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Abstract

Machine Learning Optimization for Prostate Brachytherapy Treatment Planning

Alexandru Nicolae

Master of Science

Ryerson University

2016

Prostate Low-Dose-Rate brachytherapy (LDR) is one of the most effective treat-

ments for localized prostate cancer. Machine Learning (ML), the application of statistics

to complex computational problem solving, was applied to prostate LDR brachyther-

apy treatment planning. Planning time, pre-implant dosimetry, and various measures

of clinical implant quality for ML plans were compared against plans created by expert

brachytherapists.

The average planning time to create an ML plan was 0.84 ± 0.57 min compared to over

17.88 ± 8.76 min for an experienced brachytherapists. Dosimetry was not significantly dif-

ferent for ML and expert brachytherapist plans. Clinical implant quality for the ML plans

was ranked as nearly equivalent to the brachytherapist treatment plans in all qualitative

categories evaluated.

The results of this thesis demonstrate that it is possible to generate high quality prostate

brachytherapy treatment plans with comparable quality to those of a human expert using

a custom ML algorithm.
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Chapter 1

Introduction

1.1 Preface

Chapter 2 of this thesis represents an under-review manuscript: "Alexandru-Mihai

Nicolae, Gerard Morton, Hans Chung, Andrew Loblaw, Suneil Jain, Darren Mitchell,

Lin Lu, Joelle Helou, Motasem Al-Hanaqta, Emily Heath, Ananth Ravi. Evaluation of a

novel machine learning algorithm for treatment planning in low-dose-rate (LDR) prostate

brachytherapy" submitted to the International Journal of Radiation Oncology Biology

and Physics. Nicolae AM was responsible for drafting the manuscript, collection and

administration of the research studies, and analysis of data.

1.2 Prostate Cancer

1.2.1 Epidemiology & Etiology

In recent years cancer has become the leading cause of mortality among Canadians,

surpassing cardiovascular disease [1]. Improvements in cancer survival in the past decade

have largely been due to comprehensive screening programs, as well as improvements in

cancer therapies. The most common form of cancer in Canadian men is prostate cancer, it

also accounts for over 10% of all cancer-related deaths. Over 24,000 men will be diagnosed
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with prostate cancer in 2016 with over 4,000 dying from the disease making it a significant

health care burden. Due to the high incidence rate and an average five-year survival rate

of 96% prostate cancer has a high prevalence among the Canadian population, as high as

14% [2].

Several factors place men at an increased risk of developing prostate cancer. Family

history of the disease [3], poor diet or unhealthy weight [4], and race / ethnicity (men of

African descent are at increased risk of developing the disease, while men of Asian descent

are at a decreased risk) [5]. The most dominant risk factor for developing prostate cancer

however is advanced age. Men over 50 years of age are far more likely to develop prostate

cancer. Approximately 60% of men diagnosed with prostate cancer are over the age of 65

with the median age at diagnosis being 66 years [6].

1.2.2 Increased Incidence

By 2030 it is predicted that the incidence of prostate cancer will increase by 97%, a

near doubling from the current annual incidence rate [2]. This extrapolated increase is

largely the result of the aging post-World War II baby boomer population. Approximately

63% of all prostate cancers are diagnosed at a stage where the cancer is confined to the

gland (localized disease); this has been attributed to early screening programs to detect the

cancer in otherwise asymptomatic men [7]. The large increase in the cohort of patients

with controllable forms of prostate cancer will place a significant burden on Canada’s

already strained healthcare resources. One method of scaling current treatment programs

to account for these dramatic increases in incidence is to redesign current treatment

approaches favoring effective and resource-efficient treatment alternatives.

1.2.3 Anatomy & Physiology

The prostate gland is a small exocrine gland situated in the male genitourinary system

inferior to the neck of the urinary bladder; the urethra passes directly through the gland

and the rectum sits posterior to the gland (Fig 1.1). The gland functions in maintaining

normal reproductive health by furnishing nutrients, enzymes, and proteins critical for the
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functioning of sperm. The anatomy of the gland itself is commonly divided into several

zones (Fig 1.2) [8]. One of the key secretory proteins excreted by the epithelial cells of

the prostate gland is Prostate-Specific Antigen (PSA), a glycoprotein that helps ensure

sperm motility. Serum PSA, the amount of PSA circulating within the blood stream, may

be slightly elevated in even healthy patients or several non-cancerous prostate conditions,

such as Benign Prostatic Hyperplasia (BPH). In patients with prostate cancer the level

of serum PSA may be significantly elevated [8 - 10].

1.2.4 Pathophysiology

Prostate cancer, or adenocarcinoma of the prostate, occurs when the glandular cells

that make up the prostate gland no longer respond to normal growth signals and begin to

divide uncontrollably. More locally advanced cancers will outgrow the prostatic capsule

itself and infiltrate nearby organs such as the urinary bladder and rectum. Very aggressive

cancers may additionally infiltrate the lymphatic system and spread to other more distant

organs, a process known as metastasis. Most commonly advanced prostate cancers may

spread to bones in the pelvis or extremities [11]. Because of the proximity of some of

these cancers to the urethra and urinary bladder they may produce urinary symptoms

in patients; however, prostate cancer may be largely asymptomatic in the majority of

patients, screening programs are generally required for early detection of the disease.

1.2.5 Prostate Cancer Screening

Although largely asymptomatic, early detection of localized prostate cancer is of-

ten accomplished through early screening programs. These screening programs rely on

measurement of serum PSA in patients with known risk factors for the disease, namely

advanced age, but who otherwise may be asymptomatic. Early disease screening in the

general population has allowed stage migration towards more favorable disease; stage mi-

gration refers to the detection of prostate cancer at earlier stages where treatment inter-

ventions are more likely to be effective [12-14]. Despite the benefits of early detection there

has been considerable debate as to whether PSA screening in asymptomatic patients may
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Figure 1.1: Anatomy of the prostate and surrounding organs-at-risk.
Ref: http://www.fairview.org/healthlibrary/Article/87095.

play a role in the over-diagnosis and over-treatment of prostate cancer. With a positive-

predictive value of only 24.1% many cancers are likely to be detected and treated that

do not - and would likely never - cause significant risk of patient mortality [15, 16]. The

American Prostate, Lung, Colorectal, Ovarian screening trial (PLCO) examined 79,693

men (55 - 74 years) who received annual PSA screening and found, at 13-year follow-up,

very low prostate cancer mortality rates in both PSA-screened and non-screened groups;

results were not statistically significant from each other [17]. Conversely, the European

Randomized Study of Screening for Prostate Cancer (ERSPC) trial similarly evaluated

182,160 men (50-74 years) and found that at 11-year follow-up the rate of prostate cancer

death was significantly reduced in the PSA-screened group [18, 19]. Conflicting trial re-

sults have left screening frameworks largely up to consensus decision from organizations,

such as the National Comprehensive Cancer Network (NCCN), or the American Cancer

Society (ACS) [16, 20]. These studies demonstrate the controversial nature and ongoing

debate around PSA screening; however, despite the controversy surrounding its use as

a screening tool, PSA remains a valuable tool in the diagnosis, staging, and treatment

selection of localized prostate cancer.
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Figure 1.2: Zones of the prostate where cancer typically develops.
Abbreviations : CZ = Central Zone, TZ = Transition Zone, PZ = Peripheral Zone.
Ref: http://alancam.com/study/path/view.php?url=Prostate%20-%20Pathoma.html

1.2.6 Diagnosis & Staging

An elevated PSA screening result is not itself indicative of a diagnosis of prostate

cancer. Several additional evaluations need to be undertaken by physicians to identify

prostate cancer and determine its severity. Diagnosis and staging of prostate cancer

is commonly performed by physicians using clinical nomograms or risk groups such as

the NCCN prostate cancer risk stratification system. The American Joint Commission

on Cancer (AJCC) TNM staging system also groups cancers by clinical factors such as

the extent of the primary tumor (T), presence of disease in the lymph nodes (N), or

presence of distant metastases (M); many of these are determined by physical evaluation

or diagnostic tests. Ultimately, the staging of the disease into risk groups is used to

a) inform appropriate therapies, and b) offer a prediction about the prognosis following

therapy [21]. Characterization of prostate cancer is commonly done using several metrics

including the clinical stage (TNM classification), and a measure of cellular pathology

called the Gleason Score (GS), in addition to the serum PSA.
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The TNM stage, or clinical disease stage, is generally the first step in diagnosing and

staging prostate cancer; a physician will typically determine this feature by palpation

through a digital rectal exam (DRE). Following clinical staging the patient may undergo

an imaging workup (which may include bone scans, Computed Tomography (CT), or

Magnetic Resonance Imaging (MRI) scans) to determine the extent of the primary disease

or the presence or absence of metastatic disease [21]. Trans-Rectal Ultrasound (TRUS)-

guided biopsies are then obtained to determine the GS of the disease, which indicates

the degree of atypical cells present upon histopathological analysis. Biopsy samples are

assigned scores from 3 to 5, with 5 representing very poorly differentiated cancerous cells

that significantly differ from the normal cellular structures. A pathologist will typically

examine the two most common types of cellular patterns present in the biopsy specimen.

Scores are assigned to each of the biopsy specimens; the total GS is reported as the

sum of these two values, higher GS values correlate with more aggressive tumors [22].

Incorporated holistically the information obtained from these separate sources of clinical

information is used to not only diagnose prostate cancer but inform the disease stage;

Table 1.1 shows the NCCN guidelines for risk stratification of prostate cancer. The

subsequent sections will discuss treatment options for localized prostate cancer; localized

disease, as defined by the NCCN guidelines, refers to prostate cancer confined to the

prostate gland and is typically restricted to Gleason scores of ≤7 .

1.3 Management of Localized Prostate Cancer

1.3.1 Active Surveillance

Due in part to potential over-screening among the general population, and therefore

increased detection of early-stage prostate cancer, it has been estimated that as many as

23% - 42% of PSA-detected cancers are over treated despite no significant evidence for

long-term survival benefits of active therapy [23, 24]. Active Surveillance (AS) involves

the periodic follow-up of patients at risk for development of more aggressive disease and

may include repeat biopsies, but does not otherwise include active treatment; it differs
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Table 1.1: NCCN risk stratification groups for prostate cancer [21].

Abbreviations : T = Tumor volume, N = Node status, M = Metastatic, PSA = Prostate-
Specific Antigen, ρPSA = PSA density, GS = Gleason Score, GS1 = primary GS pattern,
BxC = Biopsy Cores, Ca = Cancer

Disease
Extent

Risk
Group-
ing

T N M PSA
(ng/mL)

Gleason
Score

Notes

Localized Very-Low
Risk

T1c N0 M0 <10,
ρPSA
<0.15
ng/mL/g

≤ 6 < 3 + BxC, <
50% Ca/BxC

Localized Low Risk T1a-
c,
T2a

N0 M0 <10 ≤ 6 None

Localized Intermediate
Risk

T2b-
c

N0 M0 10-20 ≤ 7 None

Localized High Risk T3a N0 M0 > 20 ≥ 8 None
Locally
Advanced

Very High
Risk

T3b,
T4

N0 M0 Any PSA ≥ 8 GS1= 5, > 4
BxC GS1 > 8

Metastatic Metastatic
Disease

Any
T

N1 M0 Any PSA Any GS None

Metastatic Metastatic
Disease

Any
T

N1 M1 Any PSA Any GS None

from Watchful Waiting (WW) which includes no periodic biopsies as part of disease

management [25]. Patients suitable for AS generally fall into the very-low-risk category.

Although a viable method to avoid the over-treatment of low-risk prostate cancer there

exist challenges in implementing this approach as a standard-of-care. A recent study by

Klotz et al (2010) showed that for patients under AS the overall survival rate was 78.6% at

follow-ups ranging from 1 to 13 years; over 30% eventually required treatment which was

ultimately less successful than if therapy was initiated from the onset of disease detection

(50% biochemical failure rates at 3 years) [26]. The findings of Klotz et al. indicate that

although AS can provide an effective means to reduce overtreatment of prostate cancer

there is a risk of missing more aggressive disease.

Studies also demonstrate that there may be considerable anxiety for patients harboring

active cancer regardless of the risk with many patients opting-in for active treatment

[27, 28]. Coupled with a largely poor consensus on what differentiates cancers at risk of
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causing mortality from more indolent cancers [29, 30], and a risk of under-staging disease

[29], there may be considerable risk of not actively treating younger men that may benefit

from longer, disease-free lifespans.

1.3.2 Active Treatment

Definitive treatment for localized prostate cancer is primarily based on the risk group

the patient occupies (see Table 1.1). Additional considerations for treatment selection

include the patient’s age, urinary function, and presence or absence of other comorbidi-

ties [25]. A large systemic review by Grimm et al. (2012) compared the effectiveness of

various treatment options in terms of long-term disease control (see Fig 1.3) for localized

prostate cancer including radical prostatectomy (or surgery), permanent and temporary

brachytherapy, and External Beam Radiation Therapy (EBRT) [31]. The following sec-

tions outline the most commonly used techniques for the treatment of localized prostate

cancer.

Surgery

Radical Prostatectomy (RP), the surgical removal of the prostate gland, has been

the most historically utilized approach to treating organ-confined prostate cancer. Due

to downward stage migration from increased PSA screening practices there has been

increased viability in the use of surgical treatment options. Surgery is generally recom-

mended for patients younger than 70 years of age with a life expectancy of greater than

10 years, and with no significant confounding urinary comorbidities [25]. Because RP is a

surgical procedure the skill with which the technique is performed is highly important in

obtaining good outcomes [32, 33]. Complications can occur including significant urinary

incontinence, erectile dysfunction, and rectal tissue injury related to operative damage to

the respective tissues; however, the severity may be highly dependent on the skill of the

surgeon [33 - 35]. The skill dependent nature of outcomes following RP was demonstrated

in a retrospective review by Crook et al. (2015) which showed disease-free rates at follow-

ups of up to 15 years as low as 60% to 68%, at different centers, for intermediate-risk

8



Figure 1.3: Results from a systemic review showing biochemical control rates for low-risk
prostate cancer. Ellipses represent 1 standard deviation about the weighted mean of the
data sets. Numbers over data points represent the study reference number [31].

Abbreviations : EBRT = External Beam Radiation Therapy, Brachy = Brachytherapy,
PSA = Prostate-Specific Antigen

patients [36].

External Beam Radiation Therapy

External Beam Radiation Therapy (EBRT) is another well-established treatment for

localized prostate cancer. It can additionally be combined with other treatment modal-

ities to offer improved disease control in higher risk patients. Several studies on the

radiobiological nature of prostate cancer cells indicate that improvement in the therapeu-

tic ratio (the balance between cancer control and normal tissue complications) is possible

by delivering larger localized radiation doses in shorter time frames [37, 38]. EBRT is rel-

atively less expertise-dependent compared to RP in that a) clinician skill is not correlated

to treatment outcome, and b) relatively few contraindications exist to its use. Five-year

follow-ups showing biochemical control of up to 90% in low-risk patients are common
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with relatively low rates of urinary toxicities [31, 39]. Limitations of this approach when

used alone show higher rates of rectal toxicities and increased local failures on long-term

follow-up [39]. In comparison to brachytherapy and RP, which are single day procedures,

EBRT is commonly delivered daily over 4-5 weeks which may have a greater impact on a

patient’s quality of life.

Brachytherapy

Brachytherapy (BT) - a form of localized, internal radiation therapy where small ra-

dioactive sources are implanted directly within or near the cancer - is one of the most effec-

tive methods for the treatment of early-stage prostate cancer. Brachytherapy can either be

delivered as permanent implants, Low-Dose-Rate (LDR) brachytherapy, or as temporary

implants, High-Dose-Rate brachytherapy (HDR) brachytherapy. In LDR brachytherapy

80 - 100 small seeds commonly containing Iodine-125 (I-125) are implanted directly into

the prostate gland in a pre-defined geometric pattern. The sources deliver the prescribed

dose of radiation to the tumor as they decay. More recently HDR brachytherapy has

emerged which offers a more versatile method of boosting the localized radiation dose in

a safe, effective manner. In HDR brachytherapy a single Iridium-192 (Ir-192) source is

remotely "stepped" through a series of 12-16 catheters temporarily implanted within the

prostate gland, the dwell times and positions of this source within the catheters determines

the radiation distribution within the prostate [40, 41]. Although HDR brachytherapy of-

fers promise as a modality LDR remains the standard of care, with a significant body of

evidence that has yet to mature in the HDR setting.

LDR brachytherapy can either be delivered alone (monotherapy), or in combination with

EBRT for high-risk disease [42]. Biochemical disease control, as measured by serum

PSA at 5-7 year follow-ups, are typically over 95% in low-risk disease, and greater than

90% in studies evaluating intermediate-risk patients [43-45]. LDR brachytherapy also

has demonstrated relatively low morbidity rates as measured by acute and long-term

urinary and rectal toxicities in a number of studies, with the best sexual function scores

among all the available treatment options [35, 42, 46]. An excellent prospective study by
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Giberti C et al. (2009) compared brachytherapy to RP for low-risk patients and found

nearly identical biochemical survival (91% and 91.7%, respectively), but less frequent

erectile dysfunction in the BT group; although, at 5-year follow-up the rate of long-

term side-effects was nearly identical [47]. Quality-of-life indices also show significant

benefits to LDR brachytherapy over RP for localized disease [48]. Because of these benefits

LDR brachytherapy is routinely recommended for the treatment of low-risk disease by

the American Brachytherapy Society (ABS) and Groupe Européan de Curiethérapie -

European Society for Radiotherapy and Oncology (GEC-ESTRO) organizations, as well

as the ACS and American Urological Association (AUA).

Due to the ability to implant sources directly within the cancerous lesion the movement

of the target organ becomes inconsequential to treatment delivery (unlike EBRT, where

motion is a significant concern during treatment), thereby allowing significant, and safe,

radiation dose escalation to the cancer. The goal of LDR brachytherapy is therefore

to maximize the radiation dose received by the cancer while limiting radiation dose to

nearby healthy tissues such as the rectum and urethra. As this thesis will demonstrate

this process is more nuanced and complex than its initial simplicity implies.

1.4 Current Issues in Brachytherapy

1.4.1 The Low-Dose-Rate Workflow

Fig 1.4 shows the modern TRUS-guided LDR brachytherapy implantation proce-

dure as developed by Stock and Stone et al in 1995 [49]. Patients are typically sedated

using general anesthesia and placed in dorsal lithotomy position within an operating suite.

A volumetric TRUS image is then acquired. In the preoperative planning workflow the

patient is then discharged and treatment planning proceeds in their absence; in the intra-

operative planning workflow the brachytherapy plan is generated and implanted while the

patient is in the operating room. During treatment planning a radiation oncologist with

expertise in brachytherapy (also known as a brachytherapist(BT)), will use the TRUS

volume information to identify and contour the target and normal tissues, or Organs-at-
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Figure 1.4: The modern TRUS-guided prostate LDR brachytherapy procedure. Radioac-
tive sources (contained within small metallic seeds) are deposited into the prostate using
hollow needles. Ref :http://www.prostate.org.au/awareness/for-recently-diagnosed-men-
and-their-families/localised-prostate-cancer/treatment/treatment-options/

Risk (OAR). Once the contoured organ structures are identified the task falls to an expert

treatment planner (either a BT or an expert Radiation Therapist / Dosimetrist (RT)) to

manually place the radioactive sources in an optimal 3D configuration to deliver as much

radiation to the target as possible while minimizing dose to normal tissues. A dose of 110

Gy - 145 Gy is typically prescribed to the prostate (for boost and monotherapy treat-

ments, respectively) [40]. Following planning the radiation oncologist then implants the

planned configuration of I-125 sources under TRUS-guidance using pre-loaded or custom

loaded needles. The implantation process causes swelling and edema of the prostate gland

and alters its shape. Post-implant dosimetric analysis is typically performed 14 to 30 days

after the implant procedure to allow sufficient time for swelling to subside; post-implant
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dosimetry done immediately after implantation can underestimate the dose by as much

as 10% compared to day 30 [49]. During post-operative dosimetry the patient undergoes

a CT scan and the sources are identified, the plan dosimetry is then recomputed from the

actual positions of the sources.

Iodine-125, the most common isotope used in prostate brachytherapy, decays by electron

capture to an excited state of Tellurium-125. The emission of low energy (average 35.5

keV) gamma (7%) and characteristic x-ray (93%) photons follows decay with a half-life of

59.4 days; these short-range photons transfer energy to cancerous tissue causing strand

breaks in the DNA of cells [51]. During treatment planning specialized software takes the

position of these sources, along with the contours provided by the radiation oncologist,

and computes the dose to the target (prostate) and OARs. Dose computation is based

on the American Association of Physicists in Medicine Task Group No. 43 formalism

and is standard practice for brachytherapy planning software; this formalism will be

covered in greater detail in a subsequent section [40, 52]. With the dose computed and

a set of physician-defined contours the treatment plan is evaluated using a Dose-Volume

Histogram (DVH). This measure graphically represents the volume of the prostate contour

receiving a given dose of radiation. For example, D90 represents the amount of dose

received by 90% of the prostate; conversely, V100 may be used and refers to the prostate

volume receiving 100% of the prescribed dose. These metrics, in particular the prostate

D90, have been correlated to outcomes in biochemical control for both the preoperative

treatment plan and post-operative dosimetry [40, 53, 54].

1.4.2 Limitations of Treatment Planning Methodologies

Post-implant dosimetric and clinical outcome studies demonstrate that the long-

term disease control and side-effects from LDR brachytherapy are highly dependent on

the expertise of the brachytherapy team and the quality of the implant [55, 57]. LDR

brachytherapy plans are more susceptible to seed misplacement during the implantation

procedure and result in less frequently achieving adequate target coverage and normal

tissue sparing [57, 58]. A study conducted by Morton et al. (2013) showed a larger
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variance in dosimetric quality for prostate V100 and V200 metrics for LDR compared to

HDR brachytherapy [57]. A dosimetric learning curve for reducing long-term rectal [59],

and urethral [60, 61], toxicities has been also demonstrated in several institutional studies.

Multivariate analysis in a study by Liu HW et al. (2010) showed that the experience of

the team may be the most important predictive factor in obtaining a quality dosimetric

outcome, followed closely by the shape and size of the prostate gland itself [62]. Overall,

the differences in LDR planning expertise across centers may be a cause of the observed

lack of uniformity in both dosimetric results and clinical outcomes.

A significant number of cases with poor post-operative dosimetery are caused by system-

atic source placement errors during the implantation process [63, 64]. Poorly designed

treatment plans will systemically propagate into poorly performed implants, these cases

may require some form of salvage therapy or re-implantation to improve target coverage

[63]. Due to this inherent connection between treatment planning and clinical outcomes

it may be possible to improve the overall quality of the implant, and reduce the risk of

improper implantation, by creating high quality treatment plans to begin with.

Sylvester et al. (2011) showed that a major contribution to the success of the implanted

plan distribution is the three-dimensional source pattern implanted by the radiation oncol-

ogist [65]. Several features differentiate the expert plan from the novice plan: sources and

needles (used to implant sources) are evenly distributed to avoid dose inhomogeneities,

the number of needles is kept to a minimum to reduce implant edema and ease visu-

alization on TRUS imaging [60, 66], and, sources are strategically placed to limit plan

distortion as a result of post-implant edema [66]. Expert brachytherapy planners will take

into account this experiential knowledge of the implant process, in addition to the skill

of the BT in implanting the case, to minimize the likelihood of producing a poor implant

and deviating from the planned source pattern. The large number of potential source

positions, and the multitude of both clinical and dosimetric parameters to consider, make

planning resource intensive and time-consuming; seasoned experts may take anywhere

from 20 minutes to several hours to construct a high-quality treatment plan. In order to

improve plan quality, improve the uniformity of treatment planning and clinical outcomes
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in LDR brachytherapy, and decrease the risk of poorly performed implants new methods

of performing this crucial workflow step are needed.

1.5 Potential Solutions to the Planning Problem

1.5.1 Overview of Strategy to Be Implemented

The optimal selection of radioactive sources relative to the prostate and normal tissues

is presented as a difficult optimization problem with a multitude of clinical and dosimetric

variables to consider. As computational power increases there exists opportunities to

apply computer algorithms to solve these complex, multifactorial problems.

Anatomy based inverse planning methods to optimize plan dosimetry have been success-

fully used in EBRT to rapidly produce high quality treatment plans [67]. Anatomy based

inverse optimization refers to the use of radiation oncologist-defined organ contours and

dosimetric objectives as inputs; the optimal radiation distribution from these known in-

puts is then calculated using a number of different methodologies [68, 69]. Dinkla AM

et al (2015) showed that inverse optimization may offer comparable dosimetric results

to expert-generated brachytherapy treatment plans but with the added benefit of signif-

icantly decreased planning times [70]. Several computerized algorithms have been devel-

oped including the Inverse Planned Simulated Annealing (IPSA) algorithm developed by

Pouliot (1996) and further improved by Lessard et al [71-73], the Hybrid Inverse Planning

and Optimization (HIPO) algorithm which combines stochastic and deterministic pro-

cesses [74], mixed-integer methods [75], and several variations of simple, multi-objective

genetic and evolutionary algorithms [76, 77]. Unfortunately many of these algorithms

are experimental and have seen limited clinical use on their own, particularly in LDR

brachytherapy.

In the following sections one of these algorithms, the fast IPSA implementation, will be

examined including its benefits in dosimetric optimization for brachytherapy but also its

deficiencies when used without supplemental clinical information.
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1.5.2 Stochastic Optimization

The most successful of the stochastic algorithms used in LDR brachytherapy is the

IPSA algorithm. Its application in LDR brachytherapy has many advantages including

its ability to escape the many local optima that exist among LDR treatment plans to

increase the likelihood of finding an overall optimal solution. The core simulated annealing

algorithm, as described by Kirkpatrick (1983), can be understood as analogous to a slowly

cooling liquid (annealing); as the energy state of the liquid decreases, due to a reduction in

the ambient temperature, it will eventually solidify into a lattice formation representing its

most stable (lowest energy) form. If cooling is too rapid the liquid may not have sufficient

time to form an ordered lattice; an amorphous solid is the result which may not necessarily

correspond to the lowest and most stable energy state [78]. In this implementation the

energy state is defined by an objective penalty function describing the source pattern and

dosimetry of the treatment plan, as well as how close the plan is to some pre-defined

dose objective. As with any optimization algorithm the goal is to minimize this function

through a series of iterative, randomized steps and achieve some optimal plan dosimetry.

Pouliot et al (1996) defined the components of the IPSA algorithm relevant to LDR

brachytherapy optimization which will be briefly covered in this section [71]. These com-

ponents include 1) a detailed modeling of the treatment space and input data, 2) a method

to compute the dose to the BT-defined targets and normal tissues, and 3) an objective

penalty function, based on the dosimetric state of each organ, which must be minimized.

Further details of this implementation will be covered in Chapter 2.

Data Input

The IPSA algorithm first requires the target and normal tissue contours, an initial

placement of needles (generally also defined by the BT), and an initial source pattern.

Typically A = [a1...ai] ∈ R represents a linearly-indexed vector for each contour point

being evaluated, where a1...ai defines the linear indices of the dose points of the surface

of the prostate (as an example). Similarly, B = [b1...bj] ∈ R represents the initial source
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pattern as a vector, where b1...bj define the linear voxel indices of each source centroid.

Dose Computation

The dose to each voxel of the prostate contour is computed from the TG-43U1 point-

source formalism [52]. This dose formalism has become standard in a number of commer-

cially available dose computation engines due to its relative speed and ease of implemen-

tation. The one-dimensional point-source formalism is used to simplify computation by

removing the need to determine source orientation; this can be described by the following:

Ḋ(r) = SkδΛ

(
r0
r

)2

gp(r)φa(r) (1.1)

Where Ḋ(r) represents the dose rate to any point at a distance r from the centroid of the

source (see Fig 1.5). The air-kerma strength is defined by Skδ and is the air kerma rate

in vacuo due to photon energies greater than an energy cut-off δ (typically 5 keV), the

dose-rate constant in water is represented by Λ and is the ratio of the dose rate at 1cm

on the transverse axis of the source (r0) to the air-kerma strength. An inverse-square law

parameter is used to represent the isotropic dose fall-off from the point-source. Finally, the

radial dose function gp(r), and the anisotropy function φa(r) represent interpolated values

from experimental data that account for photon scatter and dose variations, respectively.

Figure 1.5: Generic line-source brachytherapy seed with computation parameters. The
angular terms are not present for point-source approximations [52].
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Given some initial source pattern B, the dose to each voxel on any contour surface can

be defined by D = [d1...dk] ∈ R2 where d1...dk represents the linear indices of dose voxels

computed on each prostate surface point from the 1st to the kth voxel index. An example

of the computed dose to the surface of the prostate can be found in Fig 1.6.

Figure 1.6: Example of dose computation from a given source pattern to the prostate and
urethral contour surfaces. Dose is represented as a % of the prescribed dose. Dimensions
are in mm.
Abbreviations : Sup = Superior, Inf = Inferior, Ref = Prostate Midplane

Objective Penalty Function

With the known dose to the prostate contour an objective penalty function can

be obtained that penalizes source patterns with dosimetric criteria not matching the

physician’s standards. Given the dose to the prostate contour represented by D, a penalty

score was assigned such that O(B) = [o1, ..., ok] ∈ R where o1, ..., ok represents the

objective penalties assigned to each dose voxel (for all k voxels), for a given source pattern.

A physician-defined penalty may state that the prostate surface dose cannot be below

145Gy and set this as a relatively hard constraint that must be met. Similar constraints

are applied to normal tissue contours. A more detailed explanation of the objective

penalty function as it relates to novel algorithmic implementations is found in Chapter 2.

Once an objective penalty has been defined for each individual dose voxel of the prostate

the organ-specific objective function can be defined from the following:

O(B)prostate =
1

N

N∑
k=1

O(B)k (1.2)
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where 1/N represents the normalization of the summed voxel penalties to the total num-

ber of voxels computed. This type of equation is known as a multi-objective function

minimization since each organ structure has a summed objective penalty function [79].

The most recent renditions of IPSA further simplify this minimization problem by creat-

ing a single-objective penalty function. The single-objective penalty function in this case

represents the cumulative sum of objective penalty functions from 4 different objectives:

the prostate surface and contour dose, the PTV dose, and the urethral doses. In summary,

the iteration through different source patterns tries to balance these competing interests

to find an optimal source pattern.

1.5.3 Deficiencies of Naive Stochastic Optimization

Despite the relative success of the fast IPSA implementation there exist several limitations

to the naive implementation, including limitations common to all stochastic methods.

Due to the limitations of these approaches IPSA (and other stochastic methods) have

seen limited use; manual, expertise-driven planning still remains by far the most common

approach in LDR brachytherapy.

1. Plans may not be physically implantable in patients. The stochastic (or

random) nature of the source patterns may produce plans which are dosimetrically

optimal but not achievable in clinical practice by even experienced radiation on-

cologists. Fig 1.7 outlines a dosimetrically optimal IPSA plan that demonstrates

difficult implant features. Sources clustered in close proximity or to one side of the

prostate may cause excessive hot spots to nearby normal tissues and may be exceed-

ingly difficult to visualize under intraoperative TRUS-guidance due to a number of

artifacts [80]. Plans with these features must generally be heavily modified to be

implanted accurately by the physician. Additionally, to obtain plans similar to Fig

1.7 significant priming of the algorithm was required (for example using a prior

expert physician-designed template).

2. Plan modification is difficult if not impossible. Because stochastic algorithms

generate randomized source patterns re-optimizing the algorithm will degrade the

19



Figure 1.7: Treatment plan axial isodose distribution demonstrating optimized dosimetry
but features that may cause problems during implantation. Isodoses are labelled as a
percentage of the prescription dose [72]. Contours: PR = prostate, U = urethra. IPSA
= Inverse Planned Simulated Annealing

initial source pattern altogether; there is no method to introduce minor modifica-

tions if required. Minor modifications to source patterns are difficult as the plans

degrade in quality with deviations from the optimized source positions (i.e. they are

optimized only to their current state). Adjustments by a BT or RT are therefore

difficult and relegated to only altering hyperparameters of the algorithm. Hyper-

parameters refers to parameters that may be altered manually including the opti-

mization time, prescribed dose etc, but typically are not tuned through iterative

optimization.

3. Plan uniformity is poor. It follows from the limitations described in 1 and 2

that there exists poor uniformity in design of treatment plans, even for prostate

glands with similar shapes and sizes to previously planned cases. As such, many

clinical hours may be spent re-planning cases that were previously successful. There

may exist significant differences in plan quality between expert planners and even

between different cases of a single expert planner.

1.5.4 Incorporation of Machine Learning

A promising solution to the limitations imposed by stochastic optimization processes

has emerged in recent years in the form of Machine Learning (ML) algorithms. Machine

learning is a form of artificial intelligence that uses past information (in the form of his-

torical training data) about a given problem to infer new solutions without being directly
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programmed for such an endpoint [81]. ML algorithms have been able to outperform con-

ventional computation methods in complex language classification tasks, financial trading

algorithms, video game artificial intelligence, and even automated diagnosis in radiology

applications [82-84]. The ability to include prior information allows incorporation of

human-like knowledge of patterns and solutions to provide more uniform and real-world

solutions; the result is an algorithmic process that can typically mimic human modes of

thinking, potentially even an expert BT or RT planner [85].

There is surprising variability in this broad group of algorithms where form generally fol-

lows function, i.e. the algorithmic workflow is tuned to the task it is trying to perform [86].

Algorithms requiring accuracy may require considerable processing to extract relevant in-

formation from a dataset, while those requiring speed may opt for simpler assumptions

and faster optimization algorithms. The majority of machine learning algorithms contain

the following components [86]:

1. Database preprocessing and database creation. Previous successful solutions

to a problem are aggregated into a common training database.

2. Dimensionality reduction and similarity matching. Database entries are gen-

erally complex so a method of simplifying the data is needed. Principle Component

Analysis (PCA), Mutual Information (MI), and primitive feature extraction are

common methods of reducing complexity of data [87]. Similarity matching is used

to find mutual information between a current problem and a previous solution from

the database.

3. Iterative optimization. The most similar solution(s) is adapted to the current

problem using a set of environmental constraints combined with iterative stochastic

optimization.

4. Model revision & training. Solutions are evaluated and successful attempts at

the problem are retained for future use; the learning model is usually updated to

reflect the methodology taken to reach the solution.

Since the main limitation of current LDR BT algorithms is their inability to replicate
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human-expert qualities machine learning may be able to replicate features in treatment

plan design that resemble those of an expert treatment planner. When combined with

the rapid adaptation process offered by stochastic optimization algorithms such as IPSA

it may be possible to rapidly find optimal planning solutions that satisfy a multitude of

competing dosimetric and clinical criteria. Chapter 2 will examine this hybrid approach

to planning using a novel, brachytherapy-specific, machine learning algorithm.

1.6 Hypothesis

The goal of this thesis is to develop and evaluate the clinical efficacy of a novel machine

learning approach to treatment planning for LDR prostate brachytherapy. This approach

has the potential to vastly improve the resource and time requirements of expertise-driven

planning, while simultaneously improving on the limitations of current computerized in-

verse planning methods. The incorporation of this approach into the clinical workflow is

expected to produce results comparable to that of highly seasoned brachytherapy plan-

ners, in much shorter timeframes.

The main hypothesis of this work is that implementing this novel algorithm in the prostate

LDR brachytherapy workflow can produce pre-implant treatment plans of comparable

dosimetric and clinical quality to that of expert brachytherapy planners, in addition to

significantly reduced planning times.

1.7 Potential Impact

It is expected that the results of this study will significantly impact the accessibility

of high quality prostate LDR brachytherapy treatment planning. Firstly, this thesis has

the potential to significantly reduce the usage of costly and clinical resources, such as the

planning time required by brachytherapy expert planners; with the predicted increases

in prostate cancer this may allow centers to reliably keep pace with growing demand for

their services. Secondly, the thesis has the potential to redefine how brachytherapy is

administered across centers. Several clinical trials [57, 88] show that outcomes in LDR
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brachytherapy although excellent require improved uniformity and consistency of results,

particularly with relation to side-effects. The incorporation of standardized planning

methodologies based on expert consensus allows for improved uniformity in treatment

planning. Finally, the collection of increased volumes of brachytherapy outcomes data may

also allow future insights to develop on the treatment outcomes which are not currently

being collected. The work presented here has been adopted by MaRSTM Innovation, an

organization that specializes in early stage seed investing for developing companies, with

the intention of making the algorithm readily available to clinical end users.

1.8 Thesis Overview

Chapter 2 describes the evaluation of a novel incorporation of ML into the LDR

brachytherapy framework as a means to achieve the goals set out in the hypothesis.

This chapter also covers in more detail the components of the algorithm, as well as the

results of a clinical study conducted at the Odette Cancer Center (Toronto, ON, Canada).

Chapter 3 includes an expanded discussion of how these findings will affect the nature of

brachytherapy treatment planning in the future.
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Chapter 2

Evaluation of a Machine Learning

Algorithm for Prostate LDR

Brachytherapy

2.1 Abstract

Purpose: This work presents the first known incorporation of machine learning (ML)

to automatically generate high-quality, prostate Low-Dose-Rate (LDR) brachytherapy

treatment plans. The ML algorithm has the ability to mimic implant characteristics of

expert brachytherapists. The planning efficiency, dosimetric and clinical quality of plans

generated using an ML planning approach was evaluated in this study.

Methods & Materials: Pre- and post-implant treatment plans were extracted from 100

high-quality LDR treatments and stored within a training database. The ML algorithm

matches similar features from a new LDR case to those within the training database

to rapidly obtain an initial seed distribution; plans were then further fine-tuned using a

stochastic local search algorithm. Pre-implant treatment plans generated by the ML algo-

rithm were compared to brachytherapist (BT) treatment plans in terms of planning time

(Wilcoxon rank sum, α = 0.05) and dosimetry (one-way ANOVA, α = 0.05). Qualitative
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clinical implant quality was evaluated by expert LDR radiation oncologists using a Likert

scale questionnaire.

Results: The average planning time for the ML algorithm was 0.84± 0.57 min compared to

17.88 ± 8.76 min for the expert planner (p=0.020). Treatment plans were dosimetrically

equivalent to the BT plans; the average prostate V150% was 4% lower for ML plans

(p=0.002); although, not clinically significant. Respondents ranked the ML generated

plans as equivalent to expert BT treatment plans in terms of target coverage, normal

tissue avoidance, implant confidence, and the need for plan modifications. Respondents

had difficulty differentiating between plans generated by a human or the ML algorithm.

Conclusions: Prostate LDR treatment plans that have equivalent clinical and dosimetric

quality to plans created by brachytherapists can be rapidly generated using ML. The

adoption of ML in the brachytherapy workflow is expected to produce high quality LDR

treatment plans uniformly, while dramatically reducing planning time and resources.

2.2 Introduction

Low-Dose-Rate (LDR) prostate brachytherapy, the permanent implantation of ra-

dioactive sources directly within the prostate, is one of the most effective methods of de-

livering conformal radiation for localized prostate cancer [31,89-92]. Several clinical trials

have demonstrated excellent long-term biochemical disease control using LDR brachyther-

apy, either alone (as monotherapy), or as a boost following External Beam Radiation

Therapy (EBRT) [93-96]. The overall goal of LDR brachytherapy is to maximize the

dose to the prostate while sparing normal tissues through the implantation of radioactive

sources in a pre-determined three-dimensional pattern. Studies evaluating post-implant

outcomes in LDR brachytherapy demonstrate that the quality and long-term success of

the procedure are highly dependent on the expertise of the brachytherapy team [55,56,97].

Hughes et al (2005) and Sasaki et al. (2014) demonstrated that systematic source place-

ment error was often the cause of poor post-implant dosimetry; implants with regions

of insufficient dose identified during post-implant evaluation have been associated with
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local recurrences [63,64]. Re-implantation following a suboptimal implant may improve

target dosimetry but frequently results in significant urinary morbidity in addition to the

increased operative risk [98]. The pre-implant treatment plan is a critical component to

ensuring accurate implants; poorly optimized plans may often result in suboptimal im-

plants as errors are systematically propagated throughout the procedure. Expert radiation

therapist (RT) planners will often instinctively account for the skill of the brachythera-

pist (BT) and the particularities of the implantation technique to maximize the likelihood

of an accurate implant. Although this has led to excellent results, this expertise-driven

approach to LDR planning requires large patient volumes, is resource intensive, and time-

consuming. Recent evidence suggests that there may also be poor uniformity of outcomes

due to different levels of procedural expertise [57,88].

One method of ensuring uniform, high quality treatment planning has been the introduc-

tion of computer optimization algorithms. A study by Dinkla AM et al (2015) showed

that inverse optimization algorithms can also significantly decrease planning time com-

pared to expert-driven methods [70]. Inverse Planned Simulated Annealing (IPSA) [71],

the Hybrid Inverse Planning Optimization (HIPO) algorithm [74], mixed-integer methods

[75], and variations of multi-objective genetic algorithms have been examined to improve

brachytherapy planning [76]. Conventional stochastic algorithms, although capable of

rapid planning, commonly fail to incorporate the implantation technique of the BT into

the planning process; thereby, producing plans that are difficult to reproduce during im-

plantation [99]. Relatively few of these algorithms have been successfully implemented

in the clinical environment owing to these limitations; stochastic optimization alone may

therefore be insufficient to produce optimal treatment plans without supplemental infor-

mation.

A promising algorithmic technique applicable to brachytherapy planning is machine learn-

ing. Machine learning (ML) is a form of statistical computation that uses known properties

of historical data to predict solutions; these techniques have seen considerable interest in

recent years [81]. Applications range from performing complex language classification

tasks [82], to financial trading [83], to computer-aided radiological diagnosis [84,85]. The
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main benefit of such active learning approaches is that they can typically mimic human

modes of thinking in highly complex tasks [100].

The ML paradigm is suited to the complex task of finding viable source patterns in

LDR brachytherapy that account for BT skill and implant technique. This could provide

significant planning assistance to overextended brachytherapy departments, increase the

uniformity in treatment plan quality, and reduce the likelihood of systemic implant er-

rors. To date there has been no published study involving ML for brachytherapy (to the

authors’s knowledge); this study presents the dosimetric and clinical results for the first

known application of ML for prostate brachytherapy planning.

2.3 Materials & Methods

2.3.1 Data Description

Data used to inform the ML algorithm was extracted from the LDR brachytherapy

patient database at the Sunnybrook Odette Cancer Centre (Toronto, ON, CA) as part of

an ethics board-approved study. The center treats approximately 100 prostate LDR cases

per year and has a well-established prostate brachytherapy program. A random sample of

150 LDR cases dating back to 2012 was obtained. Cases were filtered according to post-

implant dosimetric quality metrics, primarily the prostate D90% and V100% [56,101], to

obtain an initial ML training database of 100 cases. In addition to planning information

and structure contours, primitive anatomic features were computed and stored within the

database. An additional 30 randomly selected LDR cases were used to validate the ML

algorithm output.

2.3.2 System Architecture

Fig 2.1 demonstrates the workflow of the ML algorithm for creating clinically viable

treatment plans. The core components of the algorithm required to generate a treatment

plan can be deconstructed into three steps: 1) data preprocessing and training database

creation, 2) similarity matching, and 3) stochastic optimization.
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Figure 2.1: Machine learning workflow for LDR brachytherapy. 1) data prepro-
cessing and training database, 2) similarity measure functions, 3) stochastic optimization
and plan adaptation. The dark arrow represents the starting point; the white arrow
represents a possible terminus. For a list of clinical rules used to constrain stochastic
optimization refer to Table 2.1.

Data Preprocessing & Training Database

Digital Imaging and Communications in Medicine (DICOM) files from a new LDR

case were first used to extract relevant information from the respective case. BT-defined

contours (prostate, urethra, rectum and planning target volume), source patterns, and

radioisotope properties were automatically extracted and stored as data within the train-

ing database. Primitive features - a lower-dimensional quantitative representation of the

extracted contour structures - are a method to simplify the large amount of 3D contour

data that exists [87,102]. Extracted features included the prostate volume, principal axes

of the prostate, axial slice circumference, and prostate symmetry; many of these features

are currently used in semi-quantitative approaches during prostate biopsies or treatment

planning to characterize the prostate [103-105]. Features were z score normalized to re-

move the effect of varying units [106].
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Similarity Matching

The similarity matching process was used to find the most similar features of cases

from the training database which matched those of the current case. A Euclidean dis-

tance metric was used to inform a k -nearest neighbor (kNN) plan retrieval method, this

approach is useful when all data points are quantitative and the database is of lim-

ited size [107-109]. A vector representing the features for the query case was given by

X = [x1...xi] ∈ R where x1, ..., xi represents the first to the ith computed anatomic feature

dimension. Similarly, a matrix representing the features for the database cases was given

by Y = [y1,1...yi,j] ∈ R where y1,1...yi,j represents identical features computed for the first

to the ith feature for each jth database plan. To find the similarity vector Π = [π1...πj] ∈ R

∀j ∈ [0,M ], πj =

√√√√ N∑
i=1

(xi − yi,j)2 (2.1)

where π1...πj represents the sum of the distance values for the ith feature, for all N features,

between the query and database cases. Similarly, this was computed for all M database

cases to produce the similarity vector
∏
. The kNN retrieval was then used to retrieve the

top k plans from the training database with the most similar anatomic features by finding

the smallest elements of the similarity vector. The best matched plan(s) was populated

onto the BT-defined contours prior to further optimization.

Stochastic Optimization

Due to the relative success of the IPSA algorithm by Pouliot et al (1996) in optimizing

dosimetry this core methodology was used to adapt the most-similar plan to the anatomy

of the new case. The IPSA algorithm uses minimization of a dosimetric objective function

by rapidly evaluating multiple potential source patterns in relation to the defined contours.

The smaller the objective function the increased likelihood that an optimal solution has

been found [71].

The best matched plan(s) obtained from the training database was used to compute the
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dose to the contoured structure volumes using the TG43 point-source formalism [52]. The

dose to each contoured structure was stored as a linearly-indexed vector D = [d1...dk] ∈ R3

for the first to the kth voxel within or on the surface of the structure volume. Each

voxel element of the structure that was not within a predefined dose range was penalized

according to

O(A) =


|(dk −Dt)|W if dk < Dl or dk > Dh

0 otherwise
(2.2)

where dk is the kth voxel dose for a given structure volume, Dt represents either the higher

(Dh), and lower (Dl) dose limits of a structure, W is a weighting vector, and O(A) rep-

resents the objective function score for a given source pattern, A. The hyperparameters

Dh and Dl were obtained by BT consultation and remained constant. The values of

the W vector were obtained using cross-validation on the initial training database [110].

Summing penalty scores for each voxel yielded the cumulative objective function for a

given structure. In total, four objectives were considered: prostate and planning target

volume (PTV) coverage, a uniformity constraint, and the urethral maximum dose. These

represented soft-constraints for the algorithm to achieve through objective function min-

imization.

In addition to the soft-constraints provided by the dosimetric objective function sev-

eral clinical rules were used as hard-constraints to limit attempted source patterns during

stochastic optimization . Clinical rules were designed through consultation with medical

BT experts to identify source patterns that could potentially lead to poor implantations.

Examples of hard-constraints included requiring a minimal 0.5 cm separation between

intra-needle source placement to prevent dosimetric hot spots, or requiring a 0.5cm nee-

dle gap near the urethral surface to minimize dose to the urethra (see Table 2.1 for a

more comprehensive list). Finalized plans were exported to VariSeed 8.0 planning software

(Varian Inc., Palo Alto, CA, USA) for final dosimetric evaluation.
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Table 2.1: Clinical rule strategies applied to stochastic optimization. The list is
divided into "Never Do" and "Limits" components, both categories have exceptions. Low
objective function values refer to values less than 5% of the initial objective function value.

Abbreviations : N = Needle, S = Source, X = "Cannot Be", A = "Always Must Be", Num
= Number, Pos = Position, PTV = Planning Target Volume, inf = Inferior, cc = cubic
centimeter

Type Applied
To

Rule Range Exception

Never-
Do

N X < Line 1 on template None

N A min. 1 axial prostate con-
tour

None

N/S X ≤ 0.5 cm from N/S on axial
plane

None

S X = 1 per any needle None
N/S X > 1.5 cm retraction from

base
None

N X c1, D1, d1 holes OR inf mid-
line holes

low objective function: Al-
low D-line needle

Limits N Num 36-40 prostate volume > 60cc
S Num < 100 prostate volume > 60cc
N Pos > 1 cm to urethral surface low objective function: >

0.5 cm allowed
N Pos < 0.5cm to PTV OR in di-

lated PTV margin
low objective function: <
0.8cm isotropic OR poste-
rior (to incl. seminal vesi-
cles)

S Pos 1 cm S-S spacing in needle low objective function:
apex + 1, base - 1 allow
0.5cm spacing in needle

N/S Pos Fully load apex / base
planes with N/S

Within limits of applied
rules
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Table 2.2: Criteria used for pre-implantation treatment plan dosimetric evaluation; values
are listed as a percentage of the prescribed monotherapy dose (145 Gy). VX% = Volume
of structure receiving at least X% of prescription dose. DY% = Minimum dose to Y% of
structure volume. Abbreviations : PTV = Planning Target Volume, cc = cubic centimeters

Structure Dose Metric Criteria

Prostate V100% ≥ 99%
Prostate V150% ≤ 60%
Prostate V200% ≤ 20%
Prostate D90% 113% - 120%
PTV V100% ≥ 95%

Urethra D0.1cc < 150%
Rectum D1cc < 100%

2.3.3 Study Design

A prospective study was conducted to compare the planning time of the ML algorithm

to an expert RT planner, as well as IPSA-generated plans (n = 10 per group). Planning

time was measured from deposition of the first source until the last plan modification using

time points in the VariSeed planning system. A non-parametric, one-tailed Wilcoxon

rank-sum test was use to compare the average planning times for each methodology (α =

0.05).

Preoperative plan dosimetry was compared retrospectively between plans created by the

ML algorithm, an expert RT planner, and a radiation oncologist trained in brachytherapy

(BT) on a randomly selected set of 30 cases for each group. The RT plan is frequently

modified following evaluation by a BT to yield a finalized plan. Dosimetry was evaluated

using standard planning criteria for LDR (see Table 2.2) [111]. A multiple factor, one-

way ANOVA (α = 0.05) was performed to evaluate differences between the three groups.

To evaluate the clinically subjective qualities of each plan a multi-institution, qualitative

Likert scale questionnaire was designed to gauge 7 BT respondents’ rankings of successive

pairs of ML and RT plans. Fifteen LDR cases were evaluated with each case demonstrating

an ML and RT plan pair; one control group (an IPSA plan generated by a novice planner)

per respondent was also included. Three BTs had performed LDR cases for over 15

years, the remaining respondents had experience levels ranging from 1 year to 10 years.

32



Figure 2.2: Comparison of treatment planning times. Treatment planning time for
10 patients planned using ML, RT, and IPSA methods displayed as a semi-log plot. The
large variability in the ML group is evident. Horizontal bars represent the group means.

Brachytherapists evaluated 6 key measures of clinical quality: target coverage, normal

tissue avoidance, confidence in their ability to implant the plan, modifications required to

meet clinical standards if the plan was suboptimal, overall plan preference, and positive

identification of the ML plan [112]. A multinomial ordered logistic regression was used to

validate the effect of plan type (ML or RT) on respondent rankings, this was computed

using SAS Analytics (SAS Institute, Cary, NC, USA) software.

2.4 Results

Planning time was significantly lower for ML (0.84 ± 0.57 min) compared to manual

RT (17.88 ± 8.76 min) planners following a non-parametric Wilcoxon rank-sum test (p «

0.05); no significant difference was observed between the average ML and IPSA (0.37 ±

0.17 min) plans. Fig 2.2 shows the difference in planning times between ML, RT, and

IPSA groups for each patient.

No significant difference in prostate V100%, V200%, D90%, PTV V100%, urethra D 0.1cc

and rectum D1cc metrics was observed following a one-way, multifactorial ANOVA (α =

0.05). A significant difference in the V150% of the prostate was observed (p = 0.002). A

post-hoc test showed this difference was due a lower mean V150% for the ML plans (52.9
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Figure 2.3: Pre-Implant Dosimetry.Comparison of the ML, RT, and BT plans for
various quality metrics. Box-and-whisker plots showing group mean (diamond), median
(horizontal bar), 1 standard deviation (box), the 95% confidence intervals (whiskers), and
relevant outliers (circles). Plotted with SAS University Edition 9.4 (SAS Institute, Cary,
NC, USA). Abbreviations: Rx = Prescription Dose, PTV = Planning Target Volume

± 6.3%) compared to RT (57.3 ± 4.4%), and MD (56.2 ± 3.7%) plans. Fig 2.3 outlines

the results for the key dosimetric parameters used in this study.

Results of the qualitative ranking study by expert BTs are displayed in Fig 2.4. A

small significant difference in respondent rankings for normal tissue avoidance, and the

magnitude of plan modifications was observed. A BT respondent is 1.05 times (OR =

1.05, p = 0.04) and 1.07 times (OR = 1.07, p = 0.03), more likely to rank a plan as having

” excellent sparing of normal tissues”, and ”requiring no further plan modifications” ( a 1

unit increase from 3 to 4) if it is an ML plan compared to a RT plan. The IPSA control

plans performed relatively poorly in all categories evaluated. Respondents on average

showed some difficulty in positively identifying the ML plans, although this improved

with the number of years of experience of the respondent. Overall plan preference was

marginally in favor of the ML-generated plans.

An illustrative example of how the ML algorithm may mimic features of expert treatment

planners is shown in Fig 2.5; the inclusion of an IPSA generated plan is also included
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(a) BT respondent rankings for 4 plan categories comparing ML and RT plans; an IPSA plan
was evaluated as a control for each respondent. The horizontal axis represents the normalized
frequency of respondent answers: rankings of 4 and 3 are positive; rankings of 1 and 2 are
negative. The log Odds Ratio (OR) is displayed in the central column, an asterisk is displayed
beside significant values.

Categorical ranking: 4 = Excellent, 3 = Good, 2 = Poor, 1 = Very Poor.
Abbreviations: OAR = Organ-At-Risk, ML = machine learning, RT = radiation therapist, BT
= brachytherapist, OR = Odds Ratio, IPSA = Inverse-Planned Simulated Annealing

(b) Positive ID rate for BT respondents for ML
plans. An IPSA control case was included.

(c) Normalized plan preference frequency strati-
fied by BT respondent.

Figure 2.4: Results of the clinical qualitative studies
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Figure 2.5: Comparison of treatment plans. Axial isodose representation of 3 sample
treatment plans generated by an ML algorithm, a BT expert, and an IPSA algorithm
(Varian VariSeed 8.0). The dark and light arrow show implant violations in the IPSA
generated plan which prevent implantation, although these were likely to improve with
expertise optimizing IPSA plans. Sources are represented as red diamonds. Contours
include the prostate (red), urethra (yellow), and rectum (dark blue). The x- and y-
axis dimensions are in millimeters.Abbreviations : Ref = Reference Plan, IPSA = Inverse
Planned Simulated Annealing, Gy = Gray, Inf. = Inferior, Sup. = Superior
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for comparison to a generalized stochastic approach. Qualitative plan features indicative

of improved implantation were highly similar between ML and BT groups.

2.5 Discussion

With the exception of the prostate V150% the ML-generated dosimetry metrics were

equivalent to those of the RT and BT plans; although statistically significant the V150%

was lower by an average of only 4% from the expert-planned cases and therefore not clin-

ically significant. Planning time was significantly different with the ML plans taking on

average < 1 minute to create clinically adequate solutions. Despite the added computa-

tional complexity of an ML approach the average planning time was highly comparable to

IPSA-generated plans [76], both of which are considerably faster than manual RT plan-

ning approaches. Recent studies predict that the incidence rate of prostate cancer may

nearly double in the next 15 years due to an aging population [2], if this forecast becomes

a reality, burdened brachytherapy departments may simply be unable to accommodate

the increased patient volumes purely due to time constraints. The incorporation of an ML

algorithm in the brachytherapy workflow is expected to offer time and resource savings

in this regard.

This study sought to evaluate clinical implant features not captured by dosimetric analysis

alone; overall, the clinical quality as evaluated by BT respondents was equivalent between

ML and RT groups. The target coverage and implant confidence rankings were essentially

identical between the ML and RT groups. The differences in the "OAR sparing" and "plan

modification" categories indicated that BT respondents were more likely to report a single-

unit improvement (a ranking of 4 compared to 3, for example) in these categories if a plan

was generated by ML compared to an RT planner. This small difference may indicate

a lack of uniform plan quality among manually created RT plans, even within a single

institution. The ML brachytherapy workflow may therefore offer improved uniformity and

standardization in the creation of high quality plans compared to multiple human planners

with varying levels of expertise. Although a small sample size was used and planners were
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relatively inexperienced with IPSA workflows many of the control cases demonstrated

noticeably worse qualitative rankings. In particular confidence in the implant was ranked

worse than either ML or RT plans and despite passing dose metrics the qualitative target

coverage (i.e. the relative position of the isodose lines) was also generally very poor

for these plans. Additionally, the results of this clinical study indicate that plans can be

generated using ML that mimic several features of expert BT planners, as corroborated by

the difficulty among BT respondents in differentiating blinded ML plans; by comparison,

BT respondents were able to correctly identify the IPSA control case 100% of the time.

Incorporation of a training database of prior knowledge into the LDR brachytherapy

planning workflow, in addition to implementing clinical rule restrictions during the opti-

mization process, incorporates a measure of radiation oncologist technique and skill into

the planning process, one of the direct benefits of ML approaches over naive stochastic op-

timization [112]. It remains to be seen if improvements in plan standardization translate

to improved side-effects or long-term outcomes. Similar ML methods have been imple-

mented in radiological imaging diagnosis which not only helped reduce staff workload but

improve standardization of diagnosis both within and across centers [84,85]. For centers

with limited brachytherapy experience (or limited annual patient volumes) an ML-based

approach, which constrains plans to follow clinical rules could additionally offer a means

to reduce the risk of errors being propagated during planning.

Limitations of un-supervised ML approaches result from the need for restrictively large

training databases of prior information for insight and model development [113]. Exces-

sively sparse, redundant, or over-fitted data may produce poor results and puts significant

emphasis on maintaining data quality. Similarly, poorly descriptive features, or excessive

optimization of parameters may cause under- or over-generalization of the ML model.

These limitations were not present in the supervised ML approach taken in this study.

The LDR training data was filtered according to post-operative dosimetric outcomes and

was used to maintain consistent data quality throughout; subsequently, feature extraction

methods were non-random and targeted to specific clinical features deemed important for

implantation by expert BT physicians. Poor generalization of the algorithm was signif-
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icantly limited through clinical rule implementation during stochastic optimization; this

functioned as a form of regularization to improve model fitting. Regularization, a method

to reduce the detrimental effects of poor data modelling, could further improve the gener-

alizability of the ML algorithm and is left to future studies to adapt differing models [114].

Although the training database was based on a single center experience the qualitative

study evaluated responses from 2 respondents at an external international brachyther-

apy program; no significant differences in rankings were observed between respondents

indicating that the current ML model may be applicable to centers with widely differing

protocols.

Further development of the core algorithm would adapt this framework for intraoper-

ative LDR planning, and for High-Dose-Rate (HDR) brachytherapy which is increasing

in popularity as a method to deliver hypofractionated doses due to its improved dose

modulation [57,115]. Prostate HDR brachytherapy may offer an alternate application of

the ML algorithm.

2.6 Conclusion

In contrast to traditional algorithmic planning methods the experience of expert BTs

and treatment planners is incorporated within ML approaches. Dosimetrically optimal

plans with higher chances of being successfully implanted in the patient are possible, in

significantly shorter timeframes. It is expected that further validation of the algorithm

components and incorporation of more immediate feedback of post-implant results may

improve the adaptive ability of the ML algorithm.
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Chapter 3

Conclusion

3.1 Thesis Summary

The primary objective of this thesis was to demonstrate that supervised and highly

focused Machine Learning (ML) algorithms could be used to generate Low-Dose-Rate

(LDR) brachytherapy plans of equal or superior quality to expert brachytherapists (BT).

Chapter 1 introduced the developing problem of up to a 97% increase in prostate cancer

incidence in the next 15 years [2]; this extrapolated trend highlighted the urgent need for

high quality, effective, and efficient therapy for patients with prostate cancer. Brachyther-

apy was explored as one of the most effective methods for treating localized disease with

over 90% long-term disease control rates and tolerable side-effects [31,42,46]. The use

of computer optimization to accurately plan source patterns in prostate brachytherapy

has seen considerable resurgence in recent years [70]. Stochastic optimization algorithms,

although capable of rapid dosimetric optimization, regularly fail to take into account the

actual ability of BTs to recreate the plan at the time of implantation [72]. To this end

chapter 2 explored machine learning frameworks, which rely on databases of previous

knowledge acquired from years of experience, to offer a method of improved planning in

brachytherapy.

Chapter 2 presented the results from a clinical evaluation of an ML algorithm specifically
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adapted to perform prostate LDR brachytherapy planning. The aim of this evaluation

was to show how an ML framework can be used to generate plans that mimic those created

manually by experts [76]. The planning efficiency, dosimetry, and clinical quality of these

plans were compared to similar plans performed by experts. This study showed that

planning time was significantly shorter for ML plans at an average of 0.84 ± 0.57 minutes

while expert plans had not only more variance in planning time but on average took 17.88

± 8.76 minutes to generate plans of equal quality. Planning time for IPSA cases was

shorter than both ML and RT plans at 0.37 ± 0.17 minutes; the ML and RT planning time

was not significantly different indicating comparable planning time among algorithms.

Plan dosimetry was comparable between ML plans, an expert radiation therapist (RT),

and the final accepted BT plan with only a lower prostate V150% in the ML plans;

however, the decrease was small and likely to be insignificant clinically. The majority

of studies published on new optimization algorithms frequently evaluate dosimetry alone

as measures of plan success, this alone may be insufficient to gauge plan quality. In

addition to dosimetry this thesis evaluated expert BT critique of each plan across six

qualitative categories. This study demonstrated a statistically significant log Odds Ratio

(OR) benefit in the "OAR sparing" and "plan modifications" categories (following an

ordered logistic regression), as respondents selected ML over RT plans. Although this

was statistically significant the OR was small and in essence the evaluated clinical quality

was nearly identical. By comparison the IPSA control cases performed poorly compared

to both ML and RT groups; in particular the qualitative target coverage was ranked

very poor for most cases. This poor quality may also be partially attributable to the

relative inexperience of planners with IPSA optimization. A benefit of the ML approach

was that the majority of respondent BTs were unable to differentiate expert plans from

those created by an ML algorithm, corroborating the hypothesis that ML can be used

to generate plans features which mimic those of a human planner; the IPSA control was

identified as such by all BT respondents. This type of qualitative evaluation although

a necessity for finalizing treatment plans is rarely performed in analyses of optimization

algorithms and may become a new standard in brachytherapy treatment planning.
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This thesis was able to demonstrate that ML brachytherapy treatment plans were equiva-

lent to those generated by experts in terms of plan dosimetry and clinical quality. Several

advantages were also evident for ML over the conventional manual planning approach as

well as optimization algorithms used in brachytherapy planning. It follows that with a

reduced planning time significant improvements in clinical workflow efficiency may be re-

alized as fewer staff resources are required for plan creation. The short planning time also

allows adaptation of the algorithm for the more time-sensitive intraoperative brachyther-

apy workflow. Improvements in plan quality and homogeneity are also expected benefits

of ML implementation, especially compared to conventional stochastic algorithms where

widely differing plan results are produced upon optimization, many of which are not

clinically feasible. The homogeneity in treatment plan quality afforded by ML offers a

more consistent and long-term approach to modulate LDR brachytherapy quality than the

educational training programs used currently, both across and between centers with dif-

fering protocols. By offering more clinically feasible, evidence-based treatment plans it is

hoped that the number of sub-standard implants will decrease following more widespread

adoption of ML workflows, particularly for centers with reduced patient volumes. Further

study into the nature of widespread adoption of an ML workflow within the brachytherapy

community is warranted.

3.2 Discussion & Future Work

3.2.1 Further Optimization of the ML algorithm

Although successfully implemented within the LDR brachytherapy planning frame-

work the ML algorithm designed in this thesis can be improved by enhancing its perfor-

mance and improving its generalization to more outlying prostate cases. The following

components could potentially be modified:

Database & Feature Extraction

The science behind database and retrieval optimization - specifically when the data
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is related medical data - is a field in its infancy [116,117]. Further studies need to be

conducted into the appropriate training database size for brachytherapy-specific applica-

tions. Excessively large database sizes may slow down performance or contain redundant

information, while databases of insufficient size may produce solutions which are insuffi-

ciently generalized [117]. Similarly, feature extraction in the ML model employed by this

thesis is an expert-driven process requiring feedback from clinician experts to determine

viable features, the number and quality of features required for optimal performance is

still an area of active exploration [118]. There has been some interest in using meta-data

- the patient’s staging results, dosimetry, PSA results, genetics etc. - to supplement in-

formation provided by anatomical contour information [119]. This may provide a further

method of discriminating treatment plans than geometry alone and would be worthy of

examination for the ML implementation used in this thesis. With improved discrimina-

tion of the prostate gland and OARs direct feature extraction from imaging alone may

help supplant the contour feature extraction method used in the current implementa-

tion. Several centers are utilizing Magnetic Resonance Imaging (MRI) which has superior

soft-tissue visualization of the prostate gland; the considerable imaging detail afforded by

MRI may serve to inform yet undiscovered key features to differentiate between prostates

[120,121]. Extracting key imaging features using image processing techniques alone has

been employed in convolutional neural networks for feature extraction and would be of

interest to explore for the brachytherapy-specific ML algorithm evaluated in this thesis

[122]. Supervised ML algorithms for auto-contouring of the prostate gland on Transrectal

Ultrasound (TRUS) imaging alone have also been evaluated with excellent results [123].

Incorporation of these auto-contouring algorithms with the planning ML algorithm pre-

sented in this thesis is readily achievable given the available training data, it is hoped

that this will further decrease the reliance on expertise in the planning process.

Optimization & Parameter Tuning

The IPSA algorithm was used in this thesis due to its success in optimizing dosimetry

in LDR brachytherapy. While this was appropriate when starting from randomly selected

source patterns when starting with a source pattern that is already near a viable solution
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for the specific prostate geometry this may not be the most effective option. Several ma-

chine learning algorithms use gradient descent approaches to speed up the optimization

process; this approach generally follows the fastest gradient regardless of any large local

minima [124]. It can be hypothesized that starting optimization near a local viable solu-

tion may be sufficient when employed in the context of the ML algorithm in this thesis.

Many other algorithms also use this methodology to optimize various algorithmic parame-

ters, a process in this thesis that was done by cross-validation [125]. This gradient descent

approach will be examined in future renditions of the ML algorithm for optimization of

various parameters and as a method to replace the current IPSA algorithm. Gradient

descent methods could also be employed in selecting and fine-tuning optimal combina-

tions of clinical rules to implement for different prostate geometries, rule violations in a

specified prostate shape may not be applicable for all geometries, or even at all instances

in the optimization of the source pattern. By applying gradient descent to not only source

pattern optimization but to clinical rule optimization a method of fine-tuning these rules

can be developed for specific geometries.

"Learning" Framework

The current iteration of ML adaptation uses post-operative dosimetric results to filter

which LDR plans are appended to the training dataset and which are discarded. In this

manner only successful plans are "learned" while plans that fared poorly are not retained.

This feedback mechanism is exceedingly slow due to the large delay between implantation

and post-operative follow-up (approximately 1 month). Future developments will include

updating the speed and quality of this feedback mechanism by finding intermediate points

of evaluation between pre-implant plans and post-operative dosimetry. Evaluative studies

need to be undertaken comparing treatment plan quality (as well as treatment outcomes)

when including intermediate time points; inclusion of these intermediate time points may

potentially degrade plan quality correlation with post-operative dosimetry but may also

improve the algorithmic learning speed significantly. The inclusion of different evaluating

time points in the workflow therefore needs to be carefully evaluated for impacts on

plan and treatment outcomes before implementation. It has also been observed that
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needles used to implant sources frequently deflect and (along with post-implant edema)

cause the source pattern to diverge from the original treatment plan [126,127]. In future

implementations the dynamics of the source migration caused by these two phenomena will

be examined. Models for source migration could be implemented in the ML algorithm to

further decrease the risk of poorly recreating the treatment plan. Finally, although many

of these methods can be attempted with some success the inherent delay in the feedback

of quality treatment outcomes data may simply be a limitation of the LDR brachytherapy

workflow.

3.2.2 Machine Learning for HDR Brachytherapy

High-Dose-Rate (HDR) brachytherapy is a more recent modality for delivering brachyther-

apy to patients. Instead of permanently implanted, low-dose sources, HDR delivers high

doses of radiation to the prostate gland in a short time frame through the temporary

placement of a single, high activity radioactive source [128]. Several catheters are tem-

porarily implanted into the prostate through which an Iridium-192 or other high activity

source is sequentially introduced. The dwell times and positions of the source are op-

timized to maximize the dose to the prostate and minimize dose to the OARs [127].

Although more radiation safety considerations are needed due to the high source activity

HDR brachytherapy may offer better dose modulation over LDR brachytherapy as shown

in Morton et al. [57]; it is quickly being adopted as a treatment of choice for many cen-

ters. Patients also do not require post-operative dosimetry at 1 month follow-ups as this

information can be obtained immediately after the treatment.

The findings of Chapter 2 demonstrated that it may become possible to apply ML to

HDR brachytherapy treatment planning, the ML algorithm used in this thesis may ac-

tually be more appropriate for HDR than in LDR brachytherapy. The versatility of the

ML method to include any contour or imaging information and extract primitive fea-

tures has wide application in HDR brachytherapy for both prostate and gynecological

cancers. HDR brachytherapy has greater number and variability in catheter and source

positions than LDR, has significantly shorter time frames for planning as it is typically
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done in real-time, and specifically in gynecological brachytherapy there is considerably

more variation in target and normal tissue contours [128]. These more complex features

make HDR brachytherapy a prime application for ML in the near future with the modal-

ity benefitting significantly from ML. In addition, post-operative dosimetry is available

immediately following treatment and may significantly improve the adaptation speed of

an HDR ML algorithm. It is hoped that ML frameworks will become a new standard

to adapt brachytherapy cases for different cancer sites and offer a means of improving

standardization of brachytherapy.

3.2.3 Machine Learning for Prostate Radiotherapy

Several other potential applications exist for Machine Learning algorithms in prostate

radiotherapy that are unrelated to brachytherapy alone. Although these algorithms are

primarily investigational they hold significant promise in improving the speed, accuracy,

and efficiency of prostate radiotherapy. ML algorithms for radiological or histological

diagnosis of prostate cancer have been discussed in earlier chapters which predict the

presence of prostate cancer based on radiological and histopathological imaging features

[129]. Multicenter learning for prostate treatment plan creation (for both external radio-

therapy and brachytherapy) is a possibility; anonymized meta-data may be transferrable

between centers and offers an indirect method of sharing expertise, or even aggregating

data for predicting outcomes more accurately [130,131]. More common applications that

focus on workflow efficiencies include methods for automated contouring of target struc-

tures such as the prostate gland [123,132], and treatment planning assistance tools in

Intensity Modulated Radiotherapy (IMRT) [133]. An excellent book by El Naqa et al.

(2015) highlights many of these emerging applications for radiotherapy in more detail and

outlines the considerable room for growth that exists in this field [134]. Future studies will

examine the combination and implementation of many of these ML paradigms to improve

the efficiency of the prostate radiotherapy workflow in addition to brachytherapy.
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