Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2007

Sketchsurfaces : sketch-line initialized deformable
surfaces for efhcient and controllable interactive 3D
medical image segmentation

Meisam Aliroteh
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

Recommended Citation

Aliroteh, Meisam, "Sketchsurfaces : sketch-line initialized deformable surfaces for efficient and controllable interactive 3D medical
image segmentation’ (2007). Theses and dissertations. Paper 321.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/321?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

b \B\A g by

RC
SKETCHSURFACES: SKETCH-LINE %%
INITIALIZED DEFORMABLE SURFACES *%)
FOR EFFICIENT AND CONTROLLABLE
INTERACTIVE 3D MEDICAL IMAGE
SEGMENTATION

Meisam Aliroteh
BASc, Electrical and Computer Engineering, University of Toronto, Toronto, 2005

A thesis
presented to Ryerson University
in partial fulfillment of the
requirement for the degree of
Master of Applied Science
in the Program of

Electrical and Computer Engineering.
Toronto, Ontario, Canada, 2007

© Meisam Aliroteh, 2007

PROPERTY OF
RYERSON UNIVERSITY LIBRARY

UMI Number: EC53714

- INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EC53714
Copyright2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Author’s Declaration

I hereby declare that I am the sole author of this thesis. I authorize Ryerson
University to lend this thesis or dissertation to other institutions or individuals for the

purpose of scholatly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by
other means, in total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

it

Instructions on Borrowers

Ryerson University requires the signatures of all persons using or photocopying this

thesis. Please sign below, and give address and date.

iii

Abstract

Meisam Aliroteh, SKETCHSURFACES: SKETCH-LINE INITIALIZED DEFORMABLE
SURFACES FOR EFFICIENT AND CONTROLLABLE INTERACTIVE 3D
MEDICAL IMAGE SEGMENTATION, MASc, Electrical and Computer Engineering,
Ryerson University, Toronto, 2007

This thesis presents an intuitive, fast and accurate interactive segmentation method
for visualizing and analyzing 3D medical images. This method combines a general
deformable subdivision surface model with a novel sketch-line user initialization
process. The model is simply and precisely initialized with a few quick sketch lines
drawn across the width of the target object on several key slices of the volume image.
The smooth surface constructed using these lines is extremely close to the shape of
the object boundary, making the model’s task of snapping to this boundary much
simpler and hence more likely to succeed in noisy images with minimal user editing.
This subdivision-surface based deformable model provides a foundation for precise
user steering/editing capabilities and all of the simple, intuitive user interactions are
seamlessly integrated with advanced visualization capabilities. Furthermore, to
demonstrate its efficiency and accuracy, this new model has been used to segment

objects from several 3D data sets.

Keywords: sketch initialization, subdivision surface, medical image segmentation,

interactive image analysis, human-computer interaction.

iv

Acknowledgements

I would like to express my sincere gratitude to Dr. Tim Mclnerney for his invaluable
guidance, constant encouragement, and infinite patience during the course of this
work. The perfect balance that he maintains between encouraging independent
student work and providing scientific advice when needed makes him a great mentor.

I feel honoured to have worked under his supervision.
I also would like to thank the members of my thesis committee, Dr. Ling Guan, Dr.
Kiristiina M. Valter McConville, and Dr. Sridhar Krishnan for their time and effort in

reviewing my thesis and their helpful feedback.

Lastly, I would like to express my gratitude to my parents for their support.

Contents

1 Introduction 1
1.1 Contributions Of thiS THESISceeeeeeeereeeerrreeeenessesesessesenssssssnessssassssssssssssnses 4
1.2 ThesiS OULHNE covievereeieeeieeeeeeeeeeeeeeeeeeeeteeeeseeseseeseseesessessssessssessesensassnsesensesasnn 7

2 Evaluation Criteria and Motivation for a New Approach to Interactive 3D
Segmentation 8
2.1 ACCULACY coueirereeceeencnneensenssess s sssesssssstss s ssesssssstsesssssssssessssassssessssasssssans 8
2.2 RePEAtaAbIlity....uueeeieinininiiiaciniseniseeiseseesesses ettt sesenesssesesaeen 9
2.3 EffICIENCY cureiirininineiitciectsinssicncnsesscaseseasessstssssssssssssssssssssssessessessessasses 10
2.4 SEEEIINEG cuuvriurcrriurecuinrisesessesssstsisssssssesssesstessssasassasssssssassssassassssssssssssssasssses 11
2.5 EdING cucieieieinieiniieseeiceieeststsetressessesststsetssssessessssssssessssssssssssssssssassas 11
2.6 Motivation for a New Approach to Interactive 3D Segmentation........ 12

3 Current Approaches to Model-Based Semi-Automatic 3D Medical Image

Segmentation 14

3.1 Slice-By-Slice ApProach.......icucicicicicicicncsciniissississsssssssessens 14
3.2 Deformable Balloon MOElS.....ooueceoeeeeeeeeeeeeeeeeeeeesessessesssnssssssessessesssses 15

3.3 Semi-automatic Boundary Tracingccceceeuveerivcunencenennecnsensncuscsniscanes 19

3.4 Region Painting and Graph Cutscceecninninninceneiceninicnsessessnnenes 23

4 Deformable Surface Models 27
4.1 Geometric RePIeSentationrecieeimincisessiinsescasesnisessessessssssssssseses 28
4,2 Force-based FOrmuUlationuceccieceiereeereeeerveesseressesessesseessssssssssssesssssssessnessns 29
4.2.1 TH2EINA] FFOTCOSeeneeeeeeeeetveeeeeeerereeeseesesessesssesssssssssessessssssassessasasanses 31

4.2.2 External Inage FOrcesuuecueneecnincninicnesicscnsssssscssessnsens 32

4.2.3 CONSITAINE TF0TCOS aeeaeeeeeeeeeceeeeereeeeereerreesresssssssesssssssesssesssesssssssesnsssnns 33

5 Deformable Subdivision Surface Models 34
5.1 SUDAIVISION SULTACES..c.ueiutieieireeeeeenereeereeesereaeessssssessesssessssssssesssessessensessassens 34

52 Global Subdivision vs. Local SUDQIVISION ..uu.ueeereereeeeeeeeseeeeeseeemmsemessssns 37

vi

7

5.3 Constructing a Deformable Subdivision Surface Model..........cuuee.... 39
SketchSurfaces 43

6.1 Sketch Lines: A Simple, Fast, and Accurate Initialization Technique ..44

6.2 TN orocvrreeeressssrerssssssssessmsssssssssssssssssssssssnse .48
6.3 Editing and Steeting....... reeeeenseenetaeaesases 51
0.4 SketchSurfaces Parameters......coouecreecrrcsecrscnsessissessisensessesssssessssesssssssanss 56
Experimental Results 59
7.1 Segmenting Synthetic Data Setsccceueeuvirnirncseeseesensenirsiessesserssesseseans 59
7.2 Segmenting the Right Caudate Nucleus.........ccocvcviuvnrverncreerneeensensresnnnnes 63
7.3 Segmenting the Right Brain Ventricle..... ceruerenesers e rs s ten s e bestane 65
7.4 Segmenting the Right Putamen.........coeieeeeenee 66
Conclusions 68
8.1 SUMMALY ..ottt sss bbb es e s ssenass 68
8.2 FULULe WOLK .o sses e sssses s s sassenes 69

vii

List of Figures

1.1

31

3.2

3.3

5.1

SketchSurfaces segmentation of the right caudate nucleus from an MR volume
image. The user positions the image slice plane at one end of the caudate,
either in a 3D view ((a) left) or a 2D view ((a) right). The user then sketches a
few lines across the width of the caudate, creating a contour that approximates
its boundary (b — d). The user may also view and operate on an edge detected
image (e). This process is repeated for a few slice planes. After each sketch-line
process, the previous contours are automatically connected and converted into
a subdivision surface (f — j). The curves in f—j highlight the slice plane locations
where the user has performed the sketching steps. In this example, the initial
surface for the caudate was constructed using five slice planes. The initialized
surface (k) is then fitted to the boundaries of the caudate in order to obtain a

segmentation 1eSult (D). .mveiirrreriisnrrieeeenisi

Segmentation of anatomical structures using the Balloon method. Examples of
edge-based contour evolution (a — d). Segmentation of left hippocampus from
MRI by initializing two balloons (¢). The result of surface evolution after 6
iterations (f) and 18 iterations (g) and the final segmentation with a rotated

view (h). (FLOM [7]). cecouvrurrrrrimrrmsssssssssssssecsssssssssssssssssssnsssssssssssssssssassnsssssssssssssssssssssssesssss

Example of 3D LiveWire segmentation of the cortical surface. The user starts
by tracing the contour of the target object in a few slices (a), shown as dark
curves. From these contours the algorithm will automatically calculate and
detect contours on other slices, shown as light curves. The final extracted

cortical surface is shown in (€). (From [10]). .o

Graph Cuts segmentation of a synthetic data set (a Neghip). The user provides
input to the algorithm by marking parts of the foreground (yellow strokes) and
parts of the background regions (white strokes) (a). The Graph Cuts algorithm
is then used to segment the volume (b). To edit the result, the user can either
provide more input by marking more regions, or select a region to be deleted

(©) and cut out the erroneously segmented parts (d). (From [40]). cooovrserniisccnicininnee.

Subdivision surface algorithms start with a control mesh () and progressively
refine the mesh to obtain a smoother mesh at level 1 (b), level 2 (c), level 3 (d),

ATLA SO OML. .ereeerrereserssssrssssssssrsssrsssnessssssssssassnssnsorsssssssesssssssssssssnssssssssssssssssssssssssssssasssssnssesssseesse

viii

v 17

21

26

35

5.2

5.3

5.4

5.5

5.6

5.7

Examples of approximating and interpolating subdivision surface algorithms. A
control mesh (displayed in wireframe) is subdivided by various algorithms: (a)
Approximating Catmull-Clark, (b) approximating Doo-Sabin, (c) approximating
Loop, (d) interpolating Modified Butterfly.......

The subdivision masks of the Modified Butterfly algorithm. (2) Eight-point
stencil. The dot indicates the midpoint of the edge for which a new value is
computed. (b) Stencil for a vertex in the 1-neighborhood of an extraordinary

verteX. (From [46]). .. iicicineinceisessenensessesssssssssssssssssssssesssssssssssssssscnss

Modified Butterfly subdivision. Every refinement step on the coarser level (a)

quadruples the number of triangles that will be generated in the finer level (b).........

Example of local subdivision. The triangles to be subdivided (a) are first
broken into three pieces each (b). During the edge-flipping phase (c), the
shared edges of triangles in (a) are flipped in order to transform small and
narrow triangles into larger triangles. In (c) the shared edge before and after
flipping is marked with a thick line and the triangles that are transformed are

External forces are computed at the sensor points and distributed to the
control points. The sensor points are presented as light circles and the sensor
point forces are the lines emanating from them. The control points (which are
also considered sensor points) are presented as dark circles and the distributed
forces are the lines emanating from them. A cross-section of the surface is
shown in (b). The external forces are computed at the sensor points along the
subdivision surface pulling it to the edge of the object of interest (dark square).
If a sensor point is within a user-defined range of an object edge point, a force
proportional to the distance between the two points is computed. This force is
then divided proportionally using the weights of the subdivision mask and
added to its “parent” control points. The resulting normalized external force at
the control points pulls the control points towards the object boundary. In (c)
the user-defined range has been increased, resulting in more activated sensor
points, and consequently more of the control points have received distributed

FOLCES. veurererrerirrrrireiesesseressssssesessssesesessesesessssesensesessesssessssessssessssesensasssessesesssssessasessnsasssnsensasons

Example of force distribution process from sensor points (Nj) to a control
point (Xi). (a) Portion of a control mesh and a control point (b) The control
mesh and the subdivided surface are overlaid showing the sensor points whose

external forces will be distributed to the CONLIOl POINt..uuunrrrrrrevvevvesssssssssasmmsensesssssssens

ix

.35

36

... 40

6.1

6.2

6.3

6.4

6.5

6.6

Result of the sketch line initialization process for the right brain ventricle. By
quickly sketching a few lines in several slices of an MR volume image, a highly-
accurate initial surface model is created. (a) cross-sectional contour of the initial
model (light curve) shown with a cross section of the manually segmented
ventricle (dark curve). (b) the initial surface model (solid semi-transparent)
shown with the manually segmented ventricle surface (wireframe)

Internal control points can be added to a SketchSurface in order to increase
model accuracy while keeping user input minimal. (a) Initial control mesh from
sketch line initialization process and (b) initial subdivision surface. (c) Internal
control points automatically added to the control mesh and (d) new
subdivision surface obtained via the subdivision process. The control mesh of
a SketchSurface is only used internally by the algorithm and is never presented
to the user. The internal control points are added such that there are little or no

changes to the shape of the new smooth surface (comparing b to d).....cceceeevviuvcrnnee

Fitting of a SketchSurface to a synthetic cube data set. As the surface evolves
towards the edges of the cube, the strength of external forces at sensor points
diminishes. Consequently, smaller external forces are distributed to the control
points. In this figure, the control points are marked as dark circles and the
sensor points are marked as light circles. The external forces are the lines that

€MANALE fIOM thESE CITCIES. vuvuivriirrirrieeerinriessisresesreeesessessesessessessessessssessssssssssessessssssensenes

Editing in SketchSurfaces. The user manipulates the 3D image slice plane and
generates a cross-section of the surface model (a). A subdivision curve is
constructed from this cross-section (b). The user precisely reshapes the curve
by dragging curve control points (c). Soft constraint forces are generated and
the surface model is refitted such that the new cross-section matches the

subdivision Curve (d). ..ottt s sesssensassns

Snipping in SketchSurfaces. To remove any excess regions in a SketchSurface
(a) the user orients and places the image slice plane where the overhang is

located (b) and cuts it AWAY (C). wcvuviercrricriiniiiiiniisiniecsiessesasssesssessssssssssssssscsens

Pinning a control point on a cross-section of a SketchSurface. (a) For an object
with weak edges or gaps in its boundaries (dark curve) the pinning action can
be used to create stationary control points and increase segmentation accuracy.
(b) The user drags a control point to its final location and pins it by double-
clicking on it (indicated by a square) and the SketchSurface is then constrained

45

... 50

..54

7.11

7.1.2

7.1.3

7.14

7.2

7.3

to pass exactly through the pinned control point. Points can be pinned or

unpinned as the user constructs the SketchSurface or after a fitting step.c...cveeren.

Example segmentation of a cube from a synthetic data set. (a) The user-
initialized SketchSurface, (b—€) Surface deforming towards the object
boundary, (f) Final segmentation result.

Example segmentation of an ellipsoid from a synthetic data set. (a) The user-
initialized SketchSurface, (b—e) Surface deforming towards the object

boundary, (f) Final segmentation reSult. ...cmremnsersesissssssssssssssssssnssessessessssssessesss

Example segmentation of human kidney from a synthetic data set. (a) The
user-initialized SketchSurface. (b) Final segmentation result. (c) The hand-

SEGMENLEd SULFACE. cuuvrvrirrierirscecciceeeees e ssass s b sseass s bt assnns

Example segmentation of a human liver from a synthetic data set. (a, d)
Different views of the user-initialized SketchSurface. (b, €) Different views of
the segmentation result (fitted surface). (c, f) Different views of the hand-

SEZMENLE SULFACE. wvurvruririncririici bbb b ssss bbb sasbees

Example segmentation result for the right caudate nucleus. (a — c) A few user-
initialized contours. (d, g) Different views of the user-initialized SketchSurface.
(e, h) Different views of the segmentation result (fitted surface). (f, i) Different

views of the hand-segmented SUIface.......covviicicicinciiiii e

Example segmentation result for the right brain ventricle. (a — c¢) A few user-
initialized contours. (d, g) Different views of the user-initialized SketchSurface.
(e, h) Different views of the segmentation result (fitted surface). (f, i) Different

views of the hand-segmented SULfACE......couiiviriiiinerciiiiisaes

xi

w95

60

... 61

e 62

... 63

List of T'ables

7.2 Results of segmenting the right caudate nucleus from five data sets.......cccceeuerneee 64

7.3 Results of segmenting the right brain ventricle from five data sets.cooeververrnecs 66

xii

Chapter 1

Introduction

Image segmentation is commonly defined as the partitioning of an image or a volume
image into homogeneous areas, separating regions of interest from the rest. A volume
image can be visualized as a stack of 2D images that constitute a 3D volume when
assembled. These images can be obtained through various acquisition methods such
as Magnetic Resonance Imaging. Segmentation of volume images remains one of the
major challenges in medical image visualization and analysis. In the medical imaging
field, the extraction of anatomical structures from the background and from each
other is a prerequisite to a host of medical image analysis (MIA) tasks, such as
measurement, visualization, matching and labelling, reconstruction, and surgical
planning. The ultimate goal of medical image segmentation is the development of
fully automatic techniques that guarantee maximum repeatability, robustness,
accuracy, and efficiency. The complexity and variability of anatomical shapes, the
significant variation between images, anatomical structure abnormalities, non-uniform
image acquisition, and the sheer size of the data sets have created imposing barriers
to the development of robust, efficient, fully automatic medical image segmentation
systems. Furthermore, the wide range and different properties of imaging modalities
and the lack of image quality often result in fuzzy, indistinct, or disconnected object
boundaries. The challenge is to efficiently extract the boundary elements belonging to
the target anatomical structure and integrate these elements into a complete and

consistent model of that structure. Researchers have struggled to effectively utilize

prior knowledge of structure shape, position, orientation, symmetry, relationships to
neighbouring structures, associated landmarks, and plausible image intensity

characteristics in order to meet this challenge.

On the other hand, manual segmentation via boundary tracing is extremely labour-
intensive, time-consuming, and error-prone. Traditional image processing techniques,
such as thresholding and region growing, can be effective for a small set of specific
segmentation problems. However, they only consider local intensity information and
therefore often make incorrect assumptions during the boundary element integration
process, resulting in infeasible object boundaries. As a result, these model-free
techniques usually require considerable amounts of user intervention and editing.
Consequently, a more immediate and significant impact on MIA may be realized by
optimizing the capabilities of model-based semi-automatic segmentation techniques,
to the point where only a small amount of user intervention is required to process
complex data sets. To achieve this, the recognition capabilities of the human visual
system must be fully exploited. Model-based semi-automatic techniques that assist the
human operator in performing segmentations must be designed to not only be fast
and intuitive, but also permit the interactive transfer of structure shape and
appearance knowledge from the expert in order to ensure segmentation accuracy,

robustness and reproducibility with minimal user editing.

Deformable models such as Snakes, Balloons, and their variants (as further discussed
in chapter 3) have been devised in order to assist a human operator in performing
segmentation of anatomical structures from 2D and 3D images, respectively. A Snake
is an interactive, flexible contour model that is placed in the vicinity of the object of

interest, and then iteratively adjusted to fit the boundary of the structure. In contrast,

in 2 Balloon model an initial sphere is placed inside the target object (which can be far
from object boundaries) and is then iteratively inflated and deformed in order to
captute the shape of the object. Despite the large number of 3D semi-automatic
segmentation methods developed over the past decade, no one technique has been
widely adopted in clinical practice, and manual delineation and/or simple pixel-based
tools are still heavily used. The lack of adoption of these techniques is in part related
to the ineffective integraton of simple, intuitive, and consistent interaction
capabilities, with the necessary precision and power, into the segmentation work-
flow. An interactive segmentation method can be simply broken down into two
fundamental parts: an algorithmic/computational part, and an interactive part. As
desctibed in the scientific literature, many of the current segmentation methods have
mostly emphasized the algorithmic and computational part, with little or no attention
to the interactive part. These interactive segmentation methods use different
strategies to combine the expertise of humans with the computational power of
computers; hence, their outcome depends on the proposed interaction strategy as
much as on algorithmic computation. As a result, a proper assessment of interactive
segmentation methods requires the computational and interactive parts to be equally

understood.

All 3D segmentation techniques can fail in noisy images and this failure can result in
time-consuming and tedious user intervention. With many of the current techniques
[1-7], once the algorithm is initiated, the ability to steer it is limited and/or the ability
to edit it is restricted to a separate post processing phase, often with a separate tool-
set and/or user actions. That is, while the mathematical formulations and numerical
algorithms of these model-based methods enable simple initialization and complex

shape extraction, the cost is incurred on the “back-end” of the segmentation process.

Other techniques [8-10] do provide interactive steering capabilities but editing
facilities are not well integrated, the tracing actions are tedious and require
considerable user concentration, and the 2D contour-based nature of the algorithm
forces the user to pay careful attention to how it is applied and to mentally

reconstruct the 3D shape of the object as the algorithm is applied.

1.1 Contributions of this Thesis

The deficiencies of user control functionality, simplicity of use, and the lack of
interaction precision and intuitiveness of current methods have led to the exploration
of an alternative research direction in 2D [11], creating a user-friendly interactive
contour model suitable for segmenting medical images and image sequences which
exhibit a significant amount of noise. This thesis extends the proposed approach of
[11] to 3D segmentation. More specifically, the goals of this thesis are to provide a
highly accurate initialization of a deformable surface model using fast, simple, user
actions that require little concentration. After initialization, it should be visually
apparent to the user what the resulting segmentation will look like. In addition, this
thesis seeks a robust, noise-insensitive shape model that provides the foundation for
precise, efficient, and intuitive steering and editing capabilities, and a method that
requires little or no parameter tweaking and/or mode changes. Most importantly, all
the interaction capabilities must be seamlessly “woven” together providing simple,
consistent user interactions and complete user control throughout the entire

segmentation work-flow.

The result of this thesis is the development of SketchSurfaces - a highly controllable

subdivision surface based deformable model with a simple formulation that is

coupled with a novel sketch-based 3D initialization method. SketchSurfaces offer
“fluid”, consistent transitions between initializing, fitting, steering, editing, visualizing,
and zooming. The user is able to stop the segmentation at any time, examine the
current initial surface model or partal segmentation result, zoom in and out, and

make precise corrections before continuing, all with simple mouse actions.

Using SketchSurfaces, in order to segment an anatomical structure, the user starts by
navigating through the volume image slices to one end of the target object. To
petform this navigation, SketchSurfaces provide the user with both 2D and 3D image
slice views (Fig. 1.1 a). As the user positions and orients a slice plane in the 3D view,
the 2D view is updated in real-time, always showing a bird’s-eye view of the 3D plane
for enhanced visualization. Once the image slice is positioned at one end of the
object, the user initializes a surface by sketching a few lines across the width of the
target object, creating a contour that approximates its boundary (Fig. 1.1 b—e). This
can be done on either the 2D or the 3D view. The user then proceeds to another slice
plane by pushing the plane towards the other end of the object, and repeats this
sketching process. After each sketch line process, the previous contours ate
automatically connected and converted into a subdivision surface (Fig. 1.1 f—j). This
simple initialization process leads to the construction of an initial surface that is
extremely close in shape to the target object. This makes the model’s task of snapping
to the object boundary much simpler and hence more likely to succeed in noisy
images with minimal user editing. Once the initial surface is constructed, the user will
then proceed to segment the target object by fitting the initialized surface to the
object boundaries (Fig. 1.1 k,I). After the fitting step, if the shape of the segmented
object is not satisfactory, the user can perform more fitting steps or directly edit the

shape of the segmented surface.

®) © @ o ©

) 0

Figure 1.1: SketchSurfaces segmentation of the right caudate nucleus from an MR volume image.

The user positions the image slice plane at one end of the caudate, either in a 3D view ((a) left) or a
2D view ((a) right). The user then sketches a few lines across the width of the caudate, creating a
contour that approximates its boundaty (b — d). The user may also view and operate on an edge
detected image (€). This process is repeated for a few slice planes. After each sketch-line process, the
previous contours are automatically connected and converted into a subdivision surface (f — j). The
curves in f—j highlight the slice plane locations where the user has performed the sketching steps. In
this example, the initial surface for the caudate was constructed using five slice planes. The initialized

surface (k) is then fitted to the boundaries of the caudate in order to obtain a segmentation result (J).

1.2 Thesis Outline

Chapter 2 starts by providing a number of evaluation criteria that should be used as
the requirements for the design of any interactive segmentation technique, providing
the motivadon for designing a new approach to interactive 3D segmentation that
adheres to these guidelines. Next, in Chapter 3 a number of currently popular
segmentation approaches are evaluated using these criteria, further demonstrating the
need for a new approach with a better design. Chapter 4 presents a comprehensive
review of semi-automatic deformable models, their use for medical image
segmentation, and their mathematical foundations. Moving on to Chapter 5, the
basics of subdivision surfaces are covered and the Modified Butterfly subdivision
scheme is introduced. Chapter 6 introduces SketchSurfaces — a new approach to
interactive 3D medical image segmentation — and some of the experimental results
that were obtain using this approach are presented in Chapter 7. Finally, Chapter 8

presents some concluding remarks along with recommendations for future research.

Chapter 2

Evaluation Criteria and Motivation for a New Approach

to Interactive 3D Segmentation

The objective evaluation of interactive segmentation methods is a rather difficult
issue. The evaluation depends on the task, where the performance of a method may
be considered reasonable for one application and not acceptable for another. In the
literature, however, the main evaluation criteria that have been adopted consistently
to measure the capabilities of interactive segmentation methods are accuracy,
repeatability, and efficiency. In addition, since the ability to effectively steer and edit
the segmentation affects all three criteria, these two capabilities warrant a separate
treatment and are included as part of the evaluation criteria. Together these criteria

offer a reasonable starting point to evaluate interactive segmentation methods.

2.1 Accuracy

The most common evaluation criterion is accuracy, indicating the degree to which the
delineation of the object corresponds to the ground truth. To measure the accuracy
of a method, the generated result of the segmentation tool is often compared against
a ground truth obtained by allowing a human expert to perform the segmentation
manually. A common problem of this approach is the bias factor introduced by the

human experts. Different experts can segment the same object from the same data

set differently, leading to a different set of ground truth results. To mitigate this issue,

currently in the literature an averaging of the ground truth results is performed.

It should be noted that accuracy as a criterion is most applicable in the evaluation of
segmentation results generated by fully automatic processing. In interactive methods,
user participation is included in the process to improve accuracy to the point where
the result obtained is “always™ satisfactory. The only situation where this is not true
occurs when user control is limited. Thus, an interactive method is potentially
accurate when it provides full control to the user to generate any desired result.
Nevertheless, achieving the desired accuracy through user interaction can affect the

efficiency of the algorithm, especially when considerable user interaction is required.

2.2 Repeatability

Repeatability may be defined as the extent to which the same result would be
produced over different segmentation sessions when the user has the same intention.
In this case, the same image and object are segmented several times by one human
operator and the results are compared. The same procedure is followed to assess the
inter-operator repeatability. The differences indicate the intra-operator or inter-

operator variability of results.

The variation of the results can be caused either by the difference in the operation of
the segmentation tool (different initialization criterion for example) or by the
difference in user judgment. A method potentially generates repeatable results when it
takes precautions to minimize the effect of the first type of variation. Nothing can be

done about the second type.

2.3 Efﬁciency

As suggested by [12], efficiency of a segmentation technique can be separated into
two parts: efficiency of the computational part, and efficiency of the interactive part.
Efficiency of the computational part is measured in terms of the time needed by the
computer to generate the result. Computation should be fast enough to allow for
interaction in real-time. With respect to the interactive part, efficiency is inversely
proportional to the effort required from the user to accomplish the segmentation
task. This effort is determined mostly by the amount and the nature of user
interventions. The amount of interaction depends on the autonomy of the
computational part, and it is often estimated in terms of the number of mouse clicks
(or any other input device used). As for the nature of interaction, it is necessary to
evaluate the complexity of the task performed by the user. Task complexity involves
several issues, among them the demand posed on operation of the input device, the
type of knowledge needed to input data during interaction, and the predictability of

the method’s behaviour in response to user input.

In conclusion, the evaluation of efficiency of interactive methods is mostly subjective
and measuring total elapsed segmentation time should not be the definitive indicator.
In general terms, it seems reasonable to say that an interactive method is potentially
efficient when the computational part is fast, highly autonomous and predictable, and
when user interventions are few, quick and simple. At any rate, the impact of
complex user interventions is likely to be reduced or eliminated over time as the user

learns to operate the segmentation tool.

10

2.4 Steering

Steering can be defined as the method by which the segmentation algorithm is driven
towards the desired solution via the user interactions. As an example, the dragging of
a Snake contour model towards desired image features or the dynamic creation of
attracting spring forces pulling a Snake towards a fixed point can be considered as
steeting mechanisms. Steering mechanisms can have a great impact on the accuracy
and efficiency of the segmentation tool. Since efficiency depends greatly on the
amount and the nature of user interaction, a segmentation tool that provides an easy

and intuitive method for guiding the algorithm would be highly desirable.

2.5 Editing

At first glance, editing and steering ctiterions may appear to be the same.
Nevertheless, the steering mechanism defines the method by which the user interacts
with and guides the algorithm towards a desirable solution, whereas the editing
mechanism defines the method by which the user can fix any errors that the
algorithm makes after reaching a temporary solution. In other words, steering is
typically considered as a pre-segmentation operation and editing as a post-

segmentation operation.

Similar to steering, the method by which the user can edit the segmentation result
also impacts the efficiency and accuracy of the segmentation tool. Since all of the
algorithms that have been developed to date produce some amount of error in their
results, it is absolutely necessary for a segmentation tool to provide a simple and
effective way to edit the obtained results. An algorithm can provide a very simple

steeting mechanism, such as a few mouse clicks to indicate where the object of

11

interest is; however, if the segmented result is not accurate enough and if the editing
mechanism is not simple and intuitive, correcting the erroneous result can be tedious

and fatiguing, which negatively impacts the efficiency of the segmentation tool.

2.6 Motivation for a New Approach to Interactive 3D
Segmentation

Upon extensive review of recent approaches to the 3D interactive segmentation of
volume images, it can be noted that currently there does not exist a technique which
effectively combines all of the above criteria to achieve a highly flexible, efficient, and
user friendly tool. The five aforementioned evaluation criteria should be set as the
requirements for the design of any interactive segmentation technique. More
specifically, the following design principles should be followed to produce an efficient

interactive segmentation method that generates accurate and repeatable results [12]:

1. Efforts should be put into seamlessly combining the computation and the user

interaction processes.

2. Whenever input is required to the computational part, the input should be

provided in pictorial form as much as possible.

3. The nature of user interactions should be such that the interactions can be

carried out effortlessly and effectively.

4. Users should initialize the segmentation method with key information which

will lead the method to an accurate result more quickly.

12

5. User control should be maintained throughout the entire process in order to

obtain accurate results.

6. Proper visualization of the computational part is needed to enable an effective

user response.

The next chapter introduces some of the currently popular segmentation techniques,
which are then evaluated based on the above ctitetia to further emphasize the need
for a better interactive 3D segmentation tool. The goal of this thesis is to develop a
new tool that adheres to these principles. Throughout this thesis, the new approach —
known as SketchSurfaces — is explained in detail. A few experimental segmentation

results are then presented, further emphasizing the strengths of this new technique.

13

Chapter 3

Current Approaches to Model-Based Semi-Automatic

3D Medical Image Segmentation

This section presents and evaluates four main categories of approaches to 3D medical
image segmentation. It should be noted that many researchers have implemented
variations of the main algorithm for each of these approaches. Only a few of the
more commonly used variations of the main algorithms have been picked from each

approach and the following evaluations have been based upon these algorithms.

3.1 Slice-By-Slice Approach

Traditional boundary extraction methods, such as thresholding and region growing,
can be effective for a small set of specific segmentation problems. However, they
only consider local intensity information and therefore are sensitive to noise and
sampling artefacts, making it difficult to generate closed, connected boundary
surfaces. As a result, these model-free techniques usually require considerable

amounts of user intervention and editing.

In contrast, deformable shape models, which include the popular Snakes [13] and
deformable surfaces [14], have proved a powerful technique for the extraction of
boundaries from medical images by combining the bottom-up approach of edge
detection with the top-down approach of model-based geometric constraints. The

model-based approach provides several desirable features such as inherent

14

connectivity and smoothness that counteract noise and boundary irregularities,
compact and analytic object representations, and the ability to incorporate prior

knowledge of expected anatomic shape [3, 15].

There are two possible approaches for extracting the boundaties of anatomical
structures from volumetric medical images using deformable models. One is a slice-
by-slice approach using 2D deformable contours. Starting with an initial image slice, a
Snake model is applied to extract the boundary contour of the structure. The
resulting Snake is then propagated to neighbouring slices and used as an initial
contour in these slices. This process is repeated until the entire 3D boundary surface
is represented as a sequence of 2D contours generated from all slices which contain
the object [16-18]. However, this approach often causes discontinuities or
inconsistencies between neighbouring slices and has difficulties extracting the
contours near the first and last image slices bounding the anatomic structure. A fair
amount of user interaction is required on many slices as the Snake deforms in order
to “pull” it out of an incorrect solution. Furthermore, as the resolution of the volume
images increases with advances in imaging technology, slice by slice approaches
become increasingly inefficient. The other approach is to extract the entire boundary
surface of the structure all at once using a true 3D deformable surface model or

“balloon” as discussed in the next section.

3.2 Deformable Balloon Models

As previously mentioned, one of the most well known 2D deformable models is the
Snake model [13], which has been used as the basis for many of the 3D deformable

models. Snakes are energy-minimizing contours controlled by internal and external

15

energies. The internal energy imposes a smoothness constraint. The external energy
terms, defined by scalar potential functions, couple the Snake to the image. These
functions are aeﬁned such that the minimum of an external energy term represents
salient image features, such as image edges, or user-defined constraint points. A
common approach to minimizing the Snake energy is to transform the energy
equation into a partial differential equation (PDE) representing force-based equations
of motion and to use an iterative procedure to solve this PDE and bring the Snake
into equilibrium (i.e. where the internal smoothness forces balance the external image
forces and user-defined forces). If good initial conditions and well-defined potential
functions are used, when this equilibrium is achieved the Snake will have converged

to the boundary of the target object in the image.

Some of the popular 3D extensions of the Snake model are the various deformable
elastic “Balloon” models [1-7], a subset of which also have the ability to dynamically
change their topology [1], [3], [7]. These models provide a “one-click” initialization
process in which the user performs the initialization step by clicking a point inside the
object of interest. A small sphere (or balloon) is then initialized at that location and

inflates (via expansion forces) to take on the shape of the target object (Fig. 3.1).

In the implementation provided by Miller [19], a polygonal approximation to a sphere
(or “balloon”) is constructed and geometrically deformed until the balloon surface
conforms to the object surface in 3D CT data. The segmentation process is
formulated as the minimization of a cost function where the desired behaviour of the
balloon model is determined by a local cost function associated with each model
vertex. The cost function is a weighted sum of three terms: a deformation potential

that “expands” the model vertices towards the object boundary, an image term that

16

identifies features such as edges and opposes the balloon expansion, and a term that

maintains the topology and smoothness of the model by constraining each vertex to

remain close to the centroid of its neighbouts.

®)

Figure 3.1: Segmentation of anatomical structures using the Balloon method. Examples of edge-
based contour evolution (a — d). Segmentation of left hippocampus from MRI by initializing two
balloons (€). The result of surface evolution after 6 iterations (f) and 18 iterations (g) and the final

segmentation with a rotated view (h). (From [7]).

Cohen and Cohen [17, 20] and Mclnerney and Terzopoulos [21] use finite element
and physics-based techniques to implement an elastically deformable cylinder and
sphere, respectively. These models are used to segment the inner wall of the left
ventricle of the heart from MR or CT image volumes. These deformable surfaces are
based on a thin-plate under tension surface spline which controls and constrains the
stretching and bending of the surface. The models are dynamically fitted to data using
Lagrangian equations of motion in order to adjust the deformational degrees of

freedom. Furthermore, the finite element method is used to represent the models as a

17

continuous surface in the form of weighted sums of local polynomial basis functions.
Unlike Miller’s [22] polygonal model, the finite element method provides an analytic
surface representation over the whole model surface and the use of high-order

polynomials means that fewer elements are required to accurately represent an object.

As mentioned previously, researchers have created balloon models that automatically
subdivide and change their topology. These models can flow into complex shapes,
such as arterial trees, and/or disconnect and reconnect to take on object shapes that
contain holes. To achieve this ability, many researchers have constructed implicit
deformable models by adopting Osher and Sethian's [23] level-set evolution
technique to the image segmentation problem (see [24] for a complete review). These
models are formulated as evolving surfaces (“propagating fronts”) which define the
level set of some higher-dimensional function. The main feature of this approach is
that topological changes are handled naturally, since the level set need not be simply
connected; the higher-dimensional surface remains a simple function even as the level
set changes topology. The inflation forces of the above techniques significantly
increased their capture range. In this case, the model can be simply initalized using,
for example, one mouse click to create a small sphere inside the target object. The
inflation force expands the model and it automatically subdivides, allowing it to
“flow” into complex shapes. As the model approaches the boundary of the target
object, external image forces (based on edge strength, image region statistics, or area

minimization) oppose the inflation, stopping the model on the boundary.

Implicitly-defined balloon methods have proved effective for some segmentation
tasks, especially involving extremely complex-shaped objects, for example the cortex

of the brain. These models work well in segmentation scenarios where the image

18

feature map is relatively clean and homogencous. However, clinical images are often
noisy, contain many uninteresting edges and regions of low contrast, contain gaps in
the object boundary, or exhibit a complex texture. Hence, these more automatic
techniques may not generate the expected result - the added automation does not
come without a cost. Some interactive control (steering capability) over the model is
lost and the gaps in the object boundaries may allow the model to leak through,
requiring user intervention in the form of barriers. Another common problem with
Balloon models is they may not completely flow into all regions of the target object.
In this case, the user is required to plant other seeds and re-run the algorithm, or
provide additional constraint information to force the model into these regions.
Editing in these techniques is typically performed in a post processing phase, often
using a separate tool-set. In general, the user interaction model was not the focus of
the design of these methods - the user does not have complete control during the
entire segmentation process (especially during the inflation phase) and everywhere on
the model and this lack of control can affect the user's experience with the tool,
resulting in segmentation inefficiencies. In other words, most of the implementations
of the Balloon models violate the design principles 1, 3, 4, and 5, as outlined in

section 2.0.

3.3 Semi-automatic Boundary Tracing

Subsequent to the introduction of Snakes, a related technique, known as LiveWire or
Intelligent Scissors [25-30] has emerged as an effective interactive boundary tracing
tool which allows user interaction and control over the 2D segmentation process.
Adobe Photoshop's image cut-out tool [31] Magnetic Lasso is an example of this type
of algorithm. Similar to the Snakes, the idea behind the LiveWire technique is to

19

petform the segmentation with minimal user interaction while at the same time
allowing the user to guide or “steer” the segmentation process. In contrast to the
Balloon models where the initial seed surface can be initialized far from the object
boundary, in this technique the user utilizes the mouse to initially specify a seed point
on the object boundary and then moves the mouse to advance the cursor to a point
further along the object boundary. A globally optimum path (the trace) from the
initial seed point to the current point is computed and displayed in real time. The
optimal paths are determined by assigning a set of features and cost functions to
boundary elements (such as edge strength), and then finding the minimum cost path.
As the user moves the cursor slightly, different paths are computed and displayed in
real-time, akin to an electrical arc - hence the name “LiveWire”. If the cursor moves
close to the boundary, the LiveWire snaps to the boundary (assuming the cost
functions are set correctly). If the user is satisfied with the computed boundary
segment, the user “deposits” the cursor point. This point becomes the new seed

point and the recursive process continues.

A variety of 3D extensions of the LiveWire technique have been developed/applied
by several research groups [8-10, 32]. In general the initialization of these 3D
approaches is done by tracing the contour of the object of interest on a selected set
of slices using the 2D LiveWire method. Vatious techniques are then applied to use
these initialized contours and automatically generate the contours of the object on the
unseen slices. For example, in the method presented by Schenk e# a/ [32], shape-
based interpolation and adaptive propagation allow the automatic approximation of
contours on slices between user-defined boundaries. Hamarneh ez 4/ [10] also
propose a 3D extension of the LiveWire approach in which the initial points are

calculated from intersections of user-based LiveWire techniques with new slices. In

20

this technique, the 3D live-wite extension requires that the user first traces out a few
initial contours using 2D live-wire in slices of their choice. It is recommended that
the initial contours be distributed in the volume such that they capture the
topological features of the target structure. The specific points along the initial
contours will then be used as seed and target points for automatically generating
additional orthogonal live-wire contours. Each new slice is tested for intersection

with the user defined contours and an automatic contour is generated (Fig. 3.2).

150

%0

(®)

Figure 3.2: Example of 3D LiveWire segmentation of the cortical surface. The user starts by tracing

the contour of the target object in a few slices (a), shown as dark curves. From these contours the
algorithm will automatically calculate and detect contours on other slices, shown as light curves. The

final extracted cortical surface is shown in (c). (From [10]).

Although LiveWire methods are much faster and more reproducible than manual
tracing of object boundaries and other traditional pixel selection tools, and provide
the user with good control during the segmentation process, these techniques can still

demand a large amount of concentration from the user, especially in 3D. Once again,

21

the 3D user interaction model was not the focus of the design of this tool, but rather

it is fundamentally an extended 2D technique. A few problematic scenarios are:

1. Once the user deposits the curser point when tracing the boundary, the point
is collected as a seed point and the trace is “frozen” and added to the
extracted object boundary. The user has no further control over the trace
other than returning to the previous point to temove it. This type of
correction increases segmentation time and user interacton when dealing
with a noisy and low contrast object or complex boundary. There is never a
perfect match between the features used by the LiveWire algorithm and the
desired object boundary. As a result, the user often must control the mouse

carefully. If 2 mistake is made, the user must “backtrack” and try again.

2. LiveWire still requires tracing actions to position the cursor. Moving the
cursor around an entire object under the control of a mouse (or other input

devices) can be tedious and fatiguing, especially for a complex-shaped object.

3. When the desired object boundary has a relatively weak edge close to an
insignificant but strong edge, the LiveWire snaps to the strong edge rather
than the desired weak boundary. Falcio and Udupa [29] developed a
technique called “LiveWire on-the-fly” in an attempt to minimize this
problem but it assumes that edge characteristics are relatively consistent

along the entire object boundary.

4. Objects which are complex in shape (contain highly curved regions or

protrusions for example) often force the user to deposit many seed points.

22

5. When segmenting a 3D image, the 2D contour-based nature of the algorithm
forces the user to pay careful attention to how it is applied and to mentally

reconstruct the 3D shape of the object as the algorithm is applied.

6. In some LiveWire systems [31], any segmentation errors must be cleaned up

with other traditional editing tools.

Although these approaches tend to produce accurate results, their accuracy depends
greatly on the preliminary position of the initial contours. To ameliorate the
sensitivity to the preliminary position of the initial contours, these methods allow for
editing of the result by adding more contours to refine the segmentation.
Nevertheless, adding contours using LiveWire implies additional tracing and user
concentration, leading to fatigue. Similar to the Balloon models, the 3D LiveWire

techniques also violate a few of the design principles, such as principles 1, 3, and 5.

3.4 Region Painting and Graph Cuts

More recently, researchers have developed semi-automatic volume/region painting
methods for image segmentation. In this technique the user will first mark some
regions of the volume, indicating the object of interest (foreground) and the
background. There are vatious approaches to do this first step, as presented by [33—
40]. The most common approach is to indicate these regions either by a few mouse

clicks or by simple brush strokes in these areas.

An optimization algorithm then uses these inputs hints to extract the actual object
boundary. To do this, a graph is formed by connecting all pairs of neighbouring

image pixels (or volume voxels) using weighted edges, where the prior identified

23

regions are used to provide necessary clues about the image content. The objective is
then to find the least costly way to cut the edges in the graph (min-cut) so that the
foreground regions Aarc completely isolated from the background regions. If the edge
cost is a decreasing function of the local intensity gradient then the minimum cost cut
will produce object/background segmentation with compact boundaries along the
high intensity gradient values in the image. An efficient, globally optimal solution is

possible via standard min-cut algorithms for graphs with two terminals [38].

Similar to the LiveWire approach, when segmenting objects in 3D medical volume
data using Graph Cuts, the user will first need to provide object/background regions
on a selected number of 2D slices. The object and the background are then
segmented in each of these slices, and these 2D segmentation results provide
constrains for 3D segmentation in the volume dataset, allowing for the segmentation
of the object from the volume. A different approach is that of [40], where the user
directly operates on the rendered 3D images. In [40], the authors suggest that
operating on single slices provides very limited information on the structure of a
dataset, whereas the full rendering of the volume illustrates the overall 3D structure
of the data. This provides an “overview” of the data, on top of which the user can
select objects of interest or remove unwanted objects. However, this approach
requires a pre-processing stage and the selection of a well suited transfer function in
order to clearly display the internal structures simultaneously — a task which is
currently not possible for most objects of interest in clinical (i.e. noisy) medical

volume images.

The initialization and steeting of these approaches are simple and user friendly. In

contrast with the LiveWire approach, the tracing effect is eliminated by allowing the

24

user to identify foreground and background regions using simple brush strokes or
mouse clicks, which does not require too much user attention and concentraton.
However, these Graph Cuts techniques share a similar set of problems with the
Balloon models. These techniques seem to work well on fairly clean images with
bright homogeneous objects such as bone in a CT scan. For noisier objects these
techniques can, like the balloon models, leak through or not flow completely into the
object, requiring much user editing and intervention. To edit the segmentation
results, the user should provide more information to the algorithm by identifying
more foreground and background regions, or use a conventional cut-out tool by
enclosing a region and cutting it away (Fig. 3.3). This approach is not user friendly
since the user does not have “absolute” control over the segmentation result, and this
drawback has a negative impact on the accuracy and efficiency of this approach as

explained in section 2.1.

The evaluation of the efficiency of the Graph Cuts methods is a difficult and
subjective task. On one hand the simple initialization and steering steps will help
reduce the initialization time, particularly when compared to the LiveWire methods.
On the other hand, due to the insufficient user control during the editing step, the
editing time can significantly increase, especially in the case when the object of
interest has weak boundaries or the image is noisy, causing erroneous results in the
segmentation. The user will need to keep marking more and more regions in order to
improve the result. [40] has integrated an additional editing tool in their algorithm,
where the user can mark an object (by drawing an ellipse around it) and delete the
object. This technique may be useful when dealing with noisy images. Noisy images
can cause the Graph Cuts methods to include unwanted objects in their results, and

using the above technique these unwanted objects can be removed. Nevertheless, this

25

technique is only effective for removing segmented objects and not editing their
boundaries. In conclusion, the Graph Cuts techniques also violate the design
principles and guidelines of a semi-automatic segmentation method, patticulatly

principles 4 and 5.

. ’ ’

olob

)

‘ ' .

© @
Figure 3.3: Graph Cuts segmentation of a synthetic data set (2 Neghip). The user provides input to

3

RO
»
*ss0uente

the algorithm by marking parts of the foreground (dark strokes) and parts of the background regions
(light strokes) (2). The Graph Cuts algorithm is then used to segment the volume (b). To edit the
result, the user can either provide more input by marking more regions, or select a region to be

deleted (c) and cut out the erroneously segmented parts (d). (From [40]).

26

Chapter 4

Deformable Surface Models

Deformable sutface models are the 3D extension of 2D active contour models, the
most popular version of which is known as Snakes. Snakes were first introduced in
1988 by Kass, Witkin, and Terzopoulos [13] as a semi-automatic segmentation
technique. Snakes have been successfully applied to many image analysis tasks, such
as motion tracking and analysis, matching (labelling, registration), and shape
recognition. Similar to a Snake, a deformable surface is essentially an elastic surface
that is initialized by the user inside or close to the boundary of the target object. The
surface will deform and converge towards the object boundary by minimizing an
energy functional or alternatively by solving force-based equations of motion. In this
thesis, the simple and flexible force-based formulation has been utilized. Using this
approach, the equations of motion typically consist of internal forces controlling the
smoothness of the surface and external forces which attract the surface toward image
edges of the object boundary or user-defined points. The complete framework of a
deformable surface model can be specified by a geometric model representation,
internal, external and constraint forces, and the governing equations of motion. The

remainder of this chapter presents a brief review of these components.

27

4.1 Geometric Representation

Deformable surface models are constructed using either continuous or discrete
geometric representations. Each of these approaches has its advantages and
disadvantages. With discrete representations, the geometry of the model is typically
defined with a finite set of points and polygons. Deformable models using discrete
representations are simple, efficient, and can be easily locally subdivided to add
degtees of freedom in areas where the object boundary exhibits rapid variations or is
highly curved. A disadvantage of the discrete scheme is the lack of compactness, the
difficulty in controlling the model at multiple scales (and therefore the difficulty in
utlizing higher-level mechanisms to intelligently control the model fitting), and the
lack of an analytic representation over the whole model. On the other hand,
continuous representations, in the context of deformable models, are defined as
representations using higher-order local basis functions such as finite elements or B-
splines [5] or global basis functions such as Fourier descriptors [41]. They provide a
compact, local representation of a surface, converge faster to the solution than
discrete deformable models, often are inherently smooth, provide an analytic
representation over the whole surface (rather than only at discrete points), and
require fewer degrees of freedom for the same level of accuracy as discrete models.
These properties are advantageous for segmentation or tracking tasks involving noisy
images where the target object boundaries may exhibit significant gaps in the edge
image. However, a disadvantage is that the mathematical formulation and software
implementation of these types of deformable surface models is often much more
complex and less flexible than the discrete models. For example, parametric B-spline

patch-based deformable models are unable to represent objects containing holes.

28

Despite having a discrete representation, SketchSurfaces employ the concept of
subdivision surfaces which allows them to take the best of both discreet and
continuous representation. As later discussed in chapter 5, subdivision surfaces, such
as SketchSurfaces, can be constructed from a control mesh. Subdivision surfaces are
inherently smooth and require fewer degrees of freedom to represent an accurate
surface. This allows a SketchSurface to have a simple, efficient, and compact
representation, and the model can be controlled at multiple scales (levels of
subdivision). SketchSurfaces evolve by deforming their underlying control mesh
which consists of a few degrees of freedom, allowing these surfaces to converge to
the desired solution more quickly. Additionally, they can also be easily subdivided
(globally or locally) to add more degrees of freedom (if needed) to better capture the
shape of complex objects. Having a discrete representation also allows for a simple

software implementation of SketchSurfaces.

4.2 Force-based Formulation

A discrete deformable surface, such as a SketchSurface, is a closed elastic triangular
mesh consisting of a set of N nodes, indexed by 7 = 0, ... , N-7, and triangular
elements. Each node 7 has an associated time varying position Xi(?) = [xi2), yi(?), z(?) 1,

along with internal forces f™(#), external forces f™(¢), and constraint forces

f(#). The behaviour of the mesh nodes is governed by simple first-order ordinary

i

differential equations of motion:

D s B @4.1)

where:

}.(,. - the velocity of node 7
7, - a damping coefficient controlling the rate of dissipation of the kinetic energy

w_ , W, ,W, -non-negative constant weights controlling strength of the forces

int 2 Pext > Vs

29

Equation 4.1 expresses the balance of internal, external and constraint forces when

the model rests at equilibrium (i.e. X . = 0 for all nodes).

A variety of explicit and implicit numerical solvers can be used to integrate this
equation forward through time. For example, a common and simple solver is the
explicit first-order Euler method. This method approximates the temporal derivatives
with forward finite differences and updates the positions of the model nodes from

time / to time #+ A# according to the formula:

X=X +£(Wim P vw S +w, f,.‘”‘) ... (4.2
7,

i

where:

X - th it fnode 7
1*%" - the new position of node 7

X - the cutrent position of node 7

At - the time step

The explicit Euler method is simple, but it becomes unstable unless small time steps
are used, thus impacting segmentation efficiency. SketchSurfaces, therefore, uses the

Verlet integration scheme [42]:

X 175X = 075X, ™ (0 i + 0 [+ o [)Y e 4.3)

where:
1+4Ar [.
X;™™ - the new position of node /
X - the current position of node 7
X! - the previous position of node 7

At - the time step
The Vetlet scheme is much more stable than the Euler method and larger time steps

can be used in order to reach convergence faster. Note that the coefficients in

30

equation 4.3 were chosen to introduce considerable drag into the system and ensure

the system would quickly settle [43].

4.2.1 Internal Forces

The internal forces perform regularization on the model to maintain some level of
smoothness. In the original Snakes formulation, the internal force of each node 7 is

composed of two types of forces — a tensile force a;(?) and a flexural force Si(2):

B G R 2 (R X (4.4)

where w, and wgare non-negative constant weights controlling the amount of

contributions from tensile and flexural forces respectively. The tensile forces allow
the model to behave like a membrane. They control the elasticity or stretchiness of
the model at different nodes and attempt to minimize the overall length of the Snake
(or area of the sutface for a Balloon model). The flexural forces allow the model to
behave like a thin plate. They control the bending energy and attempt to minimize
the overall contour/surface curvature. A general nonlinear strain energy for a
parametric deformable surface is a function of the differential area and curvature at
each point [44]. A more practical version of this deformation energy is the linear
combination of the membrane and thin-plate functionals [45]. This linearized
functional approximates the more general nonlinear strain energy functional for small
deformations near the actual minimum (where higher order terms tend to zero), but
is well behaved for large deformations and its quadratic form leads to computational
benefits. The respective variational derivatives of the membrane and thin-plate
functionals correspond to the Laplacian L(X) = X + Xy and squared Laplacian
12(X) = LoL(X) = Xuww + 2Xuw + Xww (where #v represent the surface

parameterization) and give rise to the internal tensile and flexural forces respectively.

31

In a discrete deformable surface model, the Laplacian at each node is approximated

using the umbrella operator resulting in the internal tensile force:

a0)== 3 X,0)-X,¢) 4.5)

7 jeN(i)

where:

X; - the x, y,g coordinate of node 7

X - the x, y,% coordinate of the neighbours of node 7
N(7) - the set of neighbours of node 7

m - the number of neighbours of node 7
This force is typically normalized by dividing by the maximum distance among all
neighbours of node 7 To compute the internal flexural force at a model node, the
squared Laplacian is approximated by convolving the umbrella operator over the
node and its neighbours. Currently, SketchSurfaces does not make use of flexural
forces (although they are included in the implementation). The strength of the

internal forces is controlled by a non-negative weight »,_ .

4.2.2 External Image Forces

The external forces attract the model towards image features such as image edges,
causing the model to deform and take the shape of the target object boundary. In
SketchSurfaces, the external image forces are spring forces that p#// the model nodes
towards object boundaries. This pulling force (versus the pushing of an inflation force)
helps to ensure that the model does not leak in the presence of gaps in the object

exXt

boundary. For each node, the external force f™ is computed along the direction of

the surface normal at that node. A user-specified range of voxels along this direction

32

are analyzed and their intensities are compared to a user-specified threshold. When a

match is found, the external force is computed as:

f;'ext = Xm "'Xi (4.6)

where:
X, - the x, y,% coordinate of node

X, - the x, 3,5 coordinate of the matching voxel

Similar to the internal forces, the strength of the external forces is controlled by a

non-negative weight », . Additionally, when searching for an edge voxel in the user-

specified range, there may be several edge voxels having intensities that match the
user-specific threshold. In SketchSurfaces, the user can configure the system to pick

the voxel with the maximum intensity or to pick the first matching voxel.

4.2.3 Constraint Forces

Constraint forces are designed to allow user interaction with the model or to
incdrporate prior shape knowledge about the target object. The original approach by
Kass [13] defined two constraints: a spring and a voleano. The spring constraint allowed
the user to connect 2 spring to any point on the snake, usually by mouse click, in an
interactive context. The other end of the spring can be a fixed position, a Snake
point, or any point on the image. The opposite of the spring constraint, a volcano
pushes the Snake out of one local minimum into another. In SketchSurfaces,
constraint forces ate employed to attract the model towards user-specified locations.
The user can modify the surface by manually positioning a surface cross-sectional
contour. Constraint forces are then applied to the affected model nodes, pulling them
towards the user-specified locations. Further detail on the editing process and the

construction of constraint forces are provided in section 6.3.

33

Chapter 5

Deformable Subdivision Surface Models

The success of interactive shape-model based segmentation techniques, such as
Snakes and Balloons, is still heavily dependent upon the generality, controllability, and
simplicity of the underlying shape representation scheme. This thesis proposes the
use of subdivision curves and surfaces [46] as a very general shape representation
basis for interactive deformable models which have a simple formulation. The
following sections provide a brief overview of subdivision surfaces, and then proceed

to describe the construction of a SketchSurface using these surfaces.

5.1 Subdivision Surfaces

The underlying idea behind subdivision methods [46] is very simple, using geometric
algorithms to progressively subdivide a control mesh. Repeated subdivision leads to a
hierarchy of increasingly refined models which approach the limit surface (Fig. 5.1).
There are two main categories of subdivision surface algorithms: approximating, and
interpolating (Fig. 5.2). In the approximating algorithms, the refined mesh is obtained
by progressively subdividing the control mesh to get a smoother surface which does
not pass through the vertices of the control mesh. Since the ability to exactly control
the resulting surface is very important in many applications, modifications of
approximating schemes have been proposed to force the limit surface to interpolate

particular points. For example, one such algorithm in 3D is the interpolating

34

Modified Butterfly subdivision algorithm [46], which has been used in this thesis.
Furthermore, the approximating and interpolating subdivision algorithms provide
different levels of continuity. Consinuity defines how well the pieces of a surface fit
together. In general, a surface is C continuous if all of its derivatives up to # match
across pieces. The Modified Butterfly subdivision scheme constructs a surface that is

C’ continuous.

@
Figure 5.1: Subdivision surface algorithms start with a control mesh (a) and progressively refine the

mesh to obtain a smoother mesh at level 1 (b), level 2 (c), level 3 (d), and so on.
@ ©
© @

Figure 5.2: Examples of approximating and interpolating subdivision surface algorithms. A control

mesh (displayed in wireframe) is subdivided by various algorithms: (a) approximating Catmull-Clark,
(b) approximating Doo-Sabin, (c) approximating Loop, (d) interpolating Modified Butterfly.

35

@ c b ¢ (®)

Figure 5.3: The subdivision masks of the Modified Butterfly algorithm. (a) Eight-point stencil. The
dot indicates the midpoint of the edge for which a new value is computed. (b) Stencil for a vertex in
the 1-neighborhood of an extraordinary vertex. (From [46]).

The Modified Butterfly subdivision scheme computes a new scalar value for each
edge midpoint of the control mesh triangulation. The vertices of this triangulation
can have different valences. The valence of a vertex is defined as the number of edges
emanating from it. The difference in the valence of the end points of an edge results

in four distinguishable scenarios when subdividing an edge:

1. The edge connects two vertices of valence 6, in which case the eight point
stencil of Fig. 5.3a is used, and the weights are given by:

a=1/2; b=1/8;, ¢=-1/16 6.1

2. 'The edge connects a K-vertex (K # 6) and a 6-vertex; the 1-neighbors of the
K-vertex are used in the stencil as indicated in Fig. 5.3b.

For K 2 5 the weights are given by:
% + cos(—z—z—j) + lcos(-lt—ﬂ-—i‘)

_ 2 K —
5, = = with j=0,.., K= eooverrere (5.2)

For K = 3 the weights are:

85,=5/12 S,,=-1/12 (5.3)

For K = 4 the weights are:

5,=3/8 S,=-1/8; 813 T 0 e (5.4

36

3. The edge connects two extraordinary vertices (K # 6); in this case the average
of the values computed using the appropriate scheme of the previous
paragraph is used for each endpoint.

4. Although this thesis only considers closed surfaces, the Modified Butterfly
subdivision algorithm can be applied to both open and closed surfaces. A
closed surface is a surface that is topologically equivalent to a sphere. An open
surface, on the other hand, is topologically equivalent to a disk, and contains
boundary edges. A boundary edge is an edge that only belongs to one triangle
(i.e. not shared by two triangles). Boundary edges are subdivided using the 1-
dimensional 4 point scheme where the weights are:

S, ==1/16; 8,=9/16; §,=9/16; 8,==1/16 coovvereerrrrcrrrreen (5.5)

5.2 Global Subdivision vs. Local Subdivision

The Modified Butterfly subdivision method is considered a global subdivision scheme
since it operates on the entire control mesh, globally refining it during each level of
subdivision. The global subdivision scheme will rapidly increase the number of
triangles in a model. In fact, each level of subdivision will quadruple the number of

resulting triangles (Fig. 5.4).

<

@ ®)
Figure 5.4: Modified Butterfly subdivision. Every refinement step on the coarser level (a) quadruples

the number of triangles that will be generated in the finer level (b).

37

In many applications, after globally subdividing a mesh for a number of levels, the
resulting subdivision surface might still have areas which require further refinements.
Fusther global subdivision can refine these areas; however it drastically increases the
number of triangles and vertices of the entire model, making it computationally
expensive for an application to handle such large models. Local subdivision on the
other hand, will not increase the number of triangles at such a high rate. Local
subdivision operates on a subset of the triangles and can be used to only subdivide

the triangles in the area which needs further refinement.

©

Figure 5.5: Example of local subdivision. The triangles to be subdivided (a) are first broken into
three pieces each (b). During the edge-flipping phase (c), the shared edges of triangles in (a) are
flipped in order to transform small and narrow triangles into larger triangles. In (c) the shared edge

before and after flipping is marked with a thick line and the triangles that are transformed are shaded.

There are different local subdivision techniques, one of which is known as the /3
refinement technique [47]. In this method, every triangle to be subdivided is first
broken into three new pieces by computing the center of the triangle and connecting

it to the three triangle vertices (Fig. 5.5b). Since this phase can result in narrow and

38

small triangles, it is followed by another phase referred to as the “edge-flipping”
phase. During the edge-flipping phase, the edges that are shared by any two original
triangles are flipped (Fig. 5.5¢), transforming the small and narrow triangles into
larger ones. SketchSurfaces provide local subdivision feature using the /3 refinement

method in order to further refine a model while maintaining a small number of

control points.

5.3 Constructing a Deformable Subdivision Surface Model

To construct a deformable model using a subdivision sutface, the vertices of the
coarsest level control mesh of the surface (the control points) are used as the degrees
of freedom (d.o.f.), and the finest level vertices as the “sensors”. The idea is to use a
sufficient number of control points and a sufficient level of subdivision such that
there is roughly one sensor point for each boundary voxel of the target object,
making maximal use of all available image information. The number of required
control points and level of subdivision can be determined with one or two trial
segmentations. External image forces are computed at these sensor points and then
distributed among the control points as illustrated in Fig. 5.6. The details of the

process by which the external forces are computed are explained in the next chapter.

The distribution of the sensor forces is done by employing the rules of the Modified
Butterfly subdivision such that a control point that is closer to a particular sensor
point will receive proportionately more of the computed force than a control point
farther away. As explained in the previous sections, when a model is being
subdivided, new vertices are added to the model in order to obtain a more refined

surface. The position of each newly added vertex is a weighted sum of its neighbours

39

according to the subdivision masks that are illustrated in Fig. 5.3. When distributing
the forces, the same mask is used for each vertex, but the rule is applied in the reverse
order. In other wordvs, each neighbour will receive a weighted portion of the force
based on the weights of the subdivision mask. This distribution step is then followed
by a normalization step, in which all of the distributed forces are normalized based on

the amount of contributions they have received from the sensor points.

Figure 5.6: External forces are computed at the sensor points and distributed to the control points.
The sensor points are presented as light circles and the sensor point forces are the lines emanating
from them. The control points (which are also considered sensor points) are presented as dark circles
and the distributed forces are the lines emanating from them. A cross-section of the surface is shown
in (b). The external forces are computed at the sensor points along the subdivision surface pulling it
to the edge of the object of interest (dark square). If a sensor point is within a user-defined range of
an object edge point, a force proportional to the distance between the two points is computed. This
force is then divided proportionally using the weights of the subdivision mask and added to its
“parent” control points. The resulting normalized external force at the control points pulls the
control points towards the object boundary. In (c) the user-defined range has been increased,
resulting in more activated sensor points, and consequently more of the control points have received

distributed forces.

40

Fig 5.7 shows an example of the force distribution process. In this example a control
mesh is subdivided once to obtain a smoother level. After the external forces are
computed for the entire model points (control points and sensor points), a control
point X; will receive a weighted portion of the external forces of some of the sensor
points in its vicinity N (in this example ; € [0 — 15]). From the subdivision mask of
Fig. 5.3a and equation 5.1, the amount of the distributed external forces to the

control point X; can be computed as:

lzs: i (5.6

j=12

fdixt =_l.if""’ +1if"“ +’_i
T Tgl Teal Mg

=0

where:

S - the distributed external force to the control point X

1

J;* - the external force of a neighbouring node N h

Furthermore, the amount of contributions made to a control point can be computed
as the sum of the weights used to distribute the external forces of the sensor points:

6

I 6 4
contribution; =—+—+
2 8

Rt [S 5.
16 G-

Finally the distributed and normalized external force of a control point is then given by:

AR/ (5.8)

1+ contribution;

flcxt —
i =

where f/* is the new external force of the control point X,

After the forces of all sensor points are distributed to the control points, the
deformable subdivision surface model is formulated numerically using the simple
explicit scheme desctibed in chapter 4 and the positions of the control points are

updated. The subdivision surface is then rebuilt using these new positions and new

41

external forces are calculated. This process is repeated until an accurate solution is

reached or a user-specified number of iterations have been elapsed.

VaVaY
Vi
i

0 N7
’ V13
Ng

®)

Figure 5.7: Example of force distribution process from sensor points (I\)) to a control point (X). (2)

Portion of a control mesh and a control point (b) The control mesh and the subdivided surface are

overlaid showing the sensor points whose external forces will be distributed to the control point.

42

Chapter 6

SketchSurfaces

SketchSurfaces are a discrete deformable surface model. However, they are
constructed using the subdivision surface algorithm discussed in chapter 5 and the
inherent properties of subdivision surfaces provide SketchSurfaces with the
robustness against noise of a finite-element based model, the broadest possible shape
coverage, a foundation for simple and precise editing, inherent smoothness, a natural
hierarchical organization, and a simple representation that allows for the

incorporation of high-level shape constraints.

The novel sketch-line initialization process of [11] has been carefully integrated into
this model, which allows the subdivision surface to be quickly initialized with a few
rough sketch lines drawn across the width of the target object in several key image
slices. The result is an initial model that is extremely close in shape to the target
object, making the deformable surface model's task of snapping to the object
boundary much simpler and hence more likely to succeed in noisy images with
minimal user editing. It also minimizes the effect of the model's elastcity parameters
so that user’s need not search for appropriate values for these parameters — a well-
known problem of Snakes and Balloons. Furthermore, it allows the model to
primarily rely on image edge information and (optionally) expected edge transitions
(e.g. bright to dark) so that it is generally applicable to many common imaging
modalities without the need for modality-specific parameters. Finally, unlike 3D

LiveWire, no tedious tracing actions are needed - only simple short sketch lines on a

43

few slices are required. Steering and editing the model can take place at any time
during the segmentation process and anywhere on the model. In other words, the
model has been designed with the 3D user interaction model as the main focus. In
the following sections, the construction of this subdivision surface model and the

interaction methods are described.

6.1 Sketch Lines: A Simple, Fast, and Accurate Initialization
Technique

As discussed in Section 3.2, the most common method of initializing a deformable
surface model is to create a small spherical model from a user-defined seed point.
Inflation forces are then used to drive the model towards the object boundary. The
problem with this approach is the model needs to inflate a considerable amount to
reach the object boundary so it is not immediately visually apparent whether the
segmentation will succeed. This approach creates model steering issues as well as a

separation between the inflation phase of the segmentation and the editing phase.

User fatigue is an important consideration in any interactive design and analysis task.
For this reason, sketching actions are being actively researched for many of these
tasks in an effort to reduce fatigue and user concentration and to “amplify” user
input action and thereby maximize productvity. In the context of interactive
segmentation, the idea behind sketching is to allow the user to provide an accurate
initialization for the surface model - which minimizes subsequent steeting and editing
- with a low degree of concentration and simple mouse movements. The sketch-line
initialization process proposed in [11] is a simple but effective technique that realizes

this idea (Fig. 6.1). It does not require tedious tracing actions and can be performed

with minimal concentration. Short sketch lines are quick, easy and comfortable to

draw with a mouse or stylus.

@ ®)
Figure 6.1: Result of the sketch line initialization process for the right brain ventricle. By quickly

sketching a few lines in several slices of an MR volume image, a highly-accurate initial surface model
is created. (a) cross-sectional contour of the initial model (light curve) shown with a cross section of
the manually segmented ventricle (dark curve). (b) the initial surface model (solid semi-transparent)

shown with the manually segmented ventricle surface (wireframe).

The user begins the initialization process by first positioning and orienting the image
slice plane at the far end of the target object and then sketching a few short lines
across the width of the object (Fig. 1.1b-¢) on this plane (here on referred to as a
sketch plane). Drawing these lines roughly perpendicular to the object boundary will
result in an initial surface model that is approximately locally aligned with the
boundary. If the object boundary exhibits strong edges near the sketch line, the user
need not sketch the line carefully - the algorithm will automatically search for the
strongest (or user-thresholded) edge close to and perpendicular to the line. However,
through repeated experiments it has been observed that the cursor can be positioned

precisely and quickly with minimal user effort.

45

The user then pulls the image slice plane towards himself/herself (re-odenting it as
necessary) and again sketches a few lines across the object. A control polygon is
created from these lines and is connected to the current control mesh using the
Quick-Hull algorithm (http://www.ghull.org). The new control mesh is immediately
subdivided to obtain a refined surface (Fig. 1.1f — j). A new cross-section of the
refined surface is instantly displayed on the image slice. The entire process occurs in
real-time and the user is given immediate visual feedback of the surface construction
and can observe the initialization accuracy. The user repeats this sketching process

several times until a sketch plane is close to the near-end of the object.

The user can view the 3D surface model as it is constructed and make corrections if
desired by repositioning control points and/or by adding new sketch lines. Additional
sketch planes can also be inserted. The number of sketch planes required in order to
generate an accurate initial surface model is dependent upon the shape of the target
object. For example, in our expetiments with the caudate nucleus, typically five
sketch planes are required, with one close to each end of the caudate nucleus and
three evenly distributed in between. Furthermore, the number of sketch lines required
on each sketch plane is dependent on the complexity of the shape of target object
cross-section. For example, usually only two or three sketch lines ate required for the
caudate nucleus. It has been experimentally observed that there are obvious dents
and/or bumps in the object cross-section or other landmark points that are good
candidate positions for sketch line placement. In segmenting the caudate nucleus
(Fig. 1.1) the lines have been placed in these types of critical locations and the

initialized contour is very close to the caudate boundary.

46

The user typically performs a few trals, with a different number and position of
sketch planes, until an accurate initial surface model is obtained. The experiments
conducted in this thesis suggest that it is best to begin with two/three sketch planes
(one close to the each end of the target object and optionally, one in the center),
examine the initial surface, fit the model and examine the segmentation result, and
then add intermediate sketch planes until the desited accuracy is obtained. This
pattern of sketch planes and sketch lines can then be recorded and redisplayed when
segmenting the target object in all subsequent volumes. Note that the pattern of
sketch planes is only a rough guide — the algorithm is fairly robust to small differences
in the number/positions of the sketch planes. For large differences accuracy is

impacted, resulting in increased user editing.

Finally, the number of the control points of the constructed SketchSurface can be
increased by automatically inserting znfernal control points on every edge of the model
control mesh. This is done in order to increase the accuracy of the fitted
SketchSurface while keeping user input minimal. The number of control points
automatically added can be controlled by the user. The default number of internal
control points is set to one and this value is typically adequate for many different
objects. Typically the user experiments with this setting and increases the number of
internal control points if the default setting proves inadequate. Internal control points
are added to the control mesh in a manner such that the shape of the subdivision
surface is not disturbed. This is to avoid any “surprises” to the user between the

initialized surface and the surface used during a fitting step (Fig. 6.2).

47

@ (b) © @

Figure 6.2: Internal control points can be added to a SketchSurface in order to increase model

accuracy while keeping user input minimal. (a) Initial control mesh from sketch line initialization
process and (b) initial subdivision surface. (c) Internal control points automatically added to the
control mesh and (d) new subdivision surface obtained via the subdivision process. The control mesh
of a SketchSurface is only used internally by the algorithm and is never presented to the user. The
internal control points are added such that there are little or no changes to the shape of the new

smooth surface (comparing b to d).

6.2 Fitting

After a SketchSurface has been initialized, the user may choose to fit the surface to
the data set and segment out the object of interest. The fitting of the surface is done
using the simple explicit scheme described in detail in chapter 4. More specifically,
the control mesh of the smooth subdivision surface (which is invisible to the user) is

used to deform the subdivision surface.

The sensor points (vertices of the subdivision surface) are used to compute the
external forces. The external forces are computed by simply traveling along the
normal of a sensor point within a user specified range. The user can specify or use the
default threshold range for the acceptable edge voxel intensities. When traveling
along a sensor point normal, the voxels that satisfy this range are considered as
candidate object boundary points. The algorithm will then pick the voxel with the

strongest intensity as the possible location for the object boundary. Subsequently, the

48

external force acting on the sensor point would be a force proportional to the
distance between the sensor point position and the edge voxel position. If no
acceptable edge voxels have been observed, there will be no external force exerted to
that sensor point. Once the external forces of all sensor points have been computed,

they will be distributed to the control points as described in section 5.3.

When compared to the inflation forces of the Balloon models, this method of
computing the external forces has the advantage of minimizing the leaking of the
model to the surrounding regions when there are gaps in the object boundary. In
Balloon models, a vertex is pushed outwards by an external force, which usually has a
constant strength. Strong object boundaries will produce forces that oppose the
inflation force, and the strength of these opposing forces is proportional to the
strength of the object boundaries. The strength of the inflation force is typically
chosen such that it is slightly smaller than the opposing boundary forces, and as a
result, when the model reaches these boundaries, it will be stopped by the opposing
forces. However, if there are regions in the object boundary where the boundary is
weak, or if there are gaps in the boundary (for example due to image noise), then
there will be a small or no opposing force to stop the inflation process, leading to the
leakage of the model. On the other hand, using the method mentioned above, a
vertex is pulled towards an object boundary. If no boundary is obsetved by a sensor
point, then there will be no contributions of external forces from that point to its
patent control points. In such a model, as the surface evolves towards the object
boundaries, the strength of the external forces of sensor/control points diminishes,

and in so doing, any chances of leaking is minimized (Fig. 6.3).

PROPERTY OF
49 RYERSON UNIVERSITY LIBRARY

X WA W
N Y A (LA vy Y

\\\\\\.f»'.a-;igm::L;x.:v,..f‘/‘-, /
NSRRI 4

A4
Hp
L
Vi
i
1
L3

L.

rre
err”-

@

Figure 6.3: Fitting of a SketchSurface to a synthetic cube data set. As the surface evolves towards

the edges of the cube, the strength of external forces at sensor points diminishes. Consequently,
smaller external forces are distributed to the control points. In this figure, the control points are
marked as dark circles and the sensor points are marked as light circles. The external forces are the

lines that emanate from these circles.

Once the external forces are computed and distributed to the control points, the
internal forces are computed for these control points. The internal forces ensure the
smoothness of the control mesh. During the deformation process, it is desirable for a
control point not to stray far away from its neighbours. It should be noted that since
the surface will evolve by deforming its control mesh, the internal forces are only
computed for the control points. However, the external forces are computed at the

sensor points in order to make maximal usage of the available image information.

Once the internal forces are computed, the control point positions are updated using
the Verlet step. After this deformation step, the subdivision surface is quickly rebuilt
using the new position of the control points. The external and internal forces are then
recomputed and this process continues until an accurate solution is reached or a user-

specified number of iterations have been elapsed.

J[.ht “» ‘.-n ,-’e.’ L 50

6.3 Editing and Steering

Editing a segmentation result typically implies making corrections to the
segmentation after the algorithm has run to completion. Steering, on the other hand,
implies guiding the segmentation process toward the correct result while the
algorithm is running. The line between fitting, steering, and editing is blurred when
considering the segmentation work-flow using SketchSurfaces. Once the model has
been initialized, the user presses a key to begin the fitting step and the surface quickly
snaps to the object boundary. The fittng step is terminated after a user-adjustable
number of iterations have occurred. This snapping to the boundary is faitly quick for
most objects - typically a few seconds. Other stopping ctitetia may be employed, such
as when the average distance traveled by all control points from one iteration to the
next falls below a threshold. However, because the initialization process creates a
surface that is very close to its final position, only one fitting step is often sufficient to
generate an accurate segmentation. Nevertheless, the user may repeat the fitting step
by hitting the key. The fitting/snapping of the model to the object boundary is done
in discrete steps rather than in a continuously deforming manner, allowing

steering/editing to be performed at any time.

Before, between, or after these fitting steps, SketchSurfaces can be precisely and
intuitively controlled using various geometric editing actions. The initialization,
fitting, editing, steering, and zooming are all performed within a single seamless
process, using only simple mouse actions. The user is not forced to constantly switch
modes or select actions items from a menu or panel. Examples of the main

SketchSurface editing actions are listed below:

51

1. Before fitting: The user can edit the initialized surface prior to any fitting step.
Actions include adding new sketch planes, repositioning the existing control
points and sketch lines, and adding new control points by drawing new sketch
lines or by breaking an existing sketch line into two pieces. To break a sketch
line the user can simply right-click anywhere on the line and a new control
point will be inserted in that location. The new control point may be selected
and dragged to a new location in order to fine-tune its position. The control
mesh is automatically updated and the subdivision surface recomputed and

displayed in real-time as the control point is dragged.

2. After/ between fitting. Simple, precise control over the surface model position
and shape is performed in 2D on an image slice plane. Constraining the user
interactions to two dimensions significantly simplifies the interactions while
improving accuracy and user efficiency and maintaining familiarity.
Furthermore, no special input device is required. The surface model is cut by
the image slice plane in any desired orientation to generate a 2D subdivision
curve. The control points of the curve are automatically created from the
cross-section of the surface model's control mesh and the resultng cutve
closely matches the shape of the subdivision surface cross-section. Because
the initialization process and the fitting of the surface model provides an
initially accurate segmentation, the cross section points of the control mesh
are often in a “good” position and fine-tuning can be performed simply by
nudging these points, causing a section of the smooth subdivision cutve to be
dragged into the desired position. The user may modify the curve either by
clicking and dragging a point, or by dragging a curve arc. In the latter scenario,

the two end points of the arc are selected and dragged such that the end point

52

that is closer to the mouse cursor is dragged more than the one farther from
the cursor. New “soft” constraint forces are then computed from the nearby
sensor points on the surface cross-section to the corresponding points on the
newly deformed subdivision curve. Using a decay function [48] these forces
are distributed to the neighbouring sensor points, followed by a quick refitting
(snapping) of the surface model to these new locations. (Fig. 6.4) This process
takes advantage of the powerful editing capabilities of subdivision curves and
avoids the imprecision and tedium of editing using manual tracing. Curve

control points can be fluidly dragged and precisely positioned, and new

control points can be added by right-clicking anywhere on the curve.

@
Figure 6.4: Editing in SketchSurfaces. The user manipulates the 3D image slice plane and generates a cross-
section of the surface model (a). A subdivision curve is constructed from this cross-section (b). The user
precisely reshapes the curve by dragging curve control points (c). Soft constraint forces are generated and the

surface model is refitted such that the new cross-section matches the subdivision curve (d).

53

3. Snipping Occasionally the initialization process creates a surface region that
protrudes past the end of the target object. SketchSurfaces also provide the
ability to snip away this protrusion by simply positioning the image slice plane
such that the overhanging surface region is on one side of the plane. The user

will then press a button to cut-out this excess portion (Fig. 6.5)

©

Figure 6.5: Snipping in SketchSurfaces. To remove any excess regions in a SketchSurface (a) the user

orients and places the image slice plane where the overhang is located (b) and cuts it away (c).

4. Pinning/ Unpinning The user can pin/unpin any control points by simply
double-clicking on a point or an edge. When a control point is pinned,
regardless of any forces that are acting on it, it will remain stationary. This is a
useful feature for segmenting objects with edge gaps or very weak edges. The
user can manually place a control point in its “final” position and pin it so that
it would never move towards spurious edges or any strong edges of the

neighbouring objects (Fig 6.6). The user typically takes more care when

54

initially positioning these points, ensuring that the control points are placed
whete the user has interpreted the boundary location. Thus, optimal use of
human recognition capabilities is exploited. The user is able to easily and
dynamically transfer knowledge of the object boundaty to the algorithm as the
surface is constructed, maximizing the chance of segmentation success and
thereby minimizing or eliminating post user editing/interacting phase. This
philosophy is similar to LiveWire [28], where the user-controlled cursor speed

is used to indicate weak and strong boundaries.

*

Yl

N’ K/
@ ®)

Figure 6.6: Pinning a control point on a cross-section of a SketchSurface. (a) For an object with
weak edges or gaps in its boundaries (dark curve) the pinning action can be used to create stationary
control points and increase segmentation accuracy. (b) The user drags a control point to its final
location and pins it by double-clicking on it (indicated by a square) and the SketchSurface is then
constrained to pass exactly through the pinned control point. Points can be pinned or unpinned as

the user constructs the SketchSurface or after a fitting step.

5. Local subdivision: Often it may be necessary to further refine a subdivision
surface in a local region. This is particularly the case when segmenting objects
with narrow and long protrusions. As mentioned in section 5.2, further
refinement of the surface using a global subdivision approach will drastically
increase the number of surface points which can be problematic. As a result,
local subdivision of a region is a necessity of any segmentation tool. In

SketchSurfaces new control points and sensor points can be added in a /Joca/

55

6.4

region where editing is occurring. Currently this is explicitly initiated by the
user, however as a future extension, this step can be fully automated. As
discussed above, during editing the user operates on a cross-section of the
subdivision surface and can break the cross-section curve to deform it. When
a curve arc is broken, its corresponding control triangle is automatically

detected and locally subdivided using the algorithm of section 5.2.

Zooming: Although a basic feature, the zooming functionality is a useful and
necessary feature of any segmentation tool. The zooming should be done
effortlessly since it is often used during all of the initialization, editing, and
steering phases. In SketchSurfaces, the zooming is performed using the mouse
wheel-button in either the 2D view or the 3D view. An upward wheel motion
(scroll-up) will zoom into the scene while 2 downward wheel motion (scroll-

down) will zoom out.

SketchSurfaces Parameters

Over the years, one of the main criticisms of deformable models has been the

difficulty in finding suitable parameters for a specific target object and image

modality. This criticism can also be levelled at 2D/3D LiveWire. For example,

although default parameter settings for Adobe Photoshop’s Magnetic Lasso (an

implementation of LiveWire) are often adequate, for efficient segmentation

parameter adjustments are needed to control the search width, frequency of

automatic seed dropping, and edge contrast. Deformable models also have similar

parameters plus additional bendiness and stretchiness controls and consequently

some potential users have been reluctant to use these approaches. One of the goals of

56

SketchSurfaces is the creation of a segmentation tool that requires little or no
parameter tweaking or mode changing. The initialization process and the subdivision
surface model of SketchSurfaces go a long way towards achieving this goal. Due to
the nature of SketchSurfaces initalization, the aforementioned additional parameters
very rarely need adjusting. Nevertheless, the user is able to set several intuitive

parameter S:

1. Edge intensity control. The maximum and minimum edge intensity threshold can
be set with two sliders. The model will search for edge intensities within this
range. Most commonly, the strongest edges are searched for. Canny edges are

used as they are visually simpler to “see”.

2. Bendiness/ stretchiness: The default setting for these parameters are typically
adequate for almost all objects and image modalities. In fact, the same settings
have been used for all the experiments in this thesis. This is primarily due to
the proximity of the SketchSurface to the object boundary after initialization,
making these parameters less important. Nevertheless, sliders are provided

should the user need to change these settings.

3. Image edge search range: For each sensor point, a search along its normal is
carried out for a small, user-specified distance (typically only four or five
voxels). If a matching edge voxel is found, a spring force is applied to attract
the model point to it. If no matching edge is found (in the case of a boundary
gap or noisy edge voxels), there will be no contributions to the image forces

from this sensor point. The search range typically starts at a few voxels in the

57

negative sensor point normal direction and continues up to a few voxels in the

positive normal direction, and can be controlled by two sliders.

4. Edge transition contro This feature can be used to add more intelligence to the
fitting algorithm in order to improve segmentation accuracy and repeatability.
Using this functionality, the algorithm can be programmed to search for edges
with either a bright-to-dark or a dark-to-bright transition in the intensity
image. The user can also disable this feature, in which case the algorithm will

search for edge voxels within the specified intensity range.

Although default settings are typically adequate, the SketchSurfaces control panel
allows a user to “tune” the above parameters for a specific object and image modality
and maximize segmentation performance. This tuning process is typically only

performed once. The parameter settings can then be saved for future use.

58

Chapter 7

Experimental Results

SketchSurfaces have been successfully tested on a number of synthetic and real data
sets. The synthetic data sets were created via voxelizadon of a few 3D meshes
including a cube, an ellipsoid, 2 3D model of human kidney, and a 3D model of
human liver. The voxelization process was used to convert each of these 3D meshes
into volumes of size 256 x 256 x 256. Five real brain image data sets and their
corresponding hand-segmented results were obtained from the Internet Brain
Segmentation Repository (http://www.cma.mgh.harvard.edu/ibst/). The data sets

were interpolated to obtain cubical voxels, with interpolated dimensions of 256 x 256

x 205 and 256 x 256 x 192. The right caudate nucleus, the right brain ventricle, and
the right putamen were segmented from these data sets and their hand-segmented
surfaces were used to calculate the accuracy of SketchSurface model. The accuracy
was measured using 2-sided Hausdorff distancing [49], which is a more strict measure
for accuracy than simpler measures such as volume overlap. All of the experiments

were conducted on a PC with a CPU clock speed of 3.2 GHz and 1 GB of memory.

7.1 Segmenting Synthetic Data Sets

The first experiment was to use SketchSurfaces to segment a cube. The user initializes
a roughly cubical shape using two sketch planes and by simply drawing two sketch
lines per plane. The algorithm was set to insert three internal control points on each

edge of the initialized control mesh in order to rapidly increase the degrees of

59

freedom without requiring too much user interaction — the cube was initialized and
internal control points were added in as little as 8 seconds. The fitting step was then
initiated and the modél deformed to a more cubical shape (Fig. 7.1.1) in under a
second. By looking at the final segmentaton result, it can be observed that the
surface was not able to capture the cubical shape at its corners. This is simply the
side-effect of using the Modified Butterfly subdivision algorithm. This subdivision
process creates a smooth surface and removes sharp corners and that is why our
subdivision-based surface does not entirely capture the corners. However, since
SketchSurfaces are to be used for segmenting anatomical structures (which are

inherently smooth), SketchSurfaces have employed this subdivision surface algorithm.

@ © ®

Figure 7.1.1: Example segmentation of a cube from a synthetic data set. (a) The user-initialized

SketchSurface, (b—e) Surface deforming towards the object boundary, (f) Final segmentation result.

60

Next, SketchSurfaces were used to segment an ellipsoid. Similar to a cube, an
ellipsoid has a topologically simple surface, but unlike a cube it does not have any
sharp corners. A SketchSurface was initialized using five sketch planes and internal
control points were added. This process only took 25 seconds. The surface was then

fitted to the object boundary (in under a second) and the result is presented in Fig.

7.1.2.

@ © ®

Figure 7.1.2: Example segmentation of an ellipsoid from a synthetic data set. (3) The user-initialized

SketchSurface, (b—€) Surface deforming towards the object boundary, (f) Final segmentation result.

The next experiment was segmenting a human kidney from a synthetic data set. A
low-polygon 3D model of a kidney was obtained from The 3D Archive
(http:/ /www.the3darchive.com). The model was processed by Autodesk 3DS Max
(http:/ /www.autodesk.com) to obtain a high-polygon mesh and then was voxelized
to obtain a volume data set. A SketchSurface was then initialized using five sketch
planes and by adding three internal control points per control edge, all in merely 32

seconds. The surface was then fitted to the object boundary in 9 seconds, for a total

61

segmentation time of 41 seconds. Next, 2-sided Hausdorff distancing was used to
measure the accuracy of this segmentation, which showed an average distance of 0.13
voxels and 99.7% sub-voxel accuracy. The result of this segmentation is presented in

Fig. 7.1.3.

@ ®)
Figure 7.1.3: Example segmentation of human kidney from a synthetic data set. (a) The user-
initialized SketchSurface. (b) Final segmentation result. (c) The hand-segmented surface.

Finally, SketchSurfaces were used to successfully segment a human liver from a
synthetic data set, which is more geometrically complex than a kidney. Once again a
low-polygon 3D model of a human liver was obtained from The 3D Archive and
used the same pre-processing as above to generate the volume data set. A
SketchSurface was then initialized using six sketch planes and by adding two internal
control point per control edge, in approximately 37 seconds. The surface was then
fitted to the object boundary in 9 seconds, for a total segmentation time of 46
seconds. Next, 2-sided Hausdorff distancing was used to measure the accuracy of this
segmentation, which showed an average distance of 0.24 voxels and 98.1% sub-voxel

accuracy. The result of this segmentation is presented in Fig. 7.1.4.

62

@ © ®

Figure 7.1.4: Example segmentation of a human liver from a synthetic data set. (a, d) Different

views of the user-initialized SketchSurface. (b, €) Different views of the segmentation result (fitted

surface). (c, f) Different views of the hand-segmented surface.

7.2 Segmenting the Right Caudate Nucleus

Figure 7.2 and Table 7.2 illustrate the results that were obtained from segmenting the
right caudate nucleus from the five data sets. The same parameters have been used
for all of the segmentations, supporting the repeatability of our method. Since the
shapes of the caudate nucleus in the data sets are relatively similar, the same number
of sketch planes was used in the construction of the initial surface. Table 7.2
demonstrates a significant increase in the speed of the segmentation process when
compared to [7] and [9]. On average, the initialization and fitting were performed in
about 36 seconds plus an additional 29 seconds to edit a few slices, resulting in a total
segmentation time of about 65 seconds and sub-voxel accuracy. This can be roughly
compared to 2.5 minutes in [7] (91.7% sub-voxel accuracy) and 3.5 minutes in [9]

(whete a caudate mask was segmented with 98.5% sub-voxel accuracy).

63

® ®) ®

Figure 7.2: Example segmentation result for the right caudate nucleus. (a — ¢) A few user-initialized

contours. (d, g) Different views of the user-initialized SketchSurface. (e, h) Different views of the

segmentation result (fitted surface). (f, i) Different views of the hand-segmented surface.

Table 7.2: Results of segmenting the right caudate nucleus from five data sets.

Hausdorff dist. stat. between the
extracted and expert seg. surfaces

of # of (%o of)
#of Control/ Seg. Editing sensor points
Sketch ~ Sensor Time Time Avg. Max with sub-voxel
Exp Planes Points (sec) (sec) Dist. Dist. accuracy
1 5 79/1219 33 20 0.308 1.81 1172 (96.1%)

87 /1343 35 42 0.481 225 1224 (91.1%)
92 /1412 37 24 0.444 211 1294 (91.6%)
87 / 1347 36 36 0.422 1.93 1257 (93.3%)

2
3
4
5 84 / 1284 37 24 0373 1.36 1243 (96.8%)

(S, NS 2 B S) BN S 2]

7.3 Segmenting the Right Brain Ventricle

Figure 7.3 and Table 7.3 illustrate the results obtained from segmenting the right
brain ventricle from the five data sets. Once again, the same parameters have been
used for all of the segmentations. Moreover, with the exception of experiment 4,
approximately the same numbers of sketch planes and control points have been used.
Due to a significant difference in the shape of the Ventricle in expetiment 4 (when
compared to the other experiments) an extra sketch plane was inserted. On average,
the initialization and fitting were performed in 41 seconds plus an additional 9
seconds to edit one slice, resulting in a total segmentation time of about 50 seconds
with sub-voxel accuracy. This result can be roughly compared to approximately 7.5

minutes in [7] and 5.5 minutes in [9] (no accuracy values were reported by [7] or [9]).

® @

Figure 7.3: Example segmentation result for the right brain ventricle. (a — ¢) A few user-initialized

contours. (d, g) Different views of the user-initialized SketchSurface. (e, h) Different views of the

segmentation result (fitted surface). (f, i) Different views of the hand-segmented surface.

65

Table 7.3: Results of segmenting the right brain ventricle from five data sets.

Hausdorff dist. stat. between the
extracted and expert seg. surfaces

of # of (% of)

#of Control/ Seg. Edidng sensor points

Sketch Sensor Time Time Avg. Max with sub-voxel

Exp Planes Points (sec) (sec) Dist. Dist. accuracy

1 7 132 /2052 40 14 0.460 2.07 1905 (92.8%)
2 8 153 / 2373 39 8 0393 1.83 2290 (96.5%)
3 8 150 /2310 41 7 0.412 243 2160 (93.5%)
4 9 169 /2629 43 12 0.336 215 2500 (95.1%)
5 8 153 /2373 42 5 0.357 1.62 2297 (96.8%)

7.4 Segmenting the Right Putamen

Finally, the right putamen was also segmented from one volume image. The shape of
the putamen is more complex than that of the caudate, requiting 6 sketch planes
instead of 5 to construct the initial surface model and one or two more sketch lines
per sketch plane were required to create accurate contours. In addition, the putamen
is a very noisy object and there are large regions where there are no edge voxels and
where the user must interpret the location of the boundary. These factors demand
precise segmentation control. With SketchSurfaces, the initializaton and fitting were
performed in 65 seconds plus an additional 8 seconds to edit one slice, resulting in a
total segmentation time of about 73 seconds with sub-voxel accuracy (avg. distance

0.484 voxels, max. dist. 2.07 voxels, 90.3% of sensor points with sub-voxel accuracy).

Furthermore, from our experiments, it was observed that steeting via control point
) > g

pinning results in large efficiency gains. For example, on several sketch planes there
are regions of the caudate nucleus or the putamen without any visible object

boundaries in the edge-detected image. In these regions, the sketch lines were drawn

66

more carefully and several control points were pinned. Due to the nature of our
initialization technique and the flow of our segmentation method, this pinning action

requires only a very slight increase in effort.

67

Chapter 8

Conclusions

8.1 Summary

Optimizing the performance of 3D semi-automatic medical image segmentation
methods for noisy volume images requires a minimal number of fast, simple and
fatigue-free interactions, and intuitive, flexible, precise user steering and editing
capabilities. Furthermore, all of these capabilities must be seamlessly integrated into
the segmentation work-flow so that they are available at any time and presented to
the user using a consistent interface. In the technique presented by this thesis, the
combination of sketching input lines across an object, a powerful subdivision-sutface
based deformable model, with subdivision curve editing flexibly derived from
arbitrarily oriented cross-sections of this model, results in a tool that meets these
requirements and is effective for many segmentation tasks that cannot be processed

as efficiently with other techniques.

SketchSurfaces are implemented based on the design principles and guide lines of the
interactive segmentation methods as described in section 2.6. The inputs to the
algorithm are provided in pictorial form, in an effective and effortless manner, using
an interface that seamlessly combines the initialization, fitting, steering, and editing
phases. The user has full control in the entire segmentation process in order to obtain

accurate results and only needs to provide minimal input to the algorithm. Moreover,

68

proper and immediate visual feedback is maintained throughout the segmentation

wortk-flow in order to better assist the user in obtaining accurate results.

8.2 Future Work

Our deformable subdivision surface model, along with its interaction facilities works
bcst on moderately complex shaped objects, in clean or noisy images. For very
complex-shaped objects, such as arterial trees or the cerebral cortex, too many sketch
planes may be required and therefore a “flow” model may be better suited, at least on
the “front-end” of the segmentation process. For this reason, a combination of
Graph Cuts and SketchSurfaces is intriguing and is the subject of future research. The
idea would be to use Graph Cuts to generate an initial segmentation of a complex-
shaped object and to then automatically wrap a SketchSurface around the result,
parameterizing the subdivision surface based on surface curvature. The fitting,
steering and editing capabilities of SketchSurfaces could then be used to fine-tune the
segmentation in difficult regions. This combination could potentially create a tool for

efficiently segmenting any object from any image modality.

As discussed in the previous chapters, this thesis extends the sketch-line initialization
technique of [11] to 3D. In [11] a pen device is used to perform all of the
initialization, editing, and steering actions. Nevertheless, in order to achieve faster
development, in completing this thesis it was decided to use a mouse as the input
device. A future extension would be to replace mouse actions with pen stylus actions.
A pen is a more efficient, natural and precise input device for drawing actions than a

mouse, which will give the user more flexibility and manoeuvrability.

69

Other extensions to our method currently being implemented are allowing the
subdivision surface model to be initialized for more topologically complex objects,
and allowing multiple objects to be segmented. Additionally, the use of a 3DOF input
device is being explored in order to determine if moving through the volume image
along slices orthogonal to the medial surface of a highly curved object can be

simplified.

From the experiments that were conducted, it was observed that the sketch planes are
always placed in specific locations for segmenting objects with various shapes and
sizes. There is always a sketch plane near each end of the object. Other planes are
located in between and in places where there is significant change in the shape of the
cross-section of the object in a slice. Consequently, the automation of sketch plane
placements is being considered as a future enhancement. The user would matk the
near and far ends of the object and the algorithm automatically determines where the
interior sketch planes are positioned. The user then just clicks a button and the image

slice plane is automatically advanced to the next sketch plane position.

The ability to apply SketchSurfaces to an object with a significant protrusion is also a
future enhancement. When the user clicks the mouse pointer on or near a control
mesh edge, a region of the surface model around this edge becomes the active region
and is highlighted. Consequently, when new lines are sketched by the user on a new
sketch plane, the resulting contour is connected to the surface model using a contour
delineating the active region, forming a surface protrusion. This extrusion action
would allow a user to quickly construct complex initial surface shapes that may have
significant protrusions or while keeping the initialization process flexible and

intuitive.

70

Finally, the automatic local subdivision of a SketchSurface should be investigated.
Currently, when a local refinement of an object is needed, local subdivision is used by
SketchSurfaces to subdivide that particular region. However this step is explicitly
initiated by the user. A future extension would be to automatically detect and

subdivide such regions without requiring user intervention.

71

Bibliography

1. J.P. Pons,].D. Boissonnat, “Delaunay deformable models: Topology-adaptive meshes
based on the restricted Delaunay triangulation,” in IEEE Conference on Computer Viision and

Pattern Recognition, Minneapolis, USA, June 2007.

2. J. Montagnat, H. Delingette, “Spatial and temporal shape constrained deformable
surfaces for 3D and 4D medical image segmentation,” Technical report RR-4078,
INRIA, 2000.

3. T. Mclnerney, D. Terzopoulos, “Topology adaptive deformable surfaces for medical
image volume segmentation,” in IEEE Transactions on Medical Imaging, vol. 18, No. 10, pp.
840-850, 1999.

4.]J.Y. Park, T. Mclnetney, D. Terzopoulos, M.H. Kim, “A Non-Self-Intersecting

Deformable Surface for Complex Boundary Extraction from Volumetric Images,” in

Compnters and Graphics, Vol. 25, No. 3, pp. 421-440, 2001.

5. T. Mclnerney, D. Terzopoulos, “A finite element model for 3D shape reconstruction

and nonrigid motion tracking,” in Proceedings of the Fourth International Conference on Computer
Vision (ICCV'93), Betlin, Germany, pp. 518-523, May, 1993.

6. J. Bredno, T.M. Lehmann, K. Spitzer, “A General Discrete Contour Model in Two,

Three, and Four Dimensions for Topology-Adaptive Multichannel Segmentation,” in
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, No. 5, pp. 550-563,
2003.

7. P. Yushkevich,]. Piven, H. Cody Hazlett, R. Gimpel Smith, S. Ho, J. Gee, G. Gerig,

“User-guided 3D active contour segmentation of anatomical structures: significantly
improved efficiency and reliability,” in Ne#roImage, Vol. 31, No. 3, pp. 11161128, 2006.

72

10.

11.

12.

13.

14.

15.

16.

AX. Falcio, JK. Udupa, “A 3D Generalization of User-Steered Live Wire
Segmentation,” in Medical Image Analysis, Vol. 4, No. 4, pp. 389-402, 2000.

K. Poon, G. Hamarneh, R. Abugharbieh, “Segmentation of Complex Objects with Non-
Spherical Topologies from Volumetric Medical Images using 3D Livewire,” in Proceedings

of SPIE Medical Imaging: Image Processing, Vol. 6512, No. 31, pp 1-10, 2007.

G. Hamarneh, J. Yang, C. McIntosh, M. Langille, “3D live-wire-based semi-automatic
segmentation of medical images,” in Proceedings of SPIE Medical Imaging: Image Processing,
Vol. 5747, pp. 1597-1603, 2005.

T. Mclnerney, M.R. Akhavan Sharif, “Sketch initialized snakes for rapid, accurate, and

repeatable interactive medical image segmentation,” in IEEE International Symposium on

Biomedical Imaging (ISBI'06), Arlington, Virginia, pp. 398—401, April 2006.

S.D. Olabarriaga, A.W.M. Smeulders. “Interaction in the segmentation of medical

images: A survey,” in Medical Image Analysis, Vol. 5, pp. 127-142, 2001.

M. Kass, A. Witkin, D. Terzopoulos, “Snakes: Active contour models,” in International

Journal of Computer Vision, Vol. 1, No. 4, pp. 321-331, 1988.

D. Terzopoulos, A. Witkin, M. Kass, “Constraints on deformable models: recovering 3D

shape and nonrigid motion”, in Ar#ficial Intelligence, Vol. 36, No. 1, pp. 91-123, 1988.

T. Mclnerney, D. Terzopoulos D, “Deformable models in medical image analysis: a

survey," in Medical Image Analysis, Vol. 1, No. 2, pp. 91-108, 1996.
1. Carlbom, D. Terzopoulos, K. Harris, “Computer-assisted registration, segmentation,

and3D reconstruction from images of neuronal tissue sections,” in IEEE Transactions on

Medical Imaging, Vol. 13, No. 2, pp. 351-362, 1994.

73

17.

18.

L.D. Cohen, 1. Cohen “Finite element methods for active contour models and balloons
for 2D and3D images,” in IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 15, No. 11, pp. 11311147, 1993.

R. Durikovie, K. Kaneda, H. Yamashita, “Dynamic contour: a texture approach and

contour opetations,” in The Visual Computer, Vol. 11, pp. 277-289, 1995.

19. J. Miller, D. Breen, W. Lorensen, R. O’Bara, M. Wozny, “Geometrically deformed

20.

21.

22.

23.

models: A method for extracting closed geometric models from volume data,” in
Computer Graphics (Proc. SIGGRAPH91 Conf.), Las Vegas, NV, Vol. 25. No. 4, pp.
217-226, 1991.

L. Cohen, L. Cohen, N. Ayache, “Using deformable surfaces to segment 3D images and
infer differential structures,” in Computer Vision, Graphics, and Image Processing, Vol. 56, No.
2, pp. 242-263, 1992.

T. Mclnerney, D. Terzopoulos, “A dynamic finite element surface model for
segmentation and tracking in multidimensional medical images with application to
cardiac 4D image analysis,” in Computerized Medical Imaging and Graphics, Vol. 19, No. 1,
pp. 69-83, 1995.

D. Metaxas, D. Terzopoulos, “Shape and nonrigid motion estimation through physics-
based synthesis,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15,
No. 6, pp. 580-591, 1993.

SJ. Osher, J.A. Sethian, “Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton-Jacobi formulations,” in Jourmal of Computational Physics,
Vol. 79, pp. 1249, 1988.

24.]. Sur, S. Singh, S. Laxminarayan, X. Zeng, K. Liu, and L. Reden, “Shape recovery

algorithms using level sets in 2-D/3-D medical imagery: A state-of-the-art review,” in
IEEE Transactions on Information Technology in Biomedicine, Vol. 6, pp. 8-28, 2002.

74

25.

26.

27.

28.

29.

30.

31.

32.

33.

E.N. Mortensen, W.A. Barrett, “Intelligent scissors for image composition,” in Proceedings

of Computer Graphics SIGGRAPH'95), Los Angeles, CA, pp. 191-198, August 1995.

W.A. Barrett, EN. Mortensen, “Interactive live-wire boundary extraction,” in Medical

Image Analysis, Vol. 1, No. 4, pp. 331-341, 1997.

E.N. Mortensen, W.A. Barrett, “Interactive segmentadon with intelligent scissors,” in

Graphical Models and Image Processing, Vol. 60, No.5, pp. 349-384, 1998.

A.X. Falcdo,].K. Udupa, S. Samarasekera, S. Sharma, “User-steered image segmentation
paradigms: Live wire and live lane,” in Graphical Models and Image Processing, Vol. 60, No. 4,
pp- 233-260. 1998.

AX. Falcdo, J.K. Udupa, F.K. Miyazawa, “An ultra-fast user-steered segmentation
paradigm: Live-wire-on-the-fly,” in IEEE Transactions on Medical Imaging, Vol. 19, No. 1,
pp. 55-62, 2000.

AX. Falcdo, J.K. Udupa, S. Samarasekera, B.F. Hirsch, "User-steered image boundary
segmentation," in Proceedings of SPIE on Medical Imaging, Vol. 2710, Newport Beach, CA,
pp- 278-288, 1996.

Adobe Systems Inc., Adobe Photoshop CS3 User Guide. California: Adobe, pp. 245-247,
2007.

A. Schenk, G. Prause, H.O. Peitgen. “Efficient Semiautomatic Segmentation of 3D
Objects in Medical Images,” in Medical Inmage Computing and Computer-Assisted Intervention,

pp- 186195, Springer, 2000.

Y.Y. Boykov, G. Funka-Lea, “Graph Cuts and Efficient N-D Image Segmentation,” in
International Journal of Compunter Viision, Vol. 70, No. 2, pp. 109-131, 2006.

75

34,

35.

36.

37.

38.

39.

40.

41.

42.

AX. Falcio, F.P.G. Bergo, “Interactive Volume Segmentation with Differential Image
Foresting Transforms,” in IEEE Transactions on Medical Imaging, Vol. 23, No. 9, pp. 1100—
1108, 2004.

S. Owada, F. Nielsen, T. Igarashi, “Volume Catcher,” in Proceedings of the 2005 symposium
on Interactive 3D graphics and games, pp. 111-116, 2005.

Y. 13, J. Sun, C.K. Tang, H.Y. Shum. “Lazy Snapping,” in ACM Transactions on Graphics,
Vol. 23, No. 3, pp. 303-308, August 2004.

C. Rother, V. Kolmogorov, A. Blake, “GrabCut — Interactive Foreground Extraction
using Iterated Graph Cuts,” in ACM Transactions on Graphics, Vol. 23, No. 3, pp. 309-314,
August 2004.

Y. Boykov, O. Veksler, R. Zabih. “Fast Approximate Energy Minimization via Graph
Cuts,” in IEEE #ransactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 11, pp.
1222-1239, 2001.

Y. Boykov, M.P. Jolly. “Interactive Organ Segmentation using Graph Cuts,” in Medical
Image Computing and Computer-Assisted Intervention, pp. 276286, 2000.

X. Yuan, N. Zhang, M.X. Nguyen, B. Chen. “Volume cutout,” i# IEEE Trans. Visual.
Comput. Graph., Vol. 21, pp. 745-754, 2005.

L.H. Staib, J. S. Duncan, “Deformable Fourier models for surface finding in 3-D
images,” in Proceeding of SPIE: Visualization in Biomedical Computing, Vol. 1808, pp. 90-104,

1992.

T. Jakobsen, T. “Advanced Character Physics,” IO Interactive, Farvergade 2, DK-1463
Copenhagen K, Denmark, 2001

76

43. C. Murray, D. Merrick, M. Takatsuka, “Graph Interaction through Force-Based Skeletal
Animation”, in Proc. Australasian Symp. on Information Visualisation (InVis.au 2004), CRPIT
35, pp. 81-90, 2004.

44. D. Terzopoulos, J. Platt, A. Barr, K. Fleischer, “Elastically deformable models,” in
Proceedings of Computer Graphics (SIGGRAPH'87), Anaheim, CA, Vol. 21, pp. 205-214,
July 1987.

45. D. Terzopoulos, “Regulatization of inverse visual problems involving discontinuites,” in

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, pp. 413—424, 1986.

46. D. Zorin, P. Schréder, , W. Sweldens, “Interpolating Subdivision for Meshes with
Arbitrary Topology,” in Proceedings of Computer Graphies (SIGGRAPH 96), pp. 189-192,
1996.

47. U. Labsik, G. Greiner., “Interpolatory V3-Subdivision,” in Proceedings of Eunrographics,
Computer Graphics Forum, Vol. 19, No. 3, pp. 131-138, September, 2000.

>

48. K. Singh, E. Fiume, “Wires: A Geometric Deformation Technique,” in Proceedings of

Computer Graphics SIGGRAPH’98), pp. 405-414, 1998.
49. M. Beauchemin, K.P.B. Thomson, G. Edwards, “On the Hausdotff distance used for

the evaluation of segmentation results,” in Canadian Journal of Remote Sensing, Vol. 24, No.
1, pp. 3-8, 1998.

77

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2007

	Sketchsurfaces : sketch-line initialized deformable surfaces for efficient and controllable interactive 3D medical image segmentation
	Meisam Aliroteh
	Recommended Citation

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091

