prevents 

the use of deterministic optimization methods for solving these problems. Authors proposed the 

use of differentiable membership functions and aggregation functions as a part of an 

optimization system that utilizes both deterministic and stochastic methods in a hybrid approach. 

The presented results showed that the hybrid methodology needs less computational power 

compared to pure stochastic methods. 
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Bianchi et al. [9] presented an approach for the design of brushless DC motors using genetic 

algorithm. Minimum cost was proposed as the objective function of the system, while other 

constraints on geometrical, electrical and thermal specifications of the design were defined as 

penalty functions. The penalty functions were introduced to ensure that unacceptable designs get 

eliminated after some generations. Authors showed that their system got better results compared 

to the climbing hill method. Also they showed that the quality of the climbing hill method is 

greatly affected by the quality of the initial design, while the goodness of the starting point does 

not affect the final result of the genetic algorithm method. 

Rashid et al. [ 64] studied different methods to build a neurofuzzy system for designing 

electromagnetic devices when the number of variable parameters is high. Curse of 

dimensionality or model complexity is one of the major problems when dealing with models 

with a great number of parameters. Clustering the search space, reducing the number of input 

parameters by approximation, and partitioning the search space into even subsets are some of the 

approaches proposed to deal with the curse of dimensionality problem. These approaches were 

applied on a seven variable problem for designing a loud speaker magnet assembly unit, and the 

presented results showed the effectiveness of the presented approaches. 

Guimaraes et al. [32] proposed an object-oriented structure which stores specifications of 

different computational intelligence techniques for optimization of electromagnetic devices. The 

goal of each computational intelligence method was to predict the output of the objective 

function during the design of the device, because the computational cost is usually high when a 

numerical method is used. Specifications of two artificial neural networks (multilayer 

perceptron, and radial basis function) and two neurofuzzy networks (Sugeno model and 
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Tsukamoto model) were stored in the proposed structure. The system had promising results when 

applied on the design of a superconducting magnetic energy storage problem. 

Conventional knowledge based approaches are knowledge intensive and logically sound. On the 

other hand, evolutionary computation approaches have more similarities with the human 

invention process. Human invention process is not a deterministic process. In other words, a new 

design is noteworthy if it cannot be logically deduced from what was previously known. This 

process also exists in the evolutionary methods as a solution is not guided by mathematical logic 

[ 4 7]. One of the strong points of evolutionary computation methods is the existence of a 

population of contradictory and inconsistent solutions which does not exist in logically sound 

systems. This population provides the diversity of solutions which is one of the preconditions for 

the success of the evolutionary process. 

Hui et al. [ 42] developed an Improved Genetic Algorithm (IGA) for the single and double 

objective design problems of power transformers. Authors have proposed a new encoding 

scheme, a stochastic crossover operator, an adaptive mutation operator and a new scaled fitness 

function compared to the conventional genetic algorithm. The system was applied to design a 

S9-l 000/10 kV power transformer, considering the total material cost and operating cost as the 

objectives of the design process. Final results showed the improvement of the system over the 

conventional design method. 

Preis et al. [62] compared three high-order deterministic optimization techniques (steepest-

descent, conjugate gradient, quasi-Newton) with one stochastic optimization technique ( 11 +A,) 

in designing electromagnetic devices and concluded that the stochastic method had competitive 
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speed of convergence, and superior generality and robustness compared to the deterministic 

methods. 

Upadhyay et al. [80] developed an intelligent CAD system based on the concept of genetic 

algorithm to design brushless DC motors. The proposed system takes efficiency as the objective 

function while temperature-rise and weight are considered as constraint conditions. In this 

approach, airgap, airgap flux density, slot electric loading, magnet-fraction and the slot-fraction 

were considered as design variables. Authors showed that the intelligent system improved 

efficiency and phase-inductance compared to the conventional design method. 

Mirzaeian et al. [56] proposed a new optimization mechanism based on a genetic-fuzzy system. 

The system was applied on the design of a Switched Reluctance Motor (SRM) with two 

objectives: high efficiency and low torque ripple. The proposed system uses a probability 

function to select the chromosomes with better performances for the next generation. The 

probability function combines objective functions with the fuzzy weights, where each fuzzy 

weight shows the goodness of a chromosome for a specific objective function. Authors applied 

the proposed system on a test case and showed that the optimization system improved the 

performance while decreasing the torque ripple, weight and size at the same time. Choi et al. [ 15] 

also applied a SC method to determine the optimal shape of a switched reluctance motor. Their 

method was based on fuzzy logic, where three membership functions for the torque profile of the 

SRM at variant rotor angles were defined. The final goal of the system is that the motor keeps 

the torque performance at higher speeds. Simulation results showed that although the optimal 

derived motor could not outperform the conventional design motor at lower speeds, but the 

optimal motor got better results at higher speeds and on average compared to the conventional 

motor. 
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We mentioned some of the advantages of the SC approaches over the knowledge based 

approaches in the design problems. On the other hand, conventional knowledge based 

approaches have some advantages over SC methods, e.g. genetic algorithm (GA), some of which 

are as follows [2]: 

• Integration of expert's knowledge: GA is a stochastic and blind search method that does not 

accept any direction during the search process. However, there exists a large amount of a 

prior directional heuristic knowledge that can be integrated into the system. Accommodation 

of this knowledge in the KBES can significantly reduce the computational cost. 

• Search space: Depending on the initial assumptions, the motor design process can include 

numerous input and output parameters increasing the size of the GA search space, hence 

increasing the computational cost and time, as well as increasing the possibility of getting 

trapped in local minima. Whereas a KBES uses a systematic approach and is directional 

where the design task is achieved by iterating among the sub-groups in a partitioned rule-

based. 

• Transparency: The computation method of the KBES systems is more understandable to the 

user; this will improve the reliability of the final results. Moreover, the transparency of the 

underlying system will make it easier to modify the system. 

Having said this, it seems that there should be a tradeoff which covers the advantages of both the 

soft computing and the conventional knowledge based approaches. The conventional knowledge 

based expert system is not a good solution because of the knowledge acquisition bottleneck 

problem and the problems with adaption of the system with the changing requirements. On the 

other hand, a full automatic system is not a good solution because of the problems such as 

transparency and integration of expert's knowledge. We think that a semi-automatic system 
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which uses both the searching potentials of the computers and the knowledge of the expert in 

problem domain is the best way to use the advantages of both systems. In this approach, the 

automatic data mining system is used to extract knowledge from the set of examples and then 

propose the derived knowledge to the expert. The expert then combines this knowledge with his 

own expertise and makes the final decision. 
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4 Methodology 

4.1 IDSS structure 

The proposed intelligent decision support system (IDSS) includes an evolutionary fuzzy system 

(EFS) and a knowledge based expert system (KBES). The overall structure of the system and a 

possible interaction session of the user and the system are shown in figure 6. The design process 

starts when the user gives the set of requirements as input to the IDSS. Then EFS derives a set of 

modification rules which could be later used to improve the performance of an unsatisfactory 

design. The set of derived rules are presented to the user. The user might accept, reject, or 

modify the rules and embed the approved rules into the knowledge base of the KBES. Next, the 

iterative process starts in the KBES and at the end s set of developed designs are given as outputs 

of the system to the user. 

/\.!. 

I 
'\ ""-. 

I \ 
""' Evolutionary Fuzzy Knowledge Based 

System Expert System 

Intelligent Decision Support 
System 

Figure 6. User interaction with the IDSS 
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4.2 KBS architecture 

The iterative process in the KBES of the IDSS starts when an initial design is generated using the 

conventional design method. The performance of the developed design is compared to the given 

set of requirements in the test section. If the developed design satisfies the requirements the 

design process is stopped. Otherwise, the process goes to the modify section where a number of 

modifications are suggested to improve the performance of the unsatisfactory design. The 

iteration between the test and modify sections continue until no more modifications could be 

suggested or the proposed improvements does not improve the performance of a design. This 

process is shown in figure 7. In this figure, the dashed boxes represent different types of 

knowledge which exist during the design process. 
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Figure 7. Design steps 
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Different types of knowledge used during the design process are stored in the knowledge base of 

the KBES using three paradigms of frames, rules, and procedural attachments. We will show that 

the iterative motor design process can be well implemented in a KBS framework. The overall 
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structure of our knowledge base is illustrated in Figure 8. Each part has a specific responsibility 

which will be explained next. 

Calculate-Mechanical-Speed 
Calculate-Electrical-Speed 
Calculate-Electrical-Frequency 
Change-Steel-Increase-Max-Flux-density 
Increase-Rotor-Outside-Radius 

Figure 8. Knowledge Base (KB) structure of the system 

• Frames: have a hierarchical structure and together with their slots and facets are used to 

represent the BLDC motors and to store the specifications of different elements involved in 

the motor design process and to define relationships. As can be seen in Figure 8, the motor 

parts along with the materials used for motor construction are represented as frames. The 

materials involved in the process have a hierarchical structure (e.g. Alnico is an instance of 

the PM) that can be well implemented with the inheritance present in frame structure. 

Requested design specifications are held in the requested design frame. This frame contains 

the input parameters and the requested performance of the final designs. 

• Rules: have an "IF condition THEN action" structure and can be used to represent the design 

algorithm. Rules provide a mechanism to access, to control and to change data structures (i.e. 
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frames, their attributes and relations) toward the goal of finding a set of satisfactory designs. 

The conventional design algorithm explained in section 2.1 is also implemented by means of 

rule. This is done by partitioning the rule base into three main sets, i.e., initial design, test and 

modifications. The BLDC design process starts with the activation of the initial design rule 

set and then proceeds with successive iterations between the test and modification rule sets 

until no more modifications can be made. The functionality of these rule sets are as follows: 

o Initial design rule set: uses the conventional motor design methodology to reach an 

initial design of the motor [36]. The set of equations used for motor design are given 

in Appendix A. A sample design rule is shown in Table 2. When the conditions are 

met, i.e., the required design parameters are known, the rule is executed by calling a 

procedural attachment which calculates the value of back-iron-width of the motor. 

We note that the required design parameters are collected from the "Motor" and the 

"Requested-Design" frames. 

o Test rule set: compares the specifications of the developed designs with that of the 

requested design to indicate if they meet the desired performance that are given in the 

requested design frame. If the design criteria are met then no action is to be taken and 

the exiting design is put in a satisfactory designed queue. Otherwise, appropriate flags 

are set to indicate which specification is under-performed. 

o Modify rule set: proposes modifications to improve the performance of flagged 

designs based on the available expertise, i.e., modification rules. These rules are 

derived using the evolutionary fuzzy system. The modified designs are then 

considered for evaluation by test rule set. 
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• Procedural attachments: represent the analytical expressions that the system uses for the 

design process. Frames and rules lack the ability to perform numerical calculations, so 

procedural attachments compensate for the lack of computational ability inherent to frames 

and rules. Procedures are attached to their related frames and are activated by rules. 

Table 2. A sample design rule 

DESIGN RULE TO CALCULATE BACK IRON WIDTH 

(defrule Design::27-Calculate-Back-Iron-Width 
(object 
(is-a REQUESTED-DESIGN) 
(maximum-steel-flux-density ?steel-flux) 
(steel-lamination-stacking-factor ?lam-factor) 
(motor-axial-length ?axial-len)) 

?motor<- (object 

=> 

(is-a MOTOR) 
(Air-Gap-Flux ?air-flux)) 

(send ?motor Design::Calculate- Back-Iron-Width ?axial­
len ?air-flux ?steel-flux ?lam-factor)) 

( defmessage-handler MOTOR Calculate- Back-Iron-Width 
(?axial-len ?air-flux ?steel-flux ?lam-factor) 

(bind ?self:back-iron-width (/ ?air-flux (* 2.0 ?axial-len 
?steel-flux ?lam-factor)))) 

4.3 Evolutionary fuzzy system 

4.3.1 Fuzzy IF-THEN rules 

DESCRIPTION 

Get the values of 

Maximum-s feel-flux-density B max 

Steel-lamination-s tacking-factor K st 

Motor axial length L 

From the Requested Design, and the value of 

Air-gap-flux¢ g 

From the motor that the design request has been 
initiated. 
Then 
Send a message with all the collected values to the 
"Calculate-Back-Iron-Width " procedure. 
Procedural attachment to calculate the back iron 
width: 
Calculate the back iron width using the given values 

¢ 
and the following equation [6]: Wbi = g 

2BmaxkstL 

Rules are one of the common means to represent the mapping function of a predictive system. 

Rules have the form IF (antecedent)-THEN (consequent). The antecedent of a rule includes a 

logical expression among the predicting attributes, and the consequent assigns one of the 

possible values to the goal attribute. If the predicting attribute values of a record in the dataset 

satisfy the antecedent of a rule, then the class in the consequent is assigned to that example. 
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There has always been a tradeoff between accuracy and interoperability of a predictive system. 

Fuzzy logic is a good candidate to be integrated into a rule based system, as the resulting 

system's rules are more comprehensible for humans. Moreover, the system can better manage the 

uncertainty of the underlying dataset. 

To better understand the concept of fuzzy rule based systems, consider a dataset S (shown in 

Figure9) with M records, where each record Recordi has m predicting attributes and one goal 

attribute G. 

Record1 X11 X12 

Record2 X21 X22 

Recordi Xi I Xi2 

RecordM XMI XM2 

Predicting 
Attributes 

XIj 

X2j 

Xij 

XMj 

Figure 9. Dataset S 

Goal 
P m Attribute 

XIm XtG 

X 2m X2G 

Xim XiG 

XMm XMG 

Let us assume that each predicting attribute P1 has been divided into K fuzzy sets {F;1, F12, . . . , 

F;K}, and each fuzzy set is defined through the 11 Jk membership function. More precisely, 

11 Jk ( xij) represents the degree which Recordi belongs to fuzzy set F;k· In this notation, a fuzzy 

rule has the form: 
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IF ((PI is FJp) and (P1 is Fjp) and ... and (Pm is Fmp) 

THEN (xG belongs to CJ 

s = 1, 2, ... , n; p = 1, 2, ... , K 

The fuzzy classification rule based system is composed of a Knowledge Base (KB) and a fuzzy 

inference engine [16]. The Rule Base (RB) and the Data Base (DB) constitute the KB. As their 

name suggest, the RB contains all the linguistic rules and the DB keeps the definition of the 

linguistic variables and the membership functions corresponding to each linguistic value in the 

fuzzy system. 

The fuzzy reasoning method is the mechanism which uses the information presented in the KB to 

assign the class label to an unclassified input record. In our system, we used the fuzzy reasoning 

method proposed in [43] to calculate the output of the fuzzy rule based system. Assume that the 

input record Xi= {xii, Xi2,· .. , Xim} and a Rule BaseR ={R1, R2, ... ,R0 } are given. The input vector's 

goal attribute XiG is classified as the output of the single winning fuzzy rule from the rule base 

which has the highest compatibility degree with the input record. This process is shown in Figure 

10. In this figure, the record belongs to the class which is indicated in the consequent of the 

winning rule. 
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R1 ={IF ((P1 is F1p) and ... 
and (Pm is Fmp)) 

THEN (xc belongs to CJ 

R2 = {IF ((P1 is F1q) and ... 
and (Pm is Fmq)) 

THEN (xc belongs to C,.) 

p,q,r,t = I,2, ... ,K; a,b = I,2, ... ,m; s = I,2, ... ,n 

Figure 10. The fuzzy reasoning method 

R0 ={IF ((PJ is FJr) and ... 
and (Pm is Fmr)) 

THEN (xc belongs to C) 

We use an evolutionary system to derive operational parameters of the fuzzy system. More 

precisely, an evolutionary system is used to induce the antecedent and consequent of each fuzzy 

rule. In order to derive fuzzy rules, each fuzzy rule should be encoded as an individual of the 

evolutionary optimization method. 

4.3.2 Rule presentation 

We followed the Pittsburgh approach for rule representation [74]. In this approach the function 

set contains the fuzzy logic operators {AND, NOT}. We used the standard fuzzy operators for 
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{AND,NOT}[84]. More precisely, if JlA(x) represents the membership degree of element x in 

fuzzy set A, then the fuzzy operators are defined as follows: 

Jl A (X) AND Jl B (X) = min(u A (X), Jl B (X)) (3) 

(4) 

In our system the antecedent of the fuzzy rules are in form of conjunction clauses. In order to 

show fuzzy rules as individuals, we propose some restrictions on the structure of the individuals. 

These restrictions are: (a) The root of each tree is an AND node. Each AND node can have one or 

more than one Terminal node as its child(ren). Although the generality of the rules could be 

increased by integration of other connectives in the rule antecedent, it was shown in [82] that the 

rules with only conjunctive connectives are generic enough to cover other connectives.(b) The 

second level of the tree includes Terminal nodes. Terminals of the system are defined using the 

following rules: 

<terminal>::= NOT <literal> 

<terminal>::= <literal> 

<literal>::= <op>=<linguistic value> 

<linguistic value>::= {Low, Med, High} 

<op>::= {Att1 ... AttN} 

(5) 

(6) 

(7) 

(8) 

(9) 

(c) No more than one child of an AND node can refer to a terminal with the same attribute as the 

first operand and the = as the operator. For example, two terminals of Temp=Low and 

Temp=High cannot be the children of the same AND node [55]. The other node which should be 

included in the structure of an individual is the goal node which represents the consequent of 

each rule. 
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A sample rule of the system is shown in Figure 11. This rule is equal to: IF ((Att3=Low) AND 

(Att2=Med) AND (Att4=High) THEN (Goal=Class)) 

Figure 11. A sample rule of the system 

4.3.3 Fitness function 

In order to evaluate the goodness of each individual for solving the objective function, a fitness 

function should be defined. Each individual is given as an input to the fitness function and the 

fitness function returns a scalar value which shows the quality of that individual. Individuals 

with higher fitness value are better suited for solving the problem. 

In our system, each individual represents a modification rule, so the fitness function should 

evaluate the quality of different modification rules. Roughly speaking, a modification rule is 

good if it can improve the performance of a developed design when the rule is applied to the 

case. There are two criteria which could be considered when evaluating the quality of a 

modification rule. 1) The amount of improvement. 2) The frequency of improvement. 

To make the case more clear, consider the following example. Assume two modification rules 

which were designed to improve the efficiency of a motor. To compare the quality of these two 

rules, we apply each one on all the cases of an available casebase of previous designs. Then we 

measure the amount that each one of the rules has improved or degraded the quality of each case 

in the case base of previous designs. These values could be added up to constitute a scalar value 
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which represents the quality of each modification rule in improving the efficiency of a BLDC 

motor. So the fitness function can be defined as: 

m 

fitness(r;) = LA(r1 ,ci) x F(r1 ,cJ 
i=l 

(10) 

Where m is the number of cases in the casebase, r1 represents a modification rule of the system 

which is going to be evaluated, ci is a case in the casebase, F is a scalar function which returns 

the results of application of the rule (r;) on the case ( ci), i.e., the difference in performance of the 

motor after the modification compared to the performance before the modification, and A returns 

the degree that the antecedent of ci is satisfied by r1. 

It also worth to mention that, when a modification rule produces a result which is inconsistent, 

e.g. the slot current density is higher than the allowed value or the rotor inside radius is smaller 

than a minimum value, then a predefined constant value is removed from the fitness value of the 

modification rule as a penalty. The major steps of the system are shown in Figure 12. In this 

figure, the main loop of the system stops when a maximum number of generations is reached. 
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4.3.4 Selection 

Generate random initial Fuzzy Rule population 

Select the best individual of the population 

Apply 2-player tournament selection on members of the 
population 

Find the best individual ofthe population 

Perform mutation on individuals 

Apply crossover on individuals 

Randomly select a member of the population, if the 
objective function of the individual is less than that of the 

best individual before variations, replace the randomly 
selected individual with the best individual before 

variations 

Figure 12. Steps of the evolutionary rule derivation system 

We used 2-player tournament selection [7] in which the higher objective function value wins and 

is chosen for reproduction. The tournaments are played as follows: For each member of the 

population, one tournament is held. The second player for each tournament is randomly chosen 

from the population (sampled independently with replacement, i.e. being chosen as a second 

player in one tournament does not alter the probability of being chosen as a second player in 
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another tournament, and an individual may be chosen to play with itself). The winners of the 

tournaments are collected into a "parent pool" to which the genetic operators are applied. 

4.3.5 Mutation 

Each individual in the population goes under mutation with a probability known as mutation 

probability. In this process, a Terminal node is randomly selected in the individual and its value 

is swapped with a randomly selected terminal value. The process of mutation is shown in Figure 

13. 

Randomly selected Terminal 

4.3.6 Crossover 

Mutation 

• 

Figure 13. Mutation 

New randomly generated 
value 

We used a modified version of cut and splice method [38] for crossover. The method works as 

follows: Two Terminal nodes are randomly selected in parent one and parent two. Next, all the 

Terminal nodes beyond the two selected Terminal nodes are swapped between the rules in two 

parents. After crossover, the child which has higher fitness value is moved to the next generation. 

This process is shown in Figure 14. 
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Two randomly selected 
parents before crossover 

Randomly selected 
Terminal in parent one 

Randomly selected 
Terminal in parent two 

Crossover 

Figure 14. Crossover 

4.3.7 Membership function 

Resulting children after 
crossover 

Each terminal variable can be assigned to a linguistic value which is defined through the 

membership functions. Note that each one of these attributes can be assigned to one of the 

linguistic values of {Low, Med, High}. This process is shown in Figure 15. 
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1 

Low 

Figure 15. Membership functions of predicting attributes 

The values for mc1, mc2, mc3 and mc4 are calculated to be of equal size from each other. In other 

words, the value for the range of each attribute is divided to five equal values and each one is 

assigned to one of the variables for the membership function of a terminal variable. Note that we 

could have also used an automatic method for derivation of membership function variables such 

as the one proposed in [ 1]. In this approach, a search algorithm is used to adapt the membership 

function parameters associated with each linguistic variable. Although approaches based on 

search algorithms consider the interdependence that exists between the rule base and data base of 

a fuzzy system, these approaches are computationally much more expensive because they have 

to deal with a much bigger search space. 

4.3.8 Design algorithm 

To design a BLDC motor, first the user gives the set of input parameters and the requirements to 

the IDSS. Then, the EFS derives a set of modification. These rules will be later used to modify 

the unsatisfactory designs. Next, the set of derived rules are given to the expert user. The user 

can accept, reject, or modify the given rules and embed the accepted ones into the knowledge 

base of the knowledge based expert system. Next, the iterative approach starts where an initial 
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design is first obtained using the conventional design methodology. Using a successive 

test/modification process, the design requirements are measured, and modifications, if any, are 

recommended accordingly. Iterations between modification and test will continue until no more 

improvements can be made [26,68]. This process can be broken into the following steps: 

1. The given specifications are entered into the evolutionary fuzzy system to derive a set of 

modification rules. 

2. The user embeds the set of accepted modification rules into the KBES. 

3. An initial design is developed using the conventional design method. 

4. The characteristics of the developed design are compared with the desired design, and the 

unsatisfactory aspects are marked to be modified later. 

5. Modifications are suggested based on the deficiencies found in the existing design. 

6. New designs are developed based on the suggested modifications. 

7. The process will end if no more improvements can be done otherwise step 3 and forward 

will be repeated. 
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5 Results and Discussion 

5.1 Modification rule derivation subsystem 

The specifications of a case study for design of a BLDC motor is described in section 5 .1.1. As 

mentioned in section 4.2.1, fuzzy rules can be extracted from a predefined dataset. Section 5.1.2 

explains the case base (or dataset) which was used to derive fuzzy modification rules. The 

structure of the modification rules is explained in section 5 .1.3 and the modification rules derived 

based on the case study are represented. 

5.1.1 Motor specifications 

Among different configurations available for radial flux BLDC motors, the inner rotor and outer 

stator configuration was selected here. There are a variety of possibilities for the rotor and the 

stator structure. The traditional radial arc surface mounted magnet is chosen for rotor structure. 

The slotted stator is chosen for the stator structure because it has better heat conduction and 

higher permanence coefficient compared to the slotless configuration [35]. This configuration is 

depicted in Figure 1. 

During the design process, the values for the design parameters should be determined by the 

design methodology. In general, the designer should fix the values for some of the variable 

parameters at the beginning of the design process and determine the value for the rest of the 

parameters during the design process. Most of the times, the designer has some ideas about the 

total size of the motor, the available input voltage and current, and the desired power output at 

some rated speed [36]. Based on these assumptions the design specifications of the motor are 

given in Table. 3. Note that most of the parameters which deal with geometrical and material 
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specifications are initial assumptions and their values would change as the design algorithm 

proceeds. Among geometrical parameters, outside stator radius and motor axial length specify 

the overall size of the motor so their values would be fixed during the process. Maximum back 

emf specifies the available input voltage for the motor so it will be constant. Torque and speed 

are the required specifications given by the user at the beginning of the design and would not 

change during the process. 

Among the specifications, the number of phases is set to be three. Three-phase motors have good 

utilization of copper, iron, magnet, insulating material and silicon, when measured by the amount 

of these materials needed for a given output power. Although, motors with higher number of 

phases have better utilization, this utilization is canceled by the increase in number of transistors 

and leads needed for the control module, which increases the cost and reduces reliability. Three-

phase motors have very good starting characteristics and low torque ripple [3 7]. Therefore, we 

fixed the number of phases to three for the whole process. 

Table 3. Design specifications 

Parameter 

Proposed steel 

Proposed magnet 

Torque (N.m) 

Speed (rpm) 

Maximum back emf (V) 

Number of slots 

Number of phases 

Maximum slot current density (A/m2
) 

Number of magnet poles 

Air gap length (m) 

Magnet length (m) 

Outside stator radius (m) 

Value 

24-gauge silicon iron electrical steel 

Sintered Alnico-8B 

1.994 

1000.0 

30.0 

24.0 

3.0 

9000000.0 

8.0 

0.0026 

0.0025 

0.0635 
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Motor axial length (m) 

Steel lamination stacking factor 

Conductor packing factor 

Magnet fraction 

Shoe depth fraction 

Required motor constant 

Required efficiency 

Required weight (Kg) 

5.1.2 Casebase 

0.0635 

0.85 

0.59 

0.9 

0.1 

0.5 

90% 

2.5 

The casebase used for derivation of modification rules is generated using the parameters given 

by the user. The set of variable parameters are selected from the set of input parameters 

mentioned in the previous section. The program takes the values that the user has entered for the 

variable parameters and changes each one through a predefined range to make the casebase. In 

other words, to make a new case for the casebase, the value for only one input parameter is 

changed within the range specified in the range section. Next, the performance characteristics of 

the new case are calculated. At the end, the input and the performance parameters are added as a 

new case to the casebase. The range of each variable parameter used for casebase generation is 

mentioned in the Table 4. For all the parameters, except the ratio parameter, the value of the 

input parameter is used for case generation. In the case of ratio, three values of {0.4, 0.5, 0.6} 

will always be used for casebase generation. 

Note that the range specified for each parameter is chosen by the designer. For example, consider 

the "proposed steel type" parameter. The mentioned range for this parameter, selects two other 

steels types, where one has higher and another has lower steel gauges compared to the one 

specified by the designer. The designer can apply other types of variations on the proposed steel 

type, for example, designer can choose different steel material as the variation domain. 
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The choice of the range for each parameter depends on the range of materials available or 

manufacturing processes feasible. For example, the choice for the number of slots or the number 

of magnets range depends on the machinery available for the manufacturing of the stator and 

rotor. In other words, the search space is build considering the designs possible with the 

available machinery and material. 

Table 4. Parameter range for casebase generation 

Parameter 

Proposed steel type 

Magnet length 

Magnet fraction 

Proposed magnet type 

Number of slots 

Number of magnets 

Range 

Two other steel types, one with a higher 
and one with a lower gauge 

Input value ± 0.003 (mm) 

Input value ± 0.025 

Two other magnet types, one with a higher 
and one with a lower magnet remanence 

Use Table 5 to select two number of slots, 
where one is bigger and one is smaller than 
the proposed value 

Use Table 5 to select two number of 
magnets, where one is bigger and one is 
smaller than the proposed value 

Rotor outside radius/stator outside radius Use three values of {0.4,0.5,0.6} 
(Ratio) 

Table 5 shows the possible slot/pole combinations for three phase motors that can be used 

effectively. The table has listed all possible combinations for slot numbers from 3 to 48. 

Table 5. slot/pole combinations for three phase motors [71] 
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Slots 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 

Poles 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

6 8 10 6 8 8 6 8 8 6 8 8 6 8 

8 10 8 14 10 8 10 10 8 10 10 8 10 

12 18 12 16 16 10 20 14 10 14 14 10 14 

14 20 12 22 20 12 16 16 12 16 

16 18 26 22 14 26 26 14 20 

20 26 16 28 28 16 32 

22 28 22 32 32 20 34 

24 24 34 34 28 38 

26 30 40 

28 32 

30 34 

32 38 

40 

Each case in the casebase will have the mentioned seven attributes as the input attribute. Among 

these attributes, "proposed steel type" and "proposed magnet type" are nominal attributes, and 

the rest are numerical attributes. There are also three output parameters representing the weight, 

efficiency, and motor constant of the case. 

With the given range for different attributes there should be 2187 cases in the casebase. But after 

the case production phase, the number of cases is usually slightly less than the specified amount. 

This reduction in number happens because of inconsistent cases. More specifically, some 

combinations of the input parameters are inconsistent as they violate the mechanical or electrical 

constraints that exist on a BLDC motor. We remove those cases which are not consistent with 

the constraints from the casebase. We implemented the following constraints in our system: 

1. Rotor inside radius > 3 (mm) 
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2. Conductor slot depth > 3 (mm) 

3. Peak conductor current density< maximum conductor current density 

5.1.3 Modification rules structure 

As we mentioned in section 4.2.2, each individual of the evolutionary population encodes the 

antecedent and consequent of a fuzzy modification rule. It seems that there should be another 

node included in the antecedent of our fuzzy modification rules, to represent the unsatisfactory 

aspect of the design. This node was not included as a part of the individual, because we used 

binary classification [ 45] in our system. In this approach, during each run of the system, all the 

rules of the system are trying to find a solution for only one of the problems of the BLDC motor. 

Therefore, the rule derivation system should run three times, because we have three problems of 

weight, efficiency, and motor constant that we are trying to find a solution for. Although binary 

classification increases the running time of the system, it prevents mating to happen between 

individuals that are trying to solve different problems. This approach also simplifies the structure 

of each individual [55]. We use binary classification in our system therefore there is no need to 

encode the problem node in the antecedent of our rules. 

We ran our system to derive rules for three problems that a BLDC motor might have. These 

problems are: 

I. Weight: This shows that the given motor has higher weight than the requested weight 

given in the specifications. The weight is calculated through the following formulas: 

(11) 
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Weight= Wste + Wmag + Wwir 

(12) 

(13) 

(14) 

Where, Wsre = Weight of steel, Rso = Outside stator radius, Rsi = Inside stator radius, Rri = 

Inside rotor radius, Wbi = Back iron width, Ns = Number of slots, As = Conductor area, L= 

Motor axial length, Ksr = Lamination stacking factor, Pste = Steel mass density, Wmag = 

Weight of magnet, Rro = Outside rotor radius, Pmag = Magnet mass density, Wwir = 

Weight of wire, ns = Number of turns per slot, Pwir = Weight of wire per meter, Weight = 

Total weight of the motor. We did not include the weight of the end tum wires in the total 

weight of the motor, because the length of the end tum wires depend on the wiring 

method used. 

2. Efficiency: This shows that the efficiency of the motor is less than the requested 

efficiency given in specifications. We used equation ( 1) to calculate the efficiency of the 

motor. 

3. Motor constant: This shows that the motor constant of the motor is less than the one 

given in specifications. We used the following formula to calculate the motor constant of 

a motor [35]: 

(15) 

Where Bg =the air gap flux density, K wh =bare wire slot fill, Nm =number of magnet 

poles, As = Conductor area, p = resistivity of the wire. 
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5.1.3.1 Antecedent of fuzzy modification rules 

The antecedent of each fuzzy rule is consisted of the conjunction of fuzzy propositions. Each 

fuzzy proposition is consisted of the assignment of a linguistic value to a predicting attribute. 

The parameters listed in Table 6 were used as the predicting attributes that the system can use in 

the antecedent of the modification rules. The fuzzy propositions are encoded as terminals in the 

rule structure of EFS using the method mentioned in section 4.2.2. 

Table 6. Predicting attributes used in the antecedent of modification rules 

Parameter 

Proposed steel type Magnet length 

Number of slots 

Magnet fraction 

Proposed magnet type 

Number of magnets 

Rotor outside radius/stator outside radius (Ratio) 

Each attribute in the antecedent of the rule can be assigned to one linguistic value to make a 

fuzzy proposition. Three linguistic values of {Low, Med, High} are defined through the 

membership functions for each attribute. These membership functions are shown in Figure 16. 
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Low Low 

0.844 0.988 1.132 1.276 Magnet 24.6 28.2 31.8 
remanence 

(T) 

Low Low 

0.41 0.47 0.53 0.59 Ratio 4.8 5.6 6.4 

Low Low 

25 26 27 28 Steel gauge 0.86 0.87 0.88 

Low 

0.0018 0.0026 0.0034 0.0042 Magnet 
length (m) 

Figure 16. Membership function definitions for predicting attributes 

35.4 Number 
of slots 

7.2 Number 
of 

magnets 

0·89 Magnet 
fraction 

We evaluated the quality of a BLDC motor from three perspectives, namely, weight, efficiency 

and motor constant. The quality measure is embedded as a scalar function into the EFS, so the 

system can use it to rank modification rules. 
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5.1.3.2 Consequent of fuzzy modification rules 

There are several actions that the rule can take in the consequent of a modification rule. These 

actions are listed in Table 7. Regarding the actions which change the number of magnets or the 

number of slots Table 5 was used. 

Table 7. The actions in the consequent of fuzzy modification rules 

Action 

Air gap increase 

Air gap decrease 

Magnet length increase 

Magnet length decrease 

Ratio increase 

Ratio decrease 

Number of slots increase 

Number of slots decrease 

Number of magnets increase 

Number of magnet decrease 

Change steel, lower steel gauge 

Change steel, higher steel gauge 

Change magnet, magnet remanence increase 

Change magnet, magnet remanence decrease 

Magnet fraction increase 

Magnet fraction decrease 

Some of the mentioned actions are not very clear when it comes to applying them on an 

unsatisfactory design. For example, consider "air gap decrease" be the consequent of a sample 

modification rule. In the classical KBS the designer should define a constant value that would be 

decreased from the air gap length in all cases when the mentioned rule is fired. The advantage of 

the fuzzy approach is that, the system can decrease the value based on the amount that the 

antecedent of the rule is satisfied. More precisely, in a fuzzy system, the antecedent of each rule 

is satisfied to a degree in the range [0, 1]. The system can use this degree to decrease the air gap 

length proportionally. The following formula was used in the system to calculate the value that a 

certain variable would change as the result of an activated fuzzy rule: 
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Adaption _value= C x act (16) 

The designer should assign a constant value for each numeric attribute that can be changed in the 

consequent of a fuzzy modification rule. Here, C represents the constant value for each numeric 

attribute, and act is the degree that the antecedent of the fuzzy rule was satisfied. The resulting 

Adaption _value shows the absolute value that the numeric attribute should be changed. 

5.1.3.3 Evolutionary System 

We ran the evolutionary system with the set of parameters specified in Table 8 to derive 

modification rules from the casebase. The evolutionary system used for rule derivation was 

explained in section 4.2. We ran our system on a dual-processor 2.13 GHz machine with 2.0 GB 

of memory. Each run of the system for derivation of one modification rule took a processing 

time of 5 minutes. 

Table 8. Evolutionary system parameters 

Parameter Value 

Population size 250 

Maximum generations 1 00 

Initial number of terminals per rule 2 

Maximum number of terminals per rule 5 

Crossover rate 

Mutation rate 

Reproduction rate 

0.9 

0.05 

0.1 

It worth mentioning that during the rule derivation phase, we consider the whole casebase as the 

training set and we do not divide the casebase into the test and training sets. The reason lies in 

the special type of fitness function that we defined for our system. Although the fitness function 

gives a good comparison mechanism between two modification rules, the output value of the 
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fitness function is not very informative for the user because of its cumulative nature. Hence they 

are not reported as a measure for accuracy of the rules. The conventional way of deriving rules 

from the training set and evaluating the accuracy on the test set is not used here. Instead, the 

accuracy and effectiveness of the rules are evaluated when the rules are embedded as a part in 

the knowledge based system. 

After running the evolutionary system the modification rules were derived. As we mentioned 

before, each run of the system would produce one modification rule, so the user can derive as 

many rules as needed by running the system several times. When each rule is extracted from the 

dataset, the user can take three actions. First, user can move the rule as it is to the set of 

modification rules in the knowledge based system. Second, user can make some modifications 

on the antecedent or consequent of the rule based on his expertise. Finally, the user might reject 

the validity of the rule and do not use it during the design process. Therefore, the user has 

complete control on the design process, meaning that all the modification rules are transparent to 

the user and the user can change them based on his experience. The list of modification rules 

derived from the case base and the specifications given in section 5 .1.1 are shown in Table 9. 

Table 9. Some of the derived modification rules 

Problem Rule 

Weight 

IF (magnet remanence is not low) 
THEN change the magnet with another magnet which has lower remanence 

IF (number of magnets in not high) 
THEN increase number of magnets 

IF (magnet length is not low) 
THEN decrease magnet fraction 

IF (magnet remanence is low) 
THEN change the magnet with another magnet which has higher remanence 
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IF (number of magnets in not low) AND (rotor ratio is not high) 
Efficiency THEN decrease number of magnets 

Motor 
Constant 

IF (number of magnets is not low) 
THEN change the steel with another steel which has lower gauge 

IF (number of slots is not low) 
THEN decrease number of slots 

IF (number of magnets is not low) 
THEN decrease air gap length 

IF (rotor ratio is high) 
THEN decrease rotor ratio 

As you can see, there exist some contradictory rules among the modification rules derived for 

different problems. For example, the second rule derived for the weight problem suggests 

increasing the number of magnets to reduce the overall weight of the machine while the second 

rule induced for the efficiency problem suggests decreasing the number of magnets to increase 

the efficiency of the machine. The knowledge base system will tradeoff between these 

contradictory rules to find an optimal point where all the constraints are satisfied as much as 

possible. 

5.2 Knowledge base system implementation 

The KBS is developed in FuzzyCLIPS. CLIPS [6] (C Language Integrated Product System) is an 

expert system shell developed by NASA, which is widely used to develop rule and/or object 

based expert systems. CLIPS supports three paradigms of rules, objects and procedures for 

knowledge presentation. CLIPS has portability among different platforms, can be integrated with 

other programming languages, and has an interactive development environment. 
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FuzzyClips [58] is a fuzzy expert system shell, developed by the National research Council of 

Canada (NRC) as an extension to CLIPS. In addition to the capabilities available in the CLIPS 

environment, FuzzyCLIPS can deal with fuzzy concepts and reasoning. Therefore, the user can 

freely mix fuzzy and exact facts to make fuzzy rules. FuzzyCLIPS has two inexact concepts 

namely fuzziness which is implemented through fuzzy sets and relations, and uncertainty which 

is handled by certainty factors for rules and facts. 

The KB is composed of three parts of frames, rules and procedural attachments. The complete 

description of each part is given in section 4.1. The rule section is composed of Design, Test, and 

Modification rules. Design rules were extracted from the conventional design method [36]. 

Complete list of design equations used are presented in Appendix A and B. 

Seven rules were generated for the test section. Three of the rules were developed to check 

weight, efficiency, and the motor constant of a motor to see if they are satisfactory or not. One 

rule would delete identical designs in the KB, one rule checks to see if there exists a satisfactory 

design in the KB (a design which satisfies the mentioned three test rules) to stop system, another 

rule would delete off track designs, and the last rule in the test section was developed to change 

the control of the system from the test module to modification module. 

The EFS is responsible for generating the modification rules. Some of the derived modification 

rules are given in Table 9. These rules deal with the problem of excessive weight and insufficient 

efficiency and motor constant. Among the modification rules, the first rule converts all the 

unsatisfactory designs developed into facts. The reason was that in the FuzzyCLIPS 

environment, only fuzzy facts can be placed in the right hand side of the rules. Therefore, one 

fact was generated for each instance that existed in the KB. These facts were used inside the 
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modification rules. The last rule in the modification section changes the control from the 

modification module to the test module, so the iteration between test and modification continues. 

The complete list of all rules designed for the system is given in appendix C. 

The sample application of a modification rule on a motor is shown in Figure 17. Assume that 

Motor is an unsatisfactory design. The system will match the antecedent of the available 

modification rules with the specifications of the unsatisfactory Motor to see which rule can be 

fired. Assume that the Modification Rule is a fuzzy rule which was satisfied. First, the fuzzy 

value for the predicting parameters in the antecedent of the modification rule are calculated. Here 

the value for the rotor ratio is calculated and the number of magnets is read from the information 

stored in the Motor specifications. Next, the gathered information are applied on the fuzzy 

membership functions to calculate the membership degree of each element. As it is shown, the 

calculated rotor ratio value satisfies the condition of rotor ratio is not low to the degree of 0.5 

and the extracted number of magnets value satisfies the condition of number of magnets is not 

high to the degree of 1. Next, the min operator is applied on the resulting values to calculate the 

satisfaction degree of the antecedent of the modification rule. The satisfaction degree would be 

0.5 in the explained example. This value is later used in the consequent of the fuzzy rule. The 

consequent of the modification rule states that the value for the rotor ratio should be decrease. In 

order to decrease the value of the rotor ratio, equation (16) is used in the following order: 

New ratio= Previous ratio- C x 0.5 

= 0.44-0.01x 0.5 

= 0.435 
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Motor 

Outside rotor radius= 0.0279 
Outside stator radius= 0.0635 
Number of magnets = 4 

Ratio = Outside rotor radius I 
outside stator radius= 0.44 

4.8 

0.41 

5.6 6.4 

0.53 

Modification Rule 

IF (rotor ratio is not low) AND 
(number of magnets is not high) 

THEN Decrease rotor ratio 

High 

7.2 Number 
of 

0.59 Rotor 
Ratio 

New ratio= Previous ratio- C 
* 0.5 = 0.435 

Duplicated_ Motor 

Outside rotor radius= 0.0276 
L...----------~ Outside stator radius = 0.0635 

Number of magnets = 4 

Figure 17. Application of a fuzzy modification rule on an unsatisfactory design 
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Where, the previous ratio equals 0.44 which was initially calculated to evaluate the antecedent of 

the modification rule. Cis a constant value set by the designer which we set to be equal 0.01 

here. The new value for the rotor ratio is calculated and assigned to a duplicate motor which was 

copied from the initial motor. 

5.3 Results 

Table 10 illustrates the results obtained by the KBS system. The main goal of the system is to 

maximize the motor constant parameter. Efficiency and weight have the next highest priority. All 

the designs developed by our knowledge based system have higher motor constant compared to 

the conventional design. We ran the system to derive three designs as the output of the system, 

where each design tries to improve one of the performance indices as much as possible. 

Table 10. Results 

MOTOR SPECIFICATIONS DESIGNS 

CONVENTIONAL FIRST SECOND THIRD 

Motor constant 0.513614 0.523094 0.796281 0.867846 

Efficiency (%) 86.8608 91.0426 93.6190 89.6569 

Weight (Kg) 2.264621 2.244910 2.711602 2.914547 

Phase inductance (H) 0.013835 0.013214 0.004131 0.003425 

Phase resistance ( n ) 0.708252 0.675322 0.287425 0.241494 

Air gap flux (Wb) 0.000384 0.000390 0.000668 0.000747 

Magnet fraction 0.9 0.882 0.882 0.9 

Air gap length (m) 0.0026 0.0025 0.0025 0.0025 

Proposed Magnet Alnico-8B Alnico-8B SmzCo11 Neomax-35 

Proposed Steel Silicon-iron-24-1 Silicon-iron-26-1 Silicon-iron-26-1 Silicon-iron-24-1 

In the first design, an increase in efficiency and motor constant and a decrease in the weight have 

been achieved by decreasing the magnet fraction and the air gap length. In the second design, the 
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magnetic material has been substituted with a stronger one. The 24 guage (0.025 thick) silicon 

iron electrical steel has been substituted with thinner 26 guage (0.0185 thick), which has reduced 

the total core loss and increased the total efficiency of the motor. In the last design, the magnet 

has been changed, which has increased the motor constant of the design but increased the weight 

at the same time. A knowledge driven decision can be made by the system user to select any of 

the suggested designs that better suits their application. 

Table 11. Two modification rules in conventional and fuzzy KBSs 

Modification rule 

Conventional rule 

IF (meet-weight no) 

THEN (change magnet - lower 

remanence) 

Fuzzy rule 

IF (meet-weight no) AND (magnet remanence is not 

low) 

THEN (change magnet - lower remanence) 

The mentioned fuzzy rule approach has the following advantages over the conventional KBS 

approach proposed in [2]: 

1. More accurate suggestions: our system considers the status of each developed design 

when suggesting a modification rule for it. The conventional method follows the "one fits 

all" methodology where one modification was suggested for all motors. For example, two 

modification rules developed for modifying a design which does not satisfy the weight 

constraint are shown in Table 11. As you can see, the fuzzy rule is more informative, 

because it advises a new magnet with lower magnetic remanence only if the magnet 

remanence of the current magnet is not low. Although it may seem trivia in the first 

glance, but it is a very important point which should be considered when generating the 

modification rules. 
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2. More precise adaption: integration of fuzzy logic with our systems increases the accuracy 

of the modification rules compared with the conventional one. As shown in Figure 17, the 

consequent of each fuzzy rule is executed proportional with the degree that the 

antecedent of the rule was satisfied. This proportional execution increases the accuracy of 

each rule, and makes the rule more adaptable to each case. 

3. Adaptable rules: In our system, modification rules are derived for each design case 

separately, while in the conventional system there is a predefined set of rules which are 

used in all the cases. 

4. Less need for maintenance: One of the main problems with the classical approach of KBS 

is the need for maintenance. Our system derives the modification rules automatically, so 

there is no need for a knowledge engineer to maintain the rules. It should be also 

mentioned that both systems are decision support systems, meaning that the motor expert 

is involved in all stages of designing a motor. 
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6 Conclusion 

Design of BLDC motors involves an iterative approach which starts with an initial design and 

then iterates between test and modification phases. We developed a system which imitates this 

approach in a KBS framework. The analytical, graphical, procedural and criteria knowledge 

were integrated into the KBS using frames, rules and procedures. For a given set of required 

performances, the system produces several alternate designs that meet the required performances 

as much as possible, but have different specifications. The designers can select the one that best 

meets their priorities requirements. 

We used an Evolutionary Fuzzy System (EFS) to derive the modification rules from a predefined 

casebase. The EFS consists of a population of individuals where each individual encodes the 

antecedent and consequent of a fuzzy modification rule. An evolutionary algorithm evolves the 

population of fuzzy rules. The system was implemented and the effectiveness of the system was 

shown by comparing the results with those of the conventional method. 

In summary, our system includes the benefits of both knowledge based and soft computing 

approaches proposed for the design of electrical machines. Knowledge acquisition problem from 

human experts, which is a common problem of conventional KBS is not an issue in our system 

because we use an automatic method for derivation of our rules. On the other hand, the base 

structure of our system is a KBS so transparency and integration of human expert's knowledge is 

not a drawback of our system. 

The proposed system uses evolutionary computation to derive modification rules, and 

evolutionary computation methods are known to be computationally intensive. This increases the 

running time of the system, and makes the system unsuitable to be utilized in an interactive 
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manner. Possible integration of faster algorithms, such as decision trees, could be an interesting 

future work. 

Also, the system was applied for the design of BLDC motors in this thesis. The principles of the 

same system could be used for the design of other electromagnetic devices or more generally for 

the design of any device whose design steps could be broken down into the three phases of 

design, test, and modify. An interesting future work could be the application of the same 

principles for the design of other devices. 
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Appendix A. Design equations for the radial flux BLDC 

motor [36] 

List of the equations used during the design phase is listed below: 

Parameter Description 

{J)m = (n"/30)Sr ~echanicalspeed (A. I) 

{J)e = (N m I 2)mm Electrical speed (A.2) 

fe = {J)e 1(2tr) Fundamental electrical (A.3) 

frequency 

T = 746Php I mm Torque from (A.4) 

horsepower 

Ns =NspNph No. of slots (A.5) 

Nspp = Nsp I Nm No. of slots per pole per (A.6) 

phase 

Nsm = NsppN ph No. of slots per pole (A.7) 

acp = int(Nspp)l Nspp Coil-pole fraction (A.8) 

()p = 2trl Nm Angular pole pitch (A.9) 

()s = 2tr INs Angular slot pitch (A.IO) 
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Slot pitch (A.ll) 

Inside stator radius (A.l2) 

Pole pitch (A.l3) 

Coil pitch (A.l4) 

Slot pitch at air gap (A.l5) 

Tooth width at air gap (A.l6) 

Distribution factor (A.l7) 

Pitch factor (A.l8) 

Skew factor (A.l9) 

Flux concentration (A.20) 

factor 

Permeance coefficient (A.21) 

Magnet leakage factor (A.22) 

Effective air gap for (A.23) 

Carter coefficient 
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-1 Carter coefficient (A.24) 

k = 1-
1 

c 
~(sgc +lJ 
ws ws 

rPL(l+am) Air gap area (A.25) 
A = g 

2 

ct/J Air gap flux density (A.26) 
Bg = Br 

1 + f.lRkckml / ~ 

¢g = BgAg Air gap flux (A.27) 

¢g Back iron width (A.28) 
wb . = 

l 2BmaxkstL 

2 Tooth width (A.29) 
wtb =--wbi 

Nsm 

Rsb = Rso - wbi Stator back iron radius (A.30) 

Rri = Rro -/m -wbi Rotor inside radius (A.31) 

wsb = Rsb()s - wtb Slot bottom width (A.32) 

wsi = (Rsi + asdwtb)Bs- wtb Slot width inside shoes (A.33) 

wsi Slot fraction inside (A.34) 
a = s 

wsi +wtb shoes 

ds =Rsb -Rro -g Total slot depth (A.35) 

d3 = d2 -asdwtb Conductor slot depth (A.36) 
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dl +d2 = asdwtb Shoe depth (A.37) 

As =d3 [Bs(Rsb -d3 12)-w1b] Conductor area (A.38) 

. [ E J 
No. of turns per slot (A.39) 

n = Int max 

s N mkdk pksB gLRroNspp(l)m 

emax = N mkdk pksB gLRroNsppnswm Peak back emf (A.40) 

I = T Peak slot current (A.41) 

s NmkdkpksBgLRroNspp 

I - Is Phase current (A.42) 
h---

P Nphns 

]=~ Peak conductor current (A.43) 

c kcpAs 
density 

IB I = Jlois 
Peak slot flux density (A.44) 

s max 
ws 

2 Slot resistance (A.45) 
R = pnsL 

s kcpAs 

2 End tum resistance (A.46) 
R = pns 1CTc 

e 2kcpAs 

Rph = Nsp(Rs +Re) Phase resistance (A.47) 

2 Air gap inductance (A.48) L = ns JlRJloLTckd 
g 4(/m + f-lRkcg) 

L _ 2[flodJL l'od2L flod1L] 
Slot leakage inductance (A.49) 

s-ns + +--
3As (ws + Wsi)/2 ws 
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L = n;Jlo'~"c In( r;7r J End tum inductance (A. 50) 

e 8 4A s 

Lph =Nsp(Lg +Ls +Le) Phase inductance (A.51) 

P,. = Nphl~hRph Ohmic power loss (A.52) 

vst = [7r(R;o- R; )- NSAS ]Lkst Stator steel volume (A.53) 

~~ = PbiVstr(Bmax ,fJ Core loss (A. 54) 
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Appendix B. Determination of hysteresis and Eddy current 

coefficients for calculation of the total core loss of the motor 

[83] 

The total core loss of the motor can be divided into the hysteresis and eddy losses. These losses 

can be formulated as: 

Hysteresis loss (B.l) 

Eddy loss (B.2) 

Total core loss (B.3) 

Where, W =weight of core,/= frequency, d =thickness of core lamination, B =flux density, D 

= density of core material, n = hysteresis loss coefficient, A= eddy loss coefficient, x = 

hysteresis loss exponent for B. For two frequenciesj/ and.f2 and two flux densities B 1 and B2 the 

following equations can be derived: 

(B.4) 

(B.5) 
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(B.6) 

Solving equations (B.4) through (B.6) will result in the following equations for the coefficients 

and hysteresis exponents. Here, we assume that a=/21/J. 

(B.7) 

(B.8) 

(B.9) 
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Appendix C. List of rules in the KB of the system 

Number Rule 

1 Design:: 1-Calculate-Mechanical-Speed 

2 Design: :2-Calculate-Electrical-Speed 

3 Design: :3-Calculate-Electrical-Frequency 

4 Design: :4-Calculate-Number-Of-Slots 

5 Design::5-Calculate-Number-Of-Slots-Per-Pole-Per-Phase 

6 Design: :6-Calculate-Number-Of-Slots-Per-Pole 

7 Design::7-Calculate- Coil-Pole-Fraction 

8 Design: :8-Calculate-Angular-Pole-Pitch 

9 Design: :9-Calculate-Angular-Slot-Pitch 

10 Design:: 1 0-Calculate-Slot-Pitch 

11 Design:: 11-Calculate-Inside-Stator-Radius 

12 Design:: 12-Calculate-Pole-Pitch 

13 Design:: 13-Calculate-Coil-Pitch 

14 Design:: 14-Calculate-Slot-Pitch-At-Air-Gap 

15 Design:: 15-Calculate-Tooth-Width-At-Air-Gap 

16 Design:: 16-Calculate-Distribution-Factor 

17 Design:: 17 -Calculate-Pitch-Factor 

18 Design:: 18-Calculate-Skew-Factor 

19 Design:: 19-Calculate-Flux-Concentration-Factor 

20 Design: :20-Calculate-Permeance-Coefficient 

21 Design: :21-Calculate-Magnet-Leakage-Factor 

22 Design: :22-Calculate-Effective-Air-Gap 

23 Design: :23-Calculate-Carter-Coefficient 

24 Design: :24-Calculate-Air-Gap-Area 

25 Design: :25-Calculate-Air-Gap-Flux-Density 

26 Design: :26-Calculate-Air-Gap-Flux 

27 Design: :27 -Calculate-Back-Iron-Width 

28 Design: :28-Calculate-Tooth-Width 

29 Design: :29-Calculate-Stator-Back-Iron-Radius 

30 Design: :30-Calculate-Rotor-Inside-Radius 

31 Design: :31-Calculate-Slot-Bottom-Width 

32 Design: :32-Calculate-Slot-Width-Inside-Shoes 
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33 Design: :33-Calculate-Slot-Fraction-Inside-Shoes 

34 Design: :34-Calculate-Total-Slot-Depth 

3 5 Design:: 3 5 -Calculate-Conductor -Slot-Depth 

3 6 Design:: 3 6-Calculate-Shoe-Depth 

3 7 Design:: 3 7 -Calculate-Conductor-Area 

38 Design: :38-Calculate-No-Of-Turns-Per-Slot 

3 9 Design:: 3 9-Calculate-Peak-Back-Emf 

40 Design: :40-Calculate-Peak -Slot-Current 

41 Design: :41-Calculate-Phase-Current 

42 Design: :42-Calculate-Peak -Conductor-Current-Density 

43 Design::43-Calculate-Peak-Slot-Flux-Density 

44 Design: :44-Calculate-Slot-Resistance 

45 Design: :45 -Calculate-End-Tum-Resistance 

46 Design: :46-Calculate-Phase-Resistance 

4 7 Design:: 4 7 -Calculate-Air -Gap-Inductance 

48 Design: :48-Calculate-Slot-Leakage-Inductance 

49 Design: :49-Calculate-End-Tum-Inductance 

50 Design: :50-Calculate-Phase-Inductance 

51 Design: :51-Calculate-Steel-Volume 

52 Design: :52-Calculate-Ohmic-Power-Loss 

53 Design: :53-Calculate-Core-Loss 

54 Design: :54-Calculate-Efficiency 

55 Design::55-Calculate-Motor-Constant 

56 Design: :56-Calculate-Wire-Gauge 

57 Design: :57-Calculate-Steel-Volume-Weight 

58 Design: :58-Calculate-Magnet-Volume 

59 Design:: 59-Calculate-Wire-Weight 

60 Design:: 60-Calculate-Weight 

61 Design: :61-Copy-Input-Parameteres 

62 Test:: 1-Test-Efficiency 

63 Test: :2-Test-Weight 

64 Test: :3- Test-Motor-Constant 

65 Test: :4-Design-Satisfactory 

66 Test::5-Delete-Identical-Designs 

67 Test: :6-Delete-Off-Track-Designs 
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68 Test:: 7-Deactivate-Test-Activate-Modify 

69 Modify:: !-Convert-Instance-to-Fact 

70 Modify: :2-Motor-Constant-Problem-NumberotMagnetlnc 

71 Modify:: 3-Motor -Constant-Problem-MagnetRemlnc 

72 Modify: :4-Motor-Constant-Problem-NumberofSlotDecMagnet 

73 Modify: :5-Motor-Constant-Problem-AirgapDec 

7 4 Modify: :6-Motor-Constant-Problem-RotoRatioDec 

75 Modify::7-Motor-Constant-Problem-MagnetFracDec 

76 Modify: :8-Efficiency-Problem-MagnetRemlnc 

77 Modify::9-Efficiency-Problem-NumberotMagnetDec 

7 8 Modify:: 1 0-Efficiency-Problem-S teelcorelossDec 

79 Modify:: 11-Efficiency-Problem-NumberofSlotDec 

80 Modify:: 12-Efficiency-Problem-RotoRatioDec 

81 Modify:: 13-Weight-Problem-MagnetRemDec 

82 Modify:: 14-Weight-Problem-NumberotMagnetinc 

83 Modify:: 15-Weight-Problem-MagnetFracDec 

84 Modify:: 16-Weight-Problem-RotoRatioDec 

85 Modify::17-Weight-Problem-MagnetLenDec 

86 Modify:: 18-Weight-Problem-Airgaplnc 

87 Modify:: 19-Weight-Problem-ChangeSteel 

88 Modify: :20-Delete-Off-Track-Designs 
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