

COMPLEXITY ANALYSIS AND HARDWARE IMPLEMENTATION OF

EXTENSIBLE MODULO ADDITION FOR LIGHTWEIGHT BLOCK CIPHER IN

INTERNET OF THINGS (IOT)

By

Sheraz Raza Siddique

Bachelor of Electronics Engineering

Sir Syed University of Engineering and Technology, Pakistan 1999

 Master of Computer Science

University of Karachi, Pakistan, 2001

A project

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Engineering

 In the Program of

 Electrical and Computer Engineering

Toronto, Ontario, Canada, 2017

© Sheraz Raza Siddique 2017

ii

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this project. This is a true copy of the project,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this project to other institutions or individuals for the

purpose of scholarly research.

 I further authorize Ryerson University to reproduce this project by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my project may be made electronically available to the public.

iii

Project: Complexity analysis and hardware implementation of extensible

modulo addition for lightweight block cipher in Internet of Things

(IoT)

Degree: Master of Engineering

Year of convocation: 2017

Name: Sheraz Raza Siddique

Program: Electrical and Computer Engineering

University: Ryerson University

ABSTRACT

This project presents complexity analysis and hardware implementation of extensible modulo

addition [15] encryption algorithm on a 32-bit lightweight FPGA based block cipher called

INFLEX, which is designed for the internet of things (IoT) environment, supporting 64-bits

key. It is designed for constrained hardware resources yet providing a highly secure scalable

configuration for the variety of applications. This characteristic is obtained by the use of

generalized Feistel structure combined with an improved block inflation feature. INFLEX

follows a typical ARX (Add, Rotate, XOR) round function with a distinguished feature of block

expansion and collapse as per user selected control string, which makes INFLEX act as a

tweakable Cipher. We have shown comparison of INFLEX algorithm robustness and immunity

against linear and differential attacks and demonstrated that it outperforms one of the

benchmark block Ciphers Speck32/64 proposed by national security agency (NSA).

iv

ACKNOWLEDGEMENT

As a graduate student in the electrical and computer engineering department at Ryerson

University, I had quite a prolific and conversant experience during my master of engineering

program.

First of all I would like to thank Professor Dr. Reza Sedaghat for all the motivation and

encouragement behind this project. I had an opportunity to learn under his mentorship the

subject of VLSI, which spurred us to pursue further on the subject and experience practical

implementation in the real life project. I was one of the lucky students to get to work with

Professor Reza on an exciting project. He introduced us to the world of cryptology and

encouraged us to work on the development of a light weight cipher.

The exciting project would not have been materialized without the great help and guidance of

Prathap (Patrick) Siddavaatam. Patrick ensured that we were always on track and guided us

through the ebb and flow of the route to success. He always made himself available during his

busy schedule, I am highly indebted to him for his help.

I would also like to thank my fellow students whose names are not mentioned here but they,

apart from helping, kept life interesting, happy and colourful.

Finally, I would like to thank my family for their support, patience and encouragement, without

their help and understanding I would not have achieved what this project is all about.

v

TABLE OF CONTENTS

AUTHOR'S DECLARATION .. ii

ABSTRACT .. iii

ACKNOWLEDGEMENT .. iv

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

NOMENCLATURE .. ix

1. INTRODUCTION .. 1

1.1 OVERVIEW ... 1

1.2 MOTIVATION .. 2

1.3 OUR CONTRIBUTION .. 2

1.4 CRYPTOGRAPHY ALGORITHMS AND KEYS ... 3

1.5 PUBLIC KEY ALGORITHMS ... 4

1.6 SYMMETRIC KEY ALGORITHMS ... 4

1.7 KEY LENGTH .. 4

1.8 SECURITY OF ALGORITHMS .. 5

1.9 APPLICATION OF ENCRYPTION ... 7

2. MATHEMATICAL INTERLUDE ... 11

2.1 CRYPTOGRAPHIC ALGORITHMS – MATHEMATICAL BACKGROUND 11

2.2 COMPLEXITY OF PROBLEMS ... 11

2.3 MODULAR ARITHMETIC: .. 12

2.4 PROBABILITY THEORY ... 14

3. CIPHERS IN GENERAL .. 17

3.1 CIPHER TYPES AND MODES .. 17

3.2 STREAM CIPHER ... 17

3.3 MODES OF STREAM CIPHER ... 18

3.4 BLOCK CIPHER ... 21

3.5 MODES OF BLOCK CIPHER ... 21

3.6 CHOOSING A CIPHER MODE ... 26

3.7 BLOCK CIPHERS VERSUS STREAM CIPHERS .. 29

3.8 WHY BLOCK CIPHERS .. 29

4. STRUCTURE OF BLOCK CIPHERS ... 30

4.1 SUBSTITUTION PERMUTATION NETWORKS (SPNS) .. 30

4.2 FEISTEL STRUCTURE .. 31

4.3 DATA ENCRYPTION STANDARD (DES) ... 33

4.4 LIGHTWEIGHT BLOCK CIPHERS .. 36

5. CRYPTANALYSIS .. 38

5.1 DIFFERENTIAL AND LINEAR CRYPTANALYSIS .. 39

vi

5.2 DIFFERENTIAL CRYPTANALYSIS ... 39

5.3 RELATED KEY CRYPTANALYSIS ... 41

5.4 LINEAR CRYPTANALYSIS.. 42

5.5 CRYPTANALYTIC ATTACKS .. 44

6. CIPHER INFLEX... 46

6.1 THE BLOCK CIPHER INFLEX .. 46

6.2 INFLATE FUNCTION 𝓘𝒇 .. 47

6.3 BITWISE ROTATION .. 48

6.4 MODULAR ADDITION ... 49

6.5 DEFLATE FUNCTION 𝕯𝒇 ... 50

6.6 KEY SCHEDULE .. 51

6.7 PSEUDO CODE FOR INFLEX KEY EXPANSION AND ENCRYPTION 51

7. HARDWARE IMPLEMENTATION ... 52

7.1 IMPLEMENTATION PLATFORM .. 52

7.2 INFLEX INPUTS .. 52

7.3 USER REQUIREMENT OF INFLATION FACTOR (M) ... 53

7.4 INFLEX OUTPUT ... 54

7.5 DATA PATH FOR PLAINTEXT TO CIPHERTEXT ... 56

7.6 ENCRYPT/DECRYPT SYMMETRY ... 57

8. PERFORMANCE METRICS ... 58

8.1 INFLEX THROUGHPUT .. 58

8.2 TIME COMPLEXITY MEASURE IN TERMS OF LINEAR AND DIFFERENTIAL

CRYPTANALYSIS ... 59

8.3 LINEAR CRYPTANALYSIS.. 59

8.4 LINEAR ATTACK COMPLEXITY ... 64

8.5 DIFFERENTIAL CRYPTANALYSIS ... 68

8.6 DIFFERENTIAL ATTACK COMPLEXITY .. 70

8.7 INFLEX COMPARISON WITH SPECK .. 71

9. CONCLUSION ... 72

9.1 SUMMARY .. 72

9.2 FUTURE WORK ... 72

APPENDIX- A .. 73

VHDL ... 73

REFERENCES ... 87

vii

List of Tables

Table 1. Xor truth table .. 18

Table 2. Cipher modes comparison ... 28

Table 3. INFLEX specifications .. 47

Table 4. Gate equivalent for different inflation scales ... 55

Table 5. INFLEX throughput and G.E comparison [5] ... 58

Table 6. Modular addition and carry propagation ... 60

Table 7. Best differential characteristic for differential analysis of Speck 69

Table 8. Complexity comparison for m=1 inflation .. 71

Table 9. Complexity comparison for m=4 inflation .. 71

viii

List of Figures

Figure 1. Complexity of problems ... 12

Figure 2. Encryption/decryption process of synchronous stream cipher 19

Figure 3. Encryption/decryption process of self-synchronizing stream cipher 20

Figure 4. Electronic codebook mode of block cipher .. 22

Figure 5. Block chaining mode of block cipher ... 23

Figure 6. Cipher-feedback mode of block cipher .. 25

Figure 7. Output-feedback mode of block cipher .. 25

Figure 8. Counter mode of block cipher .. 26

Figure 9. Single round of SPN ... 30

Figure 10. Multiple rounds of SPN .. 31

Figure 11. Single round of Feistel.. 32

Figure 12. Multiple rounds of Feistel .. 32

Figure 13. Structure of DES... 34

Figure 14. Interaction of reliability, performance and cost ... 36

Figure 15. Differential propagation in DES ... 40

Figure 16. Linear attack on DES round ... 43

Figure 17. One round of INFLEX.. 46

Figure 18. n rounds of INFLEX ... 46

Figure 19. Decomposition of Round Function .. 47

Figure 20. Inflate algorithm for m=2, expands each bit by 2m .. 48

Figure 21. Block symbol diagram .. 52

Figure 22. Encryption input/output of INFLEX .. 53

Figure 23. Encryption output with Inflation m=1 .. 53

Figure 24. Bit expansion and KI string length for user selected inflate factor m 56

Figure 25. G.E and bit expansion for user selected inflate factor m .. 56

Figure 26. Data-path of INFLEX ... 57

Figure 27. Decryption output of INFLEX ... 57

Figure 28. Comparison of throughput, and clock cycles per block [5].................................... 58

Figure 29. Time Complexity comparison with m=4 inflation ... 65

Figure 30. Time Complexity comparison with m=3 inflation ... 66

Figure 31. Time Complexity comparison with m=2 inflation ... 67

Figure 32. Time Complexity comparison with m=1 inflation ... 68

ix

Nomenclature

⊞ Addition Modulo 2𝑛

⊟ Subtraction Modulo 2𝑛

⨁ Exclusive OR operation

x <<< y left rotation of x by y bits

x >>> y right rotation of x by y bits

Adversary A malicious entity or attacker of cryptosystem

ARX Add, rotate, Xor

Ciphertext Encrypted output of a cipher

Confusion Obscures the relationship between the Plaintext and

Ciphertext.

Cryptography/Cryptology is the practice and study of techniques for secure

communication in the presence of adversaries

Deflation 𝕯. The operation of extracting original bits from the expanded

bits of a data block.

Diffusion Dissipates the redundancy of the Plaintext by spreading it

out over the Ciphertext.

Feistel a symmetric structure used in the construction of block

ciphers

G.E Gate equivalent

Inflation 𝓘 expanding message block bits by a user selected factor

IV Initialization vector

KI Input control bit string

KO Output control bit string

LFSR Linear feedback shift register

m User defined control parameter

NSA National Security Agency

Plaintext Unencrypted input to a cipher

SPN Substitution permutation network

Spoofing: a person’s or program’s pretence as another entity

1

1. Introduction

1.1 Overview

With the rapid evolution of internet of things (IoT), where the number of connected devices to

IoT is expected to reach over 50 billion by 2020 [1] from current 7 billion connected devices.

The security industry is seeing a paradigm shift of not only managing identity and access

management (IAM) of people or financial transactions but also managing hundreds of

thousands of devices that may be connected to a network. With the adoption of advance

encryption standard (AES) in 2001, AES became the preferred choice for any block cipher

application and the need for new block cipher had greatly reduced. However for the constrained

environment such as RFID tags or sensors network AES becomes over exorbitant. Rapid

increase in the number of IoT devices gave an unprecedented challenge to the industry and

security community to stay abreast with the development of smart, efficient and compact

architecture of security algorithms in conformity with the compact architecture of IoT devices.

The usage of cryptography has increased phenomenally in the last decades, as the use of the

internet has become rampant. The elementary goal of cryptography is to enable two parties to

communicate confidentially over a communication channel. This means that any adversary

should not be able to intercept the message in its original form also known as Plaintext. The

simplest definition of cryptography is the performance of encryption on Plaintext and

decryption on the coded or Ciphertext. Where encryption means the transformation of the

Plaintext into the Ciphertext and decryption is the reverse of encryption where the Ciphertext

is used as input into transformation to recover the Plaintext.

Encryption is a part of our daily life although it is mostly invisible. It is used to prevent

eavesdropping on communications over text, voice and video through any electronic

communication channel, securing network connections, making e-commerce and e-banking

possible and generally securing information from any unauthorized interception. Through the

history of civilization, new encryption functions have been constructed as old ones have been

broken.

In this thesis we introduce a new block cipher INFLEX, which has been carefully designed on

Feistel network structure with a goal of performance and power consumption improvement

when compared with similar type of block ciphers. Inspired by Speck cipher [13], INFLEX

inherits basic architecture of Speck with a modified round function, and introduces a secondary

2

level of diffusion by a user selected scalable complexity level. Scalable complexity selection

makes INFLEX a tweakable cipher, where cipher can be tuned as per the required complexity

level. The improved round function is intended to craft a new cipher with improved security

and complexity yet not compromising performance and silicon area, this shall be proved in

subsequent sections of this thesis that along with security and complexity increase,

performance and silicon area efficiency also increased or at least kept similar, except for

application requiring extra high security. We will describe our proposed block cipher, after a

brief background of ciphers, INFLEX is presented in details, followed by the cryptanalysis and

the thesis is concluded with conclusion and future work remarks.

1.2 Motivation

Encryption is essential in the IoT environment as well as many other RFID authentication and

Wireless Sensor Network (WSN) applications. Numerous encryption frameworks exist which

are mostly based on software algorithms. However, most of the modern radio transceiver chip

used in home automation, wireless alarm and security system and automatic meter reading

(AMR) are equipped with an integrated hardware encryption engine. There exist several

hardware encryption engines customized for a specific application but fewer are scalable and

flexible for a variety of applications.

1.3 Our Contribution

In this project we have utilized the adaptive security framework with extensible computational

complexity for cipher system, proposed by Siddavaatam et. al [15] to design and implement a

lightweight block cipher intended for IoT and WSNs. Based on the proposed extensible

computational complexity concept of the cipher, we have enhanced the typical ARX structure

of the cipher round function based on a Feistel structure, implemented the message block

expansion as per user selected control string KI to introduce a secondary level of diffusion,

which contributes to increased security and makes the cipher design tweakable, customizable

as per security requirements of the application. We have simulated a hardware implementation

of the proposed design on Altera Cyclone IV family of FPGA using VHDL and presented

results in terms of complexity computation, throughput calculations, gate equivalent estimation

and provided a comparison with Speck32/64 (a 32-bit block cipher designed by NSA) in terms

of linear and differential cryptanalysis (a practice adopted by the security community to analyze

any cipher design).

3

1.4 Cryptography Algorithms and Keys

Cipher

In Cryptography Cipher is an algorithm for performing encryption or decryption. A series of

well-defined steps that can be followed as a procedure. In common parlance Cipher is synonym

with Code as they both are set of steps that encrypt a message, however the concept are distinct

in cryptography.

Codes generally substitute different length strings of characters in the output, while cipher

generally substitute same numbers of characters as are input. There are exceptions and some

cipher systems may use slightly more, or fewer, characters when output versus the number that

were input. When using a cipher the original information is known as Plaintext, and the

encrypted form as Ciphertext. The Ciphertext message contains all the information of the

Plaintext message, but is not in a format readable by a human or computer without a decrypt

to it.

The operation of a cipher usually depends on a piece of auxiliary information called Key, a Key

must be selected before using a cipher to encrypt a message, without the knowledge of the Key,

it should be extremely difficult, if not impossible to decrypt the Ciphertext into a readable

plaintext. The range of possible values of the key is called the keyspace. Both the encryption

and decryption operations use this key (i.e. they are dependent on the key and this fact is

denoted by the k subscript), so the encryption and decryption function now becomes:

Ek(P) = C

Dk(C) = P

These functions have the property

Dk(Ek(P)) = P

Some functions use a different encryption key K1 and a different decryption key K2. So that:

Ek1(P) = C

Dk2(C) = P

Dk2(Ek1(P)) = P

4

1.5 Public Key Algorithms

Public-key algorithms (also called asymmetric algorithms) are such that the key used for

encryption is different from the key used for decryption. Further the decryption key cannot be

calculated in a reasonable time from the encryption key. Such algorithms are call “public-key”

because the encryption key can be made public. The encryption key is often called the public

key, and the decryption key is often called the private key.

1.6 Symmetric Key Algorithms

Symmetric key algorithms are designed to be very fast and have a large number of possible

keys, they are quickest and most commonly used type of encryption. In most symmetric

algorithms, the encryption key and the decryption key are the same. These algorithms, also

called secret-key algorithms, single-key algorithms, or one-key algorithms, require that the

sender and receiver agree on a key before they can communicate securely. The security of a

symmetric algorithm rests in the key; divulging the key means that anyone could encrypt and

decrypt messages. As long as the communication needs to remain secret, the key must remain

secret. There are many well-known symmetric key algorithms e.g. DES, RC2, RC4, IDEA etc.

1.7 Key Length

Symmetric Key Length

The security of a symmetric cryptosystem is a function of two things, 1) the strength of the

algorithm and 2) the length of the key. The former is more important but the latter is easier to

demonstrate. Assuming perfect strength of algorithm, which means there is no better way to

break the cryptosystem other than trying every possible key through a brute-force attack. To

launch this attack, a cryptanalyst needs a small amount of Ciphertext and the corresponding

Plaintext generally 64 bits. If the key is 8 bits long there are 28, or 256 possible keys. Therefore

it will take 256 attempts to find the correct key, with a 50% probability of finding the key after

half of the attempts. If the key is 64 bits long then a supercomputer trying a million keys a

second will take 585,000 years to find the correct key among the 264 possible keys. Therefore

before inventing a cryptosystem with a 64 or 256 bit key, the strength of the algorithm must be

taken care of such that there is no better way to break it than with a brute-force attack. Despite

this, the security of cryptosystem should rest in the key and not in the details of the algorithm.

Assume that a cryptanalyst has access to all details of the algorithm, access to Ciphertext and

Plaintext, he can mount a Ciphertext only attack, a Plaintext attack or even a chosen-Plaintext

5

attack, and if the cryptosystem can remain secure even with all that knowledge in adversary’s

hands the system is secure.

Public-Key Key Length

It is easy to multiply two number to get a product but hard to factor the product and recover

the two large prime. Public-key cryptography uses this idea to make a trap-door one-way

function. Public-key consists in several big integer values and a private key consists in also

some integer values. The length of a key is the length in bits of the modulus. When a public

key is said to have a length of 2048 bits, it really means that the modulus value lies between

22048 and 22047. Since the public and private key of a given pair share the same modulus, they

also have by definition the same length. To determine how long a key should be, requires to

look at both the intended security and lifetime of the key and the current state-of-the-art

factoring. Today you need a 2048-bit number to get the level of security you got from 1024-bit

number 10 years back. If you want your keys to remain secure for 20 years, 2048 bit is likely

too short.

1.8 Security of Algorithms

Different algorithms offer different degrees of security, it depends on how hard they are to

break. If the cost required to break an algorithm is more than the value of the encrypted data,

then algorithm is considered safe.

The algorithm breaking can be classified as:

1. Total break. A cryptanalyst finds the key K such that DK(C) = P.

2. Global deduction. A cryptanalyst finds an alternate algorithm to decrypt the Ciphertext

such that DK(C) without knowing K.

3. Instance (or local) deduction. A cryptanalyst finds the Plaintext of an encrypted

Ciphertext.

4. Information deduction. A cryptanalyst gains some information about the key or Plaintext.

This information could be a few bits of the key or the Plaintext and so forth.

An algorithm is unconditionally secure if no matter how much Ciphertext a cryptanalyst has,

there is not enough information to recover the Plaintext. For this classification only a one-time

pad is unbreakable given infinite resources. All other cryptosystems are breakable in a

Ciphertext-only attack, simply by trying all possible key(s) one by one and checking if Plaintext

is meaningful. This is called brute-force attack.

6

An algorithm is considered computationally secure (computationally infeasible to break) if it

cannot be broken with available resources.

Complexity of an attack can be measured in different ways:

1. Data complexity. The amount of data needed as input to the attack.

2. Processing Complexity. The time needed to perform the attack.

3. Storage requirements. The amount of memory needed for the attack.

If an algorithm has a processing complexity of 2128, then 2128 operation are required to break

the algorithm, these operations may be complex and infeasible to perform in reasonable time.

Cryptographically Secure Pseudo-Random sequence

A sequence generator is pseudo-random if it has following property:

1. It looks random. This means that is passes all statistical tests of randomness that we can

find.

Cryptographic applications demand much more of a pseudo-random-sequence generation than

do most other applications. Cryptographic randomness does not mean just statistical

randomness. For a sequence to be cryptographically secure pseudo-random, it must also have

the following property:

2. It is unpredictable. It must be computationally infeasible to predict what the next

random bit will be, given complete knowledge of the algorithm or hardware generating the

sequence and all of the previously generated bits in the stream.

Cryptographically secure pseudo-random sequences should not be compressible unless the key

is known. The key is generally the seed used to set the initial state of the generator.

A sequence generator is real random if it has this additional property:

3. It cannot be reliably reproduced. If the sequence generator is run twice with the exact

same input, it should generate two completely unrelated random sequence.

The output of a generator satisfying these three properties will be sufficient enough for a one-

time pad key generation and any other cryptographic applications that require a truly random

sequence generator.

7

Time and cost estimates for brute-force attack

A brute-force attack is typically a known-Plaintext attack, it requires a small amount of

Ciphertext and corresponding Plaintext. Two parameters determine the speed of a brute-force

attack, a) the number of keys to be tested and the speed of each test. DES has a 56-bit key, it

has 256 possible keys. Assuming that we only have to try 25% of the possibilities i.e 4.5 x 109

keys, with a dual processor 3.2 Ghz which can process 4,000,000 keys per second, it would

take 142 years, and with a 64-bit key for brute-forcing only 25% of key-space it would take

36,558 years. Therefore a 64 bit key seems safe from a worst case brute-force attack using

current available technology.

How long should a Key Be?

There is no single answer to this, it depends on the situation, and how much security is required

depends on how much data is worth, how long does it need to be secure and what are the

resources that adversaries have got. Security requirement may be specified in these terms:

The Key length must be such that there is a probability of no more than 1 in 232 that an attacker

with $100 million to spend could break the system within one year, even assuming technology

advances at a rate of 30 percent per annum over the period.

Public-Key Cryptography versus Symmetric Cryptography

The number and length of messages are far greater with public-key algorithms than with

symmetric algorithms. Symmetric algorithms were concluded more efficient than the public-

key algorithms by some researchers. Although true but this analysis over looked some

significant security benefits of public-key cryptography.

Symmetric cryptography is best for encrypting data. It is faster and is not prone to chosen-

Ciphertext attacks. Public-key cryptography can do things that symmetric cryptography can’t,

it is best for key management.

1.9 Application of Encryption

Encrypting Communications Channels

This encryption can take place at any layer in the Open Systems Interconnect (OSI)

communications model. It takes place either at the lowest layers (one and two) or at the higher

layers. If it takes place at the lowest layers, it is called link-by-link encryption, everything going

through a particular data link is encrypted. If it takes place at higher layers, it is called end-to

8

end encryption, the data are encrypted selectively and stay encrypted until they are decrypted

by the intended recipient.

Link-by-link Encryption

The easiest place to add encryption is at the physical layer, which is called link-by-link

encryption. The interfaces to the physical layer are standardized and it is easy to connect

hardware encryption devices at this point. The encryption device encrypt all data passing

through it, including data, routing information and protocol information. Link-by-link

encryption is very effective, as everything is encrypted, an adversary cannot get any

information about the structure of data passing through. The adversary is not only denied access

to information, but also access to the knowledge of where and how much information is

flowing. Key management is also not complex, only the endpoints on the line need a common

key and they change their key independently from the rest of the network.

The biggest challenge with encryption at the physical layer is that each physical link in the

network needs to be encrypted, leaving any link unencrypted can jeopardize the security of the

entire network. If the network size is large then the cost can easily become very high for this

type of encryption.

Pros:

Easier operation, it can be made transparent to user, since everything is encrypted before

sending over the link.

Only one set of key per link is required.

Provides traffic-flow security, since routing information is also encrypted.

Encryption is online.

Cons:

Data is exposed in the intermediate nodes.

End-to-End Encryption

Another approach is to introduce encryption device equipment between the network layer and

the transport layer. The encryption equipment must understand the data according to protocols

up to layer three and encrypt only the transport data, which is then combined with the

unencrypted routing information and sent to lower layers for transmission. This approach

9

avoids encryption/decryption at the physical layer. In end-to-end encryption the routing

information about the data is not encrypted and a cryptanalyst may learn who is communicating

with whom and for how long without ever knowing the content of that communication. Key

management is also more complicated, since individual users must ensure they have common

keys.

Pros:

Higher secrecy level.

Cons:

Requires a more complex key-management system.

Traffic analysis is possible since routing information is not encrypted.

Encryption is offline.

Encrypting Data for Storage

In communication channels messages in transit have no essential value. If recipient does not

receive a particular messages the sender can always resend it, however this is not true for data

encrypted for storage. If data cannot be decrypted, you cannot undo encryption, it is lost for

ever. Unlike encryption for communication where key is only required once for decryption

when data is received, data encrypted for storage may sit for years before it is decrypted. A key

used for data storage encryption might be needed for years, and hence must be stored securely

for years.

Hardware Encryption versus Software Encryption

Until very recently, all encryption products were in the form of specialized hardware. Although

software encryption is becoming more prevalent, hardware is still embodiment of choice for

high security applications. There are several reasons for this:

- The first is speed, since encryption algorithm have complex operation which are hardware

resources intensive and run better on specialized hardware than standard hardware

computers.

- Dedicating computer resources for complex algorithms is inefficient, moving encryption

to another processor makes the whole system faster.

10

- An encryption algorithm running on a standard computer has no physical protection and

is subject to superstitious modification of algorithm by adversary without anyone ever

realizing it. Hardware encryption device can be secured in temper proof enclosures.

- Hardware based encryption devices are easier to install.

Software based Encryption

Any encryption algorithm can be implemented in software, the disadvantage are in speed, cost

and ease of modification/manipulation.

Compression, Encoding and Encryption

Using a data compression algorithm together with an encryption algorithm has following

advantages:

Encryption is time intensive, compressed data before encryption speeds up the entire process.

Cryptanalysts exploit redundancies in the plaintext, compressing data before encryption

reduces these redundancies.

11

2. Mathematical Interlude

2.1 Cryptographic Algorithms – Mathematical Background

The computational complexities of algorithms are often measured by time complexity T and

space complexity S. Both T and S are commonly expressed as functions of n, where n is the

size of input. Generally algorithms are classified according to their time or space complexities.

An algorithm is constant if its complexity is independent of n: O(1). An algorithm is linear, if

its time complexity is O(n). Algorithms can also be quadratic, cubic and so on. All such

algorithms are polynomial, their time complexity is O(nm), where m is a constant. Algorithms

having polynomial time complexities are called as polynomial-time algorithms.

Algorithms with complexities in the form of O(t f(n)) where t is a constant greater than 1 and

f(n) is some polynomial function of n, are called exponential algorithms. A subset of

exponential algorithms whose complexities are O(c f(n)) where c is a constant and f(n) is greater

than constant but less than linear are called super-polynomial algorithms.

As n grows, the time complexity of an algorithm can make enormous difference in whether

algorithm is practical. Assuming the unit of “time” for computers in microseconds, the

computer can complete a constant algorithm in microseconds, a linear algorithm in seconds, a

quadratic algorithm in 11.6 days and 32,000 years to complete a cubic algorithm if 𝑛 = 106.

Performing the exponential algorithm is pointless no matter how much we extrapolate

computing power.

2.2 Complexity of Problems

Problems that can be solved with polynomial-time algorithms are called tractable, because they

can be solved in a reasonable amount of time for a reasonable size input. Problems that cannot

be solved in polynomial time are called intractable, because calculating their solution in

reasonable time becomes infeasible. Intractable problems are sometimes just called hard.

12

Figure 1. Complexity of problems

The Class P consists of all problems that can be solved in polynomial time. The Class NP

consists of all problems that can be solved in polynomial time only on a nondeterministic

Turing machine {a variant of a normal Turing machine (a Turing machine is a finite state

machine with an infinite read-write memory) that can makes guesses.

As far as cryptography is concerned with NP, many symmetric algorithms and all public-key

algorithms can be cracked in nondeterministic polynomial time. Given a Ciphetext C, the

cryptanalyst simply guesses a Plaintext P and a key k and in polynomial time runs the

encryption algorithm on input P and k to check if the result is equal to C. This is important

because it puts an upper bound on the complexity of cryptanalysis for these algorithms.

2.3 Modular Arithmetic:

The set of integers from 0 to n-1 form what is called a complete set of residues modulo n. which

means that for every integer a, its residue modulo n is some number from 0 to n-1.

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) if a = b+kn for some integer k. if a is non-negative and b is between 0 and n,

then b is the remainder of a when divided by n. b is sometimes called as residue of a, modulo

n. Sometimes a is called congruent (the triple equals sign) to b, modulo n.

Modular arithmetic is just like normal arithmetic, it is commutative, associative and

distributive.

(𝑎 + 𝑏)𝑚𝑜𝑑 𝑛 = {(𝑎 𝑚𝑜𝑑 𝑛) + (𝑏 𝑚𝑜𝑑 𝑛)} 𝑚𝑜𝑑 𝑛

(𝑎 − 𝑏)𝑚𝑜𝑑 𝑛 = {(𝑎 𝑚𝑜𝑑 𝑛) − (𝑏 𝑚𝑜𝑑 𝑛)} 𝑚𝑜𝑑 𝑛

(𝑎 ∗ 𝑏)𝑚𝑜𝑑 𝑛 = {(𝑎 𝑚𝑜𝑑 𝑛) ∗ (𝑏 𝑚𝑜𝑑 𝑛)} 𝑚𝑜𝑑 𝑛

{𝑎 ∗ (𝑏 + 𝑐)} 𝑚𝑜𝑑 𝑛 = [{(𝑎 ∗ 𝑏) 𝑚𝑜𝑑 𝑛} + {(𝑎 ∗ 𝑐)𝑚𝑜𝑑 𝑛}] 𝑚𝑜𝑑 𝑛

13

Cryptography makes lots of use of the computation mod n, because calculating discrete

logarithms and square roots mod n can be hard problems. Modular arithmetic is also easier to

work with on computers. For a k-bit modulus, n, the intermediate result of any addition,

subtraction or multiplication will not be more than 2k bits long. So we can perform

exponentiation in modular arithmetic without generating huge intermediate results.

For example if we want to calculate 28 mod n, we would not use the naïve approach and perform

seven multiplication and one huge modular reduction:

(𝑎 ∗ 𝑎 ∗ 𝑎 ∗ 𝑎 ∗ 𝑎 ∗ 𝑎 ∗ 𝑎 ∗ 𝑎) 𝑚𝑜𝑑 𝑛

Instead, perform three smaller multiplications and three smaller modular reductions:

((𝑎2 𝑚𝑜𝑑 𝑛)2 𝑚𝑜𝑑 𝑛)2 𝑚𝑜𝑑 𝑛

And with the same methodology

𝑎16 𝑚𝑜𝑑 𝑛 = (((𝑎2 𝑚𝑜𝑑 𝑛)2 𝑚𝑜𝑑 𝑛)2 𝑚𝑜𝑑 𝑛)2 𝑚𝑜𝑑 𝑛

Computing 𝑎𝑥𝑚𝑜𝑑 𝑛, where x is not a power of 2 is slightly harder. Binary notation expresses

x as sum power of 2 i.e 25 is 11001 in binary so 25 = 24 + 23 + 20.

𝑎25𝑚𝑜𝑑 𝑛 = (𝑎 ∗ 𝑎24)𝑚𝑜𝑑 𝑛 = (𝑎 ∗ 𝑎8 ∗ 𝑎16)𝑚𝑜𝑑 𝑛

= (𝑎 ∗ ((𝑎2)2)2 ∗ (((𝑎2)2)2)2) 𝑚𝑜𝑑 𝑛 = ((((𝑎2 ∗ 𝑎)2)2)2 ∗ 𝑎)𝑚𝑜𝑑 𝑛

With careful storing of intermediate results, we only need six multiplications

(((((((𝑎2𝑚𝑜𝑑 𝑛) ∗ 𝑎)𝑚𝑜𝑑 𝑛)
2

𝑚𝑜𝑑 𝑛)
2

𝑚𝑜𝑑𝑛 𝑛)

2

𝑚𝑜𝑑 𝑛) ∗ 𝑎) 𝑚𝑜𝑑 𝑛

This is called addition chaining, or the binary square and multiply method, it uses a simple and

obvious chain based on binary representation.

This technique reduces the operation to, on the average, 1.5*k operations, if k is the length of

the number x in bits. Finding the calculation with fewest operations is a hard problem, but it is

not too hard to get the number of operations down to 1.1*k or better, as k grows.

Inverse Modulo a Number

The multiplicative inverse of 3 is 1/3, because 3*1/3 = 1. In the modulo arithmetic the problem

is more complicated

𝑎−1 ≡ 𝑥(𝑚𝑜𝑑 𝑛)

The modular inverse problem is a lot more difficult to solve. Sometimes it has a solution and

sometimes not. For example the inverse of 5 modulo 14 is 3. On the other hand there is no

inverse for 2 modulo 14.

14

In the modular arithmetic we do not have a division operation. However, we find inverse as

under:

𝑎−1 ≡ 𝑥(𝑚𝑜𝑑 𝑛) or 𝑎 ∗ 𝑎−1 ≡ 1(𝑚𝑜𝑑 𝑛) 𝑜𝑟 (𝑎 ∗ 𝑎−1) 𝑚𝑜𝑑 𝑛 ≡ 1

Only the numbers coprime to x (numbers that share no prime factors with x) have a modular

inverse (mod x)

A naïve method of finding a modular inverse of a (mod x) is:

- Calculate a * b (mod x) for b values 0 through x-1

- The modular inverse of a mod x is the b value that makes a * b (mod x) = 1

Example a = 5, x = 14

5 ∗ 0 ≡ 0 (𝑚𝑜𝑑 14)

5 ∗ 1 ≡ 5 (𝑚𝑜𝑑 14)

5 ∗ 2 ≡ 10 (𝑚𝑜𝑑 14)

5 ∗ 3 ≡ 15 ≡ 1 (𝑚𝑜𝑑 14)

So the inverse of 5 modulo 14 is 3

This method of finding inverse modulo seems slow, there are other faster method of finding

inverse modulo, one of them is called extended Euclidean algorithm.

Modulo 2 arithmetic is performed digit by digit on binary numbers, each digit is considered

independently from other. Numbers are not carried or borrowed. Addition is performed using

and exclusive OR (Xor) operation on the corresponding binary digits for each operand.

Addition of two binary numbers, X and Y shown below:

(X) 101101100

(Y) 001011010 ⊞

(Z) 1001 10110

2.4 Probability Theory

Events are represented by sets (and set algebra), and probability is a measure on the sets,

taking values between zero (for the null set) and one (for the universal set), that satisfies the

following equations:

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) ----------(1)

where 𝑃(𝐴) and 𝑃(𝐵) are the probabilities of events 𝐴 and 𝐵; 𝑃(𝐴 ∪ 𝐵) is the probability of

the union (either 𝐴 or 𝐵, denoted, ∪); and 𝑃(𝐴 ∩ 𝐵) is the probability of the conjunction, or

15

intersection of events (both 𝐴 and 𝐵, denoted, ∩). If the intersection is the null set, probability

is additive across mutually exclusive events.

The probability of an event, 𝐴, and its complement, 𝐴′ (where 𝐴′ is the complement of 𝐴, or

not- 𝐴), sum to one, because an event and its complement are defined to be mutually exclusive

and exhaustive; hence,

𝑃(𝐴) = 1 − 𝑃(𝐴′)). ---------- (2)

If 𝐴′ is the null set, it is impossible and 𝐴 is a certainty, so 𝑃(𝐴′) = 0 and 𝑃(𝐴) = 1.

The probability of the conjunction of events can be written as follows:

 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) ---------- (3)

where 𝑃(𝐴|𝐵) and 𝑃(𝐵|𝐴) are the conditional probabilities of 𝐴 given 𝐵, and of 𝐵 given 𝐴,

respectively. The probability of a simple event, 𝐴, can also be expressed as follows:

 𝑃(𝐴) = 𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴 ∩ 𝐵′) ---------- (4)

because 𝐴 can either occur with 𝐵 or without 𝐵 (there are no other ways), and the intersection

of 𝐵 and 𝐵′ is empty, by definition.

For two constituent events, 𝐴 and 𝐵, one could ask twenty simple probability questions,

including 4 probabilities of the events and their complements [𝑃(𝐴), 𝑃(𝐴′), 𝑃(𝐵), 𝑃(𝐵′)], 4

conjunctions [𝑃(𝐴 ∩ 𝐵), 𝑃(𝐴 ∩ 𝐵′), 𝑃(𝐴′ ∩ 𝐵), 𝑃(𝐴′ ∩ 𝐵′)], 4 unions [𝑃(𝐴 ∪ 𝐵), 𝑃(𝐴 ∪ 𝐵′),

𝑃(𝐴′ ∪ 𝐵), 𝑃(𝐴′ ∪ 𝐵′)], and 8 conditionals [𝑃(𝐴|𝐵), 𝑃(𝐴|𝐵′), 𝑃(𝐴′|𝐵), 𝑃(𝐴′|𝐵′), 𝑃(𝐵|𝐴),

𝑃(𝐵′|𝐴), 𝑃(𝐵|𝐴′), 𝑃(𝐵′|𝐴′)].

However, among these 20 probabilities, there are only 3 degrees of freedom, because once three

values are known [for example, 𝑃(𝐴), 𝑃(𝐵), and 𝑃(𝐴 ∩ 𝐵)], the remaining 17 can be calculated

from the equations. Furthermore, even these three values are constrained, because 𝑃(𝐴 ∩ 𝐵)

must be less than or equal to 𝑃(𝐴), less than or equal to 𝑃(𝐵), and greater than or equal to 𝑃(𝐴)

+ 𝑃(𝐵) − 1.

For example, if 𝑃(𝐴) is .7 and 𝑃(𝐵) is .6, then 𝑃(𝐴′) = .3 and 𝑃(𝐵′) = .4, by Equation (2).

From Equations (3), 𝑃(𝐴 ∩ 𝐵) must be less than or equal to .6. Additionally, 𝑃(𝐴 ∩ 𝐵) must

also be greater than or equal to .3 [by Equation 4, 𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴 ∩ 𝐵′) = .7 and 𝑃(𝐴 ∩ 𝐵′) +

𝑃(𝐴′ ∩ 𝐵′) = .4; therefore, 𝑃(𝐴 ∩ 𝐵) = .3 + 𝑃(𝐴′ ∩ 𝐵′), which is greater than or equal to .3

because 𝑃(𝐴′ ∩ 𝐵′) > 0]. This constraint also implies that 𝑃(𝐴|𝐵) > .5, since 𝑃(𝐴|𝐵) =

16

(𝐴 ∩ 𝐵)/𝑃(𝐵) . Suppose 𝑃(𝐴 ∩ 𝐵) = .4; from Equation (4), it follows that 𝑃(𝐴 ∩ 𝐵′) = .3,

𝑃(𝐴′ ∩ 𝐵) = .2, and 𝑃(𝐴′ ∩ 𝐵′) = .1. Equation (1) can then be used to calculate all of the unions,

and Equations (3) can be used to calculate all of the conditionals.

Bias

 The bias 𝜖(𝑋) of a binary random variable X is defined by 𝜖(𝑋) = Pr[𝑋 = 0] −
1

2
.

≈
1

𝜖2(𝑋)
 samples are required to estimate X [22].

Let X and Y are the input to a nonlinear function such that 𝑌 = 𝑓(𝑋)

We consider the bias of linear combinations of the form

𝑎. 𝑋⨁𝑏. 𝑌 = (⊕𝑖 𝑎𝑖𝑋𝑖)⨁(⊕𝑖 𝑏𝑖𝑌𝑖)

Example: for a 4 bit vector of X and Y:

𝑋2⨁𝑋3 = 𝑌1 ⊕ 𝑌3 ⊕ 𝑌4

If the expression hold for 12 out of 16 cases (from 0000 to 1111) then the bias is

=
12

16
−

1

2
= 0.25

17

3. Ciphers in General

3.1 Cipher Types and Modes

Cipher can be categorized in to several ways:

1. By whether they work on block of symbols (Block Ciphers) or continuous stream of

symbols (Stream Ciphers)

2. By whether the same key is used for both encryption and decryption (Symmetric Key

Algorithm) or if a different key is used for encryption and decryption (Asymmetric Key

Algorithm)

There are two basic types of symmetric algorithms: block cipher and stream ciphers:

3.2 Stream Cipher

 Stream ciphers convert Plaintext to Ciphertext one bit at a time. A Stream cipher can be

symmetric or asymmetric key cipher, but symmetric key stream cipher are widely used. In a

stream Cipher, each Plaintext digit is encrypted one at a time with the corresponding digit of

the keystream to give a digit of the Ciphertext stream. Since encryption of each digit is

dependent on the current state of the cipher, it is also known as state cipher. In practice, a digit

is typically a bit and the combining operation is an exclusive-or (XOR).

The pseudorandom keystream is typically generated serially from a random seed value using

digital shift registers as 𝑘1, 𝑘2, 𝑘3, … . , 𝑘𝑛. This keystream, also called as a running key, is

Xored with a stream of Plaintext bits, 𝑝1, 𝑝2, 𝑝3, … . , 𝑝𝑛to produce the stream of Ciphertext bits.

𝑐𝑛 = 𝑝𝑛 ⊕ 𝑘𝑛

At the decryption end, the Ciphetext bits are Xored with an identical keystream to recover the

Plaintext bits.

𝑝𝑛 = 𝑐𝑛 ⊕ 𝑘𝑛

Since

𝑝𝑛 ⊕ 𝑘𝑛 ⊕ 𝑘𝑛 = 𝑝𝑛

The seed value serves as the cryptographic key for decrypting the Ciphertext stream. Stream

ciphers represent a different approach to symmetric encryption from block ciphers. Block

ciphers process Plaintext in relatively large blocks (e.g., n ≥ 64 bits). The same function is used

to encrypt successive blocks; thus (pure) block ciphers are memoryless. In contrast, stream

18

ciphers process Plaintext in blocks as small as a single bit, and the encryption function may

vary as Plaintext is processed; thus stream ciphers are said to have memory.

3.3 Modes of Stream Cipher

(i) The One-Time Pad: A vernam Cipher is asymmetrical stream cipher in which the

Plaintext is combined with a random or pseudorandom stream of data (“the Keystream”) of the

same length to generate Ciphertext using the Boolean Xor function which is represented by ⊕

and the truth table is as under:

Input Output

X Y Z=X ⊕ Y

- - +

- + +

+ - +

+ + -

 Table 1. Xor truth table

Other names for this function are Not Equal (NEQ), modulo 2 addition (without carry) and

modulo 2 subtraction (without borrow).

The Cipher is reciprocal i.e. identical keystream is used to do both encipher and decipher.

Plaintext ⊕ Key = Ciphertext

Ciphertext ⊕ Key = Plaintext

One-time pad has a perfect security but there are few problems with it, since the key bits must

be random and can never be used again and the length of the random key must be equal to the

length of the message. A one-time pad might be good for a few short messages but it will not

work for high speed communications channels, since the keys need to be random and both the

receiver and sender should have the same keys, key storage, transmission and synchronization

become challenging for high speed communication, therefore one-time pad is suitable for ultra-

secure low-bandwidth channels.

19

(ii) Synchronous Stream Cipher

A synchronous stream cipher is the one in which keystream is generated independently of the

Plaintext message and the Ciphertext message.

The encryption process of synchronous stream cipher can be describe by the equation:

𝜎𝑖 = 𝑓(𝜎𝑖 , 𝑘),

𝑧𝑖 = 𝑔(𝜎𝑖 , 𝑘),

𝑐𝑖 = ℎ(𝑧𝑖 , 𝑚𝑖)

Where 𝜎𝑜 is the initial state and may be determined by the key k, f is the next-state function, g

is the state function which produces the keystream 𝑧𝑖, and h is the output function which

combines the keystream and Plaintext 𝑚𝑖 to produce Ciphertext 𝑐𝑖.

The encryption and decryption process are shown in the Figure 2 below:

Figure 2. Encryption/decryption process of synchronous stream cipher

Properties of Synchronous Stream Cipher:

a) Synchronization Requirement: Both sender and receiver must be synchronized, using

the same key and operating at the same state within that key.

b) No error propagation: A Ciphertext digit which is modified during transmission does

not affect the decryption of other Ciphertext digits.

c) Active attacks: As a result of first property the modification of Ciphertext digit by an

active adversary causes immediate loss of synchronization and therefore could possibly be

detected by the decryptor. As a result of second property an active adversary might possibly be

able to make changes to selected Ciphertext digits and obtain the effect on Plaintext. However

20

additional mechanism must be used to provide data origin authentication and data integrity

guarantees.

(iii) Self-Synchronizing Stream Ciphers

A self-synchronizing or asynchronous stream cipher is one in which the key-stream is generated

as a function of the key and a fixed number of previous Ciphertext digits.

The encryption function of a self-synchronizing stream cipher can be described by the

equations:

𝜎𝑖 = (𝐶𝑖−𝑡, 𝐶𝑖−𝑡+1, … … , 𝐶𝑖−1),

𝑧𝑖 = 𝑔(𝜎𝑖 , 𝑘),

𝑐𝑖 = ℎ(𝑧𝑖 , 𝑚𝑖)

Where 𝜎0 = (𝐶𝑖−𝑡, 𝐶𝑖−𝑡+1, … … , 𝐶𝑖−1) is the initial state, k is the key, g is the function which

produces the keystream 𝑧𝑖, and h is the output function which combines the keystream and

Plaintext 𝑚𝑖 to produce Ciphertext 𝑐𝑖. The encryption and decryption process is shown in the

Figure 3 below.

Figure 3. Encryption/decryption process of self-synchronizing stream cipher

Properties of Self-Synchronizing Stream Ciphers

a) Self-synchronization: Since decryption mapping depends only on a fixed number of

preceding Ciphertext characters, such ciphers are capable of re-establishing proper decryption

automatically after loss of synchronization in case Ciphertext digits are modified.

b) Limited error propagation: If a single Ciphertext digit is modified or even deleted

during transmission, then decryption of Ciphertext up to that time may be incorrect, after which

correct decryption resumes.

c) Active attacks: Second property implies that any modification of Ciphertext digits by

an adversary causes several other Ciphertext digits to be decrypted incorrectly, thereby

21

improving the likelihood of being detected by the decryptor. As a consequence of first property

it is more difficult to detect modification of Ciphertext digits by an adversary.

d) Diffusion of Plaintext statistics: Since Plaintext digit influences the entire following

Ciphertext, the statistical properties of the Plaintext are dispersed through the Ciphertext. Self-

synchronizing stream ciphers may be more resistant than synchronous stream ciphers against

attacks based on Plaintext redundancy.

3.4 Block Cipher

 A Block Cipher is a deterministic algorithm operating on fixed length group of bits called

blocks. A Block Cipher function maps n-bit Plaintext blocks to n-bits Ciphertext block. n is

called the block length. The function is parameterized by a k-bit key K, taking values from a

subset ƙ (the key space) of the set of all k-bit vectors Vk. It is generally assumed that the key is

chosen at random. Use of Plaintext block and Ciphertext block of equal size avoids data

expansion.

 An n-bit cipher block is a function E : Vn x K → Vn, such that for each key K ∈ ƙ, E(P,K) is

an invertible mapping (the encryption function of K) from Vn to Vn. Written EK(P). The inverse

mapping is the decryption function, denoted as DK(C). C=EK(P) denotes that Ciphertext C

results from encrypting Plaintext P under K.

Whereas Block Cipher generally process Plaintext in relatively large blocks (e.g. n ≥ 64),

stream cipher typically process small unit. This distinction however is not definitive.

A (true) random Cipher is an n-bit block cipher implementing all 2n! Bijections on 2n elements.

Each of the 2n! Keys specifies one such permutation.

The most general block cipher implements every possible substitution. To represent the key of

such an n-bit (true) random block cipher would require lg(2n!) ≈(n-1.44)2n bits. This excessive

bit size makes (true) random Cipher impractical.

3.5 Modes of Block Cipher

Electronic Codebook Mode

Electronic codebook (ECB) is the most obvious way to use a block cipher. A block of Plaintext

encrypts into a block of Ciphertext. Since the same block of Plaintext always encrypts to the

same block of Ciphertext, it is possible to create a code book of Plaintexts and corresponding

Ciphertexts. However if the block size is 64 bits, the codebook will have 264 entries, which is

22

too large to compute and store, where every key will have a different codebook. This is the

easiest mode to work with, since block can be encrypted randomly and not linearly as a file.

Figure 4. Electronic codebook mode of block cipher

The problem with ECB is that if a cryptanalyst has the Plaintext and Ciphertext for several

messages, he can start to compile a code book without even knowing the key, and if there are

several redundant messages he can easily decrypt Ciphertext to Plaintext whenever it appears

next.

On the plus side, there is no risk encrypting multiple messages with the same key, each block

can be looked at as a separate message encrypted with the same key.

Padding

Most messages don’t divide neatly into 64-bit (or other size) encryption blocks; there is usually

a short block at the end. ECB requires 64-bit blocks. Padding is the way to deal with this

problem. Pad the last block with some regular pattern of zeros or ones, alternating ones and

zeros to make it a complete block.

Block Replay

A more serious problem with ECB mode is that an adversary could modify encrypted messages

without knowing the key, or even the algorithm, in such a way as to fool the intended recipient.

Cipher Block Chaining Mode

Chaining adds feedback mechanism to a block cipher. The results of the encryption of previous

blocks are fed back into the encryption of the current block, resulting in each block to modify

the encryption of the next block. Each Cipherblock is not only dependent on the Plaintext block

that generated it but also on all the previous Plaintext block.

23

Figure 5. Block chaining mode of block cipher

In cipher block chaining (CBC) mode, the Plaintext is Xored with the previous Ciphertext block

before it is encrypted. After a Plaintext block is encrypted to a Ciphertext block the resulting

Ciphertext block is also stored in a feedback register to become the next input for the encrypting

routine and it continues so on.

Decryption is done normally on a Ciphertext block which is saved in the feedback register.

After the next block is decrypted, it is Xored with the results of the feedback register, then the

next Ciphertext block is stored in the feedback register and so on.

Mathematically it is represented as:

𝐶𝑖 = 𝐸𝐾(𝑃𝑖 ⊕ 𝐶𝑖−1)

𝑃𝑖 = 𝐶𝑖−1 ⊕ 𝐷𝐾(𝐶𝑖)

Initialization Vector

CBC mode forces identical Plaintext blocks to encrypt to different Ciphertext blocks only when

some previous Plaintext block is different, two identical messages will encrypt to the same

Ciphertext, giving a cryptanalyst some useful information. This can be prevented by encrypting

some random data as the first block. This block of random data is called as the Initialization

vector. The initialization vector has no meaning, it is just there to make each message unique,

and at the decryption end it is just used to fill the feedback register and otherwise ignored. With

the addition of the initialization vector identical Plaintext messages encrypt to different

Ciphertext messages.

24

Padding

Padding works just like ECB mode, but in some applications the Ciphertext has to be exactly

the same size as the Plaintext.

Error Propagation

CBC mode can be characterized as feedback of the Ciphertext at the encryption end and the

feedforward of the Ciphertext at the decryption end. This has implication on the error

propagation, a single bit error in a Plaintext block will affect that Ciphetext block and all

subsequent Ciphertext blocks. Ciphertext error are common. They can result from a noisy

communication or a storage medium malfunction. This is not significant because decryption

will reverse that affect, and the recovered Plaintext will have the same single bit error. Blocks

after the second are not affected by the error, so CBC mode is self-recovering. CBC is an

example of block cipher being used in a self-synchronizing manner at only the block level.

While CBC mode recovers quickly from bit errors, it cannot recover from synchronization

errors. If a bit is lost or added from the Ciphertext block, then all subsequent blocks are shifted

one bit out of position and decryption will generate garbage indefinitely.

Security Problems

CBC structure is prone to some potential security problems, since Ciphertext block affect the

following block in a simple way, a cryptanalyst can add blocks at the end of the encrypted

message without being detected or he can alter a Ciphertext block to introduce controlled

changes in the following decrypted Plaintext blocks.

Cipher-Feedback Mode

Block ciphers can also be implemented as a self-synchronizing stream cipher, this is called a

cipher-feedback (CFB) mode. With CBC mode, encryption cannot begin until a complete block

of data is received. CBC mode cannot encrypt data in byte size. In CFB mode, data can be

encrypted in units smaller than the block size, this property makes this block cipher classify as

a stream cipher.

25

Figure 6. Cipher-feedback mode of block cipher

Output-Feedback Mode

Output-feedback mode (OFB) mode is a method of running a block cipher as a synchronous

stream cipher. It is similar to the CFB mode except that n bits of the previous output block are

moved into the right-most positions of the queue. Decryption is reverse of the encryption

process. This is called n-bits OFB.

Figure 7. Output-feedback mode of block cipher

If n is the block size of the algorithm, then n-bit OFB is:

𝐶𝑖 = 𝑃𝑖 ⊕ 𝑆𝑖; 𝑆𝑖 = 𝐸𝐾(𝑆𝑖−1)

𝑃𝑖 = 𝐶𝑖 ⊕ 𝑆1; 𝑆𝑖 = 𝐸𝐾(𝑆𝑖−1)

𝑆𝑖 is the sate, which is independent of either Plaintext or the Ciphertext. One useful feature of

the OFB mode is that most of the work can occur offline, before the Plaintext message even

received. When the message arrives, it can be XORed with the output of the algorithm to

produce the Ciphertext.

26

Counter Mode

In the counter mode block cipher works similar to a stream cipher. As in the OFB mode,

keystream bits are created regardless of content of encrypting data blocks. In this mode,

subsequent values of an increasing counter are added to a nonce value (the nonce means a

number that is unique: number used once) and the results are encrypted as usual. The nonce

plays the same role as initialization vectors in the previous modes.

Figure 8. Counter mode of block cipher

3.6 Choosing a Cipher Mode

If simplicity and speed are the main concerns, Electronic Codebook (ECB) is the easiest and

fastest mode to use a block cipher, it is also the weakest.

For normal Plaintext, use cipher block chaining (CBC), Cipher feedback (CFB) or output-

feedback (OFB) mode. Which mode is chosen depends on the specific requirement. Table 2

below compares security and efficiency of various modes.

CBC is generally best for encrypting files. If the application is software-based CBC is almost

always the best choice. Security is significant and while there are sometimes bit errors in stored

data, there are almost never any synchronization errors.

27

ECB CBC

Security

- Plaintext patterns are not concealed + Plaintext patterns are concealed by Xoring

with previous Ciphertext block.

- Input to the block cipher is not

randomized. It is same as the Plaintext.

+ Input to block cipher is randomized by

Xoring with the previous Ciphertext block.

+ More than one message can be encrypted

with the same key

+ More than one message can be encrypted

with the same key

- Plaintext is easy to manipulate, blocks

can be removed, repeated or interchanged

+/- plaintext is somewhat difficult to

manipulate, blocks can be removed from

the beginning or end, bits of the first block

can be changed, and repetition allows some

controlled changes.

Efficiency

+ Speed is same as the block cipher + Speed is same as the block cipher

- Ciphertext is up to one block longer than

the Plaintext, due to padding

- Cipher text is up to one block longer than

the Plaintext, not counting the initialization

vector.

- No Preprocessing is possible - No preprocessing is possible

+ processing can be done in parallel +/- Encryption cannot be done in parallel.

Decryption can be done in parallel and has

a random access property.

Fault tolerance

- A Ciphertext error affects one full block

of Plaintext.

- A Ciphertext error affects one full block of

Plaintext and the corresponding bit in the

next block.

- Synchronization error cannot be

recovered.

- Synchronization error cannot be recovered.

CFB OFB

Security

+ Plaintext patterns are concealed. + Plaintext patterns are concealed.

+ Input to the block cipher is randomized. + Input to the block cipher is randomized.

28

+ More than one message can be encrypted

with the same key provided that a

different initialization vector is used.

+ More than one message can be encrypted

with the same key provided that a different

initialization vector is used.

+/- Plaintext is somewhat difficult to

manipulate, block can be removed from

the beginning and the end of the message,

bits of the first block can be changed and

repetition allows some controlled changes

- Plaintext is very easy to manipulate, any

changes in Ciphertext directly affect the

Plaintext.

Efficiency

+ speed is same as the block cipher + speed is same as the block cipher

- Ciphertext is the same size as the

Plaintext, not counting the initialization

vector.

Ciphertext is the same size as the

Plaintext, not counting the initialization

vector.

+/- Encryption cannot be done in parallel.

Decryption can be done in parallel and

has a random access property.

+ Processing is possible even before the

message is seen.

- Some preprocessing is possible before a

block is seen, the previous Ciphertext

block can be encrypted

-/+ OFB processing is not parallelizable,

counter processing is parallelizable.

+/- Encryption is not parallelizable,

decryption is parallelizable and has

random access property.

Fault Tolerance

- A Ciphertext error affects the

corresponding bit of Plaintext and the

next full block.

+ A Ciphertext error affects only the

corresponding bit of Plaintext.

+ Synchronization errors of full block sizes

are recoverable. 1-bit CFB can recover

from the addition or loss of single bits.

- Synchronization error is unrecoverable.

 Table 2. Cipher modes comparison

29

CFB is generally the mode of choice for encrypting stream of characters when each character

has to be treated individually. OFB is often used in high speed synchronous system where error

propagation is intolerable. OFB is also the mode of choice if preprocessing is required.

One of the four basic modes, ECB, CBC, OFB and CFB is suitable for almost any application.

These modes are not overly complex and probably do not reduce the security of the system.

3.7 Block Ciphers versus Stream Ciphers

Although block and stream ciphers are very different, block ciphers can be implemented as

stream ciphers and stream ciphers can be implemented as block ciphers. The main difference

between two can be defined as:

“Block ciphers operate on data with a fixed transformation on large blocks of Plaintext data,

stream ciphers operate with a time varying transformation on individual Plaintext bits”.

Block ciphers seem to be more general (they can be used in any of the four modes) and stream

ciphers seem to be easier to analyze mathematically. Stream ciphers that only encrypt and

decrypt data one bit at a time are not really suitable for software implementation. Block ciphers

can be easier to implement in software. On the other hand stream ciphers can be more suitable

for hardware implementation. It makes more sense for a hardware encryption device on a

digital communication channel to encrypt individual bits as they go by. On the other hand, it

makes less sense for a software encryption device to encrypt each individual bit separately.

3.8 Why Block Ciphers

Academic research in block ciphers has progressed along a different course than research in

stream ciphers. Block cipher papers have traditionally been concrete designs (with specific

parameters and names) or breaks of those designs. Stream cipher papers are more often general

design or analysis techniques, with general applications and examples. While stream-cipher

cryptanalysis is at least as important as block cipher cryptanalysis, and in military circles more

important, it is much harder to develop stream ciphers using existing academic papers.

30

4. Structure of Block Ciphers

Simple encryption algorithms invented long before computers, are based on substitution and

transposition of single Plaintext characters. The operations performed in modern encryption

algorithms are usually similar but they affect single bits and bytes. Substitution ciphers replace

each group of Plaintext letters with another predefined group. Transposition ciphers do not

substitute any Plaintext characters but they change positions of the letters. The design model

from which many different block ciphers are derived are usually of the following two types:

4.1 Substitution Permutation Networks (SPNs)

A substitution-permutation network (SPN), is a series of linked mathematical operations used

in block cipher algorithms such as AES, PRESENT, SAFER, SHARK, and Square.

Such a network takes a block of the plaintext and the key as inputs, and applies several

alternating "rounds" or "layers" of substitution boxes (S-boxes) and permutation boxes (P-

boxes) to produce the Ciphertext block. The S-boxes and P-boxes transform (sub-)blocks of

input bits into output bits. It is common for these transformations to be operations that are

efficient to perform in hardware, such as exclusive or (Xor) and bitwise rotation. The key is

introduced in each round, usually in the form of "round keys" derived from it.

Figure 9. Single round of SPN

First, the input is Xored with the round

subkey

Second, the input is split into pieces (usually

of one byte) and put through a substitution

Finally, the pieces are swapped around

And the output from this round becomes the

input to the next round

31

Round

Key 1

Round

Key 2

Round

Key 3

Plaintext

Block

Ciphertext

Block

Round

1

Round

2

Round

3

The overall Plaintext is broken into blocks and

each block is encrypted with the cipher.

Typical SPN ciphers will have 10-14 rounds

Sender and recipient will need only one key.

Cipher will transform the key into subkeys for

each round.

Recipient will need just do everything in the

reverse order to decrypt message.

Figure 10. Multiple rounds of SPN

4.2 Feistel Structure

A Feistel cipher is a symmetric structure used in the construction of block ciphers, named after

the German-born physicist and cryptographer Horst Feistel who did pioneering research while

working for IBM (USA); it is also commonly known as a Feistel network. A large proportion

of block ciphers use the scheme, including the Data Encryption Standard (DES). The Feistel

structure has the advantage that encryption and decryption operations are very similar, even

identical in some cases, requiring only a reversal of the key schedule. Therefore, the size of the

code or circuitry required to implement such a cipher is nearly halved.

A Feistel network is an iterated cipher with an internal function called a round function.

32

Figure 11. Single round of Feistel

The input to the round is divided into two halves.

The right half goes through a round function with

the roundkey.

The output of the round function is Xored with the

left half

The two halves switch sides to become the input to

the next round

Plaintext Block

Round 1

Round 2

Round 3

Feistel ciphers need twice as many rounds as SPN

ciphers because only half of the input is being

encrypted each round

Works the same as SPN ciphers in terms of

transforming one key into subkeys and splitting the

Plaintext into blocks

To decrypt, the Ciphertext is sent through the same

cipher and the roundkeys are used in reverse order

Ciphertext Block

Figure 12. Multiple rounds of Feistel

33

4.3 Data Encryption Standard (DES)

The Data Encryption Standard (DES), known as Data Encryption Algorithm (DEA) has been

a worldwide standard for long time. Although it is showing signs of old age, it has held up

remarkably well against years for cryptanalysis and is still secure against most powerful

adversaries.

DES is a block cipher, it encrypts data in 64-bit blocks. A 64-bit block of Plaintext goes in one

end of the algorithm and a 64-bit block of Ciphertext come out at the other end. DES is a

symmetric algorithm i.e. the same algorithm and key are used for both encryption and

decryption.

They key length is 56-bits. The key is usually expressed as a 64-bit number, but every eighth

bit is used for parity checking. They key can be any 56-bit number and can be changes at any

time.

At its simplest level, the algorithm is nothing more than a combination of two basic techniques,

confusion and diffusion. The fundamental building block of DES is a single combination of

these techniques on the text based on the key. This is known as a round. DES has 16 rounds, it

applies the same combination of techniques on Plaintext block 16 times.

The algorithm uses only standard arithmetic and logical operations on numbers of 64-bits at

most. The repetitive nature of the algorithm makes it ideal for use on a special-purpose chip.

DES operates on a 64-bit block of Plaintext. After an initial permutation, the block is broken

into a left and right half, each of 32-bit. Then there are 16 rounds of identical operation, called

function f where data are combined with the key. After sixteenth round, the right and left halves

are joined, and a final permutation, which is inverse of the initial permutation, finishes off the

algorithm.

34

Figure 13. Structure of DES

As shown in the Figure 13. above, in each round the key bits are shifted and then 48 bits are

selected from the 56 bits of the key. The right half of the data is expanded to 48 bits via an

expansion permutation, combined with 48 bits of a shifted and permuted key via an Xor, sent

through 8 S-boxes producing 32 new bit, and permuted again. These four operations make up

Function f. The output of the Function f is then combined with the left half via another Xor.

The result of these operations becomes the new right half; the old right half becomes the new

left half. These operations are repeated 16 times, making 16 rounds of DES.

The Initial Permutation

The initial permutation occurs before round 1, it transposes the input block by shifting the bit

positions, e.g the initial permutation moves bit 58 of the Plaintext to bit position 1, bit 50 to bit

position 2, bit 42 to bit position 3, and so on.

35

The Key Transformation

Initially the 64-bit DES key is reduced to a 56-bit key by ignoring every eighth bit. These bits

can be used as parity check to ensure the key is error free. After the 56-bit key is extracted, a

different 48-bit subkey is generated for each of the 16 rounds of DES. These subkeys are

generated by dividing the 56-bit key into two 28-bit halves. Then the haves are rotated left one

or two bits depending on the round.

After being shifted, 48 out of the 56 bits are selected, because this operation permutes the order

of the bits as well as selects a subset if bits, it is called a compression permutation.

The Expansion Permutation

This operation expands the right half of the data from 32 bits to 48 bits. Because this operation

changes the operation of the bits as well as repeating certain bits, it is knows as an expansion

permutation. This operation makes the right half the same size as the key for XOR operation

and it provides a longer result that can be compressed during the substitution operation.

 The S-Box Substitution

After the compressed key is Xored with the expanded block, the 48-bit result moves to a

substitution operation. The substitutions are performed by eight substitution boxes or S-boxes.

Each S-box has 6-bit input and a 4-bit output. The S-box substitution is the critical step in DES.

The algorithm’s other operations are linear and easy to analyze. The S-boxes are nonlinear and

gives DES its security.

The result of this substitution phase is eight 4-bit blocks which are recombined into a single

32-bit block. This block moves to the next step, the P-Box permutation.

The P-Box Permutation

The 32-bit output of the S-box substitution is permuted according to a P-box. This permutation

maps each input bit to an output position, where no bits are used twice and no bits are dropped.

Finally the result of the P-box permutation is Xored with the left half of the initial 64-bit block,

and then the left and right halves are switched and another round begins.

36

The Final Permutation

The final permutation is the inverse of the initial permutation, where exchanging the halves

and shifting around the permutation yields exactly the same result. This is so that the algorithm

can be used for both encryption and decryption.

4.4 Lightweight Block Ciphers

Lightweight block ciphers are suitable for constrained applications. For example devices with

constrained resources such as RFID tags, wireless sensors network (WSNs) and sensor nodes

often cannot support resource intensive cryptographic primitives such as SHA or AES or the

public-key cryptosystem. To cater to the requirement of such resource constrained applications

lightweight ciphers have been researched extensively in the recent years.

The fundamental principles and standards to design cryptosystems intended for such resource

constrained applications are to some extent different from the design standards of the

commonly used cryptographic systems for data and communication security.

For the design of a lightweight cryptosystem algorithm a designer is expected to maintain a

balance of the three parameters: Security, cost (Gate equivalence) and performance.

Typically a basic RFID tag chip area needs 1,000 to 10,000 GE (Gate equivalent), therefore

efficient, low cost and improved security lightweight ciphers have become an area of high

demand for research and development.

Structure of these lightweight cipher as similar to traditional block ciphers can be classified

into: substitution permutation networks and Feistel-type structure.

The criteria for lightweight block cipher is a balance between reliability, performance and cost.

Figure 14. Interaction of reliability, performance and cost

37

The key size of a lightweight block cipher determines the ratio of the reliability and cost, the

number of rounds of encryption provided ratio between reliability and performance and

features of the hardware design are price and performance. Chip area is limited and power is

also constrained.

38

5. Cryptanalysis

The whole point of cryptography is to keep the Plaintext (or the key, or both) secret

from eavesdroppers (also called adversaries, attackers, interceptors, interlopers,

intruders, opponents, or simply the enemy). Eavesdroppers are assumed to have

complete access to the communications between the sender and receiver.

Cryptanalysis is the science of recovering the Plaintext of a message without access to

the key. Successful cryptanalysis may recover the Plaintext or the key. It also may find

weaknesses in a cryptosystem that eventually lead to the previous results.

An attempted cryptanalysis is called an attack. A fundamental assumption in

cryptanalysis, first enunciated by the Dutchman A. Kerckhoffs in the nineteenth

century, is that the secrecy must reside entirely in the key [21]. Kerckhoffs assumes that

the cryptanalyst has complete details of the cryptographic algorithm and

implementation. While real-world cryptanalysts don’t always have such detailed

information, it’s a good assumption to make. If others can’t break an algorithm, even

with knowledge of how it works, then they certainly won’t be able to break it without

that knowledge.

There are many approaches to cipher security attack/cryptanalysis, some common are

listed below:

 Differential cryptanalysis

 Linear cryptanalysis

 Extensions of differential cryptanalysis

 Truncated, impossible, higher-order differential cryptanalysis, boomerang

attacks

 Extensions of linear cryptanalysis

 Multiple-approximation, zero-correlation linear cryptanalysis

 Differential-linear attacks

 Integral attacks

 Slide attacks

 Meet-in-the-middle attacks

The two most common and practised cryptanalysis approaches are:

39

5.1 Differential and Linear Cryptanalysis

Differential cryptanalysis and linear cryptanalysis are the two most important techniques in the

analysis of symmetric-key cryptographic primitives. For block ciphers, differential

cryptanalysis analyzes how input differences in the Plaintext propagates to output differences

in the Ciphertext. Linear cryptanalysis studies probabilistic linear relations between Plaintext,

Ciphertext and key. If a cipher behaves differently from a random cipher for differential or

linear cryptanalysis, this can be used to build a distinguisher or even a key-recovery attack. For

stream ciphers, differential cryptanalysis can be used in the context of a resynchronization

attack. In one possible setting, the same data is encrypted several times with the same key, but

using a different initial value. This is referred to as the standard (non-related-key) model, where

the initial value is assumed to be under control of the attacker. An even stronger attack model

is the related-key setting, where the same data is encrypted with different initial values and

different keys. Not only the initial values, but also the differences between the keys are assumed

to be under control of the attacker. Similar to differential cryptanalysis, linear cryptanalysis can

also be used to attack stream ciphers in both the standard and related-key model. In the case of

stream ciphers, linear cryptanalysis amounts to a known initial value attack instead of a chosen-

initial value attack.

Resistance against linear and differential cryptanalysis is a standard design criterion for new

ciphers [20]. For the block cipher AES, provable security against linear and differential

cryptanalysis follows from the wide trail design strategy. In this work, we apply a similar

strategy. After proving a reduced round attack probabilities on both differential and linear

cryptanalysis, we use the basic linear and differential probability of the non-linear components

to derive an upper bound for the probability of the best characteristic. We assume (as is

commonly done) that the probability of the differential can accurately be estimated by the

probability of the best characteristic and probability of linear can be best estimated by the

probability of the closest linearized relation.

5.2 Differential cryptanalysis

Differential cryptanalysis looks specifically at Ciphertext pairs whose Plaintexts have

particular differences. It analyzes the evolution of these differences as the Plaintexts propagate

through the rounds of algorithm when they are encrypted with the same key.

The two Plaintext can be chosen at random, as long as they satisfy particular difference

conditions, then using the differences in the resulting Ciphertext, assign different probabilities

40

to different keys. As more and more Ciphertext pairs are analyzed, one key will emerge as the

most probable. This is the correct key.

Figure 15 below shows a DES round function, let’s assume a pair of inputs X and X’ that have

the difference ∆X. The output Y and Y’ are known and their difference ∆Y is also known. Both

the expansion permutation and the P-box are known. So ∆A and ∆C are known. B and B’ are

not known but their difference ∆B is known and equal to ∆A (when looking at the difference,

the Xoring of Ki with A and A’ cancels out). For any given ∆A, not all values of ∆C are equally

likely. The combination of ∆A and ∆C suggest values for bits of A Xor Ki and A’ Xor Ki. Since

A and A’ are known, this gives us information about Ki .

Figure 15. Differential propagation in DES

Certain differences in the Plaintext pairs have a high probability of causing certain differences

in the resulting Ciphertext pairs. These are called characteristics. We can find these

characteristics by generating a table where rows represent the possible Xors of two different

sets of input bits, the column represent the possible output Xors, and the entries represent the

number of times a particular output Xor occurs for a given input Xor. We can generate such

table for each of DES’s eight S-boxes.

To find the correct round key, simply collect enough guesses so that one subkey is suggested

more often than all other. In effect the correct subkey will rise out of all the random alternatives.

41

The basic differential attack on n-round DES will recover the 48-bit subkey used in round n,

and the remaining 8 key bits are obtained by brute-force guessing.

There are considerable problems with this attack, until you accumulate sufficient data you can’t

tell the correct subkey from all the noise, and the attack isn’t practical, you have to use counters

to assign different probabilities to 248 possible subkeys.

Some researchers improved this attack by using a 13-round characteristic instead of 15-round

characteristic on a 16-round DES. A shorter characteristic with a higher probability worked

better.

The best attack against full 16-round DES requires 247 chosen Plaintexts. This can be converted

to known Plaintext attack, but that required 255 known Plaintexts and 237 DES operations are

required during analysis.

Differential cryptanalysis works against DES and other similar algorithms with constant S-

boxes. The attack is heavily dependent on the structure of the S-boxes.

DES’s resistance can be improved by increasing the number of rounds. At 19 rounds or more

differential cryptanalysis becomes impossible because it requires more than 264 chosen

Plaintext, since DES has a 64-bit block size, so it only has 264 possible Plaintext blocks.

Here are some facts about differential attack. First, this attack is largely theoretical. The

enormous time and data requirement to mount differential cryptanalytic attack makes it almost

impossible to implement. To get the requisite data for this attack against a full DES, you have

to encrypt a 1.5 megabits per second data stream of chosen plaintext for almost three years.

Second this is a chosen Plaintext attack, which can be converted to a known-Plaintext attack,

but you have to go through all of the Plaintext-Ciphertext pairs looking for the useful ones.

5.3 Related Key Cryptanalysis

is similar to differential cryptanalysis, but it examines the difference between keys. The

cryptanalyst chooses a relationship between a pair of keys, but does not know the keys

themselves.

42

5.4 Linear Cryptanalysis

Linear cryptanalysis is another type of cryptanalytic attack, this attack uses linear

approximations to describe the action of block cipher.

This means that if some of the Plaintext bits are Xored together, and then some of the Ciphertext

bits are Xored together and then the results are Xored together, we will get a single bit that is

the Xor of some of the key bits. This is a linear approximation and will hold some probability

p. If p ≠ ½, then this bias can be exploited. Use collected Plaintexts and associated Ciphertexts

to guess the values of the key bits. The more data is available, the more reliable the guess. A

good linear approximation for DES can be identified by finding a good 1-round linear

approximations and joining them together. At the S-boxes, there are 6 input bits and 4 output

bits. The input bits can be combined using Xor in 63 useful ways (26-1), and the output bits can

be combined in 15 useful ways. Now for each S-box you can evaluate the probability that for

a randomly chosen input, an input Xor combination equals some output Xor combination, if

there is a combination with a high enough bias, then linear cryptanalysis may work.

There are two stages to applying linear cryptanalysis to a block cipher: (1) finding suitable

linear approximations of the cipher, and (2) applying the known-Plaintext attack algorithm. An

overview of how suitable linear approximations for a Feistel cipher may be found is as follows:

Step 1 Find linear equations which are good approximations to the nonlinear part of the cipher

function. Take note of the probability with which the linear approximation holds.

Step 2 Extend the linear approximations to the round function, and thus formulate a linear

equation for each approximation.

Step 3 Construct a linear approximation of the block cipher by compounding linear equations

for the round function, making sure all intermediate unknown message terms are cancelled out.

The probability of this cipher linear approximation can be calculated from the probabilities of

the round approximations.

Step 4 Calculate the number of known Plaintexts required for the known Plaintext attack. This

depends on the probability of the cipher approximation as well as the required degree of

success.

If the linear approximations are unbiased, then they would hold for 32 of the 64 possible inputs,

in case of DES the most biased S-box is S-box 5, the second input bit is equal to the XOR of

all 4 output bits for only 12 inputs. This translates to a probability of 3/16 or a bias of 5/16 and

is the most extreme bias in all the S-boxes.

43

Figure 16 below shows how to turn this into an attack against the DES round function.

Figure 16. Linear attack on DES round

The input bit into S-box is b26. The 4 output bits from S-box 5 are c17, c18, c19 and c20. We can

trace b26 backwards from the input to the S-box. The bit a26 is Xored with a bit from the subkey

Ki,26 to obtain b26. And bit X17 goes through the expansion permutation to become a26. After

the S-box, the 4 output bits go through the P-box to become 4 output bits of the round function

Y3, Y8, Y14 and Y25. This means that with probability 1/2-5/16.

Linear approximations for different rounds can be joined in a manner similar to differential

cryptanalysis. The basic attack is to use the best linear approximation for 16-round DES. It

requires 247 known Plaintext blocks and will result in 1 key bit, which is not very useful. If we

interchange role of Plaintext and Ciphertext and use decryption as well as encryption, we can

get 2 key bit, which is still not very useful.

This can be tweaked by using a 14-round linear approximation for rounds 2 through 15. Guess

the 6 subkey bits relevant to S-box 5 for the first and last rounds (12 key bits in all). Effectively

you are doing 212 linear cryptanalyses in parallel and picking the correct one based on

probabilities. This recovers the 12 bits plus the b26 and reversing Plaintext and Ciphertext

another 13 bits, to get remaining 30 bits, use exhaustive search.

44

5.5 Cryptanalytic Attacks

An attempted cryptanalysis is called an attack. There are four general types of cryptanalytic

attacks, each of them assumes that the cryptanalyst has complete knowledge of the encryption

used:

1. Ciphertext-only attack. The cryptanalyst has the Ciphertext of several messages,

which have been encrypted using the same encryption algorithm. The attacker’s job is to

recover the Plaintext from the Ciphertext, or better yet to obtain the key(s) used for encryption,

in order to decrypt other messages encrypted with the same keys.

Given: C1 = Ek(P1), C2 = Ek(P2),……. Cn = Ek(Pn)

Deduce: Either P1, P2,…. Pn; k; or an algorithm to deduce Pn+1 from Cn+1 = Ek(Pn+1)

2. Known-Plaintext attack. The Cryptanalyst has the access not only to the Ciphertext

of several messages but also has Plaintext of those messages. Attacker’s job is to find the key(s)

used for encryption or an algorithm to decrypt any new messages encrypted from the same

keys(s).

Given: P1, C1 = Ek(P1), C2 = Ek(P2),……. Cn = Ek(Pn)

Deduce: Either k, or an algorithm to deduce Pn+1 from Cn+1 = Ek(Pn+1)

3. Chosen-Plaintext attack. The cryptanalyst not only has access to the Ciphertext,

associated Plaintext for several messages, but he also chooses the Plaintext that gets encrypted.

This is more powerful than a known-Plaintext attack, because the attacker can choose specific

Plaintext blocks to encrypt to yield more information about the key(s). Attacker’s job is to

deduce the key(s) used to encrypt the messages or an algorithm to decrypt any new messages

encrypted with the same key(s).

Given: P1, C1 = Ek(P1), P2, C2 = Ek(P2),……. Cn = Ek(Pn), where the cryptanalyst gets to choose

P1, P2,…. Pn

Deduce: Either k, or an algorithm to deduce Pn+1 from Cn+1 = Ek(Pn+1)

4. Adaptive-chosen-Plaintext attack. This is a special case of a chosen-Plaintext attack.

Cryptanalyst not only gets to choose the Plaintext that is encrypted, but he can also modify his

choice based on results of previous encryption. In a chosen-plaintext attack a cryptanalyst

might just be able to choose one large block of Plaintext to be encrypted, whereas in an

adaptive-chosen-Plaintext attack he can choose smaller block of Plaintext and then choose

another based on the results of the previous and so forth.

The other three types of cryptanalytic attack are:

45

5. Chosen-Ciphertext attack. The Cryptanalyst can choose different Ciphertexts to be

decrypted and gets access to the Plaintext. For examples the cryptanalyst has access to a

tamper-poof box that does automatic decryption, his job is to deduce the key.

Given: C1, P1= Dk(C1), C2 , P2 = Dk(C2),……. Cn ,Pn= Dk(Cn)

Deduce: k

This attack is primarily targeted to public-key algorithms but it is sometimes effective against

symmetric algorithms as well.

6. Chosen-key attack. Cryptanalyst has some knowledge about the relationship between

different keys, it does not mean that he can choose the key.

7. Rubber-hose cryptanalysis. In this attack the cryptanalyst threatens or blackmails or

forcefully obtain the key from someone.

8. Purchase-key attack. Bribery is sometimes referred to as a purchase-key attack.

46

6. Cipher Inflex

6.1 The Block Cipher INFLEX

 INFLEX block cipher presents, security analysis in terms of time complexity of solving

encryption without knowledge of the key to the encryption algorithm which consists of modulo

addition and unique tweakable feature on input block expansion [15], as well as hardware

simulation using VHDL and cyclone iv family FPGA. INFLEX architecture is based on a

Feistel network and consists of 20 rounds. Block size is 2n (32) bits and key supported is 64

bits. INFLEX 32/64 can be denoted as 2n/nl (n=16,l=4) Round functions consists of:

 Inflate function ℐ𝑓

 Rotation ⋙ ⋘

 Modular addition and subtraction ⊞ & ⊟

 Deflate function 𝔇𝑓

INFLEX gets its fixed nonlinearity from modular addition operation, and scalable nonlinearity

level from user selected string for the inflation function. The round function for INFLEX takes

as an input a 64-bit round key, the user selected 2m+1-bit control string, together with 32-bits

Plaintext word. The round function is the Feistel based map as under:

𝑅𝑘(𝑥, 𝑦) = ((𝑠−∝ℐ2𝑚
𝑥 ⊞ ℐ2𝑚

𝑦)⨁𝑘, 𝑠𝛽ℐ2𝑚
𝑦 ⊕ (𝑠−∝ℐ2𝑚

𝑥 ⊞ ℐ2𝑚
𝑦)⨁𝑘)--------(1)

Where x and y are two 16 bit words.

Figure 17. One round of INFLEX

Figure 18. n rounds of INFLEX

47

INFLEX round function can be seen as combination of two Feistel-network maps with regards

to two different types of additions as:

(𝑥, 𝑦) ⟶ (ℐ2𝑚
𝑦, (𝑆−𝛼ℐ2𝑚

𝑥 ⊞ ℐ2𝑚
𝑦)⨁𝑘) ; ----------- 2(a) and

(𝑥, 𝑦) ⟶ ℐ2𝑚
𝑦, (𝑆𝛽ℐ2𝑚

𝑥⨁ ℐ2𝑚
𝑦) ----------------------------2(b)

The decomposition of the INFLEX round function can be seen in Figure 19

Figure 19. Decomposition of Round Function

Block

size 2n

Key

size

Word

size n

Inflation

m

KI String

2𝑚+1

Rotation

𝛼

Rotation

𝛽

Rounds

T

32 64 16 0-4 4-32 7 2 20

Table 3. INFLEX specifications

6.2 Inflate Function 𝓘𝒇

The inflate function expands each Plaintext single bit into a 2𝑚-bit string based on an 2𝑚+1 bit

control string KI [15]. The user selected parameter m determines extent of Plaintext expansion.

The expansion routine runs n-bit/2m times to expand the complete block. For a 16-bit block

size and m=2, the Plaintext block is broken down into 4 sub-blocks of 4 bits, each bit is

expanded to 2𝑚=4 bits and the complete 16 bit block is expanded to a 64-bit block. Expansion

of the bit position is randomly selected through a 2m+1 length pseudorandom sequence

generated by the linear feedback shift register (LFSR). The proposed expansion function is an

arithmetic relationship that is easily scalable, the expanded block is 0-1 balanced and hence

does not add any bias for cryptanalysis. The inflate function ℐ𝑓 can be represented as follows:

for a given n-bit word input 𝑋 = {𝑥𝑘}𝑘=0
𝑛 = {𝑥𝑛−1, … . , 𝑥1, 𝑥0} in ℤ with the control string input

𝐾𝐼𝑋 defined as 𝐾𝐼𝑋 = {𝐾𝐼𝑥𝑛−1
, 𝐾𝐼𝑥𝑛−2

, … . . , 𝐾𝐼𝑥1
, 𝐾𝐼𝑥0

|𝐾𝐼𝑥𝑘
∈ {0,1}𝑚, 0 ≤ 𝑘 ≤ 𝑛 − 1}. Each

48

input bit expansion can be represented as: 𝐾𝐼𝑥𝑘,𝑗 ≜ {𝐾𝐼𝑥𝑘,2𝑚−1, … . . , 𝐾𝐼𝑥𝑘,1, 𝐾𝐼𝑥𝑘,0} ∀ 𝐾𝐼𝑥𝑘,𝑗 ∈

{0,1} with 0 ≤ 𝑘 ≤ 𝑛 − 1, 0 ≤ 𝑗 ≤ 2𝑚 − 1.

Let �̀� be inflated input where �̀� = {�̀�𝑘,𝑗}
𝑘,𝑗=0

𝑘=𝑛−1, 𝑗=2𝑚−1
= { �̀�𝑘,2𝑚−1, … . . , �̀�𝑘,1, �̀�𝑘,0} and

�̀�𝑘,𝑗 ∈ {0,1}𝑛−1 and 𝐾𝐼𝑥𝑘 are considered as decimal number in equation below:

�̀�𝑘 = ℐ𝑓(𝑥𝑘, 𝐾𝐼𝑥𝑘
)

Where, ℐ𝑓(𝑥𝑘, 𝐾𝐼𝑥𝑘
) = {

22𝑚
− 1 − 2𝐾𝐼𝑥𝑘 , 𝑖𝑓 𝑥𝑘 = 0

2𝐾𝐼𝑥𝑘 , 𝑖𝑓 𝑥𝑘 = 1

For n=4 and m=2 we have

𝐾𝐼𝑥𝑘
= {𝐾𝐼𝑥3,1, 𝐾𝐼𝑥3,0

, 𝐾𝐼𝑥2,1, 𝐾𝐼𝑥2,0, 𝐾𝐼𝑥1,1,

 𝐾𝐼𝑥1,0,𝐾𝐼𝑥0,1, 𝐾𝐼𝑥0,0
}

Figure 20. Inflate algorithm for m=2, expands each bit by 2m

6.3 Bitwise Rotation

Bit rotations of n-bit words by a fixed rotation amount r, are not by themselves very useful

cryptographic transformations, because the groups are so small subgroups of the group of

bijections over n-bit words which has 2𝑛! Elements. However, bit rotations are useful in

(𝑥𝑘 = 0) → 𝑥𝑘,3, 𝑥𝑘,2, 𝑥𝑘,1, 𝑥𝑘,0

(𝑥𝑘 = 1) → 𝑥𝑘,3, 𝑥𝑘,2, 𝑥𝑘,1, 𝑥𝑘,0

(𝑥𝑘 = 0) → 𝑥𝑘,3, 𝑥𝑘,2, 𝑥𝑘,1𝑥𝑘,0

(𝑥𝑘 = 1) → 𝑥𝑘,3, 𝑥𝑘,2, 𝑥𝑘,1, 𝑥𝑘,0

(𝑥𝑘 = 0) → 𝑥𝑘,3, 𝑥𝑘,2, 𝑥𝑘,1𝑥𝑘,0

(𝑥𝑘 = 1) → 𝑥𝑘,3, 𝑥𝑘,2, 𝑥𝑘,1, 𝑥𝑘,0

(𝑥𝑘 = 0) → 𝑥𝑘,3, 𝑥𝑘,2𝑥𝑘,1, 𝑥𝑘,0

(𝑥𝑘 = 1) → 𝑥𝑘,3, 𝑥𝑘,2, 𝑥𝑘,1, 𝑥𝑘,0

49

cryptography when combined with other common operations on n-bit words, such as other

bitwise operations (And, Xor etc.) and addition modulo 2𝑛. Rotation combined with other

operations allows to build arbitrary transformations of n-bit words. For example, by combining

a sufficient number of rotations, and some fixed constants, any function over n-bit words can

be constructed (thus including any bijection, thus any bit permutation). By contrast, when n>1,

this cannot be achieved using any combination of AND, OR, XOR, NAND, NOR, and addition

modulo 2𝑛 (because none of these operations can make bit-1 on input influence bit-0 on

output). Therefore, rotation is one of few ways to achieve diffusion from high to lower-order

bits.

Bitwise shifts and especially rotations are widely used in cipher design because they provide

good diffusion. INFLEX algorithm applies a bitwise left rotation ⋙ to the left half of message

by 𝛼 = 7 bits and bitwise right rotation ⋘ to the right half of message by 𝛽 = 2 bits. This

introduces the primary diffusion independent of the diffusion introduced by the inflation of

input block. This ensure presence of diffusion even if there is no inflation to the input block.

6.4 Modular Addition

The n-bit Modular Addition of 𝑍 = 𝑋 ⊞ 𝑌 𝑚𝑜𝑑 2𝑛 ∶ (𝑥𝑘, 𝑦𝑘) ↦ 𝑧𝑘 can be expressed as [15]

𝑧𝑘 = 𝑥𝑘 + 𝑦𝑘 𝑖𝑓 𝑘 = 0

𝑧𝑘 = 𝑥𝑘 + 𝑦𝑘 + 𝑐𝑘−1 𝑖𝑓 𝑘 = 1, 𝑐𝑎𝑟𝑟𝑦 𝑏𝑖𝑡 𝑐𝑘 = 𝑥𝑘𝑦𝑘

⋮

In general;

𝑧𝑘−1 = 𝑥𝑘−1 + 𝑦𝑘−1 + 𝑐𝑘−2 𝑖𝑓 2 ≤ 𝑘 ≤ 𝑛 − 1 3(a)

Where 𝑐𝑘 = 𝑥𝑘𝑦𝑘 + (𝑥𝑘 + 𝑦𝑘)(𝑥𝑘−1𝑦𝑘−1) + ∑ 𝑥𝑞𝑦𝑞
𝑘−2
𝑞=0 ∏ (𝑥𝑟 + 𝑦𝑟)𝑘

𝑟=𝑞+1 3(b)

The modular addition is denoted by ⊞ sign in 𝔾𝔽2 which is actually the logic Exclusive-OR

operation. The carry bit can be described by equation 3(b). By analysing equation 3(a) we can

conclude that Modular Addition is not completely nonlinear since the least significant bit (lsb)

of the resultant always stays linear. The carry term dominate the algebraic degree, as the

algebraic degree increases linearly with carry terms in 3(b).

The Modular Addition in the round function perform integer addition modulo 2𝑛 is denoted by

𝑥 ⊞ 𝑦 where (𝑥, 𝑦 ∈ ℤ2𝑛), however inflated inputs as a result of previous inflate operations

are

50

 �̀� = {�̀�𝑛−1, … , �̀�1, �̀�0} ≜ {�̀�(𝑛−1)(2𝑚−1), … . �̀�(𝑛−1)(1), �̀�(𝑛−1)(0), … .,

�̀�(1)(2𝑚−1), … , �̀�(1)(1), �̀�(1)(0), … , �̀�(0)(2𝑚−1), … , �̀�(0)(1), �̀�(0)(0)}

And

�̀� = {�̀�𝑛−1, … , �̀�1, �̀�0}

≜ {�̀�(𝑛−1)(2𝑚−1), … . �̀�(𝑛−1)(1), �̀�(𝑛−1)(0), … . , �̀�(1)(2𝑚−1), … , �̀�(1)(1), �̀�(1)(0), … , �̀�(0)(2𝑚−1)

=, … , �̀�(0)(1), �̀�(0)(0)}

As a result of input block inflation the modulo addition has increased from 2𝑛 to 2𝑛∗2𝑚
 for

some user selected 𝑚 ∈ ℤ∗. The output of the modular addition is given by

�̀� = {𝑧�̀�−1, … , 𝑧1̀, 𝑧0̀}

≜ {𝑧(̀𝑛−1)(2𝑚−1), … . 𝑧(̀𝑛−1)(1), 𝑧(̀𝑛−1)(0), … . , 𝑧(̀1)(2𝑚−1), … , 𝑧(̀1)(1), 𝑧(̀1)(0), … , 𝑧(̀0)(2𝑚−1),

= ⋯ , 𝑧(̀0)(1), 𝑧(̀0)(0)}

We can drive equation 4 using equation 3(a) and 3(b)

𝑧�̀�𝑗 =

{

�̀�𝑘𝑗 + 𝑦𝑘𝑗̀ 𝑖𝑓 𝑘 = 0, 𝑗 = 0;

�̀�𝑘𝑗 + �̀�𝑘𝑗 + �̀�𝑘𝑗−1�̀�𝑘𝑗−1 + (�̀�𝑘𝑗−1 + �̀�𝑘𝑗−1)(�̀�𝑘𝑗−1 + �̀�𝑘𝑗−1 + 𝑧�̀�𝑗−1) 𝑓𝑜𝑟0 < 𝑘 ≤ 𝑛 − 1;

 0 < 𝑗 ≤ 2𝑚 − 1

} (4)

6.5 Deflate function 𝕯𝒇

This function completes the last operation of the proposed cipher design. It is a compaction

function that extracts original bits of block from the inflated bits block {𝑧�̀� ↦ 𝑧𝑘 {0,1}𝑛2𝑚
↦

{0,1}𝑛 ∀ 𝑛, 2𝑚 ∈ ℤ∗} based on an n*m-bit control string KO. Let =

{𝐾𝑂𝑛−1, … . . , 𝐾𝑂1, 𝐾0|𝐾𝑂𝑘 ∈ {0,1}𝑚 , 0 < 𝑘 ≤ 𝑛 − 1} . Thereby we have 𝑍 =

{𝑧𝑛−1, … . . , 𝑧1, 𝑧0} = {𝔇𝑓(𝑧�̀�−1, 𝐾𝑂𝑛−1), … , 𝔇𝑓(𝑧1̀, 𝐾𝑂1), 𝔇𝑓(𝑧0̀, 𝐾𝑂0)}. Therefore expression

for 𝔇𝑓 can be generalized as:

𝑧𝑘 = 𝔇𝑓(𝑧�̀�, 𝐾𝑂𝑘)

Where, 𝔇𝑓(𝑧�̀�, 𝐾𝑂𝑘) = {∑ 𝑧�̀�𝑝 2𝑚−1
𝑝=0 ∏ (−1)

𝑝

2𝑘+1
𝐾𝑂𝑝𝑘

𝑚−1
𝑘=0

In the equation above, (-1) refers to the complement of 𝐾𝑂𝑝𝑘, summation refers to logic

Exclusive OR operation, product refers logic AND operation.

For m = 2 bits and n =4 bits

51

𝑧𝑘 = ∑ 𝑧�̀�𝑝

4−1

𝑝=0

∏(−1)
𝑝

2𝑘+1
𝐾𝑂𝑝𝑘

2−1

𝑘=0

= 𝑧�̀�0(−1)1𝐾𝑂𝑘0(−1)1𝐾𝑂𝑘1 + 𝑧�̀�1(−1)2𝐾𝑂𝑘0(−1)1𝐾𝑂𝑘1 + 𝑧�̀�2(−1)3𝐾𝑂𝑘0(−1)2𝐾𝑂𝑘1

+ 𝑧�̀�3(−1)4𝐾𝑂𝑘0(−1)2𝐾𝑂𝑘1

𝑍𝑘 = 𝑧�̀�0𝐾𝑂𝑘0𝐾𝑂𝑘1 + 𝑧�̀�1𝐾𝑂𝑘0𝐾𝑂𝑘1 + 𝑧�̀�2𝐾𝑂𝑘0𝐾𝑂𝑘1 + 𝑧�̀�3𝐾𝑂𝑘0𝐾𝑂𝑘1

6.6 Key Schedule

Each algorithm also requires a key schedule to turn a key into a sequence of round keys. The

INFLEX key schedule use the round function to expand the initial 𝑙-word master key to

generate the round key 𝑘𝑖. For a 64-bit key where 𝑙 = 4. We can write (𝑙2, 𝑙1, 𝑙0, 𝑘0) , where

master key 𝑙𝑖, 𝑘0 ∈ 𝐺𝐹(2)𝑛. Sequences 𝑘𝑖 and 𝑙𝑖 are defined by:

𝑙𝑖+3 = (𝑘𝑖 + 𝑆−𝛼𝑙𝑖)⨁𝑖 and

𝑘𝑖+1 = 𝑆𝛽⨁𝑙𝑖+3

The value 𝑘𝑖 is the 𝑖𝑡ℎ round key, for 0 ≤ 𝑖 < 𝑇. The round counter i here which serves to

eliminate slide properties.

6.7 Pseudo code for INFLEX key expansion and encryption

(𝛼, 𝛽) = (7,2)

𝑥, 𝑦 = 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 𝑤𝑜𝑟𝑑𝑠

𝑙[2], 𝑙[1], 𝑙[0], 𝑘[0] = 𝑘𝑒𝑦 𝑤𝑜𝑟𝑑𝑠

--------------------------- 𝑘𝑒𝑦 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 --------------------------

𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 18

𝑙[𝑖 + 3] ⟵ (𝑘[𝑖] + 𝑆−𝛼𝑙[𝑖])⨁𝑖

𝑘[𝑖 + 1] ⟵ 𝑆𝛽𝑘[𝑖]⨁𝑙[𝑖 + 3]

𝑒𝑛𝑑 𝑓𝑜𝑟

---------------------------- 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 ----------------------------

𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 19

𝑥 ← (𝑆−𝛼ℐ2𝑚
𝑥 + ℐ2𝑚

𝑦)⨁𝑘[𝑖]

𝑦 ← 𝑆−𝛼ℐ2𝑚
𝑦⨁𝑥

𝑒𝑛𝑑 𝑓𝑜𝑟

52

7. Hardware implementation

7.1 Implementation Platform

We implemented INFLEX in VHDL using Altera Modelsim for simulation and Quartus prime

compiler for design and synthesis for the selected device of cyclone iv family and typical

operating condition of 1.2 Volts for the core voltage and 25 oC operating temperature.

We simulated encryption algorithm for 5 scalable complexity levels based on user selected KI

string of 0 to 4 bits.

Figure 21. Block symbol diagram

7.2 INFLEX Inputs
INFLEX hardware has been designed to accept 32-bits input as a block of Plaintext and a 64-

bits master key for generating the key schedule for all rounds of encryption. 32-bit block of

data is split into two halves of 16 bits each, which goes through the round function of expansion

modular addition and bitwise shift as depicted in Figure 17 above. Output of one round

becomes input of the next round and undergoes same round function 20 times in 20 round,

inducing diffusion and confusion round by round to generate Ciphertext output at the end of

the 20th round. Clock, reset and control bit for INFLEX mode of key generation or encryption

are also taken as input. Figure 22. Below shows simulation results of 32-bit Plaintext input with

a 64-bit key input and 32-bit Cipher text output for an inflation factor m=0.

53

Figure 22. Encryption input/output of INFLEX

7.3 User requirement of inflation factor (m)

User requirement of inflation factor (m) which controls the time complexity level of solving

the encryption algorithm of INFLEX without knowledge of key is taken at the hardware design

stage and this factor dictates the output bits of the hardware. Figure 23 below shows an

expanded output of 64-bit for a user selected inflation factor of m=1.

Figure 23. Encryption output with Inflation m=1

54

7.4 INFLEX Output

Size of the output bus depends on the user requirement of inflation factor (m). It is 32 bit for

an inflation factor of zero (0) and it doubles to 64-bits for an inflation factor (m=1). This is

fixed at the time of hardware design. Inflation factor (m) does not only dictates the times

complexity of solving the encryption algorithm it also changes the hardware configuration

and determines the fate equivalent of the hardware.

Table 4 below shows Gate Equivalent (G.E) for all selections of inflation factor (m). Resource

utilization for all modules has been reported for all available inflation factor (m) values.

Module Gate Equivalent Percentage Inflation factor (m)

Data state 268.8 31.1% 0

Counter 25.2 2.9%

Control 8.4 1%

Others 54.8 6.4%

Key state 268.8 31.1%

ARX 238 27.5%

 864

Data state 403 25.1% 1

Counter 29.4 1.84%

Control 8.4 0.5%

Others 185 11.5%

Key state 537 33.4%

ARX 445 27.67%

 1607.8

Data state 672 19.6% 2

Counter 33.6 0.98%

Control 8.4 0.25%

Others 449 13.1%

Key state 1075.2 31.44%

ARX 1181 34.54%

55

 3419

Data state 1209.6 16.9% 3

Counter 37.8 0.53%

Control 8.4 0.12%

Others 982 13.71%

Key state 2150.4 30%

ARX 2771 38.7%

 7159

Data state 2284.8 16.5% 4

Counter 42 0.3%

Control 8.4 0.06%

Others 2053.8 14.84%

Key state 4300.8 31.1%

ARX 5145 37.2%

 13,834

 Table 4. Gate equivalent for different inflation scales

56

Figure 24. Bit expansion and KI string length for user selected inflate factor m

Figure 25. G.E and bit expansion for user selected inflate factor m

7.5 Data path for Plaintext to Ciphertext

Figure 26 below shows the data-path of an encryption-only INFLEX32/64, which performs

one round in one clock cycle i.e. a 32-bit width data-path. The IFLEX hardware implementation

is optimized and same hardware is used for multiple round of encryption algorithm.

57

Figure 26. Data-path of INFLEX

7.6 Encrypt/Decrypt Symmetry

To enable compact joint implementations of the encryption and decryption algorithms, it’s best

to make encryption look like decryption. Most compact decryption can be accomplished by

swapping Ciphertext words, reading round keys in reverse order, and then swapping the

resulting Plaintext words.

INFLEX decryption requires deflate operation, modular subtraction, and the rotations are

reversed, because its Feistel stepping performs all operations on one word.

Figure 27 below shows decryption by the same hardware where Ciphertext has now been taken

as input and similar key is used to decrypt the Ciphertext back to the Plaintext.

Figure 27. Decryption output of INFLEX

58

8. Performance Metrics

8.1 INFLEX Throughput

Our implementation requires 20 clock cycles to encrypt a 32-bit Plaintext with a 64-bit key.

Ignoring the latency for data expansion and key schedule generation a throughput of 160kbps

is achieved at 100kHz. Table 5 and Figure 28 below shows a comparison of INFLEX

throughput with other state-of-art ciphers [5].

Cipher Key Block Cycles/block Throughput (Kbps)

at 100Khz

G.E

INFLEX 64 32 20 160 864-13,834

Present 80 64 32 200 1570

AES 128 128 1032 12.4 3400

Hight 128 64 34 188.2 3048

mCrypton 96 64 13 492.3 2681

Camellia 128 128 20 640 11350

DES 56 64 144 44.4 2309

DESXL 184 64 144 44.4 2168

Table 5. INFLEX throughput and G.E comparison [5]

Figure 28. Comparison of throughput, and clock cycles per block [5]

59

8.2 Time complexity measure in terms of Linear and differential

Cryptanalysis

INFLEX is comparable to Speck 32/64 variant of Simon and Speck family ciphers [13]. Since

INFLEX is inspired by Speck and inherits round function with an improvement of bit

expansion, we will utilize Speck cryptanalysis and add bit expansion complexity to

demonstrate overall improvement in the algorithm complexity. Time complexity for attacking

different round of INFLEX has been calculated both for differential and linear cryptanalysis

and has been reported in Tables 8 & 9.

8.3 Linear Cryptanalysis

Linear cryptanalysis is a known-Plaintext attack which was introduced by Matsui as a

theoretical attack on the Data Encryption Standard (DES) [16]. It exploits the correlation of

linear approximations between input and output of a block cipher. Since INFLEX is an ARX

cipher, which consists of bit expansion, modular addition, bit rotation and Xor operations, the

basic step in establishing the linear approximation is to calculate the correlation of linear

approximation for modulo addition.

We will first demonstrate linear approximation of Speck with only Modular Addition and then

include nonlinearities of expansion function for the linear approximation of INFLEX. Linear

approximation used here is a basic known-Plaintext attack, there have been improvements to

this basic attack in an attempt to recover more bits of the key with less known plaintext, [17,

18] reported linear attack on 9 rounds with a correlation of 2−14using linear mask tables.

Mounting Linear Attack on Speck

Nonlinearity in the round function of Speck is associated with the modular addition ⊞

component only. The nonlinearity in the modular addition is due to the carry operation. Let,

𝑆 = 𝑋 ⊞ 𝑌 Which can be represented with the following equations:

𝑆[𝑖] = 𝑋[𝑖] ⊕ 𝑌[𝑖]⨁𝐶[𝑖];

𝐶[0] = 0;

𝐶[𝑖 + 1] = 𝑋[𝑖]𝑌[𝑖]⨁𝑋[𝑖]𝐶[𝑖]⨁𝑌[𝑖]𝐶[𝑖].

Where S represents the sum and C is the carry, i-th bit of A is A[i] and the least significant bit

(LSB) of X is X[0]. It can be noted that 𝑆[0] = 𝑋[0] ⊕ 𝑌[0] being LSB is linear over 𝔽2. The

non linearity in the modular addition only comes from the carry bit and this propagates upwards

60

only. The Speck encryption round function for the least-significant bit of the input block is

linear:

𝑅𝑖(𝑥𝑖 , 𝑦𝑖) = ((𝑥𝑖 ⊞ 𝑦𝑖)⨁𝑘𝑖, 𝑦𝑖 ⊕ (𝑥𝑖 ⊞ 𝑦𝑖)⨁𝑘𝑖)

𝑅1(𝑥1, 𝑦1) = ((𝑥1[0]⨁𝑦1[0])⨁𝑘1[0], 𝑦1[0] ⊕ (𝑥1[0]⨁ 𝑦1[0])⨁𝑘1[0])

Similarly the decryption round function for the least-significant bit of the output block is also

linear where the key is applied in reverse order:

𝑅22(𝑥22, 𝑦22) = ((𝑥22[0]⨁𝑦22[0])⨁𝑘2[0], 𝑦22[0] ⊕ (𝑥22[0]⨁ 𝑦22[0])⨁𝑘2[0])

With these two linear equations of the LSB, we can recover two key bits (the LSB of 𝐾1 and

𝐾2) using known Plaintext by finding the linear expressions relating the LSBs of the Plaintext,

Ciphertext and key.

Now in order to approximate the linearity of non-linear carry operation, we simulate a modular

addition operation of X and Y.

X[i] Y[i] C[i] C[i+1]

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

 Table 6. Modular addition and carry propagation

The Walsh transform reveals four linear approximations to the carry function, each holding

with probability 6/8 = 0.750:

𝐶[𝑖] ∶ 𝑃𝑟𝑜𝑏 = 6/8,

𝑋[𝑖] ∶ 𝑃𝑟𝑜𝑏 = 6/8,

𝑌[𝑖] ∶ 𝑃𝑟𝑜𝑏 = 6/8,

𝑋[𝑖] ⊕ 𝑌[𝑖] ⊕ 𝐶[𝑖] ⊕ 1: 𝑃𝑟𝑜𝑏 = 6/8

This gives us two useful linear approximations for carry operation, 𝐶[𝑖] = 𝑥[𝑖 − 1]𝑎𝑛𝑑 𝐶[𝑖] =

𝑦[𝑖 − 1] both holding probability 6/8 or 0.75.

61

𝑥2 = (𝑥1 ⊞ 𝑦1) ⨁𝑘

𝑦2 = 𝑥2⨁𝑦1

Above can be linearized as

𝑦2[𝑖] = 𝑥1[𝑖] ⊞ 𝑦1[𝑖]⨁𝑦1[𝑖]⨁𝑘1[𝑖]

𝑦2[𝑖] = 𝑥1[𝑖]⨁𝑘1[𝑖 − 1]

𝑘1[𝑖 − 1] = 𝑥1[𝑖]⨁𝑦2[𝑖]

The above expression holds probability of 0.75 for 1 (i-1) bit of key for one round. We can use

piling-up lemma described by Matsui [16] to obtain the probability of the cipher linear

approximation from the probabilities of the one-round linear approximations. Equivalently, the

probability of the cipher linear approximation may be calculated by which evaluates the

probability that the exclusive-or of n independent random variables will equal zero.

Piling-up Lemma

𝑃 =
1

2
+ 2𝑛−1 ∏ (𝑝𝑖 −

1

2
)

𝑛

𝑖=1

For sixteen round attack the probability is
1

2
+ 2−17. According to lemma 2 of Matsui [16]

[𝑝 −
1

2
]

−2

 a total of [0.500007629 − 0.5]−2=1.717x1010 = 234 known Plaintexts are required

for a success rate of 97.7%. with an attack complexity of 217. 234 = 251.

For fourteen round attack the probability is
1

2
+ 2−15. According to lemma 2 of Matsui [16]

[𝑝 −
1

2
]

−2

 a total of [0.5000305 − 0.5]−2=1.0737x1010 = 230 known Plaintexts are required

for a success rate of 97.7%. with an attack complexity of 215. 230 = 245

For twelve round attack the probability is
1

2
+ 2−13. According to lemma 2 of Matsui [16]

[𝑝 −
1

2
]

−2

 a total of [0.500122 − 0.5]−2=6.7108x108 = 227 known Plaintexts are required for

a success rate of 97.7%. with an attack complexity of 213. 227 = 240

For ten round attack the probability is
1

2
+ 2−11. According to lemma 2 of Matsui [16] [𝑝 −

1

2
]

−2

a total of [0.500488 − 0.5]−2=4.194x106 = 222 known Plaintexts are required for a success

rate of 97.7%. with an attack complexity of 211. 222 = 233

62

For eight round attack the probability is
1

2
+ 2−9. According to lemma 2 of Matsui [16]

[𝑝 −
1

2
]

−2

 a total of [0.50195 − 0.5]−2=2.62144x105 = 218 known Plaintexts are required for

a success rate of 97.7%. with an attack complexity of 29. 218 = 227

Extending Speck linear attack to INFLEX

INFLEX, in addition to modular addition nonlinear component has input inflation function,

which has multiple hardware implementations, the simplest can be implemented through a

lookup table with 2𝑚+1 entries which randomly select the bit inflation pattern as per the Linear

Feedback Shift Register generated sequence of 2𝑚+1. To expand n-bits to 2m*n-bits. For m=4

the probability of selecting a pattern is 1/32 = 0.03125 and the probability of masking a bit in

a 16 bit string is 1/16= 0.0625, which gives a combined probability of 1/0.00195. This

probability of expansion will remain same for all round of cipher.

For m=1 the probability of selecting a pattern is 1/4 = 0.25 and the probability of masking a bit

in a 2 bit string is 1/2= 0.5, which gives a combined probability of 1/0.125. This probability of

expansion will remain same for all round of cipher.

With an inflation of m=4

By adding this probability to 16 round attack we get INFLEX linear attack probability for 16

rounds as 2−26 and a total of [0.500000014 − 0.5]−2 = 4.5036𝑥1015 = 252 Plaintexts are

required for a success rate of 97.7%.

For a 14 round attack we get INFLEX linear attack probability for as 2−24 and a total of

[0.500000059 − 0.5]−2 = 2.8147𝑥1014 = 248 Plaintexts are required for a success rate of

97.7%.

For a 12 round attack we get INFLEX linear attack probability for as 2−22 and a total of

[0.500000238 − 0.5]−2 = 1.7592𝑥1013 = 244 Plaintexts are required for a success rate of

97.7%.

For a 10 round attack we get INFLEX linear attack probability for as 2−20 and a total of

[0.500000953 − 0.5]−2 = 1.09951𝑥1012 = 240 Plaintexts are required for a success rate of

97.7%.

For an 8 round attack we get INFLEX linear attack probability for as 2−18 and a total of

[0.500003814 − 0.5]−2 = 6.8719𝑥1010 = 236 Plaintexts are required for a success rate of

97.7%.

63

For a 5 round attack we get INFLEX linear attack probability for as 2−15 and a total of

[0.500030517 − 0.5]−2 = 1.073𝑥109 = 230 Plaintexts are required for a success rate of

97.7%.

With an inflation of m=3

By adding this probability to 16 round attack we get INFLEX linear attack probability for 16

rounds as 2−24 and a total of [0.500000059 − 0.5]−2 = 2.815𝑥1014 = 248 Plaintexts are

required for a success rate of 97.7%.

For a 14 round attack we get INFLEX linear attack probability for as 2−22 and a total of

[0.500000238 − 0.5]−2 = 1.7592𝑥1013 = 244 Plaintexts are required for a success rate of

97.7%.

For a 12 round attack we get INFLEX linear attack probability for as 2−20 and a total of

[0.500000953 − 0.5]−2 = 1.09951𝑥1012 = 240 Plaintexts are required for a success rate of

97.7%.

For a 10 round attack we get INFLEX linear attack probability for as 2−18 and a total of

[0.500003814 − 0.5]−2 = 6.8719𝑥1010 = 236 Plaintexts are required for a success rate of

97.7%.

For an 8 round attack we get INFLEX linear attack probability for as 2−16 and a total of

[0.500015258 − 0.5]−2 = 4.2954𝑥109 = 232 Plaintexts are required for a success rate of

97.7%.

With an inflation of m=2

By adding this probability to 16 round attack we get INFLEX linear attack probability for 16

rounds as 2−22 and a total of [0.5000000238 − 0.5]−2 = 1.7592𝑥1013 = 244 Plaintexts are

required for a success rate of 97.7%.

For a 14 round attack we get INFLEX linear attack probability for as 2−20 and a total of

[0.500000953 − 0.5]−2 = 1.09951𝑥1012 = 240 Plaintexts are required for a success rate of

97.7%.

For a 12 round attack we get INFLEX linear attack probability for as 2−18 and a total of

[0.500003814 − 0.5]−2 = 6.8719𝑥1010 = 236 Plaintexts are required for a success rate of

97.7%.

For a 10 round attack we get INFLEX linear attack probability for as 2−16 and a total of

[0.500015258 − 0.5]−2 = 4.2954𝑥109 = 232 Plaintexts are required for a success rate of

97.7%.

64

With an inflation of m=1

By adding this probability to 16 round attack we get INFLEX linear attack probability for 16

rounds as 2−20 and a total of [0.500000953 − 0.5]−2 = 1.09951𝑥1012 = 240 Plaintexts are

required for a success rate of 97.7%.

For a 14 round attack we get INFLEX linear attack probability for as 2−18 and a total of

[0.500003814 − 0.5]−2 = 6.8719𝑥1010 = 236 Plaintexts are required for a success rate of

97.7%.

For a 12 round attack we get INFLEX linear attack probability for as 2−16 and a total of

[0.500015258 − 0.5]−2 = 4.2949𝑥109 = 232 Plaintexts are required for a success rate of

97.7%.

8.4 Linear Attack Complexity

With an inflation of m=4

For a 16 round attack, the complexity for encrypting 252 linear relations pairs for each 226

guesses of key bits and is (252. 226) ≈ 278.

For a 14 round attack, the complexity for encrypting 248 linear relations pairs for each 224

guesses of key bits and is (248. 224) ≈ 272.

For a 12 round attack, the complexity for encrypting 244 linear relations pairs for each 222

guesses of key bits and is (244. 222) ≈ 266.

For a 10 round attack, the complexity for encrypting 240 linear relations pairs for each 220

guesses of key bits and is (240. 220) ≈ 260.

For a 8 round attack, the complexity for encrypting 236 linear relations pairs for each 218

guesses of key bits and is (218. 236) ≈ 254.

For a 5 round attack, the complexity for encrypting 230 linear relations pairs for each 215

guesses of key bits and is (215. 230) ≈ 245.

Figure 29 compares time complexity of solving encryption algorithm of INFLEX at inflation

factor m=4 with time complexity of solving encryption algorithm of Speck as calculated above.

65

Figure 29. Time Complexity comparison with m=4 inflation

With an inflation of m=3

For a 16 round attack, the complexity for encrypting 248 linear relations pairs for each 224

guesses of key bits and is (248. 224) ≈ 272.

For a 14 round attack, the complexity for encrypting 244 linear relations pairs for each 222

guesses of key bits and is (244. 222) ≈ 266.

For a 12 round attack, the complexity for encrypting 240 linear relations pairs for each 220

guesses of key bits and is (240. 220) ≈ 260.

For a 10 round attack, the complexity for encrypting 236 linear relations pairs for each 218

guesses of key bits and is (218. 236) ≈ 254.

For a 8 round attack, the complexity for encrypting 232 linear relations pairs for each 216

guesses of key bits and is (216. 232) ≈ 248.

Figure 30 compares time complexity of solving encryption algorithm of INFLEX at inflation

factor m=3 with time complexity of solving encryption algorithm of Speck as calculated above.

66

Figure 30. Time Complexity comparison with m=3 inflation

With an inflation of m=2

For a 16 round attack, the complexity for encrypting 244 linear relations pairs for each 222

guesses of key bits and is (244. 222) ≈ 266.

For a 14 round attack, the complexity for encrypting 240 linear relations pairs for each 220

guesses of key bits and is (240. 220) ≈ 260.

For a 12 round attack, the complexity for encrypting 236 linear relations pairs for each 218

guesses of key bits and is (218. 236) ≈ 254.

For a 10 round attack, the complexity for encrypting 232 linear relations pairs for each 216

guesses of key bits and is (216. 232) ≈ 248.

Figure 31 compares time complexity of solving encryption algorithm of INFLEX at inflation

factor m=2 with time complexity of solving encryption algorithm of Speck as calculated above.

67

Figure 31. Time Complexity comparison with m=2 inflation

With an inflation of m=1

For a 16 round attack, the complexity for encrypting 240 linear relations pairs for each 220

guesses of key bits and is (240. 220) ≈ 260.

For a 14 round attack, the complexity for encrypting 236 linear relations pairs for each 218

guesses of key bits and is (236. 218) ≈ 254.

For a 12 round attack, the complexity for encrypting 232 linear relations pairs for each 216

guesses of key bits and is (232. 216) ≈ 248.

Figure 32 compares time complexity of solving encryption algorithm of INFLEX at inflation

factor m=1 with time complexity of solving encryption algorithm of Speck as calculated above.

68

Figure 32. Time Complexity comparison with m=1 inflation

8.5 Differential Cryptanalysis

While nonlinearity of a cipher secures it against a linear attack, and the adversary needs to

linearize nonlinear characteristic to the best approximation to launch a linear attack. A

linearized equation of the form:

𝐶 = 𝑃 ⊕ 𝑘 𝑎𝑛𝑑 𝐶′ = 𝑃′⨁𝑘

Is not useful for a differential attack, as the difference of above results in the following

equation, 𝐶⨁𝐶′ = 𝑃 ⊕ 𝑃′

And does not lead to any information about the key. For a nonlinear function of a cipher the

difference between inputs (Plaintext) is not the same as the difference between outputs

(Ciphertext) for all possible pair of input–output differences, as the difference in the

corresponding Ciphertext may depend on the key and hence some useful information about the

key may be extracted. This idea is the principal behind the differential cryptanalysis.

Mounting Differential Attack on Speck

Consider the nonlinear operation of the Speck round function

𝐹(𝑥1, 𝑦1) = 𝑥2 = (𝑥1 ⊞ 𝑦1) ⨁𝑘

Let the difference of the input be denote by ∆𝑥1 = 𝑥1⨁𝑥1
′ 𝑎𝑛𝑑 ∆𝑦1 = 𝑦1⨁𝑦1

′ and the

difference of their corresponding outputs 𝑌 𝑎𝑛𝑑 𝑌′𝑏𝑒 ∆𝑌 = 𝐹(𝑥1, 𝑦1)⨁𝐹(𝑥1
′ , 𝑦1

′) then by

69

selecting a random key 2𝑛 (65,536 pairs in case of Speck 2n input block) differential pairs of

input and output can be created. There are some difference which are obtained multiple times

with specific difference of input (𝑥 and 𝑥′). These similar difference are grouped together to

form the pairs holding same input difference and corresponding output difference.

A pair of input and output differences to a function forms a characteristic of the function. For

example in case of an 8-bit input if the difference pair of input and output (01H,1CH) occurs 32

times, then the characteristic (01H,1CH) holds a probability of 32/128 = 0.250.

When a differential cryptanalysis is applied to an iterated cipher, the adversary observes the

propagation of differences between the Plaintext to subsequent rounds and tries to obtain pair

of differences which hold a high probability.

Based on the above concept of constructing differential characteristic of the round function, a

difference distribution table (DDT) is to be created for Speck round function and differential

pairs of high probabilities can be shortlisted for mounting a differential attack. Computing a

full DDT for modular addition operation would require 4 𝑋 23𝑛 bytes of memory [19] and is

therefore impractical even for n>16. A Biryukov [19] proposed a partial DDT with a threshold

of probabilities to discard low probability differential pairs by using a brute force differential

characteristic algorithm. The best found differential characteristic for Speck32 as calculated

with a differential routine are listed in the Table 7 below:

𝑟 ∆𝐿 ∆𝑅 log2 𝑝

0 8054 A900 -0

1 0 A402 -3

2 A402 3408 -3

3 50C0 80E0 -8

4 181 203 -4

5 C 800 -5

6 2000 0 -3

7 40 40 -1

8 8040 8140 -1

9 40 542 -2

 ∑ log2 𝑝𝑟

𝑟

-30

 pDDT 230

 Table 7. Best differential characteristic for differential analysis of Speck

70

A Biryukov [19] extended the attack to 11 rounds by adding 1 round at the top and 1 round at

the bottom of 9-round attack and used the 9 round differential trail with the probability of 2−30.

By encrypting 230 pair of Plaintext such that (∆𝐿
1= 8054, ∆𝑅

1 = 𝐴9000) then it is expected to

produce 230𝑋
1

230 = 1 pair of Plaintext satisfying the ∆2𝑎𝑛𝑑 ∆10 and 230𝑋
1

228 = 4 pairs of

Plaintext satisfying the ∆2 𝑎𝑛𝑑 ∆9.

It was observed that last 7 bits after the modular addition at round-10 are always 100 0000.

This implies that ∆10 is of the form of **** **** *100 0000. Where * represents an unknown

bit. Hence 230 pairs of Plaintext/Ciphertext can be filtered for the output difference of 7 bits

at ∆10. Which reduces the number of Plaintext/Ciphertext to 230−7 = 223. This filtering enables

guessing 16 bits of K10 and 11 bits of K9 including 1 carry bit of modular addition. For the

remaining 64-27=37 bits brute force exhaustive search can be used.

8.6 Differential Attack Complexity

The complexity for decrypting 223 Ciphertext pairs for each 228 guesses of key bits and a carry

bit is (228. 223).
1

11
≈ 247. However the 27 bit key guessing was done in 218 count for the

satisfaction of the differential characteristic ∆𝐿
9, ∆𝑅

9 = (8040,8140) and for the remainder of 37

bits a 237 brute force guess dominates the attack complexity with 218. 237 = 255.

Extending Speck differential attack to INFLEX

INFLEX, in addition to modular addition nonlinear component has input inflation function.

The probability of selecting a pattern is increased by 1/32*1/16 = 0.0625. This probability of

expansion will remain same for all round of cipher. By adding this probability to 9 round attack

we get INFLEX linear attack probability for 9 rounds as 2−34 whereas the requirement for

234 Plaintext/Ciphertext differential pair exceed the entire code book of 232

Plaintext/Ciphertext pairs. The Attack complexity increases to 221. 237 = 258 for m=1 and for

m=4 it increases to 227. 237 = 264.

71

8.7 INFLEX Comparison with SPECK

With minimum inflation of m=1

Cipher Rounds Data Complexity Attack

Total Attacked

Speck 22 16 234 251 Linear

14 230 245

12 227 240

INFLEX 20 16 240 260 Linear

14 236 254

12 232 248

Speck 22 11 230 255 Differential

INFLEX 20 11 233 258 Differential

 Table 8. Complexity comparison for m=1 inflation

With maximum inflation of m=4

Cipher Rounds Data Complexity Attack

Total Attacked

Speck 22 16 234 251 Linear

14 230 245

12 227 240

INFLEX 20 16 252 278 Linear

14 248 272

12 244 266

10 240 260

8 236 254

5 230 245

Speck 22 11 230 255 Differential

INFLEX 20 11 239 264 Differential

Table 9. Complexity comparison for m=4 inflation

72

9. Conclusion

9.1 Summary

In this project we have carried out complexity analysis and hardware implementation of

extensible modulo addition [15] encryption algorithm on a 32-bit lightweight FPGA based

block cipher called INFLEX. The primary design consideration has been an ultra-lightweight

cipher that offers a scalable level of security comparable with distinguished lightweight block

cipher of 32-bit block size and a 64-bit key.

INFLEX architecture characteristic primarily originates from the generalized Feistel-network

with an ARX round function and highly-diffusive and scalable block expansion feature. We

have presented a thorough security analysis, particularly for the linear and differential attacks

and compared complexity result with Speck32/64 Cipher. Although the result reveal sufficient

security of full-round INFLEX, it even outperform Speck32/64 on attack complexity, which

encourages us to reduce number of rounds and increase execution time further, however, its

security naturally needs to be studied further. Like any other novel proposals, we only

recommend beta-version deployment of INFLEX and strongly encourage its analysis.

9.2 Future Work

Future work may involve a hardware implementation on FPGA, ASIC or SOC with

compression techniques implemented on the output Ciphertext or serialization of the output in

sub-blocks of 32-bits for expanded Ciphertext in order to further shrink hardware resources. It

is anticipated that for the serialization of maximum security inflated block a maximum of 16

clock cycles will be added for one block encryption and the throughput could reduce to 88

Kbps at 100Khz from 160Kbp, this is still well higher than the minimum required throughput

of lightweight block cipher. The future prospects are very bright and development of a

marketable cipher product is highly recommended.

73

Appendix- A

 VHDL

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.all;

entity inflex is

Generic(KEY_SIZE : integer := 64 ; BLOCK_SIZE : integer := 32; inflate : integer := 1;

ROUND_LIMIT: integer := 22);

Port (SYS_CLK,RST : in std_logic; BUSY : out std_logic; CONTROL : in

std_logic_vector(1 downto 0);

KEY : in std_logic_vector (KEY_SIZE - 1 downto 0);

BLOCK_INPUT : in std_logic_vector (BLOCK_SIZE - 1 downto 0);

BLOCK_OUTPUT : out std_logic_vector (BLOCK_SIZE*(2**inflate)-1 downto 0));-- 255

for m=3; 127 for m=2; 63 for m=1; 31 for m=0;

end inflex;

architecture Behavioral of inflex is

-- Cipher Constants

constant WORD_SIZE : integer range 0 to 32 := BLOCK_SIZE / 2;

constant KEY_WORDS_M : integer range 0 to 4 := KEY_SIZE / WORD_SIZE;

constant ALPHA_SHIFT : integer range 0 to 7 := 7;

constant BETA_SHIFT : integer range 0 to 3 := 2;

-- inflate look up table

type ARRAY_inflateLUT is array(0 to (2*2**4)) of std_logic_vector(2**4- 1 downto 0);

signal inflate_Lut: ARRAY_inflateLUT;

74

type ARRAY_inflateKeyLUT is array(0 to (2*2**3 - 1)) of std_logic_vector(2**3 - 1

downto 0);

signal inflate_key_Lut: ARRAY_inflateKeyLUT;

-- Key Schedule Storage Array

type ARRAY_ROUNDxWORDSIZE is array(0 to (ROUND_LIMIT - 1)) of

std_logic_vector(WORD_SIZE*2**(inflate)-1 downto 0);

signal key_schedule: ARRAY_ROUNDxWORDSIZE;

signal round_key : std_logic_vector(WORD_SIZE*2**(inflate)-1 downto 0);

type ARRAY_PARTKEYxWORD is array (0 to KEY_WORDS_M-1) of

std_logic_vector(WORD_SIZE*2**(inflate)-1 downto 0);

signal key_l : ARRAY_PARTKEYxWORD;

signal key_feedback : ARRAY_PARTKEYxWORD;

signal key_gen_round_output : STD_LOGIC_VECTOR(BLOCK_SIZE*2**(inflate)-1

downto 0);

--

-- Fiestel Structure Signals

signal b_buf : STD_LOGIC_VECTOR(WORD_SIZE*2**inflate - 1 downto 0);

signal a_buf : STD_LOGIC_VECTOR(WORD_SIZE*2**inflate - 1 downto 0);

signal encryption_round_output : STD_LOGIC_VECTOR(BLOCK_SIZE*2**(inflate)-1

downto 0);

signal decryption_round_output : STD_LOGIC_VECTOR(BLOCK_SIZE*2**(inflate)-1

downto 0);

signal inflate_round_output : STD_LOGIC_VECTOR(BLOCK_SIZE*2**inflate - 1 downto

0);

signal inflate_key_round_output : STD_LOGIC_VECTOR(KEY_SIZE*2**(inflate)-1

downto 0);

--

--

-- State Machine Signals

type state is (Reset,Idle,Key_Schedule_Generation_Run,Key_Schedule_Generation_Finish,

Cipher_Start,Cipher_Run,Cipher_Finish_1,Cipher_Finish_2,Cipher_Latch);

signal pr_state,nx_state : state;

75

--

--

-- Round Counting Signals

signal round_count : integer range 0 to (ROUND_LIMIT - 1);

signal inv_round_count : integer range 0 to (ROUND_LIMIT - 1);

signal round_count_mux : integer range 0 to (ROUND_LIMIT - 1);

signal cipher_direction : std_logic;

--

--inflate

function Inflate_Round (bl : std_logic_vector(BLOCK_SIZE - 1 downto 0)) return

std_logic_vector is variable inflate_output : std_logic_vector(BLOCK_SIZE*2**inflate - 1

downto 0);

variable j0 : integer :=0;

variable j1 : integer :=0;

variable k : integer :=2**inflate;

variable inflatelutread : std_logic_vector(15 downto 0);

begin

if inflate < 1 then

inflate_output := bl;

else

inflate_LUT(0) <= "1111111111111110";

inflate_LUT(1) <= "1111111111111101";

inflate_LUT(2) <= "1111111111111011";

inflate_LUT(3) <= "1111111111110111";

inflate_LUT(4) <= "1111111111101111";

inflate_LUT(5) <= "1111111111011111";

inflate_LUT(6) <= "1111111110111111";

inflate_LUT(7) <= "1111111101111111";

76

inflate_LUT(8) <= "1111111011111111";

inflate_LUT(9) <= "1111110111111111";

inflate_LUT(10) <= "1111101111111111";

inflate_LUT(11) <= "1111011111111111";

inflate_LUT(12) <= "1110111111111111";

inflate_LUT(13) <= "1101111111111111";

inflate_LUT(14) <= "1011111111111111";

inflate_LUT(15) <= "0111111111111111";

inflate_LUT(16) <= "0000000000000001";

inflate_LUT(17) <= "0000000000000010";

inflate_LUT(18) <= "0000000000000100";

inflate_LUT(19) <= "0000000000001000";

inflate_LUT(20) <= "0000000000010000";

inflate_LUT(21) <= "0000000000100000";

inflate_LUT(22) <= "0000000001000000";

inflate_LUT(23) <= "0000000010000000";

inflate_LUT(24) <= "0000000100000000";

inflate_LUT(25) <= "0000001000000000";

inflate_LUT(26) <= "0000010000000000";

inflate_LUT(27) <= "0000100000000000";

inflate_LUT(28) <= "0001000000000000";

 inflate_LUT(29) <= "0010000000000000";

 inflate_LUT(30) <= "0100000000000000";

 inflate_LUT(31) <= "1000000000000000";

for i in 0 to (BLOCK_SIZE - 1) loop

if j0 > k-1 then

j0:=0;

end if;

if j1 > k-1 then

j1:=0;

end if;

if (bl(i) = '1') then

77

inflatelutread := inflate_LUT(j1+16);

inflate_output := inflate_output (BLOCK_SIZE*2**(inflate)-1 downto k/2) &

inflatelutread((k/2)-1 downto 0);

inflate_output := to_stdlogicvector(to_bitvector(inflate_output) sla k/2);

j1:=j1+1;

end if;

if (bl(i) = '0') then

inflatelutread := inflate_LUT(j0);

inflate_output := inflate_output (BLOCK_SIZE*2**(inflate)-1 downto k/2) &

inflatelutread((k/2)-1 downto 0);

inflate_output := to_stdlogicvector(to_bitvector(inflate_output) sla k/2);

end if;

end loop;

end if;

return inflate_output;

end Inflate_Round;

--inflate key

function Inflate_Key_Round (bl : std_logic_vector(KEY_SIZE - 1 downto 0)) return

std_logic_vector is

variable inflate_key_output : std_logic_vector(KEY_SIZE*2**(inflate)-1 downto 0);

variable j0 : integer :=0;

variable j1 : integer :=0;

variable k : integer :=2**(inflate)/2;

variable inflatekeylutread : std_logic_vector(7 downto 0);

begin

if inflate < 1 then

inflate_key_output := bl;

else

inflate_key_LUT(0) <= "11111110";

inflate_key_LUT(1) <= "11111101";

inflate_key_LUT(2) <= "11111011";

inflate_key_LUT(3) <= "11110111";

inflate_key_LUT(4) <= "11101111";

78

inflate_key_LUT(5) <= "11011111";

inflate_key_LUT(6) <= "10111111";

inflate_key_LUT(7) <= "01111111";

inflate_key_LUT(8) <= "00000001";

inflate_key_LUT(9) <= "00000010";

inflate_key_LUT(10) <= "00000100";

inflate_key_LUT(11) <= "00001000";

inflate_key_LUT(12) <= "00010000";

inflate_key_LUT(13) <= "00100000";

inflate_key_LUT(14) <= "01000000";

inflate_key_LUT(15) <= "10000000";

for i in 0 to (KEY_SIZE - 1) loop

if j0 > k-1 then

j0:=0;

end if;

if j1 > k-1 then

j1:=0;

end if;

if (bl(i) = '1') then

--

inflatekeylutread := inflate_key_LUT(j1+8);

inflate_key_output := inflate_key_output(KEY_SIZE*2**(inflate)-1 downto k/2) &

inflatekeylutread((K/2)-1 downto 0);

inflate_key_output := to_stdlogicvector(to_bitvector(inflate_key_output) sla k/2);

j1:=j1+1;

end if;

if (bl(i) = '0') then

inflatekeylutread := inflate_key_LUT(j0);

inflate_key_output := inflate_key_output(KEY_SIZE*2**(inflate)-1 downto k/2) &

inflatekeylutread((K/2)-1 downto 0);

inflate_key_output := to_stdlogicvector(to_bitvector(inflate_key_output) sla k/2);

j0:=j0+1;

end if;

79

end loop;

end if;

return inflate_key_output;

end Inflate_Key_Round;

--end inflate key

--Encryption round

function Encrypt_Round(b, a, key_i : std_logic_vector(WORD_SIZE*2**(inflate)-1 downto

0)) return std_logic_vector is

variable b_unsigned : unsigned(WORD_SIZE*2**(inflate)-1 downto 0);

variable a_unsigned : unsigned(WORD_SIZE*2**(inflate)-1 downto 0);

variable r_shift_alpha : unsigned(WORD_SIZE*2**(inflate)-1 downto 0);

variable l_shift_beta : unsigned(WORD_SIZE*2**(inflate)-1 downto 0);

variable adder: unsigned(WORD_SIZE*2**(inflate)-1 downto 0);

variable key_xor : unsigned(WORD_SIZE*2**(inflate)-1 downto 0);

variable cross_xor : unsigned(WORD_SIZE*2**(inflate)-1 downto 0);

variable encrypt_output : std_logic_vector(BLOCK_SIZE*2**(inflate)-1 downto 0);

begin

b_unsigned := unsigned(b);

a_unsigned := unsigned(a);

r_shift_alpha := b_unsigned(ALPHA_SHIFT - 1 downto 0) &

b_unsigned(WORD_SIZE*2**(inflate)-1 downto ALPHA_SHIFT);

l_shift_beta := a_unsigned(WORD_SIZE*2**(inflate) - (BETA_SHIFT + 1) downto 0) &

a_unsigned((WORD_SIZE*2**(inflate) -1) downto (WORD_SIZE*2**(inflate) -

BETA_SHIFT));

adder := r_shift_alpha + a_unsigned;

key_xor := adder xor unsigned(key_i);

cross_xor := l_shift_beta xor key_xor;

encrypt_output := std_logic_vector(key_xor) & std_logic_vector(cross_xor);

return encrypt_output;

end Encrypt_Round;

--decryption round

80

function Decrypt_Round(b, a, key_i : std_logic_vector(WORD_SIZE*2**(inflate)-1 downto

0)) return std_logic_vector is

variable b_unsigned : unsigned(WORD_SIZE*2**(inflate)-1 downto 0);

variable a_unsigned : unsigned(WORD_SIZE*2**(inflate)-1 downto 0);

variable l_shift_alpha : unsigned(WORD_SIZE*2**(inflate)-1 downto 0);

variable r_shift_beta : unsigned(WORD_SIZE*2**(inflate)-1 downto 0);

variable subtractor: unsigned(WORD_SIZE*2**(inflate)-1 downto 0);

variable key_xor : unsigned(WORD_SIZE*2**(inflate)-1 downto 0);

variable cross_xor : unsigned(WORD_SIZE*2**(inflate)-1 downto 0);

variable decrypt_output : std_logic_vector(BLOCK_SIZE*2**(inflate)-1 downto 0);

begin

b_unsigned := unsigned(b);

a_unsigned := unsigned(a);

cross_xor := b_unsigned xor a_unsigned;

r_shift_beta := cross_xor(BETA_SHIFT - 1 downto 0) &

cross_xor(WORD_SIZE*2**(inflate) -1 downto BETA_SHIFT);

key_xor := b_unsigned xor unsigned(key_i);

subtractor := key_xor - r_shift_beta;

l_shift_alpha := subtractor(WORD_SIZE*2**(inflate) - (ALPHA_SHIFT + 1) downto 0) &

subtractor((WORD_SIZE*2**(inflate) -1) downto (WORD_SIZE*2**(inflate) -

ALPHA_SHIFT));

decrypt_output := std_logic_vector(l_shift_alpha) & std_logic_vector(r_shift_beta);

return decrypt_output;

end Decrypt_Round;

begin

--

-- State Machine Processes

--

State_Machine_Head : process (SYS_CLK) ----State Machine Master Control

begin

if (SYS_CLK'event and SYS_CLK='1') then

if (RST = '1') then

pr_state <= RESET;

81

else

pr_state <= nx_state;

end if;

end if;

end process; -- State_Machine_Head

State_Machine_Body : process (CONTROL, round_count, pr_state) ---State Machine State

Definitions

begin

case pr_state is

when Reset => --Master Reset State

nx_state <= Idle;

when Idle =>

if (CONTROL = "01") then

nx_state <= Key_Schedule_Generation_Run;

elsif (CONTROL = "11" or CONTROL = "10") then

nx_state <= Cipher_Start;

else

nx_state <= Idle;

end if;

when Key_Schedule_Generation_Run =>

if (round_count = ROUND_LIMIT - 2) then

nx_state <= Key_Schedule_Generation_Finish;

else

nx_state <= Key_Schedule_Generation_Run;

end if;

when Key_Schedule_Generation_Finish =>

nx_state <= Idle;

when Cipher_Start =>

nx_state <= Cipher_Run;

when Cipher_Run =>

if (round_count = ROUND_LIMIT - 2) then

nx_state <= Cipher_Finish_1;

else

82

nx_state <= Cipher_Run;

end if;

when Cipher_Finish_1 =>

nx_state <= Cipher_Finish_2;

when Cipher_Finish_2 =>

nx_state <= Cipher_Latch;

when Cipher_Latch =>

nx_state <= Idle;

end case;

end process;

--

-- END State Machine Processes

--

--

-- Register Processes

--

Cipher_Direction_Flag : process(SYS_CLK)

begin

if SYS_CLK'event and SYS_CLK = '1' then

if (pr_state = Reset) then

cipher_direction <= '0';

elsif (pr_state = Idle) then

cipher_direction <= CONTROL(0);

end if ;

end if;

end process;

Busy_Flag_Generator : process(SYS_CLK)

begin

if SYS_CLK'event and SYS_CLK = '1' then

if (pr_state = Reset or (pr_state = Idle and CONTROL /= "00")) then

BUSY <= '1';

elsif ((pr_state = Idle and CONTROL = "00") or pr_state = Cipher_Latch or pr_state =

Key_Schedule_Generation_Finish) then

BUSY <= '0';

83

end if;

end if;

end process ; -- Busy_Flag_Generator

Key_Schedule_Generator : process(SYS_CLK)

begin

if SYS_CLK'event and SYS_CLK = '1' then

if (pr_state = Idle) then

Init_Gen_Regs : for i in 0 to (KEY_WORDS_M -1) loop

key_l(i) <= inflate_key_round_output(((i + 1) * WORD_SIZE*2**inflate) - 1 downto (i *

WORD_SIZE*2**inflate));

end loop ; -- Update_Gen_Regs

elsif (pr_state = Key_Schedule_Generation_Run or pr_state =

Key_Schedule_Generation_Finish) then

for i in 0 to (KEY_WORDS_M - 1) loop

key_l(i) <= key_feedback(i);

end loop;

end if;

end if;

end process ; -- Key_Schedule_Generator

Main_Cipher_Process : process(SYS_CLK)

begin

if SYS_CLK'event and SYS_CLK = '1' then

-- Load for Encryption/Decryption

if (pr_state = Idle) then

if (CONTROL(1) = '1') then

a_buf <= inflate_round_output(WORD_SIZE*2**(inflate)-1 downto 0);

b_buf <= inflate_round_output(BLOCK_SIZE*2**(inflate)-1 downto

WORD_SIZE*2**(inflate));

end if;

-- Run Cipher Engine

elsif (pr_state = Cipher_Run or pr_state = Cipher_Finish_1 or pr_state = Cipher_Finish_2)

then

if (cipher_direction = '1') then -- Encryption

a_buf <= encryption_round_output(WORD_SIZE*2**(inflate)-1 downto 0);

84

b_buf <= encryption_round_output(BLOCK_SIZE*2**(inflate)-1 downto

WORD_SIZE*2**(inflate));

else -- Decryption

a_buf <= decryption_round_output(WORD_SIZE*2**(inflate)-1 downto 0);

b_buf <= decryption_round_output(BLOCK_SIZE*2**(inflate)-1 downto

WORD_SIZE*2**(inflate));

end if;

end if;

end if;

end process ;

Output_Buffer : process(SYS_CLK)

begin

if SYS_CLK'event and SYS_CLK = '1' then

if (pr_state = Cipher_Latch) then

BLOCK_OUTPUT <= b_buf & a_buf;

end if;

end if;

end process ; -- Output_Buffer

--

-- END Register Processes

--

--

-- RAM Processes

--

Key_Schedule_Array: process (SYS_CLK)

begin

if (SYS_CLK'event and SYS_CLK = '1') then

round_key <= key_schedule(round_count_mux);

if (pr_state = Key_Schedule_Generation_Run or pr_state =

Key_Schedule_Generation_Finish) then

key_schedule(round_count) <= key_l(0);

end if;

end if;

end process;

85

--

-- End RAM Processes

--

--

-- Counter Processes

--

Round_Counter : process(SYS_CLK)

begin

if (SYS_CLK'event and SYS_CLK = '1') then

if (pr_state = Reset) then

round_count <= 0;

inv_round_count <= 0;

elsif (pr_state = Idle) then

round_count <= 0;

inv_round_count <= ROUND_LIMIT - 1;

elsif (pr_state = Cipher_Start or pr_state = Cipher_Run or pr_state =

Key_Schedule_Generation_Run) then

round_count <= round_count + 1;

inv_round_count <= inv_round_count - 1;

end if ;

end if ;

end process;

--

-- END Counter Processes

--

--

-- Async Signals

--

round_count_mux <= round_count when cipher_direction = '1' else inv_round_count;

key_gen_round_output <= Encrypt_Round(key_l(1), key_l(0),

std_logic_vector(to_unsigned(round_count, WORD_SIZE*2**(inflate))));

inflate_round_output <= Inflate_Round(BLOCK_INPUT);

inflate_key_round_output <= Inflate_Key_Round(key);

encryption_round_output <= Encrypt_Round(b_buf, a_buf, round_key);

86

decryption_round_output <= Decrypt_Round(b_buf, a_buf, round_key);

key_feedback(0) <= key_gen_round_output(WORD_SIZE*2**(inflate)-1 downto 0);

key_feedback(KEY_WORDS_M - 1) <=

key_gen_round_output(BLOCK_SIZE*2**(inflate)-1 downto WORD_SIZE*2**(inflate));

Keys_3 : if (KEY_WORDS_M = 3) generate

begin

key_feedback(1) <= key_l(2);

end generate;

Keys_4 : if (KEY_WORDS_M = 4) generate

begin

key_feedback(1) <= key_l(2);

key_feedback(2) <= key_l(3);

end generate;

end Behavioral;

87

References

[1] Dinu, Daniel et al. “Triathlon of Lightweight Block Ciphers for the Internet of Things.” IACR

Cryptology ePrint Archive 2015.

[2] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin,

Y., Vikkelsoe, C.”PRESENT: An Ultra-Lightweight Block Cipher.” In: Paillier, P.,

Verbauwhede, I. (eds.) CHES. Lecture Notes in Computer Science, vol. 4727, pp. 450–466.

Springer (2007).

[3] Gong, Z., Nikova, S., Law, Y.W.: “KLEIN: A New Family of Lightweight Block Ciphers.” In:

Juels, A., Paar, C. (eds.) RFIDSec. Lecture Notes in Computer Science, vol. 7055, pp. 1–18.

Springer (2011)

[4] Christophe Cannière, Orr Dunkelman, and Miroslav Knežević. “KATAN and KTANTAN A

Family of Small and Efficient Hardware-Oriented Block Ciphers.” In Proceedings of the 11th

International Workshop on Cryptographic Hardware and Embedded Systems (CHES '09),

Christophe Clavier and Kris Gaj (Eds.). Springer-Verlag, Berlin, Heidelberg, 2009, pp. 272-288.

[5] Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B. “The LED Block Cipher”. In

Cryptographic Hardware and Embedded Systems -- CHES 2011: 13th International Workshop,

Nara, Japan, September 28 -- October 1, 2011. Pp 326-341

[6] Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J., Jeong, K.,

Kim, H., Kim, J., Chee, S. “HIGHT: A New Block Cipher Suitable for Low-Resource Device”.

In: Goubin, L., Matsui, M.(eds.) CHES. Lecture Notes in Computer Science, vol. 4249, pp. 46–

59. Springer 2006.

[7] Knudsen, L. R., Leander, G., Poschmann, A., & Robshaw, M. J. “PRINTcipher: A Block Cipher

for IC-Printing”. In CHES, Vol. 6225, 2010, pp. 16-32.

[8] Leander, G., Paar, C., Poschmann, A., & Schramm, K. “New lightweight DES variants”.

In International Workshop on Fast Software Encryption Springer, Berlin, Heidelberg. 2007, pp.

196-210

[9] Wu, Wenling, and Lei Zhang. "LBlock: a lightweight block cipher." In Applied Cryptography

and Network Security, pp. 327-344., 2011.

[10] Shibutani, Kyoji, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Akishita, and Taizo

Shirai. "Piccolo: An ultra-lightweight blockcipher." In CHES, vol. 6917, 2011, pp. 342-357.

[11] Mace, Franois, Franois-Xavier Standaert, and Jean-Jacques Quisquater. "ASIC implementations

of the block cipher sea for constrained applications." In Proceedings of the Third International

Conference on RFID Security-RFIDSec, vol. 2007, pp. 103-114.

88

[12] Suzaki, T., Minematsu, K., Morioka, S. and Kobayashi, E., “TWINE: A Lightweight Block

Cipher for Multiple Platforms”. In Selected Areas in Cryptography Vol. 7707, pp. 339-354,

August 2012.

[13] Beaulieu, R., Treatman-Clark, S., Shors, D., Weeks, B., Smith, J. and Wingers, L., “The SIMON

and SPECK lightweight block ciphers”. In Design Automation Conference (DAC), 2015 52nd

ACM/EDAC/IEEE (pp. 1-6).

[14] Virgil Gligor D. "Light-Weight Cryptography–How Light is Light." In Keynote presentation at

the Information Security Summer School, Florida State University. Available for download at

http://www. sait. fsu. edu/conferences/2005/is3/resources/slides/gligorv-cryptolite. ppt. 2005, pp

1-29

[15] Partap Siddavaatam, Reza Sedaghat and M. H. Cheng, "An adaptive security framework with

extensible computational complexity for cipher systems," in 11th International Conference for

Internet Technology and Secured Transactions (ICITST), Barcelona, 2016, pp.133-140

[16] Matsui, M.: “Linear Cryptoanalysis Method for DES Cipher”. In: Helleseth, T. (ed.)

EUROCRYPT. Lecture Notes in Computer Science, Springer vol. 765, pp. 386–397. 1993.

[17] Liu, Yu, Kai Fu, Wei Wang, Ling Sun, and Meiqin Wang. "Linear cryptanalysis of reduced-

round SPECK." Information Processing Letters 116, no. 3, pp 259-266, 2016.

[18] Yao, Yuan, Bin Zhang, and Wenling Wu. "Automatic search for linear trails of the SPECK

family." International Information Security Conference. Springer, Cham, 2015., pp.158–176.

[19] Alex Biryukov, Arnab Roy, and Vesselin Velichkov. "Differential analysis of block ciphers

SIMON and SPECK." International Workshop on Fast Software Encryption. Springer, Berlin,

Heidelberg, 2014, pp 546-570.

[20] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. "Differential and Linear Cryptanalysis

Using Mixed-Integer Linear Programming." Inscrypt 7537, 2011, pp 57-76.

[21] David Kahn, The Codebreakers: The Story of Secret Writing, New York: Macmillan Publishing

Co., 1967. Pp 147

[22] Douglas Wikstrom, Foundations of Cryptography, lecture notes, KTH Royal Institute of

Technology. 2016, pp 1-25

