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This thesis describes a non-ICP-based framework for the computation of a pose estimate of a 

special target shape from raw LIDAR scan data. In previous work, an ideal unambiguously-

shaped 3D target (the Reduced Ambiguity Cuboctahedron, or RAC) was designed for use in 

LIDAR-based pose estimation. The RAC was designed to be used in an ICP algorithm, without 

an initial guess at the pose. This property is, however, not robust to LIDAR measurement noise 

and data artefacts. The pose estimation technique described in the present work is based upon the 

geometric non-ambiguity criteria used originally to design the target, and is robust to the 

aforementioned LIDAR data characteristics. This technique has been tested using simulated 

point clouds representing a full range of views of the RAC. The technique has been validated 

using real LIDAR scans of the RAC, generated at Neptec's Ottawa facility with their Laser 

Camera System (LCS). Experimental results using LCS data show that pose estimates can be 

generated with mean errors (relative to ICP) of 1.03 [deg] and 1.08 [mm], having standard 

deviations of 0.56 [deg] and 0.67 [mm] respectively. 
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Chapter 1 Introduction and Prior Work 

In recent decades, computer vision has become an integral part of robotic space systems. The 

Canadian Space Vision System (CSVS) installed on the ISS in 1992, was developed by Neptec 

Design Group. It works by tracking black and white targets attached to the surfaces of spacecraft 

and ISS modules. Laser-based space vision systems (also built by Neptec) are installed on the 

MDA-built Remote Manipulator System (Canadarm I), and Space Station Remote Manipulator 

System (Canadarm II).  

 

Pose estimation is a core engine of any computer vision system. The pose of an object is a six 

DOF vector defining its position and orientation in 3D space, relative to a given reference frame. 

A pose estimate is typically determined by establishing a correspondence between sensor data 

and a computer model, in the form of a rigid transformation. Pose estimation is used to perform 

various tasks, including 3D shape reconstruction, object identification and target tracking. These 

typically involve using sensor data to extract features from which some combination of range, 

position or orientation can be inferred, either in 2D or 3D. These features include things such as 

corners, edges, surfaces and intensity gradients.  

 

In orbital rendezvous and docking operations, pose estimation is particularly important. In this 

context, the use of fiduciary markers is already well-established [1]. These markers are typically 

retro-reflectors or visual targets (such as with the CSVS) that can be easily identified in the 

sensor data. The arrangement of these markers (as seen in the data) is then compared to the 

known arrangement. From this, the pose can be calculated. This approach has some associated 

difficulties. Extreme glare or shadows, for example, can prevent some markers from being 

registered.  

 

In contrast, LIDAR (LIght Detection And Ranging) technology can be used to acquire highly 

accurate pose estimates under any lighting conditions. This technology is based on the use of 

lasers to establish range measurements at multiple locations (by various methods such as time-of 

flight, triangulation, etc...), resulting in arrays of discrete range data. The object being scanned 
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will register as a collection of points in 3D space, called a “point cloud”.  

 

The Iterative Closest Point (ICP) algorithm [2] is a method commonly used to determine pose 

estimates from point clouds [2] [3] [4]. Iterative rigid transformations are used to minimise the 

mean-squared distance between input data points, and the closest corresponding points on a 

computer model of the target shape. Although this method can be highly accurate, its iterative 

nature can make it very computationally expensive when used with large numbers of data points 

[4]. Also, a poorly constrained shape1 (which will often exhibit a high degree of symmetry) such 

as a cube, can cause the algorithm to converge on a false solution, since there can be many ways 

to match data representing a cube to a model of a cube. In this case, there are multiple global 

minima, only one of which represents the true pose of the cube. The algorithm will simply 

converge on the global minimum nearest to the initial guess. Depending on the initial guess at 

the pose, objects that are geometrically well-constrained (i.e. non-symmetric and therefore 

unambiguous) can still cause the algorithm to fall into local minima, possibly leading to false 

solutions. If the algorithm has fallen into a local minimum, it means that any incremental 

modification of the orientation and translation will cause the registration error to increase. In this 

case, even if the shape has only have one global minimum (i.e. the true pose), the algorithm may 

converge on a local minimum instead. Typically, these problems necessitate an initial estimate of 

the pose that is as close as possible to the true pose. 

 

Many spacecraft have simple geometries that lead to ambiguous pose estimates. Even when 

spacecraft geometries are adequately constrained, many features are not visible during close-

range docking operations. This leads to inaccurate pose estimation. In previous work done at the 

Ryerson Space Vision Lab [5][8], a specially shaped target (designed for use with ICP) was 

designed to deal with this problem. This shape is called a Reduced Ambiguity Cuboctahedron 

(RAC), and is pictured in Figure 1.1. By design, sets of neighbouring faces will exhibit unique 

arrangements of normal vectors. This approach eliminates unwanted local (and global) minima 

and ensures that the shape is always geometrically constrained. Good geometric constraint 

                                                 

1 Constraint analysis is an application of Principal Component Analysis. The constraint of a given shape can be used 

to describe the degree to which that shape is unambiguous. Further information can be found in [5-7] 
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enables accurate ICP pose estimates from any view geometry. Under ideal circumstances, 

LIDAR scans of such a shape can be used with an ICP algorithm to obtain the true pose without 

an initial guess. A physical model of the RAC was scanned with Neptec’s LCS, a LIDAR camera 

system developed for spacecraft pose estimation. Previously, Choudhuri [6] used a portion of the 

data from these scans to validate the shape design. 

 

Figure 1.1: The reduced ambiguity cuboctahedron (RAC). 

1.1 Motivation 

The RAC was designed such that an initial guess at the pose was not necessary for ICP to 

converge on the correct solution. ICP, however, can be very computationally intensive for dense 

point clouds. Accurate ICP pose estimates require high resolution scans, which will necessarily 

result in large numbers of points. This makes real-time estimates more difficult. In addition, 

although the shape was shown to behave as anticipated under near ideal conditions, its optimality 

depends on ideal viewing, and is not robust to noise in the data, or artefacts such as edge effects 

or outliers. If these artefacts are present in the data, ICP is not guaranteed to converge on the 

correct solution without an initial guess at the pose. As it is impractical to prune these artefacts 

from the scan data in real-time, an alternative method was sought to estimate the pose of the 

RAC from raw scan data. 

 

Extracting the normal vectors from the observed surfaces provides a convenient means of 

directly estimating the relative orientation between the LIDAR and the target shape, since 
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measurements based upon these normals will be invariant in translation and rotation. In many 

situations these estimates may be sufficient, but if additional accuracy is required, the direct pose 

estimates can be used as an initial guess for a classical approach such as ICP. 

 

The present work is a logical extension of the ideal target design work described in [6]. Although 

the RAC's geometry was intended to facilitate ICP convergence, there is no reason to refrain 

from exploring other potential ways in which this geometry could be used for pose estimation. A 

great deal of work currently exists concerning geometric feature extraction from LIDAR point 

clouds, as seen in the following references  [9], [11], [10], [12-14] (which is by no means an 

exhaustive list). The present work in not the only one to describe a non-ICP 3D registration 

technique that is based upon local relative geometry [15]. To date, however, no other source has 

been found which is designed to take advantage of the geometric properties of a shape such as 

the RAC. 

1.2 Scope of thesis 

The major contribution of this thesis is the practical implementation of a pose estimation 

algorithm based on the use of the unique properties of the RAC as a target. The implementation 

described here takes into account real LIDAR data, which is not edited other than basic cropping 

to isolate the shape from its surroundings. The LCS data used consists of point clouds of 

anywhere from six to ten thousand points. These data contain edge effects, some outliers, and 

some geometric distortions (see section 4.1 for an overview of the data characteristics). In 

addition to real LIDAR data, the work described here is tested with simulated data from a range 

of perspectives. Specifically, this thesis deals with the implementation of a catalogue lookup 

algorithm to generate orientation estimates, the extraction of the required input data from the raw 

point cloud, the determination of a displacement estimate, and testing of the accuracy of the 

resulting pose estimates. Although real-time implementation of these tasks is considered in the 

algorithmic development, it is not the primary focus of this thesis. It should also be noted that 

this work considers only static pose estimation. If the “motion blur” resulting from a scan of a 

moving target is not excessive, then the present work should provide a reasonable estimate of 

performance during dynamic scanning situations. Other issues such as the identification and 

isolation of the target from a wide scan, target tracking, the processing of sequential pose 
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estimates, and the precise simulation of LIDAR error characteristics are beyond the scope of this 

thesis. An ICP algorithm is used in some of the experimental validation and the implementation 

is briefly described, but the design and optimisation of this algorithm is not a part of this work. 

1.3 Face Normal Pose Estimation (FNPE) Overview 

Face Normal Pose Estimation (FNPE) is the estimation of the RAC's pose from LIDAR scan 

data without using ICP. The goal is to provide a faster pose estimate than ICP (for rough 

estimation) which can be used to initialise ICP (for more precise estimation) if desired. 

Orientation estimation is based on the unique geometry of the target as represented in the point 

cloud, and relies on the identification of planar surfaces and the calculation of their associated 

normal vectors. Measurements are generated from combinations (called “tuples”) of these 

normal vectors, and then sent to a catalogue lookup algorithm where they are matched to 

reference data. The catalogue lookup algorithm then uses measurement-to-reference 

correspondence (if possible) to output a point cloud orientation estimate2. The orientation portion 

of the pose estimate is more difficult to generate than the displacement portion, but can be solved 

separately. Once the orientation has been determined, displacement calculations are relatively 

simple. The basic process is shown in Figure 1.2. 

1.4 Thesis Outline  

Chapter 2 presents the theoretical basis for the use of the RAC to generate unique pose estimates 

for a given view, as well as the methodology for the construction of the reference catalogue, and 

the catalogue lookup algorithm. Chapter 3 describes the methods investigated to extract the 

geometry of the RAC from a raw point cloud, and the integration of these methods with the 

algorithm described in Chapter 2, to generate orientation estimates. Two different point cloud 

geometry extraction methods were investigated. The initial method (FNPE1) is described in 

Section 3.1, but was later replaced by a better-performing algorithm (FNPE2), described in 

Section 3.2. The initial method was judged to be inadequate when considering only orientation, 

so no displacement estimation algorithm was written. It is provided mainly as context for the 

                                                 

2 The orientation of the point cloud is defined as the rotation which will rotate the computer model from a default 

attitude to the observed attitude of the point cloud.  
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development of the FNPE2 algorithm. A displacement estimation technique using least-squared 

fitting was developed for use with the second method (FNPE2). Chapter 4 provides a brief 

outline of the characteristics of the point cloud data used in this thesis, as well as a very brief 

overview of the simulations and experiments in which they are used. Chapter 5 presents the setup 

and results of all of the simulations and experiments performed. In Chapter 6, the results from 

the FNPE2 simulation are compared and contrasted with those from the FNPE2 LCS experiment, 

and general observations are made. Final conclusions and future work are described in Chapter 7.  

 

 

Figure 1.2: FNPE overview 
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Chapter 2 Catalogue Lookup 

The usefulness of the RAC is derived from the unique orientation of neighbouring faces. 

Extracting the normal vectors from the observed surfaces provides a means of directly estimating 

the relative orientation between the LIDAR and the target shape. The relative orientations of 

neighbouring sets of normal vectors are unique for any part of the shape, meaning that 

experimental measurements of the angles between these vectors can be matched to unique entries 

in a reference catalogue. This permits the identification of the specific faces being observed. 

Calculation of the rotation necessary to bring the reference vectors to the measured vectors 

provides an estimate of the orientation of the RAC. The displacement portion of the pose (used 

in FNPE2) is estimated separately (see section 3.2.6). 

2.1 Required Point Cloud Measurement Geometry 

The unique target geometry that facilitates orientation estimation also imposes a requirement on 

the manner in which the angular measurements are made. A specific geometric arrangement of 

faces must be identified in the point cloud, and the normal vector of each face must be used 

differently depending on its relative position within the pattern. A set of faces F = {F1, F2, ... , 

F6} defined by vertices V = {V1, V2, ... , V9} is shown in Figure 2.3. This figure highlights the 

geometric arrangement required for orientation estimation.  



 

 

The only 

red), which

central face can be identified from the point cloud data, the FNPE technique 

generate an orientation estimate

2.2 Catalogue Construction and the Lookup Process

The uniqueness of the target shape is based upon the angles between a 

the normals of its three adjacent faces. Thus for each face there is a tuple of angles:

 

This tuple forms a unique set when the angles are correctly ordered, as shown in

order depends upon the method that will be used to 
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methodology of the angle ordering criteria. These criteria, applied to the error-free data, are used 

to compile the reference catalogue.  

 

Table 2.1: Tuples of ordered angles 

Central Face θ A θ B θ C

1 49.0 15.9 43.1

2 69.4 43.1 36.1

3 69.4 36.1 43.1

4 55.5 43.1 15.9

5 80.7 9.8 59.3

6 66.1 55.5 9.8

7 40.8 60.3 59.3

8 35.6 40.8 40.8

9 35.6 15.9 15.9

10 58.8 69.4 66.1

11 74.1 80.7 81.3

12 9.6 52.3 49.0

13 74.1 9.6 58.8

14 40.8 52.3 60.3

15 69.4 58.8 58.8

16 74.1 58.8 27.0

17 74.1 27.0 58.8

18 81.3 36.3 60.3

19 81.3 60.3 36.3

20 81.3 74.1 74.1  

 

Both the angles, as well as the corresponding unit normals, are necessary for the determination of 

the target's orientation. Some pairs of tuples contain identical angles, and can only be 

distinguished from each other using the normal vectors and relative positions of the observed 

surfaces. In order to match measured angles to their counterparts in the catalogued tuples, both 

the measured and reference data must be ordered in the same way (i.e. θa,m must be compared to 

θa,r, etc...). A method is therefore needed to provide a specifically defined order to the angles of 

each tuple, while maintaining the required uniqueness. Our approach is to designate the largest 

angle θa. θb and θc can then be determined by rotating counterclockwise about the central normal 

(n0), from the unit vector associated with θa, through to the unit vectors associated with θb and θc 

(see Figure 2.4). 
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Figure 2.4: Angles and normals for tuple number 8. 

 

Tuple 8 (pictured in Figure 2.4) has two angles which are identical. There are tuples on the shape 

which have duplicate large angles as well as duplicate small angles. Therefore neither the largest 

nor smallest angle is sufficient to uniquely determine the ordering. When measurement error is 

considered, this type of ambiguity is introduced into some (but not all) of the otherwise 

unambiguous sets of data as well. 

 

Angle ambiguity can be avoided by grouping the possible measurements by magnitude, and 

associating each angle with the specific angular range within which it falls. These angular ranges 

are given identification numbers, referred to as "group numbers". Each angle is therefore 

associated with a specific group number. The following is an example of this process (Note that 

the angular values and angular ranges used in this example are purely demonstrative, and do not 

relate to any other part of this thesis).  

 

 

Example: 

A set of angles is given as shown in Figure 2.5 (upper left). The angles are then rearranged 

Figure 2.5 (lower left), sorted by magnitude, and divided into angular ranges Figure 2.5 

(lower right). These angular ranges are given "group numbers". Each set of angles is then 

associated with a set of group numbers Figure 2.5 (upper right). 
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Central Central

Face θ A θ B θ C Face A B C

1 2.1 2.4 10.1 1 1 1 3

2 9.8 5.6 5.5 2 3 2 2

3 6.3 2.8 6.4 3 2 2 1

4 10.0 10.4 6.1 4 3 3 2

sort by

then 

generate

↓ ↓

Central 

Face Angle

Central 

Face Angle

Group 

Number

1 2.1 1 2.1 1

2 9.8 1 2.4 1

3 6.3 3 2.8 1

4 10.0 2 5.5 2

1 2.4 2 5.6 2

2 5.6 4 6.1 2

3 2.8 3 6.3 2

4 10.4 3 6.4 2

1 10.1 2 9.8 3

2 5.5 4 10.0 3

3 6.4 1 10.1 3

4 6.1 4 10.4 3

Angles Group Numbers

↓ ↑

→

 

Figure 2.5: Generation of group numbers 

 

 

2.2.1 Generation of the Reference Catalogue 

The individual angles from the reference catalogue have been separated into nine groups. Each 

group has a minimum or maximum value at least 4.48° away from the closest angle in a 

neighbouring group. By associating each angle in each tuple with a particular group, a great deal 

can be learned about the likely identity of a measured tuple. Range errors from the LIDAR scan 

introduce errors in the measurements of the face normals, and consequently the angles between 
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faces. Thus, it is far easier to determine group membership than it is to determine the precise 

angular value, as some of the reference angles differ by only 0.2˚, as with θc from tuple 6, and θb 

from tuple 13. The group numbers are unique (irrespective of sequence within the tuple) for 45% 

of the angular sets. For the rest, the group numbers are common (again, irrespective of sequence 

within the tuple) to no more than two tuples, of which no more than one will ever require a 

specific angle sorting criterion. The group numbers can therefore be used to determine when to 

apply a tuple angle sorting criterion based specifically on a maximum or minimum angular 

value. When the sets of reference tuples are sorted using this information, tuples of ordered 

angles are generated as seen in Table 2.1. The reference catalogue consists of these ordered 

tuples (and their sorting criteria), as well the corresponding ordered normal vectors and group 

numbers. The basic functionality is illustrated in the block diagram in Figure 2.6. 

2.2.2 Parsing of Measurement Data 

Measured tuples (and their associated normal vectors) can be identified, ordered and matched 

against the catalogue, using a similar procedure as was used to generate the reference catalogue. 

The following is an example of the basic catalogue lookup procedure. The input is a measured 

tuple of angles, and the vectors used to calculate them. If all of the measured angles are 

associated with measurement errors of less than 2.24 [deg], the following will always work as 

described. Otherwise, the following will function only for certain tuples, depending on the tuple 

and the amount of error involved. 

 

The basic catalogue lookup process is as follows: First, determine the group numbers of the 

angles in the measured tuple. The measured group numbers are then compared to the catalogued 

group numbers. A "simple match" is made between the measured group numbers and those from 

a set in the reference catalogue, if the reference set contains the same three group numbers (in 

any order). A simple match will identify which angle sorting criterion (i.e. max or min angle) to 

use. The measured normal vectors can then be used to put the measured angles (and group 

numbers) in order. An "ordered match" is made between the measured group numbers and those 

from a set in the reference catalogue, if the reference set contains the same three group numbers 

in exactly the same order. For 90% of the possible tuple measurements, only one ordered match 

will be found. The other 10% will find no more than two. If two ordered matches are found, an 
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error metric is generated for each one. Orientation estimates are determined as part of the error 

metric generation process. The match with the minimum error is used to identify the correct tuple 

match, and the corresponding orientation estimate. This basic structure is outlined in Figure 2.6. 

 

Using the catalogue lookup process described so far, measured tuples can only be identified if 

the error in the measured angles does not cause them to be classified in the wrong group. 

Unfortunately, this requires that all angular measurements be accurate to within 2.24º. To 

improve error tolerance, the method of grouping is taken further. Each measurement is now 

given a primary group number, and an alternative group number (for example, a measurement 

that is in the upper half of group three, would be given an alternative group number of four). 

Every combination of primary and alternative group numbers is then parsed in the same manner 

as with the basic catalogue lookup algorithm. The amount of error tolerance added by this 

approach varies from tuple to tuple (minimum error tolerance added was 0.5º, with errors as high 

as 4.25º returning correct solutions). Whereas the basic algorithm produces no more than two 

ordered matches for a given tuple measurement, the robust algorithm has not been seen to 

produce more than four. This robust configuration of the catalogue lookup algorithm is 

illustrated in the block diagram shown in Figure 2.7, and is the configuration used with all the 

experiments presented in this thesis. 
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Figure 2.6: Basic catalogue lookup algorithm.
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Figure 2.7: Robust configuration of the catalogue lookup algorithm. 

(This configuration is the one implemented with all the experiments in this thesis).
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2.3 Matching Error 

If the measured tuples are associated with only one ordered match, the identity refinement 

process simply generates an orientation estimate for that match (the error metric is still 

generated, but it is not used). If there are multiple ordered matches, orientation estimates are 

calculated for each one, and used to generate associated match errors. The minimum match error 

is used to select the correct tuple, and its corresponding orientation estimate. 

2.3.1 Match Refinement 

The error metric generated by the catalogue lookup algorithm is used to determine the entry in 

the reference catalogue that best matches the input data4. It is calculated in two parts. The first 

measures the difference between the measured and reference angles: 

 ( ) ( ) ( )
 valuemeasured  

 valuereference  
    where

'

2'2'2'

1
=

=
−+−+−=

θ

θ
θθθθθθ ccbbaae  (2) 

ESOQ2: Second Estimator of the Optimal Quaternion 

ESOQ2 [16], is one of many possible algorithms for solving the Wahba problem, any of which 

could have been used. The ESOQ2 algorithm is a computationally efficient way of calculating 

qopt as the eigenvector associated with the greatest eigenvalue of the matrix K: 

 ����� 	 
������ (3) 

where 

 � 	 �� � �� � ��������� ��� ������ (4) 

B is the attitude profile matrix, I3�3 is the 3 � 3 unit matrix, and z is the vector: 

 � 	 �� 2,3# � � 3,2# , � 3,1# � � 1,3# , � 1,2# � � 2,1#%� (5) 

The ESOQ2 algorithm computes λmax using the solution of the quartic algebraic equation 

associated with the characteristic polynomial of the K matrix: 

 
* � +
� � ,
- � .
 � / 	 0 (6) 

where a = tr[K], b = -2(tr[B])+tr[adj(B+BT)]-zTz, c = -tr[adj(K)], and d = det(K). The complete 

                                                 

4 Note that an older version of this match error metric was used when conducting the FNPE1 experimental 

simulation. The older metric is included in the appendix. 
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solution can be found in [16]. 

 

ESOQ2 is used to find a best-fit rotation that maps the reference vectors onto their measured 

counterparts. After the rotation is applied, the angular differences between each measured normal 12+3 2,3 2.3 4 and its corresponding reference normal �2+ 2, 2.� are calculated. The second 

error metric is then defined as follows (note that all the normals are unit normals): 

 5- 	 6 Δ8�#- �  Δ89#- �  Δ8:#-    where  Δ8� 	 arccos  2� B 2��#Δ89 	 arccos  29 B 29�#Δ8: 	 arccos  2: B 2:�#  (7) 

The first error is based purely on angle mismatches between measured and reference tuples. The 

second is an evaluation of the effectiveness of the orientation estimate. The sum of these two 

errors is the metric used to determine the overall match quality: 

 213 eee +=  (8) 

The smallest value of e3 is used to identify the matching reference tuple, and formulate the 

orientation estimate for a given view. 

2.4 Accommodating the Deformed Geometry of the Physical Model 

During testing, it was noted that the geometry of the physical model does not perfectly match the 

theoretical model. The part was fabricated in a 3D printer, and it is believed that the vertices of 

the shape became skewed when the data were entered into the printer. Since the physical shape is 

not obviously dissimilar to the theoretical model, the manufacturing error was not discovered 

until after the test sessions using the Neptec LCS. The project schedule did not permit a repeat of 

the tests using a corrected model. In the present work, it should be noted that the numeric data 

presented in Chapter 2 (except for the purely demonstrative examples), as well as the point cloud 

data used in the FNPE1 experimental simulation (section 5.1), are based upon the parameters of 

the undeformed theoretical model. Upon discovery of the error, the catalogue lookup algorithm 

was modified to better represent the shape of the physical model. A combination of repeated 

physical measurement and trial and error was used to find approximate rotations and stretching 

parameters so as to approximate the physical model as closely as possible. Rather than the 

uniform scaling factor of 250 [mm] used previously, the shape was first rotated about the x-axis 

by 127.1074 [deg], before being stretched by the following factors: 
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CD � EFGH: 243.9946N � EFGH: 259.4240P � EFGH: 228.9920R 

This resulted in the modified tuples shown in Table 2.2: 

 

Table 2.2: Modified tuples for the physical model of the RAC 

Central Face θ A θ B θ C

1 48.2 14.9 40.5

2 72.0 40.5 35.2

3 72.0 35.2 40.5

4 55.1 40.5 14.9

5 83.7 9.5 56.8

6 64.4 55.1 9.5

7 41.8 64.7 56.8

8 32.3 41.8 41.8

9 32.3 14.9 14.9

10 62.5 72.0 64.4

11 70.2 83.7 80.1

12 9.6 50.3 48.2

13 76.8 9.6 57.6

14 41.8 50.3 64.7

15 72.0 62.5 57.6

16 70.2 62.5 27.3

17 70.2 27.3 62.5

18 80.1 38.0 64.7

19 80.1 64.7 38.0

20 70.2 80.1 76.8  

 

As a result of the altered grouping of the angles, they were sorted into 8 groups instead of 9. The 

minimum separation between two groups changed from 4.48° to 4.88°. As a result of the new 

bounds on the angle ranges, tuple error tolerances are more widely varied than before. Error 

tolerance for some tuples increased to 8°, while the most error-sensitive tuple saw its maximum 

error tolerance fall from 2.74° to 2.52°. All of the experiments relating to FNPE2 (Sections 5.2 

and 5.3) were performed using these updated parameters. 
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Chapter 3 Normal Extraction Methods 

Two methods were investigated to extract normal vector measurements from the input point 

cloud. The first is referred to as FNPE1. Due to some inherent limitations of the method (it is not 

robust to noisy data), it was later replaced by a different method, referred to as FNPE2. The 

conclusions drawn from the results of the FNPE1 experimental simulation led to the 

development of FNPE2 (this is discussed in Section 5.1.5). The FNPE2 method is more robust to 

noise and outliers, and is more computationally efficient. FNPE1 has been included here because 

it is functional (if only for low-noise point clouds), and it provides context for the development 

of FNPE2. 

3.1 FNPE1: Measurement of Face Normals Using Local Surface 

Reconstruction 

When reconstructing a model from a point cloud, the data points must be converted into surfaces. 

One method of doing this is to select a point, and use its neighbours to infer the normal vector of 

the surface represented by that point. This process, repeated for every point in the point cloud, 

will result in an array of “point normals” associated with the array of points. For a shape 

consisting of flat surfaces such as the RAC, neighbouring points which have similar normals are 

assumed to belong to the same surface. If surfaces are found in this way, then the points that 

remain are identified as edges (or outliers, if real data are used).  

 

Figure 3.8 shows a general overview of the data processing chain that was used in the FNPE1 

algorithm. 
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Figure 3.8: Data processing chain. 

 

Before the FNPE1 algorithm can be applied, the input point cloud must be processed to extract 

appropriate sets of surface normal vectors, and their corresponding angles. Point normals, 2�, are 

estimated at each point using a variation of the algorithm developed by OuYang and Feng [18]. 

This method is based upon reconstruction of the local geometry at each point, and as such 

requires that the Voronoi neighbours of each point be known. Matlab has a built-in function for 

calculating the Voronoi vertices and cells of the 3D Voronoi diagram of a set of input points. 

After applying this function, each point in the point cloud is in the centre of a Voronoi cell. 

These cells are defined by a set of Voronoi vertices. Given a point in a Voronoi cell, the 

neighbours of that point are simply the points in the adjacent Voronoi cells. Adjacent cells are 

here defined as cells which share at least three Voronoi vertices (i.e. they share at least one 

facet). To find these neighbours, a technique from graph theory was used, much as described in 

section 3.2.4, except using a connectivity of three instead of two (i.e. the faces referred to in the 

example are now Voronoi cells, and the edges are the common facets). The neighbours of each 

point in the point cloud are then determined. These Voronoi neighbours are referred to 

henceforth as "global neighbours" since the nature of the Voronoi diagram can result in a point 

having a Voronoi "neighbour" that is in fact located on the other side of the point cloud (in 

addition to the neighbours in the immediate vicinity). 

 

With the global neighbours found, the following procedure is used to find the point normals. 

This procedure is taken directly from [18], as is Figure 3.9 and Figure 3.10. 
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Figure 3.9: The best local mesh growing point for a triangle's edge. 

 

1. Find the point N in GVN that is nearest to P (N is considered as the most credible 

local neighbour of P). 

2. Use PN as the diameter and pivot a size-growing ball around PN until the ball hits 

another point M by evaluating all the points in the common GVN of P and N (M 

is considered as the second most credible local neighbour of P). Given the triangle 

NPM, identify the best local mesh growing point A for PN in the common GVN 

of P and N according to the following two criteria (Figure 3.9): (1) A and M must 

be on different sides of the plane PNO, where O is the first pole ball center of P 

(the farthest vertex of the Voronoi cell of P); and (2) PAN has to be the largest in 

order to have the smallest ball enclosing the points P, N and A. The best local 

mesh growing point B for PM is found with the same criteria.  

3. Repeat the identification of the best local mesh growing points for the two newly 

added edges PA and PB and continue until the local mesh is connected or 

overlapped. All the local mesh points are then taken as the valid neighbouring 

points of P for the estimation of its normal vector. 

 

Having found the local neighbours, the normal is found by fitting sets of quadric curves to the 

local points (see Figure 3.10) as follows: First, find the corresponding point ST of each local 



22 

 

Voronoi mesh neighbour SU with the largest angle through SV: 

 WSUSVST X WSUSVS�,    1 Y Z Y �,   Z [ \ (9) 

Where the constant � denotes the number of triangles in the local mesh. Next, fit a quadric curve ] ^# through SU, SV and ST: 

 

] ^# 	 _V � _`^ � _-^-,   ^ a �0,1� ] 0# 	 SU  ;   ] 1# 	 ST   ;   ] ^V# 	 SV 

^V 	 SUSVSUSV � SVST 

(10) 

The directional unit tangent vector cU is then derived at SV from the fitted quadric curve: 

 cU 	 d _` � 2_-^V|_` � 2_-^V|f (11) 

The normal vector 2 is found at SV by minimising the variances H- of the dot products of 2 and 

the � directional tangent vectors 

 H- 	 ∑ hiU � ij-kUl`� � 1  (12) 

where iU and i are defined as follows: 

 

iU 	 2 · cn 
i 	 ∑ iUkUl�̀  

(13) 

Equation (12) can be rewritten as 

 H- 	 ∑ �2 ·  cU � c#�-kUl` � � 1  (14) 

where 

 c 	 ∑ cUkUl�̀  (15) 
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Figure 3.10: Finding the normal vector � at a specified point ��. 

 

Let the cU � c vectors be the � row vectors of a � � 3 matrix o. Using singular value 

decomposition, matrix o can be formed as: 

 o 	 p q
` 0 00 
- 00 0 
�r s� (16) 

where p is a � � 3 matrix having orthogonal column vectors and s is a � � 3 matrix in which 

the three column vectors are eigenvectors with 
`, 
- and 
� as the three eigenvalues. The 

eigenvector corresponding to the smallest eigenvalue is the normal vector that minimises the 

variance formulated in equation (14). 

 

Although OuYang and Feng proceed to describe a method of determining the inward or outward 

direction of the point normals, is was found to be unnecessarily complicated for the present 

application. Instead, a vector was defined pointing from the centroid of the point cloud to the 

origin (the camera). The dot product of this vector and any correctly oriented normal vector 

should be positive, since the camera can only register surfaces oriented towards it. This 

observation is used to "correct" any point normals deemed to be pointing the wrong way. 
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Normal vectors for each visible face are found by clustering the resultant point normal vectors. If 

all of the (unit) point normals are plotted at the origin, then similar normals will appear as 

clusters around a unit sphere (see Figure 3.11, left). The unit vector pointing to the centre of each 

cluster is the average of all the normals in the cluster. A built-in Matlab clustering algorithm was 

used to identify these clusters, and normal vectors associated with them. Each point normal 

plotted on this unit sphere is associated with a point in the point cloud. A cluster of point normals 

can therefore be used to identify a subset of the point cloud, consisting of points which have 

similar point normals. If these points are then clustered spatially, there should be only one large 

cluster, corresponding to one of the surfaces scanned. Any other points can be discarded as 

outliers from one of the other faces. The centroid of these points is then taken to be an 

approximation of the geometric centroid of the scanned face (see Figure 3.11, right). This 

process is then repeated for each cluster of point normals. 

 

   

Figure 3.11: Clusters of normal vectors (left), and average normal vectors from each cluster (right). 

 

The catalogue lookup step must determine which of the detected face normals represents the 

central face, and which are neighbours. Each visible face must be tested to see if it can form an 

appropriate pattern with those nearby. For a face to be eligible, it must be central (call it face A), 

with three faces arrayed around it (call them B, C, and D) as in the arrangement shown in Figure 

2.4. (Note that the A,B,C,D notation used to describe centrality is arbitrary, whereas that used in 

Figure 2.4 is not. The process of identifying the required pattern of faces is separate from the 

process of ordering angles and normals into the specific sequence used in the reference 
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catalogue). The FNPE1 algorithm identifies appropriate patterns by means of an elimination 

process followed by a brute-force permutation of the remaining faces to look for matches.  

 

The Euclidian distance from the centroid of face A to the nearest points in all visible faces is 

calculated. The minimum three distances should correspond to the surrounding faces B, C, and 

D. This requires that all the points corresponding to the visible faces are known. The clustering 

approach (as implemented here) neglects some points, and so combinations of the nearest four 

faces must sometimes be used to ensure that faces B, C, and D are found. Every such 

combination is subjected to the tests described below. 

 

Having found the three faces closest to face A, face A must then be tested for centrality (i.e., 

every neighbouring face must share a side with the central triangle). The test is performed as 

follows: project the centroid of face A onto the plane formed by the centroids of faces B, C and 

D. If the projection of centroid A falls outside of triangle BCD, it is not considered a central face. 

Faces A B C and D are each tested in this way. Any combination passing this test proceeds to the 

catalogue lookup step as an unordered tuple/normal set.  

 

3.2 FNPE2: Measurement of Face Normals Using Plane-Fitting 

As the catalogue lookup step requires inputs based on surface normal vectors, planar surfaces 

must be extracted from the noisy data (point cloud). In a point cloud consisting of more than 

7000 - 10000 points, point-by-point iterative methods become inefficient. Although the scans 

from the LCS have error characteristics that prevented them from being used with the FNPE1 

algorithm, they are nevertheless good scans that show the target surface features with high 

resolution. When observing the 3D point cloud with the naked eye, the surfaces are clearly 

visible despite the edge effects and waves in the data. In this situation, the eye is in fact fitting 

known shapes to the data points, in this case planes. A random sample consensus approach 

(RANSAC) for plane-fitting was therefore investigated [10], to extract geometric information 

from the point cloud while minimising computations.  

 

RANSAC is a robust heuristic for finding consistent data in the presence of large numbers of 
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outliers. A random sample is taken from the data and tested according to given criteria, and the 

results stored. This process is repeated many times. Whenever a sample is found which is a better 

fit to the criteria, that sample is kept and the old one discarded. In the present work, RANSAC is 

used to find triangular planes (i.e. shape facets) in point cloud data. The algorithm works by 

selecting three (unique) points at random from the data and using them to define a plane. As the 

algorithm iterates, any planes having more desirable characteristics (i.e. a better fit to the data) 

are kept and the previous one discarded. After a predetermined number of iterations, a plane in 

the data is assumed to have been found. The number of iterations required for this assumption to 

be valid depends on the number of points in the point cloud, and the number of planes 

represented in the data. Upon finding a plane, all the points that were “fitted” to it are recorded 

and removed from the point cloud, and the procedure repeated to find subsequent planes. A very 

basic representation of the algorithm is shown below: 

 

 

Input: raw (but cropped) point cloud 

Output: target pose estimate 

while new triangles meet given criteria 

 find a best-fit plane in pointlist 

 store the plane parameters 

 find a best-fit triangle for the points on that plane 

 check fitted point / triangle data against given criteria 

 if criteria have been met 

  store the triangle vertices, and the points that match that triangle 

 else 

  end while 

 end if 

 remove the fitted points from pointlist 

end while 

Figure 3.12: RANSAC plane-fitting algorithm 
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The need for triangle fitting 

Given the geometry of the RAC, this plane fitting process is insufficient. Well-fitted planes will 

frequently cut into other parts of the point cloud. When points associated with these planes are 

removed, some of the data representing the remaining surfaces are lost. As more planes are 

found this data loss continues, occasionally removing entire surfaces from the point cloud. To 

prevent this, points must be returned to the point cloud that fit the plane but do not represent the 

face that the plane is modelling. As all the faces of the RAC are triangular, the algorithm takes 

all the points associated with a given solution plane, and uses a second RANSAC procedure to 

search for a best-fit triangle. A well-fitted triangle will have a large number of points in a small 

planar area. Any points that do not fall within the best-fit triangle are returned to the point cloud. 

Note that this approach works best if the entire target is scanned. 

 

The need for face vertices 

In order to determine the relative positioning of the faces, all the detectable triangular faces are 

stitched together to form a continuous faceted surface. Since some of the vertices of such a 

surface are common to more than one face, an incidence matrix can be constructed that shows 

the relationships between the faces and the vertices. The incidence matrix can then be used to 

find the connection matrix, from which the relative locations of the faces can be extracted. With 

this information, experimental tuples can be easily calculated and fed into the catalogue lookup 

algorithm. The general processing chain is shown in Figure 3.13. 

 

3.2.1 The Plane-Fitting Process 

In order to reduce the number of iterations required, a restriction is placed on the random point 

selection. Rather than picking the three points from the complete dataset, a shell with inner 

radius r1 and outer radius r2 is defined around a random seed point. The three randomly selected 

points are then taken from this region, increasing the chance that they will define a plane that 

matches the surrounding data. The outer radius r2 of the shell was chosen to be slightly smaller 

than the inradius of the smallest face of the RAC that is visible in the LCS scans. This increases 

the chances that the three random points will all be from the same face, even when matching the 

smaller faces. The number of iterations used in the simulation and in the experiment is N1 = 750 
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(this is also equal to the number of iterations used for triangle fitting, N2 = 750. See section 

3.2.2). This number is somewhat arbitrary, as alteration of the operating parameters of the 

algorithm will change the number of iterations required to get a given accuracy within a given 

number of iterations5.  

 

Once the three random points have been selected, they are used to define a plane. The quality of 

the fit is determined by the number of points found within a given threshold (t1) of the plane, as 

well as the standard deviation of the distances of those points. The plane parameters and the fit 

quality are saved, and the procedure repeated N1 times. As new candidate planes are found, the 

fit quality is compared to the saved values. If a new candidate plane can be fitted to more points, 

or if the plane fits the same number of points but with a lower standard deviation, the new values 

overwrite the old ones. 

 

The threshold value t1 is typically very narrow (+/- 0.35mm). Although this increases the 

accuracy of the solution plane, it also tends to result in multiple planes being found for a given 

face, due to the outliers remaining beyond the threshold (see Figure 3.14). It also results in 

relatively few points being associated with the solution plane itself, which is problematic when 

finding the triangular boundaries of the plane. Fitting the plane using a wider margin, however, 

encourages cutting across two planes, if they meet at a shallow angle as shown in Figure 3.15. 

 

As the determination of normal vectors is a critical part of this method of pose estimation, planes 

are found using the narrow margin. The outliers are incorporated into the set of fitted points 

during the triangle-fitting portion of the algorithm. It is important to do this rather than allowing 

duplicate planes to be found, due the method used to identify adjacent faces described in section 

3.2.4. 

 

                                                 

5 The number 750 was chosen simply to provide a particularly high accuracy, given the operating parameters 

chosen. A lower value could possibly have produced very similar results at greater speed, but since the algorithm 

was not being specifically optimised for speed, the selection of the number of iterations was not examined in detail. 
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Figure 3.13: FNPE processing chain. 

  



 

 

 

 

 

 

 

 

 

 

Figure 3.14

Figure 3.15

 

14: Effect of a narrow plane

15: Effect of overly wide plane

30 

: Effect of a narrow plane
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: Effect of a narrow plane-fitting threshold

: Effect of overly wide plane-fitting threshold

fitting threshold. 

 

fitting threshold. 
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The general plane-fitting procedure is summarised below. 

1. Pick a random seed point 

2. Determine a shell (using r1 and r2) around that point 

3. Pick three random (but unique) points from within that shell, determine the 

corresponding plane 

4. The number of points within t1 of the plane is calculated, as well as the standard deviation 

of their distances to the plane. High numbers of points with low standard deviation are 

desired. 

5. Keep the best plane found after a given number of iterations (N1 iterations, or (number of 

outliers)/15 iterations, whichever is greater) 

3.2.2 The Triangle-Fitting Process 

Given the nature of the shape, an infinite solution plane that matches one surface may very well 

cut through another part of the target (see Figure 3.16). Since all the faces on the target are 

triangular, and it is assumed that the entire target was imaged, the desired triangular solution 

plane should encompass the greatest number of points with the highest point density. A 

RANSAC-based algorithm is used to find the best-fit triangle. 

 

Figure 3.16: A plane identified in a point cloud (left), and an overhead view of the fitted points (right). 

The connected points in the right-hand figure represent the (2D) convex hull. 

 

Once a plane has been fitted to a set of points, several things need to happen. First, the plane 

must be collapsed into a triangle. Second, the outlying points (in the perpendicular direction) 

must be incorporated into the set of fitted points, so as to avoid finding duplicate planes. In order 
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to collapse the plane into a triangle, the fitted points are projected into the plane, and the convex 

hull calculated. The algorithm then picks random sets of three points from within the convex 

hull, and uses them as test vertices to construct a triangle. Better-fitted triangles will contain a 

larger number of points, with a higher point density (see Figure 3.17). 

 

Figure 3.17: A badly-fitted triangle (left), and a well-fitted triangle (right). 

 

Ideally, the edges of the triangle will coincide with the actual locations of the edges of the face. 

Since the narrow fitting threshold t1 can sometimes exclude points from the immediate 

neighbourhood of the true vertices of the face (see Figure 3.18 (left)), points within threshold t2 = 

2.0 [mm] of the solution plane are added to the set of fitted points. This increases the chances 

that points near the correct locations will be found (see Figure 3.18 (right)). Note that the 

magenta boundary in the figure represents the true boundary of the face. 

 

Figure 3.18: Points fitted to the solution plane only (left), and the effect of adding points from a wider margin 

(right). 



33 

 

It is important not to make t2 too large, as this will include larger numbers of points from other 

faces (if the faces are connected by a shallow angle). In this situation, a triangle that has been 

positioned to include the largest number of points with the highest point density may in fact be in 

the wrong orientation. The following figures  show the effect of different inclusion thresholds on 

the triangle-fitting process. The thresholds represented in the figures are for t = 0.35 , 2 , 5 ,  and  

20 [mm], respectively. 

 

 

Figure 3.19: Triangle fitting after addition of points within t2 = 0.35[mm] of the solution plane 

(i.e. no extra points added). 

 

 

Figure 3.20: Triangle fitting after addition of points within t2 = 2.00[mm] of the solution plane. 

(The bounds of this triangle are correct). 
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Figure 3.21: Triangle fitting after addition of points within t2 = 5.00[mm] of the solution plane. 

 

 

Figure 3.22: Triangle fitting after addition of points within t2 = 20.00[mm] of the solution plane. 

 

Once the vertices of the triangle have been chosen, the rest of the outlying points up to threshold 

distance t3 (t3 = 5.0 [mm]), are tested to see if their projections into the plane fall within the 

triangle. If they do, they are included, otherwise, they are returned to the point cloud. This helps 

ensure that almost all points from a given face become associated with the fitted triangle, while 

preventing the triangle projection threshold t3 from cutting too far into other faces (in the event 

that the triangle is not perfectly oriented). 

 

A summary of the triangle fitting procedure is shown below. 

1. Perform triangle search with the point cloud subset that “matches” the infinite solution 

plane found previously. 
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2. Project the points into the plane. 

3. Calculate the convex hull of the planar points. The convex hull of the planar points forms 

the search space for the best-fit triangle. 

4. Select three random (unique) points to define a triangle. 

5. Calculate the number of points that fall within this triangle6, as well as the point density. 

6. Iterate N2 times, or (number of outliers)/15 times, whichever is greater. 

7. Remove all points that are contained in (or “represented by”) the resulting triangle, from 

the point cloud. 

 

The plane-finding and triangle-finding process are repeated until the best-fit triangle has a point 

density less than d, or a number of points less than num. Given the noise in the data, the best-fit 

plane for a given surface/face may leave a significant number of (low point density) leftover 

points in the point cloud, that were too far away from the solution plane to be included (see 

Figure 3.23). The leftover points will be too widely scattered, or will be too few in number to 

generate reliable surface normal vectors. (i.e. widely distributed higher-noise fringe data, or lines 

of points excluded by the triangle-fitting process) 

 

 

Figure 3.23: Leftover fringe data. 

 

                                                 

6 This procedure is described in the appendix 
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Planes fitted to these points will be the result of higher-noise fringe data, and the corresponding 

normal vectors will likely be of lower accuracy than those found from lower-noise points, or they 

will represent entirely fictitious surfaces. 

3.2.3 Determining Face Adjacency 

The input to the catalogue lookup step cannot be determined unless some information is known 

about the adjacency of the triangular faces. Before this adjacency information can be determined, 

the individual triangles must be stitched together. The triangles found from the two RANSAC 

processes will, as such, not contain any shared vertices (i.e. vertices common to more than one 

triangle). For the purpose of identifying adjacency (i.e. NOT for normal calculation), vertices 

within x-dist y-dist and z-dist of each other are averaged (spatially) and are shared between the 

corresponding triangles. Since each triangle defines a face, graph theory can be used (as 

described in section 3.2.4) to determine face adjacency using the graph's connection matrix. 

Once the relative arrangement of the faces is known the input to the catalogue lookup algorithm 

can be calculated. The main steps in the procedure are summarised below: 

1. Collect all triangle vertices into an nx3 matrix 

2. Begin at the first vertex, and find all other vertices within the required distance 

3. Average these vertices, and replace each original vertex with the averaged one. 

4. Do this for all the vertices 

5. Generate the connection matrix as previously described 

The threshold for connectivity = 2 (i.e. if triangles share two vertices, they share an edge, 

and are therefore “adjacent”). 

3.2.4 Adjacency Determination Using Graph Theory 

FNPE2 generates a face-vertex7 representation of the observed surface of the RAC, using point 

cloud data. In order to identify a unique set of faces with the catalogue lookup algorithm, a face 

must be found that shares an edge with three adjacent faces. This can be easily done using graph 

theory. 

 

                                                 

7 The vertices are stored as a list of coordinates, and each face is defined as a set of indices into the vertex list. These 

indices are not stored in any particular order. 
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aph is a set of linked nodes. In general, the nodes and links can represent various things 
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Figure 3.24: An example of a graph G = (V,F).

The faces and vertices need not be labelled in any particular order. The incidence matrix of this 

) is a |V| x |F| matrix B





=
otherwise0

 vertex if1

F 1

V

1 0

2 0

3 0

4 1

5 1

6 0

7 1

8 0

9 0

Figure 3.25: The incidence matrix B of graph G
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aph is a set of linked nodes. In general, the nodes and links can represent various things 

(depending on the application), but in the present circumstances the nodes are vertices and the 

links are the edges of triangular faces. An example of a graph 
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otherwise
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0 0 1

: The incidence matrix B of graph G
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: The incidence matrix B of graph G

aph is a set of linked nodes. In general, the nodes and links can represent various things 

(depending on the application), but in the present circumstances the nodes are vertices and the 

G = (V,F) is shown in 

 

: An example of a graph G = (V,F). 

The faces and vertices need not be labelled in any particular order. The incidence matrix of this 

defined such that 

 j

 

: The incidence matrix B of graph G 

aph is a set of linked nodes. In general, the nodes and links can represent various things 

(depending on the application), but in the present circumstances the nodes are vertices and the 

is shown in Figure 3

The faces and vertices need not be labelled in any particular order. The incidence matrix of this 

aph is a set of linked nodes. In general, the nodes and links can represent various things 

(depending on the application), but in the present circumstances the nodes are vertices and the 

3.24. 

The faces and vertices need not be labelled in any particular order. The incidence matrix of this 
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The connection matrix C = B
T
B is a symmetric |F| x |F| matrix. C = (cij) shows the number of 

vertices common to faces i and j (see Figure 3.26). 

 

F 1 2 3 4 5 6

1 3 2 2 1 1 1

2 2 3 1 0 2 2

3 2 1 3 1 0 1

4 1 0 1 3 0 0

5 1 2 0 0 3 1

6 1 2 1 0 1 3
 

Figure 3.26: The connection matrix C of graph G 

 

Adjacent faces share an edge, and so will share two vertices. For FNPE2, the required pattern of 

faces is therefore present if a face shares two vertices with three different neighbours, as with 

face number 2 in Figure 3.24. The diagonal elements are ignored, as any face will share three 

vertices with itself. 

3.2.5 Processing data into and out of the lookup table 

Central faces can now be defined as any triangle with a connectivity of three or more (although 

in an ideal situation the number is exactly 3, extra planes that failed to be weeded out can raise 

the connectivity of a correctly-fitted face past 3). Plane-to-plane angles are then calculated for 

every face that has at least three neighbours. If the face has more than three neighbours, angles 

are generated for every combination. All of these angular sets, together with their corresponding 

face normals, are evaluated by the catalogue lookup algorithm. The output with the lowest 

(internally evaluated) error is used as the orientation estimate. 

3.2.6 Least-Squares Displacement Estimate 

The normal vectors that were used to generate the (lowest error) orientation estimate correspond 

to the surfaces found previously. As such, they are also associated with the distinct sets of points 

that were fitted by the RANSAC portion of the algorithm. Since the catalogue lookup 

determines, by necessity, the correspondence between the input surface normals and the 

tabulated normals, each set of planar points from the point cloud can be associated with a 

specific reference plane from the model. The orientation estimate is used to rotate the reference 



39 

 

model to (approximately) match the orientation of the point cloud. Using a least squares 

approach, a single displacement vector is then found that simultaneously minimises the distances 

between each set of points and its corresponding reference plane (see Figure 3.27). 

 

Figure 3.27: Translation to fit rotated reference planes to corresponding point cloud subsets. 

 

Given a plane of the form +F � ,t � .� � / 	 0 with normal vector u 	 �+v̂ ,x̂ .yz� and a 

set of { points S 	 �FU tU �U� (where 1 Y G Y {) to be fitted to the plane, the following holds 

true only if the points in P lie directly on the plane: +FU � ,tU � .�U � / 	 0, |G. If the points do 

not all lie directly on the plane, they can be fitted by finding a translation vector that minimises 

the point to plane distances in a linear least squares sense. The scalar response vector of the 

linear regression model for the }�~ plane and it's corresponding point set is  

 

 5� 	 u� · S� � /� (17) 

where: 

• {� is the number of points associated with the }�~ plane 

• u� is an {� � 3 matrix, whose rows each consist of the normal vector of the }�~ plane 

• S� is an {� � 3 matrix, whose rows are the position vectors of each point associated with 
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the }�~ plane 

• /� is an {� � 1 matrix, whose rows each consist of the plane parameter / of the }�~ 

plane 

 

the design matrix for the }�~ plane is simply 

 E� 	 u� (18) 

resulting in a total scalar response vector of 

 5 	 C5�̀5�R 	 Cu�̀u�R · CS̀�S�R � C/�̀/�R (19) 

with a total design matrix of  

 E 	 Cù�u�R (20) 

The translation vector that minimises the point to plane distances for all k planes is then found 

from 

 � 	 �E�E��`�5� (21) 

If the geometry of the faces has been accurately reconstructed, then when the model is displaced 

by this vector, it will match the point cloud very closely. Using the original input point cloud, the 

residual pose error is then taken to be the root-mean-square of the minimum point-to-model 

distances. 

3.2.7 Irregular least-squares improvement 

Typically, only 4 sets of points (i.e. the points associated with the faces needed to find one 

solution) are available for the least-squares fitting process. However, if two sets of faces are 

found, and if the catalogue lookup error metric for the second set is below an acceptable value 

(an empirically determined value of 10 was found to be effective), then any faces from the 

second set not found in the first are added to the least-squares fitting process.  
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Chapter 4 Data Sources and Experimental 

Overview 

This chapter introduces (briefly) the different sets of point cloud data used in this thesis, and 

outlines any noteworthy attributes or characteristics. 

 

4.1 Data Sources 

Note that the following information is intended as an overview. Detailed descriptions are 

provided in Chapter 5. 

 

4.1.1 Simulated Point Clouds used with FNPE1 

The point clouds used in the first simulation were generated by projecting an array of rays from a 

given camera position, towards a computer model of the RAC. The intersections of the rays with 

the model determine the location of the error-free point cloud (see Figure 4.28). The model of the 

RAC was scaled to approximately match the size of the physical model (using the uniform scale 

factor of 250 [mm]. The range of the “camera” (the origin of the projected rays), as well as the 

number and angular spacing of the rays, was selected such that point clouds of 1700 to 2300 

points were generated. Point clouds were generated from 2000 positions around the RAC, evenly 

distributed in viewing angle. Low intensity uniformly distributed noise (with an amplitude of ± 

0.5 [mm]) was then generated and added to the coordinates of each point. 
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Figure 4.28: Projection of camera rays(the blue lines)  onto the RAC, 

and the resulting ray-model intersection points. 

4.1.2 Simulated Point Clouds used with FNPE2 

For the second simulation, 2000 point clouds were generated from evenly distributed viewing 

angles, as in the first simulation. The model of the RAC was scaled differently in the X, Y, and Z 

axes, so as to match the geometry of the physical model as closely as possible. Both the range of 

the “camera” and scan density were chosen to approximate the range and scan density of the 

point clouds generated by Neptec’s LCS. This resulted in point clouds of approximately 6-10 

thousand points, all generated from a range of 3.6 meters. At this range, the majority of the 

points in the point cloud are near to 3.5 [m] distant from the camera. Since LIDAR range error is 

significantly more intense than lateral error, its effects will dominate the error characteristics of 

the point cloud. For this reason, as well as for simplicity, only range error was added to the point 

cloud. Gaussian error was added along the vectors from the origin of the camera to the error-free 

point coordinates. The standard deviation of the range error for the LCS (according to data from 

Neptec [17], and for a 3.5 [m] range) was used to generate the simulated error (3.3125 mm). 

4.1.3 The Neptec LCS 

The RAC was previously taken to Neptec and scanned from multiple perspectives with their 

LCS. As Neptec's LCS is designed specifically for use in spacecraft pose estimation (such as for 

orbital rendezvous and docking procedures), the LCS scans of the RAC are the most appropriate 



 

source of data with which to test the pose estimation algorithm that has been developed.

 

The data that were received from Neptec are point cloud representati

which the RAC was mounted. The point clouds were cropped in order to isolate the RAC from 

its surroundings, but the data were not cleaned or edited in any other way before being used in 

the pose estimation algorithms described lat

points, at an average point

 

The LIDAR data have some problematic attributes that make surface normal estimation difficult. 

Due to the nature of the LIDAR

demonstrate range biases with respect to the surrounding points. These “edge effects” are seen in 

the data as walls of points projected either towards or away from the camera. In addition to this, 

surfaces that are in reality flat, are reproduced in the point cloud with a certain degree of 

undulation. These “waves” in the data are present, to varying degrees, in most views of the RAC. 

These artefacts are distortions of the range estimate of a given p

perceptible when viewing the data from the perspective of the camera. An example is shown in 

Figure 4.

 

Figure 

 

source of data with which to test the pose estimation algorithm that has been developed.

The data that were received from Neptec are point cloud representati

which the RAC was mounted. The point clouds were cropped in order to isolate the RAC from 

its surroundings, but the data were not cleaned or edited in any other way before being used in 

the pose estimation algorithms described lat

points, at an average point

The LIDAR data have some problematic attributes that make surface normal estimation difficult. 

Due to the nature of the LIDAR

demonstrate range biases with respect to the surrounding points. These “edge effects” are seen in 

the data as walls of points projected either towards or away from the camera. In addition to this, 

urfaces that are in reality flat, are reproduced in the point cloud with a certain degree of 

undulation. These “waves” in the data are present, to varying degrees, in most views of the RAC. 

These artefacts are distortions of the range estimate of a given p

perceptible when viewing the data from the perspective of the camera. An example is shown in 

.29. 

Figure 4.29: Profile view of LCS point cloud showing w

source of data with which to test the pose estimation algorithm that has been developed.

The data that were received from Neptec are point cloud representati

which the RAC was mounted. The point clouds were cropped in order to isolate the RAC from 

its surroundings, but the data were not cleaned or edited in any other way before being used in 

the pose estimation algorithms described lat

points, at an average point-cloud

The LIDAR data have some problematic attributes that make surface normal estimation difficult. 

Due to the nature of the LIDAR

demonstrate range biases with respect to the surrounding points. These “edge effects” are seen in 

the data as walls of points projected either towards or away from the camera. In addition to this, 

urfaces that are in reality flat, are reproduced in the point cloud with a certain degree of 

undulation. These “waves” in the data are present, to varying degrees, in most views of the RAC. 

These artefacts are distortions of the range estimate of a given p

perceptible when viewing the data from the perspective of the camera. An example is shown in 

Profile view of LCS point cloud showing w

source of data with which to test the pose estimation algorithm that has been developed.

The data that were received from Neptec are point cloud representati

which the RAC was mounted. The point clouds were cropped in order to isolate the RAC from 

its surroundings, but the data were not cleaned or edited in any other way before being used in 

the pose estimation algorithms described later. Each view of the RAC consists of 6

cloud-to-camera range of approximately 3.5 meters.

The LIDAR data have some problematic attributes that make surface normal estimation difficult. 

Due to the nature of the LIDAR technology used, data points on or near acute angles can 

demonstrate range biases with respect to the surrounding points. These “edge effects” are seen in 

the data as walls of points projected either towards or away from the camera. In addition to this, 

urfaces that are in reality flat, are reproduced in the point cloud with a certain degree of 

undulation. These “waves” in the data are present, to varying degrees, in most views of the RAC. 

These artefacts are distortions of the range estimate of a given p

perceptible when viewing the data from the perspective of the camera. An example is shown in 

Profile view of LCS point cloud showing w

43 

source of data with which to test the pose estimation algorithm that has been developed.

The data that were received from Neptec are point cloud representati

which the RAC was mounted. The point clouds were cropped in order to isolate the RAC from 

its surroundings, but the data were not cleaned or edited in any other way before being used in 

er. Each view of the RAC consists of 6

camera range of approximately 3.5 meters.

The LIDAR data have some problematic attributes that make surface normal estimation difficult. 

technology used, data points on or near acute angles can 

demonstrate range biases with respect to the surrounding points. These “edge effects” are seen in 

the data as walls of points projected either towards or away from the camera. In addition to this, 

urfaces that are in reality flat, are reproduced in the point cloud with a certain degree of 

undulation. These “waves” in the data are present, to varying degrees, in most views of the RAC. 

These artefacts are distortions of the range estimate of a given p

perceptible when viewing the data from the perspective of the camera. An example is shown in 

Profile view of LCS point cloud showing w

source of data with which to test the pose estimation algorithm that has been developed.

The data that were received from Neptec are point cloud representati

which the RAC was mounted. The point clouds were cropped in order to isolate the RAC from 

its surroundings, but the data were not cleaned or edited in any other way before being used in 

er. Each view of the RAC consists of 6

camera range of approximately 3.5 meters.

The LIDAR data have some problematic attributes that make surface normal estimation difficult. 

technology used, data points on or near acute angles can 

demonstrate range biases with respect to the surrounding points. These “edge effects” are seen in 

the data as walls of points projected either towards or away from the camera. In addition to this, 

urfaces that are in reality flat, are reproduced in the point cloud with a certain degree of 

undulation. These “waves” in the data are present, to varying degrees, in most views of the RAC. 

These artefacts are distortions of the range estimate of a given point, and as such tend not to be 

perceptible when viewing the data from the perspective of the camera. An example is shown in 

Profile view of LCS point cloud showing waves (shown in red) and edge effects

source of data with which to test the pose estimation algorithm that has been developed.

The data that were received from Neptec are point cloud representations of the entire room in 

which the RAC was mounted. The point clouds were cropped in order to isolate the RAC from 

its surroundings, but the data were not cleaned or edited in any other way before being used in 

er. Each view of the RAC consists of 6

camera range of approximately 3.5 meters. 

The LIDAR data have some problematic attributes that make surface normal estimation difficult. 

technology used, data points on or near acute angles can 

demonstrate range biases with respect to the surrounding points. These “edge effects” are seen in 

the data as walls of points projected either towards or away from the camera. In addition to this, 

urfaces that are in reality flat, are reproduced in the point cloud with a certain degree of 

undulation. These “waves” in the data are present, to varying degrees, in most views of the RAC. 

oint, and as such tend not to be 

perceptible when viewing the data from the perspective of the camera. An example is shown in 

 

aves (shown in red) and edge effects

source of data with which to test the pose estimation algorithm that has been developed. 

ons of the entire room in 

which the RAC was mounted. The point clouds were cropped in order to isolate the RAC from 

its surroundings, but the data were not cleaned or edited in any other way before being used in 

er. Each view of the RAC consists of 6-10 thousand 

The LIDAR data have some problematic attributes that make surface normal estimation difficult. 

technology used, data points on or near acute angles can 

demonstrate range biases with respect to the surrounding points. These “edge effects” are seen in 

the data as walls of points projected either towards or away from the camera. In addition to this, 

urfaces that are in reality flat, are reproduced in the point cloud with a certain degree of 

undulation. These “waves” in the data are present, to varying degrees, in most views of the RAC. 

oint, and as such tend not to be 

perceptible when viewing the data from the perspective of the camera. An example is shown in 

aves (shown in red) and edge effects. 

ons of the entire room in 

which the RAC was mounted. The point clouds were cropped in order to isolate the RAC from 

its surroundings, but the data were not cleaned or edited in any other way before being used in 

10 thousand 

The LIDAR data have some problematic attributes that make surface normal estimation difficult. 

technology used, data points on or near acute angles can 

demonstrate range biases with respect to the surrounding points. These “edge effects” are seen in 

the data as walls of points projected either towards or away from the camera. In addition to this, 

urfaces that are in reality flat, are reproduced in the point cloud with a certain degree of 

undulation. These “waves” in the data are present, to varying degrees, in most views of the RAC. 

oint, and as such tend not to be 

perceptible when viewing the data from the perspective of the camera. An example is shown in 



44 

 

4.2 Experimental Overview 

In addition to a functioning catalogue lookup algorithm, a method for extracting normal vectors 

from LIDAR data is needed. Of particular importance is the measurement of angular tuples. As 

mentioned in section 2.1, a tuple measurement requires the identification of a central face and its 

three adjacent faces. The tuple itself is simply the set of three angles between the central normal 

and the normals of the adjacent faces. FNPE1 (Section 3.1) was designed to calculate the 

required normal vectors, and identify the arrangement in terms of central and adjacent faces. 

FNPE1 was used mainly to test the catalogue lookup algorithm, and to explore possible methods 

of extracting not only the normal vectors, but also the required geometric relationships between 

them. FNPE2 (Section 3.2) represents a more developed technique, intended for use with real 

LIDAR data. It has been tested using simulations, as well as with data from Neptec’s LCS. The 

following is a brief summary of the two methods used, and an overview of the experiments 

performed using each method. 

4.2.1 FNPE1 - Point-by-Point Surface Reconstruction 

The immediate neighbours of every point in the point cloud are identified. The neighbours of a 

given point are then used to calculate a unit normal vector at that point. The endpoints of all of 

these vectors are then considered to be data points on the surface of a unit sphere. A Matlab 

clustering algorithm8 is used to identify groups of normal vectors from the clustered points. 

These clusters signify a consistent planar surface, and the average of the normal vectors in the 

cluster is taken to be the normal vector of the surface. The vectors identified in the cluster each 

correspond to points in the point cloud, meaning that each surface normal (i.e. the mean of the 

point normals in a given cluster) can be associated with a specific point cloud subset. The 

relative positions of these “face points” are then used to identify central and adjacent normals. 

Tuples of angles are then calculated for any set of normals having the required arrangement, and 

the results are sent to the catalogue lookup algorithm. The orientation with the lowest catalogue 

output match error is then taken to be the best estimate of the orientation of the point cloud. The 

                                                 

8 The Matlab function is called "subclust" . It identifies clusters one at a time, and stops when the established 

clustering conditions are no longer found (among the unidentified points that remain, if any). Further information 

can be obtained from the Matlab help file (version R2009b was used).  
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displacement estimate is only very roughly estimated, and is taken to be the position vector of 

the centroid of the point cloud, moved towards the camera by 2/5 of the maximum width of the 

model. The adjustment towards the camera is necessary because if the centroid of the computer 

model is coincident with the centroid of the point cloud, the point cloud will (more often than 

not) be inside the model. This causes ICP to behave unpredictably. This normal extraction 

technique is the basis of FNPE1. 

 

Testing of FNPE1 with Simulated Data 

Simulated point clouds from 2000 viewpoints around the RAC are processed using the FNPE1 

algorithm to determine a pose estimate. This estimate is then used as the initial guess in an ICP 

algorithm, which is allowed to run for no more than 50 iterations. The number of iterations is 

limited, as an accurate initial guess should converge fairly quickly. Although a rough position 

estimate is generated for use as an initial guess in ICP, it is the orientation estimate that is being 

considered for this experiment. Both the direct orientation estimate and the results from ICP are 

compared to the known orientation of the simulated camera, and the results discussed. 

4.2.2 FNPE2 - Plane-Fitting 

Planes are fitted to the point cloud data, using an algorithm based on a Random Sample 

Consensus (RANSAC) [10]. Another RANSAC-type approach is used to isolate the points from 

a specific (triangular) face from any outlying points matching that plane. The triangular surfaces 

found are then stitched together into a continuous surface defined by vertices, with each face 

being identified as a set of indices into those vertices. Using a technique from Graph Theory, a 

connection matrix is constructed that is used to identify faces from which tuples of angles can be 

correctly calculated. The tuples are calculated for any such faces, and the results sent to the 

catalogue lookup algorithm. The orientation estimate with the lowest catalogue match error is 

then taken to be the best estimate of the orientation of the point cloud. This orientation estimate 

is also used to correlate points from specific faces identified in the point cloud, to individual 

planes from the reference catalogue. The reference planes are then rotated according to the 

orientation estimate, and the points fitted to their corresponding planes using a least-squares 

minimisation. This gives the displacement estimate that, together with the orientation, gives the 

final pose estimate. 
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Testing of FNPE2 with Simulated Data 

Point clouds were generated from 2000 positions around the RAC, evenly distributed in viewing 

angle. The FNPE2 algorithm was then used to generate a pose estimate for each point cloud. The 

FNPE2 pose estimates were used as the initial estimates in an ICP algorithm, and a refined pose 

estimate was generated. The absolute pose error as well as the RMSE of the pre and post-ICP 

estimates were then compared. 

 

Testing of FNPE2 with the LCS 

Fifteen LCS-generated point cloud representations of the RAC were used in this experiment, 

each one depicting a different view of the RAC. The FNPE2 algorithm was used to generate 50 

"correct" pose estimates of each point cloud, meaning that failed estimates were rejected, as well 

as any estimates wherein the reconstructed geometry was mistaken for that from a different 

region of the RAC (this second situation did not arise for the point clouds used, but such 

mistakes are technically possible and have occasionally been observed). Each estimate was used 

as the initial estimate in an ICP algorithm, from which a refined pose estimate was generated. 

Since no truth data were available for these datasets, the mean ICP pose for each point cloud was 

used as truth data. The relative (to the ICP pose) position and orientation error of the FNPE2 

estimates was examined in relation to the pre and post-ICP RMS error. The results from these 

experiments were then compared to those from the simulation and discussed.  
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Chapter 5 Experiments 

This chapter contains all the experiments that were conducted, using the previously described 

methods. FNPE1 was tested with simulated data. FNPE2 was tested with simulated data, as well 

as with data from Neptec’s LCS. 

 

5.1 Testing of FNPE1 with Simulated Data 

This section describes the setup, procedure, evaluation, results and conclusions drawn from the 

FNPE1 simulation. 

 

5.1.1 Setup and Point Cloud Error Characteristics 

The point clouds used here are generated by projecting rays from a “camera” at a given range, 

towards a computer model of the RAC (see Figure 4.28). The rays originate from the same point, 

but are projected in a rectangular fashion: 70 rays across the top and side, with a ray separation 

(in both dimensions) of 0.2 [deg]. This yields point clouds of approximately 1700 to 2300 points 

for each view (This is similar to the number of points expected in a close-range scan of the RAC 

using a SwissRanger 4000 flash LIDAR). The intersections between the rays and the RAC were 

used as the initial error-free point cloud, to which noise was added. A rotation was then 

introduced resulting in a range that is always expressed along the same axis (in this case the x-

axis) as would be the case for actual measurements. 

 

It should be noted that the model of the RAC has maximum dimensions of 1x1x1 units. These 

units, as such, have no actual measurement units attached to them (m, cm, mm, etc…). For this 

simulation, the model has been increased in size by a scale factor of 250. If the scale factor is 

assumed to be in [mm], this makes the scaled shape roughly the same size as the physical model 

used in later experiments. The simulated point clouds were generated from a range of 1500 units 

to the centroid of the object. The error added to the point clouds is uniformly distributed, with an 

amplitude of +/- 0.5 units (This low noise level was selected so as to better test the theoretical 

functionality of the FNPE1 algorithm. More realistic noise levels are considered in the second 
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experiment). The results presented here will be valid for a model of any size, so long as the scan 

density, point cloud error and observation range are scaled accordingly. 

 

5.1.2 Procedure 

Point clouds of the RAC were generated from 2000 camera positions around the object, evenly 

distributed in viewing angle, with no boresight roll (see Figure 5.30). Each point cloud was 

processed by the FNPE1 algorithm, and the orientation estimate recorded. To validate this 

approach, this orientation estimate was used as an initial guess for ICP. The ICP algorithm was 

implemented using Horn’s method [19] and was limited to 50 iterations. The centroid of the 

point cloud was used as the initial guess for the position of the object, adjusted away from the 

observer by 2/5 of the model scale factor. All orientations are calculated as quaternions. 

 

 

Figure 5.30: Distribution of viewing angles used to generate point clouds. 

 

5.1.3 Orientation Error Metric 

A four element unit quaternion q, used in attitude estimation, can be decomposed into a scalar 

component qs, and a three-element vector component qv: 









=

v
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q
q  

The inverse quaternion q
-1 can be found by negating the vector component of the original 
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quaternion: 
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Successive rotations can be composed in quaternion notation: 

bc qqq ⊗= a  

where 

bv,,,,, qqT

avbsascs qqq −=  

bv,,av,,av,,cv, qqqqq ×++= avasbs qq  

The magnitude of the angular rotation that the quaternion expresses, can be easily extracted from 

the scalar component: 

sq1cos2 −=φ  

In the present work, absolute error is based on comparisons between estimated orientation 

quaternions, and true orientation quaternions. Comparisons between quaternions, say qa and qb, 

were made by calculating the error quaternion qc required to rotate from qa to qb. The angular 

displacement component of qc is the value used for comparison. Both the direct estimate and the 

final ICP estimate were compared to the known quaternion orientation of the model. 

 

When estimating the orientation of the target, it is necessary to have an error margin within 

which an estimate can be said to be correct. This error margin was determined as follows: Using 

the target reference values, calculations were made of the rotations required to match one set of 

normal vectors onto any other set, as closely as possible. This is the type of mismatch that would 

occur if an orientation estimate was attempted for an incorrectly identified set of normals. The 

minimum magnitude of any such rotation was found to be approximately 22 [deg]. Note that this 

presupposes perfect measurement of the normal vectors. Since a certain degree of error is 

inevitable, the 22 [deg] margin should by no means be thought of as an absolute threshold for 

success or failure. For this reason, a more conservative threshold was used. Orientation errors 

within 10 percent of this "minimum orientation match error" (2.2 [deg]) were taken to be the 

result of a correct estimate. 
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5.1.4 Results 

A summary is included in  

Table 5.3. The table shows the number of successful and unsuccessful direct and ICP estimates 

and the correlation between them (top), as well as the corresponding absolute orientation error 

for each case (bottom). Of interest is the fact that every correct FNPE1 estimate resulted in a 

correct ICP estimate. ICP was even able to determine a correct orientation from a small number 

of incorrect FNPE1 estimates. As is evident from Figure 5.33, ICP sometimes resulted in a higher 

error than FNPE1. 

 

 

Table 5.3: Summary of FNPE1 results 

Matches Percent Matches Percent Matches Percent

Successful Direct Estimate: 1741 87.1 1741 87.1 0 0.0

Unsuccessful Direct Estimate: 117 5.9 7 0.4 110 5.5

Failed to Make Direct Estimate: 142 7.1 - - - -

Total: 2000 100

Direct Estimate Sucessful ICP Unsucessful ICP

 

 

 

Absolute φ Error (deg) Min Mean Max Min Mean Max Min Mean Max

Successful Direct Estimate: 0.0 0.4 1.3 0.1 0.4 0.9 - - -

Unsuccessful Direct Estimate: 13.9 145.4 179.4 0.3 0.6 1.0 2.6 157.1 179.9

Failed to Make Direct Estimate: - - - - - - - - -

Direct Estimate Sucessful ICP Unsucessful ICP
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Figure 5.31: Absolute orientation error histogram (no scaling). 

 

 

Figure 5.32: Absolute orientation error histogram, 

scaled (vertically) to enhance visibility of unsuccessful matches. 

 

 

Figure 5.33: Absolute orientation error histogram for values within the solution region. 
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Figure 5.34: RAC (left), and the associated sphere of absolute rotation errors after ICP (right) 

(Colour bar is in degrees). 

 

The sphere shown in the right hand side of Figure 5.34 is the "sphere of errors" after ICP has been 

performed. The sphere is a plot of all 2000 viewing directions, with each point coloured 

according to the absolute orientation error. The dark red portions are the viewpoints from which 

no pose estimate was possible, as well as those which resulted in high error. 

 

There are certain portions of the shape from which a direct pose estimate is not possible with the 

FNPE1 algorithm (see Figure 5.35). In these regions, however, the shape remains unambiguous 

and ICP will converge on the correct solution if an appropriate initial guess can be supplied. It is 

only the direct pose estimate that is not possible. It should be noted that the catalogue lookup 

algorithm is itself capable of providing a pose estimate in the problematic regions described 

above. The issue is simply one of measurement, in that the required input cannot be extracted 

from a single view of the object. This problem can be overcome by integrating views from 

multiple perspectives, although that is beyond the scope of the current work. 
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Figure 5.35: Cannot find orientation estimate for this type of configuration 

(Colour bar is in degrees). 

 

FNPE1 provides reasonable accuracy even without subsequent ICP refinement. Problematic 

viewpoints are localised, and comprise only 13 percent of the viewing directions. The errors 

encountered in the other regions can be greatly reduced either by developing a more robust 

clustering algorithm, or by calculating the point normals in a more effective way (or both). 

 

 

Figure 5.36: Sinusoidal projection of the sphere of errors for FNPE1 (left) and ICP (right). 

 (Blank spaces are areas where direct estimates could not be made. Colour bar units are in degrees). 

 

Although it works for a large majority of views, the test for centrality of a face can sometimes 

reject an ideal face arrangement, or accept an incorrect one, even when the normal vector 

estimates are good. This is a result of incorrect estimation of the face centroid positions. Centroid 

estimation error is affected by error in the point cloud, point loss due to clustering, and 
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asymmetric point distribution because of oblique viewing angles. 

5.1.5 Conclusions 

Although some fairly good performance was observed from the simulation, this method was not 

robust to the noise present in the scan data from the LCS. The reasons for the breakdown formed 

the basis for the alternate approach described in 3.2. 

 

This method functions best when using scan data with very low noise. When high resolution data 

with higher noise levels (as with the LCS) are used, the point normals become scattered such that 

accurate surface detection through clustering becomes impossible. A range error that is 

significantly higher than the scan resolution means that the immediate neighbours of each point 

cannot be used to infer the surface normal at that point. Point normals will often be significantly 

different from the normals of the underlying surfaces. This effect can be somewhat reduced if 

rings of more distant neighbouring points are used instead, but this has the effect of increasing 

the size of the edge region. This, in turn, has the effect of reducing the density of the clusters of 

point normals, such that normals either cannot be found (due to the dispersion of the clusters), or 

have too high a deviation to be used in the catalogue lookup algorithm. Lastly, the algorithm is 

not computationally efficient for large numbers of points (i.e. for LCS scans) if the operation is 

desired in real-time.  

 

In short, although this method can be made to work under a very specific set of (simulated) 

circumstances, it is not robust or efficient enough to be used with the LCS data.  
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5.2 Testing of FNPE2 with Simulated Data 

Since the algorithm employs a random sampling approach, there is some variability in the pose 

estimate it generates. Although it is desirable to quantify this variability, the primary purpose of 

the simulation is to evaluate the integrity and basic functionality of the algorithm, while 

providing data on its accuracy. The variability will be examined more closely when the FNPE2 

algorithm is applied to the LCS data. Also, since the RAC has some geometric regions where the 

required arrangement of faces cannot be seen, the simulation gives some idea of the locality and 

distribution of errors or impediments associated with these regions.  

5.2.1 Setup / Methodology 

Point clouds were generated from 2000 positions around the RAC, equally distributed in viewing 

angle, with no boresight roll (as with the first simulation). Gaussian range noise was added to 

each point cloud, and a rotation introduced to so that the range is always expressed along the 

same axis (in this case the z-axis) as would be the case for actual measurements. A constant 

camera range of 3600 [mm] was used (yielding an average point cloud range of approximately 

3500 [mm]). This distance was chosen to match (approximately) the range of the point clouds 

from the LCS. The point density was set so as to generate point clouds with roughly the same 

number of points as with the LCS data. Although range noise was taken into account, the edge 

effects and waves seen in the LCS data were not modeled. The intensity of the Gaussian range 

error (standard deviation of 3.3125 for a range of 3500 mm) was based on LCS performance data 

received from Neptec [17]. The range error was added along vectors from the “camera” to the 

(error-free) points. No other error was added to the simulated point cloud. Each point cloud was 

processed by the FNPE2 algorithm, and the pose estimate compared to the true pose. Any views 

which failed to produce an estimate, or which produced an obviously incorrect orientation 

estimate (φ > 20 [deg] ) were re-evaluated (up to 10 times), so as to distinguish viewing angles 

that generate consistently poor results, from those that generate only "fluke" failures. Such fluke 

failures could be compensated for in future more refined versions of the algorithm, and are not 

indicative of a fundamental flaw in the approach.  

 

As with the first simulation, the accuracy of the orientation estimates is based on the magnitude 
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of the angular component of the error quaternion between the estimated orientation and the true 

orientation, φ, expressed in [deg]. Similarly, the accuracy of the position estimate is based on the 

magnitude of the error vector between the true position and the estimated position. The minimum 

rotation required to map one set of normal vectors onto another is approximately 20 [deg]9. 

Although it would be difficult to draw any conclusions from the fact that an orientation estimate 

has an error less than this value, it is reasonable to expect that errors larger than this value are 

indicative of some part of the FNPE2 algorithm functioning in an unintended way. 

5.2.2 Results 

All the FNPE2 estimates account for 95.55% of the total number of scans (1911 estimates from 

2000 scans). The remaining 4.45% failed to generate a pose estimate. The results of the FNPE2 

estimates are shown in Figure 5.37. Colours represent position error in [mm]. Together with 

Figure 5.38, this gives a good impression of the general performance of the FNPE2 algorithm. 

Note that as RMS values rise above 6 [mm], there are some estimates with a position error 

significantly higher than the surrounding ones, despite having a comparable orientation error. 

This tends to be the result of a pose estimate based on an inaccurate geometric reconstruction. 

These anomalies are clustered around the region of the RAC where the faces are smallest, and 

have very shallow angles separating them from their neighbours. In these regions, the FNPE2 

algorithm has difficulty distinguishing one face from another, due to the noise in the point 

cloud10. The result is reconstructed surfaces which tend to cut across more than one face. Pose 

estimates under these circumstances are more variable than with the larger, better-distinguished 

faces. There can be redundant faces cutting across each other in this region of smaller faces, and 

typically, some of them will be fairly close to correct in terms or orientation, if not in terms of 

position. Under these circumstances a fairly good orientation estimate can sometimes be 

generated, but since the position estimate requires that the data points be associated with 

                                                 

9 Surprisingly, the exact number (21.73) is very similar the one for the original unskewed RAC (22.07), as used in 

the FNPE1 simulation  

10 While it may be possible to alter the fitting parameters of the FNPE2 algorithm to correct for this, it could result in 

degraded performance in other regions. The parameters that were used were intended mainly for the larger, better 

differentiated surfaces, since the LCS scans of the physical model are of those regions. In the live experiments, the 

region containing the small shallow faces was used as a mounting surface, and so was not scanned.  
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correctly reconstructed surfaces, the position estimate can be greatly degraded. Fortunately, as 

seen in Figure 5.38, 88.25 percent of the views (92.36 percent of the estimates made) are 

associated with RMS errors of less than 6 [mm], and grossly incorrect orientation estimates (φ > 

20 [deg]) do not begin to appear until RMS errors rise above approximately 6.5 [mm]. This 

observation is particularly useful when truth data are not available for the orientation and 

position errors, as with the experiments using Neptec's LCS. Under such circumstances, the 

RMS error can be used to assess the likelihood of a pose estimate that is accurate in terms of 

both position and orientation. 

 

Figure 5.37: FNPE2 RMSE versus FNPE2 phi error (colour indicates displacement error, units are in [mm]). 

 

 

Figure 5.38: Cumulative FNPE2 RMS error. 
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When used as an initialiser for ICP, it was found (as expected) that it is the amount of orientation 

error in the initial estimate, rather than position error, that has the greatest influence on the 

probability of success with ICP. When the pre and post ICP orientation errors are plotted against 

each other, one can see clearly that there is a distinct threshold region beyond which ICP will not 

converge on the correct solution (see Figure 5.39). As previously stated, the minimum error 

expected when a set of faces is incorrectly identified is approximately 20 [deg], and so good ICP 

results were not expected from initial estimates with orientation errors exceeding this value. 

After manual verification, FNPE2 estimates with orientation errors greater than 20 [deg] were 

found to be the result of incorrect reconstruction of the requisite surfaces. All initial estimates 

with orientation errors of less than 20 [deg] led to ICP convergence on the correct solution. 

Surprisingly, good ICP results were obtained from initial estimates with orientation errors as 

high as 47 [deg], although only orientation errors lower than 43 [deg] resulted in consistently 

good ICP performance. ICP performance results are shown in Figure 5.40.  

 

 

Figure 5.39: Orientation errors for ICP versus those for FNPE2. 
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Figure 5.40: ICP RMSE versus ICP phi error (colour indicates displacement error, units are in [mm]). 

 

It is clear from Figure 5.40 that correct post-ICP estimates are characterised by post-ICP RMSE 

values of less than 3[mm]. This is entirely reasonable, since the Gaussian range error added to 

the point cloud has a standard deviation of σ = 3.3125 [mm]. This information can therefore be 

used to determine whether or not ICP has converged on the correct solution, even if no truth data 

are available. From Figure 5.41, one can see the correlation between pre and post ICP RMSE. 

The colour of the points indicates the number of iterations ICP took to converge. This suggests 

that the pre-ICP RMSE of the pose estimate can be used not only to predict the likelihood of 

accurate ICP convergence, but also the maximum number of iterations it is likely to require. 

More detailed information is provided in Table 5.4. 
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Figure 5.41: RMSE(FNPE2) versus RMSE(ICP). Colours show number of iterations required. 

 

 

 

 

Table 5.4: Pre-ICP RMSE as a predictor of ICP performance 

RMSE Range Percent of Percent Good Iterations

 (Pre-ICP) Total Scans Post-ICP (phi < 1) μ σ

0 < RMSE <= 2 0.25 100.00 46 8

2 < RMSE <= 3 53.55 100.00 59 17

3 < RMSE <= 4 22.30 100.00 71 18

4 < RMSE <= 6 12.15 100.00 82 22

6 < RMSE <= 20 4.60 85.87 108 36

20 < RMSE <= 100 2.70 20.37 151 43

0 < RMSE <= 100 95.55 97.07 70 27

No Estimate: 4.45 -    - -  
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It is clear from Table 5.4 that the pre-ICP RMSE values less than 6 [mm] are the ones that can be 

relied upon to deliver good ICP performance, and to converge on the correct solution. If ICP 

refinement is not used, it is more important that the initial estimate be accurate in and of itself, as 

opposed to merely leading to good ICP performance. Fortunately, low RMS error values are 

strongly associated with low orientation errors, and a very large proportion of the total number of 

estimates falls into this range. This is illustrated in Figure 5.42, which shows the cumulative 

orientation and RMS error distributions associated with the error correlation plot originally 

introduced as Figure 5.37. 

 

 

Figure 5.42: Cumulative error distributions in the pre-ICP correlated error plot  

(colour bar shows displacement error, units are in [mm] ). 

 

If the pose estimates are correct for post-ICP RMSE values less than three [mm], then one would 

expect that these values would be localised, and would vary with shape geometry. Furthermore, 

the pre-ICP RMSE values less than 6 [mm] (with which they are correlated) should be localised 

in the same pattern. The upper and lower portions of Figure 5.43 show sinusoidal projections of 

all 2000 camera positions, colour coded according to pre and post ICP RMSE.  
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Figure 5.43: Sinusoidal projection of all 2000 view angles, 

coloured according to the RMSE (expressed in [mm]) pre-ICP (top) and post-ICP (bottom). 

 

It is clear that although the pre-ICP RMSE values have higher error and demonstrate greater 

variability, both datasets demonstrate similar regional distributions, except in one particular area. 

The regions where the FNPE2 algorithm failed to generate an estimate occur mostly where they 

were expected, i.e. where the required pattern of faces is not visible. The other regions where 

FNPE2 estimation failed (or resulted in large errors) are associated with small and/or 

undersampled faces. It is possible that planes matching such faces are not being found, due to the 

size of the spherical shell from which the point cloud is sampled during the plane-fitting 

procedure. If the shell is large enough to approach (or surpass) the size of the incircle of a given 

face, the probability of sampling points from that face will be correspondingly low. If the size of 

the shell is too small, the increased chance of sampling points from the face is offset somewhat 

by the larger numbers of iterations required to fit the plane. The size of the shell used here is 

better suited to the large faces, since they are instrumental in finding the pose estimate in a 
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higher percentage of the views. In the event that the algorithm manages to fit a plane to one of 

the small faces, it may be classified as "outliers" and rejected if it does not contain enough 

points. This rejection criterion is needed, however, in order to prevent redundant planes being 

found on the larger faces. In practice, the problems associated with the small or undersampled 

faces are not considered critical, since (as mentioned previously) these surfaces were not scanned 

during the LCS experiments. 

 

Since the amount of range noise added to the simulated point clouds is of the same order as that 

expected from real scans, these results indicate that the FNPE2 algorithm should be useful when 

applied to the LCS scans, provided that unmodeled noise (scanning artefacts) does not feature 

prominently in the point clouds. The post-ICP RMSE is consistent when ICP has converged on 

the correct solution, and is in a range that is distinct from the incorrect post-ICP solutions. The 

post-ICP RMSE from the LCS experiments is therefore expected to fall into a similar range. 

5.3 Testing of FNPE2 with LCS Data 

In order for FNPE2 to be considered useful, it must be able to generate reasonably accurate pose 

estimates using real LIDAR data. To this end, the plane-fitting technique was applied to LCS 

scans of the RAC. Unfortunately, truth data were not available for these scans. For the tests 

described here, truth data are approximated by performing ICP on a version of the point cloud 

that has very few outliers or edge effects. This point cloud is extracted from the output of the 

plane-fitting algorithm. The algorithm was tested to determine the variability of the pose 

estimate, the registration error associated with the pose estimate, and the relative error compared 

to the ICP “truth” pose estimate. Note that “correct direct estimates” refer to pose estimates 

based on the correct identification of the faces of the RAC represented in the point cloud, in 

contrast to “incorrect direct estimates”.  

5.3.1 Variability 

When generating direct pose estimates from the LCS point clouds, the algorithm occasionally 

fails to produce an estimate, and on very rare occasions produces an incorrect one. The degree to 

which this occurs varies from point cloud to point cloud. These occurrences are due in part to the 
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way the algorithm has been implemented in Matlab11, and in part to the error margins permitted 

by the catalogue lookup algorithm, which in turn are the result of the sensitive geometry of the 

RAC. Re-optimization of the RAC and higher-level refinement of the Matlab implementation 

could significantly reduce these occurrences while continuing to use the plane-fitting approach 

that has been previously described. As it is the approach itself that is of interest, failed and 

incorrect estimates (if any) are excluded from the dataset used in the evaluation of the plane-

fitting algorithm (FNPE2). 

 

A total of 50 correct estimates were used to establish the variability of the pose estimate for a 

given point cloud. The variability was examined in terms of the displacement vector, as well as 

the orientation quaternion. For the orientation, each estimate was compared to the mean of the 50 

orientation estimates. The mean quaternion was determined using the method described in [20]. 

Given the matrix M: 

 ∑
=

≡
n

i

T

iiM
1

qq  (22) 

The average quaternion is the eigenvector of M corresponding to the maximum eigenvalue. 

Having found the mean orientation, an angular deviation from the mean is calculated for each of 

the 50 estimates. For each estimate, an error quaternion is determined (with ESOQ2 [16]) using 

the mean orientation as a reference. The variation of each estimate from the mean is then 

quantified by the magnitude of the rotation which the error quaternion expresses. The standard 

deviation of these magnitudes is used to describe the variability of the orientation estimates for 

the given point cloud. 

 

The variability of the displacement estimate is also described by the magnitude of the deviation 

from the mean. A vector is defined from the position of the mean estimate, to each of the 

individual position estimates. The standard deviation of the magnitudes of these vectors is then 

used to describe the variability of the position estimate.  

                                                 

11 In addition to the actual implementation, there are also some parameters whose values have been chosen based on 

empirical testing. Modification of these parameters can significantly affect the performance of the algorithm. While 

values were chosen to provide good results from the LCS data, globally optimal values were not determined. 
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5.3.2 Accuracy 

Since truth data are not available, ICP was used to establish a “true” position and orientation for 

the point cloud. Since the raw point cloud contains outliers and edge effects, a reduced point 

cloud was used which was mostly free of these artefacts. Each FNPE2 pose estimate is 

associated with a reduced point cloud, made up of the points that were deemed to “belong” to 

each of the faces found during that particular evaluation of the raw point cloud. Each of those 50 

reduced point clouds generated by the FNPE2 algorithm contain different combinations of points 

from the original point cloud. The “common” point cloud is used for ICP. It consists of the 

points that are common to all 50 FNPE2-produced point clouds. Since outliers and edge effects 

are less likely to be consistently included by the FNPE2 algorithm, this common point cloud is 

typically free of any such artefacts. 

 

Each of the 50 FNPE2 pose estimates were then used as initial guesses in the ICP algorithm. The 

variability of the ICP pose estimate was determined using the previously described technique. 

The low variability of the ICP estimate was taken to be indicative of an accurate ICP pose 

estimate (standard deviation of the angular component of the orientation deviation ���U�����U�� �0.02 �/5��, standard deviation of the magnitude of the position deviation ����U�U�� �0.003 �ZZ�). The accuracy of the FNPE2 estimate for a given point cloud is then established by 

comparing the mean positions and orientations before and after ICP. The angular deviation 

between the two mean orientations is simply the magnitude of the angular component of the 

error quaternion between them. The displacement error is the magnitude of the vector between 

the mean FNPE2 position estimate, and the mean ICP position estimate.  

5.3.3 Residual Error 

The residual error is used to assess the precision of the fitting of the model to the point cloud, as 

opposed to the precision (or accuracy) of the FNPE2 pose estimate relative to the pose estimate 

obtained from ICP. A given pose estimate provides a displacement and an orientation with which 

the point cloud and model may be aligned to one another. Once they have been so aligned, the 

residual point-to-model distances are calculated (the reduced point cloud used in ICP is used 

here). The distances are then used to calculate the residual root mean squared error (RMSE): 
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Where n is the number of points in the point cloud, and x is the distance from point i to the 

closest corresponding point on the model. The units of the RMSE are the same as the units of x. 

The RMSE for a given pose will show how far from zero the fit error is. This measure of error is 

particularly useful as it includes error due to the pose estimation algorithm, as well as LIDAR 

scanning error, and it can be calculated using only a single pose estimate. Using the RMSE, the 

improvement afforded by the ICP algorithm can be put into context, since the “truth pose” found 

from ICP has a certain amount of fitting error associated with it as well. 

5.3.4 Results 

In total, fifteen LCS point clouds were used to assess the performance of the FNPE2 algorithm. 

For each one, 50 (correct) estimates were generated. Each FNPE2 estimate was used as the initial 

conditions for ICP, which produced a refined estimate. 

 

Residuals 

The RMSE is used to assess the fit quality of both the direct and ICP pose estimates. When 

calculating these errors the reduced point clouds are used, which contain anywhere from 56 to 80 

percent of the original points. Many of the complete point clouds contain outliers and edge 

effects that will increase the RMSE, even if the pose of the point cloud is correct. The process by 

which the reduced point clouds are calculated removes most, if not all, of the artefacts in the 

data. Although the number of points removed varies from point cloud to point cloud (from 20 to 

44 percent), this does not seem to be significantly correlated with the magnitude of the RMSE. 

This is shown in Figure 5.44 (note that the lines in the figure connect the mean estimates for each 

point cloud, and the RMSE shown is in units of [mm]).  
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Figure 5.45: LCS RMS error histogram. 

 

A plot of the FNPE2 results, in the same format as for the FNPE2 simulation, is shown in Figure 

5.46. As mentioned earlier, the orientation and position errors are calculated relative to the mean 

ICP values. Although the pre-ICP RMSE cannot effectively be used to predict the exact 

magnitude of the orientation error, it is nevertheless clear that the vast majority (>95%) of the 

results have pre-ICP RMSE values smaller than three [mm], and are also associated with 

orientation errors of less than three [deg]. 

 

 

Figure 5.46: Relative orientation error ( phi ) versus pre-ICP RMS error 

(colours indicate relative position error in [mm] ). 
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Pose Error 

For correct estimates, the FNPE2 algorithm was shown to generate pose estimates with a mean 

standard deviation of 0.4238 [deg] and 0.6257 [mm]. The ICP results were seen to be highly 

consistent from estimate to estimate, having pose estimates with a mean standard deviation of 

0.0176 [deg] and 0.0011 [mm]. Using the ICP estimates as truth data, the mean FNPE2 pose 

error was found to be 1.0301 [deg] and 1.0799 [mm].  

Table 5.5 shows a summary of the results for each of the fifteen LCS point clouds. Note that the 

error columns represent the difference between the mean FNPE2 and mean ICP poses. 

 

Table 5.5: Standard deviation and relative error of FNPE2 and ICP pose estimates 

FNPE2 standard 

deviation Error 

ICP standard 

deviation 

Point 

Cloud 

orientation 

[deg] 

position 

[mm] 

orientation  

[deg] 

position  

[mm] 

orientation 

[deg] 

position 

[mm] 

1 0.37 0.54 0.68 1.03 0.0173 0.0020 

2 0.88 0.91 0.24 0.51 0.0169 0.0015 

3 0.47 0.46 1.15 0.94 0.0191 0.0004 

4 0.35 0.58 0.95 0.61 0.0168 0.0016 

5 0.50 1.08 0.59 1.13 0.0173 0.0015 

6 0.32 0.34 0.95 2.69 0.0163 0.0001 

7 0.38 0.48 1.71 0.47 0.0184 0.0009 

8 0.45 0.40 1.58 0.94 0.0178 0.0008 

9 0.59 0.84 2.24 0.44 0.0157 0.0012 

10 0.38 1.22 0.98 1.55 0.0166 0.0020 

11 0.37 0.88 0.40 0.26 0.0176 0.0008 

12 0.31 0.82 0.47 1.08 0.0152 0.0005 

13 0.26 0.49 0.73 2.26 0.0199 0.0002 

14 0.40 0.21 1.63 1.15 0.0186 0.0020 

15 0.33 0.14 1.15 1.16 0.0199 0.0015 

Mean: 0.42 0.63 1.03 1.08 0.0176 0.0011 

 

The histograms in Figure 5.47 and Figure 5.48 show the distribution of the FNPE2 orientation 

and position estimation errors, respectively. These histograms show the error for all 750 

individual FNPE2 estimates (across all 15 point clouds). To calculate the error, each FNPE2 

estimate was compared to the mean ICP estimate for the corresponding LCS point cloud. 
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Figure 5.47: LCS Orientation Error Histogram

Figure 5.48: LCS Position Error Histogram
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Figure 5.49: Results for LCS 
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: Results for LCS point oint cloud 13.  
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Figure 5.50: Results for LCS 
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: Results for LCS point oint cloud 16.  
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Figure 5.51: Results for LCS point 
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Figure 5.52: Results for LCS 
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: Results for LCS point oint cloud 11.  
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Chapter 6 General Discussion 

When comparing the experimental results to those from the simulation, one must account for the 

fact that the physical model was only scanned from a limited number of perspectives. It has been 

established that the performance of the FNPE2 algorithm is in part dependent upon the region of 

the RAC depicted in a given scan. The simulated results from the "mounting bracket" portion of 

the RAC should not be included in the comparison, in part due to the regionality of the 

algorithm, and in part because the execution parameters of the algorithm were tuned to the 

regions scanned by the LCS, and not the "mounting bracket region". A "LCS subset" was 

therefore extracted from the complete simulation results. This was done by comparing the set 

numbers (i.e. the angular set numbers) of the pose estimates from the LCS experiment, with 

those from the simulation. Recall that the "set number" of a pose estimate is the numeric 

identifier of the angular set chosen by the FNPE2 algorithm as the best match to the input data. 

Due to the random sampling used in the plane-fitting process, multiple re-evaluations of the 

same point cloud will not always result in the same set of faces being chosen as the best ones 

from which to form the pose estimate. A given view of the RAC (or even a given point cloud) is 

not necessarily associated with a single set number. To form a correspondence between the 

simulation and the experiment, a list was compiled of all the set numbers found in the LCS 

experiment, from which duplicate values were culled. The "LCS subset" of the simulation results 

is then any pose estimate associated with a set number that matches an entry on this list. This 

effectively identifies any situation in which the simulation found faces that were also found in 

the LCS data. The results of the LCS experiment are shown in Figure 6.53 (note that the 

orientation and displacement errors are relative to the ICP pose). Figure 6.57 and Figure 6.58 

show the LCS subset of the simulation and full simulation results, respectively. 
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Figure 6.53: FNPE2 LCS experiment. 

 

Figure 6.54: LCS subset of FNPE2 simulation. 

 

Figure 6.55: Full FNPE2 simulation. 
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The LCS experimental results demonstrated a better FNPE2 fit quality (RMSE) than predicted 

by the simulation. Each LCS point cloud was made to generate repeated pose estimates of a 

single point cloud, whereas in the simulation, many different perspectives were used, each with a 

slightly different point cloud, from a slightly different perspective. This means that any 

variability in the LCS results (for a single point cloud) are not due to estimates from varying 

geometry. The variability of the simulation results, however, derives from a combination of 

continuously varied viewing direction, the unique Gaussian error added to each point cloud, and 

the inherent variability of the FNPE2 algorithm. As such, it is reasonable to see more dispersed 

results in the simulation results. The lower values of RMSE in the LCS data, however, suggest 

either that the standard deviation of the range noise in the LIDAR unit was less than the value 

that was quoted (i.e. the quoted literature was out of date), or else the unmodeled error 

characteristics of the LCS (combined with the modeled range noise) serve to preserve within the 

point cloud more of the geometric characteristics of the RAC than the simplified error model was 

able to account for. A combination of these two scenarios is also possible. It should be noted that 

the tuning parameters used in the simulation were slightly different than those used in the LCS 

experiment. Although still tuned for the larger faces, the parameters in the simulation were 

adjusted to be more tolerant of the smaller faces. Although this difference could account for the 

slightly different ranges of RMSE resulting from the FNPE2 pose estimate, this would not 

account for the correspondingly lower RMSE seen in the post-ICP pose estimate. The correlation 

between the pre and post ICP RMSE values are shown in Figure 6.56, Figure 6.57 and Figure 

6.58 for the LCS experiment, the LCS subset of the simulation, and the full simulation, 

respectively. Regardless of the reason for the smaller RMSE values seen in the LCS experiment, 

it is clear that the FNPE2 algorithm is capable of high-accuracy pose estimates using real scan 

data. 

 

  



78 

 

 

Figure 6.56: FNPE2 LCS experiment. 

 

Figure 6.57: LCS subset of FNPE2 simulation. 

 

Figure 6.58: Full FNPE2 simulation. 
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This high degree of conformity between the LCS experiment and the simulation is not as 

pronounced in terms of the position error (see Figure 6.62, Figure 6.63, and Figure 6.64). The 

location of the peak of the distribution matches, but the simulation predicts a wider range of 

position errors than were seen in the physical experiment. This could be due to the varying point 

density on certain faces, caused by the different view angles. The orientation estimate does not 

depend on the point density of a given face so much as it does on the orientation of the plane that 

was fitted to that face. The displacement estimate, however, identifies points as belonging to 

specific faces, and fits those points to their respective faces. There is, in effect, a weighting 

element to the position estimation based on the number of points found on each face of the set. 

Faces with more points are in effect given a heavier weighting when determining the 

displacement. For this reason, correctly oriented but poorly sampled faces will probably result in 

a position estimate that is of lower quality than the orientation estimate. For the better-sampled 

faces, however, the large numbers of points can help to average out the noise in the data, thus 

increasing accuracy. None of the LCS point clouds necessitated the use of poorly sampled faces, 

and so the position and orientation estimates were seen to be of comparable quality. The 

distribution of the LCS estimates does not stray too far from this scenario, since the data were 

spawned from repeated evaluation of only 15 scans. 
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upper right hand portion of the map), where the angular sets are based on faces of particularly 

dissimilar surface area.  

 

 

Figure 6.65: Sinusoidal projection of FNPE2 simulation view positions, 

coloured by orientation error in degrees (top) and displacement error in mm (bottom). 

 

The reason for the clustering of orientation error in this location was discussed earlier. Note, 

however, that the problems with the displacement estimate manifest sooner than the problems 

with the orientation estimate. This is reasonable, since even a single undersampled face can 

cause the displacement estimate to be skewed in favour of the other three faces, thus degrading 

the position estimate. The orientation estimate is not affected because the FNPE2 algorithm tends 

to find the faces with the largest numbers of points first (The high point density on these faces 

will cause badly-fitted planes to contain significantly fewer points, and so even fairly shallow 

faces can be distinguished from one another). Having found those faces, it removes them from 

the point cloud before searching again. Once the three large faces have been found and removed, 
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the remaining face should be more or less isolated, and easy to reconstruct. In those regions 

where multiple small faces are visible (and are the only ones available for the formulation of a 

pose estimate), especially when connected with shallow angles, well-fitted and badly-fitted 

planes may contain a similar number of points, and the algorithm will have difficulty separating 

one face from another. In these situations the incorrectly reconstructed geometry will degrade the 

orientation estimate. The flawed geometric reconstruction will obviously cause significant 

degradation to the position estimate as well, hence the correspondence between the two error 

distributions in this region. 
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Chapter 7 Conclusions 

The present work has shown that a unique target shape such as the RAC, combined with a pose 

estimation algorithm such as FNPE2, form a potentially viable basis for LIDAR-based pose 

estimation. Simulation results have shown that FNPE2 works well as an independent means of 

pose estimation. Both the simulation and the LCS experiments show that FNPE2 facilitates high 

accuracy ICP estimates, typically requiring fewer than about 120 iterations of the ICP algorithm. 

The simulation shows that this is possible for over 95% of the viewing directions. The FNPE2 

algorithm has demonstrated the ability to generate pose estimates from raw LCS point clouds, 

having an average error (relative to the ICP refinement) of only 1.03 [deg] and 1.08 [mm], with 

standard deviations of 0.56 [deg] and 0.67 [mm] respectively. These results are better than those 

predicted by the simulation, and the simulation suggests that a large and contiguous portion of 

the RAC viewing directions can be used to generate pose estimates of similar accuracy. 

Although the combined use of FNPE2 and the RAC have demonstrated the distinct potential for 

use as LIDAR-based pose estimation tools, further research and development would be required 

before practical implementation in a dynamic setting could be realistically considered. 

7.1 Future Work 

There are several ways in which the present work could be expanded upon. The current 

assessment of performance would have been more complete had there been truth data concerning 

the relative pose between the model and the LCS, and so future assessments should include this 

data, if possible. Since the LCS data available were for a consistent set of target ranges, it would 

be worthwhile to examine the effect of varying range on the accuracy of the estimation process, 

as well as the effect of varying scan patterns (i.e. Lissajous, etc…). A method for determining the 

optimal operational parameters (diameter and thickness of point selection region, plane-fitting 

threshold distances, etc…) must also be developed. Manual adjustment of these parameters for a 

specific range, scan density, and point cloud error is not feasible when considering practical use 

in a dynamic setting, such as in an orbital rendezvous and docking scenario. Finally, to achieve 

real-time functionality the algorithm must be reconfigured to maximise speed and efficiency (i.e. 

general streamlining, use of parallel processing, etc…). For such real-time operation to be of 
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practical use, the consistency of the estimates must also be improved. 

 

It should be noted that practical considerations associated with surface normal calculation were 

not a part of the original set of optimisation parameters used to determine the geometry of the 

RAC. With precise data concerning the effect of the RAC’s various geometric properties on a 

refined, more robust version of the FNPE2 algorithm, the target could be redesigned to improve 

performance (For a given set of target ranges and viewing geometries, it is even conceivable that 

simultaneous optimisation could be performed on the FNPE2 operational parameters and the 

RAC geometry). The next step after such optimisation would be the repetition of some form of 

static assessment of the pose estimation algorithm using the new geometric design, followed by a 

set of dynamic experiments, both simulated and physical. For the simulated experiments, the 

development of a realistic LIDAR point cloud error simulator (including the addition of edge 

effects and other such characteristics) could improve the accuracy of simulation-based 

predictions, concerning performance in physical testing situations. The increased predictive 

capacity of such simulations could also prove to be useful in the design and optimisation of 

future 3D target shapes. Dynamic experiments could include the study of the effects of motion 

blur on individual pose estimates, methods to mitigate the impact of these effects, the 

identification and isolation of the target from a wide scan, and the integration of a Kalman filter 

to facilitate dynamic pose prediction.  
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Appendices 

Appendix A: Background on the Iterative Closest Point (ICP) Algorithm 

The ICP algorithm is an iterative method of minimizing the mean-squared distance error between 

two sets of data. Within the context of this thesis, it is a method for the registration of 3D shapes, 

based on a computer model of the shape, and a given set of 3D points. The points are a 

representation of the shape, based on range data from a sensor (either real or simulated). The 

computer model consists of a closed polygon with triangular faces, defined by a list of vertices. 

Faces are defined as indices into the list of vertices. 

 

The algorithm is based on a correspondence between two sets of data. The first is the given 

sensor data, and the second is a set of closest points on the model which is re-evaluated with 

every iteration. Initial translation and rotation estimates are not technically required for this 

implementation of ICP [2][19] to converge, but for the reasons outlined earlier, they are provided 

to the algorithm12. With each iteration, incremental rigid rotations and translations are 

determined (non-iteratively) which reduce the mean squared error between the correspondence 

pairs. The increments are used to update the initial estimates, and the process is repeated. The 

iterations stop when either the current mean squared error, or the difference between the mean 

squared errors of the previous two iterations, drops below a given threshold. The final translation 

and rotation represent the absolute pose of the input point cloud. 

 

Brief Mathematical Summary 

The following is a very brief description of the determination of the incremental translations and 

rotations used, and is taken from [2]. The optimal quaternion rotation is described in further 

detail in [19]. 

 

For the following description, S 	 �������% is a measured point set of u� points, describing a "data" 

                                                 

12 This implementation of ICP can function with an initial guess of d = [0,0,0] for the translation, and q = [1,0,0,0] 

for the rotation. 
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shape that is translated and rotated so as to align with a "model" shape defined by the point set D 	 �F�����% (consisting of  u points). Each point ������ corresponds to the point in F����� with the same 

index, and u� 	  u. The registration state vector is denoted �� 	 ��������|�������� where ������� is a unit 

quaternion rotation, and ������� is a translation vector. The mean square objective function is shown 

in equation (24). 

 � ��# 	 1u� � ||F����� � � �������#������ � �������||-��
Ul`  (24) 

The centroids of the point sets P and X are denoted ������� and ������ respectively. The cross-covariance 

matrix ∑ �F for the sets P and X is given by (25). 

 

� �F 	  1u� �1h������ �  �������j F����� �  ������#�4��
Ul`

	 1u� ��������F������ ���
Ul` ��������������

 

(25) 

The cyclic components of the anti-symmetric matrix EUT 	 h∑ �F � ∑ �F�jUT are used to form 

the column vector ∆	 �E-� E�` E`-��, which is used to form the symmetric 4 � 4 matrix � ∑ �F#, as shown in equation (26). 

 � �� �F� 	 ��� �� �F� ∆�
∆ � �F � � �F� � �� �� �F� ��� (26) 

Where �� is the 3� 3 identity matrix. The unit eigenvector corresponding to the maximum 

eigenvalue of the matrix � ∑ �F# is selected as the optimal rotation. The optimal translation is 

given by 

 ������� 	 ������ � � �������#������� (27) 

The registration vector �� is then used to transform the point set P, whereupon the mean squared 

registration error is recalculated, and the process repeated until the stop conditions of the 

algorithm are reached. 
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Appendix B: Old Catalogue Lookup Error Metric 

The error metric generated by the catalogue lookup algorithm is used to determine the entry in 

the reference catalogue that best matches the input data. It is calculated in two parts. The first 

measures the difference between the measured and reference angles: 

 ( ) ( ) ( )
 valuemeasured  

 valuereference  
    where

'

2'2'2'

1
=

=
−+−+−=

θ

θ
θθθθθθ ccbbaae  (28) 

The smallest value of e1 is used to identify the matching reference tuple. Using ESOQ2 (the 

Second Estimator of the Optimal Quaternion) [16], a best-fit rotation is then found that maps the 

reference vectors onto their measured counterparts. After the rotation is applied, the reference 

unit normals �2+ 2, 2.� are compared to the measured unit normals 12+3 2,3 2.3 4 as follows: 

 ( ) ( ) ( )
 valuemeasured  '

 valuereference  
   where111

2'2'2'

2
=

=
⋅−+⋅−+⋅−=

n

n
nnnnnn ccbbaae  (29) 

The first error is based purely on angle mismatches. The second is based on the effectiveness of 

the orientation estimate. A combination of these two errors is used to formulate the direct pose 

estimate for a given view. It should be noted that this implementation may appear somewhat 

arbitrary, and the subsequent combination of the second metric with the first is not entirely 

justified from a mathematical perspective. This implementation was arrived at somewhat 

empirically, and was used only because it generated satisfactory preliminary results. The 

implementation and use of the error metrics was later revised (see section 2.3.1).  
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Appendix C: Points in Triangles 

Are the points in the triangle? (note: points being tested are in the plane of the triangle) 

1. The triangle has three vertices t1, t2, t3 

2. Generate unit vectors between vertex t1 and t2 (t12), between vertex t1 and t3 (t13), and 

between vertex t1 and tx (t1x) where tx is the point being tested 

3. Compare the following cross products: t12, � t13 and t12, � t1x. If they point in the same 

direction, then the point tx is on the same side of the vector t12 as the point t3 

4. Repeat this for t23 � t21 and t23 � t2x 

5. And again for t31 � t32 and t31 � t3x 

6. If each of the three pairs of cross products point in the same direction, then the point tx is 

inside the triangle defined by the vertices t1 t2 and t3 

Note: Using matrix notation, this procedure is performed non-iteratively for all the points 

being tested. 

7. The area of the triangle is determined using Heron’s formula: 

 E 	 6H H � +# H � ,# H � .# (30) 

where H is the triangle's semiperimiter, and is calculated from: 

 H 	 + � , � .2  (31) 
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Appendix D: Extra Figures from the FNPE2 Simulation Results 

 

Figure 7.66: Regional Distribution of Post-ICP RMSE (FNPE2). 

 

 

 

Figure 7.67: Cumulative Orientation Error (FNPE2 Simulation). 
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Figure 7.68: Cumulative Position Error (FNPE2 Simulation). 
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Appendix E: Extra LCS-to-FNPE2 Comparison Data 

 

Figure 7.69: LCS RMS Error Histogram. 

 

Figure 7.70: LCS Subset of FNPE2 Simulation. 

 

Figure 7.71: FNPE2 Simulation RMS Error Histogram. 
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