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ABSTRACT

A NOVEL POSITION DOMAIN CONTROLLER FOR CONTOUR TRAKNG

PERFORMANCE IMPROVEMENT

Truong Dam

A thesis for the degree of
Master of Applied Science, 2012

Department of Aerospace Engineering, Ryerson Usityer

A common problem with modern manufacturing proessthat utilize high feed-rate
machining is how to accurately track a given confouthe tool center point (TCP) of a system.
Various methods have been developed to increase tacking performance and contouring
performance of computerized numerical control (CN@jchines. These include: high gain
feedback controllers, feedforward controllers, zphase error tracking controllers (ZPETC),
cross-coupled control (CCC), and iterative learncogtrol to mention a few. The common
factor amongst these methods is that they areaatdbin time domain. This thesis will propose a
new control law based in position domain applieddatour tracking control of a CNC machine.
The goal of this developed controller is to improthe overall tracking and contouring
performance of a CNC system. The idea behind gigoslomain control involves transforming

the dynamics of a system from time domain into fomsidomain through a one-to-one mapping.



In the position domain system control, the motidérowe of the axis is used as an independent
reference by sampling equidistantly to control thmaining axes according to the contouring
requirements. The overall contour error in a p@sidomain controller should be lower relative
to an equivalent time domain controller since thei# be a zero tracking error from the
reference motion. The stability of the proposedifian domain control is proven through the
Lyapunov method. Simulations with linear and noadir TCP contours using the proposed
position domain controller and an equivalent tineendin controller indicate that the proposed
position domain control can improve tracking andtoaring performance. In addition, a
position domain controller with cross-coupled cohtwas also proposed to further improve

contour performance.
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Chapter I INTRODUCTION

1.1 BACKGROUND

Computer numerical control (CNC) machines areaaxcbf automated machine tools first
developed during the 1950s. Their purpose wadddnathe machining of components with
complex geometry at a greater rate and accuragyr@iog to design specifications. The first
generation of CNC machines, known at the time amemical control (NC), was developed by
John Parsons and the MIT Servomechanism Laboratidhe late 1940s and early 1950s (Suh,
Kang, Chung, & Stroud, 2008). At that time, thesachines were very large with intricate
mechanical linkages requiring punch cards to operakherefore, they did not offer much in
terms feasibility for general manufacturing. Thiestf significant breakthrough for NC
development occurred in the 1970s with the incafon of computers into the control system
of these machines. Thus, the technology becamerkias CNC. This eventually led to its vast
acceptance in the manufacturing sector as welaasegng interests from researchers to improve
the overall performance of systems (Koren Y. , 2983

Prior to the introduction of NC machines, machinearts were manufactured by
manually operated machines and for the most gastgeometric accuracy of these parts were
largely determined by the skill and experiencembperator. The dimensional quality of these
parts was periodically checked for conformity ahd settings on the machines were tweaked to
compensate for any geometric errors. This metHoshanufacturing for mass production has
long been obsolete with the introduction of CNC hiaes. Today, there are a variety of CNC

machines as shown in Figure 1-1, each with a pdati@pplication.



Figure 1-1: Various types of CNC machines A) RobdB) Milling machine C) Turning

machine D) Machining center E) Wire EDM F) FMS line(Suh, Kang, Chung, & Stroud,

2008)



Generally speaking, there are two basic modegefation for CNC systems: the first is
the point-to-point (PTP) type, and the second & ¢bntouring type. In a PTP system, it is
satisfactory, in terms of machine accuracy, to hgwed axial tracking to the final desired
position. This can be achieved by a feedback obsyrstem with a structure shown in Figure
1-2.

Disturbances

\

Reference position 4 E Control inout Actual position
=2 Controller o e Plant -

Feedback

Figure 1-2: A typical control loop implemented in GNC machining (Suh, Kang, Chung, &

Stroud, 2008)

For a contouring system, implementation of thetimdrsystem is more complex with a
number of different control strategies applicabe different types of applications. The
complexity of the contouring type control has towiith the fact that the TCP needs to track a
contour through synchronous motions between allisoixes. This is difficult to accomplish as
the dynamics and disturbances of each axis areafpnonlinear and are inevitably coupled. In
multiple degree of freedom systems, this become®asingly difficult to accurately model and
therefore controlled.

In a conventional CNC machine control system, ti@ion of each axis is controlled
independently of each other and each will typicéigve a control loop shown in Figure 1-3.

The overall hierarchical level in a typical CNC twfier is shown in Figure 1-4.



+ + Table

R—»Q—- Controller + Amp Motor and —@ T

- A - Drive

Tachogenerator

Feedback Signal

Figure 1-3: A typical control loop of a contouringsystem (Suh, Kang, Chung, & Stroud,

2008)
Programmed Required Programmed
Speed & Feed  Force Position
g N l l Y
Cutting force ; = )
—| Adaptive Control Error Compension
Feed Position
Y
Interpolation

Axial
Command

1 Y

Spindle Control Servo/Contrl

1 N

Drive Position
Feedback

Drive Speed
Feedback

Figure 1-4: Hierarchical levels in CNC controllers(Suh, Kang, Chung, & Stroud, 2008)



Regardless of how well it is designed or built, GNC machines will exhibit some form
of inaccuracies. The main factors that affectehiesccuracies are classified as follows (Koren

Y., Control of Machine Tools, 1997):

1. Mechanical hardware deficiencies
2. Cutting process effects

3. Controller and drive dynamics

Errors contributed to the mechanical deficien@es the results of backlash as well as
errors from the geometric inconsistencies during thanufacturing and assembly of the
machine. Cutting process errors occur during thehiming of the part itself. During the cutting
process, force is applied to the cutting tool, Wwhia a certain extent, will lead to tool deflection
and degradation and result in inaccurate cutsedittal product. The final factor is related to
the actuation system of the machine and partigyl#iie control algorithms used to control the
motion of the system. All these factors are imgottand should be considered in the design and
operation of CNC machines.

The scope of this thesis involves studying thererderived from the implementation of
control laws through the use of various controlbatlhms. This is currently perhaps the most
crucial area of research since the resulting ermorthe machining process can be directly
correlated to the speed of the operation. Withirmmeasing trend towards the utilization of
higher machining speeds and higher feed rateseaeagremphasis is placed on improving the

accuracy of the machine from a control perspective.



1.2 MOTIVATION AND OBJECTIVE

The motivation behind this research is to imprtwe individual axial tracking of CNC
machines and to ultimately reduce the contourimgreof the manufactured products. This
thesis will propose a new control law based in fimsidomain to reduce axial tracking errors of
a multi-axial CNC system. As a result of reducthg tracking error, the overall contouring
performance of the system will be improved.

The overall goals of the proposed position doncaintroller are:

1. To provide an alternative to time domain contraller

2. To obtain better contouring performance throughrowpd tracking performance
3. To reduce the system cost for the master axis é@tua

4. To eliminate the restriction of traditional equadigmpling time systems

5. To simplify the implementation of feedback conteod

In this thesis, the proposed position domain adn®DC) and a time domain control
(TDC) will be simulated for linear and non-lineasntours and compared to demonstrate the
performance improvements of the proposed positiomain controller over the conventional

time domain controllers. To fulfill these goalsetfollowing objectives will be achieved:

1. Model the dynamics of a simplified CNC system irsifion domain

2. Formulate a position domain controller

3. Conduct a stability analysis of the proposed cdletraising the Lyapunov method

4. Perform a performance comparison between the peappssition domain controller and

a conventional time domain controller



1.3 ORGANIZATION OF CONTENTS

The remaining contents of this thesis will be orged as follows:

Chapter 2: Literary review

Chapter 2 is a literary review of various approache improve the performance of CNC
machines. It will review the early control strategaimed at improving axial tracking errors and
continue with the current methods focusing on therall contouring performance. The chapter
will also review some advanced control methods saghterative learning control, repetitive

control, and event-driven control.

Chapter 3: Control system design
Chapter 3 provides a mathematical description @ @GNC system dynamics in position domain
and introduces the proposed position domain cof®DIC) scheme. A stability analysis for the

proposed position domain control using the Lyapumathod is also provided.

Chapter 4: Simulation results
Simulation results for TDC and PDC controllers presented and compared in terms of axial

tracking and overall contouring performance foednand nonlinear contours.

Chapter 5: Discussion and conclusion
A summary of the thesis is given in this chaptiémill conclude and discuss the findings of the

simulation results as well as proposals for posdiliure developments.



Chapter 2 LITERATURE REVIEWS

Two common problems with high precision and higleesd manufacturing processes
involving CNC machines are the axial tracking andtouring performance of the TCP. For a
given controller, these two types of errors, nantedgking error and contouring error, may exist
within an acceptable range at low axial feed ratd also low system dynamics variations.
However, for systems utilizing higher feed raté® tange of the error can become significantly
larger as there is a tendency for the error to tmpgrtional to the feed rate (Koren & Lo,
Variable-Gain Cross-Coupling Controller for Contogr 1991). Therefore, consideration of
these errors is important to obtain accurate CNChinang. As stated in Chapter 1, various
factors can adversely influence the performanca @NC machine resulting in inaccurately
machined parts. Two main types of errors that lsangenerated are tracking errer) @nd

contouring errord), which are displayed in Figure 2-1.

Desired Contour

R - reference position
P — actual position

€ - contouring error

e - tracking error

Figure 2-1: Tracking error contouring error



Tracking error results from an individual axiahdking performance, or how well the
controller of each axis can track the respectivddgired reference position and/or velocity.
Mathematically, the tracking error can be expressed

e=r—a (2.1)
wherer anda are the reference and actual positions, respégtive

Contouring error, on the other hand, is the ecmmponent orthogonal to the desired
path. For a 2D planar contour, the contouringrezam be expressed as,

€ = —e,sinf + e, cosb (2.2)
wheree, ande,, are the individual tracking errors of theaxis andy-axis respectivelyd is the
angle from thec-axis to the line connecting the origin and thesrefce positio® as shown in

Figure 2-2. For linear contoum,is constant.

R-reference position
P-actual position Linear Contour

e-contour error
Y
A

Figure 2-2: Linear contour

Eq. (2.2) applies only for linear contours. Fandinear contours such as circles, the

contouring error is given as,

2.3
€=\/(RSiHQ—ex)Z+(—Rcost9—ey)2—R (2.3)



whereR is the radius of curvature. Note that in thewdac contourg is no longer constant and
it changes depending on the reference position.

From the above definitions, it can be seen thattntouring error can be considered as a
combination of all axial tracking errors in a midiiis system. Various researches (Koren Y. ,
Cross-coupled biaxial computer control for manufaog systems, 1980)(Fang & Chen,
2002)(Barton & Alleyne, 2008)(Hu, Yao, & Wang, 2(Q0%ave indicated that although
advancements have been made to improve trackiniprpemce, this does not necessarily
guarantee good contouring performance. An exawipleis conclusion is shown in Figure 2-3.

From this figure, the axial tracking errors, (ande,) have been reduced significantly from

actual positions at poirit to pointP’’, however, the change in the contouring error feotme”’

remains relatively small.

Y Desired Contour
A R
E, ey!l
P’ e’ s
, , R-reference position
€ Sy ey
P-actual position
P’ €x e-contour error
Sy
£ e
P

> X

Figure 2-3: Tracking error and contouring error (Ko ren & Lo, Variable-Gain Cross-

Coupling Controller for Contouring, 1991)

Therefore, the overall contouring performance dEMC system is usually taken as a

performance index rather than the individual akiatking performance. Such is the case, the

10



development to improve overall accuracy of CNC naeh over the years have tended to focus
on two areas of research. The first area of fagws tracking control to improve axial tracking
performance, while the second area of focus ishenaverall contouring performance of the
system (Ramesh, Mannan, & Poo, 2005). Effortsntprove tracking performance generally
involve modification to the conventional feedbackgmortional (P), proportional-integral (PI), or
proportional-integral-derivative (PID) controllensth the addition of a feedforward loop. Most
of the axial control schemes presented in thisergware variations of the feedforward control
principle. On the other hand, the majority of ttantrol schemes used to improve contouring
performance are relatively limited in literatur@he attempts that have been made are closely
related to the concept of cross-coupled contrdCGC introduced by Koren (Koren Y. , Cross-

coupled biaxial computer control for manufacturgygtems, 1980).

2.1 CONTOUR ERROR ESTIMATION

Calculating the contour error of the TCP in rale for 3D dimensional contour is
highly difficult. Therefore it is often sufficierto estimate this error with the available system
knowledge such as actual and reference TCP positibhne following derivation for contour

error estimation is taken from (Erkorkmaz, YeungARintas, 2006).
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Figure 2-4: Possible cases of contouring error (Edrkmaz, Yeung, & Altintas, 2006)

From Figure 2-4R; = (x;,y;, z;) represents the reference position wiile: (x,, y,, z,)
represents the actual position. This indicatesttiexre are three possible cases in estimating the

contour error.

e Case 1: The contour error is estimated using thevipus reference path
segmentR,_;R,.

e Case 2: The contour error is estimated using th&t meference path
segmentR,R,,;.

e Case 3: The contour error is estimated using theesk reference poiRt.

To determine the estimate of the contour errotis ifirst necessary to define some

definitions.

The normalized path segment vectors are given as,
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B ——

R_R,  (qy—x i+ —yi)i+ (z—z_k (2.4)

ri = =
IR-R G —xi)2 + O — yi)? + (i — 2i-0)?
=rxli'i+7‘y'i'j+‘r‘z'i'k
And,
2 RRyy (i1 = x)i+ (Vi = Y)i + (2341 — z)K (2.5)
i+1

B IIWII - Vi = %)? + Gier — )% + (2341 — 20)?
SRLITERS &b TTPRS I S eI k
The position vector is defined as,
p=R/P= (xp - xi)i + (yp - yl-)]' + (zp - zi)k (2.6)
=pxit+pyjt+p,-k
The normal surfaced); andN;,,, which are perpendicular to the path segment vecto
are given as,
Ny=rpi(x—x) 47, —y)+15,-(z—2)=0 (2.7)
And,
Nigg =1gipr (0 —x) + 100 = y) + 1541 (2—2) =0 (2.8)
The bi-normal surfacs; for the anglezR;_R;R;,, is defined as,
By = (rei + Tien) - (x —x) + (ry + 1y,01) X V= 1) (2.9)
+ (1 +12001) (2= 2) =0
With the definitions above, it is now possible determine the appropriate case with
which to estimate the contour error.

If the anglezR;_,R;R;,; # 180° then,
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Case 1 - if Bi(xp,yp,zp) < 0and Ni(xp,yp,zp) <0 (2.10)
Case 2 = if Bi(xp,yp,zp) > 0and Ni+1(xp,yp,zp) =0
Case 3 = if Ni(xp,yp,zp) > 0 and Ni+1(xp,yp,zp) <0

Otherwise ifZR;_1R;R;;; = 180° then,

{Case 3-if Ni(xp,yp,zp) > 0 and Ni+1(xp,yp,zp) <0 (2.11)
Case 3 — otherwise

For Case 1 and Case 2, the projection vaggtof the position vectop, shown in Figure
2-5, is defined as,
P’ = (TecPx + TyeDy + 12c02) (e "1+ Ty + T K) (2.12)
Wherer., 1, andr,. are the components of the vecter Vector is defined as. = r; or

r. = 1744 for Case 1 and Case 2 respectively.

P P
A A [ N AA
Fe=1; ;_:; p Fe=Tist
== —
€ R R e
E. 'E"l
F{i+1 Hi+1

Figure 2-5: Contour error for Case 1 and Case 2 (Beorkmaz, Yeung, & Altintas, 2006)

Therefore, the estimation of the contour errajiven as,

eE=p—-p =¢€-ite jt+e -k (2.13)

The magnitude of the contour error is given as,

14



lell = |2+ &3 +e2 (2.14)
For Case 3, the contour error vector is estimbtethe vectorR,P,
e=ex-i+ey-j+ez-kzﬁ=px-i+py-i+pz-k (2.15)

The magnitude of the contour error is given as,

2.16
lell = /p,% + 2 + 2 (2.16)

2.2 TRACKING ERROR CONTROL

The use of a standard PID feedback controllelg &sor Pl feedback controllers, to
control each axis of a multi-axis system indepetgeis highly common with traditional
machine tooling control. However, there are sommawbBlacks when utilizing feedback
controllers for high speed machining. With higleeg machining there will be poor tracking of
sharp edges as well as nonlinear contours. Intiaddiwith the use of high control gains, there
will be overshoot in the system. For the feedbeaitrollers to be effective, it must also be
finely tuned according to the dynamics of a paticgystem. These dynamics are not constant,
particularly over time and will vary depending olnking conditions such as, the mass of the
work piece and the maintenance condition of thehim&c To obtain a higher tracking accuracy
from the controller, it is therefore necessary tvelop more sophisticated axial control
algorithms to overcome these limitations of thewenional feedback controllers. A common
modification to the traditional feedback controllecheme is the addition of a feedforward

controller to the control loop shown in Figure 2-6.
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Figure 2-6: A conventional feedforward controller nverse to plant dynamics

One of the early efforts to improve axial trackipgrformance by adding a feedforward
controller is called Perfect Tracking ControllerT®. In PTC, the modeling of the plant
dynamics is assumed to be highly accurate and thsoinformation regarding the future
reference trajectories is available to the corgrollDue to the assumption of the highly accurate
dynamics model of the drive system, the dynamicsthié feedforward controller would
essentially be the inverse of the closed-loop pharmiose-loop system dynamics. The advantage
of this process is an overall unity transfer fumictmeaning the actual position would be equal to
the required position. The PTC scheme would exhitgtfollowing closed transfer function in

discrete time as,

z7%B.(z7Y) (2.17)
Ac(z71)

G(z™Y) =
wherez~% represents d-step delay caused by the delay in the plant Bufd™!) = b,y +
b1z 4 4 bz ™, b # 0 andA (z7Y) =1+ agz7t + -+ agz™™.  The output of the
closed loop transfer function of the system aremgias
y(k) = Gz Dr(k) (2.18)

And the reference input from the feedforward traglcontroller is,
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A(z™) (2.19)

(k) = 35 = Yalk + d)

wherey, (k + d) is the desired output-step ahead and its purpose is to compensate dal- th
step delay in the closed-loop transfer functiomonfr Eq. (2.18) and Eq. (2.19), it can be seen
that the controller will exhibit perfect trackingherey(k) = y,(k), which assumes that the
given initial conditions are zeros. The main disatage with the PTC approach is that it
requires a minimum-phase system where the poleszarmks are stable. When there is the
presence of uncancellable zeroes in the systeng thgendency for the system output to be
unbounded or oscillatory. These uncancellableszeray exist outside of the unit circle or very
close to it. Regardless, their existence will eatise overall response of the system to be
unstable or oscillatory in nature (Astrom, HaganderSternby, Zeroes of Sampled Systems,
1984). Furthermore, even if there are no unstabl®es in the system, they may still be
generated when a continuous time system is tramgiinto a discrete time system for purposes
of digital implementation (Suh, Kang, Chung, & $ip 2008).

To deal with the uncancellable zeros in the PT@r@gch, Tomizuka (Tomizuka, 1987)
proposed Zero Phase Error Tracking Controller (ZBEWhich is an approach based on
pole/zero cancellation and phase cancellation. gBmeral concept of ZPETC is that the existing
feedback controller is utilized to provide the alkcontroller with the ability to regulate the
process while the feedforward controller is usegraovide the tracking control to the system.

An example of this setup is shown in Figure 2-7.
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Figure 2-7: Zero phase error tracking system (Tomiaka, 1987)

With ZPETC, the output and input of the transterdtion in PTC is modified to,

y(k) z7?B. (z"")B, (z™") (2.20)
r(k) Ac(z71)

Here, the uncancellable zeroes preses,.{z~1) of the PTC approach are factorized out.
That isB*(z™1) contains all the acceptable zeroes Bndz~!) contain all the unacceptable
zeroes of the closed-loop system. This implies tha acceptable zeroes are within the unit
circle in thez-plane while the unacceptable zeroes are outsigtergrclose to the unit circle. To

deal with the uncancellable zeros, Tomizuka propdise following feedforward controller,

r(k)  A(z7DB(2) (2.21)
ym(k +d)  B*(z~)[B-(1)]?

And the overall transfer of the system is,

y(k) B (2)B~(z™") (2.22)
Ymk+d)  [B-(D]?

The transfer function above expressed in the #aqy domain as,

y(k) B~ (e/®)B~(e/?) (2.23)
ym(k+d) ~ B=(1)  B~(1)

From the above equation, it is assumed Bigle /) = Re + jIm whereRe andIm are

the real and imaginary components respectivelyerfore, Eq. (2.21) can be rewritten as,
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2 (2.24)

y(k)  Re*+Im* _ HB‘(ef“’)
ymk+d)  [B-(D]2 || B-(D)

From the above frequency transfer function equafeg. (2.24)), it is evident that the
phase angle of the transfer function is zero, ihwgll yield zero tracking error. Experiments
have verified that the frequency response of tlessfer function has a zero phase shift for all
frequencies and a unity gain at zero frequencypeBrments with ZPETC controllers were able
to track highly complex contours with good trackiegror and smooth velocity profiles.
However, performance degradation was observedystiesis with large disturbances. Since
ZPETC is based on pole/zero cancellation and phbaseellation, its performance is highly
sensitive to modeling errors and system paramegiiations particularly for system with large
disturbances.

To account for the unknown variations in modelargl system parameters, an adaptive
ZPETC was introduced by Tsao and Tomizuka (Tsao &nikuka, 1987). This method
introduces a parameter adaptation algorithm (PARctvis based on a normalized least squares
method to adjust the unknown dynamic parametetfienfeedforward controller. The output

and input of the adaptive ZPETC is given as follows

y(k) z7?B(z")By (z7)B,"(z™") (2.25)
r(k) Az A (z71)

Both the numerator and denominator are divided krtown and unknown parts (the
known parts have a zero subscript). This separadonormally applied since the feedback
controller dynamics are generally known while thgnamics of the plant are only partially
known. The advantage of this adaptation algorittanthe feedback controller loop is
unperturbed since the additional feedforward cdietrdas made as a module which can be

switched on and off. With the feedback controiéeuntouched, the system can remain relatively
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stable. Simulation results with the adaptive ZPE@troller indicate improved performance
over the a non-adaptive ZPETC controller.

The original ZPETC controller was further modifieg Haack and Tomizuka (Haack &
Tomizuka, 1991) who proposed adding zeros to thme phase error tracking controller. This
had the effect of reducing the tracking error gatest from the feedback loop that contains
uncancellable zeroes. Experiments indicate imprerés in tracking performance for low and
mid-range frequency trajectories. However, thefgserance did not improve in the high
frequency range.

Another method that utilizes the feedforward colier principle is the Inverse
Compensation Filter (IKF) developed by Weck and (Y¢eck & Ye, 1990). This method
introduces a low pass filter to the feedforwardtoalter to filter out the high frequency signals.
The structure of this setup is shown in Figure 248F was found to be effective at filtering out
discontinuities in the signal. Therefore, the colldr can track, with a greater precision,

dynamically high-frequency paths.

IKF

yn (ktd) r (k)
Low-pass Feedforward Feedback Plant
filter Controller i > ™ Controller g

v (k)

.

Figure 2-8: A feedforward and feedback control loopwith IKF (Weck & Ye, 1990)

Another control strategy that utilizes the feedfard principle is Van Den Braembussche
et al. (Van Den Braembussche, Swevers, Van Brugsalanherck, 1996) who proposed a
control scheme that consists of a state feedbaedfdérward, and motor ripple compensation.

As with the previous feedforward methods, the feraérd loop is used to archive zero tracking
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error, but with an added inverse model pre-filtgrammilar to the IKF strategy. This model also
compensates for the cogging or motor rippling éféarised by magnetic disturbances of electric

motors. These compensation models are derivedighrexperimentation and are added as an

addition feedforward loop shown Figure 2-9.

Feedforward Integration
| u |
——- T(Z) =% ' ! Kf _ 1 1—-——(;\
H(2) z e
Reference .
output ) Referenfe srarengeneratorw 3 State feedback L ;?Jﬂtm_ Output
Yuy Lo kel =¢)'xn'j & +r“i‘ k Koy | Yn = (ka t ruk y
= T )+ >
= Loy, -C L K Yu=Cx
A e = Xk + ref (-‘rrl k 'Imk) -4
| Ripple model feedforward i : 5., =08 +Tu,
_| ‘ ="

; 2’( =Ik+L(yk_éfﬁ)

State abserver

Figure 2-9: The control scheme proposed by Van DeBraembussche (Van Den

Braembussche, Swevers, Van Brussel, & Vanherck, 18P

Most of the control strategies presented as veelha one found in literature are based on
the principle of feedforward control. Some of oth@ot mention are predictive control and
optimal control. These methods along with the onmesntioned above, have their own
advantages and disadvantages as well as partapbéication (low versus high speed machining
and low versus high variation is system dynami@apeaters). Although feedforward controllers
provided relative improvement in tracking perforro@none major disadvantage of feedforward

controllers, as mentioned, is that it requires ige2&nowledge of the dynamic behaviour of the
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system. Even with an adaptive control schemedyimamics is difficult to model with sufficient
accuracy as the behaviour of the real system dopneantly nonlinear and varying with time.
There are also sensitivity issues that can arisen fladaptive control with large system

disturbances.

2.3 CONTOURING ERROR CONTROL

One of the most important contributions to CNC tooning performance in terms of
control implementation advancement was made by iK¢koren Y. , Cross-coupled biaxial
computer control for manufacturing systems, 1980 \wroposed cross-coupled control (CCC)
for biaxial systems. The concept of CCC was desigior a sampled-data type CNC control
system where each axis in a multi-axis system rgrobled independently. Each axis will
consist of its own closed-loop control algorithmicily capable of detecting and correcting for
its own disturbances. Disturbances from the o#ixexs go undetected and will inevitably result
in inconsistent or poor overall synchronizationatifaxes. With CCC, the errors that occur in
one axis will affect the control loops of both axéBhis means that the controller is capable of
monitoring the motions of all axes relative to eather and cross-couples the error in the
controller dynamics. The structure of CCC is shawnFigure 2-10. Therefore, the main
objective of CCC is to eliminate the overall contewror rather than focusing on the individual
axial tracking error. This is achieved by condfinga model of the contour errerin real time
and then using this information to implement a oankaw to minimize the contouring error.

The contour error modelis derived from the tracking erroeg ande,, in a biaxial system. The
result is then multiplied by a proportional gal#,j and fed back into the system. In theory, it

would be possible to achieve zero contour erronevigh the existence of large axial tracking

errors from all the axes.
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Figure 2-10: Biaxial cross-coupled control structue (Koren & Lo, Variable-Gain Cross-

Coupling Controller for Contouring, 1991)

Experiments conducted by Koren (Koren Y. , Crasgpted biaxial computer control for
manufacturing systems, 1980) with the proposed idlia€ CC system indicate contouring
performance improvement over conventional feedbamhktrollers (i.e. P-controller and PID-
controller) without CCC. This performance improwarthwas not observed for the individual
axes of the system (i.e. tracking performance iwgmuent for one axis), but rather for the
system as a whole. One advantage of the CCegiyréd the ease of implementation where it
requires no addition hardware for an existing CNGdal system. For NC-based systems,
additional hardware would be required. A significdisadvantage to CCC presented above is

its low effectiveness in dealing with non-lineamtaurs (i.e. circles and parabolas) due to the
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difficulty of analytically determining the contowrror in real time. Even for linear contours,
where the contour error is relatively simple toedlgtine, there is a tendency for the contour error
to oscillate as the steady-state tracking erros goeero.
To improve upon the original concept of CCC projgokg Koren, Koren and Lo (Koren

& Lo, Variable-Gain Cross-Coupling Controller forotouring, 1991) introduced a revised
version of CCC called variable-gain cross-coupledtml. In variable-gain CCC, the cross-
coupled control gains are adjusted in real-timeedéeng on the shape of the contour. This
implies that CCC can be utilized for nonlinear @ums such as circles and parabolas. Figure

2-11 below shows the addition of variable gaipsandC,, to the original CCC scheme.

———
—Kx ‘_._._,...px
+ $iTas=1)
9
| Dx
I
% I
< ! Cross'Coupling
= “111 Controiler
-l Tz i
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E ]
z |
|
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ATvs+1) ~ by

Figure 2-11: Variable-gain cross coupled control (kren & Lo, Variable-Gain Cross-

Coupling Controller for Contouring, 1991)
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Here,C, and(, are defined by the instantaneous shape of theogont For linear
contours, these gains are constant and are dedsed

{Cx = sin6 (2.26)
Cy =cos6

whered is defined in Figure 2-2. For circular contoufs,andc,, are functions of both andr,

whereR is defined as the radius of the circle. The \de&CC gains are then given as,

e
C, =sin@ —ﬁ (2.27)
C, =cosf@ +e_y

yo 2R

wheree, ande,, are the tracking error in theaxis andy-axis respectively. For other nonlinear
contours, the values, andC, are estimated by approximating the local portibthe contour as
circular. Therefore, the gains are still functiaxf®¥ andR, whereR now is the instantaneous
radius of the curvature. Simulations of linearceiar, and parabolic type contours with variable
CCC gains by Koren and Lo (Koren & Lo, Variable-Gacross-Coupling Controller for
Contouring, 1991) indicate significant reductioncontouring errors by as much as a 10:1 ratio
with the lowest ratio achieved of 3:1.

Different control structures have also been pregdsase on the Koren and Lo's variable-
gain cross-coupling. Kulkarni and Srinivasan (Basan & Kulkarni, 1990) introduced optimal
coupled control with the structure shown in Figdr&2. Results from experiments found that
the proposed coupled optimal controller was efiectt reducing contouring error for linear,
corners, and circular contours for low machine fest#s ranging from 2.25 to 5.63m/min for
linear and 7.2m/min for circular contours with dites of 30mm. Furthermore, it was found that
in order to obtain comparable contouring errorthim uncoupled controller, significantly higher

control gains had to be utilized.
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Figure 2-12: Optimal coupled control(Srinivasan & Kulkarni, 1990)

Although highly successful at reducing the contogirerror, the principle of CCC could
only be applied to biaxial systems since the cariguerror can be determined analytically. For
systems with three or more axes, calculating threazoing error in real time based on all axial
tracking errors becomes very difficult. The beslugon to is provide an estimation of the

contour error in real-time with an estimation metlowtlined a later section.

24 ADVANCED CONTROL METHODS

Sections 2.2 and 2.3 discussed some of the deaaklopntrol techniques relevant to
current CNC control systems. This section willieswsome of the advanced techniques, namely
iterative learning control (ILC), repetitive cont(®C), and event-driven control (EDC).

The concept of ILC is based on the fact that waemachine performs a task that is

repeated many time, such is the case for many Objications, it can analyze and store the
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errors that were made and make appropriate cavrexti Through this method, the errors in the
system outputs can be made progressively smaltéregich successive iteration. This forms a
category of learning-type control strategies, whatto includes adaptive and repetitive control.
ILC is different from these control strategies sificonly modifies the control input to a system.
With adaptive control, the controller itself is nibed (Bristow, Tharayil, & Alleyne, 2006).
One important consequence of ILC and other leartypg control strategies is that it is only
capable of correcting for repetitive errors. Tleaegral structure of the ILC can be seen in Figure

2-13.

System -

Uj+1 Learning
Controller =

Yr

Figure 2-13: Iterative learning control structure (Barton & Alleyne, 2008)

One of the first publications to introduce ILCGNC control was proposed by Kim et al.
(Kim & S., 1996). This involved incorporating aalaing function into a conventional PID

controller. The input of the controller is gives, a
i+ (2.28)
s (D) = 0 () + Kper i+ D)+ K, ) ee(n) + Kple (i + 1)

n=1

— e (D)
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wherek is the iteration step ands the discrete timee (i) is the system output error. The
overall system is expressed as,
xe (i + 1) = ADx (D) + BOue (D) = D@Ow, (D) (2.29)
x,(0) = x,
yi () = C(Dx (D)

i+1
U () = w1 (0) + Kpep_1 (i + 1) + K; Z ex—1(n)

n=1
+ Kplexk—1(i + 1) — e (0]
er-1(D) = ya (D) — ye—1 (D)
The structure of this system is displayed in Figgn®4. Experiment with this controller yielded
improved performance after only 4 iterations with8% increase in the machining accuracy for
circular type contours.
Barton and Allyene (Barton & Alleyne, 2008) propdsa control strategy that can
improve both tracking and contouring errors by mpooating both ILC and CCC called cross-
coupled iterative learning control (CCILC). CCILGses a more common ILC learning

algorithm as shown below,

U1 (D) = Q(q™ D wie (D) + L(q e (i + 1] (2.30)
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Figure 2-14: Structure of a learning-type PID contoller (Kim & S., 1996)

wherej is the iteration steg; is the tracking error which is calculated one tistep ahead to
compensate for the delay in the plant dynamicss the forward time-shift operator where for a
given systemgx(i) = x(i + 1). Q andL are functions defined as the Q-filter and learning
function respectively. Th@ function is designed to give the system stabiltyen there are
uncertainties in the plant dynamics. Th&unction is designed in such a way to achieve good
tracking performances by modifying the previoustoalter inputu, (i). The control structure of
ILC is displayed in Figure 2-15 and Figure 2-16t tide end of each iteration, the error is filtered
through the learning functiahand then added to the control input. This is thiegred through

the Q@ function to form a new controller input for thexhéeration.
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Figure 2-15: ILC controller scheme with a feedbackoop (Barton & Alleyne, 2008)
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Figure 2-16: An overall structure of and ILC system(Bristow, Tharayil, & Alleyne, 2006)

With the addition of the CCC, the CCILC controilss,

Uy, (D = Q™ )[utee, () + L(g e (i + 1] (2.31)

30



In the CCILC control law, the contouring errs use in place of the tracking error with the
overall control diagram display in Figure 2-17. réele¢he contouring error is calculated using the
same method described in (Koren & Lo, Variable-G&mnoss-Coupling Controller for
Contouring, 1991). Both experimentation and sirtioreof CCILC yielded improvement over
conventional feedback CCC controllers without tearhing controller. Results indicate a

reduction in axial tracking error range from 35%/&%0.

A
J ke

X+ .
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ILC,
Yo F &
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Figure 2-17: Iterative learning control with crosscoupled control(Barton & Alleyne, 2008)

In general, ILC is a highly active area of reshaspanning the past three decades with
developed theories in stability, robustness, amstesy limitations. It will only continue develop,
particularly in the area of micro and nano-manufaot, where the small scale is considered.
Further review on ILC can be found in (Bristow, Téngl, & Alleyne, 2006) and (Longman,
2000).
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Another learning-type controller is called repe&t control (RC), which was first
introduced by (Inoue, Nakano, Kubo, Matsumoto, &8a1981). The RC update law, which is
every similar to ILC, is given as,

Upy1 (D) = w (D) + Ae (L + 1) (2.32)
wherek is the iteration step arids the discrete timee, is the tracking error antlis called the
learning gain satisfying < A < 1. From this RC update law, it can be easily seeresemble
the ILC learning algorithm from Eq. (2.30) with oarception that the RC law lacks t@dilter
functions found in ILC. Again, the addition of tRefunction is designed to give the system
stability when there are uncertainties in the pldpbhamics. One of the major differences
between ILC and RC is that in ILC, the initial cittwhs are the same for every iteration where
as in RC, the initial conditions are set to thalfimalues from the previous iterations. This is th
case since RC was intended to be used on contimymersition (Bristow, Tharayil, & Alleyne,

2006). The general block diagram of RC is showhigure 2-18.

A 4

i RC » System

Figure 2-18: Repetitive control diagram (Tan, ChuaZhao, Yang, & M.T, 2009)

Another advanced control method, called eventedrigontrol or periodic control. This
control method differs from traditional control rhets in that it requires the occurrence of an
event to trigger a new control action. Traditiowahtrol methods have fixed time-triggered

sampling, which means that although nothing is kapm in the system, the controller will still
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perform a new control action at the prescribed timterval. This can lead to unnecessary
utilization of system resources (Arzen, 1999).

Experiments conducted with a simple event-drivéD Bontroller by Arzén (Arzen,
1999) indicate significant reduction in CPU ultilima by the event-driven controllers with only

minor control performance degradation.

2.5 REMARKS

Most of the above control strategies typicallygmsed a method or algorithm to improve
one aspect of the CNC system for the improvement/efall performance of the system. Cheng
and Chin (Cheng & Chin, 2003) proposed mergingrake aspects in an effort to analyze and
reduce both tracking and contouring error. The&eeech suggests that by only considering only
one aspect and inevitably ignoring others, any owpments made to the system can be nullified
as a result. To make a significant improvemerite gystem as a whole must be considered.
With the increase in computing power and generaltedge of CNC systems, it is conceivable
that future research will be geared towards thisatiion of thinking.

Existing control systems are constructed in tinoendin with limitations as discussed
above. To advance the control system, in the deapter, a new control law based in position
domain will be proposed as an alternative to traitional control systems. The main
motivation of this research is to take advantag€€@@d event-driven control systems to form a
new control method that can improve both the tragland contour tracking performance of the

system.
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Chapter 3 POSITION DOMAIN CONTROL SYSTEM DESIGN

3.1 DYNAMICS MODEL

PDC is a novel control scheme whereby a multi-aysgem is viewed as a master-slave
system. The motion of the master axis is equiditassampled and used as an independent
reference. The motion of each of the slave axgefed as a function of the reference motion
based on the contouring requirements of the syst€m.formulate this function, the dynamic
model of the multi-axis system is developed in posidomain through a one-to-one mapping
from time domain. One major advantage to the PD&egyy is that there is no tracking error in
the reference motion, thus the reference motiors dug affect or contribute to the overall
contouring error. Therefore, in order to get acuaate contouring performance, a high precision
measurement is required from the reference motaoorder for a PDC system to be effectively

utilized.

Figure 3-1: Schematic of a CNC machine
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From the CNC system represented in Figure 3-limplisied dynamic model of this

system in time domain is given as,
My Gy + Cxx + kxqy = Ty () (3.1)
my Gy + cyqy + kyqy =T, ()
mZéiZ + CZC.IZ + quZ = TZ(t)

wherec; andk; are the damping and stiffness coefficient of th&team respectivelyg;, ¢;, and

q; are the acceleration, velocity, and position efith axis, andT; is its control input.

The state space representation of the system is,

{XzAX+BU (3.2)
y=CX
-0 1 0 0 0 0 - 0 0 07
b R N T | | B L 0 o
qx my My My
q 0 0 0 1 0 0 0 0 0
Where X = .y y A= 0 0 _k_y _C_y 0 0 y B = 0 i 0 y
CIy my my, my,
z 0 0 0 0 0 1 0 0 0
L], 0 0 0 0 _ﬁ Cz 0 0 i
mz mz_ = mz-
T 1 000 00
U=|Ty],andC=|0 0 1 0 0 O]
T, 000 0 10

Other dynamic factors such as backlash and frictice excluded from the model to

simplify simulation and the comparative analysisngen different control laws.

3.2 TIME DOMAIN CONTROL

The dynamic model in Eg. (3.1) assumes that dyosrof each axis is decoupled.
Therefore, a conventional PID controller in timardon can be applied to control each axis. The

controller is given as,
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t
T;(t) = Kte;(t) + K} f e;(T)dr + KL é;(t)
0

(3.3)

wherek}, K}, andKbare the PID controller gainse; andé, are the error and derivative of

the error.

3.3 TIME DOMAIN CONTROL WITH CROSS -COUPLED CONTROL

The CCC control laws used in this research isvédrirom (Koren & Lo, Variable-Gain
Cross-Coupling Controller for Contouring, 1991)or Finear contour tracking, the contour error
and its derivative are derived from the trackingeof thej andk axes as,

ec = —Cjej + Crey (3.4)
éC = _C]e] + Cke.k

where(; = sin § and(; = cos 0 refers to the variable-gains in the cross-couptautrol. For a

linear motion, bottC; andC;, are constant sinagis constant.

The corresponding circular motion contour erroesdefined as,

ec = —Cje; + Crey (3.5)
éC = —C]e] + C'ke'k - C']e] + Ckek

whereC; = sing — =L, Cr =cosO+£ ¢ =6cosb —ﬁ, andC, = —6sin@ +% . From
7 2R 2R’ J 2R 2R
these relationships, it is possible to develop Rffie@ control law that includes cross-coupling

control. The TDC controller with CCC for thieandk axes are given as,

t

: : 3 : > 3.6
T(t) = Kie;(¢) +K,ff e (D)dr + Kie (1) — C;(Kle, + Kié.) (36)
0

And
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t
To(t) = Kke, (t) + KK f ex (D dr + Kk, (6) + Co(Kke, + KEE,) 3.7)

0

3.4 POSITION DOMAIN CONTROL

In order to utilize a PDC controller, the dynamafsthe CNC system presented in Eq.
(3.1) must be converted from time domain into posidomain. In TDC, the position of each
axis is time dependent. This relationship givetirme domain is,
q; = f;(@®) (3.8)
The objective of PDC is to replace the time-depgecg of the system with a dependency
on one of its axis referred to as the referencemaster axis. The motions of other axes, called
slave axes, can be represented as functions ohtitien of the master axis. Assuming tkat
axis in Eq. (3.1) is the reference axis, then thsitpn for thejt" axis in position domain is
given as,
q; = 9;(qx) (3.9)
To formulate a control law based on the positiomédin, it is necessary to define the

relative velocity and relative acceleration of jHeaxis in the position domain from Eq. (3.9)

as,
qgﬂ (3.10)
7 dagy

And
. _ d%q; (3.11)
7 dq;
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Theit" axis velocity and acceleration can be represeagedunctions of the relative

velocity and relative acceleration as follows,

_dq; _dg;dgx _ . (3.12)
U=t “dq, a& Vo
And
. _day d(q;dy) _p %4, ddx (3.13)
U= dt =gy ac U

Substituting Eq. (3.12) and Eg. (3.13) into B31] yields,
miq2q;" + midq;' + ci4xq; + kiq; = Tj(qx) (3.14)
Therefore, the dynamics df* axis in position domain can be expressed as,

m;q2q;" + (mjigx + ¢;Gx)q; + kjq; = Tj(qx) (3.15)

Remark 1. Eg. (3.15) above represents the dynamic relatipnsbiween two axes @ndi) in
position domain by transforming the dynamic modeinf time domain to position domain.
From this, it can be concluded that to obtain aat@icontour performance, a high precision

measurement is required in the masteaxis) motion direction.

Remark 2: Since thec-axis position is used as a reference, a high imgckccuracy of the-axis
(master motion) is not a necessary requiremertiamposition domain control. This implies that
a low cost driving system with low accuracy carapelied for the actuation of theaxis.

Remark 3: By comparing Eq. (3.1) and Eq. (3.15), it can becbaded that by the transformation
from time domain to position domain, the dynamiadelof the system in the position domain is

nonlinear in compared to the original linear systertime domain.
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From the transformation to the position domainaiyits model, the proposed control

law in the position domain is given as

X

Ti(x) = Kfej(x) + K,jf ej(D)drt + Kéej'(x) (3.16)
0
With the errors and the derivative of the err@ given as
{ ej(x) =q;,(x) — q;(x) (3.17)
g (x) = q;,'(x) — q; (%)

Remark 4: The PDC law of Eq. (3.16) is similar to the TDC la# Eq. (3.3) with some
fundamental differences. The first is the domé&iat teach uses is different; and secondly, the
derivative gains have different physical meanings tb the differences between the derivative

of the errors4;(t) ande; (x)) in TDC and PDC respectively.

Remark 5: The tracking error from Eq. (3.17) forms the aanterror in the position domain

where thex-axis is the reference axis with zero bias. That(s) = e(x) for a planar contour.

Substituting Eq. (3.17) into Eq. (3.16) gives doatrol law in position domain where the

x-axis is the reference axis. The PDC control lsw i
T () = Kb (41,00 — 1) + K (43,00 — ;) (3.18)
+ K5 (4,00 - 4;(0)
Substituting in the definition of the relative weity and relative acceleration define in

Eqg. (3.10) and Eg. (3.11) into Eq. (3.18) we hdeefollowing,
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T, = K} (Qid(x) — Qi(x)) + K'Y, (Qid(x) —q; (x)) (3.19)
Ki

+ q—D (C?id(x) - C?i(x))

which represents the PDC controller. The stabitifythis controller is demonstrated in the

proceeding sections.

Remark 6: It is clearly shown that the position domain lin€4D controller is equivalent to a

nonlinear PID controller in the time domain where thpeed of the x-axis is not constant.
Dynamic model in the position domain (Eg. (3.1%))eguivalent to the dynamic model in the
time domain (Eq. (3.1)). Therefore, it can be caded the proposed PID control in the position

domain has the same stability property as the Blidrol developed in the time domain.

Remark 7: If the motion of x-axis is constant, the dynamiodel of Eq. (3.15) in the position
domain will become a linear differential equatiand the PID control law in the position

domain can be transferred to a linear PID con&ral in the time domain as shown in Eq. (3.18).

Remark 8: The proposed position domain PID control law ig. E3.19) can be viewed as a
varying sampling rate PID control in the time doméschinkel, Chen, & Rantzer, 2002). Also,
the position domain PID control law can be viewedaanonlinear PID control in the time

domain (Ouyang, Zhang, & Wu, 2002) when the spde¢taxis is not constant.

3.5 STABILITY ANALYSIS

3.5.1 HREPARATION AND LEMMA

Consider a dynamic system described in the posttonain by,
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y'(x) = f(x,y(x)) (3.20)
wherex € R is the “position” of the master motion or the ipdadent variable, angdx) € R*
is the state.
Lemma 1. Let D c R* be a domain that contains the origin and0,o) x D - R be
continuously differentiable function such that,
ralylD) =V < v dlylD (3.21)
And,

V') < -W),VYllyll=u>0 (3.22)
with Vx > 0 andVy € D, wherey; andy, are clas¥ functions andiW/ (y) is a continuous
positive definite function. Take > 0 such thaB c D and suppose that,

1 <yi*(ri() (3.23)
Then, there exists a clagd, function¢ and for every initial statg(x,), satisfying

ly(xo)ll < v3(y1(r)), there isX > 0 such that the solution of the dynamic equatidisfes,

lyCOll < ¢y (xo)ll, x — x0), Vxp < x < xp + X (3.24)

lyCONl < vt (y2(W), ¥ x = x0 + X (3.25)
Moreover, ifD = R™ andy, belongs to clask,, then Eq. (3.24) and Eq. (3.25) hold for
any initial statey(x,), with no restriction on how largeis.
Proof: See reference (Khalil, 2002)
This Lemma means that the dynamic system is dipbahiformly exponentially
convergent to a closed ball for any initial conalis, if one can find a positive definite function

V(y) so that Eqg. (3.21) to Eq. (3.25) are satisfied.

3.5.2 NDTATIONS AND THEOREM
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To facilitate the discussion, we have the follogvassumptions:
Al. The desired contour of; (x) is of the third-order continuity for € [x;n;, Xfin].
A2. The real tracking path in theaxisx(t) is of the third-order continuity for the contour.
A3. The disturbancg, (x) is bounded in the full contour tracking process.
For the briefness of the stability analysis, som&ations are introduced and used in the

following sections.

o Izl = max;<i<p |2
e p= mya'czy[{(x) + (myjf' + sz)yz,i(x) + kz)’d(x) + fylmax
. |p|max = |my5('2y{1,(X) + (myx + CZX)y&(X) + kzyd(X) + fyl <

max

my 1621 lyg COIl + (my 121 + c2ll& D 1lya COIl + kallya COIl + [| £ |

. _ B ; . . a o
Por = (1 — E) (my% + cyx + Kpy) — pmyx% + ~» Wherea andf are positive constant

witho < g <1

According to the assumptions (A1-A3), one can prdkat the parametép|,,, IS
bounded. Parametpy: is related td<,, while p, is related to all three control gains. For the

developed position domain PID controller Eq. (3,18 have the following theorem.

Theorem: A system represented in position domain by EdLYB3 where the desired

contour shape satisfies assumptions Al and A2ong¢ralled by the proposed position domain
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PID control law in Eq. (3.19). The contour traakierror and its relative derivative are bounded,

and the boundedness are given by,

1 1 (3.26)
<2 |=+
) levll <2 122+ Fpopes Plmas
, B 1
<2 +—
\ ”ey” DoPer pgl || max

Provided that the control gains and the positwestant parameters are selected properly
such that,

a o .
( Kpy > 3 +my ||X]| + ¢, ||| (3.27)
Ky <ap
< KI 1 . .
Kpy > Fy +5 (mylIZ|l + cy llx|l + Kpy)
a 2
— > - (12

It is noticed that Eq. (3.27) provides some guidd about the choices of control gains

for the developed position domain PID control.

3.5.3 HROOF OF STABILITY
A stability analysis for the proposed position @amPID control is conducted based on

the Lyapunov function method. First define,

X

ay(x) = fo ey(s)ds (3.28)

ay(x) = ey (x)

Using Eq. (3.28), the dynamics model with posittmmain PID controller in Eq. (3.15)

can be re-described in an error function formdblsws,
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myx2ey (x) + (m,% + ¢, + Ky, ) ey (x) + K0, (%) (3.29)

+ (pr + ky)ey(x) =p

For the dynamic system described in position domae define the following Lyapunov

functions,
i (e0,e(0) = 516y €] ﬁfn:x'? 51 ’y"g"zz] [Z] (3.30)
o) -3 sl 11
V (ey (), €00, 0,(0)) = Vi (e, (), €y (0)) + V2 (e, (), 0, () ) (3.31)

If the control gains are properly chosen accordiogeq. (3.27), a® < f <1, the

following inequality holds,
KPy = :Bmy”xllz > ﬁzmyxz - ky (3.32)
According to Eqg. (3.32), we can prove th@t(ey(x),e;,(x)) is a positive definite

function. From Eg. (3.27), it is easy to provetW(ey(x),ay(x)) is also a positive definite

function. Therefore, the Lyapunov functith(ey(x), ey (x), Jy(x)) is a positive definite
function.
It is easy to demonstrate that,

IR o=
1
ab < E(az + b?)

Applying Eq. (3.33) to Eq. (3.31) - Eq. (3.32)etfollowing inequalities can be obtained,
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1 : 1 2 3.34
2 (Kpy + ky — pmy%?)el + > (1 - Bym,x%e)’ (3.34)

+V; (ey (), 0, () < V (e, (), &5 (x), 3, (x) )

. 1 2
< =(Kpy + ky + pm,x?)eZ + 2(1 + B)m, x%e}”

N =

From Eq. (3.34), we can see that the defined Lyapdunction satisfies Eq. (3.21).

In the position domain control, the reference posix of thex-axis motion is an
independent variable that has a similar meaningiftime domain.e, ande;, are functions of
the independent variabie Therefore, the derivative of the Lyapunov fuoot¥ is related to
the variablex in this stability analysis.

Rewriting Eq. (3.29), we have,

myx2ey (x) = p — (M, & + ¢, x + Kpy ey (x) — K; 05, (%) (3.35)
- (KPy + ky)ey(x)

Differentiating Eq. (3.31) with respect to theiabte x and using Eq. (3.35), we have,

45



: v [Key ke Bmyx?] ey (3.36)
3% y

2
pm,x

& ol [Kfy ﬁligy] k4

= (Kpy + ky)eyey + (ey + Bey)my%%ey
+ ,Bmyfczej’,z + aeyey, + Kpye,0, + K yey0,
+ K;ye;

72
y

= (Kpy + ky + a)eyey, + pmy e
+ (e + Bey)Kiy 0, + K;ye?

+ (e} + Bey)(p — (my& + cyx + Kpy e,
— (Kpy + ky)ey — Kiyoy)

= —(my& + cyx + Kpy — fm,i2)e),”

— (B(Kpy + ky) = K1y )e3

— (B(my% + ¢y + Kpy) — @)eye)

+ (ey + Bey)p

According to Eq. (3.27), if we choo&g, > %+ my||%]| + ¢, ||x||, we can prove that,

B(my% + cyx + Kpy) — a > p{m, (& + [1XI]) + ¢, Gt + [} (3.37)
=0

Using the following inequality;-e, e;, < %(ef, +e,%), Eq. (3.36) can be rewritten as,
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V<-— ((1 - g) (my% + cyx + Kpy) — ﬁmyfcz) e}’ (3:39)

K, myX+c,x+Kp,
Kpy + kyy —— —

23) ej + (ey + Bey)p

From Eq. (3.27), if we choodg, > ’y + = (m %1l + ¢y 1%l + Kpy ), one can prove

that,
a myX+cx+K K 3.39
pe = Kpy +k, +ﬁ_ 4 ; Dy_% (3.39)
>k, zﬁ — 4= {my(llxll %) + ¢, (1%l =)} > 0
Similarly, from Eq. (3.27), if we choos&p, > %+my||5c'|| +cyll%]| and %>
Zﬂﬁ my, %%, then we have,
B B ) . 2, @ (3.40)
Pe! = 1—5 (my% + cyx + Kpy) — fmy% +E> 0
Applying Eg. (3.39) and Eq. (3.40) to Eqg. (3.38% obtain,
y 2 12 ’
V < —Bpeey —perey,” + (ﬁey + ey)p (3.41)
< —,3,06632, + :Beylplmax - pe’ejllz + ejlzlplmax
Applying another inequality,
2
1
az — bz? < z_ szz (3.42)

Fora > 0 andb > 0, we have,
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Blplaax (3.43)
Pe

2
2 _Pe' 2 |p|max
|p|maxejlz _pe’elll < Tell’ +—

Bpe

ﬁlplmaxey - ﬁpeejzz < - 4

2
ey

Pe’
Applying Eq. (3.43) to Eq.(3.41), we get,
. Bpe 2 Pe' 2 (ﬁ 1 ) 2 (3.44)
< — — = -4
V< 4 €y 4 €y + . + Do’ |p|max

Therefore, according to Lemma 1, we can demomstiat both the contour tracking

error and the derivative of the contour trackingpeare bounded as follows,

( 1 1 (3.45)
<2 |=+-—-
”‘—’y” pg .Bpepe’ |p|max
B 1
vl <2 +—
Ll / pops + 7 P bna

According to Eq. (3.45), one can see that thearorgrror and its derivative are bounded.

From Eq. (3.45), it is also shown that the maximemors can be reduced to very small values
by increasing control gai,, (related tp,) andkp,, (related tp,r). From Eg. (3.39) and Eq.
(3.40), one can see that a large constantll also increase parametess andp,r. Therefore,
the tracking errors will be reduced according ta E3j45). Control gailk;, has an indirect

contribution for the control of final tracking errby increasing the constant parametdérom
Eq. (3.27).
3.6 POSITION DOMAIN CONTROL WITH CROSS -COUPLED CONTROL

The CCC control laws use in this research is @erifrom (Koren & Lo, Variable-Gain
Cross-Coupling Controller for Contouring, 1991)or Finear contour tracking, the contour error

and its derivative are derived from the trackingeof thej andk axes as
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ec = —Cje; + Crey (3.46)
e’ = —Ciej' + Cyey’

Where(; = sin 8 andCy = cos 6 refers to the variable-gains in the cross-couptattrol. For a
linear motion, bothC; andC), are constant sincé is constant. The corresponding circular

motion contour errors are defined as:

e. = —Ciej + Crey (3.47)
e’ = —Cie;' + Crer' — Cj'e; + Ci'ey
Where(C; = sin 0 —3, C, = cos@ +2 C'=0cosB —ei, andC,’ = —0sin6 + 2K
J 2R 2R J 2R 2R

Here,R is the radius of the contour. From these relatgus, it is possible to develop the
control law in position domain to include cross-plig control. The PDC controller law with
CCC is given as

X
- - x | » 3.48
T;(x) = Kpe;(x) +K,]j ej(s)ds + Kpe; (x) — Cj(Kje. + Kpe.') (3.48)
0

And

X
T, (x) = K¥e, (x) + K,"j er(s)ds + Kfe,'(x) + C(Kfe. + Kke.') (3.49)

0

Where axeg andk are the slaves axes in the position domain widwthxis as the reference
axis. Both Eqg. (3.48) and Eq. (3.49) are equivalerthe PDC control law of Eq. (3.19) except

with the addition of the cross-couple elements.
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Chapter 4 SIMULATION RESULTS

4.1 SIMULATION SETUP

A virtual CNC system that will be utilized for tisamulation is a 3 DOF system as shown
in Figure 3-1. The dynamic parameters for each akihe system are listed in Table 1. These
parameters are non-mismatching to simplify theighitomparative analysis between each
control laws. The sampling rate of the TDC and eljaidistant sampling of the reference axis
for the PDC are listed in Table 2. Note that tlECPsampling for the linear and circular contour
are different to account for the effects of thelmmar contour. The total number of simulations

is outlined in Figure 4-1.

Table 1: Non-mismatching System dynamic parameters

Axis X Y Z
Mass m; [kg]) 1 1 1
Damping (c; [Ns/m]) 7T 7 7

Spring constant §; [N/m]) 50 50 50

Table 2: TDC sampling rate and PDC equidistant saming

TDC sampling rate 1000 Hz

PDC sampling (linear contour) 0.005m

PDC sampling (circular contour) 0.002m
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| Contour Type |

Nonlinear

Circular

PIDCCC” PID PIDCCC” PID PIDCCC|

Figure 4-1: Simulation outline

As indicated in Figure 4-1, both linear and noaéincontour types will be simulated. For
the linear contour type, the simulation will consi$ a zigzag and a diamond contour. For the
nonlinear contour type, the simulation will consadt a circular contour. For all types of
contours, a position domain PID controller (refdrte as a PDC) as well as a time domain PID
(referred to as a TDC) will be used to control thetion. Furthermore, a CCC component will

also be added to both TDC and PDC controllers topave their performance without CCC.

4.2 TRAJECTORY PLANNING

To ensure a smooth trajectory in all axes, a loigler polynomial is used to define their
position, velocity, and acceleration with respexttime (Craig & J, 1989). The high-ordered
polynomial is given as,

3 5

r(t) =10 (%) - 15 (%)4 +6 (%) (4.1)

With the first and second derivative being,
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( r(t) = %{30 (%)2 — 60 (%)3 +30 (%)4} (4-2)
#(t) = i{60 (E) — 180 <£>2 +120 (3)3}
T? T T T
wheret represents the time whifeis the total time of the motion from an initial #ofinal
position. Therefore, the axial position of & axis is defined as,
a:(©) = (pr — pi)r(® (4.3)
wherep, andp; are the final and initial position respectively.
The initial and final axial positions for each ¢&pf motion in the simulation are listed in
Table 3. Here, the linear contours (zigzag andndiad) are divided into four linear segments,
while the circular contour has two semi-circle segts. The total motion time for each segment
are displayed in Table 4. The transition betweathesegment is a stop-and-go motion rather
than continuous. Although both types of transiiane applicable in modern CNC machines, the
latter is preferred as it reduces the overall pgsicey time. This thesis will utilize the stop-and-
go transition for simplicity. The plots for thegileed axial trajectories for position and velocity
for zigzag, diamond, and circular motions in tin@éin are shown in Figure 4-2, Figure 4-3,

and Figure 4-4 respectively.
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Table 3: Initial and final axial positions for linear and circular contour simulations (p; and

py denote initial and final position respectively.)

Segment 1 Segment 2 Segment 3 Segment 4
pi(m) pe(m) pi(M) pe(m) pi(m) pp(m) pi(M) pr(m)

Zigzag contour

x-axis -4 -2 -2

y-axis -4 -2 -2

zaxis 0 2 2

Diamond contour

x-axis -2 0 0 2 2 0 0 -2
y-axis = -2 0 0 2 2 0 0 -2
zaxis O 2 2 0 0 -2 -2 0

Circular contour

x-axis -0.5 0.5 05 -05
y-axis O 0 0 0
zaxis 0 0 0 0

Table 4. Segment and total motion time

Zigzag Diamond Circular

Segment motion time (S) 10 10 10
Total motion time (s) 40 40 20
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Figure 4-2: Desired trajectories for zigzag contouilxial positions and velocities
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Figure 4-3: Desired trajectories for diamond contou axial positions and velocities
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From the above figures, the maximum axial velofotyeach contour is listed in Table 5.
Since all three axes in the linear motions trakiel $ame distance throughout the entire motion,
the absolute maximum axial velocity in all axes #re same. In circular motion, theaxis
travels the greatest distance within the same pigred relative to the other axes, therefore its
performance is the limiting factor. For linear mat the maximum feed rate is 0.3#f's,
while for circular motion, the maximum feed rat®i295m/s. These values are within modern

CNC machine performance specifications.

Table 5: Maximum absolute axial velocities

X-axis m/s) y-axis (m/s) z-axis (m/s)

Zigzag 0.375 0.375 0.375
Diamond 0.375 0.375 0.375
Circular 0.295 0.184 0.184

Figure 4-5 and Figure 4-6 below are the plotshefdesired linear and circular contours

in 2D and 3D respectively.
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4.3 GAIN SELECTION

The selection of control gains for any system ighly important to its overall
performance. For this simulation, the gains weteded based on a trial and error method with
the main objective being selecting the combinatbrrontrol gains that resulted in the lowest
axial tracking error without overshoot. The colies gains used for the simulation are listed
Table 6. Results foCase 4will be presented in this section as it provided #ufficient
performance in terms of relatively low trackingaes and contouring errors (on the order of
1073m or lower) for all three simulated contours. Theng control gains will be utilized in both
time and position domain controllers for all conu From Figure 4-7 to Figure 4-9, it is
evident that as the controller gains increasesnf@ase 1to Case 4, improvement in the axial
tracking is observed for both the linear and ceicudontours with the TDC and PDC. This

means that both controllers are stable within trexgied range of the controller gains.

Table 6: Linear contour controller gains for TDC, PDC, and CCC

P I D Peec Decc

Case 1 10000 6225 8750 10000 8750
Case 2 20000 12500 17500 20000 17500
Case 3 40000 25000 35000 40000 35000
Case 4 (baseline, 80000 50000 70000 80000 70000
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4.4 LINEAR CONTOUR TRACKING RESULTS

4.4.1 ZIGZAG CONTOUR

Using the baselineCase 4 PID controller gains listed in Table 6, good #&tracking
performance was achieved for all four controll@BC, TDC with CCC, PDC, and PDC with
CCC in the simulation of the zigzag contour. Thetplof the axial tracking errors for all
controllers are displayed in Figure 4-10. Notd thathe TDC plots in Figure 4-10, theaxis
represents time while in the PDC plots, thaxis represents theaxis position. Comparison
between the performance of the TDC and the PDC#&telithat the PDC provided better axial
tracking in terms of lower or comparable valuesrefan tracking error and lower standard of
deviation in they andz slave axes. The-axis in the PDC controller is the reference attiss it
yields zero tracking error as indicated in Figurd04 The best overall performance was
observed with the PDC controller with CCC as trendard of deviation for the tracking error
was lower (ranging from 0.0003m to 0.0006m) in cangon to the TDC, TDC with CCC, as
well as the PDC controller without CCC. The resutir all axial mean tracking errors and

standard of deviations for the zigzag contour eted in Table 7.

Table 7: Mean and standard deviation (S.D) for zigag motion axial tracking error*

X-axis Y-axis Z-axis
Mean(m) S.D(m) Mean(m) S.D(m) Mean(m) S.D(m)
TDC -0.000121 0.001376 -0.000121 0.001376 0.000604 0.000474
TDC with CCC -0.000128 0.000786 -0.000190 0.001883 0.000527 0.000626
PDC N/A N/A -0.000184 0.001077 0.000578 0.000258
PDC with CCC N/A N/A -0.000140 0.000707 0.000238 0.000297

! X-axis tracking for both PDC controllers is notpéipable since the x-axis is the reference axiseffoee it yields
zero tracking error.
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In terms of the contouring accuracy performante PDC controller provided the
highest contouring accuracy with lower values olmeontour error and standard of deviation
over the equivalent TDC controller. The final walof the contour error for the PDC is
approximately 50% lower in comparison to both TDdhtcollers. Furthermore, the addition of
CCC to the PDC controller resulted in further impgrment in the contouring performance over
the other controllers. The plots of the contourergprs for all controllers are in Figure 4-11
while plot of the desired and actual contours ar&igure 4-12. Note that all errors in Figure
4-12 have been magnified by a factor of 100. Ftioese figures, it is evident that the PDC with

CCC provided the best contour performance witHeast deviation from the desired contour.
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Figure 4-11: Zigzag motion contour error magnitudefor TDC, TDC with CCC, PDC, and

PDC with CCC
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Table 8 lists the result for the contour perforoef all controllers. Here, the mean
contour error of the PDC with CCC is the lowestamparison to all the other controllers. The
improvement in the mean contour error ranged fraB0@m to 0.0011m, with the highest
improvement observed against both TDC controllekssimilar conclusion can be said for the
standard of deviation of the contour error. Theref it can be concluded that the PDC with

CCC provided the best tracking throughout the erdantour.

Table 8: Magnitude of contour error mean, standardof deviation, and maximum

Mean(m) S.D(m) Max(m)

TDC 0.001840 0.001009 0.003401
TDC with CCC 0.001935 0.001068 0.003800
PDC 0.001168 0.000480 0.001976

PDC with CCC 0.000765 0.000283 0.001447

4.4.2 DIAMOND CONTOUR

As with the zigzag motion, good tracking performamwas achieved by all four
controllers for the diamond contour type usi@igse 4controller gains with all axial tracking
errors on the order df0~*m. The plots of the axial tracking errors for eaohtroller are shown
in Figure 4-13. In the diamond motion simulatidmgth PDC controllers (with and without
CCC) provided improved axial tracking performance lfoth they andz slave axes with lower
values of mean and standard of deviation of theking error over both TDC controllers. With
the addition of CCC to the PDC controller, the parfance of the original PDC controller is

further improved with approximately a 30% reductinrthe tracking error mean and standard of

68



deviation for they-axis. However for the-axis, a slight increased in the tracking error mea
was observed with the addition of CCC. This dagsnecessarily mean that improvement in the
z-axis tracking was not achieved as a 50% reducdtidhe standard of deviation of the tracking

error was observed as indicated in Table 9.

Table 9: Axial tracking error mean and standard devation (S.D) for diamond motion®

X-axis Y-axis Z-axis

Mean(m) S.D(m) Mean(m) S.D(m) Mean(m) S.D(m)
TDC 0.001080 0.001402 0.001080 0.001402 -0.000002 0.000759
TDC with CCC 0.000625 0.000830 0.001506 0.001928 0.000182 0.000658
PDC N/A N/A 0.000902 0.001185 0.000008 0.000631
PDC with CCC N/A N/A 0.000660 0.000816 0.000053 0.000352

3 X-axis tracking for both PDC controllers is nofpiipable since the x-axis is the reference axisetoee it yields
zero tracking error.
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In terms of contouring accuracy, Figure 4-14 digpl the contour errors for all four
controllers. Here, the PDC with CCC resulted Iowest contouring error throughout the entire
contour. The final value of the contour error fbe PDC was reduced by approximately 40%
when compared to both TDC controllers.  With tlglion of the CCC, the error reduces
further to 60%. Plots of the desired and actualtaars in Figure 4-15 indicate that the PDC

with CCC provided the best tracking over all thieestcontrollers.
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Figure 4-14: Diamond motion contour error magnitudefor TDC, TDC with CCC, PDC,

and PDC with CCC
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Table 10 lists the results for the contouring ewball controllers. As with the zigzag
contour, the PDC with CCC provided the lowest meamtouring error over all other controllers
including the PDC without CCC in the diamond comtaimulation. This represents
approximately a 60% reduction in the mean contotardor the PDC with CCC controller over
the both TDC controllers. A similar result can @encluded for the stand of deviation for

contouring error.

Table 10: Magnitude of contour error mean, standardof deviation, and maximum

Mean(m) S.D(m) Max(m)

TDC 0.002271 0.001296 0.004937
TDC with CCC 0.002385 0.001358 0.004874
PDC 0.001372 0.000856 0.003191

PDC with CCC 0.000908 0.000635 0.002016
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4.5 CIRCULAR CONTOUR RESULTS

For the circular contour simulation, good axiacking performance was also achieved
by all four controllers using the control gainsdfied in Case 4 The plot of the tracking errors
for all controllers is shown in Figure 4-16. Itnche seen that the final value of the tracking
errors from all controllers are comparably low dw torder oft0~*m. From Table 11, the
standard of deviation in tracking error for thevelaaxesy andz are lower (by approximately
70%) when comparing the PDC with CCC over both Té&xDtrollers while the mean of the
tracking errors is approximately 30% lower. It da@ concluded that the PDC with CCC

provided the best tracking over the entire motion.

Table 11: Axial tracking error mean and standard deviation (S.D) for circular motion®

X-axis Y-axis Z-axis

Mean(m) S.D(m) Mean(m) S.D(m) Mean(m) S.D(m)
TDC 0.000212 0.000390 0.000135 0.000144 0.000135 0.000144
TDC with CCC 0.000326 0.000384 0.000123 0.000162 0.000123 0.000162
PDC N/A N/A  0.000158 0.000076 0.000147 0.000070
PDC with CCC N/A N/A 0.000081 0.000044 0.000081 0.000044

® X-axis tracking for both PDC controllers is nofpiipable since the x-axis is the reference axisetoee it yields
zero tracking error.
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Figure 4-17 displays the contouring error forfallr controllers. The contouring error of
both PDC controllers is lower than that of the TBdhtrollers. The final value of the contouring
error is approximately 60% lower in the PDC coréad compared to the TDC controllers. The
variation in the mean contour errors of both PD@talers are also lower throughout the entire
motion. Similarly to the linear motion simulatioesults, the PDC with CCC in circular motion
simulation provided appreciable improvement in¢batour tracking performance over the other

control laws.
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Figure 4-17: Circular motion contour error for TDC, PDC, and PDC with CCC

76



TDC Tracking

0.5 0.5 0.5

Y-axis position (m)
o

Z-axis position (m)
o

Z-axis position (m)
o

-0.5| ‘ ‘ -0.5| | ‘ -0.5
-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5
X-axis position (m) X-axis position (m) Y-axis position (m)
TDC (CCC) Tracking

0.5 0.5 0.5

Y-axis position (m)
o

Z-axis position (m)
o

Z-axis position (m)
o

-0.5¢, : ‘ -0.5¢, ‘ ‘ -0.5
-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5
X-axis position (m) X-axis position (m) Y-axis position (m)
PDC Tracking
0.5 0.5 0.5
E E E
5 5 5
i o 1 o g o
o o o
5 5 5
> N N
-0.5¢, : ‘ -0.5¢, : ‘ -0.5}! ‘ ‘
-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5
X-axis position (m) X-axis position (m) Y -axis position (m)
PDC (CCC) Tracking
0.5 0.5 0.5
E E E
5 5 5
2 0 2 0 2 0
o o o
k%) RO 7]
> N N
-0.5¢, : ‘ -0.5¢, : ‘ -0.5}¢ ‘ ‘
-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5
X-axis position (m) X-axis position (m) Y -axis position (m)
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® The plots of all actual contours include an emagnification by a factor of 100
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From the desired contour and actual contour plétigure 4-18 it can be seen that both
PDC controllers provided a smoother contour tragkiaer the entire motion, with the PDC with
CCC performing better than the PDC without CCC ennis of smoothness in the motion
tracking.

Table 12 lists the contour results obtained fer ¢hrcular contour simulation. It can be
concluded that the PDC with CCC provided an impnoset in the mean contour error by as
much as 0.0003m over both the TDC controllers gmpraximately 0.0001m over the PDC
without CCC. In terms of standard of deviationtbé& contour error, the PDC with CCC

provided an improvement of nearly 70% over the Tda@trollers.

Table 12: Magnitude of contour error mean, standardof deviation, and maximum

Mean(m) S.D(m) Max(m)

TDC 0.000470 0.000232 0.000887
TDC with CCC 0.000524 0.000248 0.000928
PDC 0.000216 0.000103 0.000329

PDC with CCC 0.000115 0.000061 0.000202

Comparison between the linear and circular comguresults indicates that the PDC
with CCC significantly reduces the mean of the oanihg error of the linear contours by as
much as 60% over the TDC controllers. For theutaiccontour, the result achieved was higher
at 75%. In all cases, both of the PDC controltargperformed the equivalent TDC controllers
with improved axial tracking and overall contouadking performance. In cases where the
tracking errors or contour errors of the PDC wawmgarable to the TDC controllers, the standard
of deviation for these errors with the PDC contedlwas significantly lower, therefore the PDC

still provided better overall contour tracking.
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4.6 OTHER SIMULATIONS

In order to further demonstrate the performanak rabustness of the proposed position
domain controller, various other simulations wesaducted. These simulations varied from the
initial by simulation by incorporating higher cooller gains, higher CCC gains, and variation in

the equidistant sampling of the PDC controller.

4.6.1 HGH CONTROLLER GAINS

The higher controller gains used for additionatdations are listed in Table 13. These
gains are based of controller gains fr@ase 4,which have been successively increased by a
factor of 2 inCase 5andCase 6respectively. The axial tracking results for @intours are
displayed from Figure 4-19 to Figure 4-21. Frormesth plots, it is observed that the performance
of all controllers is stable at the higher level aintroller gains. Furthermore, both PDC
controllers provided superior tracking performaoeer both the TDC controllers with the best
overall performance from the PDC with CCC. Thetoanng results for all contours with
higher gains are shown in Figure 4-22 and listedable 14. It is evident that for both linear
contours, the utilization of higher controller gairesulted in improved contour tracking with the
PDC with CCC controller providing the best contagriperformance in all cases. For the
circular contour, a similar improvement in the @amttracking was also observed. By doubling

the controller gains, the contour errors for ahtrollers were reduced by approximately half.

Table 13: Higher control gains

P | D I:)CCC DCCC
Case 5 160000 100000 140000 160000 140000
Case 6 320000 200000 280000 320000 280000

79



x 10

X-axis error(m)

Y-axis error(m)
Z-axis error(m)

Time (Sec.) Time (Sec.)
x10° x 10° TDC(CCC)

X-axis error(m)
Y-axis error(m)
Z-axis error(m)

Time (Sec.) Time (Sec.)
x 10" x10° PDC

’

N

L\ . ‘ /_\ \<
\ /
-4 -2 0 2 4
X-axis position (m) X-axis position (m) X-axis position (m)
x 10" x 10 PDC(CCC) x10*

X-axis error(m)
o

Y-axis error(m)

Z-axis error(m)

(/

J
((/
ol

4 2 0 2 4

A

J N
S / \
A

NN N
TN

4 -2 0 2 4 4 -2 0 2 4
X-axis position (m) X-axis position (m) X-axis position (m)

X-axis error(m)
o
Y-axis error(m)
Z-axis error(m)
S

Figure 4-19: Zigzag contour axial tracking errors wth increased controller gains
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Figure 4-21: Circular contour axial tracking errors with increased controller gains
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Figure 4-22: Mean contouring error with increasingcontroller gains
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Table 14: Contour errors with increased controllergains

Case 4 Case 5 Case 6

Contour error(m) Contour error(m) Contour error (m)
Zigzag
TDC 0.00184 0.00095 0.00049
TDC (CCC) 0.00194 0.00101 0.00053
PDC 0.00117 0.00058 0.00029
PDC (CCC) 0.00077 0.00038 0.00019
Diamond
TDC 0.00227 0.00111 0.00054
TDC (CCC) 0.00239 0.00117 0.00059
PDC 0.00137 0.00069 0.00034
PDC (CCC) 0.00091 0.00045 0.00023
Circular
TDC 0.00047 0.00025 0.00016
TDC (CCC) 0.00052 0.00028 0.00018
PDC 0.00022 0.00011 0.00006
PDC (CCC) 0.00012 0.00006 0.00003

Simulations of higher CCC controller gains wersoatonducted which were based of
Case 6controller gains. The only difference is that @EC gains were increased proportional
to the PID controller gains (by factors indicatedFigure 4-23 below). From this figure, the
increased in the CCC gains resulted in improvemantthe mean contour error of all three
contours. The results show that there is a linelationship between the increased in the CCC
gains and the reduction in the mean contour effbeoretically if the CCC gains were increased

even to a higher value, the contour error achidethe PDC with CCC would be even smaller.
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4.6.2 PDCEQUIDISTANT SAMPLING

One of the important factors that influence therall performance of the PDC controller
is the equidistant sampling of the reference akisthe initial simulations, equidistant sampling
of 0.005m and 0.002m were utilized for the linead aircular contours respectively. This
section will demonstrate how the performance of Bi2C controllers is influenced by the
variation in the PDC sampling distance. The rasoltthis simulation are shown in Figure 4-24,

where the initial PDC sampling distance have dea@dy 80% and increased by 100%.
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Figure 4-24: Contouring performance of PDC with vaying sampling distance
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It is evident that varying the PDC sampling dis@mas no significant influence for the
linear contours as the mean contouring errors ot loe PDC and PDC with CCC remains
relatively unchanged with both the decreased aoctased in the PDC sampling distance. For
the circular contour, there is a significant in@@an the mean contour error (by a factor of
approximately 2) when the sampling distance isdased by 100%. The opposite is observed
when the sampling distance is decreased by 80%ingsin a slightly lower mean contour error.
This is intuitive since the circular contour is finear and the result of decreasing the resolution
of the controller (by increasing the sampling dis®) degraded its performance, while
increasing the resolution (by decreasing the sargplistance) resulted in a slightly improved
performance in terms of lower mean contour errfdhis means that equidistant sampling is an
important factor for PDC, particularly with nonliaecontours, where there are higher variations

in the position and velocity as well as accelerabbthe axial trajectories.
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4.7 MISMATCHING DYNAMICS

To further demonstrate the effectiveness of th€ BDntroller, the dynamics of the CNC
system shown in Figure 3-1were altered so thaatie@ dynamics are no longer matching. The
purpose of this would be to enhance the simuldbipmrcreating a more realistic scenario. The
new mismatching axial dynamics are listed in Tat#ebelow. Using Case 4 controller gains
from the previous simulations, simulations with m&ching axial dynamics for all contour
types indicate improved performance of the PDC d¢herTDC controller. With the addition of
CCC, the improved performance of the PDC rangech f&0% to 70% lower tracking and
contouring errors over the TDC controller. Theutessfor the contouring performance for all
contour types are listed in
Table 16. The plots for the axial tracking errare shown in Figure 4-25to Figure 4-27. With
mismatching axial dynamics, the PDC was able tovide better results over the TDC

comparable with the non-mismatching case.

Table 15: Mismatching system dynamic parameters

Axis XY Z
Mass m; [kg]) 30 20 10
Damping (c; [Ns/m]) 20 40 20

Spring constant §; [N/m]) 70 70 70

Table 16: Mean contour error with mismatching dynamcs

Mean contour error (m)

zigzag diamond circular
TDC 0.00257 0.00321 0.00065
TDC (CCC) 0.00271 0.00338 0.00073
PDC 0.00162 0.00197 0.00031
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The contouring performance results for all threetours are displayed in Figure 4-28. It
is clear that with mismatching axial dynamics, Fi2C controller provided improved contouring
performance over the TDC controllers for both linaad circular contours similarly to the non-

mismatching case.
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4.8 REMARKS

Simulation results indicate overall improvement the tracking and contouring
performances of the proposed PDC controller. ar linear contours, the PDC provided
improvement in the mean contour error ranging frésfo to 40% over the TDC controllers.
Improvement in the standard of deviation of thetoan error was also observed to be in the
range of 30% to 50% lower. With the addition of €CQGo the PDC controller, further
improvement in the mean contour error was achidwedpproximately 60% over the TDC,
while the standard of deviation of the contour eiraproved by as much as 70%. Similar
results were also achieved for the circular con®orulation. An improvement of 55% in the
mean contour error was observed for the PDC oweTC in the circular contour, while the
PDC with CCC achieved an improvement of 75% over TDC. In terms of standard of
deviation for the contour error, a 55% improvemests observed for the PDC and a 75%
improvement was observed for the PDC with CCC overTDC controller.

Simulation with higher control gains provided iraped results for all controllers with
the PDC with CCC providing the best tracking andtoaring performance. It is observed that
the reduction in the tracking errors and contourmgprs for all controllers is approximately
proportional to the increased in the controllerngai Simulation of higher CCC resulted in a
similar observation. With the higher CCC gaing ##DC with CCC provided reduction in
tracking and contouring errors proportional to ithereased of the CCC gains.

Simulation with varying PDC sampling distance shothat there is no appreciable
change in the tracking or contouring performancéheflinear contour when the PDC sampling
distance is increased by 100% or decreased by &a86the same change in the PDC sampling

distance, there is a significant change in thegoerédnce of the controller with the circular
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contour. This is the case since the circular aami® nonlinear and there is a high variation in
the dynamics, particularly in the position of thentour. Therefore when the PDC sampling
distance is increased, the resolution of the ctiatrdecreases, thus degrading the performance.

The opposite is applied when the PDC sampling csedesed.
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Chapter 5 CONCLUSION AND DISCUSSION

51 GENERAL REVIEW

In this thesis, a position domain controller wampesed and compared with an
equivalent time domain controller for a 3DOF CNCcimae. This was done by transforming
the dynamics of the CNC system from time domairpdsition domain through a one-to-one
mapping. In position domain, one of the axes endystem is taken as the reference and sampled
equidistantly; therefore the reference axis yide tracking error. Only the tracking errors of
the slave axes will contribute to the overall coamiog error of the motion. The stability of the
proposed position domain controller was demongtrati¢h the Lyapunov method. In addition
to comparing time and position domain controlleascross-coupled control component was
added to each of the controllers and comparatiedysis conducted for all the controllers.

Linear and nonlinear contour type simulations weoaducted for this system. The
results indicate improved performance was achidethe PDC controller over the equivalent
TDC controller. This translate to lower trackingaogs for the slave axes gfandz. In cases
where the mean value of the tracking errors wemapasable between the TDC and PDC
controllers, the performance was still improvedtlas values of the tracking error standard
deviation was lower with the PDC controller. Innbs of contouring error performance, the
PDC provided improved contour tracking over the Tb@htroller with lower mean contour
error and standard of deviation. With the addit@ihCCC to the PDC controller, further
improvement was achieved for both tracking and aarmtg performance for both types of

contour.
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52 MAIN CONTRIBUTIONS

The main contribution of this work is the develamha of position domain controller for
simple linear and nonlinear contours in CNC controlThe research work results several

published papers which includes:

« T. Dam and P. R. Ouyang, Position Domain ContouacRing with Cross-coupled
Control, Accepted by the 21st International Sympwsion Industrial Electronics, Feb.
2012.

* P.R. Ouyang, V. Pano, and T. Dam, PID Contour KirecControl in Position Domain,
Accepted by the 21st International Symposium omstidal Electronics, Feb. 2012.

 P.R. Ouyang, T. Dam, J. Huang, and W.J. ZhangtdborTracking Control in Position
Domain, Accepted by Mechatronics, Dec., 2011.

* P.R. Ouyang and T. Dam, Position Domain PD Con8tdbility and Comparison, The
2011 IEEE International Conference on Informatiod &utomation (ICIA 2011), 8-13,
2011.

 T. Dam and P.R. Ouyang, Contour Control in Posiflmmain for CNC Machines, The
2011 IEEE International Conference on Informatiad Automation (ICIA 2011), 14-19,
2011. The Best Paper Award.

* P.R. Ouyang and T. Dam, Position domain PD coifitnotontour tracking, Proceedings
of the ASME 2010 International Mechanical EnginegriCongress & Exposition

(IMECE 2010).
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53 FUTURE DEVELOPMENT

The work presented shows a position domain cdetrtad be more effective at reducing
tracking and contouring error for linear and ciesutontour type over an equivalent time domain
controller. Further work is required to show tliteetiveness of the position domain controller
on arbitrary contours such as splines and for ofjeermetric features like corners. The goal
would be to demonstrate the potential of the pmsiiomain control to be used as an alternative

to the time domain control.
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APPENDIX A:

A.1 PRIMARY PROGRAM

%GLOBAL PARAMETERS%%%%%% % %%%%% % %%% %% %%%%%%%%%%%%%%%%0%6% %% %% %% % %%
global  kpx kpy kpz kix kiy kiz kdx kdy kdz kpc kdc kx ky kz cx cy cz
f_pox f_poy f_poz xpos xi xf bz dt t thum error errorx errory errorz
xd dxd yd dyd zd dzd casel motion
%GENERAL PARAMETER S%%%%%%%%%%% % %%%%% % %%%%%%%%%%%%%% % %% % %% % %% % %%
%plot parameters
f_size=10;
m_size=4.5;
|_size=1.5;

%total motion time
T=10;Tx=T,Ty=T;Tz=T,

%sampling time
dt=0.001;t=0:dt: T;thum=length(t);
t1=t;

%sampling position
delta_x=0.005;

%ode tolerance
tol=1e-5;
toll=1e-6;
deltal=1e-15;

%true/desired position, velocity, and acceleration
[r dr ddr]=f_getr(tnum,t,T);

%CCC gains factor
cccf=1;

%SYSTEM DYNAMICS%%% %% %% %% %% % %% % %% % %% %%
%dynamic parameters

m=1;k=50;c=7;

mx=m;my=m;mz=m;

kx=k;ky=k;kz=k;

CX=C;Cy=C;CZ=C;

%%%%%%%% %% %

%control gains
% kp=80000;ki=50000;kd=70000;casel=4;

kpx=kp;kpy=kp;kpz=kp;
kix=ki;kiy=Kki;kiz=ki;
kdx=kd;kdy=kd;kdz=kd;
kpc=cccf*kp;kdc=cccf*kd;

%SECTOR 1%%%%%% % %% % %% % %% % %% %% %% % %% % % Yo% W W VYW W%/ 0%0 %0 % % %% %0 %%
%initial and final position
xi=[-4 -4 0],
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xf=[-2 -2 2];
[f_pox f poyf pozf po]=f_getf po(xi,xf);
bz=xf(3)-(f_poz/f_pox)*xf(1);

%initial state
x0=[xi(1);0;xi(2);0;xi(3);0];

[xd dxd yd dyd zd dzd]=f_get xyzr_linear(xi,f_po,r, dn);

errorx=zeros(tnum,1);

errory=zeros(tnum,1);

errorz=zeros(thum,1);

options=odeset( 'RelTol' ,tol, ‘'AbsTol" ,[toltol tol tol tol tol]);
[tt,x]=0de23th( 'Xyz_t_control' ,1,x0,0ptions);

errorx=zeros(thum,1);

errory=zeros(thnum,1);

errorz=zeros(thum,1);

options=odeset( ‘RelTol" ,tol, 'AbsTol' ,[tol tol tol tol tol tol]);
[tt,xc]=0de23tb( 'Xyz_tc_control' ,t,x0,0ptions);

%find the real velocity and acceleration of the x-a Xis
nj=abs(f_pox/delta_x+1);

xpos=zeros(3,1,n));

xpos(:,:,1)=[xi(1);0;0];

for j=2:nj
xpos(1,1,))=xi(1)+(j-1)*delta_x;
for i=1:thum
if x(i,1)>=xpos(1,1,)); break
end
end
xpos(2,1,j)=x(i,2);
if i>1
xpos(3,1,))=(x(i,2)-x(i-1,2))/dt;
end
end
xpos0=xpos(:,:,nj);

tt=squeeze(xpos(1,1,:));
tt(1)=tt(1)+ deltal;
tt(nj)=tt(nj)- deltal;
nt=size(xpos(1,1,:),3);
y0=[xi(2);0];
z0=[xi(3);0];
yz0=[y0;z0];

[yx zx yzx]=f_get PDC_linear(nt,tt,y0,z0,yz0,tol1);

%TDC reference

[xrl xdrl yrl ydrl zrl zdri]=f_get_xyzr_linear(xi,f _po,r,dr);
%TDC actual

[xal xdal yal ydal zal zdal]=f_get xyza(x);

%TDC w/ CCC actual

[xacl xdacl yacl ydacl zacl zdacl]=f_get_xyza(xc);

%PDC reference

[xrpl yrpl zrpl]=f_get xyzrp_linear(xpos,f _po,bz);
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%PDC actual

[xapl yapl zapl]=f_get xyzap(xpos,yX,zX);
%PDC w/ CCC actual

[xapcl yapcl zapcl]=f_get xyzapc(xpos,yzx);
%calculate tracking error

e t1=f te(xrl,yrl,zrl,xal,yal,zal);

e_tcl=f te(xrl,yrl,zrl,xaclyacl,zacl);

e _pl=f te(xrpl,yrpl,zrpl,xapl,yapl,zapl);
e_pcl=f te(xrpl,yrpl,zrpl,xapcl,yapcl,zapcl);

%SECTOR 2%%%%%%%%%% %% % %% % %% %% % % %% % % % YW VeV a0 %0 %% % %% %
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A.2 SECONDARY FUNCTIONS

function  dx=xyz_t_control(tt,x)
global kpx kpy kpz kix kiy kiz kdx kdy kdz kx ky kz cx cy
global xd dxd yd dyd zd dzd

dx=zeros(6,1);

for i=1:tnum
if  t(i)>=tt break
end

end

errorx(i)=xd(i)-x(1);
errory(i)=yd(i)-x(3);
errorz(i)=zd(i)-x(5);

dx(1)=x(2);
dx(2)=-cx*x(2)-kx*x(1)+kpx*(xd(i)-x(1))+kdx*(dxd(i)

dx(3)=x(4);
dx(4)=-cy*x(4)-ky*x(3)+kpy*(yd(i)-x(3))+kdy*(dyd(i)

dx(5)=x(6);
dx(6)=-cz*x(6)-kz*x(5)+kpz*(zd(i)-x(5))+kdz*(dzd(i)

function  dx=xyz_tc_control(tt,x)
global kpx kpy kpz kix kiy kiz kdx kdy kdz kx ky kz cx cy
global xd dxd yd dyd zd dzd f_pox f_poy f_poz kpc kdc

dx=zeros(6,1);

for i=1l:thum
if  t(i)>=tt
break ;
end
end
errorx(i)=xd(i)-x(1);
errory(i)=yd(i)-x(3);
errorz(i)=zd(i)-x(5);

angley=atan(f_poy/f_pox)*180/pi;
anglez=atan(f_poz/f_pox)*180/pi;

ex=errorx(i);
dex=dxd(i)-x(2);
ey=errory(i);
dey=dyd(i)-x(4);

ccx=sin(angley);

dcx=cos(angley);
ccy=cos(angley);
dcy=-sin(angley);
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cz dtt thum

-X(2))+kix*sum(errorx)*dt;

-x(4))+kiy*sum(errory)*dt;

-X(6))+kiz*sum(errorz)*dt;

cz dt t thum



ecy=-ccx*ex+ccx*ex;
decy=-ccx*dex+ccy*dey-dcx*ex+dcy*ey;

ez=errorz(i);
dez=dzd(i)-x(6);

ccx2=sin(anglez);
dcx2=cos(anglez);
ccz=cos(anglez);
dcz=-sin(anglez);

ecz=-ccx2*ex+ccx2*ex;
decz=-ccx2*dex+ccz*dez-dcx2*ex+dcz*ez;

dx(1)=x(2);
dx(2)=(-cx*x(2)-kx*x(1)+kpx*(xd(i)-x(1))+kdx*(dxd(i
X(2))+kix*sum(errorx)*dt)-ccx*(kpc*ecy+kdc*decy)-cc

dx(3)=x(4);
dx(4)=(-cy*x(4)-ky*x(3)+kpy*(yd(i)-x(3)) +kdy*(dyd(i
X(4))+kiy*sum(errory)*dt)+ccy*(kpc*ecy+kdc*decy);
dx(5)=x(6);

dx(6)=(-cz*x(6)-kz*x(5)+kpz*(zd(i)-x(5))+kdz*(dzd(i
X(6))+kiz*sum(errorz)*dt)+ccz*(kpc*ecz+kdc*decz);

function  dyx=y_axis_p_control(t,y)
global kpy kiy kdy ky cy f_pox f_poy xpos dt error
dyx=zeros(2,1);

ydx=f_poy/f_pox*t;
dydx=f_poy/f_pox;

nt=size(xpos(1,1,:),3);

for i=1:nt
if xpos(1,1,i)>=t
break ;
end
end

error(i)=ydx-y(1);

VX=Xpos(2,1,i);
p=(-(xpos(3,1,))+cy*xpos(2,1,))+kdy)*y(2)-
(ky+kpy)*y(1)+kpy*ydx+kdy*dydx+kiy*sum(error)*dt);

if vx~=0
dyx(2)=p/vx"2;
end

dyx(1)=y(2);

function  dzx=z_axis_p_control(t,z)
global kpz kiz kdz kz cz f_pox f_poz xpos dt error bz
dzx=zeros(2,1);
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x2*(kpc*ecz+kdc*decz);



zdx=f_poz/f_pox*t+bz;
dzdx=f_poz/f_pox;

nt=size(xpos(1,1,:),3);

for i=1:nt
if xpos(1,1,i)>=t
break ;
end
end

error(i)=zdx-z(1);

VX=Xpos(2,1,i);
p=(-(xpos(3,1,i)+cz*xpos(2,1,i)+kdz)*z(2)-
(kz+kpz)*z(1)+kpz*zdx+kdz*dzdx+kiz*sum(error)*dt);

if vx~=0
dzx(2)=p/vx"2;
end

dzx(1)=z(2);

function  dyzx=yz_axis_p_control(t,yz)
global kpy kiy kdy ky cy f_pox f_poy xpos dt errory error
global kpz kiz kdz kz cz f_poz angle kpc kdc bz

dyzx=zeros(4,1);
ydx=f_poy/f_pox*t;
dydx=f_poy/f_pox;
zdx=f_poz/f_pox*t+bz;
dzdx=f_poz/f_pox;
angle=atan(f_poz/f_poy)*180/pi;

nt=size(xpos(1,1,:),3);

for i=1:nt
if xpos(1,1,i)>=t
break ;
end
end

errory(i)=ydx-yz(1);
errorz(i)=zdx-yz(3);

ey=errory(i);
dey=dydx-yz(2);
ez=errorz(i);
dez=dzdx-yz(4);
ccy=sin(angle);
dcy=cos(angle);
ccz=cos(angle);
dcz=-sin(angle);

ec=-ccy*ey+ccz*ez;
dec=-ccy*dey+ccz*dez-dcy*ey+dcz*ez;

VX=xpos(2,1,i);
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py=(-(xpos(3,1,i)+cy*xpos(2,1,i)+kdy)*yz(2)-
(ky+kpy)*yz(1)+kpy*ydx+kdy*dydx+kiy*sum(errory)*dt)

if vx~=0
dyzx(2)=py/vx"2;

end

dyzx(1)=yz(2);

pz=(-(xpos(3,1,i)+cz*xpos(2,1,i)+kdz)*yz(4)-
(kz+kpz)*yz(3)+kpz*zdx+kdz*dzdx+kiz*sum(errorz)*dt)

if vx~=0
dyzx(4)=pz/vx"2;

end

dyzx(3)=yz(4);
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-ccy*(kpc*ec+kdc*dec);

+ccz*(kpc*ec+kdc*dec);
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