
Generalized Max-Cut and the Approximation Ratio

by

Junsi Zhang

Bachelor of Science, University of Toronto, 2017

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Applied Mathematics

Toronto, Ontario, Canada, 2019

c©Junsi Zhang 2019

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION

OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of

scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total

or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Generalized Max-Cut and the Approximation Ratio

Master of Science 2019

Junsi Zhang

Applied Mathematics

Ryerson University

In this thesis, we formulate a new problem based on Max-Cut called Generalized Max-Cut. This problem

requires a graph as input and two real numbers (a, b) where a > 0 and −a < b < a and outputs a number.

The restriction on the pair (a, b) is to avoid trivializing the problem. We formulate a quadratic program for

Generalized Max-Cut and relax it to a semi-definite program. Most algorithms in this thesis will require

solving this semi-definite program.

The main algorithm in this thesis is the 2-Dimensional Rounding algorithm, designed by Avidor and

Zwick, with the restriction that the semi-definite program of the input graph must have 2-Dimensional

solutions. This algorithm uses a factor of randomness, β ∈ [0, 1], that is dependent on the integer input to

Generalized Max-Cut. We improve the performance of this algorithm by numerically finding better β.

iii

Table of Contents

Author’s Declaration .

Abstract .

List of Figures .

1 Introduction 1

1.1 Literature Overview . 2

1.2 Our Contributions . 5

2 Preliminaries 6

2.1 Linear Algebra . 6

2.2 Graph Theory . 9

2.3 Combinatorial Optimization Problems . 12

3 Mathematical Programming 15

3.1 Integer Programming . 15

3.2 Relaxations and Integrality Gap . 17

3.2.1 Linear Programming . 18

3.3 Convexity of Mathematical Programs . 20

3.4 Quadratic Programs . 21

iv

ii

iii

vii

3.5 Semi-Definite Programming . 23

4 Generalization of Max-Cut 25

4.1 Formulation of Generalized Max-Cut . 25

4.2 Simplification-Objective Function . 26

4.3 Relaxation . 27

5 Algorithms 28

5.1 Approximation Algorithms . 28

5.2 Expected Value of Generalized Max-Cut . 29

5.3 P 6= NP . 30

5.4 Algorithm Analysis . 31

6 Sahni and Gonzales 33

6.1 1
2 -Approximation Algorithm . 33

7 Goemans and Williamson 36

7.1 Hyperplane Rounding Algorithm . 36

7.2 Hyperplane Rounding Analysis . 38

7.2.1 Approximation Ratio . 39

7.2.2 Approximation Difference . 41

8 2-Dimensional Rounding 44

8.1 Gegenbaur Polynomial Rounding . 44

8.2 2-Dimensional Rounding Algorithm . 46

8.3 Approximation Ratio . 46

8.4 Approximate Difference . 51

v

9 Conclusion 53

Appendices 55

A Mathematica Code 56

A.1 Approximation Ratio for Hyperplane Rounding . 56

A.2 Approximation Difference for Hyperplane Rounding . 56

A.3 Approximate Ratio for 2-Dimensional Rounding . 57

A.4 Approximate Difference for 2-Dimensional Rounding . 57

References 59

Glossary 60

vi

List of Figures

2.1 Graph G . 10

2.2 A cut in G . 11

2.3 Clique graph examples . 12

2.4 Graph - Table Format . 13

2.5 Cut example . 13

5.1 Ratio Scale . 32

7.1 HR Algorithm . 37

7.2 Approximation Ratio . 40

7.3 Approximation Ratio Lower Bound Difference . 41

7.4 Derivative of f(x) =
arccosx

π
+
x

2
. 42

8.1 2-Dimensional Rounding Ratio . 47

8.2 2-Dimensional Rounding: Approximated Ratio and f(k) Difference 48

8.3 Optimal β on Input k . 49

8.4 Numerical β vs B(k) . 50

8.5 Difference of h(x, k, 0.963322) and h(x, k,B(k)) . 51

vii

Chapter 1

Introduction

Our world can be structured using graphs. From obvious examples such as maps with roads that connect

places, to more subtle examples such as relationships between people. Naturally, this structure gave rise to

optimization problems, such as which route will take me point A to point B the fastest? Or where should

hospitals be built to minimize the response time? In this thesis, we will demonstrate some applications of

graphs, solving optimization problems, and approximating optimization problems.

Consider a company that decides to distribute free samples as an advertisement strategy. This company

has access to a person (call him Carlos for simplicity) and a list of people he knows (for example, the people

Carlos graduated high school with). This company wants to minimize the amount of free samples given out

while maximizing the amount of people that are reached by this advertisement directly and indirectly. This

group of people can be structured as a graph in which each person is a vertex and if two people know each

other, then we connect them by an edge. We assume that people in this group talk to each other, so word

of mouth is an indirect way to advertise this product. For example, if Carlos receives a free sample, then

he will tell people he knows about it meaning that this product has directly reached Carlos and indirectly

reached the people he is incident to.

We formulate the above real life problem as a mathematical problem using graphs. Let each person on

the list of people Carlos knows, including Carlos, be a vertex. For each pair of people, we connect them with

an edge if they know each other. There are two successful ways to advertise, the direct way is to receive

a sample, and the indirect way is to be the immediate friend of someone who has received a sample (word

of mouth). The goal is to maximize the number of people we successfully advertised to. We can solve this

problem by separating the group of people into two groups where the number of edges connecting between

the two groups are maximized. This problem is the same as the optimization version of Max-Cut. We target

the smaller group with samples, while assuring the maximum number of people are indirectly advertised to.

An alternative version of this problem, suppose each edge is given a ”weight” w as an integer. Realistically,

1

CHAPTER 1. INTRODUCTION 1.1. LITERATURE OVERVIEW

not everyone in this group will be friends with each other. We assume some relationships are stronger than

others and assign weights to these relationships accordingly. For instance, if two people are very close friends,

then we give their relationship a weight of 10. If two people are only familiar with each other, then their

weight is 5 and if they are enemies, then we give them weight of -5 and so on. This weight distribution is based

on the assumption that if two people are very close, then they are more likely to believe the other’s opinions

on the product, and if they are enemies, then they will be more skeptical towards the other’s opinions. In

this scenario, it makes sense to want to separate two people whose relationships are stronger, namely has a

higher weight, to increase the effects of indirect advertising. Hence, we want to separate the group into two

groups where the sum of the weights of the relationships between the two groups are maximized.

In this thesis, we formulate a new problem based on Max-Cut that we call Generalized Max-Cut. We

take into account of repercussions for the edges that are not cut. Consider the following scenario. For each

person that is not reached by word of mouth or the free sample, the company will lose money. Furthermore,

if two people who know each other both get the free sample, then the company will still lose money. We

assign an arbitrary a > 0 for each connection between the two groups, and b, where −a < b < a, for each

connection not between the two groups. This is a problem that we will analyze in great detail throughout

this thesis.

1.1 Literature Overview

Max-Cut is the problem of finding the maximum number of edges ”cut” by a partition of the vertex set

of a graph into two sets. Equivalently, the problem can be rephrased as maximizing the summation of a

function that adds 1 for each edge cut, and subtract 0 for every edge that is uncut. Weighted Max-Cut is

a more general variation of the original problem. In Weighted Max-Cut, each edge has a weight attached

to it. Instead of maximizing the number of edges cut, we aim to maximize the sum of the weights of edges

that are cut. Various attempts to solve Max-Cut exactly have been shown to be inefficient in terms of time

complexity. In 1971, Stephen Cook showed that all problems in the set NP can be reduced to the problem

3SAT in polynomial-time, proving that 3SAT is NP -hard. Furthermore, as 3SAT is also a problem in NP ,

it is NP -complete [4]. In the following year, Richard Karp used the Cook-Levin theorem from Cook’s paper

to show a polynomial reduction from 3SAT to 21 other problems, including Max-Cut, which was proven to

be NP -complete [12].

It is possible that no polynomial-time algorithms exist that can solve Max-Cut exactly, unless P = NP

[9]. Hence, it makes sense to design polynomial-time algorithms to approximate Max-Cut as close to the

optimal value as possible. We test out several existing approximation algorithms on Generalized Max-Cut

in this thesis, as well as improving upon an existing approximation algorithm to achieve the optimal result

for our problem.

Since the introduction of Max-Cut, the best algorithm, introduced by Sahni and Gonzales, is a basic

2

CHAPTER 1. INTRODUCTION 1.1. LITERATURE OVERVIEW

algorithm that was only able to give a 1
2 -approximation of the optimal value with no dependency on the

input. On given any graph, the algorithm operates only on the set of vertices with uniform randomness [20].

This algorithm uses uniform randomness to determine the two partitioned sets of V . For every vertex v ∈ V ,

v is put into into one of the two sets with probability 1
2 [20].

In 1995, a breakthrough was made by Goemans and Williamson, who provided a much better approximation

of roughly 0.878, by solving a semi-definite formulation of Max-Cut [9]. The Hyperplane Rounding algorithm,

presented by Goemans and Williamson is the first to use the technique of solving a semi-definite program for

Max-Cut. This algorithm then uses a random hyperplane to determine the two partitions of vertices. The

first step in the algorithm solves the semi-definite formulation of Max-Cut to obtain a set of unit vectors.

These n-dimensional unit vectors, where n ∈ Z, represent the vertices. The goal is to round these vectors

to −1 or 1 where −1 and 1 represent the two partitions. The second step of this algorithm is to pick a unit

vector r uniformly at randomly on the unit circle. Then they round the unit vectors obtained from solving

the semi-definite program using the hyperplane perpendicular to r [9]. We run this algorithm and the trivial

algorithm on Generalized Max-Cut as a reference to see how much better other algorithms perform on our

problem.

A natural question that arises from the Goemans and Williamson lower bound ratio, is whether we can

find a polynomial-time algorithm that performs better than the ∼ 0.878 ratio for Max-Cut on general graphs

[1][11]. The answer to this question has been studied and analyzed by many scientists and it comes down to

two important conjectures: P 6= NP [4][22] and the Unique Games Conjecture [13].

The conjecture P 6= NP was officially and formally introduced in 1971 by Stephen Cook [4]. This

conjecture implies that there are problems that cannot be solved exactly in polynomial-time. However, we

can still approximate solutions for such problems using polynomial-time algorithms. We determine how

good an algorithm performs on a given problem using the ratio inf
I

OPT (I)

ALGO(I)
, where OPT (I) is the global

optimal value for a problem on instance I and ALGO(I) is the optimal value of the problem obtained from

the algorithm on instance I. This ratio also provides an insight to the integrality gap of problems, since

the integrality gap, inf
I

OPT (I)

SDP (I)
where the OPT (I) and SDP (I) are the optimal value of a problem on

instance I and the semi-definite formulation of a problem on instance I respectively, is never greater than

the performance ratio of an algorithm on the same problem.

Assuming P 6= NP , the best ratio that can be obtained for Max-Cut in polynomial-time is
16

17
[10][14].

Goemans and Williamson provided a polynomial-time algorithm that achieves a ratio of roughly 0.878.

However, there are papers that improve upon this result for specific cases of Max-Cut. Feige and Schechtman

showed in 2001 that no algorithm that requires solving a semi-definite program will have a better approximate

ratio than 0.891 by adding triangle inequalities to the semi-definite formulate of Max-Cut [6]. In dense graphs,

using the simple greedy algorithm has been proven to achieve near optimal value. The algorithm simply runs

a greedy algorithm until we are satisfied with the cut it presents. This algorithm is guaranteed to converge

to near optimal value in polynomial time OPT − εn2, for some ε > 0 and n ∈ N [16].

3

CHAPTER 1. INTRODUCTION 1.1. LITERATURE OVERVIEW

A variant of Max-Cut, known as Max-Bisection is the problem of solving Max-Cut where the two

partitioned sets have an equal amount of vertices (assume even order graphs). Since Max-Bisection is

as hard as Max-Cut, the Unique Games Conjecture implies that it is hard to approximate Max-Bisection

to within a factor of 0.878 + ε[14]. A new algorithm is presented in the paper ‘Better Balance by Being

Biased‘,this algorithm reaches a ratio of 0.87765366 [2]. This paper leaves an open question of whether the

bisection constraint makes Max-Cut harder.

Another variant of Max-Cut is to analyze graphs with bounded degree, meaning graphs with degree no

more than ∆ ∈ Z number of vertices. This variation admits an algorithm that achieves a ratio of at least

0.878 + ε, where ε > 0 and depends only on ∆ [5].

Now instead of considering special graphs, consider cases where solving the semi-definite formulation

of Max-Cut returns nearly exact solutions, that is, vectors that are only 2 or 3 dimensional [3]. Would

this improve the Goemans and Williamson ratio? The answer to this question is yes. Using Gengenbauer

polynomials, we can improve upon this ratio [3]. This algorithm uses similar techniques to the Hyperplane

rounding algorithm used by Goemans and Williamson [3]. We first solve the semi-definite formulation, and

obtain a set of vectors that are only 2-dimensional. Then we obtain another set of unit vectors by mapping

the original solutions using a special Gengenbauer polynomial. Now we run the Hyperplane algorithm on

the original vectors using probability β and the new vectors with probability 1− β. We improve upon this

algorithm in our thesis using details unique to our problem. The contribution made by us in this thesis will

be discussed in detail in the next section.

A Unique Game is a constraint satisfaction problem, where the goal is to satisfy as many constraints as

possible [7]. In a constraint satisfaction problem, we have a set of variables, a set of values that the variables

are allowed to assume, and a set of constraints. Max-Cut is also an example of a constraint satisfaction

problem.

The Unique Games Conjecture uses Unique Games in its definition: for all ε, δ > 0, and a list of

constraints, we are given an instance with two possible guarantees: either this instance is highly unsatisfiable,

meaning only δ percentage of the constraints can be satisfied, or this instance is almost satisfiable, meaning

1 − ε percentage of the constraints can be satisfied [13]. The Unique Games Conjecture states that the

problem of checking to see which case the instance belongs to is NP -hard.

The Unique Games Conjecture is believed to be independent of the conjecture P 6= NP . If we assume the

Unique Games Conjecture instead of P 6= NP , then the ratio 0.878, obtained by Goemans and Williamson

using hyperplane rounding is optimal in polynomial-time [14].

4

CHAPTER 1. INTRODUCTION 1.2. OUR CONTRIBUTIONS

1.2 Our Contributions

We formulate a generalized version of Max-Cut by changing the objective function. Max-Cut counts the

number of edges cut which is equivalent to a function that adds one for each edge cut and 0 for each edge

uncut. In our generalized version, we consider the function that adds a ∈ R for each edge cut and subtracts

b, where −a < b < a for each edge uncut.

We follow closely the Hyperplane algorithm presented by Goemans and Williamson and run the Hyperplane

Rounding algorithm on the Generalized Max-Cut to see how well the algorithm performs. Since we have

more inputs than Max-Cut, the results we obtain use numerical analysis and rely on graphs to illustrate the

significance of it.

In addition, we improve the approximate ratio and difference comparisons by considering the case where

vectors obtained from solving the semi-definite formulation of Generalized Max-Cut are 2-dimensional [3].

We follow Zwick and Avidor’s algorithm that runs the Goemans Williamson Hyperplane Rounding Algorithm

with probability β and a Gengenbauer Polynomial Rounding algorithm with probability 1− β. We improve

upon this algorithm to find the best β for the fixed a and b in each instance.

This thesis is structured as follows. In Chapter 2, we discuss theorems, definitions and lemmas in Linear

Algebra, Graph Theory and Combinatorial Optimization. In Chapter 3, we discuss definitions of various

mathematical programming, and some properties of mathematical programs. In Chapter 4, we define our

problem Generalized Max-Cut and its formulation. In Chapter 5, we explore the motivation approximation

algorithms and the conjecture P 6= NP . In chapter 6, we run the trivial algorithm on Generalized Max-Cut

to see how well it performs. In Chapter 7, we run the Hyperplane Rounding algorithm by Goemans and

Williamson and evaluate numerically the approximate ratio and difference of the expected value of the

algorithm on Generalized Max-Cut and its semi-definite formulation. In Chapter 8, we follow Zwick and

Avidor’s Gengenbauer algorithm and improve it for Generalized Max-Cut.

5

Chapter 2

Preliminaries

In this Chapter, we introduce some results from linear algebra and graph theory, as well as some

background information. Although most theorems, definitions and facts mentioned in this section are well

known, it is convenient to gather these results together and specify the notations that will be used throughout

this thesis. More detailed explanations and proofs can be found in the linear algebra textbook by Nicholson,

W. Keith [17]. We begin with linear algebra, followed by an introduction to graph theory.

2.1 Linear Algebra

Definition 2.1.1. (Inner Product) Let A,B ∈ Rn×n be two matrices. We define the inner product of A

and B to be 〈A,B〉 =

n∑
i=1

n∑
j=1

AijBij.

Lemma 2.1.1. (Properties of Inner Product) ∀A,B,C ∈ Rn×n, for all a ∈ R, we have that:

1. 〈A,B〉 = 〈B,A〉

2. 〈aA+ C,B〉 = a〈A,B〉+ 〈C,B〉.

3. 〈A,A〉 ≥ 0. Equality holds when A = 0.

The proof of these facts can be found in any linear algebra textbook and thus will be omitted from this

thesis [17].

We define the notion of a n variable quadratic function and represent it as the inner product of two

matrices.

6

CHAPTER 2. PRELIMINARIES 2.1. LINEAR ALGEBRA

Lemma 2.1.2. Let x = (x1, x2, · · · , xn)T . Any quadratic function f : Rn → R such that f(x) =

n∑
i=1

n∑
j=1

aijxixj+

n∑
i=1

bixi + c, where aij , bi, c ∈ R can be written as a sum of inner products in the form: 〈A,X〉+ 〈b, x〉+ c.

Proof. Define X by the following:

X = xxT =


x21 x1x2 . . . x1xn

...
...

. . .
...

xnx1 xnx2 . . . x2n

 .

Define the symmetric coefficient matrix A =
ĀT + Ā

2
where:

Ā =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann


,

A =



a11
a12 + a21

2
· · · a1n + an1

2

a21 + a12
2

a22 · · · a2n + an2
2

...
...

. . .
...

an1 + a1n
2

an2 + a2n
2

· · · ann


.

By definition, the inner product of these two matrices is: 〈A,X〉 =

n∑
i=1

n∑
j=1

aijxixj . Now let b ∈ Rn,

and c ∈ R. It is clear to see that

n∑
i=1

bixi + c = 〈b, x〉 + c using Definition 2.1.1, and we have shown that

f(x) = 〈A,X〉+ 〈b, x〉+ c as needed.

This matrix definition of quadratic functions will be used to formulate Max-Cut and Generalized Max-Cut

as a quadratic optimization problem in later Chapters.

7

CHAPTER 2. PRELIMINARIES 2.1. LINEAR ALGEBRA

Definition 2.1.2. Let A ∈ Rn×n be a symmetric matrix, then it has real eigenvalues λ such that Av = λv

for all non-zero v ∈ Rn. We call v the eigenvector corresponding to the eigenvalue λ.

Definition 2.1.3. A symmetric matrix A is called positive semi-definite, denoted by A � 0, if every

eigenvalue of A is nonnegative.

Positive semidefinite matrices have important properties that will be used in later Chapters. In this

Chapter, we focus on elaborating and proving these properties.

Recall that a symmetric matrix is a matrix A such that A = AT . The eigenvalues of A are roots of the

polynomial det(A − λI), where I is the identity matrix of appropriate dimensions. Here are some Lemmas

regarding symmetric matrices.

Lemma 2.1.3. If A is symmetric, then all eigenvalues of A are real. [17]

Lemma 2.1.4. If A is symmetric, then there exist an orthogonal matrix Q such that A = QDQT where D

is the diagonal matrix of eigenvalues. [17]

Theorem 2.1.1. Let A ∈ Rn×n be a symmetric, positive semidefinite matrix. There exist some B ∈ Rn×n

such that A = BBT .

Proof. Let λi, i = 1, · · · , n be eigenvalues of A. Let D be the diagonal matrix of these eigenvalues, that

is D = diag(λ1, · · · , λn). By Lemma 2.1.4, we write A = QDQT . From Lemma 2.1.3, we know that
√
λi ∈ R is well defined, ∀i = 1, · · · , n. Let S = diag(

√
λ1, · · · ,

√
λn) such that SST = D. Now we have

A = QSSTQT = QS(QS)T . Let B = QS, and we derive that A = BBT as needed.

Proposition 2.1.1. The following are equivalent for symmetric A ∈ Rn×n:

1. A is positive semi-definite.

2. There exist B ∈ Rn×n such that A = BBT .

3. There exist vectors vi ∈ Rn, i = 1, 2, . . . , n such that Aij = 〈vi, vj〉.

4. xTAx ≥ 0 for all x ∈ Rn.

Proof. We show that these propositions are equivalent by showing that 1⇒ 2, 2⇔ 3, 2⇒ 4, and 4⇒ 1.

1. (1⇒ 2). This is Theorem 2.1.1.

8

CHAPTER 2. PRELIMINARIES 2.2. GRAPH THEORY

2. (2⇒ 3). Suppose we have have a matrix A that can be written as BBT . Let vi be the ith row of the

matrix B such that B =
(
vT1 · · · vTn

)
, it is clear to see that Aij = 〈vi, vj〉.

(3⇒ 2) Similarly, let vi be the rows of the matrix B.

3. (2 ⇒ 4). Since there exist matrix B such that A = BBT , we can write xTAx as xTBBTx, which is

equal to (xTB)(xTB)T = ‖xTB‖2 ≥ 0.

4. (4 ⇒ 1). Let λ be any eigenvalue of A, and let x be the corresponding eigenvector of A. Then

xTAx = xTλx = λxTx = λ‖x‖2 ≥ 0, hence λ ≥ 0 as needed.

We have shown that these propositions are equivalent.

Definition 2.1.4. The rank of a matrix A ∈ Rn×n is the number of linearly independent rows.

Theorem 2.1.2. The rank of a symmetric matrix A ∈ Rn×n is k ≤ n if and only if n− k eigenvalues of

A are 0.

Proof. Recall that the dimension of null(A) is the number of linearly independent eigenvectors x such that

Ax = 0x, namely the number of eigenvalues that are 0. Since we have null(A) = dim(A) - rank(A) by the

rank-nullity theorem, we have that null(A) = n− k as needed.

Corollary 2.1.2.1. A matrix A ∈ Rn×n is a rank k PSD matrix if and only if there exist vectors vi ∈ Rk

such that Aij = 〈vi, vj〉.

Proof. Let λ1, · · · , λn be eigenvalues of A. By Lemma 2.1.4 we have A = QDQT for some orthogonal Q

and D = diag(λ1, · · · , λn). By Lemma 2.1.3 and Theorem 2.1.2, we know that λi ≥ 0 and λi ∈ R, and that

n − k eigenvalues are 0. Thus, D = diag(λ1, · · · , λk, 0, · · · , 0). Let S = diag(
√
λ1, · · · ,

√
λk, 0, · · · , 0) such

that A = (QS)(QS)T . Let vi be the ith row of QS without the 0 entries, and we have Aij = 〈vi, vj〉 as

needed.

2.2 Graph Theory

Graphs are data structures that consist of two sets: a set of elements and a set of pairwise connections

of these elements. In more technical terms, a graph G = (V,E) is of a pair of sets: V , the nonempty set of

vertices; and E, the set of edges where each edge e = {i, j} ∈ E is a subset of V .

In this thesis, we focus on finite simple graphs. In a finite simple graph, every pair of vertices has at most

one edge connecting them, and we have a finite number of vertices and edges .

Consider the following example of a graph G = (V,E):

9

CHAPTER 2. PRELIMINARIES 2.2. GRAPH THEORY

Figure 2.1: Graph G

The graph in Figure 2.1 has vertices V = {1, 2, 3, 4, 5, 6}, and edges E = {a, b, c, d, e, f, g} as follows:

a b c d e f g

{1, 2} {1, 3} {2, 4} {3, 4} {2, 6} {4, 6} {5, 6}

Definition 2.2.1. Let G = (V,E) be a graph, a cut in G is a partition of V into two sets: S ⊆ V and V \S.

We say an edge e = {i, j} ∈ E is cut if i, j are not both in the same partitioned set. We denote the set of

cut edges induced by S as δ(S).

Definition 2.2.2. The size of a cut S is the number of edges that are cut, denoted by |δ(S)|.

10

CHAPTER 2. PRELIMINARIES 2.2. GRAPH THEORY

Figure 2.2: A cut in G

Example 2.2.1 (A cut in G). Consider Figure 2.2, one potential cut for this graph is the following partition:

S = {1, 3, 5} and V \S = {2, 4, 6}. The size of this cut is 3 since 3 edges, {1, 2}, {5, 6} and {3, 4} are cut.

The edge cut set is given by δ(S) =
{
{1, 2}, {5, 6}, {3, 4}

}
.

Definition 2.2.3. Let G = (V,E) be a graph. We say that the vertices i, j adjacent if {i, j} is an edge.

Definition 2.2.4. A clique is a special type of graph where all vertices are adjacent. We denote a clique

with n vertices by Kn.

In other words, every vertex in a clique is connected to every other vertex by an edge. Observe that

since there exist an edge for every distinct pair of vertices, a clique with n vertices has
(
n
2

)
many edges. We

illustrate two examples, K5 and K4 in Figure 2.3.

11

CHAPTER 2. PRELIMINARIES 2.3. COMBINATORIAL OPTIMIZATION PROBLEMS

(a) A graph K5 with 5 vertices and
(5
2

)
= 10 edges (b) A graph K4 with 4 vertices and

(4
2

)
= 6

edges

Figure 2.3: Clique graph examples

2.3 Combinatorial Optimization Problems

In this section, we define explicitly what it means to solve an optimization problem, and what categorizes

a problem as combinatorial.

An optimization problem is a problem that involves finding the best solution in a set of all feasible

solutions. Typically, optimization involves maximizing or minimizing a function. For example, a company

would want to minimize production time, or maximize profit.

Definition 2.3.1. A combinatorial optimization problem is an optimization problem where the set of

possible solutions is finite or discrete.

An example of a combinatorial optimization problem is Max-Cut. Informally, Max-Cut is an optimization

problem that aims to maximize the size of the edge cut set of a given graph. Formally, we have the following

definition:

Definition 2.3.2. Given a graph G = (V,E), Max-Cut is the problem of finding the maximum size of the

cuts in G.

One way to find a Max-Cut in a graph is to find a set S ⊆ V such that for any other S′ ⊆ V , |δ(S)| ≥
|δ(S′)|. Any subset S ⊆ V is a feasible solution since it provides us with δ(S). Here is an example of a

maximum cut in a graph:

Example 2.3.1 (Max-Cut for G). Consider Figure 2.4. We have G = (V,E), where V = {1, 2, 3, 4, 5} and

E = {a, b, c, d, e} as follows:

12

CHAPTER 2. PRELIMINARIES 2.3. COMBINATORIAL OPTIMIZATION PROBLEMS

a b c d e

{1, 2} {1, 3} {1, 4} {1, 5} {3, 5}

Figure 2.4: Graph - Table Format

The maximum cut of G can be induced by two different sets S and S′ as shown below.

(a) g1cut (b) g1cut2

Figure 2.5: Cut example

13

CHAPTER 2. PRELIMINARIES 2.3. COMBINATORIAL OPTIMIZATION PROBLEMS

As shown in Figure 2.5a, the edge cut set induced by S = {1, 3} and V \S = {2, 4, 5} is

δ(S) =
{
{1, 2}, {1, 4}, {1, 5}, {3, 5}

}
.

The size of this set |δ(S)| = 4, which is the maximum value attainable by this function.

In Figure 2.5b, the edge cut set induced by the partition S′ = {1} and V \S′ = {2, 3, 4, 5} is

δ(S′) =
{
{1, 2}, {1, 4}, {1, 5}, {1, 3}

}
.

The size of the set |δ(S′)| is also 4.

This example emphasizes the difference between optimal solutions and the value given by those optimal

solutions. Note that we have two distinct solutions that produce the same optimal value. We only care to

find the optimal size of the edge cut set, the actual solution does not matter to us. In general, finding the

set that is maximum cut of a graph is difficult, and finding the size of this set is also difficult. In this thesis,

we aim to approximate the size of a maximum cut on a given graph, rather than to find the actual cut.

We discussed Max-Cut as a combinatorial problem in this section. In the following section, we formulate

this optimization problem formally and mathematically using mathematical programming.

14

Chapter 3

Mathematical Programming

Mathematical programs are optimization problems that involve maximizing or minimizing a function

with constraints. These programs are often used to formulate real life problems mathematically, making the

real life problems easier to understand. In this section, we discuss four types of mathematical programs:

integer programs, linear programs, quadratic programs, and semi-definite programs. We also discuss some

properties of these programs and how they relate to Max-Cut.

3.1 Integer Programming

An integer program is the problem of optimizing a linear function with n ∈ N variables subject to linear

constraints, and a mandatory constraint that all feasible solutions must be integers. For example, suppose

we want to maximize the function f(x1, x2) = x1 + x2 subject to the constraint x1 − x2 ≤ 5, xi ∈ Zn.

Typically, an integer program has the following form:

maximize cTx

subject to aT1 x ≤ b1,

aT2 x ≤ b2,
...

aTmx ≤ bm
x ∈ Zn,

(3.1)

where a1, a2, . . . , am ∈ Rn, b1, b2, . . . , bm ∈ R, and x = (x1, . . . , xn) is a vector of n variables.

Definition 3.1.1. (Feasibility) We say x ∈ Rn is a feasible solution for an integer program if x satisfies

15

CHAPTER 3. MATHEMATICAL PROGRAMMING 3.1. INTEGER PROGRAMMING

all the constraints of the program.

The set of all feasible solutions to a mathematical program is called the feasible region. If this region is

nonempty, then the mathematical program is feasible, else, it is infeasible.

We use Max-Cut as an example throughout the thesis. In this section, we define and prove the integer

formulation of Max-Cut.

Recall that Max-Cut is a combinatorial optimization problem that takes an instance of a graph as input.

Any partition S ⊆ V is a feasible solution and the goal is to maximize the size of the edge cut.

Lemma 3.1.1. The integer program formulation of Max-Cut is as follows:

maximize
∑
e∈E

ze

subject to ze ≤ xi + xj ,∀e = ij ∈ E (constraint 1)

ze ≤ 2− (xi + xj),∀e = ij ∈ E (constraint 2)

ze ∈ {0, 1},∀e ∈ E (constraint 3)

xi ∈ {0, 1},∀i ∈ V (constraint 4)

(3.2)

Proof. Let S be a random partition of V , that is a subset of V where the elements are randomly chosen

from V . We define the indicator variables xi ∈ {0, 1} and ze ∈ {0, 1} to be:

xi =

0 if i /∈ S

1 if i ∈ S
ze =

0 if e /∈ δ(S)

1 if e ∈ δ(S)

(⇒) We want to show that every feasible solution for Max-Cut is also feasible for the integer formulation.

Suppose we have an instance of a graph G = (V,E) and a partition of vertices S and correspondingly, V \S.

Let xi = 1 if i ∈ S and 0, otherwise.

Suppose we have an edge e such that e = ij ∈ δ(S). In other words, the vertices i, j are not both in S

or not both in V \S. Then we have xi + xj = 1 and 2 − (xi + xj) = 1, meaning that ze = 1 or ze = 0 by

constraints 1 and 2. Since we aim to maximize the size of this cut, we take the large value of ze = 1. This

effectively adds 1 to the objective function for ever edge e ∈ δ(S).

Now consider e = ij /∈ δ(S). One of constraints 1 and 2 will be 0, hence ze will be 0. This adds 0 to the

objective function for every edge that is not cut as needed.

(⇐) We begin with an optimal solution to the integer program, and show that it maps to an edge cut

where the size of the edge cut is the value of the objective function.

16

CHAPTER 3. MATHEMATICAL PROGRAMMING 3.2. RELAXATIONS AND INTEGRALITY GAP

Suppose we are given x′is and z′es that are optimal to the integer program. Define S = {i ∈ V |xi = 1}.
Now all we need to show is

∑
e∈E

ze = |δ(S)|.

Let e = ij ∈ δ(S). Without loss of generality, we have i ∈ S, j /∈ S and xi 6= xj . Then xi + xj =

2 − (xi + xj) = 1, and ze = 1, since this is the optimal solution. Now consider ij /∈ δ(S), then i, j ∈ S

or i, j ∈ V \S. In either case, one of constraints 1, 2 is equal to 0, meaning that ze = 0. Thus, we have∑
e∈E

ze = |δ(S)|.

3.2 Relaxations and Integrality Gap

Solving integer programs exactly can be difficult. Practically, it makes more sense to find good approximation

to solutions fast rather than to spend lots of time finding exact solutions. Relaxations of mathematical

programs allow for more solutions by “relaxing” some of the constraints of the mathematical program.

Definition 3.2.1. (Relaxations) Let M be any mathematical program. A relaxation of M , denoted MR,

is any mathematical program where all feasible solutions to M are also feasible to MR.

In general, the feasible region of a relaxation is a superset of the feasible region of the original program.

Lemma 3.2.1. If minimization or maximization problem MR is a relaxation to minimization or maximization

problem M , and I is any instance to the problem M , then OPTM (I) ≥ OPTMR
(I) or OPTM (I) ≤

OPTMR
(I), respectively. Where OPTMR

(I) and OPTM (I) are optimal values for MR and M respectively

[21].

Proof. Since the feasible region for MR contains the feasible region of M , MR contains at least the optimal

solution for M and possibly more. Hence we have OPT (M) ≥ OPT (MR) for minimization problems, and

OPT (M) ≤ OPT (MR) for maximization problems.

As relaxations allow more feasible solutions, the optimal solution of a relaxation might not be feasible for

the original. A natural question is how close is the relaxed optimal solution to the original optimal solution?

The answer to this is what is known as an integrality gap. Since we only work with combinatorial problems in

this thesis, we define what integrality gap means for a formulation of a combinatorial optimization problems.

Definition 3.2.2. (Integrality Gap) Let M be a formulation for a combinatorial optimization problem, and

MR be any relaxation to M . Denote OPTM (I) to be the optimal value of M on instance I, and OPTMR
(I)

17

CHAPTER 3. MATHEMATICAL PROGRAMMING 3.2. RELAXATIONS AND INTEGRALITY GAP

the optimal value of MR on instance I. The integrality gap (IG) of MR is defined as

IG :=


sup
I

OPTM (I)

OPTMR
(I)

, for minimization problems

inf
I

OPTM (I)

OPTMR
(I)

, for maximization problems

We use supremum and infinmum because the maximum and the minimum might not exist.

3.2.1 Linear Programming

A linear program consists of optimizing a linear objective function subject to linear constraints. Notice

that a linear program is similar to an integer program except it does not have the constraint that requires

solutions to be integers. This allows feasible solutions to be any real number.

Remark. Every integer program can be relaxed into a linear program by removing the integrality constraint.

Here is a brief justification. Let M be an integer program, let MR be the relaxation of M where the

integer constraint is removed. We want to show that every feasible solution to M is also feasible to MR. Let

x be any arbitrary solution to M , x is also a solution to MR as it satisfies all the same constraints of MR.

For example, we have the linear program relaxation of Max-Cut.

maximize
∑
e∈E

ze

subject to ze ≤ xi + xj ,∀e = ij ∈ E (constraint 1)

ze ≤ 2− (xi + xj),∀e = ij ∈ E (constraint 2)

ze ∈ [0, 1],∀e ∈ E (constraint 3)

xi ∈ [0, 1],∀i ∈ V (constraint 4)

(3.3)

This linear program is similar to the integer formulation except for the integer contraints. Now we have

solutions that can be all real numbers between 0 and 1.

Lemma 3.2.2. The size of the edge cut |δ(S)| induced by any partition S ⊆ V of a clique is |S| · |V \S|.

Proof. Suppose we have any arbitrary partition S ⊆ V of a clique Kn. For each vertex i in S, we know that

it is connected to all other vertices. Moreover, it is connected to all vertices in V \S. Hence the number of

edges cut for vertex i is how many vertices are in V \S, namely the size, |V \S|. This is true for all vertices

in S, thus we have that the size of the edge cut produced by any S is |S| · |V \S|.

18

CHAPTER 3. MATHEMATICAL PROGRAMMING 3.2. RELAXATIONS AND INTEGRALITY GAP

Lemma 3.2.3. The maximum cut of a clique with n vertices, Kn has value at most
n2

4
.

Proof. Given a clique Kn, we want to show that if δ(S) is a maximum cut for Kn induced by S, then

|δ(S)| ≤ n2

4
.

Let s = |S|, then n − s = |V \S|. From Lemma 3.2.2., we can define a function for the size of the edge

cut with respect to the size of the partition S. Let f(s) = s(n − s), where f(s) is the size of the edge cut

induced by S. Now we can find the maximum of this function with respect to s. f ′(s) = n − 2s, we have

critical points at s = n
2 . Since f(s) is a concave parabola, f(n2) = n

2 (n− n
2) = n2

4 must be the maximum.

Theorem 3.2.1. The linear program relaxation of Max-Cut has integrality gap less or equal to 1
2 .

Proof. Since the claim states the integrality gap is less or equal to 1
2 , it suffices to find one instance of a

graph where this holds true.

Consider a clique Kn. We know from Lemma 3.2.3. that it has optimal value less or equal to n2

4 . Consider

the feasible solution xi = 1
2 , ze = 1, this clearly satisfies all the constraints of the linear program relaxation

of Max-Cut. Moreover, this produces a value of
(
n
2

)
= n(n−1)

2 . Now we use the definition of the integrality

gap, define I to be an instance of a graph. Let M denote the integer program of Max-cut, and MR denote

the linear relaxation of Max-Cut with the integer constraint removed.

IG = inf
I

OPTM (I)

OPTMR
(I)

≤ inf
n

OPTM (Kn)

OPTMR
(Kn)

≤ inf
n

n2

4
n(n− 1)

2

≤ 1

2
.

So the integrality gap of the Max-Cut integer formulation and its linear program relaxation if at most 1
2 .

One important reason to relax integer programs into linear programs is that linear programs can be

solved fast due to their convexity property.

19

CHAPTER 3. MATHEMATICAL PROGRAMMING3.3. CONVEXITY OF MATHEMATICAL PROGRAMS

3.3 Convexity of Mathematical Programs

Convex mathematical programs have important properties that we discuss in this section. We first define

what it means for sets, and vectors in Rn to be convex.

Definition 3.3.1. (Set Convexity) A set A ∈ Rn is called convex if for every x1, x2 ∈ A, θx1+(1−θ)x2 ∈ A
for all θ ∈ [0, 1]. In other words, every convex combination of elements in A is also an element in A.

Definition 3.3.2. x ∈ Rn is a convex combination of vectors {w(i)}; if there exist non negative {λi}i, with∑
i

λi = 1 and x =
∑
i λiw

(i).

We define half-space H := {x ∈ Rn : aTx + b ≤ 0}, for a ∈ Rn and b ∈ R. Note that this is the feasible

region for a mathematical program with constraints aTx+ b ≤ 0.

Lemma 3.3.1. All half-spaces are convex.

Proof. Let H = {x ∈ Rn : aTx + b ≤ 0} be a half-space. Let x1, x2 ∈ H, then we have a ∈ Rn, b ∈ R such

that aTx1 + b ≤ 0, and aTx2 + b ≤ 0. Consider θx1 + (1 − θ)x2 for some θ ∈ [0, 1]. We want to show that

aT
[
θx1 + (1− θ)x2

]
+ b ≤ 0:

aT
[
θx1 + (1− θ)x2

]
+ b

=θaTx1 + (1− θ)aTx2 + b

≤θ(−b) + (1− θ)(−b) + b

=− θb− b+ θb+ b

=0

Lemma 3.3.2. For every convex sets A,B ⊆ Rn, the set A ∩B is convex.

Proof. Let A,B be convex sets, let x1, x2 ∈ A∩B. We want to show that for all θ ∈ [0, 1], θx1 + (1− θ)x2 ∈
A ∩B.

Since x1, x2 ∈ A ∩ B, we have x1, x2 ∈ A and x1, x2 ∈ B. By definition, θx1 + (1 − θ)x2 ∈ A and

θx1 + (1− θ)x2 ∈ B for all θ ∈ [0, 1]. Hence we have θx1 + (1− θ)x2 ∈ A ∩B as needed.

Corollary 3.3.0.1. The feasible region of linear programs are convex sets.

20

CHAPTER 3. MATHEMATICAL PROGRAMMING 3.4. QUADRATIC PROGRAMS

Proof. Constraints of linear programs are in the form aix ≤ bi, where ai ∈ Rn, and b ∈ R. The feasible x’s

form a half-space by definition, hence, the feasible region of linear programs are intersections of half-spaces.

By Lemma 3.3.2 and Lemma 3.3.1, the intersections of half-spaces are convex, and thus the feasible region

of linear programs are convex.

Definition 3.3.3. (Function Convexity) A function f : Rn → R is called convex if for every x1, x2 ∈ Rn,

we have f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) for all λ ∈ [0, 1].

Here is an important definition regarding mathematical programs:

Definition 3.3.4. (Mathematical Program Convexity) A mathematical program is called convex if its

objective function is convex, and its feasible region is convex.

Lemma 3.3.3. Linear and affine functions are convex.

Proof. Let f(x) = ax + b, where a, b ∈ R and x ∈ Rn. We want to show that for all λ ∈ [0, 1], and any

x1, x2 ∈ Rn: f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

f(λx1 + +(1− λ)x2) = a(λx1 + (1− λ)x2) + b

= λax1 + (1− λ)ax2 + b

= λax1 + (1− λ)ax2 + b+ λb− λb

= λax1 + λb+ (1− λ)ax2 + b− λb

= λf(x1) + (1− λ)f(x2)

Theorem 3.3.1. All linear programs are convex.

Proof. We want to show that for any linear program, the set of feasible solutions and the objective function

are convex. By Lemma 3.3.3, and Corollary 3.3.0.1, we have that all linear programs are convex.

3.4 Quadratic Programs

Definition 3.4.1. (Quadratic Program) A quadratic program is mathematical program that has constraints

constant, linear or quadratic, and a quadratic objective function.

21

CHAPTER 3. MATHEMATICAL PROGRAMMING 3.4. QUADRATIC PROGRAMS

Definition 3.4.2. (Quadratic Formulation) Let f, gi : Rn → R be quadratic functions. Let xT = (x1, x2, · · · , xn).

A quadratic program can be written as:

maximize f(x)

subject to gi(x) = bi, i = 1, · · · ,m
(3.4)

Theorem 3.4.1. Any quadratic program can be written in the following form, let F,Gi be symmetric n× n
matrices:

maximize 〈F,X〉

subject to 〈Gi, X〉 = bi, i = 1, · · · ,m

X = xxT , xT = (1, x1, · · · , xn)

(3.5)

Proof. This is true by Lemma 2.1.2

The linear relaxation of Max-Cut does not give the best integrality gap. The relaxation of the quadratic

formulation of Max-Cut provides a much better integrality gap as we will see in later Chapters.

Corollary 3.4.1.1. Any quadratic program with equality constraints on n variables can be written in the

following form:

maximize 〈F,X〉

subject to 〈Gi, X〉 = bi, i = 1, · · · ,m

X � 0, X ∈ Rn×n

rank(X) = 1

(3.6)

Proof. See Corollary 2.1.2.1.

Using Theorem 3.4.1, we can formulate the quadratic program of Max-Cut by the following:

Let x =
[
x1 · · · xn

]
. Let X = xxt


x21 · · · x1xn

x2x1 · · · x2xn
... · · ·

...

xnx1 · · · x2n

.

Define the coefficient matrix F as the following: For every edge ij ∈ E, let the ijth and jith entries of F

be − 1
2 , and the iith, jjth entires be 1

4 .

Let Gi be an n× n matrix where all entries are 0, except (Gi)ii = 1.

Finally, b is an n× 1 vector of all 1’s.

22

CHAPTER 3. MATHEMATICAL PROGRAMMING 3.5. SEMI-DEFINITE PROGRAMMING

We write the quadratic formulation of Max-Cut in function form for simplicity by expanding the inner

products, 〈F,X〉 and 〈Gi, X〉.

maximize
∑
ij∈E

(xi − xj)2

4

subject to x2i = 1,∀i ∈ V

(3.7)

We show that this is indeed the formulation of Max-Cut by showing that a solution is feasible and optimal

for Max-Cut if and only if it is also feasible for this formulation.

Proof. Let xi = 1 if i ∈ S, and −1 if i ∈ V \S, then this satisfies the constraint x2i = 1. Consider an arbitrary

edge {i, j} ∈ E, if xi 6= xj , then the edge {i, j} is cut. We want to check if the objective function counts one

whenever xi 6= xj and 0 otherwise.

Clearly,
(xi − xj)2

4
= 1 whenever xi 6= xj , and 0 otherwise.

Now suppose we have a solution of xi’s to the quadratic program. Let S := {i ∈ V |xi = 1}. Since xi’s

are an optimal solution, clearly it provides us with an optimal S.

3.5 Semi-Definite Programming

Definition 3.5.1. (Semi-Definite Programs) A semi-definite program is any optimization problem of the

following form:

inf
X

〈F,X〉

subject to 〈Gi, X〉 = bi, i = 1, · · · ,m

X � 0, X ∈ Rn×n,

(3.8)

where F,Gi ∈ Rn×n are given symmetric, constant matrices.

Theorem 3.5.1. All quadratic programs can be relaxed to a semi-definite program.

Proof. Let Q be a quadratic program. Consider the same mathematical program with the constraint

rank(X) = 1 removed, call this program QR. We want to show that QR is the semi-definite relaxation

of Q. Clearly, QR allows more solutions including X’s of rank 1. Hence QR is a semi-definite relaxation of

Q.

An alternative way to write a semi-definite program is by replacing the variables with inner products

of vectors. Max-Cut is one example where its semi-definite relaxation is actually in the form of a vector

program.

23

CHAPTER 3. MATHEMATICAL PROGRAMMING 3.5. SEMI-DEFINITE PROGRAMMING

Definition 3.5.2. (Vector Program) A vector program is a mathematical program where variables are

inner products of vectors.

Corollary 3.5.1.1. Every semi-definite program can be written as a vector program.

Proof. Since X � 0, we know there exist vectors xi, xj such that X = 〈xi, xj〉. Thus we can write the

variables as an inner product of vectors.

Theorem 3.5.2. The following is a relaxation of the quadratic program for Max-Cut into a semi-definite

program:

maximize
∑
ij∈E

‖vi − vj‖2

4

subject to ‖vi‖2 = 1,∀i ∈ V

vi ∈ R|V |,∀i ∈ V

(3.9)

Proof. We see how to get this objective function from the quadratic program. We begin with (xi − xj)2 =

x2i − 2xixj − x2j = Xii − 2Xij − Xjj . Since X � 0, there exist vectors vi, vj such that this is same as:

〈vi, vi〉 − 2〈vi, vj〉 − 〈vj , vj〉, using the definition of linear product we have 〈vi − vj , vi − vj〉 = ‖vi − vj‖2. By

relaxing the integer constraint to n-dimensions, we allow feasible solutions to be n-dimensional vectors as

well as one dimensional integers.

24

Chapter 4

Generalization of Max-Cut

In this Chapter, we define a variation of Max-Cut we call Generalized Max-Cut. We also formulate a

quadratic program for Generalize Max-Cut and relax it into a semi-definite program.

Definition 4.0.1. (Generalized Max-Cut) Fix two real numbers a, b ∈ R such thata > 0

−a < b < a

Let G = (V,E) be a graph, and f(S) : S ⊆ V → R be defined as f(S) = a|δ(S)| − b|E − δ(S)|. Generalized

Max-Cut is the problem of finding the maximum value of the function f(S).

4.1 Formulation of Generalized Max-Cut

We formulate Generalized Max-Cut as follows:

maximize a
∑
ij∈E

(yi − yj)2

4
− b

∑
ij∈E

(yi + yj)
2

4

subject to y2i = 1, ∀i ∈ {1, . . . , n} = V

(4.1)

We prove that this is indeed a formulation for Generalized Max-Cut by showing that any feasible solution

for the definition is also feasible for the formulation, and vice versa. We also show that the value of the

solutions are equal to each other.

Suppose we have a graph G = (V,E), and a S ⊆ V such that for any other S′ ⊆ V , |δ(S)| ≥ |δ(S′)|.

25

CHAPTER 4. GENERALIZATION OF MAX-CUT 4.2. SIMPLIFICATION-OBJECTIVE FUNCTION

Define

yi =

1, if i ∈ S

−1, if i /∈ S.

What we want to show now is that
∑
ij∈E

(yi − yj)2

4
= |δ(S)|, and

∑
ij∈E

(yi + yj)
2

4
= |E − δ(S)|.

Let ij be an arbitrary edge. If it is cut, or it does not have both vertices in the same set, then yi 6= yj .

In this case, we have that
(yi − yj)2

4
= 1, and

(yi + yj)
2

4
= 0.

Now suppose ij is not cut. Then yi = yj , and we have that
(yi − yj)2

4
= 0, and

(yi + yj)
2

4
= 1.

Since we are taking the summation over all the edges, it is clear that the objective function will give the

total number of edges that are cut multiplied by a, minus the number of uncut edges multiplied by b. Thus

we have shown that
∑
ij∈E

(yi − yj)2

4
= |δ(S)|, and

∑
ij∈E

(yi + yj)
2

4
= |E − δ(S)|.

4.2 Simplification-Objective Function

We simplify the objective function of the above formulation for easier analysis in later Chapters.

a
∑
ij∈E

(yi − yj)2

4
− b

∑
ij∈E

(yi + yj)
2

4

=a
∑
ij∈E

y2i − 2yiyj + y2j
4

− b
∑
ij∈E

y2i + 2yiyj + y2j
4

Since our constraint in the formulation above states that y2i = 1,∀i ∈ V

=
∑
ij∈E

a(1− 2yiyj + 1)

4
−
∑
ij∈E

b(1 + 2yiyj + 1)

4

=
∑
ij∈E

[
a

2
− ayiyj

2

]
−
∑
ij∈E

[
b

2
+
byiyj

2

]

Now combining the summation gives us:

=
∑
ij∈E

[
a

2
− ayiyj

2
− b

2
− byiyj

2

]

=
∑
ij∈E

[
1

2
(a− b)− 1

2
(a+ b)yiyj

]

26

CHAPTER 4. GENERALIZATION OF MAX-CUT 4.3. RELAXATION

The formulation we will be using from here on will be the following quadratic program of Generalized

Max-Cut:

maximize
∑
ij∈E

[
1

2
(a− b)− 1

2
(a+ b)yiyj

]
subject to y2i = 1, ∀i ∈ {1, . . . , n} = V

(4.2)

4.3 Relaxation

In this section we relax the quadratic formulation of Generalized Max-Cut into a vector program. We use

the same techniques as in Chapter 3 when we relaxed Max-Cut into a vector program. We state the vector

program of Generalized Max-Cut without a rigorous proof. We briefly explain that it is indeed a relaxation

of the quadratic formulation of Generalized Max-Cut.

Theorem 4.3.1. The vector relaxation of Generalized Max-Cut is as follows:

maximize
∑
ij∈E

[
1

2
(a− b)− 1

2
(a+ b)〈vi, vj〉

]
subject to ‖vi‖ = 1, i = 1, . . . , n = |V |

vi ∈ Rn, i = 1, . . . , n.

(4.3)

Proof. Since feasible solutions are now in Rn, it will contain the integer solutions as well. Hence this is a

relaxation of the quadratic problem.

Theorem 4.3.2. The semi-definite relaxation of Generalized Max-Cut is a convex program.

Proof. The semi-definite program of Generalized Max-Cut is a linear program with the added constraint

X � 0. Thus we only need to show that the set C = {X ∈ Rn×n|X � 0} is convex.

Let λ ∈ [0, 1], we want to show that for any Xi, Xj ∈ C, we have λXi + (1 − λ)Xj ∈ C. Since each

Xi � 0, we know that vXiv
T ≥ 0 for all v ∈ Rn, so it is enough to show that v[λXi + (1− λ)Xj]v

T ≥ 0.

v[λXi + (1− λ)Xj]v
T = vλXix

T + x(1− λ)Xjv
T

= λvXiv
T + (1− λ)vXjv

T

≥ 0

27

Chapter 5

Algorithms

An algorithm is a step-by-step method for solving a problem. Many types of algorithms are designed to

not only solve problems, but to solve them as efficiently and exactly as possible [7]. However, many problems

do not have an efficient algorithm that outputs an exact solution [7]. We therefore aim to design algorithms

that output approximate solutions. In this section, we discuss various approximation algorithms and their

run-time.

5.1 Approximation Algorithms

Suppose M is an optimization problem, let I be an instance to M . We denote the optimal value of

this problem on instance I to be OPTM (I). Let A be any algorithm, we denote SOLAM (I) to be the value

achieved by A on instance I.

Definition 5.1.1. (Approximate Algorithm) For maximization problems: An algorithm is called an

approximation algorithm if there is a real number α ∈ [0, 1] such that for all instances I, then SOLAM (I)

is at least α ·OPTM (I).

Note that when α = 1, then SOLAM (I) = OPTM (I) meaning we have found the exact optimal solution.

Hence, we want to design algorithms where α is as close to 1 as possible.

All algorithms must terminate at some step and return with an output. The run-time of an algorithm

is the number of steps an algorithm takes to terminate. We call an algorithm A efficient if it terminates

within a polynomial number of steps with respect to the size of the input.

The inputs we work with in this thesis are all graphs, so it is useful to define explicitly what this means

for graphs. We define the size of a graph G = (V,E) to be the number of vertices, denoted by |V |. A

28

CHAPTER 5. ALGORITHMS 5.2. EXPECTED VALUE OF GENERALIZED MAX-CUT

graph has vertices and edges, hence the storage required is larger than |V |. However, the number of edges

is at most
(
n
2

)
, which is polynomial with respect to |V |, meaning the algorithms used still terminate in a

polynomial number of steps with respect to the size of the input.

5.2 Expected Value of Generalized Max-Cut

All algorithms presented in this thesis use randomness. The solutions given by these algorithms on a

fixed instance vary each time due to randomness, so we replace the value of the solution of an algorithm on

a given problem with its expected value.

Suppose we are given a G = (V,E), and a randomly chosen S ⊆ V . Define random variables, Yi, where

i ∈ V such that Yi = 1 if i ∈ S

Yi = −1 otherwise

Lemma 5.2.1. The expected performance of any randomized algorithm on Generalized Max-Cut can be

calculated using: ∑
ij∈E

[
1

2
(a− b)− 1

2
(a+ b)E

[
YiYj

]]

Proof. We use the simplified version of the objective function as presented in Section 4.2.

If X is the value of any feasible solution to the formulation of Generalized Max-Cut, then we have that:

X =
∑
ij∈E

[
1

2
(a− b)− 1

2
(a+ b)YiYj

]

We want to find E[X]:

E[X] = E
[∑
ij∈E

1

2
(a− b)− 1

2
(a+ b)YiYj

]

Using linearity of expectation function, we have that:

=
∑
ij∈E

E
[

1

2
(a− b)− 1

2
(a+ b)YiYj

]

=
∑
ij∈E

[
1

2
(a− b)− 1

2
(a+ b)E

[
YiYj

]]

29

CHAPTER 5. ALGORITHMS 5.3. P 6= NP

The only variation between different algorithms is the expected value E
[
YiYj

]
, which will be calculated

separately in each analysis.

5.3 P 6= NP

P 6= NP is a famous conjecture that holds relevance in many fields of research. In this section, we

focus on the importance of P 6= NP in computational complexity theory. We begin with an introduction to

computational complexity theory, defining what the sets P and NP are, and their implications on Max-Cut.

Computational complexity classifies problems by the difficulty of their solvability [18]. In most cases, the

difficulty of a problem is quantified by how much time or space is required to solve the problem.

We say that a problem can be solved efficiently or fast if it can be solved in a polynomial number of

steps with respect to the size of the input to the problem. Every problem we have encountered so far is a

combinatorial optimization problem, and in most cases can be reduced to a decision problem.

Definition 5.3.1. (Decision Problem) A decision problem is a problem to which the answer is either yes

or no.

P is defined as the set of decision problems that can be answered fast [18]. NP is the set of decision

problems whose solutions can be verified fast. It is important to note that the solutions for the problems in

NP are not required to be found fast.

The decision version of Max-Cut is a problem in NP . Given a graph G = (V,E) and an integer k ∈ Z,

is there a partition of V that induces an edge cut set of at least size k?

Theorem 5.3.1. The optimization version of Max-Cut can be solved fast if and only if the decision version

of Max-Cut can be solved in polynomial time with respect to the size of the input.

Proof. We show that if the optimization version of Max-Cut can be solved fast, then so can be decision

version, and vice versa. Suppose we can find the size of the largest edge cut on a given graph fast. Then on

input G = (V,E) and k, return yes if k is less or equal to the largest size, and no, otherwise.

Now suppose we have an algorithm D that runs in polynomial time with respect to the size of the input:

G = (V,E), k and outputs yes if there is a an edge cut in G of size at least k, and no, otherwise. Consider

the following algorithm:

30

CHAPTER 5. ALGORITHMS 5.4. ALGORITHM ANALYSIS

1 for i = 1, · · · , |V |, do:

2 run D on (G, i)

3 if D returns no:

4 return i− 1

5 end

Clearly, this algorithm runs in polynomial time with respect to |V |. This algorithm checks to see if there

is a cut of size i and increase i by 1 each time until there is no cut of size i, meaning the previous size is the

largest cut.

Max-Cut is a problem in NP because we can verify any proposed solutions fast. Suppose we are given a

graph G = (V,E), an integer k and a partition of vertices S ⊆ V . It is easy to count how many edges are cut

by the partition S, and to check if that number is greater or less than the integer k. What makes Max-Cut

interesting is that moreover, Max-Cut is NP -hard, meaning that all problems in NP can be reduced to

Max-Cut in polynomial time. This NP -hard property indicates that if we can solve Max-Cut in polynomial

time, then we can solve every problem in NP in polynomial time, effectively proving that P = NP .

We assume the conjecture P 6= NP in this thesis, hence the integer formulation of Max-Cut cannot be

solved fast. However, the relaxations of Max-Cut can be solved fast due its convexity property. Algorithms

such as the Ellipsoid Method are capable of solving problems fast precisely due to the fact that they are

convex . Hence relaxation are a useful tool for our analysis.

5.4 Algorithm Analysis

We analyze the values of solutions returned by running approximation algorithms using the definition of

approximation algorithms. Recall that for any approximation algorithm A, there exist some α ∈ [0, 1] such

that SOLMA ≥ αOPTM for some maximization problem M . We rearrange this inequality to
SOLM

A

OPTM
≥ α.

If this inequality holds for all instances to M , then α can be referred to as the α approximation ratio of

algorithm A.

We redefine the above notations and definitions to be specific to Generalized Max-Cut as it is the only

problem we will be analyzing. Recall that Generalized Max-Cut is a maximization problem whose instances

are graphs.

Denote OPT (G) to be the optimal value of Generalized Max-Cut for any graph G, and E[SOLA(G)] to be

the expected value of the solution of Generalized Max-Cut obtained by running randomized algorithm A on

an instance G. If we can show that E[SOLA(G)]
OPT (G) ≥ E[SOLA(G)]

REL(G) , then we can claim that A is an α-approximation

algorithm, where E[SOLA(G)]
REL(G) ≥ α for some α ∈ [0, 1]. We can also claim that the relaxation of Generalized

Max-Cut has integrality gap at least α. Some interesting observations for maximization problems:

31

CHAPTER 5. ALGORITHMS 5.4. ALGORITHM ANALYSIS

1. Linear relaxations, and semi-definite programs can be solved fast, in other words in polynomial-time

with respect to the size of the input. Methods such as the Ellipsoid method can solve such programs

fast due to the convexity property [7].

2. On any given graph G, we have that REL(G) ≥ OPT (G).

3. On any given graph G and approximation algorithm A, we have that E[SOLA(G)] ≤ OPT (G)

Figure 5.1: Ratio Scale

Figure 5.1 roughly (not to scale) shows the relationship between an optimal solution, a relaxed optimal

solution and an approximated solution for a maximization problem. The relaxation allows more feasible

solutions, hence the value of its optimal solution is at least the the value of the optimal one. The approximated

value is more than the optimal value. We claim that E[SOLA(G)]
OPT (G) ≥ E[SOLA(G)]

REL(G) for some graph G. By showing

that Ratio1 is not too big, we also show that the Ratio2 is not too big. Similarly for the IG , which is at

most equal to Ratio1. From Theorem 3.2.1, we can claim that the linear program relaxation of Max-Cut is

bound to emit an approximation algorithm that cannot perform better than 1
2 times the optimal value.

In addition to the ratio comparison, we also analyze the difference comparison between the relaxed optimal

value and the approximated value of Generalized Max-Cut. We will see in later Chapters that the ratios

obtained are not always valid, hence it makes sense to use alternative ways such as difference comparison to

analyze the algorithms used. We use the formula E[SOLA(G)]−OPT (G) to calculate the difference for the

algorithms presented.

32

Chapter 6

Sahni and Gonzales

Since the introduction of Max-Cut, the best approximation algorithm has been a trivial algorithm that

had no dependency on input. This algorithm was introduced in 1976 by Sartaj Sahni and Teofilo Gonzalez

in their paper P-Complete Approximation Problems [20]. We run this algorithm on Generalized Max-Cut

for a reference on how much of an improvement other algorithms are in later Chapters.

6.1 1
2-Approximation Algorithm

In this section, we find the approximate ratio of Generalized Max-Cut and the Coin Flip algorithm to be
1 + k

2
. We label this algorithm to be CF (Coin Flip). On input graph G = (V,E) and (a, b):

Algorithm 1: CF

1 let S = ∅
2 for each i ∈ V , do:

3 add i to S with 1
2 probability

4 leave i as it is in V with 1
2 probability

5 end

We calculate the expected performance of this algorithm on our problem, Generalized Max-Cut as follows:

Lemma 6.1.1. The expected performance of the Coin Flip algorithm on Generalized Max-Cut is
∑
ij∈E

[
1

2
(a−

b)

]
.

33

CHAPTER 6. SAHNI AND GONZALES 6.1. 1
2 -APPROXIMATION ALGORITHM

Proof. Using Theorem 2.1, we calculate E[YiYj]:

ESG[YiYj] = (1)Pr
[
yi = yj

]
− Pr

[
yi 6= yj

]
= (1)Pr

[
yi = yj

]
− (1− Pr

[
yi = yj

]
)

=
1

2
− (1− 1

2
)

= 0

By Lemma 3.1, the expected performance of the Coin Flip algorithm on Generalized Max-Cut is:

∑
ij∈E

[
1

2
(a− b)− 1

2
(a+ b)E

[
YiYj

]]

=
∑
ij∈E

[
1

2
(a− b)− 1

2
(a+ b)(0)

]

=
∑
ij∈E

[
1

2
(a− b)

]

We calculate the comparative ratio of Generalized Max-Cut and the approximated value by the Coin

Flip algorithm. As
∑
ij∈E

[
1

2
(a − b)

]
has no dependency on the edges ij, we write it as

[
1

2
(a − b)

]
|E|,

where |E| is the number of edges in the input graph G. Recall that the value of Generalized Max-Cut is∑
ij∈E

[
1

2
(a − b) − 1

2
(a + b)yiyj

]
, the optimal value is at most when every edge is cut. When yiyj = −1

for all ij ∈ E, we have

[
1

2
(a − b) +

1

2
(a + b)

]
|E|. On input G = (V,E) and (a, b), we have the relation

OPT (G) ≤
[

1

2
(a− b) +

1

2
(a+ b)

]
|E|, where OPT (G) is the optimal value of Generalized Max-Cut on input

graph G and (a, b).

We scale (a, b) to one variable k = − b
a

for simplicity. The expected performance of the Coin Flip

algorithm on Generalized Max-Cut,
1

2
(a− b)|E| is rewritten as

a

2
(1+k)|E|, and the optimal value is at most[

a

2
(1 + k) +

a

2
(1− k)

]
|E| = a|E|.

We calculate approximate ratio using the expected performance of the Coin Flip algorithm on Generalized

Max-Cut, and the value obtained from solving the semi-definite program of Generalized Max-Cut.

Theorem 6.1.1. The approximate ratio of Generalized Max-Cut and the Coin Flip algorithm is
1 + k

2
.

34

CHAPTER 6. SAHNI AND GONZALES 6.1. 1
2 -APPROXIMATION ALGORITHM

Proof. Let E[SOLCF (G)] be the expected performance of the Coin Flip algorithm of Generalized Max-Cut

on input G = (V,E), and (a, b). Let OPT (G) be the optimal value of Generalized Max-Cut on the same

input. Let k = − b
a

, we have:

E[SOLCF (G)]

OPT (G)
≤ E[SOLCF (G)]

a|E|

=

a

2
(1 + k)|E|

a|E|

=
1 + k

2

35

Chapter 7

Goemans and Williamson

In 1995, a breakthrough was made by Michel X. Goemans and his student David P. Williamson [9]. A

0.878 approximation algorithm for Max-Cut was published, this algorithm involves solving a relaxation of

Max-Cut and randomized rounding. In this chapter, we closely follow their paper, and run their algorithm

and analysis on Generalized Max-Cut.

7.1 Hyperplane Rounding Algorithm

The logistics of the Hyperplane Rounding (HR) algorithm involves solving the relaxation of Generalized

Max-Cut to get a set of feasible vectors to the vector program. Let G = (V,E) be the input, and

{vi : i = 1, · · · , n = |V |} be a feasible solution to the relaxation of Generalized Max-Cut on input G. We

map these vectors to an n-dimensional unit sphere, and pick a random vector r on the n-dimesional sphere.

We round each vector vi to 1 if vi · r ≥ 0, and −1, otherwise. This algorithm is referred to as the Hyperplane

Algorithm because it produces a partition of the vertices induced by a random hyperplane whose normal is

r[9]. The actual algorithm is as follows, on input G = (V,E):

Algorithm 2: HR

1 let S = ∅
2 solve the relaxation of Generalized Max-Cut to get a set of vectors vi.

3 pick a vector r uniformly at random on the n-dimensional unit sphere.

4 for each vi, do:

5 add i to S if vi · r ≥ 0

6 leave i as it is in V if vi · r < 0

7 end

36

CHAPTER 7. GOEMANS AND WILLIAMSON 7.1. HYPERPLANE ROUNDING ALGORITHM

Figure 7.1: HR Algorithm

Although this sphere is n-dimensional, we can project each pair of vectors down onto a two dimensional

circle. Our illustration will demonstrate this in two dimensions. The graph on the right shows a pair of

vectors vi, vj , the randomly picked vector r, and the hyperplane induced by r. In this specific example, vi

and vj are on different sides of the hyperplane, so the edge ij is cut. The mathematical way of looking at

this is for any pair of vectors vi, vj , if not both 〈vi, r〉 ≥ 0 and 〈vj , r〉 ≥ 0 or 〈vi, r〉 < 0 and 〈vj , r〉 < 0, then

the edge ij is cut. The probability of an edge ij being cut is equal to the probability that the randomly

picked r lies in the angle between vi and vj . By symmetry, we only need to consider half of the unit circle.

Thus Pr[ij is cut] = Pr[yi 6= yj] =
θij
π , where θij is the angle between the vectors vi and vj . We calculate

the expected performance of this algorithm on Generalized Max-Cut as follows:

Theorem 7.1.1. The probability of an edge ij being cut using the Hyperplane Rounding algorithm is
arccos 〈vi, vj〉

π
.

Proof. We use the definition of inner products here to justify our theorem.

〈vi, vj〉 = ‖vi‖‖vj‖ cos θij

〈vi, vj〉 = cos θij since ‖vi‖ = 1 ∀i ∈ V

θij = arccos 〈vi, vj〉

Lemma 7.1.1. The expected value of the Hyperplane Rounding algorithm on Generalized Max-Cut is

∑
ij∈E

[
1

2
(a− b)− 1

2
(a+ b)

[
1− 2

arccos〈vi, vj〉
π

]]
.

37

CHAPTER 7. GOEMANS AND WILLIAMSON 7.2. HYPERPLANE ROUNDING ANALYSIS

Proof.

EHR[YiYj] = (1)Pr[Yi = Yj] + (−1)Pr[Yi 6= Yj]

= (1− Pr[Yi 6= Yj])− Pr[Yi 6= Yj]

= 1− 2Pr[Yi 6= Yj]

= 1− 2
arccos 〈vi, vj〉

π

Thus we have the expected value
∑
ij∈E

[
1

2
(a− b) − 1

2 (a+ b)

[
1− 2

arccos〈vi, vj〉
π

]]
as needed.

We simplify the expected value for later analysis.

∑
ij∈E

[
1

2
(a− b)− 1

2
(a+ b)

[
1− 2

arccos〈vi, vj〉
π

]]

=
∑
ij∈E

[
(a− b)

2
−

(a+ b)− 2(a+ b)
arccos〈vi, vj〉

π
2

]

=
∑
ij∈E

[
(a− b)

2
− (a+ b)

2
+

2(a+ b)
arccos〈vi, vj〉

π
2

]

=
∑
ij∈E

[
a− a+ 2b

2
+

(a+ b) arccos〈vi, vj〉
π

]

=
∑
ij∈E

[
− b+ (a+ b)

arccos〈vi, vj〉
π

]
.

7.2 Hyperplane Rounding Analysis

In this section we analyze the ratio comparison and the difference comparison. We replace the integers

a and b with k = − b
a

for simplicity. By the restrictions on a and b, it is easy to see that −1 ≤ k ≤ 1. We

rewrite both the relaxation and the expected value of the Hyperplane Rounding algorithm in terms of k.

38

CHAPTER 7. GOEMANS AND WILLIAMSON 7.2. HYPERPLANE ROUNDING ANALYSIS

The relaxation of Generalized Max-Cut is as follows:∑
ij∈E

[
1

2
(a− b)− 1

2
(a+ b)〈vi, vj〉

]

=
∑
ij∈E

[
1

2
(a+ ak)− 1

2
(a+ (−ak))〈vi, vj〉

]

= a
∑
ij∈E

[
1

2
(1 + k)− 1

2
(1− k)〈vi, vj〉

]

Now we rewrite the expected value:

∑
ij∈E

[
− b+ (a+ b)

arccos 〈vi, vj〉
π

]

=
∑
ij∈E

[
ak + (a+ (−ak))

arccos 〈vi, vj〉
π

]

= a
∑
ij∈E

[
k + (1− k)

arccos 〈vi, vj〉
π

]

7.2.1 Approximation Ratio

We calculate the approximation ratio between the expected performance of the Hyperplane Rounding

algorithm on Generalized Max-Cut, and the value obtained from solving the semi-definite program of

Generalized Max-Cut.

Theorem 7.2.1. On input G = (V,E), and k = − b
a

, where k ∈ [0, 1], the Hyperplane Rounding Algorithm

admits an approximate ratio on Generalized Max-Cut of at least f(k) = (1 − g)k + g, where g is the

Goemans-Williamson’s 0.878 constant.

We find the function f(k) = (1−g)k+g, where g is the Goemans-Williamson’s 0.878 ratio and k ∈ [0, 1],

to be the lower bound function for our approximation ratio.

39

CHAPTER 7. GOEMANS AND WILLIAMSON 7.2. HYPERPLANE ROUNDING ANALYSIS

We compare the ratio of the expected value and the relaxation. Recall that the optimal value of the

relaxation is at least the exact optimal value.

E[SOLHR(G)]

OPT (G)
≥ E[SOLHR(G)]

REL(G)
(1)

=

a
∑
ij∈E

[(
k + (1− k)

arccos 〈vi, vj〉
π

)]
a
∑
ij∈E

[
(
1

2
(1 + k)− 1

2
(1− k)〈vi, vj〉)

] (2)

≥ inf
0≤x≤1

(
k + (1− k)

arccosx

π

)
(

1
2 (1 + k)− 1

2 (1− k)x
) (3)

1. Using the fact that OPT (G) ≤ REL(G).

2. We substitute the expected value of

the Hyperplane Rounding algorithm on

Generalized Max-Cut, given input G, through

some simplification, we see that the constant a

can be cancelled out.

3. Since we know that 〈vi, vj〉 is between 0 and 1,

we aim to find the smallest value this ratio can

obtain to get a lower bound for our analysis.

Figure 7.2: Approximation Ratio

The values of the above ratio are evaluated numerically. We present this result along with a lower bound

function visually in Figure 7.2. Note when a = 1 and b = 0, Generalized Max-Cut becomes Max-Cut and we

obtain the Goemans-Williamson’s 0.878 ratio. Another note is that k is bounded between 0 and 1 instead its

full domain between −1 and 1. This is due to the reason that when k < 0, this ratio may become negative,

40

CHAPTER 7. GOEMANS AND WILLIAMSON 7.2. HYPERPLANE ROUNDING ANALYSIS

it makes no sense to analyze a negative ratio as we require α ∈ [0, 1]. Thus, in this ratio analysis section, we

restrict k ≥ 0, and consider the case k < 0 in the next section using comparative difference.

Figure 7.3: Approximation Ratio Lower Bound Difference

We show that f(k) = (1 − g)k + g is a lower bound by graphing the difference between f(k) and the

evaluated ratio in Figure 7.3. This graph shows the difference between the lower bound function f(k) and the

evaluated ratio is all nonnegative, hence we can claim f(k) to be a fair lower bound for the ratio comparison

equation.

7.2.2 Approximation Difference

When k < 0, the ratio becomes negative, and cannot be analyzed. We will instead calculate and analyze

the comparative difference. In this section, we find the approximate difference to be a|E|(0.1053)(1 − k),

where |E| is the number of edges in E.

Theorem 7.2.2. On input G = (V,E), and k = − b
a

, where k ∈ [−1, 1]. The expected performance of the

Hyperplane Rounding algorithm on Generalized Max-Cut is at most a|E|(−0.1053)(1 − k) away from the

optimal value.

41

CHAPTER 7. GOEMANS AND WILLIAMSON 7.2. HYPERPLANE ROUNDING ANALYSIS

Figure 7.4: Derivative of f(x) =
arccosx

π
+
x

2

E[SOLHR(G)]−OPT (G) ≥ E[SOLHR(G)]−REL(G)

=
∑
ij∈E

[
a
(
k + (1− k)

arccos 〈vi, vj〉
π

)]
−
∑
ij∈E

[
a(

1

2
(1 + k)− 1

2
(1− k)〈vi, vj〉)

]

≥ inf
−1≤x≤1

[
a
(
k + (1− k)

arccosx

π

)
− a
(1

2
(1 + k)− 1

2
(1− k)x

)]
|E|

= a|E| inf
−1≤x≤1

[(
k + (1− k)

arccosx

π

)
−
(1

2
(1 + k)− 1

2
(1− k)x

)]

= a|E| inf
−1≤x≤1

[
k − 1 + k

2
+ (1− k)

(
arccosx

π
+
x

2

)]

= a|E|

[
k − 1 + k

2
+ (1− k) inf

−1≤x≤1

(
arccosx

π
+
x

2

)]

Lemma 7.2.1. inf
−1≤x≤1

(
arccosx

π
+
x

2

)
≈ 0.394743

Proof. First we find the derivative of the function
arccosx

π
+
x

2
. As Figure 7.4 shows, there are four extrema

points, so the derivative gave us four values. We tested each of the x-values, and saw that the minimum

occurs when x = −
√
−4 + π2

π
, which gives us the minimum y-value of 0.394743.

42

CHAPTER 7. GOEMANS AND WILLIAMSON 7.2. HYPERPLANE ROUNDING ANALYSIS

We simplify

[
k − 1 + k

2
+ (1 − k)0.3947

]
to −0.1053 + 0.1053k, thus giving us a final difference of

a|E|(−0.1053)(1− k).

There are specific cases where the Goemans and Williamson constant can be improved upon. In the

following section, we attempt to improve this ratio for a specific instance of Generalized Max-Cut.

43

Chapter 8

2-Dimensional Rounding

Avidor and Zwick showed that the 0.878 ratio can be improved if the relaxation of Max-Cut gave an

optimal solution in low dimensions, especially if the solutions are 2-dimensional[3]. Avidor and Zwick use

an algorithm that runs one of two possible algorithms with probability β. In this section, we describe the

algorithm in detail, and analyze its approximate ratio and difference on Generalized Max-Cut. Moreover,

we improve their algorithm accordingly with the inputs of Generalized Max-Cut.

8.1 Gegenbaur Polynomial Rounding

The Gegenbaur Polynomial Rounding algorithm uses a function f(x) to map the unit vectors of the

solved relaxation to another set of unit vectors and round these new vectors using the Hyperplane Rounding

Algorithm [3]. This is one of the sub-algorithms that will be used in the final algorithm. The Gegenbaur

Polynomial we use is the same one used in the paper by Avidor and Zwick, we call this function f(x), and

define it in the algorithm [3].

Algorithm 3: Gegenbaur Polynomial Rounding (GP)

1 Let f(x) = 8x4 − 8x2 + 1

2 Solve the relaxation of Generalized Max-Cut to get a set of vectors vi.

3 Find vectors u1, . . . un unit vectors such that ui · uj = f(〈vi, vj〉).
4 Pick a vector r uniformly at random on the n-dimensional unit sphere.

5 Round each ui to 1 if r · ui ≥ 0, and −1 if r · ui ≤ 0.

Here is a rough proof of the existence of the unit vectors ui’s. Recall that the constraints of a semi-definite

program is a positive semi-definite matrix. In this section, solving the semi-definition program of Generalized

44

CHAPTER 8. 2-DIMENSIONAL ROUNDING 8.1. GEGENBAUR POLYNOMIAL ROUNDING

Max-Cut will give us a positive semi-definite matrix Mij = 〈vi, vj〉 that has rank 2, the mapping of M with

f will give us another positive semi-definite matrix Nij = 〈ui, uj〉, where 〈ui, uj〉 = f(〈vi, vj〉). Thus

guaranteeing the existence of ui’s. Avidor and Zwick used a convex combination Gegenbauer polynomials

and the fact that f(1) = 1 in their paper to prove the existence of these vectors [3]. Rujuta .S. Joshi proves

in her paper Polynomial Optimization and Discrete Geometry that if X ∈ Rn×n such that X � 0 with

rank at most n, then X ′ � 0, where X ′ij = f(〈xi, xj〉) and f is a Gegebauer polynomial [19]. We use this

result without proof in our thesis. We continue with our analysis of the Gegenbauer Polynomial algorithm

by calculate the probability of an edge being cut using this algorithm.

Lemma 8.1.1. The probability of an edge ij being cut using the Gengenbaur Polynomial Rounding algorithm

is
arccos f(〈vi, vj〉)

π
.

Lemma 8.1.2. The expected value of the Gegenbaur Polynomial Rounding algorithm on Generalized Max-Cut

is
∑
ij∈E

[
a
(
k + (1− k)

arccos f(〈vi, vj〉)
π

)]
.

Proof.

EGP [YiYj] = (1)Pr[Yi = Yj] + (−1)Pr[Yi 6= Yj]

= (1− Pr[Yi 6= Yj])− Pr[Yi 6= Yj]

= 1− 2Pr[Yi 6= Yj]

= 1− 2
arccos f(〈vi, vj〉)

π

This gives us that

∑
ij∈E

[
1

2
(a− b)− 1

2
(a+ b)

[
1− 2

arccos f(〈vi, vj〉)
π

]]

=
∑
ij∈E

[
(a− b)

2
−

(a+ b)− 2(a+ b)
arccos f(〈vi, vj〉)

π
2

]

=
∑
ij∈E

[
(a− b)

2
− (a+ b)

2
+

2(a+ b)
arccos f(〈vi, vj〉)

π
2

]

=
∑
ij∈E

[
a− a+ 2b

2
+

(a+ b) arccos f(〈vi, vj〉)
π

]

=
∑
ij∈E

[
− b+ (a+ b)

arccos f(〈vi, vj〉)
π

]

Substituting k = − b
a

, we have a
∑
ij∈E

[(
k+(1−k)

arccos f(〈vi, vj〉)
π

)]
as the expected value of the Gegenbauer

Polynomial Rounding Algorithm on Generalized Max-Cut .

45

CHAPTER 8. 2-DIMENSIONAL ROUNDING 8.2. 2-DIMENSIONAL ROUNDING ALGORITHM

8.2 2-Dimensional Rounding Algorithm

We combine the above two algorithms using a probability β obtained from Adivor and Zwick’s paper.

Algorithm 4: 2-Dimensinal Rounding (2D)

1 Let β = 0.963322, and 1− β = 0.036678

2 Solve the relaxation of Generalized Max-Cut to get a set of vectors vi.

3 Run the HR algorithm with probability β, and the GP algorithm with probability 1− β.

Lemma 8.2.1. The expected value of the 2-Dimensional Rounding Algorithm is

a
∑
ij∈E

[
k + (1− k)

[
β

(
1− 2

arccos 〈vi, vj〉
π

)
+ (1− β)

(
1− 2

arccos f(〈vi, vj〉)
π

)]]
.

Proof.

E[YiYj] = βEHR + (1− β)EGP
= β arccos 〈vi, vj〉+ (1− β) arccos f(〈vi, vj〉)

= β

(
1− 2

arccos 〈vi, vj〉
π

)
+ (1− β)

(
1− 2

arccos f(〈vi, vj〉)
π

)

Substituting the above expected value into the full equation, we get the following:

a
∑
ij∈E

[
k + (1− k)

[
β

(
1− 2

arccos 〈vi, vj〉
π

)
+ (1− β)

(
1− 2

arccos f(〈vi, vj〉)
π

)]]
as needed.

8.3 Approximation Ratio

In our numerical evaluation of the comparative ratio, we separate parts of the above expected value to

understand it better. Let f(x) = 8x4 − 8x2 + 1, this is the fixed Gegenbauer function obtained from the

algorithm. Let g(x, k) = k + (1 − k)
arccosx

π
, where x ∈ [−1, 1]. This is the expected value of running

the Hyperplane Rounding algorithm on Generalized Max-Cut, if we replace x with f(x) as input we get

g(f(x), k), which is the expected value of running the Gegenbaur Polynomial algorithm on Generalized

Max-Cut. Finally, let h(x, k, β) =
βg(x, k) + (1− β)g(f(x), k)

1
2 (1 + k)− 1

2 (1− k)x
and we see that finding the infimum of

h(x, k, β) with −1 ≤ x ≤ 1 and β = 0.963322 is the same as finding the infimum of the ratio of the

2-Dimensional Rounding Algorithm. We evaluate inf
−1≤x≤1

h(x, k, 0.963322) with k ∈ [0, 1] and plot the results

in Figure 8.1.

46

CHAPTER 8. 2-DIMENSIONAL ROUNDING 8.3. APPROXIMATION RATIO

Figure 8.1: 2-Dimensional Rounding Ratio

Theorem 8.3.1. When the semi-definite program of Generalized Max-Cut has only 2-dimensional optimal

solutions, the 2-Dimensional Rounding algorithm on Generalized Max-Cut admits an approximate ratio of

at least f(k) = 0.145k + 0.855.

When k = 0, the problem becomes Max-Cut and we get inf
−1≤x≤1

h(x, k, 0.963322) =
32

25 + 5
√

5
≈ 0.8844,

the same ratio Adivor and Zwick achieved in their paper for Max-Cut.

47

CHAPTER 8. 2-DIMENSIONAL ROUNDING 8.3. APPROXIMATION RATIO

Figure 8.2: 2-Dimensional Rounding: Approximated Ratio and f(k) Difference

As shown in Figure 8.2, the difference between the lower bound function f(k) and the approximated ratio

of the 2-Dimensional Rounding algorithm on Generalized Max-Cut is positive for all k ∈ [0, 1], and are all

very close to 0. Hence f(k) is a good estimated lower bound for this approximated ratio.

Note that the lower bound function of the 2-Dimensional algorithm is slightly greater than the lower

bound function for the Hyperplane Rounding algorithm, this indicates that the 2-Dimensional algorithm

performs better on Generalized Max-Cut.

The above result is based on a fixed β obtained from Adivor and Zwick’s paper. We ask the question: is

this the β that will give us the optimal value for Generalized Max-Cut? The answer is no. In fact, we can

find different β’s for each k input. We tested many k values to numerically obtain a list of points (k, β) and

plot them to get a line of best fit (shown in Figure 8.2).

48

CHAPTER 8. 2-DIMENSIONAL ROUNDING 8.3. APPROXIMATION RATIO

Figure 8.3: Optimal β on Input k

We observe from Figure 8.3 that the best β’s are near linear with respect to k. Thus we define the

function, B(k) = 0.963322 + 0.021679k. This function gives the β that optimizes the ratio on any given

k ∈ [0, 1].

Theorem 8.3.2. There exist a β for each input k, β = B(k) = 0.963322 + 0.021679k, such that the

2-Dimensional Rounding algorithm performs better on Generalized Max-Cut with B(k) than with the fixed

β = 0.963322.

49

CHAPTER 8. 2-DIMENSIONAL ROUNDING 8.3. APPROXIMATION RATIO

Figure 8.4: Numerical β vs B(k)

Not all the numerically obtained values fit on this line, however we show that the function B(k) does

indeed output a β that performs better than the constant β = 0.963322 by graphing the difference between

the functions inf
−1≤x≤1

h(x, k, 0.963322) and inf
−1≤x≤1

h(x, k,B(k)) with k ∈ [0, 1]. At k = 0 and k = 1 we have

the difference equal to 0 as we used the same β’s to make the B(k) function.

50

CHAPTER 8. 2-DIMENSIONAL ROUNDING 8.4. APPROXIMATE DIFFERENCE

Figure 8.5: Difference of inf
−1≤x≤1

h(x, k, 0.963322) and inf
−1≤x≤1

h(x, k,B(k))

8.4 Approximate Difference

The above section focuses on k ∈ [0, 1] since the ratio may become negative with k ∈ [−1, 0]. In

this section, we compare the difference between the expected value of running the Gegenbaur Polynomial

algorithm on Generalized Max-Cut and the relaxation.

Theorem 8.4.1. When the semi-definite program of Generalized Max-Cut has only 2-dimensional optimal

solutions, the expected value of 2-Dimensional Rounding algorithm on Generalized Max-Cut is at most
|E|(1− k)

2π
(0.656646) away from the optimal value.

51

CHAPTER 8. 2-DIMENSIONAL ROUNDING 8.4. APPROXIMATE DIFFERENCE

Using the same functions f(x) and g(x, k) as the previous section, we want to evaluate:

a
∑
ij∈E

[
βg
(
〈ui, uj〉, k

)
+ (1− β)g

(
f(〈ui, uj〉

)
, k)

]
− a

∑
ij∈E

[
1

2
(1 + k)− 1

2
(1− k)〈ui, uj〉

]

≥ inf
−1≤x≤1

[
|E|
[
βg(x, k) + (1− β)g

(
f(x), k

)]
−
[

1

2
(1 + k)− 1

2
(1− k)x

]]
Using Mathematica, we simplify the above to the following

= inf
−1≤x≤1

|E|
[

(−1 + k)(π − πx− 2β arccos (x) + 2(−1 + β) arccos (1− 8x2 + 8x4)

2π

]

We see from the simplified version that the constant
|E|(−1 + k)

2π
can be factored out, where −1 + k is

at most 0 since −1 ≤ k ≤ 1. We conclude that the simplified version can be written as the function

t(β, x) = −(π − πx− 2β arccos (x) + 2(−1 + β) arccos (1− 8x2 + 8x4), which has no dependency on k.

We want to find the β that maximizes the quantity inf
−1≤x≤1

t(β, x). We find the derivative of t(β, x) with

respect to x and found 4 roots. We numerically evaluated each root and found the best β to be 0.9846. This

gives us the result:

inf
−1≤x≤1

|E|
[

(−1 + k)(π − πx− 2β arccos (x) + 2(−1 + β) arccos (1− 8x2 + 8x4)

2π

]
=
|E|(k − 1)

2π
(−0.656646).

52

Chapter 9

Conclusion

In this thesis we present a new problem we developed based on Max-Cut called Generalized Max-Cut.

Our problem generalized Max-Cut by transforming the objective function, we add to the input two integers

(a, b) such that a > 0 and b, where −a < b < a. Instead of counting one for each edge cut and zero for each

edge uncut, we add a for each edge cut and subtract b for each edge uncut.

We analyze the performances on various algorithms. The first algorithm is the simple Coin Flip algorithm

that has an approximate ratio
1 + k

2
, where k = − b

a
.

The second algorithm is the famous Goemans-Williamson’s Hyperplane Algorithm, without restriction

of types of graphs as input, we graphed the approximate ratio delivered by this algorithm and find f(k) =

(1− g)k+ g, where g is the 0.878 ratio and k ∈ [0, 1], to be the lower bound of approximate ratio. The ratio

obtained is only significant when k ≥ 0, thus, we also calculated the approximate difference for when k < 0.

We found the lower bound of the approximate difference is a|E|(0.1053)(1− k), where |E| is the number of

edges of the input graph.

The third algorithm is the 2-Dimensional algorithm that requires the restriction of the input to be such

that the semi-definite program of the input graph must have 2-Dimensional solutions. This algorithm uses

Gegenbaur polynomials to map these vectors to new unit vectors, then it runs the Hyperplane algorithm on

the original vectors with probability β = 0.963322, and the new vectors with probability 1−β. We evaluated

Generalized Max-Cut using the β presented in the original algorithm, and tested numerically which β’s would

give the optimal solution for Generalized Max-Cut. We found the function B(k) = 0.963322 + 0.021679k,

where k ∈ [0, 1] to be function that provides the best β for each input k. We also found the approximate

difference for when k ∈ [0, 1], we numerically calculated the difference between the optimal value and the

expected performance of the algorithm to be
|E|(1− k)

2π
(0.656646).

We used three existing algorithms to test how well they perform on Generalized Max-Cut. There are

53

CHAPTER 9. CONCLUSION

numerous other algorithms such as the greedy algorithm on dense graphs, or algorithms that require the

solutions to the semi-definite program of the input graphs to be 3-dimensional. A natural question is to ask

whether other algorithms for Max-Cut can be improved upon on Generalized Max-Cut.

54

Appendices

55

Appendix A

Mathematica Code

A.1 Approximation Ratio for Hyperplane Rounding

The following is the Mathematica code used for this thesis. (Not included: brute force testings, and

various test cases).

f [k , x] := 2∗(k + (1 − k)∗ArcCos [x] / Pi) / ((1 + k) − (1 − k)∗x)

(∗This i s the f u n c t i o n o f the r a t i o ∗)

minimizer [k] := x / . NMinimize [{ f [k , x] , −1 <= x <= 1} , x] [[2]]

(∗This g i v e s us the t u p p l e (kva lue , x) t h a t minimizes k ∗)

approxrat io [k] := f [k , minimizer [k]] ;

mc = approxrat io [0] ;

(∗ check to see i f r a t i o makes sense ∗)

Plot [{ approxrat io [k] , (1 − 0 .87856)∗ k + 0.87856} , {k , 0 , 1}]

Plot [{ approxrat io [k] − ((1 − 0 .87856)∗ k + 0 .87856)} , {k , 0 , 1}]

A.2 Approximation Difference for Hyperplane Rounding

f [k , x] := 2∗(k + (1 − k)∗ArcCos [x] / Pi) − ((1 + k) − (1 − k)∗x)

(∗This i s the f u n c t i o n o f the r a t i o ∗)

minimizer [k] := x / . NMinimize [{ f [k , x] , −1 <= x <= 1} , x] [[2]]

(∗This g i v e s us the t u p p l e (kva lue , x) t h a t minimizes k ∗)

56

APPENDIX A. MATHEMATICA CODEA.3. APPROXIMATE RATIO FOR 2-DIMENSIONAL ROUNDING

approxrat io [k] := f [k , minimizer [k]] ;

mc = approxrat io [0] ;

mc

(∗ check to see i f r a t i o makes sense ∗)

Plot [{ approxrat io [k]} , {k , 0 , 1}]

A.3 Approximate Ratio for 2-Dimensional Rounding

f [x] := 8∗xˆ4 − 8∗xˆ2 + 1 ;

gw [x , k] := k + (1 − k)∗ArcCos [x] / Pi ;

t e s t [x , k , \ [Theta]] := (\ [Theta]∗gw [x , k] + (1 − \ [Theta]) ∗
gw [f [x] , k]) / (1 / 2∗ (1 + k) − 1/2∗(1 − k)∗x) ;

newcompratio [k , \ [Theta]] :=

NMinimize [{ t e s t [x , k , \ [Theta]] , −1 <= x <= 1} , {x }] [[1]]

A.4 Approximate Difference for 2-Dimensional Rounding

f [x] := 8 xˆ4 − 8∗xˆ2 + 1 ;

g [x , k] := k + (1 − k)∗ArcCos [x] / Pi ;

j [x , k , \ [Beta]] := (\ [Beta]∗ g [x , k] + (1 − \ [Beta]) ∗
g [f [x] , k]) − (1/2∗(1 + k) − 1/2∗(1 − k)∗x) ;

bb = 0 .963322 ;

b2 = 0 ;

o l d a l g [k] := NMinimize [{ j [x , k , bb] , −1 <= x <= 1} , x] [[1]] ;

o l da l g2 [k] := NMinimize [{ j [x , k , b2] , −1 <= x <= 1} , x] [[1]] ;

Plot [{ o l d a l g [k] , o l da l g2 [k]} , {k , −1, 1}]

57

References

[1] Noga Alon, Benny Sudakov, and Uri Zwick. Constructing Worst Case Instances for Semidefinite

Programming Based Approximation Algorithms. SIAM Journal on Discrete Mathematics, 15(1):58–72,

2001.

[2] Per Austrin, Siavosh Benabbas, and Konstantinos Georgiou. Better balance by being biased: A

0.8776-approximation for max bisection. ACM Trans. Algorithms, 13(1):2:1–2:27, October 2016.

[3] Adi Avidor and Uri Zwick. Rounding two and three dimensional solutions of the sdp relaxation

of maxcut. In Chandra Chekuri, Klaus Jansen, José D. P. Rolim, and Luca Trevisan, editors,

Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, pages

14–25, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[4] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual

ACM Symposium on Theory of Computing, STOC ’71, pages 151–158, New York, NY, USA, 1971.

ACM.

[5] Uriel Feige, Marek Karpinski, and Michael Langberg. Improved approximation of max-cut on graphs

of bounded degree. Journal of Algorithms, 43(2):201 – 219, 2002.

[6] Uriel Feige and Gideon Schechtman. On the integrality ratio of semidefinite relaxations of max cut. In

Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, STOC ’01, pages

433–442, New York, NY, USA, 2001. ACM.

[7] Bernd Gärtner and Jiŕı Matousek. Approximation Algorithms and Semidefinite Programming. Springer

Publishing Company, Incorporated, 2014.

[8] Bernd Gärtner and Jiŕı Matousek. Approximation Algorithms and Semidefinite Programming. Springer

Publishing Company, Incorporated, 2014.

[9] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut

and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, November 1995.

[10] Johan Haastad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July 2001.

58

REFERENCES REFERENCES

[11] Howard Karloff. How good is the goemans–williamson max cut algorithm? SIAM Journal on Computing,

29(1):336–350, 1999.

[12] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US, Boston,

MA, 1972.

[13] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the Thiry-fourth

Annual ACM Symposium on Theory of Computing, STOC ’02, pages 767–775, New York, NY, USA,

2002. ACM.

[14] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability results

for max-cut and other 2-variable csps? SIAM J. Comput., 37(1):319–357, April 2007.

[15] Lszl Lovsz. Semidefinite programs and combinatorial optimization, 1995.

[16] Claire Mathieu and Warren Schudy. Yet another algorithm for dense max cut: Go greedy. In Proceedings

of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, pages 176–182,

Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.

[17] W. Keith Nicholson. Linear algebra with applications. Toronto : McGraw-Hill Ryerson, 4th ed edition,

2002. First-2nd eds. published under title: Elementary linear algebra, with applications.

[18] Christos H. Papadimitriou. Computational complexity. In Encyclopedia of Computer Science, pages

260–265. John Wiley and Sons Ltd., Chichester, UK.

[19] Joshi Rujuta. Polynomial Optimization and Discrete Geometry. pages 25–26, 2015.

[20] Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. J. ACM, 23(3):555–565, July

1976.

[21] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, Heidelberg, 2001.

[22] Wikipedia contributors. Leonid levin — Wikipedia, the free encyclopedia, 2019. [Online; accessed

9-June-2019].

[23] Robin J Wilson. Introduction to Graph Theory. John Wiley & Sons, Inc., New York, NY, USA, 1986.

59

REFERENCES REFERENCES

60

