
ARCHITECTURE SYNTHESIS METHODOLOGY FOR RUN-TIME
RECONFIGURABLE MULTI-TASK AND MULTI-MODE SYSTEMS

WITH SELF-ASSEMBLING MICRO-ARCHITECTURE

by

Pil Woo (Peter) Chun

B. Eng. Hon., Ryerson University, Toronto, Canada, 2002

M.A.Sc., Ryerson University, Toronto, Canada, 2004

A dissertation

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2009

Copyright  2009 Pil Woo (Peter) Chun

Library and Archives
Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l’édition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre référence
ISBN: 978-0-494-58995-3
Our file Notre référence
ISBN: 978-0-494-58995-3

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.
.

AVIS:

L’auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l’Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author’s permission.

L’auteur conserve la propriété du droit d’auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n’y aura aucun contenu
manquant.

 ii

AUTOUR’S DECLARATION

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

Pil Woo (Peter) Chun

I further authorize Ryerson University to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

Pil Woo (Peter) Chun

iii

ABSTRACT

Architecture Synthesis Methodology for Run-time Reconfigurable Multi-task and Multi-

mode Systems with Self-assembling Micro-architecture

Pil Woo (Peter) Chun

Doctor of Philosophy

Graduate Program of Electrical and Computer Engineering

Ryerson University

2009

Despite the success that programmable devices have enjoyed in the last two

decades, architecture synthesis methodologies for Run-Time Reconfigurable (RTR)

systems are still in their infancy. As the majority of consumer devices integrate multiple-

functionality, the cost-effectiveness becomes the main focus of computing systems

design. This thesis presents a novel architecture synthesis methodology for the cost-

effective implementation of a multi-task and multi-mode workload. The proposed

methodology creates a RTR system that changes its functionality in response to a

dynamic environment and enables on-chip assembly of pre-constructed components by

synthesizing a workload-specific static architecture. The proposed methodology presents

novelties in design abstraction, partitioning method and in the procedure of deciding

reconfiguration granularity. The experimental results show the cost benefits of the

proposed architecture synthesis methodology saving 73% of area and 29.8% of power

compared to fixed design approach.

iv

TABLE OF CONTENTS

LIST OF FIGURES ...viii

LIST OF TABLES...xiii

ABBREVIATIONS ...xiv

ACKNOWLEDGEMENTS...xvii

Chapter 1 Introduction ..1

1.1 Motivation...1
1.2 Background...5

1.2.1 Embedded systems ...5
1.2.1.1 Electronic system level design ...6
1.2.1.2 Field Programmable Gate Array ..7

1.2.2 Target Applications ..8
1.2.2.1 Real-time applications..8
1.2.2.2 Stream applications ..9
1.2.2.3 Characteristics of real-time and stream systems9

1.2.3 Reconfigurable systems..10
1.2.3.1 Reconfigurable system design flow ...11
1.2.3.2 Reconfigurable system architecture ...12
1.2.3.3 Reconfigurable system model ..14

1.3 Objectives ...16
1.4 Contributions ..17
1.5 Organization of Thesis..19

Chapter 2 Related Works and Overviews of Reconfigurable Systems.......................21

2.1 Introduction...21
2.2 Motivation...22
2.3 Reconfigurable Computing...23
2.4 Taxonomy of Reconfigurable Computing ..24

2.4.1 Evolvable Hardware ...26
2.4.2 Non-EHW systems ...27

2.5 Terminology and notation...30
2.5.1 System for reconfiguration ...31
2.5.2 Real-time applications ..33
2.5.3 Stream applications ..37

2.6 Generic Reconfigurable Systems..40
2.6.1 System-on-Chip BUS architecture ...41
2.6.2 Network On Chip ...44

v

2.7 Reconfigurable Computing Systems: Architectural point of view.................51
2.8 Optimizing Reconfiguration ...54
2.9 Reconfigurable Computing System: Application point of view.....................55
2.10 Summary of RC taxonomy ...59
2.11 Field Programmable Gate Array...60

2.11.1 Reconfigurable Hardware based on FPGAs.......................................60
2.11.2 History of run-time reconfigurable Xilinx FPGAs.............................61
2.11.3 Evolution of Virtex FPGAs ..65

2.11.3.1 Configurable Logic Block..65
2.11.3.2 Routing ...67
2.11.3.3 Configuration ...68

2.12 Summary...71

Chapter 3 Overview and Analysis of Effectiveness of Computing Systems..............72

3.1 Introduction...72
3.1.1 Cost-effectiveness of computing system..73
3.1.2 Three levels of cost-effectiveness ..74

3.2 Motivation...76
3.2.1 A perspective of computing history ...76
3.2.2 Changing economics ..79
3.2.3 Changing Market ..81
3.2.4 FPGA: the alchemist of performance and flexibility84

3.3 Total system Costs..85
3.4 Unilateral System Costs..86

3.4.1 Personnel Costs ..87
3.4.2 Supply Costs..88

3.4.3 Software Tools Costs..89
3.4.4 Unit Cost...91

3.5 Unilateral System Cost Graph ..92
3.5.1 An example: unilateral system costs ..94

3.5.1.1 Unit Cost ..95
3.5.1.2 Software Tools Costs ...97
3.5.1.3 Development Costs ..97

3.6 Collateral System Costs: Trend I..100
3.7 Cost-effectiveness: Trend II ...109

3.7.1 Unilateral Cost-effectiveness..110
3.8 Conclusion ..111

Chapter 4 Exploration of Architectural Spaces for Virtual Hardware Components ..113

4.1 Background...114
4.2 Architecture Configuration Graph..117
4.3 Decomposition of design space ..120

vi

4.4 Arrangement of the ACG..120
4.4.1 Horizontal arrangement of resource variances121
4.4.2 Vertical arrangement of resources..123

4.5 Selecting a right architecture ..124
4.5.1 Determination of architecture validity for a constraint124
4.5.2 Determination of Pareto-optimal architecture subset125
4.5.3 Estimating the number of architecture variances126

4.6 Virtual Hardware Components Constraints..127
4.7 Outcome..128

Chapter 5 Reconfigurable System Design Methodology for multi-task and multi-
mode applications ...130

5.1 Introduction...130
5.2 Motivation...131
5.3 ASIC System Design Flow...134
5.4 Reconfigurable System Design Flow ...136
5.5 Silicon Cost...140

5.5.1 Analysis of silicon costs ...146
5.6 Configuration Flow Specification...149

5.6.1 Defining the environment...152
5.6.2 Event list ...153
5.6.3 Context diagram ...154
5.6.4 Leveled context diagram ..158

5.7 Identifying a multi-task and multi-mode workload ..164
5.8 Constructing a Static Architecture..171
5.9 Defining the Reconfiguration Granularity..177
5.10 Summary...182

Chapter 6 Implementation...183

6.1 System Organization...184
6.1.1 System Level ..186

6.1.1.1 Reconfigurable Functional Module..188
6.1.1.2 Run-time Reconfigurable Platform (Xilinx Virtex FPGA)........189

6.1.2 Micro Level ..190
6.1.2.1 Abstraction of micro-level implementation190
6.1.2.2 Architecture of Xilinx Virtex-4 FPGA.......................................192

6.1.3 Component Level ...199
6.1.3.1 Virtual Hardware Component ..200
6.1.3.2 Virtual Bus ...201

6.1.4 Configuration..202
6.1.4.1 Configuration interface ..202
6.1.4.2 Configuration chart ..203

vii

6.1.4.3 Configuration steps ..205
6.1.4.4 Reconfigurable Units..207
6.1.4.5 On-chip assembling of Virtual Hardware Components208

6.2 Run-time Reconfiguration Example ...209
6.3 Run-time partial reconfigurable implementation of on-chip multi-stream

processors ..213
6.3.1 System Organization ..213
6.3.2 Multi-task Adaptive Reconfigurable System Platform216

6.3.2.1 Stereo camera board ...219
6.3.3 Identifying a multi-thread and multi-mode workload221
6.3.4 Constructing a static architecture ...225
6.3.5 The procedure of on-chip assembly ...231

6.4 Summary...235

Chapter 7 Analysis of Results...237

7.1 Analysis of Cost-effectiveness ...237
7.2 Estimation of Configuration Granularity..246
7.3 Scalability ...249
7.4 Analysis of Power Consumption ..250
7.5 Summary...254

Chapter 8 Conclusions ..256

Bibliography ..259

Appendix A Cost Estimation ..267

A.1 Estimation of Unit Cost ...267
A.2 Estimation of Software Tools Cost ..268
A.3 Development Costs ..270

Appendix B Experimental Details ..272

B.1 Estimation of Silicon Costs..272
B.2 How to calculate LUTc ..273

B.3 Examples of LED counter..273

Appendix C Power Estimation Details ...280

C.1 Example of Power Estimation Testbench ..280
C.2 Examples of Video Processors...286

viii

LIST OF FIGURES

Figure 2-1: Process technology vs. System cost..22

Figure 2-2: Empirical Taxonomy of RC..25

Figure 2-3: A typical example – Hierarchy of Spatial Computation (Ts denoting a
task, Ap denoting an application and op denoting an operation)27

Figure 2-4: Temporal Computation (Th denoting a thread and W denoting a
workload)..29

Figure 2-5: Conventional BUS – an example ..41

Figure 2-6: SoC Bus Module – an example...42

Figure 2-7: A example of CoreConnect bus architecture ..44

Figure 2-8: Projected relative delays of local and global wires [29]45

Figure 2-9: NoC layers vs. OSI 7 layers: redrawn from [30]46

Figure 2-10: Temporal Resolution Axis ..57

Figure 2-11: XC6200 Basic Cell [58]..62

Figure 2-12: XC6200 Function Unit [58] ..63

Figure 2-13: Virtex Architecture Overview [62] ...64

Figure 2-14: 2-slice Virtex CLB [62] ..66

Figure 2-15: Virtex-2 CLB element [63] ...66

Figure 2-16: Graphical representation of one CLB worth configuration data for
Virtex FPGA...69

Figure 3-1: Makitomo’s Wave [71] ...77

Figure 3-2: Design discontinuities in EDA [74] ..78

Figure 3-3: Functional form of key semiconductor industry business trends
(Tx=transistor) [75] ..80

Figure 3-4: Conventional Product Life Cycle [72] ..82

ix

Figure 3-5: New Product Life Cycle [72] ..83

Figure 3-6: Flexibility vs. Operating time window ...84

Figure 3-7: Design Flow FPGA vs. ASIC ...90

Figure 3-8: Conventional unilateral System Cost ASIC vs. FPGA.............................93

Figure 3-9: Breakeven points – the number of ASICs vs. FPGA unit cost in
volume ..99

Figure 3-10: Cost vs. Quantity...100

Figure 3-11: Sale volume estimation (conventional product life cycle)......................103

Figure 3-12: Gross Margin of ASIC vs. FPGA (discount of FPGA, 65%)104

Figure 3-13: Gross Margin of ASIC vs. FPGA (discount of FPGA, 77%)105

Figure 3-14: Sale volume estimation (new product life cycle)....................................106

Figure 3-15: Gross Margin of ASIC vs. FPGA (discount of FPGA, 77%, one-year
time-to-market) ...107

Figure 3-16: Unit price for Xilinx Virtex-4 FPGA LX family108

Figure 3-17: Quantity vs. Costs ...110

Figure 4-1: Example of a sequencing Graph ...116

Figure 4-2: Example of component design space exploration represented by a tree...118

Figure 4-3: Horizontal level Arrangement...122

Figure 4-4: Selecting valid architecture range with Ps ..125

Figure 4-5: Determination of Pareto-optimal architecture subset................................126

Figure 5-1: ASIC design flow..134

Figure 5-2: RC Design Flow..137

Figure 5-3: An example of workload representation ...138

Figure 5-4: An illustration of static architecture extraction procedure........................139

Figure 5-5: Fixed hardware vs. Reconfigurable hardware approaches........................141

x

Figure 5-6: Silicon Costs ...142

Figure 5-7: Silicon Cost with quadratic increase in multiplexing area........................144

Figure 5-8: Silicon costs: fixed hardware vs. reconfigurable hardware146

Figure 5-9: Cross points graph...147

Figure 5-10: Silicon cost with varying common area..149

Figure 5-11: Simplified structure of MPEG-4 scene description150

Figure 5-12: An essential Context Diagram ..155

Figure 5-13: Examples of Context Diagram..156

Figure 5-14: An example of leveled context diagram ...160

Figure 5-15: An example of threads in dataflow diagram ...162

Figure 5-16: An example of tasks and modes in context diagram...............................163

Figure 5-17: The decision tree for bubbles in a multi-task and multi-mode
workload ...165

Figure 5-18: An example of leveled tool diagram with applications...........................166

Figure 5-19: An example of leveled tool diagram with threads167

Figure 5-20: An example of leveled tool diagram with isolated tools.........................169

Figure 5-21: An example of the static architecture..174

Figure 5-22: An example of the static architecture with the pre-condition of e1=0175

Figure 5-23: An example of static architecture..176

Figure 5-24: The steps to achieve reconfiguration granularity....................................178

Figure 5-25: The flowchart to determine the reconfiguration granularity...................181

Figure 6-1: System level architecture ..186

Figure 6-2: Virtex-4 LX Architecture Overview...192

Figure 6-3: The overview of GSM interconnects ..194

xi

Figure 6-4: Hex and Double line routing structure..195

Figure 6-5: Long & global line routing structure...196

Figure 6-6: An example of sliced BUS macro...197

Figure 6-7: Configuration Flow Chart ...204

Figure 6-8: Configuration Processing Flow...206

Figure 6-9: Virtex-4 Family: Allocation of Frames...208

Figure 6-10: Schematic of “LED counter” example..209

Figure 6-11: Device XC4VLX160 Floorplan ..210

Figure 6-12: Hardware Organization ...215

Figure 6-13: Block diagram of MARS platform..217

Figure 6-14: MARS platform...218

Figure 6-15: An illustration of aggregated operation of MARS platforms218

Figure 6-16: Stereo Camera Module..219

Figure 6-17: New Stereo Capture Module...220

Figure 6-18: Context diagram: Level 0..221

Figure 6-19: Context diagram: Level 1..222

Figure 6-20: Context diagram: Level 2..223

Figure 6-21: Context diagram: Level 3..224

Figure 6-22: Leveled tool diagram ..226

Figure 6-23: A portion of the leveled tool diagram for Ts1.3229

Figure 6-24: Conceptual assembly: Level 2 ..230

Figure 6-25: An illustration of inst_video_processor_v1 ..232

Figure 6-26: An implementation with e1=1, e2=1, e3=1, e4=1, e5=1.........................233

Figure 7-1: Examples of modes in FPGA implementation vs. visual display241

xii

Figure 7-2: A visual comparison of the fixed design and the reconfigurable design ..243

Figure 7-3: Silicon saving vs. Silicon cost...245

Figure 7-4: An example of full configuration for a mode of functions247

Figure A-1: The relationship between the number of CLBs and the gate average......268

xiii

LIST OF TABLES

Table 2-1: Granularity of coarse-grained reconfigurable architectures.......................52

Table 2-2: Communication topology of reconfigurable architectures.........................53

Table 3-1: Architectural eras ...76

Table 3-2: ASIC Unit Cost with 21888K gate capacity ..96

Table 3-3: Development Cost ..98

Table 3-4: Development Cost Projection ASIC vs. FPGA..102

Table 6-1: Configuration Ports ..203

Table 6-2: Frame Address Fields Register (FAR) ...211

Table 7-1: The list of video processing modes for a camera239

Table 7-2: Costs for run-time reconfiguration service hardware.................................244

Table 7-3: Different data units at 30 fps with 640×480 resolution..............................248

Table 7-4: Power measurement for reconfigurable multi-video processor
implementation ...251

Table 7-5: Power consumption of VHCs in operation...252

Table 7-6: Reconfigurable design power consumption ...253

Table 7-7: Fixed design power consumption...254

Table A-1: XC4000 FPGA typical gate average (internal memory is included).........267

Table A-2: Software Tool Usage ...269

Table A-3: Detailed Software Tools Cost for an FPGA..269

Table A-4: Detailed Software Tools Cost for an ASIC ...270

Table A-5: Assumptions given for the development costs ..270

Table A-6: Detailed FPGA and ASIC Development Costs ...271

Table B-1: LUTC values for the multi-task and multi-mode video processors.............273

xiv

ABBREVIATIONS

ACG Architecture Configuration Graph

ASIC Application Specific Integrated Circuit

ASMBL Advanced Silicon Modular Block

ATPG Automatic Test Pattern Generator

ATM Asynchronous Transfer Mode

BRAM Block selectRAM

ISA Instruction Set Architecture

CB Cell Based

CMOS Complementary Metal Oxide Semiconductor

CLB Configurable Logic Block

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

DAC Digital-to-Analog Converter

DCM Digital Clock Manager

DSM Deep Sub-Micron

DSP Digital Signal Processor

EDA Electronic Design

EHW Evolvable Hardware

ESL Electronic System Level

FPGA Field Programmable Gate Array

FF Flip Flop

xv

FIFO First In First Out

FPS Frames Per Second

GSM General Switch Module

GUI Graphical User Interface

QAM Quadrature Amplification Modulation

I/O Input/Output

IC Integrated Circuit

IP Intellectual Property

LAN Local Area Network

LED Light Emitting Diode

LUT Look Up Table

LVDS Low Voltage Differential Signal

NRE Non-Recurring

NOC Network on Chip

MB Mega Byte

MPEG Moving Picture Experts Group

MHz Mega Hertz

PCI Peripheral Component Interconnect

RE Revenue Expenditure

RC Reconfigurable Computing

PR Partial Reconfiguration

RAM Random Access Memory

xvi

RFM Reconfigurable Functional Module

RGB Red Green Blue

RTL Transfer level

HOS Hardware Operating System

SOC System On a chip

SONET Synchronous Optical Network

SCM Stereo Capture Module

SRAM Static RAM

USB Universal Serial Bus

VB Virtual Bus

VCL Virtual Component Library

VGA Video Graphics Array

VHC Virtual Hardware Component

VHDL Very High Speed Integrated Circuit Hardware Description Language

VME Versa Modular Eurocard

WLAN Wireless Local Area Network

xvii

ACKNOWLEDGEMENTS

First of all I would like to express my sincere gratitude to Dr. Lev Kirischian,

Associate Professor of Electrical and Computer Engineering, Ryerson University, who

has been my supervisor since the beginning of my study. He provided me with many

helpful suggestions, important advice and constant encouragement during the course of

this work.

My keen appreciation goes to Valeri Kirischian, Jamin Islam and Sergiy

Zhelnakov for their valuable assistance in the field. Without their help, the field work

would not have been accomplished in time.

I'd like to acknowledge the National Science and Engineering Research Council

(NSERC), the Ontario Centres of Excellence (CITO), MDA Space Missions, CMC

Microsystems, Unique Broadband Systems (UBS) and the Department of Electrical and

Computer Engineering at Ryerson University for their financial contributions to this work.

I am also indebted to Soo Moon for editing the English of this document. My

special appreciation goes to my parents, Son-ok Lee and Ki-young Chun, who introduced

me into the world. I would like to express my heartiest thanks to my children, Monet,

Adele, Jin-sol and Min-sol for their support and inspiration, and for always letting me

feel that I am worthy.

Finally, I would like to express special thanks to my wife Cheng-hyun (Elena)

Kim. She helped me to concentrate on completing this dissertation and supported me

mentally during the course of this work. Without her help and encouragement, this study

would not have been completed.

 1

Chapter 1

Introduction

The advent of silicon technology has enabled many hardware evolutions in the

computing industry in the last half century. However, the increase of computation

capacity has mostly relied on increasing computation frequency of Instruction Set

Architectures (ISAs). As we face the era of deep submicron process technologies, it is

hard not only to increase the operating frequency of computing systems, but also to build

the computing systems that can satisfy complex and multiple functionalities of today’s

applications. Because the dynamic partial reconfiguration in field programmable devices

can change their internal structure and behaviour in response to a dynamic environment,

reconfigurable computing systems allow system designers to employ more complex

systems. This thesis recognizes the cost benefits that such run-time adaptability can

provide and proposes a novel reconfigurable architecture synthesis methodology to

achieve a cost-effective system solution. The proposed architecture synthesis

methodology establishes the design steps starting from recognition of the environment to

on-chip assembling of a complete micro-level system.

1.1 Motivation

As the flood of Eastern products as well as the rise of Eastern philosophical

approaches inundates the industrialized part of the world, we look into the doctrine of

2

“Form follows function” which strongly exists in Eastern philosophies such as Oullium1

[1] to shed light on the quest for a new Reconfigurable Architecture synthesis

methodology. We strongly believe that reconfigurable systems can be more cost-effective

by employing programmable fabrics and reusing them according to the applications

needs in today’s environment.

“Form follows function” is a dictum that represents the core of functionalism that

Bauhaus2 pioneered in 20th century. In functionalism, function is dynamic. Thus, form

can only unveil through function. Form should stay shapeless unless indulged by function.

In other words, “Form follows function” can be interpreted as deconstructionism3

denying the subjective interpretation of the world. Functionalism is presented in Eastern

philosophical world view – 諸法無我, there is no ‘I’(subjective being). When there is

proper understanding and interpretation of environment, then only form can follow

function. Form should represent lively aspects of environment.

For example, in nature, giraffes have evolved to be tall in the attempt to get to tree

leaves. Flowers have beautiful colors and shapes in order to be pollinated. In human

society, forks have been elaborated to have tines in order to pierce and hold the meat.

Particularly there has been no unique solution to the elementary problem of food utensils

as Petroski [2] states in his book. Chopsticks are evolved from Eastern cuisine as the

meat is cut before cooking and forks are developed in Western cuisine to cut the meat

1 Oullium tries to extract the ideas that coexist in Buddhism, Taoism and Christianity.
2 Bauhaus is a term used for a school in Germany that combines the skill sets that train craftsmen and
artists in one umbrella. The movement started from the school became the foundation of modernist
architecture of 20th century.
3 Is a challenge to the attempt to “deconstruct” the ideological biases to establish any ultimate or secure
meaning of “truth”.

3

after it is cooked. The designs of things such as houses, cars, clothes, computers, utensils,

etc. are not direct results of solving a particular task, but result from more complicated

issues.

Particularly applicable to the computing industry, form is the product of design. It

should thrive to be minimal (i.e., cost-effective). Form should not be limited as physical

characteristics but should reflect specification of the running functions. According to the

Bauhaus’ functionalism, we need a computing system architecture (i.e., form) that

reflects dynamic changes in applications and implements the applications as they are

represented (i.e., function).

Moreover, some changes in environment do not happen very often borrowing the

explanations from biological evolution. Therefore, for some biological beings, the

environment feels like “static”. However, the environment is a dynamic entity. Thus, the

perceived time scaling of changes determines how the system (e.g., biological being)

needs to reflect them into the architecture (e.g., macroevolution and microevolution [3]).

For instance, high biological beings (e.g., mammals) are normally comprised of

two types of forms: sea of homogenous elements (e.g., 100 millions neurons in brain) and

a particular set of heterogeneous components (e.g., body parts and its structure). While

homogenous elements possess only preliminary functionality compared to heterogeneous

components, they can accomplish complex functionality by interconnecting their

behaviours. The system is ready to adapt its functionality to “dynamic” changes of the

environment that might occur. Thus, they represent flexibility at large. On the contrary,

heterogeneous components try to achieve best results by knowing its requirements and

tailoring the system for particular task(s). There is no imminent change to be updated.

4

The environment seems to be “static” to the system. Because form is the product of

design that thrives to be minimal, both cases achieve the minimal cost from their

perspectives of a “dynamic” or “static” environment. The perceived time scaling

difference results in two distinctive ways of implementing forms.

The proposed reconfigurable system needs to identify functionalities in the

application(s) and associate them with events that are identifiable at the system level.

Once all functionalities are organized and the reusable areas are recognized, a suitable

time scaling (i.e., reconfiguration granularity) is determined to differentiate between

dynamic and static components of the system as the responses of the environmental

events. The reconfigurable system does not only save hardware area by reconfiguring

“dynamic” requests of the environment, but also maintains reliable communication

between “static” components to carry on their functionalities. Conventional Instruction

Set Architectures (ISAs) can not guarantee the required performance of concurrently

running multiple functionalities because the system is designed to produce the results on

the fixed granularity of its instructions. However, the proposed reconfigurable design

does not need to compromise the performance of required computations because it

implements only currently needed functionalities in hardware, thus reflecting lively

aspects of the environment. Due to this reason, the reconfigurable systems can reduce

hardware cost by adapting its form for the tasks that are imminent from its time scale,

where the remote or static part of tasks can remain to be optimized and unchanged

throughout the life time of the running applications.

5

1.2 Background

This section studies the uprising reconfigurable computing systems from various

aspects: trends in embedded systems, target applications, and design methodology.

1.2.1 Embedded systems

In general, embedded systems are designed to perform a specific task in the most

effective way. Thus, embedded systems should be cost conscious. To name a few

embedded systems, they are:

 Terminals for wireless communication – termination for cellular, WLAN or

mobile satellite access, QAM based terminals [4];

 Setup boxes for fixed network access – X-DSL twisted pair, CATV or LAN

access;

 Video and image processing applications – MPEG-1/2/4 [5], teleconferencing

and HDTV).

Today, these types of applications tend to co-exist in a consumer device. For example, a

cellular phone can typically carry all of the above tasks. The same trend is increasingly

found in many systems, standards and protocols.

The design applications (i.e., functions) which are targeted for the embedded

systems increasingly require more complex functionalities with real-time and

computation-intensive operations that can not be fulfilled by instruction-driven

architectures (i.e., ISAs). At the same time the functionalities often become too diverse to

6

be satisfied by Application Specific Integrated Circuits (ASICs) because of high cost

associated with ASIC implementation4.

As the advent of process technology reaches the level where the programmable

fabrics can consist of billons of logic gates, they become feasible to implement large and

complex System-on-Chip (SoC) designs which were only possible by ASIC

implementations. Furthermore, the programmable fabric-based devices can provide a

form that reflects the complex (dynamic) nature of today’s applications.

1.2.1.1 Electronic system level design

Electronic System Level (ESL) design methodology is in critical need of tackling

complex design problems and improving design productivity. To speed up high-quality

hardware implementation using billons of logic gates and enable fast and accurate design

space exploration, the research efforts should be devoted into developing an ESL

methodology. To address the speed, power, and interconnect challenges, the ESL

methodology has to take meaningful physical information from potential hardware and

plan the physical layout of a functional implementation. One direction is to incorporate

physical planning in as early as possible, thus resulting a combined synthesis and layout

optimization. Our proposed reconfigurable system’s design abstraction that takes the

multiple-functionalities of the applications on to the planning stage of the system’s

architecture can achieve this goal.

4 Cost analysis of ASIC vs. FPGA is given in the Chapter 3.

7

1.2.1.2 Field Programmable Gate Array

The most successful example of a programmable fabric is the Field

Programmable Gate Array (FPGA). Because of diverse functionalities and genuine

structure that an FPGA provides, the design applications may have dramatically different

user requirements in terms of performance, power, computational throughput, etc. To

satisfy the requirements of various applications, the generations of FPGA devices have

been developed to contain and support a large number of heterogeneous IP cores. As the

programmable devices evolve to meet the requirements of today’s applications, the layout

needs to deal with the heterogeneity of the reconfigurable devices, core topology, and the

specific memory and interconnect structures.

Nonetheless, due to the homogeneous logic structure that the programmable

fabrics (e.g., run-time reconfigurable FPGAs) employ, they inherit a few advantages that

can be beneficial for the ESL designs:

 Reusability – synthesized blocks can be reused in different designs without

recurring additional design costs, thus creating higher design productivity.

Conversely, processing resources can be reused for various functionalities that

are executed at different times to reduce the system costs.

 Adaptability/flexibility – allows coping with design errors and error detection

and correction and accommodates last-minute changes and updates that are

frequently occurring in communication and multi-media standards.

8

1.2.2 Target Applications

Even though programmable fabrics provide very attractive advantages, the design

costs and efforts associated with realizing a reconfigurable system is not trivial.

Therefore, it is crucial to mainly focus on the class of applications with which the

hardware design costs are justifiable and where the performance demands can not be met

with other alternatives.

1.2.2.1 Real-time applications

A real time system is where its timing behaviour is as important as its functional

behaviour. A real-time computing system is always associated with the real-time

constraint that is a short time during when the system must produce the results as the

response to an event.

Due to its predictable timing behaviour, the real-time system is used at every

corner of all industries: an anti-brake system, ATM [6] and SONET network nodes [7],

MPEG-4/7/21 encoders [8], an airplane controller and a cellular node [9]. They are

normally classified as one of the following categories: control, adaptive and reactive

systems. These applications have different timing requirements due to the environment

that they interact with.

9

1.2.2.2 Stream applications

The computing system with which this thesis concerns is characterized by the

stream data. Due to the complexity of the data set that the system deals with (i.e., multi-

dimensional arrays), parallel (or concurrent) computation must be utilized to produce the

expected results within a given time.

1.2.2.3 Characteristics of real-time and stream systems

The embedded systems that deal with real-time and stream applications show a

subset of the following characteristics.

Integration of multiple functionalities. It summarizes the trends of SoC that

implements multiple functionalities to realize a complete electronic system that can be

compact and portable by reducing area, power and cost. Because of the complexity that

today’s systems deal with, the system design methodology needs to reuse invariable task

level designs and raise design abstraction.

Limited dynamism. Real-time systems show only a limited dynamic character within

calculated variations (e.g., buffers). Since prior system knowledge makes an estimation

of system resources possible, the system resources can be allocated at compile time,

resulting in an optimized solution.

Timeliness. Real-time systems can be associated with timing constraints that are different

in nature. They are concerned with system response time interacting with the

environment. The response time often decides the bandwidth of I/O signals that the

system needs to allocate. Their characteristics can be represented as input-to-output

10

latency and throughput. The interactions between the environment and the system as well

as the communication among internal components are subject to timeliness of the real-

time characteristics.

Structured Data. Regarding the timeliness of the real-time system, one assumes that our

application has the associated multi-array structure that is bounded by the timing

constraints. Structured data, so-called “stream” works as prior knowledge to estimate the

computational requirements of the system.

The real-time and stream systems can be much more cost-effective than ASIC

counterparts when they are designed with a novel architecture synthesis methodology that

reflects the multiple functionalities of applications at the system level. The combination

of the aforementioned traits makes the real-time and stream applications more applicable

to be designed with reconfigurable systems.

1.2.3 Reconfigurable systems

One recognizes that each application is unique in its requirements. Thus, instead

of providing a fixed architecture that is unique for a particular application (i.e., ASIC) or

a fixed processor that is optimized for a set of general instructions (i.e., ISA),

programmable fabrics (e.g., FPGA) are utilized to provide a system that can

accommodate multiple functionalities of particular applications via reconfiguration.

11

1.2.3.1 Reconfigurable system design flow

To facilitate the programmable fabrics effectively for multi-task and multi-mode

applications, there is a need for modeling. Because a symbol cannot represent all the

aspects of the element, modeling inevitably involves a process of abstraction. One

describes the design flow of the reconfigurable system by four abstraction levels.

System level. In the first stage of the design flow, one focuses on correct identification of

system interaction with the environment. This stage determines what Input/Output ports

are necessary and how they should be characterized (e.g., rate, respond time, deadline,

latency, protocols, etc). The system ports are tied with the responses that are considered

in the algorithm level.

Algorithm level. After the boundary of the system is decided, the reactions of the system

are determined depending on the characteristics of real-time and stream data. Then we

focus on a correct functional specification of the design. In this stage there still can be

design exploration relating to transformations and refinement of the data and their

interpretation by the system.

Task level. After the algorithm level, the designer ends up with an optimized system

specification consisting of a number of concurrent tasks, annotated with a number of

timing requirements which define the boundaries for temporal correctness. The

concurrent tasks are interconnected by the fixed interfaces that can tolerate limited

dynamism occurring due to the timing variation of results. Then, temporal boundaries are

assigned by the system level control data that differentiates temporal functionality of the

system.

12

Network level. Each level should be concerned with technological limitations. Due to the

physically imposed constraints under deep submicron geometry devices, today’s systems

put utmost importance in physical limitation of the system such as placement, routing,

layout, etc. The existing systems (e.g., micro-network, network-on-a-chip, etc.) attempts

to solve the physical problems of communication by imposing network-level and pre-

constructed architecture. Our approach does not suggest any novel solution to the

physical constraints but uses an ad-hoc approach to provide a “micro-network” solution.

One assumes that the system consists of two routing structures that are distinctively built

for global communication between coarse tasks and local communication designed for

concurrent operations within the tasks. Reconfigurable system design flow should be able

to account for the physical constraints and to reflect the physical specifications into the

system level design.

1.2.3.2 Reconfigurable system architecture

The architecture of a computer illustrates what the computer does. From the

architecture of the computer, the user should be able to perceive the conceptual structure

of the computer. For this reason, the system is considered as the layered structure of

subsystems keeping the hierarchical view of functionalities. The layered structure of

intercommunication permits the network of elements to be viewed as one logical entity.

The layered structure provides independent services that allow the insertion/omission of

layers based on the necessity of services [10] without affecting the overall functionality

13

of the system. Services can be tackled at each layer to employ optimal and tractable

solution [11].

To provide the flexibility of implementing multiple functionalities and the

reusability of processing resources, the service that the system needs is dynamic

reconfiguration. Since the flexibility and reusability requires built-in service hardware

and interconnects between components, the system is implemented into three layers:

System-level, Network-level and Micro-level architecture.

 System-level architecture: specifies the reconfiguration mechanism and places

the necessary service hardware (e.g., configuration loader, component library,

configuration interfaces) for reconfiguration. Thus, it can estimate the

reconfiguration overhead that can be used for deciding applicable applications.

 Network-level architecture: deploys appropriate network elements and layout

interconnections to ensure reliable communication through specifications of

modular blocks.

 Micro-level architecture: creates and establishes modular block components in a

library for a given technology, thus enabling model-driven virtual assembly of

components.

There are a few differences that the proposed reconfigurable system makes compared

with others. The network architecture is unique in a sense that it is task-driven. As tasks

are inserted or removed from the scene of workload, the network architecture itself

reflects interconnections between tasks (and/or modular blocks constituting a task). As

long as the tasks stay in the same format, the network architecture preserves its topology

throughout its execution. Hence, the dynamic partial reconfiguration is applied to the

14

region of a reconfigurable block that requires altering the structure of logics (e.g., Sobel,

Laplacian or Canny algorithms for edge detection). This approach ensures the minimum

reconfiguration overhead while guaranteeing on-going operations of other blocks.

When the architecture is modeled based on immediate application and associated

requirements, the reconfigurable system can reflect the optimal solution for the given

application which is interpreted by the hierarchical structure of multiple functionalities in

the application. The proposed system is elaborated under the context of predefined

architectural synthesis that is task-driven. The design procedure such as run-time Place-

and-Route is excluded to keep the complexity of hardware operating system low and to

allow heterogeneous structure of network architecture that is workload-driven.

1.2.3.3 Reconfigurable system model

The most common way is to think of the system as a collection of simpler

subsystems. If the subsystem represents a particular application, then a group of

subsystems can create a complex system that has multiple functionalities. A subsystem

should possess no ambiguity and it also should be complete, comprehensive and easy to

parameterize.

The (sub) systems should be able to generate specifications by being described in

a particular language. A language can capture many different models, and a model can be

captured in many different languages. Our models provide abstractions of a physical

system and applications that allow system designers to partition the system by ignoring

extraneous details while focusing on only relevant ones. Extraneous details constitutes

15

building modular blocks in a size (i.e., <50,000 ~ 100,000 gates [12]) on a specific

technology to ensure that the module achieves required functionality without facing

timing-closure problem and deep-submicron (DSM) effects (e.g., RC delay, noise,

interconnect delay and drive current). Relevant details signify the ongoing efforts of SoC

to employ network into a system. However, there is significant difference in their

objective between network in LAN or WAN level and network in a chip level. LAN or

WAN network is designed for the systems to reduce the number of interconnections

because the system cost heavily depends on the number of interconnects. The “micro-

network” mainly concerns how reliably network elements can communicate because of

problems raised from characteristics of data path and data pattern within its medium.

Traditionally the main design technology for real-time and stream application has been

ASIC whose main focus had been to minimize gate resources by applying global

optimization. However, the technology seems to push towards subsystem level taxonomy

rather than global optimization when there are many logics available and verification is

hard to come by.

The purpose of the reconfigurable system model is to imprint the high-level

structural view of applications onto physical aspects of a system by dynamic

reconfiguration. The reconfigurable system model consists of a set of configurations and

associated system events that trigger the transition between configurations. The system’s

temporal behaviour is explicitly expressed by applications, threads, tasks and modes5 and

implemented by reconfiguration via system events.

5 Refer to section 2.5 for more information.

16

1.3 Objectives

Traditionally, the reconfigurable systems (e.g., FPGAs) have been used as the

glue logic or prototyping system mainly due to its logic density. As the logic density

increases there seems a broadening niche market that exists for the reconfigurable

systems. However, for the idea of reconfigurable systems to be successful, one needs to

accomplish the following:

 Adapting run-time programmable fabrics to reflect the demands for multi-

function capability for cost-sensitive devices;

 Instituting Virtual Hardware Component (VHC) Library to enable fast and

correct assembly of reconfigurable systems;

 Establishing the system-level design methodology to recognize multi-function

applications that can benefit from the reconfigurable design approach;

 Developing systematic methods that enable the construction of workload-

specific multi-task and multi-mode architecture;

 Enabling on-chip assembly mechanism for dynamic adaptation of multi-task

and multi-mode workload;

 Determining a cost-effective reconfigurable granularity depending on the

dynamic nature of the multi-function applications.

Many of these objectives bring the fundamental changes into the existing system

design flow. By investigating many aspects of electronic digital systems and market

17

trends6, this thesis attempts to provide the reason(s) why it is necessary to use dynamic

reconfiguration to express systems’ multi-functionality and why a new architecture

synthesis methodology is necessary to realize their counterparts in hardware.

Because the thesis aims to establish a new architecture synthesis methodology for

building a cost-effective reconfigurable system, the author uses the system cost matrices

to prove the advantage of reconfigurable design approach throughout the thesis. As the

thesis proceeds, the architecture of the reconfigurable system will begin to emerge with

more details being added to each chapter of the thesis.

1.4 Contributions

Reconfigurable computing, with the usage of programmable fabrics as the

platform, offers a much more effective solution to address the multi-functionalities of

today’s applications and to reduce the system cost by reusing costly hardware. However,

the reconfigurable system design encompasses much more than just reflecting dynamic

changes in the applications.

In this thesis, a novel architecture synthesis methodology is developed to cost-

effectively implement a multi-task and multi-mode workload. The methodology identifies

the multi-task and multi-mode workload and divides the workload hierarchically

according to the dynamic characteristics of the environment. The dynamic characteristics

6 To find out what aspects and market trends are considered, refer to Chapter 3.

18

of the environment are modeled as the configuration events7. Then the methodology

brings the identification to structural and physical representations of the reconfigurable

system which associates the physical layout of the programmable device with the multi-

task and multi-mode workload. The main novel contributions of this thesis are as follows:

 A new system-level design abstraction of a multi-task and multi-mode

workload to bring structural, physical and behavioural specifications together;

 A novel partitioning method to construct an optimal system-level architecture

that integrates static and dynamic components together;

 A new procedure to estimate an appropriate reconfiguration granularity.

The novel architecture synthesis methodology starts from the concept of virtualization of

programmable hardware that enables the re-usability of pre-designed components. The

cost-effective reconfigurable system can be realized based upon the availability of Virtual

Hardware Component (VHC) library where the parametric search of components for the

reconfigurable system can be systematically accomplished for a large pool of VHCs.

With the suggested parametric search method8, the reconfigurable system can construct

an optimal system that is assembled with pre-synthesized VHCs in the library. To

complete the assembling steps of the reconfigurable system methodology, the system

needs to provide detailed parameters that result from the steps of the architecture

synthesis methodology.

7 The configuration events presumably contain the dynamic request of the environment for different
functionalities.
8 It offers faster computation than other search methods. For details, refer to the Chapter 4

19

Based on the detailed specifications of a multi-task and multi-mode workload and

the conditions of real-time stream applications, the thesis proposes the novel architecture

synthesis methodology to achieve a cost-effective system solution. The Multi-task

Adaptive Reconfigurable System (MARS) platform is constructed to analyze the

implementation of dynamic functional changes and to analyze the cost benefits of the

proposed methodology. In the implementation:

 The feasibility of on-chip assembly via run-time reconfiguration is

demonstrated;

 The procedures for on-chip self-assembly is developed and implemented;

 The concept of run-time reconfigurable system based on static architecture is

created;

 The dynamic reconfiguration of various tasks (i.e., VHCs) driven by

configuration events is demonstrated.

1.5 Organization of Thesis

The remainder of this thesis is structured as follows. Chapter 2 conducts a broad

survey of reconfigurable approaches that classifies the reconfigurable systems based on

their view point. As a necessary supplement, Chapter 2 investigates the architectural

evolution of programmable devices using Xilinx Dynamic Reconfigurable FPGAs as a

case study. Chapter 3 explores the current market trends and correlates system costs of

ASICs and FPGAs. It also shows how FPGA systems become more cost-effective as the

market trends become more aggressive. Chapter 4 proposes a methodology that explores

20

various architectural spaces and demonstrates how this method obtains faster results for

building a large amount of Virtual Hardware Components (VHCs) for the VHC library.

Chapter 5 presents a new architecture synthesis methodology that introduces a new

design flow for identifying a multi-task and multi-mode workload, constructing a static

architecture and defining the optimal reconfiguration granularity. Chapter 6

encompasses the implementation details of a reconfigurable system using the optimized

static architecture and acquired reconfiguration granularity via a Xilinx Virtex-4 FPGA

platform. Chapter 7 analyzes the experimental results. Then, Chapter 8 summarizes the

final outcomes and reports on possible future research directions.

 21

Chapter 2

Related Works and Overviews of Reconfigurable Systems

2.1 Introduction

There are many computing approaches that can be classified as Reconfigurable

Computing (RC). Many of the RC research have focused on providing the hardware

solutions for different architectural problems. However, their attention was not paid on

how to optimally design a RC system for a particular application. As the applications

increasingly become computing intensive and complex, the cost of a computing system

becomes too expensive to implement or manufacture in a conventional platform. It

becomes necessary that a new system level design methodology needs to be combined

with reconfigurable devices to provide a cost-effective system solution.

In the course of searching for an application-centric RC design methodology, one

must first take a look at the broad classification of RCs, and then define some

terminologies used for classification and the underlying domains of applications. To

summarize the architectural centric research efforts, the specific comparisons of the RC

platforms are presented according to their architectural characteristics. Finally, we

explore a system design methodology of how to optimize a particular set of applications

for the given RC platform.

22

2.2 Motivation

Moore’s prophecy was widely adapted to justify the success of the semiconductor

industry for the past 30 years. It states that functionality of chip should increase twice

every 1.5 to 2 years. His prophecy was very attractive not only because of increase in

logic density but also because of “doing it at the same price”. Entering Deep Submicron

process technology acclaims the difficulties of keeping the manufacturing costs the same,

which are associated with new lithography tools, unreliable mask accuracy and multiple

emerging technologies [13]. Moreover shortened time-to-market and hastened product

life cycle put pressure on reducing test and verification, and R&D periods for

increasingly complex systems [14]. Figure 2-1 shows a typical example of high-end

design costs associated with the process technology that shrinks as the time progresses

[15].

130

90

65

0
5

10
15

20
25

30
35

40
45

50

0 50 100 150

Figure 2-1: Process technology vs. System cost

[nm]

[Millions of dollars]

Process technology

System
cost

23

We recognize that there are the hurdles to provide the promise of Moore’s law

with the existing computing systems. In order to solve the riddle of “doing it at the same

price”, we look into an unconventional solution, Reconfigurable computing.

2.3 Reconfigurable Computing

Reconfigurable computing (RC) can carry many different meanings. However, we

believe RC is a computing paradigm that can integrate the flexibility of software into the

parallel computing fabrics. The main attraction of the approach is the capability of

“tailoring” reconfigurable computing fabrics while exploiting the performance of the

available algorithms from utilization of parallel processing resources. The system can

also reduce the costs by reusing valuable processing resources at run-time. The current

application trends of continuously evolving multi-media and network standards showcase

the benefits that are applicable via reconfigurability.

However, reusing hardware requires “virtualizing” processing resources – more

precisely modeling. Virtualization in modeling requires establishing higher levels of

abstraction (i.e., system-level abstraction). The approach with a system-level abstraction

allows the reconfigurable system to reuse hardware spaces via coarse control flow while

accommodating fine data flow with continuous execution of programmable parallel

fabrics.

The system-level design should be written with the implementation concerns that

satisfy the requirements of the underlying applications. In order to reflect technological

and algorithmic limitations onto the system at early stage of the system design, it first

24

needs to be concerned with the following topics and recognize the differences that exist

between the reconfigurable systems:

 How to describe major blocks (hardware, netlist or hard/soft description);

 How big they should be (gate-level as fine granularity, function level – coarse

granularity, 50K gates – physical limitation, Network node – abstraction level

or application specific);

 How they are connected (SoC BUS, NoC or P-to-P) and they need to

communicate.

The goal of our approach is to provide a task-specific hardware system that can respond

to the current requirements of applications while reducing system cost by reusing the

processing resources for multiple tasks over times. Even though our solution focuses on

its effectiveness towards computing intensive applications such as real-time and stream

applications, we will explore various types of the RC systems. Each type of RC renders

the different merits and employs the architectural choices that target different types of

applications. We will start by categorizing the RCs by widely renowned fields.

2.4 Taxonomy of Reconfigurable Computing

Many different areas of applications have adapted reconfigurable computing as a

tool to create a new computing paradigm. The classification of these approaches leads us

into a focused study of RC’s promises and problems associated with the underlying

applications. The taxonomy of RC is depicted empirically as in Figure 2-2.

25

Under the umbrella of reconfigurable computing, the reconfigurable systems can

be divided into evolvable and non-evolvable hardware systems. When a system is

evolvable, it generally contains homogeneous cells that reconfigure their own

interconnects by simple rules to achieve the desired functionality. Conversely, non-

evolvable systems have pre-fixed structure that is dictated by human guidance. Non-

evolvable hardware systems can be further divided with respect to how the system

applies changes – reconfigurability. Once reconfigurability is chosen, we pay a visit to

the structures of communication – generic or specific structure. It is our interest to

investigate the reconfigurable computing systems that fall in the path of the gray shaded

boxes.

Figure 2-2: Empirical Taxonomy of RC

26

2.4.1 Evolvable Hardware

The RC can be first divided into evolvable and non-evolvable hardware (EHW

and non-EHW). The EHW is a research area that looks for a methodology to obtain an

optimal presentation by adapting its own structure to the environment [16] [17]. The main

focus of the EHW is the evolutionary computation to design specialized circuits without

explicit guidance of users [18], so-called embryonics [19].

The EHW borrows the conceptual understanding of how biological beings evolve

and adapt to the environment – so-called Bio-inspired systems. Especially, it identifies

that the growth and the operation of all living beings are the interpretations of how their

unit cells react to one another (e.g., genome). The start of the embryonic is based on the

hypothesis of the environment that is assumed to be homogeneous cellular array that

evolve its state and values over time [20].

Generally speaking, the EHW starts by embedding fundamental rules that all

entities of the EHW follow. The EHW possesses an efficient mechanism to adapt cell

configuration and interconnections via enabling dynamic and autonomous

reconfigurations. Then, based on the specifications of the desired circuit, the EHW starts

to evolve towards the optimal circuit via self-reproduction. The EHW also can explore

fault-tolerance architectures via self-healing (or self-repair) mechanisms [21].

However, the complexity of circuits that are synthesized using the EHW is

normally limited at the functional level due to the time that takes to render the optimal

results that are significantly inferior with other approaches. Additionally, unpredictability

of time and quality of the design raises the reluctance to use the approach in many areas

27

of applications. On the other hand, the non-EHW approaches normally result in

predictable performance and timing closure depending on the complexity of the

algorithms and the communication bandwidth. We pay attention to non-EHW (man-

guided) systems that can be reconfigured to achieve higher cost effectiveness.

2.4.2 Non-EHW systems

Once the EHW is excluded, the non-EHW reconfigurable systems can be boldly

divided into two categories, dynamically reconfigurable and statically reconfigurable

systems. In order to distinguish how these categories play a role in dealing with tasks, we

illustrate the hierarchy of the application as shown in Figure 2-3.

Figure 2-3: A typical example – Hierarchy of Spatial Computation (Ts denoting a task,
Ap denoting an application and op denoting an operation)

28

It is first assumed that every application is fundamentally comprised of operations

that are arithmetic or logical. Associated operations are grouped together to create a task.

Each task is independent in a sense that they do not use output(s) of operations from other

task(s). Yet, they are linked by input(s)/output(s) of other task(s) or the system to map

functional requirements of the application. At the same time, excessive data flow might

demand adequate control by implementing internal or external memories to contain

required data by tasks. Once all interactions and communication between tasks are

arranged, a higher level of computation can be formed. An application is a set of tasks

that are connected (or disjointed) for the system at times. The application essentially

portrays a snapshot of currently required operations. The connected set of tasks in an

application is referred to as a thread. The application may contain many threads.

Complex systems generally require multiple applications to be available as shown

in Figure 2-4 . Depending on the physical and timing requirements, there can be different

approaches to arrange the applications on a device – where the arrows indicate the time

displacement of applications where they are functionally different. Depending on the

level of change necessary, the designers must navigate between the choices of systems to

reflect the requirements and produce an optimal solution.

As the name – Application Specific Integrated Circuit (ASIC), states, the ASIC is

the best solution when it is “application specific” and fixed. Because the ASICs

physically implement all applications and optimize the common operations that are

timely shared among the applications, there should be virtually no application change(s)

necessary to minimize the hardware idling within the ASICs. If there is a considerable

29

amount of changes necessary between applications, the ASIC can become too expensive

to manufacture.

However, alternatively RCs can use static (full)/dynamic (partial)

reconfigurations to reflect the necessary changes. If the timing allowance in the

applications is more than the configuration time of a full device, then the full

reconfiguration can be employed. If the applications have stricter timing constraint but

require small changes, the RC can use dynamic reconfiguration to echo the changes in the

application without halting the rest of system’s functionality.

This thesis focuses on Dynamic reconfiguration that reconfigures a portion of the

device for task-level changes without disruption of links between tasks.

Figure 2-4: Temporal Computation (Th denoting a thread and W denoting a workload)

W

Ap1

Ts3

Ts1

Ts2

Ts

Ap2 Ap3

Ts3

Ts1

Ts2

Ts4

Ts3

Ts1

Ts2

Ts4

Ts7 Ts6

Ts5
Ts8

Ts7Ts6

Ts5
Ts8

Ts7 Ts6

Ts5
Ts8

Th1

Th2

changed

changed

changed

changed

Application boundary
(in time)

Application boundary
(in time)

30

While an application represents a snapshot of the system’s functionality, a

workload assembles all applications that the system requires over time. For example, let

the workload consist of three applications and each application employs two threads as

shown in Figure 2-4. As for many cases, the applications do not get changed much.

Shifting from Ap1 to Ap2, illustrated by color changing, only Ts1 and Ts3 need to be

changed and the interconnect structure within the thread (e.g., Th1) remains unchanged.

In this case, if the tasks occupy a designated area, the shifting between applications can

be very easily obtained without disturbing operation of other threads. Since the tasks in

Th1 change their functionalities depending on the conditions given for the application,

they are called multi-mode tasks.

In a nutshell, the timing and physical constraints given for the system determine

the arrangement of operations that are hierarchically organized as modes, tasks, threads,

applications and workload. The reconfigurable computing paradigm can utilize dynamic

nature of the applications to maximize system efficiency using temporal and spatial

redundancies, particularly in terms of hardware resource utilization via reconfiguration.

2.5 Terminology and notation

In order to clearly outline the benefits of reconfiguration under different system

conditions, the terminology of system and applications play an important role. One tries

to define terminologies related with hierarchical organization of reconfiguration and

terminologies that are used for the underlying applications in the following sections.

31

2.5.1 System for reconfiguration

The essential terminology and notation are defined and described in this section to

express the associated applications and data, system model and their relationships. First,

the system is represented by a set of operations. Based on temporal or spatial

relationships among operations, they form tasks, threads, applications and workload.

Definition 1 A task, Ts is a group of arithmetic (and/or logical) operations that are

necessarily interconnected to perform the described computation.

Definition 2 A mode, Md is one of ways executing a task that is bounded by constraints,

and specifications.

While a mode is bounded by available resources and technology specifications, a task is a

description that can be implemented by any system. For example, if the task is

mathematical formulas that represent a computational algorithm, the mode is a placed and

routed hard IP core for a certain system.

Definition 3 An application, Ap is a group of task(s) that are interconnected (or

disjointed) to carry out computational requirements for a system given at time(s).

32

An application is the spatial expression of the system defined by the computational

requirements of the time. Depending on the degree of computational changes required by

the system, applications tend to be relatively static over short period of times.

Definition 5 A thread, Th is a connected set of task(s) given in an application.

Definition 6 A workload, W represents all application(s) that a system needs to

implement at different times.

Using mode, task, thread and workload, W p Th Ts Md     , the system can

express the temporal or spatial computational requirements to reflect the necessary

changes by different granularities. For detail graphical explanations, refer to the section

2.4.2.

One acknowledges that applications that reconfigurable systems deal with are

quite wide and complex. However, due to the embedded nature of computation-intensive

applications on which reconfigurable systems focus, the instance of the applications that

are deployed with the system is very specific and narrow. Specifically, the categories of

real-time and stream applications show the promises of rendering the benefits of cost

savings via exploiting redundancies available in multi-task and multi-mode applications.

33

2.5.2 Real-time applications

The basic terminology of real-time tasks sheds some light on the context of the

applications that reconfigurable systems can effectively deal with. Their definitions are

based on [22] and adapted to fit with the previous definitions given in this chapter.

Definition 7 A real-time task is an executable entity of work which is characterized by a

minimum (and maximum) execution time and a time constraint.

Definition 8 A job is an instance of a task in time.

The time constraints can be release times or deadlines, or both.

Definition 9 A release time, tr, is a point in time at which a real-time job becomes ready

to execute.

Definition 10 A deadline, td, is a point in time by which the job (which is the instance of

a task) must complete.

Real-time applications can be categorized into one of three types: periodic, aperiodic, and

sporadic.

34

Definition 11 Periodic tasks are real-time tasks which are triggered (released)

consistently at a fixed interval (period).

The notation of the period and deadline is designated to be T and td , respectively.

Periodic tasks are associated with time constraints – the instances of a periodic task must

execute once every T. The deadline of a periodic task, td normally equals to T.

Definition 12 Synchronous periodic tasks are a set of periodic tasks where all first

instances are triggered at the same time.

Definition 13 Asynchronous periodic tasks are a set of periodic tasks where all first

instances are triggered at different times.

Definition 14 Aperiodic applications are real-time applications which are triggered

inconsistently at some unknown bounded rate.

The bounded rate is characterized by a minimum inter-arrival period – a minimum

interval of time between two successive activations.

Definition 15 Sporadic tasks are real-time tasks which are activated irregularly with

some known bounded rate.

35

Definition 16 A hard deadline means that it is vital for the existence of the system that

the deadline is met all the times.

Definition 17 A soft deadline means that it is permissible that the job is completed after

the deadline, but the usefulness of a computation becomes enumerated (normally

decreased) after the deadline expires.

Definition 18 A firm deadline means that a task should complete by the deadline. There

is no use of completing the task after the deadline.

The deadlines of real-time applications are typically categorized as no, soft, firm and hard

deadlines. While a firm deadline specifies the time point when the computation is

realized to be futile, a soft deadline can formulate the usefulness of a computation by the

time passed after the deadline expires.

With the above definitions, the notation used to represent the jth instance (i.e., job9) of ith

task, Tsi is denoted by ,i jJ or simply jJ . Each task, Tsi is coupled with maximum

execution time, Ci.

Definition 19 A job has release time , tr if its execution can begin only at time rt t .

Definition 20 A job has deadline, td if its execution must complete by td.

9 Job and mode can be used interchangeably

36

Because the performance of computing systems greatly depends on what it deals

with, we explore the traits of typical data with which the reconfigurable systems are

associated. One of them is real-time applications. The real-time applications put great

attention to the notion of time [23] [24]. The real-time applications specify deadlines and

real-time arrivals of input signals. Based on the specifications of real-time applications

such as td, one attempts to identify the boundary that enables lowering the unit costs of

the reconfigurable system.

Not all real-time applications provide the predictability to acquire allocation of

necessary resources. Aperiodic tasks that are unpredictable are taken out from

consideration. The application which does not have deadline can not take advantage of

reconfigurable system because it is unsure of what configuration it needs. Thus, one only

considers the real-time applications that are periodic or sporadic tasks bounded by a soft,

firm or hard deadlines.

First let us specify the timing constraints of periodic10 applications. The release

time and deadline of the jth job of the periodic task, Tsi is quoted as:

    , 1r it i j j T  and    , ,d r i it i j t i j T jT   respectively.

As noted, the deadline of one instance is the release time of the next instance. For

sporadic tasks, the release time of two consecutive instances must be distanced by at least

   , ,d r i it i j t i j T jT   . The deadline is equal to the next release time:

   , ,d r it i j t i j T  .

10 Periodic tasks can be either synchronous or asynchronous.

37

Let us assume that task Tsi is characterized by period (or minimum inter-arrival

rate), iT , and the execution time, iC . Then, the task (or application) can be reconfigured

when:

For a task:

irec i it T C  , where

irect is the time that takes to reconfigure Tsi

For an application or thread:

 min
irec i it T C  , where  indicates the sum of all changing entities.

irect can

be further reduced by only taking the differences for reconfiguration. However, in this

thesis we calculate the reconfiguration time by the area that the tasks occupy. As long as

the proceeding changes are indicated at the beginning of the previous release time, the

reconfiguration of task (or application) can be successfully conducted upon the above

condition. Whether the system is associated with a hard, soft or firm deadline is a

question of scheduling that should be dealt with at the system-level.

2.5.3 Stream applications

When the real-time applications focus on the timing notation of computation

entities, the stream applications identify the data structure and determines the data access

necessary for the given system architecture.

Definition 21 Stream is a continuous list of elements that bears a particular structure of

data of which the system is interested in processing.

38

Stream can carry various meanings. For instance, it can refer to regular structure of high-

speed communication protocols such as SONET and ATM cells, compression payloads

such as JPEG, TIFF, signal processing algorithm such as DFT and DCT, multimedia

protocol such as MPEG4, MPEG7 and MPEG21, etc. All the computations are

determined by concatenated header or input data structure – that is known to algorithms

or protocols.

Definition 22 Stream processing is a processing of high amount of regularly structured

data in a limited time, td.

While the real-time applications put attention to the notion of time, the emphasis

of stream applications is structured around data and data access pattern that determine the

requirements of system resources. We assume that the reconfigurable systems deal with

data that is stream. Stream data is typically [25]:

 Organized as multi-dimensional array;

 Unbounded along the temporal domain;

 Embedded with diverse information that is structured.

The stream applications normally utilize the structure of multi-dimensional data array

mapped into one-dimensional data sequence – the data sequence can be realized as serial

or parallel lines [26].

39

Stream algorithm is particularly interested in processing structure of stream data

where the information can be reorganized (e.g., encoded, compressed and converted).

Stream processing algorithms normally require:

 Independent processing of locally limited dimensional data;

 Data access pattern that are typically fixed within the data set.

The structure of the stream application also provides the control for operations to

differentiate processing. Because the structure of stream data underlines the data format

and data sequence, it provides a way to estimate the reconfiguration overhead in time.

However, because different applications employ different combinations of functional

units and different functional units consume the data in a different way, the access pattern

of the data decides how to implement an algorithm in the system.

Stream application requires the same processing to be repeated in a given time.

Due to the repeated processing limited by the structure of stream data, the processing is

executed independently every time when a new unit of stream is supplied. Thus, the

failure of processing current stream does not influence the processing of the next stream

unit.

Based on the above assumptions, the reconfiguration time would generally be

smaller than the period subtracted by execution time. However, if the application can

tolerate the loss of a stream unit, then the reconfiguration constraint based on real-time

applications can be relaxed up to the point of the application tolerance that is the multiple

of periods. The study of the underlying applications provides the way to estimate the

reconfiguration constraint based on the characteristics of the applications.

40

When the system can reconfigure various functionalities by satisfying the

reconfiguration constraint, there is a considerable amount of hardware that can be saved.

These savings have inspired many companies and researchers to construct reconfigurable

systems using generic interconnect structure.

2.6 Generic Reconfigurable Systems

As we enter deep sub-micron (DSM) process technology to deliver a great

number of logic gates on a chip, the focus of micro-architecture has moved away from

processing towards communication that is referred as micro-network. As the advents of

the process technology decrease the gate delay comparable with wire delays under deep

submicron technology, interconnection designs of reconfigurable devices are increasingly

considered as signal integrity problems of high speed communication. These new

challenges will require fundamental changes how system designs are preceded.

For instance, integration of complex system on a chip demands complex

intercommunication between modules – block of gates that are locally connected. The

increase of system complexity requires longer global wire interconnects. As a result, the

scaling down of wire length through the advances of technology does not hold at the

global level. Especially, rising of RC wire delays in the DSM adds “reverse scaling” of

interconnects. As global wire delay surpasses gate delay, interconnects between modules

surfaces as a difficult task to solve by ad-hoc methods. Additionally, signal transmission

on a chip faces an increasingly noisy environment, where noise introduces undesirable

effects such as timing variations, cross-talk and interference. Such problems are not only

41

application-driven but also physically bounded ones. The problems need to be dealt with

in a multi-level solution to mandate the fixes in a systematic way. This will tend to move

computer architecture in the direction of locally-connected, reconfigurable hardware

meshes that implement communication networks between modules.

Instead of constructing application specific micro-networks some approaches

solve the interconnection problems by imposing the generic structure of System-on-Chip

BUS or Network-on-Chip (NoC) architectures.

2.6.1 System-on-Chip BUS architecture

The BUS was conventionally coined as a term that defines a set of physical wires

that is shared among various entities which intend to communicate one another as shown

in Figure 2-5 .

Figure 2-5: Conventional BUS – an example

Processor Instruction
Memory

Data
Memory

DMA
Controller

SDRAM
Controller

Ethernet
Interface

42

Nevertheless, today’s BUS used in SoC carries a different meaning. It comprises

of multiplexers that establish necessary interconnections among entities and an arbiter

that decides the precedence of communication to grant access as shown in Figure 2-6

The success of SoC BUS architecture sprouts from popular processor centered

designs such as CoreConnect BUS architecture [27] with IBM PowerPC processors and

AMBA architecture [28] with ARM processors. The introduction of SoC BUS allows

designers to use SoCs as processor centered collections of IP blocks. Then again SoC

BUS architecture has advanced to include more features than the initial architecture

envisioned.

In SoC BUS architecture, once the required behaviour of the blocks is defined by

transactions of BUS protocol, the level of abstraction to organize the system is

Figure 2-6: SoC Bus Module – an example

Processor Instruction
Memory

Data
Memory

DMA
Controller

SDRAM
Controller

Ethernet
Interface

MUX

Arbitrator Arbitrator

SoC BUS

43

elaborated. Thus, the interconnect problem falls under interactions between BUS layers

where generic approach allows systematic verification of interconnect architecture. SoC

BUS architectures have evolved by embracing the mixture of various traffic types by the

means of segmented and tiered BUS architecture. For instance, AMBA deploys four

interface protocols called, Advanced eXtensible Interface (AXI), Advanced High

performance Bus (AHB), Advanced Peripheral Bus (APB) and Advanced System Bus

(ASB) to satisfy various traffic requirements.

As it is shown in AMBA case, the SoC BUS architectures can consist of many

local buses. Each local BUS essentially contains a master, slave(s) and an arbiter. The

IBM’s CoreConnect shown in Figure 2-7 shows a typical architecture of SoC BUS

architecture where inter communication is achieved through arbiters and intra

communication between local buses via bridges that enable data transfer by master(s) to

and from slave(s).

Dynamic reconfiguration with SoC BUS architecture can provide “plug-and-

play” capability to IP cores that need to be implemented. SoC BUS architectures can:

 Provide technology independent interconnection solutions

 Encourage system level modular designs

 Allow reusable IP cores that are targeted for the same BUS architecture

The above advantages can be generally identified when there is virtual/physical

separation of computations and links between them. Because all the communications

between IP cores are bounded to work through BUS architecture, it allows technological

independence. It also promotes the usage of modular design where modules are the IP

cores that are specially developed to be compatible for the BUS transactions.

44

SoC BUS architectures intend to find an optimal way to utilize available

bandwidth when the communication requirements of the applications are uncertain. In

this case the algorithm deployed on the arbiter plays an important role to achieve the

desired performance. Therefore, SoC BUS architectures are mainly concerned with

achieving optimal temporal sharing of physical wires (i.e., BUS).

2.6.2 Network On Chip

Once the layering of SoC BUS architecture has become rather complex and the

number of IP cores increases beyond typical bandwidth of SoC BUS architectures, the

idea of Network-on-Chip (NoC) started to emerge. While the SoC BUS architecture

started with the intention of providing the bridge to narrow the gap of realizing the

Figure 2-7: A example of CoreConnect bus architecture

PLB bus

Bridge
Bridge

AHB bus

OPB bus

AHB
arbiter

PLB
arbiter

OPB
arbiter

Master Slave Slave

Master Slave Slave

Master Slave Slave

45

processor-centric SoC designs, the NoC was initiated to provide a solution for new

challenges in silicon technology. The core of these challenges is how to successfully

implement on-chip applications that require interconnecting more than billion transistors

running at GHz. There are several trends that are worthy of noting:

 Increasing operating frequency due to shrinking fabrication technology

 Rising susceptibility of long wires to signal integrity problems (e.g., crosstalk,

fabrication uncertainties, noise sensitivities, etc.)

 Difficulty of achieving global synchrony due to growing clock skew

 Increasing power requirements to drive long wires

 Diverging wire delay between local and global communication

Figure 2-8: Projected relative delays of local and global wires [29]

46

Figure 2-8 illustrates a growing concern of global communication from the

perspective of wire delays [29]. The main theme of these trends reveals the difficulties in

communicating globally in SoC as process technology shrinks.

The distinctive feature of NoC architectures is the adaptation of network

abstraction model (i.e., OSI model) from area networks. The network abstraction model

traces the flow of data and works as a vehicle to place the data onto a particular data unit

associated with the layer. The OSI network model portrayed on NoC can be shown as

Figure 2-9.

Figure 2-9: NoC layers vs. OSI 7 layers: redrawn from [30]

Data Link

Network

Session/
Transport

Application/
Presentation

OSI 7 Layers

Network

Network
Adapter

System

NoC Layers

Source
IP

Network
Adapter

Source
Node

Intermediate
Node

Destination
IP

Network
Adapter

Source
Node

Messages/
transactions

Packets/
streams

Virtual Socket

Virtual Link

Physical Link

Link

Flits/
phits

47

The seven Open System Interface (OSI) layers are grouped into four layers [30] to

map the abstraction level of currently undergoing NoC researches. From the top of the

OSI model, the roles of the OSI layers are compared with NoCs.

First, the presentation layer is responsible of establishing a context between

application entities. Then, using the customary context, the application layer interfaces

directly to application services – the context is the format the data is produced and

consumed by applications. Therefore, these layers create virtual point-to-point

communication between end applications. In NoC, IP cores carry the same rationality as

the end applications. The cores are constructed without knowing the bandwidth or

limitation of links. They are normally constructed by the specifications of a certain

communication protocol or generic communication scheme available (e.g., OCP-IP [31],

VSIA [32], etc.). Unlike the application/presentation layers that use “soft” approach in

the OSI, the system layer uses “hard” approach in the NoC. It also needs a matching

communication scheme – so-called virtual socket. Otherwise, the NoC can suffer from

unreliable data losses during the operation or waste a valuable time at the design stage.

Depending on the nature of IP cores, the system layer should create the different types of

context (e.g., simple, handshake, burst, pipelined write/read, etc. [33]). Since the NoC

does not deal with “real” application/presentation interfaces – I/O peripherals of the SoC

are mostly dealing with transport or network layer data, the construction of IP cores

based on the determined and characterized context is the highest abstraction model that

belongs to the system layer.

Secondly, the session/transport layer mainly concerns managing the established

sessions. The intention of the session layer is to control the connections and then the

48

transport layer provides the reliable data between the opened sessions. In NoC, the

session/transport layer can be viewed as the gateway placed to and from the end of

network adapter. Therefore, the session/transport layer does not heed what type of IP core

it is connected with. When the IP cores are plugged into the network adapter, a session

(i.e., virtual link) is established via on-chip network.

Thirdly, the network layer provides the procedural ways to transfer data from a

source to a destination. The existence of this layer starts from the concept of

“networking”. The networking is generally accepted as a resource-binding idea. The

network model is the idea to optimize resource for establishing communication among

multiple entities. With cost and performance considerations, the network model settles

with a topology that results in limited (but sufficient) interconnects between network

entities. The area network employs the means of extending the reachability of the data by

extending networks that have limited interconnects. When there is no direct route

between the source and destination, routers operate to relay the data via the extended

network to reach the destination. The syndicate of the network is achieved by routers who

manage a portal to the extended network. In NoC, the network layer focuses on reach-

ability of network limited by the links of the deep submicron process technology. As long

as the data is concerned, the network layer only inserts intermediate nodes to extend the

links that are bounded by physical limitation.

In addition to all the above, there are several conceptual and real gaps that

distinguish the OSI model from the NoC. Due to the embedded nature of applications that

are dealt in the NoC:

 The area of applications in a device is very narrow.

49

 The NoC is not a general purpose system, but is rather an application-specific

device.

 Except for the cases of upgrades and mode changes, the structure of

applications are mostly static not dynamic.

 The number of network entities that require communication does not scale

much for the NoC as it does for the area network.

 As the number of gates increases, the NoC can implement more threads to

utilize available areas but the number of entities in a thread would not increase

much.

Unlike the area network mediums (e.g., optical fiber, coaxial cables, etc.):

 The operating frequencies of cores (e.g., network entities) are very close to the

bandwidth of physical link.

 To be attractive for computation-intense applications, the NoC utilizes largely

available link resources to massively parallelize computations.

The area network utilizes high bandwidth through strictly technology dependant

mediums. Since the NoC shares fundamentally the same fabrication technology, it is

technically more challenging to manufacture the links that are superior to the

computational resources. There is much research to look for physical link capability to

achieve a NoC solution that is comparable with the area networks. One of these solutions

is Globally Asynchronous Locally Synchronous (GALS).

A GALS system contains complex computational blocks that are synchronous by

themselves. These coarse blocks are interconnected by globally asynchronous

communication. The globally asynchronous communication requires several analog

50

blocks (e.g., PLL, A/D and D/A converters) to recognize the data and establish the

communication. Due to the operating frequency that GALS promises, it provides the

benefits that the area network offers. They are such as reduction of power consumption

due to globally clockless designs and shrinking the number of wires employed for global

communication due to serialization of links.

While the SoC BUS architectures employ shared medium approach that requires

arbitrations and control transactions, the NoC utilize point-to-point network that

implement its responsibility into different layers of the architectures.

The NoC will provide the communication structure for easy integration of various

applications if the costs of the Reconfigurable SoC system become cheap enough. Yet,

the majority of today’s applications that are implemented in SoC systems are quite

narrow. They are typically timing-critical and computation-intensive applications that are

identified as real-time and stream applications. Other applications are normally

implemented in micro-processor systems. The system of real-time and stream

applications ought to maximize the capability of existing hardware to achieve the desired

performance of the applications.

In area network, the unprecedented choice of medium (e.g., optical fiber) allows

the communication between systems to withstand the overhead resulted by protocols. On

the contrary, the SoC systems always struggle to squeeze out every ounce of bandwidth

that it can reliably provide.

As we witnessed in the previous sections, the main focus of the RC research have

been the study of hardware limitation and how to resolve them using architectural

51

solutions. To study the main trends in RC industry, one first takes a look at the existing

RC systems from their architectural point of view.

2.7 Reconfigurable Computing Systems: Architectural point of view

Hartenstein [34] presents his paper by classifying how hardware of each

reconfigurable system is organized. Since the information of each system is presented by

the merits of combined choices (e.g., granularity, topology and architecture) of the

reconfigurable system, it is referred as subjective -view. The architecture-centric view of

systems identifies the principal computation requirements and tries to bring the optimal

solution for the limited set of operations. The reconfigurable systems tend to focus on the

effectiveness of hardware solutions. Thus, the performance of the system greatly depends

on how applications can be converted for the given hardware solution.

One of ways to look at the system is by their granularity. The increase of

granularity is rooted from the computational datapaths that are naturally more than 1-bit.

Due to the overheads incurred by configuration time and memory and the complexity

associated with place and route problem, it is encouraged to utilize the hardware that is

closely matched with the granularity of datapath.

From the beginning of the RC history, the main debate of the RC architecture was

focused on what granularity the RC systems should have. Due to many reasons such as

routing areas, power consumption, routability and configuration time, they are mostly

implemented as coarse-grained architectures. The summary of these systems is listed in

Table 2-1 in terms of their granularity.

52

When the Table 2-1 represents link/datapath granularity, there can be the

granularity of computation unit. Since the granularity of the model is bounded by the

granularity of links, the granularity of a computation becomes the same as link size. For

example, DReAM [35] employs 8-bit Reconfigurable Arithmetic Processing Units.

CS2000 family [36] offers the multi-protocol multi-application reconfigurable platform

with a 32 bit RISC core as a host. MorphoSys [37] has “TinyRISC” with 16-bit interface.

As it is specified in Table 2-1, the system employs the granularity that is optimized the

link capacity of the system except the cases of Pleiade [38] where the system is

synthesizable by the applications.

Topology of the systems also demonstrates the variety that exists in

communication infrastructure of the RCs as shown in Table 2-2

Table 2-1: Granularity of coarse-grained reconfigurable architectures

Project Granularity

DReAM 8/16 bit

PADDI 16 bit

PADDI-2 16 bit

RaPID 16 bit

REMARC 16 bit

MorphoSys 16 bit

CS2000 family 16/32 bit

PipeRench 128 bit

53

The topology of reconfigurable systems shows a mixed reflection of homogenous

[39] [40], hierarchical [41] [42] [43] [44] and switched [45] routing structures. Table 2-2

indirectly shows that there is no one topology that meets the requirements of all

applications. However, there is a strong trend to divide global and local communication

to overcome the implementation constraints laid by deep submicron effects. It is very

interesting to look at the interconnection structure changes occurred in Programmable

Arithmetic Device for DSP (PADDI) [39] [40] from a full crossbar switch, to restricted

crossbar with a hierarchical interconnects.

The hardware specific view of reconfigurable computers reveals the architectural

differences among the RC systems. There is no universal agreement on which

combination of architectural approaches is better for certain applications. However, one

believes that these RCs will continuously evolve and reflect the trends of today’s

applications by applying different granularity, communication and network topology and

adapting to a new architectural solution.

Table 2-2: Communication topology of reconfigurable architectures

Project Topology

PADDI central crossbar

PADDI-2 multiple crossbar

DP-FPGA inhomogenous routing channels

KressArray multiple NN and bus segments

RaPID segmented buses

Matrix 8NN, length 4 and global lines

RAW 8NN, switched connections

Garp global and semi-global lines

54

In terms of hardware platform, one does not assume that the proposed system

employs one of discussed platforms. Instead one uses one of the commercially available

Field Programmable Gate Arrays (FPGAs) to implement the discussed class of

applications (e.g., real-time and stream). One assumes that the chosen FPGA can

accommodate anticipated performance of underlying applications.

In the subsequent section, one will look for an efficient way to implement the

trends of today’s applications as they become multi-task and multi-mode.

2.8 Optimizing Reconfiguration

Many researchers in the name of multi-tasking have investigated on the subject of

reconfiguration [46][47][48][49][50]. Their research focuses on continuation of tasks that

are segmented (e.g., multi-task) in the time domain. Specifically, the papers [46][47][49]

present the operating system and platform support for preemption and recovery of states

between tasks. The papers [48][50] guides one through the sketch of the RCs from the

operating system (OS)’s point of view. These papers assume that the reconfigurable

device does not have enough logic density or its cost becomes too expensive to

implement all in hardware. Once these assumptions are in place, task scheduling and

inter-task communication along with preemption/restoration becomes an essential part of

the OS tasks [51].

Conversely, one assumes that our RC platform (e.g., FPGA) is able to

accommodate all the requirements at the times, but not over all times. Multi-task in our

assumption is an application-driven phenomenon, not an OS-driven task. Reconfiguration

55

of processing resources would bring the same cost benefits that the above approaches

mention. Invoking of reconfiguration is also not initiated by internal trigger but serviced

by external system events. Because data units in stream are independently executed, there

is no need to restore the state of the system. If the above RC systems use the architectural

specific reconfiguration, our approach attempts to discover the natural flow of multi-tasks

in the applications and then matches it with the reconfiguration capability of our RC

system.

2.9 Reconfigurable Computing System: Application point of view

If hardware specific reconfigurable computing looks for a new hardware solution

that is powerful enough to meet the requirements of target applications, application

specific reconfigurable computing – so-called predicative view of RCs, focuses on

searching more efficient way of designing RC systems.

Because each application is different, we need a model to describe the

undermining applications and study the effectiveness of our approach based on the model.

The modeling taxonomy provides a means to categorize applications according to a set of

attributes depending on their characteristics. Thus, a modeling of the applications that

share the common traits can be constructed.

We adapt the model taxonomy used in [52] that is widely accepted by Virtual

Socket Interface Alliance (VSIA) [32] and Open Core Protocol Intellectual Protocol

(OCP-IP) [31] community. The model taxonomy in [52] consists of four main axes that

are not completely orthogonal to each other. The model can have both internal and

56

external resolutions. However we focus on external resolution of a RC system as they

should define interfaces between reconfigurable blocks.

The model taxonomy has four axes. These axes are expressed in resolutions that

differentiate the applications. The axes are described in temporal, data, functional and

structural domain. The temporal axis defines the timing in the model. Its resolution can

be divided into seven different categories, “partially ordered events”, “system event”,

“token cycle”, “instruction cycle”, “cycle approximate”, “cycle accurate” and “gate

propagation accurate”. Because we are interested in modeling the communication

between cores on a chip, the temporal resolution should be fairly high. Additionally the

granularity of on-chip core processing and their precedence in today’s applications are

normally described in high temporal resolution. We only focus on high temporal

resolution such as “partially ordered events”, “system event” and “token cycle”. For

instance, “partially ordered events” can describe the systems that can consist of many

threads that are independent and concurrently executable. There is the precedence of

execution among tasks without exclusive timing assignment. “system event” can specify

start and end times of system functions. When the operations are executed by the inputs

of the same data format not by the content of data, it is referred to as “token cycle”. The

low resolutions, such as “cycle approximate”, “cycle accurate” and “gate propagation

accurate”, are used to describe for a particular RTL or internal resolution of IP blocks.

The high temporal resolutions can be precisely specified by the definitions used in the

section 2.5.2 and available precedence of processing core blocks.

The data resolution represents the precision, with which the formats of values are

specified in a model. Considering high temporal resolutions “token” should be assigned

57

as the data resolution. “Token” is considered to be the highest abstraction level for data

representation without implementation information such as structure, size, value and so

on. However, “token” in our RC model, carries the structure of stream application that

are defined under the section 2.5.3. The structure of stream application defines the order

of coarse computing operations. The content of data does not change the order of

operations unless it is classified as the system events.

The functional and structural resolutions do not play an important role in finding

an optimal design solution for RC systems because they do not contribute to the

organization of computing operations. These resolutions tend to show how core blocks

are internally represented and described.

As it is seen in Figure 2-10, each temporal resolution can de described by an

associated timing scale [52].

Figure 2-10: Temporal Resolution Axis

gate
propagation
(ps)

clock
accurate
(10s of ns)

cycle
approximate
(100s of ns)

instruction
cycle
(10s of us)

token cycle
(100s of us)

system event
(10s of ms)

partially
ordered
events

Low resolution High resolution

58

Especially when the temporal resolution is “token cycle” and less, the timing

allowance is in the same timing scale as reconfiguration time of RC systems. This

combination allows the reconfigurable systems to reuse processing resources that are

available between core operations via reconfiguration. All of these are achieved by

raising temporal abstraction level as mentioned in section 2.3. Because of non-

orthogonality between temporal and data resolutions, they should linger in the lower

region. The functional and structural resolutions depend on how the system can be

described by smaller elements.

In order to achieve the goal of designing a cost-effective reconfigurable system,

we explore the redundancies that are available from the applications and utilize the

timing redundancies as system reconfiguration. The first step is to recognize what are

these redundancies. Today’s applications have two faces: one is static face that requires

faster execution of a fixed set of operations; the other is dynamic face that demands

coarse changes between static faces. To exploit the benefits of the above traits, one

introduces the 5th model taxonomy axis – i.e., reconfiguration resolution. The

reconfiguration resolution is both physical constraint and the specification of the system.

Physically the reconfiguration resolution is deeply coupled with the types of computing

system. For instance, the reconfiguration resolution of microprocessor is one clock cycle

that allows the change(s) of hardware while the some of the RC can change “context” of

the system within a clock cycle. For FPGAs, the reconfiguration resolution is generally

accepted by the time with which it takes to program a tile of reprogrammable logics.

However, the granularity of the tile seems to change as the FPGA systems try to reflect

the current needs of the electronic market. All of these are based on the assumption that

59

the physical configuration speed meets the fundamental unit of data that the system deals

with. Thus, it leaves with the question, what granularity of reconfigurable system is best

suitable for a particular workload? The answer should not be a unique one.

The designing RC system with the fine-tuned reconfigurable/temporal resolution

results in a cost-effective solution compared with ASIC approaches where the detail

timing of temporal resolution is determined by system events and reconfiguration

resolution is set by RC technology.

2.10 Summary of RC taxonomy

The subjective view of the RCs generally looks at the maximum performance/area

that hardware can provide and accommodates the applications onto the platform to carry

out. Conversely, the predicative view of the RCs analyzes the applications and partitions

them into tasks that can be reconfigured with the given platform. Otherwise, they are laid

as parallel processing tasks. In order to do so, the predicative view of the RCs requires

identifying two faces of applications. Once they are clearly separated, the reconfiguration

resolution of the chosen RC hardware system (e.g., FPGA) can be matched with other

modeling axes, especially temporal and data axes. In this case, we can reuse the

processing resources that reduce the overall cost of system without compromising

performance.

It is difficult to compare the impact of the various RC techniques mentioned in

this chapter because the target architecture and the requirements of underlying

applications vary. This thesis makes an attempt to assess the benefits of application

60

centric RC design methodology with a particular set of applications (i.e., real-time and

stream applications). Moreover, it examines in detail the dependence of our methodology

on the relevant characteristics of the underlying FPGA architecture. The following

section will study a particular FPGA architecture on which our experiments are based.

2.11 Field Programmable Gate Array

As consumer devices evolve towards increasingly complex integrated circuits and

time-to-market pressure continues relentlessly, re-usage of pre-verified component (e.g.,

IP cores) becomes mandatory. In this chapter we studied the RC systems in the hope that

they can provide the gains in productivity and the savings in system costs through

reconfiguration. Using RC systems we thrive for a result in which the system is shared

across multiple applications and its overall cost becomes lower than the ASICs.

2.11.1 Reconfigurable Hardware based on FPGAs

One of the most commercially successful reconfigurable devices is Field

Programmable Gate Array (FPGA). An FPGA consists of arrays of programmable logic

blocks whose functionality can be determined by configuration streams. The configurable

logic blocks are also connected by a set of programmable routing resources. FPGAs can

be programmed to map custom logic circuits. FPGAs can be programmed in three

different ways. They are: full static configuration; partial static reconfiguration; partial

dynamic reconfiguration.

61

However, not all FPGAs can support all modes because of how configuration

memory is connected and what memory technology is used in the FPGA. They are three

different types of programmable technology that are readily available: anti-fuse; flash;

SRAM.

As the technology states, anti-fuse based technology is one-time programmable. It

has negligible delay and relatively small area overhead. Actel Corporation [53] is one of

the leading producers of anti-fuse FPGA that are widely used in space applications. Flash

based technology can maintain programming even when turned off, but requires more

manufacturing processes. Flash based FPGA are produced by many companies. However

Lattice semiconductor Corporation [54] is one of first who was successful on the market.

SRAM-based FPGAs can provide faster reconfiguration when they are compared

to FLASH-based FPGAs. Additionally SRAM-based FPGAs can provide dynamic

reconfiguration. The dynamic reconfiguration allows configuring a part of logics when

others are still in operation. They are two dominant commercial companies who make

SRAM-based FPGAs. They are Xilinx Incorporated [55] and Altera Corporation [56].

In this thesis we implement the system using SRAM-based FPGAs. Due to the

support for dynamic reconfiguration, we decide to use Xilinx FPGA families, particularly

Virtex-4 FPGA [57].

2.11.2 History of run-time reconfigurable Xilinx FPGAs

In order to understand the rationale behind reconfigurable technology and

architecture that Virtex-4 FPGA has, we need to study the history of FPGA development.

62

One will investigate the construction of homogenous logic blocks used in FPGA, and

routing structure that interconnects logic blocks and how reconfiguration mechanism has

evolved to reflect the above developments in FPGAs. Our investigation will be limited to

Xilinx Virtex FPGA family, not across multiple FPGA platforms, because of different

strengths that they appeal for different tasks. One starts with the predecessor of Xilinx

Virtex FPGAs that is the XC6200 FPGA [58]. Xilinx XC6200 FPGAs allow direct access

of configuration memory for static or dynamic reconfiguration via parallel configuration

interface that is very similar with SRAM memory access. Because of homogeneity, the

FPGA is composed with identical basic cells. Switching fabrics consists of basic cell

blocks and routing multiplexers shown in Figure 2-11.

Figure 2-11: XC6200 Basic Cell [58]

63

The basic cells in the array have inputs from the length 4 wires associated with

44 cell blocks as well as their nearest neighbor cells as the name North (N), South (S),

East (E) and West (W) stands out. The multiplexers within the cell are controlled by bits

within the configuration memory. The function unit is a simple 2-input combinatorial

logic block with a flip flop as shown in Figure 2-12. The XC6200 FPGAs hierarchically

cascade routing resources by expanding from 44, 1616 and to chip-length lanes.

In XC6200 FPGA series [58], the configuration of each cell was accessible as if

one accesses RAM memory with a valid address and the routing structure grew

consistently as a group of 4 multiple cell blocks. As one of the first, the XC6200 FPGA

series allow the user to selectively modify the contents of configuration memory, so-

called partial reconfiguration. There were several applications that utilize the partial

reconfiguration feature of XC6200 [59] [60] [61].

Figure 2-12: XC6200 Function Unit [58]

64

After the XC6200 FPGA series, similar FPGA architectures started to appear. The

Virtex family FPGA is the first case as shown in Figure 2-13.

Starting from Virtex FPGA family, each Xilinx FPGA device started to use the

terminology of Configurable Logic Blocks (CLB), Input/Output Blocks (IOB) and Block

RAMs (BRAM). CLB is used as the equivalent terminology with cell blocks in XC6200.

The Virtex FPGAs also include clock resources, local/global routing and configuration

SRAM and configuration controller. Figure 2-13 illustrates the organization of these

resources in a device (i.e., Virtex FPGA Family). While the BRAM and clock resources

have its own routing to interconnect with the rest of the device, the CLBs need to

Figure 2-13: Virtex Architecture Overview [62]

65

communicate via a general routing matrix. This switch matrix comprises an array of

routing switches located at the intersections of horizontal and vertical routing channels.

2.11.3 Evolution of Virtex FPGAs

As the process geometry shrinks, there is a growing possibility to implement more

complex applications. While maintaining the overall FPGA architecture, the details of

CLB, routing and configuration have been evolved to accommodate increases in power

consumption, wire delay, etc. Associating with the complexity of embedded systems,

there have been needs for architectural changes.

2.11.3.1 Configurable Logic Block

The major merit of the CLB is homogeneous structure. Because of the uniform

structure of the CLB, it is possible to implement configurable/swappable hardware

components that are virtual. “Virtual” components represent hardware components that

are synthesized using Configurable Logic Blocks (CLBs). Thus, the same CLBs can

employ different “virtual” components – so-called, Virtual Hardware Components

(VHCs). The CLBs in Virtex FPGAs started to be implemented as 4-input Look-Up

Tables (LUT) as shown in Figure 2-14.

66

Figure 2-14 from [62] illustrates a CLB of Virtex FPGAs that can work as logic

cells, LUTs and storage elements. The CLB of Virtex-2 FPGAs [63] consists of 4 slices

which can serve more functionality shown in Figure 2-15

Figure 2-14: 2-slice Virtex CLB [62]

Figure 2-15: Virtex-2 CLB element [63]

67

Each slice is capable of working as functional generator, 4-input LUT, 16-bit

distributed RAM, 16-bit shift register. Associated multiplexers allow the CLBs to behave

as wide multiplexer and fast lookahead carry logic and arithmetic gates. Each CLB

employs two 3-state drivers that can drive chip-wide buses. The structure of CLB in

Virtex-4 FPGA appears to be the same as in Virtex-2 devices. However as the process

geometry decreases 3-state buffers were taken out from CLBs in Vritex-4. As the logic

density increases for a chip, the chip length communication lines became too difficult to

achieve in terms of their power consumption and wire delay. For example, Virtex-2

FPGA has maximum 104,882 logics cells in FF1517 while Virtex-4 FPGA has maximum

200,448 logic cells in FF1513 package. Twice the logic is available in Virtex-4 FPGAs

than Virtex-2 FPGAs in the comparable packages. Virtex-5 FPGA [64] took a leap

toward implementing 6-input lookup table by following the market trend.

2.11.3.2 Routing

When there are more logics to be connected in the given area, it has become

increasingly difficult to construct routing structure that spans through an entire FPGA as

in XC6200 series. The routing structure is highly hierarchical to balance the overhead.

Xilinx divides the routings into two categories: general purpose routing and dedicated

routings. General purpose routing uses the connections between horizontal and vertical

switch matrix to connect adjacent CLBs, hex lines and longlines. The hex lines connect to

a CLB that is located 6 positions away. The longlines span a full vertical and horizontal

length of the device. The construction of routing structure in FPGAs is possible using

68

switches. The switches that are used in Virtex FPGAs are called as subset or disjoint

ones. These switches connect to four ports that are incident on a point. By providing

configuration information to these points the switches can be differently connected.

The initial Virtex FPGAs implement all of the above to provide fairly

straightforward interconnection strategy. However in the subsequent family of FPGAs

the lots of routings become dedicated due to insertion of many custom hardware blocks

(e.g., multiplier, processor, DSP slices and memory blocks). One of changes is that

longlines do not get to span over a full device. It becomes inevitable to go through a few

switches to reach from an input of one side to an output of the other side. Additionally,

because of reach-ability of global clocks, there are designated areas that are confined with

a particular clock in the system. It becomes impossible for all processing blocks in a

FPGA to share the same high-speed clock.

2.11.3.3 Configuration

The first configuration mechanism was brought by Xilinx was XC4000 FPGA

devices [65] that provide a serial access to the configuration memory. The serial access

allows incremental writing of configuration data. Hence, the XC4000 FPGA requires

programming the entire chip. Then there was XC6200 FPGA family. Due to the increase

of configuration memory size, the reconfiguration mechanism is changed to combined

address and data type. The configuration memory organization of XC6200 FPGAs is a

reflection of SRAM memory access. Due to random access capability it allows partial

reconfiguration to be carried for the devices. Not only how to access the data is changed

69

but also the unit of reconfiguration is changed to reduce the size of configuration stream.

If the unit of reconfiguration was one basic cell in XC6200, it is changed to be a frame11

in both Virtex and Virtex-2 FPGAs [66]. Unlike previous Virtex FPGAs in which the

frame spans over the entire height of the devices, it is reduced to be 16 vertically aligned

rows of a frame in Virtex-4. The contents of configuration frames for a CLB can be

represented graphically as in Figure 2-16.

We expect the structure of CLB, routing and configuration to be evolved by

reflecting the needs of market.

11 Frame is a subsection of one column in Xilinx Virtex FPGAs.

Figure 2-16: Graphical representation of one CLB worth configuration data for Virtex
FPGA

Hexes switch

Singles switch

Input mux/other logic

LUTs

Output muxs

B
its

Frames

70

Moreover, there have been specialized platforms that provide other means of

configuration. One of them is multi-context FPGAs. The multi-context FPGAs have more

than one configuration memory plane. By activating one plane at a time the multi-context

FPGAs can switch configuration ideally in one cycle. There is also a technique called

configuration caching. As the name indicates, the technique reserves a part of

configuration file in a separate memory to use it for configuration of later circuits. The

reconfigurable platforms such as Garp [41] and Chimaera [67] use the technique in their

implementation. Architectural techniques such as pipelined reconfiguration [68] and

wormhole reconfiguration [69] are also available.

All of these approaches are the attempts to reduce the reconfiguration time. Due

to continuous efforts to increase configuration speed with partial reconfiguration, the

configuration time has reduced considerably. However, because the amount of logic

density available in FPGAs is continuously increasing, the configuration time of the

entire chip should take longer (e.g., 100ms to 10s seconds). The only way to reduce or

optimize the reconfiguration time of the applications is to employ partial reconfiguration.

Because of known and fixed size of functions in the applications, reconfiguration of these

functions becomes feasible within their operations to achieve the maximum efficiency of

reconfigurable computing.

It seems that evolution of Xilinx FPGAs show not only the advancements in

silicon technology but also its limitations. Accommodation of these changes is an

expected process of system design where the ideas meet practical resolution.

71

2.12 Summary

In this chapter, we studied various hardware approaches that the RC investigates,

but, these approaches were focused on hard fixes of the problems through architectural

solutions. Because of the inflexibility of the solutions, they tend to be too expensive to

fabricate the solution for a specific application. Using reconfigurable devices and

implying multi-task and multi-mode conscious design methodology from the

application’s point of view, it becomes feasible to reuse processing resources without

jeopardizing the performance of applications.

Nonetheless, a new system design methodology requires several design steps such

as recognizing system events, partitioning tasks and identifying reconfigurable blocks

before it proves to be useful. The subsequent chapter tries to suggest more intriguing

reasons behind the FPGA based designs as a reconfigurable system. Then, the thesis will

explore the strategies which investigate the method of each step.

 72

Chapter 3

Overview and Analysis of Effectiveness of Computing Systems

This chapter focuses on the qualitative estimation of trends and technologies for

effective implementation of data processing systems. Though the estimation does not

provide a quantitative analysis of economical point of views, the qualitative examples are

added to provide better illustrations and understandings of current market trends and

tendencies. This chapter guides the readers to the qualitative analysis that discovers the

idea of cost-effectiveness for reconfigurable computing systems by virtualizing data

processing resources for a multi-task and multi-mode workload.

3.1 Introduction

In recent years, changing electronic market trends as well as fast shifting

fabrication technology have challenged conventional computing approaches (e.g.,

microprocessors and ASICs). Upon the rising of new applications that demand

integration of multiple functionalities, there is a certain quality (i.e., virtualization of

processing resources) that advocates reconfigurable computing to be more competitive.

This chapter provides a general overview of system effectiveness by materializing

changing electronic market trends and shifting fabrication technology into the system

costs. When the degree of an application’s feature such as multi-functionality becomes

73

more apparent, reconfigurable computing can be more cost-effective than conventional

computing approaches.

Considering high-speed requirements of the underlying applications, the cost-

effectiveness of two systems that are capable of providing the services for the

applications are discussed. One is an Application Specific Integrated Circuit (ASIC)

system. The other is a Field Programmable Gate Array (FPGA) system as an example of

reconfigurable computing.

3.1.1 Cost-effectiveness of computing system

If the cost effectiveness of a computing system is the degree of difference

between the total cost to construct the system and the services received from the

investment, one should evaluate the components and conditions that impact their values.

First, one can formulate the cost-effectiveness of the system as the difference between the

services provided per workload, workloadS and the total cost, totalC to build the system as in

Eq. 3-1 .

The number of services provided per workload, workloadS is counted by the

instances of applications that are different over time – Refer to section 2.4.2. In ASIC

approaches, workloadS does not signify any particular benefit because it represents as a

choice of multiplexer occupied in hardware of coarse-grain architecture (e.g., for multi-

task and multi-mode applications). The ASIC approaches do not impose any distinction

workload totalCE S C  3-1

74

implementing the choices in coarse or fine-grain architecture. However, in FPGA

approaches workloadS might be recognized as the sequence of reconfigurable blocks that are

organized in time domain.

3.1.2 Three levels of cost-effectiveness

The total cost to construct a computing system, totalC can depend on various

conditions. To make their contributions clear, one first divided the cost-effectiveness into

three different levels. They are:

 Field level;

 Design level;

 Manufacturing level.

The cost evaluation at the field level conventionally requires analyzing the

effectiveness of the system architecture to deal with a given application. For the

instruction based systems, it means how fast the system switches to carry out the given

set of instructions. For an ASIC, it means how much resources it employ to process the

required functionality. For an FPGA, due to a unique feature of some FPGAs (i.e., field

reconfigurability), the FPGA platform can reuse limited processing resources where the

hardware depicts “function(s)” in a given time slice. So, referring to section 2.4.2 it

means how effectively the system utilizes the given resources to adapt for the workload

that consists of timely spaced applications. As a result, it can decrease the functional cost

per transistor by reusing the transistors in the temporal domain. At the field level, the

75

types of applications should be researched to find out their applicability (how to measure

the value of workloadS) on to the FPGA system.

At the design level the FPGA design looks already promising because of its low

developing cost compared with the ASIC. Since the design level cost are mostly test and

verification related with hardware, the IP core-centric design becomes mandatory, which

pays most attentions to the human resource for creating pre-verified and socket

standardized cores. The IP core centric design allows the associated costs to be

redistributed over many different projects. At the same time it diverts the designer’s

attention to implementing communication by excluding low-level functional verification.

Moreover, the FPGA designs can adapt to a new product life cycle much easier than the

ASIC designs because of their shorter time-to-market time – by excluding test,

verification and hardware manufacturing phase out of the design cycle.

The cost evaluation at the manufacturing level starts to appear more important due

to deep-sub micron effects that play a major role under smaller geometry. Hence, the

issue becomes how to control the increasing cost of smaller geometry while decreasing

functional cost per transistor – higher density. However there are still remaining

problems even after the cost is controlled. One of them is reliability. Beckett in [70]

states that the system within 1.3 years would exhibit 90% failure rate for transistor

densities of 109. As a result, testing and verification will be a major cost in manufacturing

integrated circuit devices. The architectural level implementation should be considered to

guarantee better yielding rate. The regularly structured devices such as an FPGA can

easily encapsulate defect-safe implementation to manufacture the devices more

76

successfully. The failures at the field can also be avoided by excluding the defected area

and reconfiguring the functionality into the rest of chip.

3.2 Motivation

3.2.1 A perspective of computing history

There have been many different systems that were successful in the history of

computing industry because the systems were able to reflect the trends and demands of

the market at the times as shown in Table 3-1 .

Let us look at the trends of current market to anticipate a perspective of future

systems and a new design methodology. The best way to predict where one is going is by

looking at what the history shows. Makimoto’s wave [71] shown in Figure 3-1

successfully exhibits the past trends, which layout large repetitive cycles that bounce

between standardization and customization. Makitomo’s wave moves towards

standardization when large numbers of new inventions appear. Once the standardization

Table 3-1: Architectural eras

Type Example Start

Pioneer computer Mark I, ENIAC 1940
Classical computer Univac, IBM 704 1950
Supervised computer IBM Stretch 1955
Supercomputer CDC 6600 1960
Time-shared computer GE 645 1965
Minicompuer DEC PDP8, PDP11 1970
Microprocessor Intel 8080A 1975
Workstation Motorola MC68000 1980

77

is mature, the need for product differentiation appears, throwing the swing towards

customization [72].

Currently one lives in the outskirt of standardization of field programmable

devices (or systems) plunging into customization era. It means that one does not expect to

see many new inventions. Though, there will be plenty of differentiations attempted by

providing added values from the existing devices and architectures [73]. Similarly

Keutzer in [74] portraits another historical perspective on design evolution to exclaim

that there is a need for a new approach as shown in Figure 3-2 .

Electronic device/system designers periodically change their tools throughout

history and migrate to a new tool sets that offer a higher level design abstraction. As the

s-curve [74] indicates that there are leaps of improvements (in Y-axis) happening as the

efforts of R&D in EDA tools (in X-axis) continue. One can also observe that there are

design level changes occurring where the leaps of design productivity are achieved.

Figure 3-1: Makitomo’s Wave [71]

78

The first design revolution was initiated by Spice circuit simulation developed in

1973. The transistor-level design treated as an artistic skill was embraced by systematic

procedures of Spice circuit simulation. When the density of integrated circuit increases,

the productivity of transistor-level design lingered at the same level. The second leap was

started by assembly of libraries that consist of standard-cells that are verified. Even

though they are considered to be area inefficient, the charm of modularity and

improvement of productivity persuaded the most of designers to move their design

practices. The library components are portrayed as gate-level symbols in schematics, then

placed and routed by automatic design tools. By 1990’s the schematic based gate-level

design became saturated because the number of modules (e.g., >10,000 components)

increased up to the level that is extremely time-consuming. Led by Hardware Description

Language (HDL) the designs were able to be expressed by register-transfer level (RTL)

Figure 3-2: Design discontinuities in EDA [74]

S-Curve

1974: Transistor-level design

1984: Gate-level design

1994: Register-transfer level design

2004: ??? level design

Effort (EDA tools Investment)

Results
(Design

Productivity)

79

where logical transfer functions between registers are automatically generated. The

combined capability of HDL based entry and automated logic synthesis could produce

the gate-level netlists.

By 2000’s one should expect:

 customary field programmable system tuned to a specific application ;

 using high-level design abstraction (system-level),

according to Makimoto and Keutzer.

3.2.2 Changing economics

The success of the semiconductor industry in the last 30 years can be measured by

continuous innovation in technology and increasing R&D investments in design and

manufacturing to keep up with the growing demand for semiconductor devices. Out of

many predictions, Moore’s law has been a main observation that accurately predicts the

future of the semiconductor market and a key driver of how the semiconductor industry

should respond for market demands. So far the expectation from Moore’s law has always

been satisfied by implementing higher number of transistors (i.e., Tx/cm2) through

smaller geometric processes. Moore predicted that Tx/cm2 would double every 1.5 to 2

years. In addition to Moore’s Law, Cost-Per-Function (i.e., microcents per bit or

transistor) is a good measure of competitiveness.

Figure 3-3 illustrates the anticipated view of these trends.

80

History shows that if the functionality doubles every 1.5 years then the reduction

requirement (i.e., -29%) for Cost-Per-Function can be sustained by doubling Cost-Per-

Chip – packaged unit, every six years [75]

However, if functionality doubles every three years then the manufacturing cost

per chip must remain flat according to the International Technology Roadmap for

Semiconductors (ITRS) 2003 [76]. These trends show how important improving the cost-

effectiveness is for the products to be competitive. In other words, there is a greater

chance that the increasing manufacturing cost of DSM devices might outrun the increase

in the number of transistors under smaller geometry process (< 22nm).

Combining lengthening R&D periods and shorter product life cycle – illustrated

in Figure 3-5 , the cost of manufacturing (e.g., new lithography tools, unreliable mask

Figure 3-3: Functional form of key semiconductor industry business trends
(Tx=transistor) [75]

81

accuracy, multiple emerging technology, etc.) is more likely to increase radically in the

near future.

When there is no technological innovation to pull the expectation of Moore’s law

through, there must be an architectural evolution and/or methodological advancement to

push the semiconductor market forward by adding features to meet the anticipated

growth.

Today’s changing market shows a few distinctive characteristics:

 Shortened time-to-market and critical time-in-market;

 Continuous demand for decrease of functional-cost-per-transistor;

 Explosion of stream application (e.g., multi-media, communication,

digital processing, etc.).

Facing these rather demanding trends asks us to look at unconventional solutions. One

looks at field reconfiguration as a new direction to expand the usage of hardware by

exploiting the spatial and temporal redundancies of running applications. The solution

becomes very cost effective. One will compare the costs associated with an ASIC and a

FPGA platform to analyze what components are most crucial to make the system more

cost effective.

3.2.3 Changing Market

In today’s electronic market one can observe prospering consumer devices that

are an ensemble of many features. Even though current devices do not reach the level of

services that application specific devices can provide, the integration of many complex

82

digital functions led by consumer devices demonstrates the efforts of adding more values

for customization. Consumers endeavour to seek more and better services, triggers rapid

changes in standards, protocols and I/O technology, which in turn causes the industry to

reflect the changes that are consumer’s demands. In a worse situation crucial standard

deployed in a device is modified to include more features and more values. The device

manufacturer who risked capturing early market share would suffer from the losses which

include all reoccurring cost of designing the device. The aforementioned case can be

empirically illustrated from the difference between Figure 3-4 and Figure 3-5.

Figure 3-4 from [72] illustrates a ballpark figure of conventional product life

cycle from introduction to the market to end of device life. The volume which reflects the

cost recovery shows steady changes compared with Figure 3-5.

Figure 3-4: Conventional Product Life Cycle [72]

Development in Time

V
olum

e of sales
Introduction Ramp-up Maturity End of life

3-5 years

83

Figure 3-5 illustrates new product life cycle. It has shorter-time-to-market

decreasing from 3-5 years to 1 year, higher volume for shorter period of time and

dramatic end of life [72]. These are new changes occurring in a new semiconductor

market.

Rapid rise in manufacturing costs with smaller fabrication technology has become

an issue at manufacturing plants. To overcome rising costs at manufacturing level

associated with shorter-time-to-market, the field programmability becomes an asset

because the functionality of the device can be determined after the device is produced.

Figure 3-5: New Product Life Cycle [72]

Development in Time

V
olum

e of sales

1 year

84

3.2.4 FPGA: the alchemist of performance and flexibility

Someone might argue, why not to use stored program architecture (SPA) if the

field programmability is an issue to meet performance requirements of the applications?

Since many of today’s applications rely on stream processing (e.g., audio, video

standards, communication protocols, digital processing, etc.), it becomes very difficult to

obtain the desired performance without exploiting inherited parallelism of the algorithms

in the applications.

An SPA shown as Microprocessor in Figure 3-6 is very flexible and cheap in the

performance per dollar ratio [77]. However many of them are not powerful enough to

process stream applications due to their instruction-based latency. On the contrary, the

application specific system with a dedicated hardware solution (i.e., ASIC) can be 10 to

20 times more efficient in silicon area and in speed than a programmable solution. There

Figure 3-6: Flexibility vs. Operating time window

s ms ns [time]

FPGA

DSP

ASIC

Microprocessor

[F
lexibility]

85

might also be a need to explore the efficiency of architectures as a function of the

application set and implementation models (i.e., Digital Signal Processor – DSP and

Application Specific Instruction Processor – ASIP). Among available choices given in

Figure 3-6 FPGA might be suitable for that changing market that demands a new design

methodology to efficiently reflect the integration of multiple features and to easily meet

the performance of embedded applications.

In summary, the previous sections explore various motives that demand a new

system design approach for field programmable devices. Makitomo’s wave illustrates the

customization of field programmable technology that would be specialized in various

applications. Keutezs’s s-curve points out the necessity of a new design methodology that

uses higher design abstraction. Furthermore changing economics is pushing computing

systems to be more cost-effective by decreasing development costs and changing market

is forcing the systems to be more flexible to adapt for shorter time-to-market trends.

In section 3.3, the formal quantitative analysis should be conducted to find out

what choice is suitable for surfing through the second tide of Makimoto’s wave

especially in terms of cost-effectiveness.

3.3 Total system Costs

The cost-effectiveness according to the Eq. 3-1 increases by how many services

the system does provide, workloadS and decreases by the total system cost, totalC . The total

system cost can have many faces depending on the view of analysis. One facilitates two

views in our analysis.

86

The first view is called unilateral view that looks at overall cost of developing a

batch of the same systems before going to market. The second view is called collateral

view that looks at the temporal relationship of expenditure and revenue according to the

anticipated market trends.

The analysis might be the simplification of real cases overlooking some impacts

and issues. However, it would provide the reasons behind the choices that are made in

this dissertation.

The following sections clearly define the individual components that are needed

to obtain the total system costs in both views. In order to effectively compare, the costs of

commercially available reconfigurable device (i.e., FPGA) and a typical ASIC design are

analyzed.

3.4 Unilateral System Costs

With the unilateral view one assumes Eq. 3-2

where  is the number of units projected to sell, unitC is the unit cost of the

system and developmentC is the development cost of the system. The development cost

involves many different aspects of designs.

total development unitC C C  3-2

87

3.4.1 Personnel Costs

The personnel costs, personnelC , depends on the size of workload to be designed. If

one assumes that a full device is utilized, the number of gates given for a device is

counted as a size of the workload. For FPGA designs, the above assumption is applied to

find out what size of a device needs to be purchased while for ASIC designs, the size of

workload determines the size of ASIC chips. There are a few other assumptions to be

made. The first of them is that the workload can be directly translated into the number of

engineers (or the number of months) needed. Since the design engineer is tied with their

ability to design and is paid in accordance with their ability, one assumes that the average

engineer is capable of developing a certain amount of Register and Transfer Level (RTL)

design with a particular salary.

The second assumption is that the differences in resource requirements for ASIC

and FPGA designs. To materialize the differences, the personnel costs, personnelC is

divided into developmentC and verificationC .

The personnel costs, personnelC can be expressed as Eq. 3-3

where _fixC time spend  which is the bug fix and code verification process that

happens throughout the life time of the design, _time spend that is assumed to be long in

ASIC design (e.g., 16 months) and short in FPGA design (e.g., 4 months).

The development and verification cost, ()devleopment or verificationC can be expressed as

Eq. 3-4.

personnel development verification fixC C C C   3-3

88

where  is the size of workload [gate],  is the required human resources that it takes to

develop logic gates in ASIC (or CLBs in FPGA) [month/gate],  is the salary of the

average engineer [$/month] and  is the average overhead of an engineer [%].

3.4.2 Supply Costs

The considerable amount of development cost is denoted as the supply costs. The

supply costs comprise of the hardware and software costs as shown Eq. 3-5.

where hardwareC only occurs in ASIC design where the services consist of mask set &

prototype wafers, respins, hardware Simulation tools, support and services, etc.

The supply costs are mainly associated with software tool costs. Each software

tool is evaluated based on its list price and yearly maintenance fee. Depending on the

usage of software, one assumes that the software tools can be shared among users

resulting, cost per seat. There is also software that needs to be purchased and is specific

to hardware (or technology) that the design needs to deal with. In this case the software

tool is purchased and used without being shared resulting program cost. The life time for

supplies including software and workstation is projected to be 3 years (or 36 months).

()
()

(1)
devleopment or verification

dev or ver

C



 

 3-4

subply software hardwareC C C  3-5

89

3.4.3 Software Tools Costs

According to the above facts, the software tool costs are calculated as the

summation of tool costs as shown Eq. 3-6.

where ik is the Per Seat Usage (0< ik <1), floating
iT is the price of the ith software.

iP is the yearly maintenance cost that is involved with the ith software. The second

summation adds node locked software costs. workstationC represents the workstations (and

servers) that are necessary to execute the software. To result in the monthly cost of

software tools, the Eq. 3-6 is divided with their life expectancy of 36 months. Where

ASIC and FPGA designs differentiates starts by looking at their design flow.

As the name states ASIC is an application specific device. Each time there is a

new application (or change in the application), the device needs to be implemented (or

modified), verified and tested. The design flow of ASIC is more complicated compared

to FPGA due to the verifications and tests required in the hardware level. Figure 3-7

illustrates the typical steps involved in the design flow of ASIC and FPGA.

Figure 3-7 depicts the steps involved to produce the designs in the FPGA and

ASIC. Because hardware verifications and tests are proprietary procedures involved in

each application, the cost of developing software in ASIC design tends to be expensive.

One considers the following software tools to be included for the ASIC design flow:

1 1

() ()
M N

floating floating fixed fixed
software i i i k k workstation

i k

C k T P T P C
 

      3-6

90

 ASIC synthesis software;

 Optimization software;

 ASIC schematic debugging software;

 ASIC Static Timing Analysis;

 ATPG Test Pattern Generator;

 RTL simulator;

 Testbench Automation software;

 Memory Design/simulation software;

Figure 3-7: Design Flow FPGA vs. ASIC

Functional Specification

HDL

Synthesis

Place and Route

Download and Verify in
circuit

Behavioural
Simulation

Static
Timing

Analysis

Functional Specification

HDL

Synthesis

Place and Route

Download and Verify in
circuit

Behavioural
Simulation

Floorplanning

Static Timing
Analysis

Equivalency
Checking

Static Timing
Analysis

Equivalency
Checking

Verification
Tests

To Foundry

FPGA ASIC

91

 Design maintenance software (e.g., LINT, Code, Coverage, Revision,

Control).

The tools12 are considered to have a floating license. Thus, these software tools are

assigned with the street price floating
iT and per seat usage, ik . On the other hand, ATPG

Test Pattern Generator, Memory Design/simulation software and Design maintenance

software (e.g., LINT, Code, Coverage, Revision, Control) are considered as the node-

locked software. Thus they are assigned with the street price of fixed
iT . These attributes

provide sufficient information to estimate the overall cost of software tools. Conversely

the FPGA design only requires FPGA synthesis software and VHDL simulator that

belong to the category of floating software with floating
kT . The number of software related

with ASIC design tends to be larger than FPGA design, MASIC > MFPGA and the most of

cases, there is no necessity of purchasing a node locked software for FPGA designs,

NFPGA = 0.

3.4.4 Unit Cost

If the development cost decides what price the device begins with, the unit cost

determines how the price of the device increases.

The unit cost of ASIC involves many aspects of technical details and depends on

the technology used to fabricate the device. Nonetheless one uses a simplistic view of

ASIC fabrication to extract an approximate unit cost. The unit cost of ASIC mainly

12 ASIC synthesis software, Optimization software, ASIC schematic debugging software, ASIC Static
Timing Analysis, RTL simulator and Testbench Automation software

92

depends on the number of gates to be used, which determines the raw die cost, raw dieC in

our estimation. One assumes that raw die gateC N has the linear relationship with the

number of gates used. Then there is a package cost, packageC . The package pinC N decides

the type of package to be used and the number of pins for the device. The ASIC needs to

go through assembly test and final test. The cost of tests is estimated to be test pinC N .

They incur the yielding rate such as test and assembly respectively. Finally the ASIC

manufacturing would expect to have the overhead that might be related with logistics,

royalty, etc. Eq. 3-7 represents the unit cost that the ASIC requires

3.5 Unilateral System Cost Graph

Looking back at Eq. 3-2, total development unitC C C  , the system cost shows the

linear relationship. developmentC indicates the starting point and unitC implies the slope of the

cost line. Figure 3-8 illustrates the above traits.

  unit test assembly raw die package test overheadC C C C C     3-7

93

Quantity

T
otal C

ost

FPGA

ASIC

FPGA Unit Cost

FPGA Development Cost

ASIC Development Cost

Breakeven Point

ASIC Unit Cost

Figure 3-8 informs us that

 ASIC has higher development cost compared to FPGA.

The trait is backed by the various ASIC system costs, personnelC and softwareC that are larger

than ones for FPGA due to longer design time and larger number of software associated

the design.

 FPGA has higher unit cost compared to ASIC.

The direct comparison between the street prices of compatible FPGA and ASIC shows a

large difference in their unit cost:

 If the anticipated quantity of devices is less than the breakpoint, it is

cheaper to implement the design in FPGA;

 If the anticipated quantity of devices is more than the breakpoint, it is

cheaper to implement the design using ASIC approach.

Figure 3-8: Conventional unilateral System Cost ASIC vs. FPGA

94

This is how a FPGA device is determined to be the choice of the system by analyzing the

breakpoint in low-volume applications.

3.5.1 An example: unilateral system costs

The system design environment is assumed to possess the following

characteristics:

 Average annual salary of en engineer is $100,000 and requires at least

additional 65% incurred overhead;

 There are 3 man/months required to develop and 6 man/months

required to verify 50K gates of ASIC designs13. In comparison there

are 3 man/months required to develop and 2 man/months required to

verify 1.39K CLBs14 for FPGA designs15;

 The device targets 0.18m fabrication technology and requires 960 I/O

pins;

 ASIC Software tools are discounted by 45%;

FPGA-equivalent applications need to be implemented in an entire ASIC design

that amount up to 5.4K gates.

13 For ASIC, 3 / 50
ASICdev K  , 6 / 50

ASICver K 
14 1.39K Configurable Logic Block (CLB) in FPGA is equivalent with 50K gate in ASIC
15 For FPGA, , 3 /1.39

FPGAdev K  , 2 /1.39
FPGAver K 

95

3.5.1.1 Unit Cost

The advantage of ASICs is low unit cost for high performance. Since there is

relatively large development costs associated with manufacturing the ASICs, the large

volume of sales should be expected to amortize the development costs over the number of

chips. On the other hand, the FPGAs save considerably in development costs because

they are pre-manufactured programmable chips that can be reconfigured when the unit

cost of the FPGAs can be very high compared to the ASIC.

In order to calculate the unit cost, one needs to assume some technical details [78].

The real costs of die, packaging, outputs and testing are quoted by UMC in Taiwan16.

These technical details are exemplified in Table 3-2 for ASIC approach.

With similar details, the unit cost of FPGA should be very similar to the ASIC

counterparts. However, the unit cost of FPGA available from vendors is not what is

expected.

For instance to determine the unit cost of ASIC that is similar with the FPGA

device, one first looks into the typical metrics used to calculate the gate average of Xilinx

FPGA XC4000 series. Then it is used to estimate the gate usage in Virtex-4 devices. To

extract the average gate usage of the FPGA device, the number of CLBs (i.e., 152064 for

the target device) is applied with the linear relationship found in the Appendix A. Then,

the typical gate for XC4VLX160 is calculated to be 5474 [Kgate]. Assuming the linear

16 The given assumptions and the following table templates are quoted from “FPGA vs. ASIC project cost
calculator” which uses the dollar figures provided by the UMC in Taiwan.

96

die cost increases with the increase of gate numbers, the ASIC that is equivalent to the

target device costs $67.75.

However the list price of XC4VLX160 from the distributor – Avnet17 is $3,125

which is the 2.1% of the equivalent ASIC price –98% discount seems impossible to be

negotiable. The given ASIC cost resembles the logic capacity of XC4VLX160 with a

fraction of the cost, $67.75. If the both systems carry exactly the same functionality, there

17 https://emwcs.avnet.com/webapp/wcs/stores/servlet/RemoteAdvancedSearchView?langId=-
1&storeId=500201&catalogId=500201&manufacturerPartNum=XC4VLX160-10FF1148C

Table 3-2: ASIC Unit Cost with 21888K gate capacity

Gates (k) 5474

Signal I/Os 960

Technology 0.18um

Raw Die Cost $22.83

Package Cost $8.61

Sub Total $31.44

Assembly Yield 95%

Sub Total $33.02

Test Cost $6.90

Sub Total $39.92

Final Test Yield 93%

Sub Total $42.71

Logistics & Royalty Overhead $1.00

Total Cost $43.71

Margin 45%

Estimated ASIC Price $67.75

ASIC Unit Cost

NOTE: Packaging costs $0.0075/pin using FF1148 regarded to be the same cost as BGA
package. Testing costs $0.06 per 10 I/Os per second.

97

is no argument that everybody who needs the system will purchase the ASIC instead of

the FPGA. However, there are other factors that may make one reconsider the choice.

3.5.1.2 Software Tools Costs

First is the developing cost. As it was mentioned before, the ASIC is an

application specific device. Each time there is a new application (or change in the

application) the device needs to be implemented (or modified), verified and tested. The

design flow of ASIC is more complicated compared to FPGA due to the verifications and

tests required in the hardware level. The calculation of software tool cost includes the

price of each tool and per seat usage taken from [78]. The overall software tools cost for

the ASIC design is $299,218 when the cost for the FPGA design is $53,450. The software

tools costs are converted in terms of expense/man month (i.e., $1,485 for FPGA and

$5829 for ASIC) to calculate the expense(s) applied in each period of the development

stage.

3.5.1.3 Development Costs

The development costs are estimated mainly with human resources involved in

designing the system in association with implementing the target application (i.e., the

number of gates). Table 3-3 shows the summary of these estimations.

98

First of all, there are several aspects of design: RTL development, RTL

verification, Bug fix and code verification, mask and wafer costs. For human resource

aspect, an individual engineer salary is settled with nominal $100,000 considering the

average overhead – 65%, associated with the ASIC engineer. One engineer for the ASIC

design would cost $13,750 per month. The other assumption is how many gates an ASIC

engineer can design per month. One puts a rough approximation of 50 K gates per month

that is capable of being designed or verified by an ASIC engineer. When these

assumptions are combined with the software tool costs previously calculated, the

developing cost can be estimated for a particular device (e.g., XC4VLX160). For

hardware manufacturing aspect, there is an initial manufacturing cost and an additional

cost for re-spin(s). When all aspects are amalgamated for the estimation of the

development costs, one can tell why the ASIC is not the only choice despite the

difference in the unit cost. The ASIC design for the targeted application would cost

$20.25 millions while it costs $8.4 millions for the FPGA design. Figure 3-9 shows the

breakeven points where the number of devices equalizes the development costs between

ASIC and FPGA using Eq. 3-8 .

Table 3-3: Development Cost

personal cost supply cost personal cost supply cost
RTL Development $4,516,050 $1,914,477 $4,516,050 $487,642
RTL Verification $9,032,100 $3,828,954 $3,010,700 $325,095
Mask Set and Prototype Wafers $250,000 $0
Re-Spins, Mask Sets and Wafers $250,000 $0
Hardware Simulation Tools $88,200 $0
ASIC Support and Services $150,000 $0
Bug Fix and Code Verification $220,000 $55,000
Subtotal $13,768,150 $6,481,630 $7,581,750 $812,737
Total Development Cost

ASIC FPGA

$20,249,780 $8,394,487

99

The list price of the target FPGA is used assuming that there is discounted price

for a higher volume.

With further discounted price, 85% for FPGA, the ASIC should sell at least

527,308 pieces to amount equally with the development costs of FPGAs. The trend seems

to show an exponential growth of required sales to amortize the ASIC development costs

compared with the FPGAs. Hence, if the application is targeted for a specific market

region (e.g., < 20,000 sales with < $1000 FPGA price and XC4VLX160 complexity), the

FPGA system can offer the range of competitive price compared with the ASIC – when

both the technology and the application are mature. Figure 3-10 illustrates and

summarizes the findings of the previous sections.

Since the market prices are normally historically/politically/regionally settled

upon various factors: marketing such as name recognition, reliability, customer service

_ _ cos _ _ cos
_ _

_ _ cos _ _ cos

ASIC development ts FPGA development ts
Number of devices

FPGA discounted t ASIC unit t





 3-8

Break-even points

0

5000

10000

15000

20000

25000

30000

35000

0% 45% 65% 85%

Discount on FPGA

T
h

e
n

u
m

b
e

r
o

f
A

S
IC

s

Figure 3-9: Breakeven points – the number of ASICs vs. FPGA unit cost in volume

100

Quantity

T
otal C

ost

FPGA

ASIC

FPGA Unit Cost

FPGA Developing Cost

ASIC Developing Cost

Breakeven Point
@20,000 pieces
with  $1,100

FPGA

ASIC Unit Cost

etc., the findings of this section are very arbitrary. However, they are intended to

emphasize the obvious differences between the cost of FPGA and ASIC designs.

More importantly when these estimations are combined with new market trends:

Trend I: Shortened time-to-market and critical time-in-market;

Trend II: Integration of multiple functionalities,

the cost of the FPGA system becomes more effective. One will analyze how the

above changes can affect the total system cost and cost-effectiveness of the system

collaterally.

3.6 Collateral System Costs: Trend I

Shortening time-to-market radically changes the business model of integrated

devices because their profits can only be harvested in a very short period of time with

Figure 3-10: Cost vs. Quantity

101

higher risk. The traditional ASIC design methodology is incapable of handling short

time-to-market due to its long design, verification and manufacturing lead time.

Conversely, an FPGA system can easily adapt its business model upon the short life time

of product life cycle. Since manufacturing FPGA hardware is independent of design and

implementation process, there is no lead time spent on hardware manufacturing or

equivalence verification. Then, how much benefit (i.e., reduction in system costs) does a

new market trend bring into the business model? To outlay the benefits accounted by

introducing Trend I, one calculates the total system costs differently such that the total

system cost is expressed as the cumulative revenue-expenditure (RE) of the life time of

the product, total totalRE C . Since the success of electronic devices based business model

is evaluated depending on the surplus of revenue minus expenditure for a short duration

of time, the total system cost should be also regarded as a continuous act of balance for

the duration of product life time. The total system cost (REtotal) is expressed in Eq. 3-9

accordingly.

where
timeunitC is the revenue that is the number of unit sales,  with the price of each

unit, unitC at time and
timedevelopmentC is the expenditure, developmentC at time .

To analyze the REtotal of ASIC and FPGA approaches quantitatively, one applies

the conventional and new product life cycle into our cost projection showing,

timedevelopment
time

C .

 
time timetotal unit development

time

RE C C  3-9

102

Table 3-4 shows an example expenditure pattern associated with development

costs of the ASIC and FPGA design18.

The costs of system are logically laid out such as development, verification and

prototyping costs. However due to the differences in ASIC and FPGA approaches, not

only is the amount of development costs much less in FPGA, but also the time invested in

designing. In this example 4 quarters for ASIC and 2 quarters for FPGA. Figure 3-11

shows the estimated volume projection over 3 years based on the conventional product

life cycle that enables us to calculate
timeunit

time

C .

18 These calculations are based on the results obtained from the example of unilateral system cost in the
section 3.5.1.

Table 3-4: Development Cost Projection ASIC vs. FPGA

 Q1 Q2 Q3 Q4
RTL Development $6,430,527
RTL Verification $6,430,527 $6,430,527
Mask Set and Prototype $250,000
Hardware Simulation Tools $88,200
ASIC Support and Services $150,000
Bug Fix Overhead $220,000
Cumulative total $6,518,727 $13,099,254 $19,749,780 $19,999,780

 Q1 Q2 Q3 Q4
RTL Development $5,003,692
RTL Verification $3,335,795
Bug Fix Overhead $55,000
Cumulative total $5,003,692 $8,394,487 $8,394,487 $8,394,487

ASIC

FPGA

103

The volume of the devices19 is quoted from the breakeven point in Figure 3-10. If

one assumes that the volume sale at the introductory phase is about 1000 pieces which

assumes to be 100% at the introductory stage because of early lead time, the ASIC sits

comfortably with the conventional product life cycle, the ASIC device sale should be able

to recover the costs and the profit margin within 3 years. The price of the ASIC would be

estimated to be $1,420.32. In order for the FPGA design to be compatible, one assumes

the price of the FPGA system also costs the same as the ASIC design. Figure 3-12 shows

the gross margins of FPGA and ASIC over 3 years using conventional product life cycle,

 
time timetotal unit development

time

RE C C  .

19 The profit margin of 45% compared to the development costs is assumed.

Figure 3-11: Sale volume estimation (conventional product life cycle)

Time [Quarter]

V
olum

e [pieces] 1931

Q1 Q2 Q3 Q5 Q6 Q7 Q9 Q10 Q11

3 years

Q4 Q8 Q12

0% 0% 0%

100%

60%

140%

210% 225% 220%

150%

45%
0%

3862

5793

7724

FPGA ASIC

104

The FPGA shows much slower recovery of investments and gradually increasing

profits than the ASIC does. Yet there are much more development costs associated with

the ASIC. The FPGA starts to gain profits earlier due to short development time (i.e.,

Quarter 7 instead of Quarter 9). The higher margin of the ASIC due to the low unit cost,

allows a faster recovery trend. However, FPGA design does not seem to be cost-effective

at the breakeven point of the development costs with the conventional product life cycle.

It only achieves 6% margin compared to 32% of the ASIC. The main reason is because of

smaller margin caused by high unit cost of the FPGAs. Unless the unit price of the FPGA

is reduced to be $718.75, which is 77% discounted price from the list price of

XC4VLX160 as shown in Figure 3-13, the profit of the FPGA will not reach the level of

the ASIC. A key to improve the competitiveness of FPGA system is lowering unit cost of

FPGA.

-60%
-40%
-20%

0%
20%
40%

G
ro

ss

M
arg

in
 [%

]

1 2 3 4 5 6 7 8 9 10 11 12

ASIC

FPGA

Quarter

Gross Margin ASIC vs. FPGA

Figure 3-12: Gross Margin of ASIC vs. FPGA (discount of FPGA, 65%)

105

So, one assumes that the unit price of FPGA should be about 23% of the listed

price to achieve the same gross profits of the ASIC. To explore further collateral impacts

of Trend I, one looks at time-to-market and time-in-market issue. Figure 3-14 illustrates

the expected volume sale based on one-year time-to-market,
timeunit

time

C .

First short time-to-market makes the development of the ASIC very difficult

because of its lead time. The only way to offer a continuous flow of revenue is to pipeline

a series of products that come out in time before the previous product loses its sale.

However, adapting this model, the ASIC design can not be flexible to swift market

changes because the next product should be in the development phase before knowing the

result of the current sale, thus, predicting the next product. There is no plan time or

reaction time.

-60%
-40%
-20%

0%
20%
40%

G
ro

ss

M
arg

in
 [%

]

1 2 3 4 5 6 7 8 9 10 11 12

ASIC

FPGA

Quarter

Gross Margin ASIC vs. FPGA

Figure 3-13: Gross Margin of ASIC vs. FPGA (discount of FPGA, 77%)

106

While the short time-to-market itself creates more risk than three-year one, the

time-in-market generates 200% more risk due to no reaction time for the ASIC design,

where all these risk should be considered as a part of business model. With the

assumptions built from the previous analysis of costs and revenue, one reconstructed the

graph that represents the gross margin,  
time timetotal unit development

time

RE C C  with one-year

time-to-market in Figure 3-15.

One first observes that the revenue of the FPGA design is comparably increased

while the ASIC suffers with a low margin. Recurring heavy ASIC development costs for

continuous capital flow is responsible for a low profit. If one considers the competitive

20 Total sale volume in a cycle is matched with the one in the conventional product life cycle

Figure 3-14: Sale volume estimation (new product life cycle)20

Time [Quarter]

V
olum

e

1 year

Q1 Q2 Q3 Q4

0%

500% 500%

150%

Q5 Q6 Q6 Q7

0%

Q8 Q9 Q10 Q11

0%

Q12

0%

500% 500%

150%

500% 500%

150%

107

ASIC market with risks involved, the FPGA certainly becomes more appealing for the

choice of many applications.

Furthermore, the reconfigurability of some FPGAs provides further improvement

in the functional cost per transistor because they can be reconfigured to carry different

functionalities in temporal domain. Figure 3-16 illustrates the unit price related with the

number of logic gates available.

-10%

0%

10%

20%

30%

G
ro

ss

M
arg

in
 [%

]

1 2 3 4 5 6 7 8 9 10 11 12

ASIC

FPGA

Quarter

Gross Margin ASIC vs. FPGA

Figure 3-15: Gross Margin of ASIC vs. FPGA (discount of FPGA, 77%, one-year time-
to-market)

108

As one sees in Figure 3-16 the unit price of the FPGA is not linearly related and

increases much faster than the number of gates increases. Hence, the functional cost per

transistor becomes cheaper as one decreases the number of gates needed for the

functionality in time domain.

However, there is service hardware needed and temporal overhead executed if one

wants to implement the reconfigurability as to improve the cost of the system. The

success of the FPGA system depends on how effectively the system can hide these

overheads.

For this purpose the popular stream applications serve as a mechanism to discover

regularity of data processing and to exploit the spatial redundancy of the FPGA device

where the speedup of execution through architectural manipulation is mandated.

21 The price of Xilinx FPGA Virtex-4 devices are based on the unit cost from the website of
http://www.avnet.com/

Unit price (xc4vXXX)

$0

$1,000

$2,000

$3,000

$4,000

$5,000

$6,000

$7,000

15 25 40 60 80 100 160 200

Logic gates [k]

Figure 3-16: Unit price for Xilinx Virtex-4 FPGA LX family21

109

3.7 Cost-effectiveness: Trend II

One looked how the trend I: shortened time-to-market and critical time-in-market

boosts the competitiveness of FPGA systems in term of its revenue-expenditure balance.

One also observed how a higher unit cost of FPGA system influences:

 Unilateral total system cost in Figure 3-10;

 Collateral total system cost (as gross margin) as the difference between

Figure 3-12 and Figure 3-13.

It is obvious that FPGA devices can not be offered with 77% discount as shown in

Figure 3-13. However, with the trend II: Integration of multiple functionalities, the FPGA

devices can become more cost-effective. According to Eq. 3-1, the cost-effectiveness of

the computing system depends on totalC as well as workloadS .

In ASIC approach, increasing workloadS normally results in increasing totalC due to

increase in processing resources. However in FPGA approach increasing workloadS does not

always need to result in increase in hardware. Because of run-time partial

reconfigurability, the workloadS can be virtualized (i.e., stored in memory). The

virtualization of workloadS enables savings of processing resources and encourages the

developments of reusable components.

110

Quantity ()
T

otal C
ost

FPGA

ASIC

FPGA Unit Cost

FPGA Developing Cost

ASIC
Developing

Cost

Breakeven Point
@20,000 pieces
with  $1,100

FPGA

ASIC Unit Cost

Virtualized
FPGA

Projected Volume
Sale

3.7.1 Unilateral Cost-effectiveness

Referring to Figure 3-8 that expresses the breakpoint according to the example

given in section 3.5.1, one can appreciate how much virtualization needs to be employed

to be unilaterally meaningful. Figure 3-17 shows the prediction on such assumptions.

The increase of workloadS generally causes the costs of computing systems to be

increased. However, the unit cost of FPGA system can stay the same by virtualizing

processing resources that implement more functionality in the same space. Thus, it

appears that the unit cost of FPGA system decreases shown as the grey line in Figure 3-

17.

Each line that represents the total system cost can be expressed with a linear

equation total development unitC C C  which is equivalent with Eq. 3-1 where totalC

representing y-axis and  representing x-axis. If the FPGA unit cost, FPGA
unitC is the same

Figure 3-17: Quantity vs. Costs

111

as the ASIC unit cost, ASIC
unitC by virtualization of processing resources, the total system

cost of FPGA would never exceed ASICs, ASIC
unitC (because the ASIC development cost,

ASIC
developmentC is always higher than FPGAs, FPGA

developmentC). However, when the FPGA unit cost

is larger than the unit cost of ASIC, the number of devices sell in the market -- as

represented as a vertical line (i.e., the projected volume sale) in Figure 3-17, should be

taken into the consideration of system cost.

Hence, one can predict the unilateral cost-effectiveness of FPGA system in

comparison with ASIC approaches by identifying all – the projected volume sale, unit

cost (especially with virtualized processing resources) and development cost of the

systems.

3.8 Conclusion

This chapter explores new market trends and various components that affect the

cost-effectiveness of computing systems. It first identifies some of historical movements

towards reconfigurable computing (i.e., Makimoto’s wave) and elaboration of design

abstract (Kreutzer’s s-curves). Changing economics pushes the systems to be more

sensitive to increase of manufacturing costs in integrated circuits. By analyzing the

components (e.g., supply costs, software costs, personnel costs, etc.) that are associated

with the cost-effectiveness of the system, one could tie the market trends such as

shortened time-to-market, critical time-in-market and integration of multiple

functionalities into the cost-effectiveness of emerging reconfigurable devices. As one has

112

seen in the qualitative analysis, the market trends demand the reconfigurable devices to

be more cost-effective. However to realize the benefits from the unique feature (i.e.,

dynamic reconfigurability) of reconfigurable devices, virtualization processing resources

for a multi-task and multi-mode workload should be systematically achieved. The

elaboration of design abstract combined with reconfigurable capability discussed in the

next chapters should be able to increase the cost-effectiveness of reconfigurable systems

as shown in this chapter.

 113

Chapter 4

Exploration of Architectural Spaces for Virtual Hardware Components

To realize our goal in maximizing the cost-effectiveness of a reconfigurable

computing system, the system design is divided into three layers where the hardware

operating system should be able to assemble the system on a chip out of available

components upon requests. Thus, the necessary components should be available where it

is readily accessible (i.e., component library).

Synthesizing, placing and routing components are not the tasks of online system

as the system becomes too complex and the granularity of component is becoming larger

(500K logic gates [13]). They should be designated to be offline tasks. The benefits of

offline tasks are that they can be optimized for many different aspects of designs and can

create the components associated strongly (or weakly) to the evaluating parameters. At

the same time, the constrained granularity prevents the focus of design shifting from logic

to interconnect.

In the process of finding a method to create and optimize the components, one

will adapt the method suggested as multi-parametric optimization of the modular

computer architecture in [79] and apply the constraints that are applicable for the

components rather than for the systems. The major benefit of the approach is the

reduction of architectural variants to a large extend, thus resulting much more compact

library establishment. Component library is a key concept to the successful

114

implementation and support of the reconfigurable system activities at all levels of the

design process.

4.1 Background

Most of today’s complex systems consist of both architectural and behavioural

constructs because some parts of the system can not be described by only algorithms. The

systems that are increasingly implementing computation intensive operations can only

achieve higher performance by the expense of parallelized processing resources.

Upon the arrival of parallel processors and their algorithms, the graphical

notations have become popular to express the mathematical operations and their

relationships. The sequencing graph (e.g., DFG) is one of abstraction models that

represent by procedural HDLs at which graphing can easily articulate required operations

and their dependencies.

While the precedence relationships among the individual operations reveal the

ultimate performance of the algorithm, the combinations of resource restrictions,

performance requirements or I/O specifications can demand to explore different

implementations. There are many factors that determine the performance of

implementations. Selecting the right algorithm is the foremost efficient way to save

resource and increase performance. However, our focus is neither the invention of a new

algorithm nor the improvement of existing algorithms. Other factors of performance are

mainly concerned with:

 Allocation of operations, storage and interconnects;

115

 Scheduling of operations;

 Binding.

In other words, the steps involved in behavioural synthesis are the factors that decide the

performance of implementation. However these factors need to be synthesized within

specified constraints that are given as the parameters for components.

In order to use the architecture synthesis method as multi-parametric optimization

of the modular components [79], one needs to take a few assumptions. First, one is given

with a sequencing graph assembled by the vertices and their dependencies. The vertices

are specified with what it does but not limited by how it is implemented. Because of fixed

I/O specifications given for the component, the interfaces of resources are assumed to

remain static. These assumptions allow various implementations of a node possible,

which leads to different scheduling/binding result.

Figure 4-1 shows a typical example of sequencing graph Gs(V, E) that is a

hierarchy of directed graphs22.

The directed graph inherently uses the variables, whose values save the data

required and created by the operations. The interval between a variable’s birth and death

is referred as its lifetime. The birth is the time at which the value is generated by an

operation and the death is the latest time at which the variable is consumed as an input of

the operation(s). One intends to use the directed graphs such as sequencing graphs for

synchronous systems where the storage of variables and its lifetime are well coupled with

underlying hardware components.

22 The facts and terms regarding the sequencing graphs are referred from [80]

116

A sequencing graph has source and sink vertices labeled as v0 and vn respectively.

Hence, the sequencing graph that has the n number of operations, nops would have the nops

+ 2 vertices. The vertex set V={vi; i = 0, 1, … , n} and the edge set E={(vi, vj); i, j = 0, 1,

… , n} where e indicates vi generates the value of a variable for vj.

To facilitate the multi-parametric optimization of the modular component

architecture the designer explores various implementations of V to achieve its

functionality. With fixed E, each variant of resources become an architectural variable to

consider.

Figure 4-1: Example of a sequencing Graph

+ + *

*

+ - *

>

N

N

1 3 7

4 5 8

2 6

0

9

117

4.2 Architecture Configuration Graph

Creating components is the optimization process that requires contributions from

available resources and feedback from physical constraints. When a component is

described by a sequencing graph, all variants of resources can be fully evaluated under

the given parameters. A set of constraints such as I/O bandwidth and data type must also

be provided. If one assumes that there are  | 1, 2,...,iR i n resources where n is the

number of types of different resources and each resource has

 , | 1, 2,..., 1, 2,...,i j iR i n and j m  variants where mi is the number of possible variants

that are associated with resources.

If the components are built by assembling system resources, the variances that are

available for each resource can make the optimization process quite complex. Figure 4-2

shows an example of the design exploration using these variances.

As it is shown in Figure 4-2 the architectures of the component that requires Rl, Rj

and Rk resources can be represented in the form of a tree using  ,G V E where the

vertices Vi associates with system resources and the edges Eij assigns a variant Rj to the

vertex Ri. How complex the tree should be mainly depends on the number of necessary

resources to carry a required functionality.

118

To obtain a tree graph such as Figure 4-2 one assumes that the followings are

given:

 a set of fully characterized resources,  , | 1, 2,..., 1, 2,...,i j iR i n and j m  ;

 a sequencing graph of the function where it indicates the required

resources and the dependencies of the data via resources;

 a set of constraints which limits the ideal implementation of the

functionality.

A set of fully characterized resources are classified as functional, memory and

interface resources [80]. Due to the complications that rise using wire models in high

speed computation the representation of interface resources is becoming a larger problem

(e.g., DSM effects [13]). Hence one limits the granularity of architecture to stay in the

component level where the intercommunication is established within the local routings –

Figure 4-2: Example of component design space exploration represented by a tree

Rl

 Rj Rj

Rk Rk Rk Rk Rk Rk

A1 Ad Af Ay Ap Az

…

…

… …

… … …

… …

Rl,1 Rl,m

Rj,1 Rj,m

Rk,1 Rk,m

119

wire delays stay below the gate delays. When the DSM effects are not a part of design

concern, the architecture configuration graph (ACG) such as in Figure 4-2 can be

accomplished without much difficulty.

Finding an optimal architecture on the ACG is a very repetitive process that

demands a large amount of computations for each constraint parameter considered.

Especially when there exists a multi-parametric set of constraints, a complex multi-

dimensional design evaluation becomes necessary. In order to minimize required

computations, it is important to identify Pareto points23 at the early design stage where

they limit the boundaries of multi-parametric spaces by asserting efficient or non-inferior

points.

The goal of this chapter is to establish the method to effectively obtain optimal

component architecture by identifying Pareto points and reducing architecture variants

for multi parametric design variants. To achieve the goal, one will use the methodology

suggested in [79].

First, a complex multi-parametric design space is decomposed into two-

parametric design spaces that resemble a simple parent-child tree structure. Each of the

two parameters is supposed to be a variant of the architecture that contradicts the order of

their values. Once decomposed, the trees are ordered depending on the evaluation of the

given parameter. Because of the contradictive nature of the given set, the trees are

automatically ordered to have one increasing and the other decreasing value of the

parameters. When all trees are ordered, one applies the associated constraints for each

23 Pareto points indicate efficient, non-inferior or local optimal points which contribute to reducing the
amount of design space.

120

tree. Combining the constrained architectural variants results in pareto-optimum design

space with the ordered and constrained ACG, the optimal variant of architecture can be

searched. The following sections will discuss each step of the method in details.

4.3 Decomposition of design space

Supposedly there are many variants of resources that can be described by the

fundamental building blocks of the reconfigurable devices. These variances are the

implementations of the description that results in different characteristics. Once these

variances are available, one orders them using the contradictive parameters. Because of

their opposing nature, the resource variances would be organized to increase from one

end and decrease from the other end according to these parameters.

If there are S parameters, pi, each parameter would have the associated constraint,

pi
lim. The parameters {pi and pj

’} are paired to create the contradictory performance

depending on the pending parameters.

4.4 Arrangement of the ACG

The arrangement of the ACG is achieved by:

 Horizontal level arrangement of variants according to the decomposed

design space(s);

 Hierarchical tree structure construction using required resources.

121

4.4.1 Horizontal arrangement of resource variances

Horizontal level arrangement is only concerned with one type of resource and its

variances. The variances of the resource would be associated with the number of used

CLB logics, maximum operating frequency, etc when implemented in an FPGA. For each

pair of evaluating parameters, any resource can be organized to order the value of

parameters of the given resource, R,    , , 1s i j s i jp R p R  or    ' '
, , 1s i j s i jp R p R  where i

= 1, 2, … , n and j = 1, 2, … , m. Since there is no constraint given for a resource in the

component, it is difficult to dissect the branch with the given constraint pi
lim. Yet, the

sequencing graph comes with the fixed interfaces (vi, vj) between resources when the

implementation of a resource is undetermined. This condition of interface between

resources is referred as environmental characteristics in [79]. Figure 4-3 illustrates how

environmental characteristics influence the resource selection. ,i jR .

If ps is a measure of throughput for ,i jR , it is observed that there is a steady

increase of ps until ,i kR . For example, if the I/O specification of the design focuses on

providing the solution for camera-related applications that requires processing 10-bit

data, the variances of resource that can deal with 16-bit or 32-bit data would not provide

better performance, while the variance that deals with 4-bit or 8-bit can accomplish the

required output with degraded performance.

122

The horizontal level arrangement,    , , 1s i j s i jp R p R  shows that there is no

merit to implement ,i jR when j = k+1, k+2, … , mi.. The horizontal level arrangement

prunes off some branches of resource variances by determining the optimal point

(saturation point), ,i kR of hardware investment where    , , 1s i j s i jp R p R  for j = k+1,

k+2, … , mi. It should be noted that the variances with lower hardware commitment still

have the implementation possibility. The horizontal level arrangement applies to each

level of ACG graph where each resource and its choice are concerned. To calculate the

savings resulted from the arrangement, one can assume that each variance of resources is

bounded by a logic function  , , 1 2...i j i j lR f C C C  that creates the variance depending

on the given conditions Cj = 1, 2, … , l.

Figure 4-3: Horizontal level Arrangement

iR

… ,1iR … ,2iR ,i kR , ii mR

1

2 k

im

sp
No ps increases Increasing ps

123

With this assumption the creation of the variances for all resources in a

component would cost as shown in Eq. 4-1.

The number of architectural variances for the component can also be expressed by

the number of possible paths as shown in Eq. 4-2

The architectural variances are more susceptible to the penalty associated with the

number of resource variances. Therefore, it is important to reduce the number of

variances at the horizontal level. In a nutshell, the horizontal level arrangement reduces a

considerable amount of architectures to be evaluated because im is reduced to pim .

4.4.2 Vertical arrangement of resources

The vertical arrangement of resources starts with calculating the average deviation

of an associated resource. Beginning from the root of the ACG to lower subtrees, one

obtains the maximum performance value,  
maxs s iP P R and the minimum performance

value  
mins s iP P R . The average deviation between variances is calculated by Eq. 4-3

where im is the number of variances for iR .

 , 1 2
1

...
n

i i j l
i

m f C C C


  4-1

 , 1 2
1

...
n

i i j l
i

m f C C C


  4-2

   
max min

1
s i s i

ave
i

P R P R
D

m





 4-3

124

Once aveD of all resources are obtained the resources can be moved to higher

level than jR based on the condition,    ave i ave jD R D R where 1i  and j n .

Therefore, the vertical arrangement of resources requires computing aveD of the number

of resources, n+2 that are evaluated with the number of parameters, S resulting

 2S n  architectural variations.

4.5 Selecting a right architecture

Arranging the ACGs also requires Ps to be prioritized. Since some applications

require much tighter Ps than other application, it is advised to prioritize the parameters, Ps

depending on the application specific constraints

4.5.1 Determination of architecture validity for a constraint

Determining the subset of valid architectures becomes an easy task when the

ACGs are horizontal and vertically arranged. Because the value of performance

parameters is monotonically arranged, the binary search provides fast conversion,

requiring  2
1

log
n

p
i

m i

 calculations of the Ps cost function where  pm i is the number

of variances for the resource, Ri. Finding the valid subset of the architecture is determined

by selecting lim
s sP P or lim' 's sP P through the binary search as shown in Figure 4-4

125

4.5.2 Determination of Pareto-optimal architecture subset

With the prioritization of parametric constraints, one searches the valid ranges for

all constraints. However, the search space decreases as the previous search results in

smaller subset of architectures as shown in Figure 4-5

Figure 4-4: Selecting valid architecture range with Ps

Rl

Rj Rj Rj

Rk Rk Rk Rk Rk Rk

A1 Ad Af Ay Ap Az

…

…

… …

… … …

… …

Rl,1 Rl,m(1)

Rj,1 Rj,m(j)

Rk 1 Rk,m(k)

l

sp '
sP

valid architecture range

z p d f y

lim
sP

126

First the conditions need to be prioritized. Then, each subsequent condition

inherits a smaller range to search until the last constraint, Ps is applied.

4.5.3 Estimating the number of architecture variances

The goal of the above procedure is to seek the optimal architecture for the given

constraints. From the given methodology one can easily extract the complexity of the

computation based on representation of computational structure tree:

Figure 4-5: Determination of Pareto-optimal architecture subset

R

R R R

R R RRR R

A A A AA A A A

R

R R

RRR

AA A

R

R

RR

AA A

R

R

R

AA

With P1 With P2

With P3With P4=Ps

127

 For the input tree graph one assumes that one has n variances of resources.

Thus, it is necessary to evaluate (2+n) variances for each pi parameter;

 To determine the subset of architectures for a single parameter, it requires

evaluating  2
1

log
n

p
i

m i

 calculations;

 To obtain the Pareto-optimal sub-space of component architectures, the S

number of parameters should be applied.

The above steps result in the total number of calculations to be as shown in Eq. 4-4.

When the number of calculations involved with the methodology is compared with

exhaustive search,  
1

n

p
i

S m i


 , the computation complexity generally is reduced from

O(n2) to O(n).

4.6 Virtual Hardware Components Constraints

Components that one intends to synthesize and assemble are virtual because they

instruct how hardware is configured but stored in a memory as bits of information. At the

same time, they are hardware components because they describe the hardware of pre-

manufactured programmable devices. So, one calls them Virtual Hardware Components

(VHCs). With these VHCs, one can create many different types of systems and change

their functionality as long as the resources in programmable devices are available.

   2
1

2 log
n

total p
i

N S n m i


 
    

 
 4-4

128

While the granularity of VHC can be system, component or gate levels, it is

advised to synthesize the VHC in the component level where it consists of the multiples

of configurable units that require typically less than  10s micro-second time to

reconfigure at the current technological level. However, the allowable reconfiguration

time should be evaluated based on each individual case of system components associated

with application.

The reduction of the number of variances in searching for the optimal component

architecture demonstrates the feasibility of constructing a component library consisting of

many different flavors of components. However there are different types of constraints

that are applied for component where the global resources constraints are not yet clearly

sought.

Those constraints that are yet defined to be applicable as the contributions at the

component level remains as the flexible parameters to play with at the system level.

However, the constraints such as the occupying area and operating frequency are the

immediate constraints that choose one VHC out of selections, where Pareto-optimal set is

conceivably used.

4.7 Outcome

The idea of VHCs and their library brings us the conceptual bridge to narrow the

gap between hardware specific architectures (e.g., ISA) and application specific

architecture (e.g., ASIC). The former tries to save costs by reusing hardware, hence

minimizing the hardware development costs and the latter attempts to do the same thing

129

by minimizing the hardware cost, hence obtaining better performance. To successfully

construct such a system, one needs to construct component library that has a wide

spectrum of VHCs applied with various constraints at the disposal of operating system.

Allocation of operations to functional units and variables to storage elements for the

component are presumed to be given as the behavioural description. Depending on the

scheduling and binding of these resources, the characteristics of the component will be

determined and various components that result in different constraints would be

available.

 130

Chapter 5

Reconfigurable System Design Methodology for multi-task and multi-mode
applications

The goal of our reconfigurable system design is to implement the multiple

functionalities in a reconfigurable device by reusing processing resources. To achieve a

cost-effective reconfigurable system design solution, one needs to find a suitable

reconfiguration granularity that results in an optimal static architecture. This chapter

describes the architecture synthesis methodology used to obtain an appropriate

reconfiguration granularity and to recognize a static architecture for the on-chip self-

assembly of a reconfigurable multi-task and multi-mode workload

5.1 Introduction

The prior system design methodologies [81] have mainly focused on how to fit

the individual application on available hardware system (i.e., Instruction Set

Architectures – ISA) or how to construct the system for a range of specific applications

(i.e., DSP, network processors and image processors) [82] [30] [83]. The proposed

reconfigurable system design methodology distinctively searches for the optimal micro-

architecture for a particular application, which is similar to the intention of an

Application Specific Integrated Circuit (ASIC). However the reconfigurable system is

different than ASICs in the following aspects. The new reconfigurable system:

131

 Uses dynamically reconfigurable devices to implement applications in

hardware;

 Accommodates multiple functionalities as a multi-task and multi-mode

workload;

 Re-uses reconfigurable hardware for a multi-task and multi-mode

workload to reduce the system costs.

To realize the above results, the new architecture synthesis methodology should identify

a multi-task and multi-mode workload, define an optimal reconfiguration granularity and

create a static architecture that can accommodate the full realization of the workload.

5.2 Motivation

Today’s computation-intensive computing systems more often deal with real-time

and stream processing applications. Furthermore these applications embed a multi-task

and multi-mode workload reflecting the market trend such as integration of multiple

functionalities. As a result of increases in the number of logics available on an integrated

circuit [14], complex applications composed of many tasks and modes can be

implemented and executed simultaneously. But as the ASICs progressively become more

expensive, the computing industry needs to find an economically viable solution that is

not possible with the frequency scaling of ISAs along.

With the advent of process technology, the microprocessor systems have been

able to provide processing solutions for many applications. Because of fixed hardware

architecture, there has been no need to explore structural characteristics of applications.

132

However, one faces new challenges as the process technology no longer provides the

promise of temporal advancements [84]. For example, the dual or quad core technology

based microprocessors do not offer faster processor speed compared with Pentium family

processors. When there is no trick to play in the temporal domain, the designers have

looked naturally in spatial domain to find solutions.

The attempts to explore spatial domain of computing resulted in many different

directions (e.g., ILP, VLIW, vector processor, cell processor, etc.) However, available

performance improvements are often limited by:

 Low degree of intrinsic parallelism in the instruction/data stream;

 High complexity and time cost of dispatcher and associated control logic.

The instruction-based processors, including the parallel processing architecture, have

been having a hard time keeping up with increasing and specific performance

requirements of rapidly evolving applications and have become very cost inefficient for

many other applications that do not have the data structure tuned for available parallel

processing architecture. It becomes necessary to have a system architecture optimized for

a specific application.

Additionally, as the Non Recurring Engineering (NRE) costs of ASICs

progressively being more expensive24, the computing industry needs to find an alternative

solution. Reconfigurable systems may offer a cost-effective solution by replacing

functional-level tasks that can reuse the same hardware areas. The integrated circuit

24 Refer to section 3.3.

133

becomes a system that is capable of hosting multiple functionalities that interact with the

environment at the system-level.

Nonetheless, reconfigurable systems also have many disadvantages. The main

drawback of a reconfigurable system (i.e., FPGAs) is a high unit cost25. Because of

shorter product life cycle, FPGA designs were able to overcome the disadvantages of unit

cost and compete with ASIC designs in terms of cost. To improve the competitive

position of the FPGA further, lowering a unit cost would be a logical step. However, it is

impossible to decrease the unit cost of FPGA as low as ASIC as shown in Figure 3-10.

The only way to amend the situation is by utilizing an FPGA to perform multiple tasks in

the same hardware using run-time reconfiguration as shown in Figure 3-17. One attempts

to exploit reconfigurability to effectively reduce the unit cost of FPGA systems.

Especially when the applications employ multi-task and multi-mode operations that are

executed sparsely in time, the considerable amount of hardware savings can be achieved

via reconfiguration. We propose a new design flow for partial run-time reconfigurable

FPGAs to enhance its cost-effectiveness on the field operations by employing a

reconfigurable system design methodology.

The fundamental principle of Electronic System Level (ESL) design is managing

abstraction refinement and complexity while preserving design intent. The design intent

of the reconfigurable system must live within the abstraction of the reconfigurable system.

To preserve the abstraction of the design intent to reflect the structure of a specific

workload, a design flow of the reconfigurable system is established. Throughout the

25 Refer to the analysis used in Chapter 3.

134

design flow, architecture synthesis methodology comprises of several distinctive steps

that lead to determination of a reconfiguration strategy at the system-level26 as the

responses of configuration events that reflects the structure of a multi-task and multi-

mode workload. In the next section, one will look into each step of reconfigurable system

design flow that explains what types of information are incorporated and how the

reconfiguration should be performed to increase the overall value of the system (or to

effectively decrease the unit cost of the reconfigurable system).

5.3 ASIC System Design Flow

26 Refer to section 3.2.1.

Figure 5-1: ASIC design flow

135

The first step to develop any electronic computing system is by understanding the

problem. Normally design specifications are described in HDL which presents the

behaviour description of the system to minimize the ambiguities that the normal language

confronts.

The description of the datapath is generally expressed by a Data Flow Graph

(DFG). Because of the granularity of HDL description, the nodes of the CDFG are

generic operators and the arcs between them represent data dependencies and associated

control values. The operators are scheduled into time slots. This scheduling determines

the number of hardware required because all hardware in the same time slot should

operate concurrently. The values that cross time slot boundaries must be stored in

registers. Once the functionality of the system is expressed, the system can be divided

into smaller subsystems. The process is called system partitioning. System partitioning is

a system level design that determines the number of chips (or components) to be used for

a design and the subset of the behaviour that needs to be implemented on each chip (or

component). The intent of partitioning is to discover the structure implicit in the

behaviour.

One starts to employ the idea of system partitioning into the reconfigurable

system not only from the hardware point of view but also from the algorithms. Because

the structure of behaviour is strongly present in many of today’s internal or external data ,

one believes that one can discover the multi-task and multi-mode system specifications

from events in data—so-called, configuration events and apply coarse system changes by

monitoring the contents of data.

136

5.4 Reconfigurable System Design Flow

Because the system cost is directly related with reusability of components and the

utilization of processing resources, the components need to be designed at other times

rather than at the design time and the same processing resources should be reconfigurable

to reuse for multiple functionalities. To utilize the reconfiguration effectively, the system

can be constructed by assembling the components. Thus, the design time of the system

can be shortened and the unit cost of the system can be reduced.

For instance, in the ASIC designs there are full custom, Cell-based (CB), Masked

Gate Array (MGA) ICs, the full custom ICs are designed from scratch. The CBICs are

built from the predefined selections of cells. The MGA ICs are constructed based on the

pre-masked components. Even though the fixed cost of MGA ICs is higher than other

ICs, the MGA ICs can be designed faster than other counterparts [85]. When the time-to-

market increasingly becomes a bigger portion of system’s costs, the pre-manufactured

components that are applicable across many application areas started to make sense.

To cash in some of the benefits mentioned above, our design flow separates

component construction (i.e., component level design) with system assembly (i.e., system

level design) as shown in Figure 5-2.

137

One assumes that the structure of system events as well as their contribution for

system’s functionality is well known. Thus, upon availability of a system event

specification, the system can be associated with components that exist in the component

library. Due to the structure implicit in the system events, it is possible to assemble the

system based on the hierarchical relationship (i.e., the structure of multi-task and multi-

task workload) by the content of the events. Once the structure of the workload is

obtained and the links are recognized, the reconfiguration granularity for the system can

be determined. The reconfiguration granularity decides what part of the workload can be

Figure 5-2: RC Design Flow

138

implemented as reconfigurable modules. The snapshots of the system can be expressed as

a group of reconfigurable blocks and their links as shown in Figure 5-3

The different grey scaling applied on the modules indicates functionality

change(s) required by the values of corresponding system event(s) in time. As the

reconfiguration strategy is established, the extraction of a static architecture can be

initiated as illustrated in Figure 5-4

The common area(s) is designated to accommodate the multiple functionalities

over time. The area keeps the same interface(s) to communicate with other functionalities

while being reconfigured. The rest of the system is extracted (i.e., subtracted) as the static

architecture of the workload with a particular condition (i.e., values of system events).

Depending on the condition, the static architecture can be reduced or expanded.

Figure 5-3: An example of workload representation

139

Figure 5-4: An illustration of static architecture extraction procedure

140

To sum up, the careful analysis of system events that reflect workload’s

functionality provides us the framework of the static architecture. Each variation of

system events can potentially create different system functionalities. However, not all

variations of system events should be implemented as reconfigurable module due to the

timing overhead associated with reconfiguration process. The configuration granularity

determination step reveals an appropriate size of reconfiguration blocks with respect to

timing allowance available from the associated system event(s). Once the reconfiguration

granularity is determined the design flow can extract a static architecture to implement

the system at the beginning of system’s operation.

5.5 Silicon Cost

Multiplexing multiple functionalities in a fixed hardware can be substituted by

reconfiguring the same hardware for different functionalities in a reconfigurable

hardware as shown Figure 5-5 .

However, it is difficult to compare fixed hardware and reconfigurable hardware

due to their fundamental differences. Hence, the silicon cost regardless of their forms of

implementation is considered to look at the benefits of the reconfigurable system as the

extension of the cost analysis provided in Chapter 3.

It is obvious that not all applications implemented in a reconfigurable device can

benefit from the reconfigurable approach. Thus, it is important to analyze what conditions

of the applications are associated with the silicon cost for reconfiguration. In order to

compare the silicon costs, one needs to set up the equations for both fixed and

141

reconfigurable hardware approaches. Let us assume that a reconfigurable system can fit

any function at all times when each function is a configuration of the reconfigurable

system. The size of the reconfigurable system is decided by the size of the biggest

function that needs to be implemented.

Since all functions can be implemented in a reconfigurable system, the silicon

cost of the reconfigurable system does not increase by the number of functions that the

system needs to deploy over time. However, as the number of functions increases the

fixed hardware needs to employ bigger silicon as depicted in Figure 5-6.

Figure 5-5: Fixed hardware vs. Reconfigurable hardware approaches

142

The silicon cost of functions is normalized based on the size of the biggest

function that requires an entire reconfigurable hardware. Hence, one can assume that all

functions cost one configuration of a reconfigurable hardware which is equivalent to the

silicon cost of implementing the function in the fixed hardware. The entire reconfigurable

hardware can implement the functions that cost the maximum of one unit cost.

Let us assume that all functions cost one unit. Then fixed hardware can add the

areas required for the functions. However, in fixed hardware they occupy a fraction of

silicon area compared to reconfigurable hardware (e.g., 10%). Thus, with our assumption

is all the functions in the reconfigurable hardware should cost ten times (e.g., 10 units)

more than the cost of the function in the fixed hardware. The silicon cost for the

reconfigurable hardware, reconfigurablesc is expressed by Eq. 5-1

Silicon Cost

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Number of functionalities

S
ili

co
n

 C
o

st

Figure 5-6: Silicon Costs

1
reconfigurable

utilization

sc
s

 5-1

Fixed hardware

Reconfigurable hardware

Cross point

143

With the given equations, the silicon cost of reconfigurable hardware starts to

become more attractive when the number of functions exceeds 10 (i.e., 10N ) as shown

in Figure 5-6.

However, due to the areas demanded by multiplexing logics among multiple

functions, the area (i.e.,
1

1

cos
N

mult mux
i

t A




) tends to grow faster than linear increase. If

one assumes that it increases by quadratic equation (i.e.,
2

4

N
)., then, the silicon cost of

the fixed hardware represents the quadratic increases.

At the same time, the fixed hardware approach can greatly utilize optimization

techniques across multiple functionalities to extract the common area used by many

functions. One can assume that the common area is shared by all functions equally.

Therefore, commonA is defined as the ratio of common area that is shared across all

functions.

The silicon cost for the fixed hardware, fixedsc is Eq. 5-2

where N is the number of functions that needs to be implemented, commonA is the ratio of

common area that is shared among functions and multiplexerov is the ratio of the overhead

for multiplexing multiple functionalities. The silicon cost for the fixed hardware based on

Eq. 5-2 is depicted in Figure 5-7.

2

(1)
4fixed common multiplexer

N
sc N A ov   5-2

144

For the reconfigurable hardware, not all functions are reconfigurable. Therefore,

if there is a portion of non-reconfigurable functions, they should be implemented as the

functions in the fixed hardware by multiplexing them. Yet they would cost more to

implement in reconfigurable hardware than in fixed hardware. They should not include

the multiplexing overhead because they are amortized under the silicon utilization of

reconfigurable hardware.

The silicon cost for reconfigurable hardware, reconfiguredsc should be first divided by

the silicon cost for the functions that are reconfigurable, reconfigurablesc and the silicon cost

for the functions that are not reconfigurable, non reconfigurablesc  as shown in Eq. 5-3.

Silicon Cost

0

20

40

60

80

100

120

0 10 20 30 40 50 60

Number of functionalities

S
ili

co
n

 C
o

st

Figure 5-7: Silicon Cost with quadratic increase in multiplexing area

reconfigured reconfigurable non reconfigurablesc sc sc   5-3

Fixed hardware

Reconfigurable hardware

Cross point

145

The ratio between reconfigurable and non-reconfigurable functions is determined

by the given reconfigurabler . First non reconfigurablesc  requires the functions to be implemented as

in the fixed hardware. The silicon cost of non-reconfigurable functions needs to be

calculated as the same way in the fixed hardware except that the multiplexing overhead is

amortized by the abundant routing resources that are available in the reconfigurable

hardware expressed by the low silicon utilization, utilizations as shown in Eq. 5-4

where utilizations is the ratio of a typical silicon utilization for implementing functionalities

in the reconfigurable hardware – routings and configuration control logics are also

considered to calculate the silicon cost and reconfigurabler is the ratio of the functionalities

that can be reconfigured using the same area.

As the multiplexing overhead exists for the fixed hardware approach, there is the

reconfiguration overhead that exists in the reconfigurable hardware approach. However,

unlike the multiplexing overhead, the reconfiguration overhead stays to be constant as

shown in Eq. 5-5.

where reconfov is the overhead needed for reconfiguring multiple functionalities. reconfov

stays pretty much the same with even increasing N because of virtualization of the

hardware (i.e., configuration files) in the form of memory. When all of the above

   1 1reconfigurable common

non reconfigurable
utilization

N r A
sc

s

 
 5-4

1
reconfigurable reconfigurable reconfiguration

utilization

sc r ov
s

  5-5

146

conditions are considered, the fixed and reconfigurable silicon cost shows the following

characteristics shown in Figure 5-8

As it is shown, the cross point of the silicon costs is moved further out. It states

that the application requires being “very” multi-functional (e.g., 40% of the functions

which means 54 out of 139 functions to be reconfigurable).

5.5.1 Analysis of silicon costs

In the Chapter 3, one analyzed how changing electronic market trends as well as

fast shifting fabrication technology and the rising of new applications that demand

integration of multiple functionalities makes the reconfigurable computing a preferable

choice compare to ASIC approach. However, one did not explore what extent of

virtualizing hardware or what conditions of the system makes the reconfigurable system

Silicon Cost

0

200

400

600

800

1000

1200

0 50 100 150 200 250

Number of functionalities

S
ili

co
n

 C
o

st

Figure 5-8: Silicon costs: fixed hardware vs. reconfigurable hardware

Fixed hardware

Reconfigurable hardware

Cross point

147

to be more cost-effective. The view of silicon cost adds another way to explain the cost-

effectiveness of the reconfigurable systems.

To begin the analysis, let us take a look at what parameters can affect the outcome

of the silicon cost. The reconfiguration overhead used in Eq. 5-5 does not change the cost

much except that it adds constant values onto the reconfigurable system’s silicon cost.

The more crucial parameters are the ones which change the rate of increase. One assumes

that commonA = 0.35, multiplexerov = 0.1, reconfigurabler = 0.4, reconfigurationov = 10 and utilizations =

0.25 are kept as constant while one of these parameters are changed from 0.1 to 0.9.

Figure 5-9 plots the cross points of silicon costs when one of values is increased.

Cross points of silicon costs

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1

The values of variables

T
h

e
 n

u
m

b
e

r
o

f
fu

n
c

ti
o

n
s overhead of multplexer

common area

silicon utilization

ratio of reconfigurable
functions

Figure 5-9: Cross points graph

148

The overall trend of Figure 5-9 is that the number of functions needed to equalize

the silicon cost between fixed hardware and reconfigurable hardware decreases as the

values of the parameters increases. In other words, the reconfigurable hardware becomes

more competitive when the values of parameters improve.

The conditions of the system that affect the silicon cost are the silicon utilization

for reconfigurable hardware and the overhead of multiplexing for fixed hardware. The

rate of reconfigurable functions for reconfigurable hardware and the common area of the

functions can be considered as the trends in today’s applications. It is not hard to imagine

that the silicon cost becomes more competitive as the silicon utilization or the ratio of

reconfigurable functions in reconfigurable hardware increases. Both parameters allow the

reconfigurable system to put more functions in a given hardware. Conversely, as the

overhead for multiplexing increases the fixed hardware approach becomes less effective.

The only parameter that turned out unexpectedly is the common area. Since the common

area affects the silicon cost for both systems, it becomes a bigger factor in the

reconfigurable devices as shown in Figure 5-10.

From the traits of running application’s point of view, the more reconfigurable

functions (and the more common area) the applications that have, the cheaper the

reconfigurable system should cost. Other parameters do not contribute to the traits of

running applications but to the characteristics of hardware systems. As the ratio of

reconfigurable functions increases, the reconfigurable computing system becomes the

more attractive solution. In order to increase the ratio of reconfigurable functions, the

amount to reconfigure needs to be decreased to accommodate more functions. Because

149

the static architecture reduces the amount of hardware to be occupied by multiple units,

the exploitation of the static architecture among configurations is recommended.

The architecture synthesis methodology analyzes a multi-task and multi-mode

workload in a reconfigurable system and suggests a static architecture that can work

beyond the granularity of reconfigurable system that the workload demands.

In the following sections one will take a look at how these multiple functionalities

of the workload can be realized and be incorporated into the reconfigurable system

systematically.

5.6 Configuration Flow Specification

With increasing development of communication medium (e.g., optical fiber) and

expanding functionality of consumer devices, it is predicted that stream communication

would be a natural representation to transport and process all types of data from textural

to visual. For instance, a MPEG-4 scene consists of many objects that require different

Silicon Cost

0
200
400
600
800

1000
1200
1400
1600

0 50 100 150 200 250

Number of functionalities

S
il

ic
o

n
 C

o
st

fixed

reconfigurable with 10% common
area

reconfigurable with 50% common
area

reconfigurable with 90% common
area

Figure 5-10: Silicon cost with varying common area

150

processing elements, thus resulting different data flow graph. Since the scenes can be

dynamically composed with a large variety of objects, the full design of decoding a scene

might be too complex to be directly implemented in hardware. Figure 5-11 demonstrates

a simplified scene description of MPEG-4 shown in a hierarchical graph.

Yet if each scene of MPEG-4 requires combining a few paths of configuration

flow shown as the grey areas in Figure 5-11, the system can save a considerable amount

of hardware space compared to the full implementation. If the scene’s dynamic changes

requires small modification that can fit reconfiguration between scenes, the cost-

effectiveness of the system can increase over time.

Similarly today’s computing intensive applications such as Digital Signal

Processing, multimedia standard and communication protocols have the headers that

entail the sequence of the operations for the impending data or the prefixed operations

depending on the algorithms that the system needs to deploy. Based on the assumption

that system events carry implicit structure of system’s behaviour, one can analyze the

system according to the system events. Specifically the structure of the multi-task and

multi-mode operations should be mapped onto the stream of system events.

Figure 5-11: Simplified structure of MPEG-4 scene description

151

Creating a hierarchical design that identifies a multi-task and multi-mode

workload, starts with the configuration flow specification as shown in Figure 5-2. In

computer science, the control flow specification is known as the order in which the

individual instructions (or functional calls) of a program are executed or evaluated. We

define configuration flow specification as:

Definition 23: configuration flow refers to the order in which the groups of particular

operations in a reconfigurable system are executed.

Since the reconfigurable system is the mere assembly of the operations, the order

indicates to the configuration controller the set of moments when the alternation of

operation(s) becomes necessary. In our reconfigurable system, the individual operations

are grouped as a mode, task, thread and application. As a result, the configuration flow

specification identifies the order based on the granularity of the given group(s).

Since the configuration flow specification should be tailored to each application,

it is difficult to generalize the steps involved in the process. However, there are some

steps that are common for all system designs [86] and provide aids to identify

configuration flow in early design stage. One needs to:

 Recognize the environment which the system is modeled in;

 Create a context diagram that expresses overall purpose and represents

input(s)/output(s) of the system;

 Identify all events that serve the purpose of application;

 Outline the responses to the associated events.

152

One starts by creating a preliminary system model consisting of a context diagram and an

event list. The context diagram is a special case of the dataflow diagram, where a single

node represents the entire system. The event list is a set of external stimulus to which the

system must respond. The event list can consist of system-level events that occur without

any external provision.

First to note, the estimation of timing can not be carried out with events that are

naturally aperiodic. Hence, one only considers the systems with real-time stream

applications where input data is structured with exact timing information to determine

computational needs, whose assumptions are similar to the ones made in Synchronous

Data Flow (SDF) [87].

5.6.1 Defining the environment

The first part of system modeling involves outlining the interfaces between the

system and the environment that resides outside the system. Outlining the interfaces

involves knowing what information comes into the system from the environment and

what information goes out from the system to the environment. The context diagram

draws the boundary of the system and illustrates interfaces that are inputs and outputs of

the system. To construct the environment model, one starts to define context diagram and

event list for each system.

153

5.6.2 Event list

The event list is generally accepted as a narrative list that invokes the response of

the system. The events can be categorized into three different classes: flow-oriented

events, temporal events and control events.

Definition 24: A flow-oriented event is one that is initiated by the necessary condition(s)

of a dataflow.

The dataflow alerts the system that the event has occurred when a piece of data has

arrived. This will result in a dataflow on the context diagram. Yet each dataflow can be

invoked by necessary data required by the system to process an event or an event itself.

There are also temporal events.

Definition 25: A temporal event is the one that is triggered by the arrival of data at a

point in time.

The temporal events are normally initiated by internal clocks which keep track of time for

the system. The temporal events may request inputs from terminator(s). In this case,

temporal events associated with dataflow(s) are not depicted as the events. The last of

three categories are control events.

154

Definition 26: A control event is considered to be a special case of temporal events,

which are not bounded by the regular passage of time.

However in the context of real-time and stream applications, even configuration flows are

associated with timing characteristics of the real-time stream application. Thus, the

appearance of control events is predictable with known characteristics.

Because our interest is to extract the coarse configuration flow that exploits

reconfigurability of the system, one pays attention to the timing information related with

the control event(s)27 for the system. In order to know how the control events influence

the system and their timing information, one needs to learn how a context diagram

incorporates the control events to express a multi-task and multi-mode workload.

5.6.3 Context diagram

The context diagram is a particular case of the dataflow diagram in which a single

bubble represents the entire system. The context diagram can consist of:

 Terminators – external entities with which the system communicate;

 Input data – data which the system receives and which needs to be

processed by the system;

 Output data – data that is produced by the system;

27 The term, control event is used interchangeably with system event.

155

 Stores – data storage medium that are shared between the system and

the terminators. The store can be created by either the system or the

terminators.

We start to construct the system model by events and bubbles that show event responses.

Let’s view the system as a data transformation,  Y f X producing an output,

Y as it accepts an input, X as shown in Figure 5-12

If the system requires doing one task all the time, then the context diagram in

Figure 5-12 represents a correct description of the system and designers should try to

implement the given transformation with minimum resources. However, system means

much more complex and versatile functionalities in today’s standards. The representation

of these functionalities can be interpreted systematically when one uses the control

events. To distinguish the control events in a reconfigurable system, one refers them as

configuration events.

Definition 26: A configuration event is considered to be a special case of control events

that requires reconfiguration of system’s functionalities in a reconfigurable device.

Figure 5-12: An essential Context Diagram

156

Configuration events are considered to be as prompts. They do not influence the

functionality of the system directly but rather switch functionality of the reconfigurable

system on and off. Thus, it controls the behaviour of the reconfigurable system over time.

The difference between prompts and input data is equivalent to the difference between a

call to a subroutine and the parameters of a subroutine. One needs to identify the

configuration events that invoke the subroutines directly knowing the other subroutines

are not served at the same time. A simple illustration of a dual-state system is shown in

Figure 5-13

Figure 5-13: Examples of Context Diagram

157

While the ASIC approach explores hardware overlap between data

transformations (or states) and creates an optimal solution for implementing a full

system,  1 2, ,..., nM s s s , our approach focuses on implementing a slice of the system,

i is f and exploits the timing redundancy where the system and application allow

reconfiguring the system for a different functionality.

If you generalize Figure 5-13, a reconfigurable system can be modeled as a set of

configuration,  , ,M C   where  is the configuration events (a finite non-empty set

of symbols); C is a finite non-empty set of configurations;  is the configuration

transition function: : C  and where each configuration represents the data

transformation at a time, i ic f associated with iE   . Each configuration i ic f can

be portrayed as an application in the workload. Since the reconfigurable system deals

with stream data, (,)C  the event, iE should be available for each stream unit, ic , where

1i i d    . The event iE is a set of all configuration events 1,..., ne e that are committed

to the configuration, ic .

The difference of the above model with FSM is that  does not consider the

current configuration of the reconfigurable system in order to identify the next, but it

indicates the changes necessary, 1i ic c  to be configured for the next.

The model of leveled context diagram with event lists are derived from [88]

which is an extension of the state machine and state diagram. Thus, the configuration

flow specifications are established by constructing a leveled context diagram and

158

identifying the tools associated with events by applying the structural analysis [89] and

adapting state diagram [88] models.

5.6.4 Leveled context diagram

Depending on complexity, the system can be partitioned further (i.e., Leveled

Context Diagram). Since the configuration events are mostly associated with hierarchical

data structure of the application (e.g., multi-dimensional stream data), the configuration

events can also be grouped into the levels of a hierarchy. One partitions the system until

all identifiable configuration events are consumed. The context diagram that represents

the hierarchical organization of functional nodes is called the leveled context diagram.

The leveled context diagram serves two main purposes in the configuration flow

specification. One is to identify the functional nodes as applications, threads, tasks or

modes. The other is to identify the necessary micro network to enable communication

between nodes. The definitions of the terminology used for reconfigurable system are

restated from section 2.5.1.

Definition 1 A task, Ts is a group of arithmetic (and/or logical) operations that are

necessarily interconnected to perform the described computation.

Definition 2 A mode, Md is one of ways executing a task that is bounded by constraints,

and specifications.

159

Definition 3 An application, Ap is a group of task(s) that are interconnected (or

disjointed) to carry out computational requirements for a system given at time(s).

Definition 5 A thread, Th is a connected set of task(s) given in an application.

Definition 6 A workload, W represents all application(s) that a system needs to

implement at different times.

Any node can be an application when there is an event(s) with which it associates. The

applications in the same level should contribute to the same outputs and only one of the

applications should be active at any point of time. The title of thread is given by

identifying the group of tasks that are divided by a particular set of input and outputs in

the application. The threads should not share the same outputs and there should be no

communication between threads. The difference between task and application is that

there is no more configuration event for modes of a task. Reconfiguration of the system

can happen in application, thread and task levels where:

 Application level utilizes temporal redundancy of the system where the

sub-modules can use either spatial and/or temporal redundancy of the

reconfigurable system;

 Thread level uses spatial redundancies of the reconfigurable system;

 Task level uses temporal redundancies of the reconfigurable system where

there is no further sub-module available.

160

After identification, each node is relabeled to be one of types (e.g., application, thread,

task, and modes).

The second identification regards the framework of micro network. One assumes

that the micro network can be implemented separated from functional nodes. The micro

network is not concerned with the functionality of the system. However, it deals with the

intercommunication between nodes. The micro network can only be identified by the

leaves of the leveled context diagram. These nodes do not have any more configuration

Figure 5-14: An example of leveled context diagram

161

event to consider. The identification of the micro network is considered in the level of

task where internal operations are driven by common set of input(s) and the operations

produce results for the common output(s). The design also should consider that the

bandwidth requirements between tasks do not exceed the capacity of micro network in

the system.

Figure 5-14 exemplifies a simple case where configuration events attribute to the

characteristics of a dual-state system by turning on and off the associated application. In

this example, the f1 and f2 are the applications of the system. Either of f1 or f2 can be on,

but not both at the same time due to the output conflict (e.g., both shares Y as the output).

While the f1 and f2 alternate their insertion to the system based on the value of the

configuration event, its duration is fixed by the characteristics of stream input data with

which each task is tied. Thus, f1 and f2 are called as applications of the system. Each

bubble can be described further by illustrating the subsequent levels. However there

would be no hardware changes necessary because of no configuration events were

assigned beyond the LEVEL 1.

Figure 5-15 illustrates the case of creating threads. Contrary to Figure 5-14 the

configuration event in Figure 5-15 does not initiate (or terminate) the bubbles directly as

the outputs of the system is sufficiently fulfilled by the bubbles in the LEVEL 1. Note

that the applications in all levels should be able to produce all outputs that belong to the

context diagram. As it is observed, the unionized outputs of both bubbles equal to be one

in the context diagram.

162

Yet the configuration event influences subsequent bubbles in the lower level.

There is no configuration event that differentiates the functionality of the system at the

LEVEL 1, since f1 and f2 do not use each other’s intermediate values and their outputs

do not overlap they are classified as threads in the LEVEL 1. Depending on the

complexity of the system, there can be applications and threads in the subsequent levels.

The applications are created by associating the configuration events. Within an

application, if the outputs are indivisible, for the functionality to be carried, there should

be no more thread available.

Figure 5-16 shows an example of tasks and modes.

Figure 5-15: An example of threads in dataflow diagram

163

When there is no subsequent thread (or application) available – in other words,

when all tasks are interconnected, the assigned configuration event(s) is used to allocate

the modes for the tasks. The level which designates the implementation of tasks and

modes is one that contributes to constructing the static architecture of the system.

So far one has studied the typical examples that show how applications, threads

and modes are created in the leveled dataflow diagrams. The general feature of the

leveled context diagram is that it allows the users to look at the system from the various

levels of details. More importantly for the reconfigurable system, it provides the

Figure 5-16: An example of tasks and modes in context diagram

164

interconnection details of tasks and input/output relationship of tasks that are used to

construct the static architecture of reconfigurable systems.

In a nutshell the reconfigurable system design methodology recognizes and labels

the nodes as applications, threads, tasks and modes. Then, it enlists the necessary

communication interfaces for the micro network of the system. In the next section one

takes a look at the steps of our methodology to design a cost-effective reconfigurable

system using dynamic reconfiguration.

5.7 Identifying a multi-task and multi-mode workload

The identification of a multi-task and multi-mode workload first requires

obtaining the precise relationships between the configuration events and tasks in the

leveled context diagram. There is the relationship reached at each level of the context

diagram. Hence the system is divided into the two levels that consist of a parent node and

children nodes. By applying the decision diagram given in Figure 5-17 for each pair of

parent and children, one finds that:

 If there are multiple independent bubbles in a level, then the bubbles can be

either threads or applications;

 If the bubbles in the level share the same set of outputs, they must be

applications. The event(s) associated with these applications should allocate a

control value that initiates one application at a time. The applications in a

level are employed by the same event. They represent temporal partition of

the system;

165

 If the output(s) of bubbles are mutually exclusive, threads are created for each

group. The threads divide the application into smaller versions that do not

interfere with each other. They represent spatial partition of the system;

 If all tasks in a level are interrelated and there is associated configuration

event(s), then the task(s) that does not associate with the configuration events

is regarded as static task(s). Otherwise the task(s) possesses the modes of

operations according to the configuration event(s);

 If there is either further divisible outputs or more configuration events, then

each mode of task(s) can issue threads or applications respectively in the

subsequent level(s).

Figure 5-17: The decision tree for bubbles in a multi-task and multi-mode workload

166

By applying the above findings, one constructs the hierarchical tree diagram resulting

from the leveled context diagram. The tree diagram is called the leveled tool diagram that

visualizes how the context diagram arrives at the level of tasks by assigning the

configuration events. Figure 5-18 illustrates how the configuration events are assigned

based on the example of Figure 5-14 . To identify the role of nodes, the bubbles are

named after the components in the system model (Ap for application, Th for thread, Ts for

task and Md for mode).

In this example, there are two applications that are associated with the

configuration event, 1e . The applications are assigned by the value of configuration

event, where there is no subsequent application or thread level available.

Figure 5-18: An example of leveled tool diagram with applications

167

On the other hand, Figure 5-19 illustrates how the configuration events are

assigned to threads and modes of tasks based on the example of Figure 5-15.

Because tools in the LEVEL 1 are not assigned with any event and there are

subsequent levels available, the tools are referred to be threads. Especially for 2Th there

is a pending configuration event which initiates the tools where they depend on the value

of the previous event. While 1Th does not have any configuration event, the subsequent

tools referred as tasks use configuration event to invoke the modes for the task, 2.1Ts and

2.4Ts . Hence, 1Th is considered as a static set of task(s) according to the decision diagram

of Figure 5-17.

Figure 5-19: An example of leveled tool diagram with threads

168

As one has seen from the examples, the leveled tool diagrams clearly illustrate the

relationships of a parent node and children nodes and assign a value of the configuration

event to a particular application (or a mode of the task). The main purpose of identifying

a multi-task and multi-mode workload is to recognize the tasks that are reconfigurable.

By associating the value of the configuration events to a particular task the methodology

provides a systematic way to recognize the reconfiguration of the tasks. For example, if

one assumes that the initial configuration of the reconfigurable system is given as

 0 2.1.1 2.4.1,c Md Md using Figure 5-19 and the configuration event for 1c is given as

   1 1 2, 2,1E e e  , then the system configuration needs to be changed as

 1 2.1.3 2.4.2,c Md Md .

Unlike the leveled context diagram, the leveled tool diagram exclusively

describes the relationship of the system events with functional nodes. Each value of the

configuration event is assigned with either an application or a mode of the task. One

assumes that each node selects a range of possible components from the library that is

compliant with its functional description. While the event list traverses down the leveled

tool diagram, it establishes a set of tools that belongs to the path which the values of the

events possess. The inclusion of tools for the traversed path is decided by sufficient

conditions that are given by the values of the events. If the events are the external signals

that attribute to the characteristics of a very large function, there should also be

independent tools that are not influenced by system events beyond its level, so-called

isolated tools. The isolated tool(s) are the subfunction(s) that do not produce any other

variation of functionality depending on the configuration events that exist below the level

169

of the tool(s). All isolated tools should be identified with the associating configuration

event. The upper level events should also be assigned to initiate the isolated tools in the

lower level. Figure 5-20.

In Figure 5-20 the event associated tools are indicated by grey boxes and the

isolated tools by white boxes. The isolated tools as shown become the basis of the static

architecture. The system  , ,M C   holds the event list,  1 2 3 4, , ,e e e e  . The values

of 1 2 3, ,e e e and 4e are conditioned to select the tools. At the LEVEL 0, depending on the

value of the events, e1 only one of the functions (Ap1 or Ts2) can be initiated. Since Ts3

does not have any associated configuration event, Ts3 is an isolated tool that is present at

Figure 5-20: An example of leveled tool diagram with isolated tools

170

all times. While the functionality of Ts2 does not change depending on the system event,

Ap1 can have Ts1.1 or Th1.2 depending on the value of e2. In the same sense, Ts3 is on all

the time while Ts.1.3 does not get turned on unless the value of system event, e1 satisfies

Ap1. The leveled tool diagram shows a convenient way to associate the event list with the

nodes in the system. The outcome of the leveled tool diagram is the functional node that

appears as the leaves of the leveled tool diagram. They must be either tasks or modes.

Each leaf of the leveled tool diagram associates with the system event(s) and their list

tends to increase when the leaves are in the lower level. For example,  2 1 1| 1Ts e e 

is in the LEVEL 1 and  1.2.3.1 1 2 3 4 1 2 3 4, , , | 0, 1, 2, 0Md e e e e e e e e     is in the

LEVEL 4. The defining a multi-task and multi-mode workload step results in the labeled

functional nodes that are associated with the values of configuration events.

The reconfigurable system is expressed by  , ,M C   , where  are all

configuration events, ic are the configurations of the system and  are the transitions

required between configurations. The leveled tool diagram shows that the system can

always be decomposed into task(s),  1 2, ,..., iT Ts Ts Ts and/or the mode(s) of tasks,

 1 2, ,..., jM Md Md Md . On these tasks and modes there are links,

 1 2, ,..., kL Lk Lk Lk that need to be populated in order to ensure the communication

between them and with the external systems. To simplify the expression the task is

assumed to be the mode of its own. Then a task can be normalized as the mode

r rTs Md simplifying the expression of the system as the group of the configurations

 ,ic M L  which consists of the subset of the modes and links, M M  and

171

L L  where M  invoked by the given values of the configuration events, is a part of the

leveled tool diagram.

5.8 Constructing a Static Architecture

The leaves of the leveled context diagram show the interfaces that each node

needs in order to carry the required functionality. Analyzing the workload from tasks up

to the level of applications grants a conceptual assembly of the reconfigurable system.

The conceptual assembly shown in Figure 5-21 and Figure 5-22 can hypothetically

outline the area that the workload occupies. The conceptual assembly of the static

architecture provides a better way to reflect the constraints that might lie within the

geometrical placements of components and their interfaces. In order to establish the

conceptual assembly, one suggests the topological arrangement used in [90]

The topological arrangement provides a way to estimate the physical outcome of

the workload mapped onto a chip. The topological arrangement treats all modules of the

static architecture as topological points without considering their real physical

dimensions. Instead it establishes a relative topological relations that is desired by various

constraints (e.g., timing, routability, etc.) among the modules in the static architecture

There is a particular set of hardware characteristics that is unique in our design

methodology. One of them is the coarse-grain size of our blocks. Because of the top-

down approach of structural analysis [89] and multi-task and multi-mode oriented

workloads, the system tends to deploy large blocks, so-called macro blocks. The other is

how they are represented inside the floorplan process. Since the reconfigurable devices

172

are thought to possess homogenous structure of configurable logics, the blocks can be

expressed as a 2-D coordinate in a FPGA.

Based on the above characteristics, one assumes that the reconfigurable device

floorplan problem can be given as28:

 A set of n rectangular blocks  1 2, ,..., ,...,i nB b b b b that resembles the

state of a multi-task and multi-mode workload where ib B represent

coarse-grain block. Each block should have;

i. ,i ih : width and height of ib , which represent the number of

configurable units (e.g., CLBs of FPGA) involved in the macro

block;

ii. ia : area of ib (i.e.,, i i ia h ), ia is a constant representing total

area of a macro block;

 A set of nets  1 2, ,..., kN n n n that resembles the links listed for the state;

 Timing constraints and size of a chip;

 Each block is assigned to a location, xy-coordinate on the chip;

 Overlapping is guided between multiple configurations that have the same

functional blocks.

The topological arrangement is obtained in a greedy fashion by adding one block at a

time to the partial floorplan (point placements). One assumes that by using topological

arrangement, a conceptual assembly of the reconfigurable system can be obtained.

28 Adapted from [91]

173

The multi-task and multi-mode workload is reflected directly into the architecture

of the reconfigurable system as the results of the configuration events which invoke

different implementations of the system. In order for the reconfigurable system to be

cost-effective, the system needs to associate the given values of the configuration events

with a particular implementation. In other words, the system should be capable of

recognizing the difference between implementations of ic and 1ic  by looking at the

given configuration events iE and 1iE  .

The difference can be built around the static architecture. The static architecture is

the skeleton of multi-task and multi-mode workload that does not change during the

course of reconfiguration. One of purposes of the static architecture is to maintain the

links among the non-reconfigured nodes for seamless computation. For instance, if the

mode of a task needs to be changed, the reconfiguration should not touch any other part

of the system except the area designated for the task. Because the static architecture

keeps the essential interfaces between components, the rest of the system can operate

without disruption by reconfiguration. Constructing a static architecture begins with

assuming a reconfiguration granularity that is determined by the given configuration

events.

If the event, e1 in Figure 5-20 associates with the timing allowance that is smaller

than maximum area that needs to be reconfigured by the nodes in the LEVEL 1, the static

architecture should look like Figure 5-21.

174

Because the reconfiguration system does not allow the workload to implement

Ap1, Ts2 and Ts3 as the reconfigurable modules of the system – they are too big to be

handled by reconfiguration, they allocate the hardware space to be implemented in

parallel and indicate the Input/Output connections that each module requires. One of

these modules needs to be turned on by the value of e1 when others are off.

Within the application, Ap1 there are many modes of operations requiring only

small amount of functional changes. Because it is desired to keep other functions

operational the static architecture that maintains the links between components needs to

be identified. If there is a pre-existing condition (e.g., e1=0), the static architecture can be

defined further by outlining the links within Ap1 in addition to the existing architecture

given in Figure 5-21.

Figure 5-21: An example of the static architecture

175

As long as the configuration events with which the previously loaded architecture

associates contains the pre-conditioned value(s), the same static architecture can be

utilized again. In other words, the static architecture needs to be loaded in at the

beginning of each of the big changes that is identified by pre-condition(s). However, the

pre-conditions exclude the system from obtaining other functionalities that the different

values of pre-conditioned events can provide. Hence, to gain access to other

functionalities the system needs to load a different static architecture.

The pre-conditioned static architecture can be extracted by finding the intersection

of all configurations where the configurations represent various functionalities with the

pre-conditioned values of the configuration event(s). The extraction of the pre-

conditioned static architecture starts with finding all variations of the architecture, where

each variation is expressed as a group of a mode for the tasks,  ,ic M L  with the pre-

Figure 5-22: An example of the static architecture with the pre-condition of e1=0

176

condition. The static architecture of the reconfigurable system is static iA c  where all ic

are obtained with the same pre-condition. If there exists no pre-condition, the static

architecture considers all configurations, static iA c  for all ic . Then the static

architecture reconfigures all functions except the isolated tools in the LEVEL 0. The

isolated tool(s) in each LEVEL becomes the skeleton of the static architecture which each

configuration employs. With the same pre-condition subsequent configurations can

utilize the same static architecture. For instance the following configurations given in

Figure 5-23 can exist for three different occasions.

With these configurations, the dotted area indicates the static architecture for all

configurations. However, if the pre-condition exists between  2c E and  3c E , the grey

area becomes what the system reloads as the static architecture. The larger those static

architecture become, the smaller reconfiguration the configurations require. However, it

is not possible to anticipate what configuration of the system would be required in near

future where such anticipations result in minimizing the reconfiguration time and

maximizing the static architecture between configurations. Importance of static

Figure 5-23: An example of static architecture

   1 1 2 5 6 9 2 4 5 9, , , , , , , ,c E m m m m m l l l l

   2 1 3 7 8 9 1 4 5 8, , , , , , , ,c E m m m m m l l l l

   3 1 2 7 8 9 1 4 5 9, , , , , , , ,c E m m m m m l l l l

177

architecture is the integrity of links that the static architecture guarantees to be active

while reconfiguring. The static architecture should be bounded by the reconfiguration

granularity that configuration events and the size reconfigurable area predict.

Nonetheless, the static architecture provides the steady links that remain active

while the system is reconfigured. Because of the pre-conditions in the static architecture,

the system can accommodate the links and keep reconfigurable functions that are smaller

than the reconfiguration granularity allows.

5.9 Defining the Reconfiguration Granularity

The reconfiguration granularity is where the system draws the line for the

reconfiguration. To figure where the limitation of reconfiguration starts, one studies the

leveled tool diagram where every scenario of reconfiguration appears. The leveled tool

diagram shows all possible modes of the reconfigurable system depending on the values

of the configuration events. Since the reconfiguration only affects the components that

are associated with configuration events, one starts from the lowest level of the leveled

tool diagram that associates with a configuration event shown as the STEP 1 of Figure 5-

24.

178

Figure 5-24: The steps to achieve reconfiguration granularity

179

The lowest level of the leveled tool diagram is always populated with modes of

tasks. If the maximum area that each mode of the task occupies

   Ts i jArea area Md area Lk       does not exceed the reconfiguration time that is

imposed by the shortest deadline,  kd e   where k = 1…n, of the stream event given as

in Eq. 5-6,

where  
cfT Tsf Area indicate the reconfiguration time that takes to reconfigure TsArea .

Then the modes can be designated to be reconfigurable. For example, in the

STEP 1 of Figure 5-24 the maximum area occupied by Md1.2.3.1 and Md1.2.3.2 does not

exceed the area that e4 allows to reconfigure.

As the design progresses into the lower level, the event list starts to grow. The

STEP 2 will consider the additional event e3 onto e4. If there are other branches that did

not calculate the maximum area    i jarea Md area Lk      , then repeat the same

evaluation as given in Eq. 5-6. For example, Ts1.2.1 needs to account for the maximum

area occupied by Md1.2.1.1 and Md1.2.1.2 with e5 before proceeding to the STEP 2.

In general, application, Ap can inherit the maximum area from its children without

associating to further events. But thread, Th needs to add the areas as given in Eq. 5-7 .

Overall, the area occupied by the lower level components tends to get larger

because they consider more mode(s) to find the maximum area. At the same time because

   
cfT Ts kf Area d e    5-6

   
1 1

l m

Th i j
i j

Area area Md area Lk
 

   5-7

180

the number of associated configuration events decreases (e.g., k = 1, 2,..., n-2 for the

STEP 2 in Figure 5-24), there is a greater chance to have a longer deadline that can

accommodate greater reconfiguration area.

If    
cfT Ts kf Area d e    as shown, at the stage 3 of Figure 5-24, the

reconfigurable system can perform the reconfiguration for the LEVEL 3 and beyond. The

rest of the functionality should be implemented in parallel.

To estimate the areas for the tasks and the links between them, there are two

assumptions taking place. One is that implementation of links is physically independent

with functional nodes. The reconfiguration of links does not require change(s) in the

functional nodes. Thus, reconfiguration of links does not hinder the functionality of

nodes. The second assumption is the availability of  iarea Md and  iarea Lk . While

 iarea Md is readily available from the given parametric search in the component

library,  iarea Lk can be tricky to estimate. One assumes that the estimation of

 iarea Lk can be obtained by the conceptual assembly diagram that provides the sketch

of a full system with a particular static architecture. However, because the conceptual

assembly diagram is only estimation of the system, it might take several iterations to get

the precise values.

Figure 5-25 illustrates the flowchart diagram to determine the reconfiguration

granularity.

181

Figure 5-25: The flowchart to determine the reconfiguration granularity

182

In short, the configuration events that attribute the characteristics of the system

below the reconfiguration granularity (no matter what value it assigns with) can take

place by means of reconfiguration because its demand of reconfiguration is smaller than

its timing allowance. On the other hand, the configuration events that attribute the

characteristics of the system beyond the reconfiguration granularity should be

implemented in hardware.

5.10 Summary

Our goal to achieve a cost-effective reconfigurable design solution can be realized

by implementing the multiple functionalities in a reconfigurable device by reusing

processing resources. In order to do so, one needs to analyze the multi-task and multi-

mode workload associated with the configuration events and find the static architecture

for each level of the context diagram and decide a suitable reconfiguration granularity

that results in an optimal static architecture. If the system reconfigures a part of the

system within the timing allowance of the configuration events and other parts of the

system can still maintain their operations without halting, the system can lower the cost

of silicon spaces used by multiple functionalities

 183

Chapter 6

Implementation

Our goal to achieve cost-effective reconfigurable system architecture can be

realized by reusing processing resources to implement multiple functionalities in a

reconfigurable device. The theoretical investigation of how to recognize and organize

multiple functionalities in reconfigurable systems was conducted in Chapter 4 and 5.

During the investigation, the detailed steps of architecture synthesis methodology for

identifying a multi-task and multi-mode workload, constructing a static architecture and

defining the reconfiguration granularity were proposed and developed. To demonstrate

the feasibility of the proposed methodology an experimental implementation is created to

show the benefits of the methodologies and is used to estimate the cost effectiveness of

the reconfigurable system. In the implementation:

 The feasibility of on-chip self-assembly via run-time reconfiguration is

demonstrated;

 The procedures for on-chip assembly is developed and implemented;

 The framework of run-time reconfigurable system based on static architecture

is created;

 The dynamic reconfiguration of various tasks (i.e., VHCs) driven by

configuration events is developed;

 Run-time partial reconfigurable implementation of on-chip multi-visual

stream processors is demonstrated.

184

Because none of the commercially available platforms is capable of handling a multi-task

and multi-mode workload effectively, a reconfigurable platform based on a

programmable device (i.e., Multi-task Adaptive Reconfigurable System Platform –

MARS platform) is constructed. The general functionalities of the platform are to support

run-time reconfiguration, incorporate Virtual Hardware Component (VHC) library and

employ an operating system that analyzes the system events and loads configurations.

Furthermore the MARS platform is equipped with the stereo camera module to

demonstrate the effectiveness of the multi-task and multi-mode reconfigurable system

design methodologies for real-time and stream applications.

6.1 System Organization

The system organization must reflect the general functionalities of the

reconfigurable system where the system needs to:

 Detect configuration events;

 Assemble on-chip tasks;

 Enable run-time reconfiguration.

To fulfill the above system’s objectives, there needs the consistent system level provision

while the functions of a multi-task and multi-mode workload can dynamically change

their performance and requirements.

The reconfigurable system is organized to have a set of hierarchical functions.

The hierarchical organization of the system relies on the next lower layer to perform

more primitive functions and to conceal the details of those functions. It also provides

185

services to the next higher layer. The organization of layer hierarchy establishes the

relationship between the layers so that the changes necessary in one layer function does

not affect other layer functions. In the same sense, the partition of the system into layers

brings much more manageable reconfigurable solution. The architecture of the

reconfigurable system is divided into three levels of hierarchy:

 System level: the general functionalities of the reconfigurable system are handled;

 Micro level: the network of multiple functionalities are created and maintained

depending on the values of configuration events;

 Component level: the functionalities of the tasks are conformed and details of

functions are implemented;

The three-level hierarchy exists because of the independent purpose(s) that each layer

serves. The system level provides the means of run-time reconfiguration. It should

oversee the configuration events and needs to provide the necessary VHCs in time to re-

organize the architecture of reconfigurable hardware as well as the functionality of

individual components. The micro level is where the I/O of the reconfigurable hardware

is distributed among various components and their inter-communication is implemented.

Because of the unique requirements of communication on a chip based on a specific

workload (e.g., frequency, delay, throughputs, placements of I/O ports and etc.), the

design maintains its structure and verifies its performance as the dynamic requests of the

system alters. The component level is where the functionality (or algorithm) of the VHCs

is determined. Without being concerned about the complex functionality of the workload,

it is where the smallest or fastest components are developed based on a parametric

combination of the functionality (e.g., area, frequency, communication interface, protocol,

186

algorithm, required resources and etc.). The following sections describe the details of

each level that exits in the system organization.

6.1.1 System Level

The high level system architecture for the reconfigurable computing platform

provides the structure of the reconfiguration service hardware for the architecture-to-

workload adaptation (i.e., full/partial or static/run-time configuration). In order to take

advantage of the architecture-to-workload adaptation and run-time reconfiguration, it

needs to implement the following major components shown in Figure 6-1.

Because run-time reconfiguration of a multi-task and multi-mode workload

requires the system level provision, an operating system needs to be implemented to

directly control configuration ports of the programmable device and to access the VHCs

in memory. Because the library should consist of all components that the reconfigurable

system can have, the volume of VHCs will always exceed the capacity of on-board (or

Figure 6-1: System level architecture

187

on-chip) memory that enables fast reconfiguration (e.g., 32-bit @ 100MHz). Thus, a

hierarchical memory structure is deployed to swiftly access the configuration files and

load the VHCs that are only necessary for the currently workload:

 Reconfigurable Functional Module (RFM): a run-time and partially

reconfigurable device(s) (e.g., Xilinx Virtex FPGAs) that serves the functionality

of the system as requested by the workload of the applications. This module can

be a device(s) or a part of device. The size of the RFM decides the maximum

allowable workload of the system;

 Cache for re-configurable components: temporary memory space (e.g., external

flash, SRAM, SDRAM or internal BRAM29) for configuration bit streams for the

different modes of reconfigurable components. Each component in cache must

associate with a reconfigurable area in the RFM;

 Virtual Component Library (VCL): static memory space for all tasks and all

modes of tasks. This memory space consists of all configuration bit streams of all

task modes and all static architectures;

 Hardware Operating System (HOS): is a part of reconfigurable system that

decides or performs the following kernels:

a. Configuration bit stream upload(s) from VCL to cache;

b. Monitoring the configuration events;

c. (re)configuring the static architecture and virtual components of the RFM

as necessary;

29 Internal RAM available for Xilinx FPGAs.

188

There is normally a short time window (e.g., from hundreds of nanoseconds to

tens of milliseconds) available that all reconfigurations should fit in. Depending on the

situation and requirements, the HOS needs to look for appropriate components,

manipulate configuration stream and re-organize the cache structure. The HOS using

Instruction Set Architecture (ISA) would normally not be able to execute the required

operations in time. The HOS needs to be realized in “hardware” to accomplish these tasks

in the given time window (e.g., 10s µs to 10s ms). The operation system is referred as an

Hardware Operation System (HOS) to reflect the aspects of the hardware realization.

6.1.1.1 Reconfigurable Functional Module

Reconfigurable Functional Module (RFM) is where the platform dependant

parameters for the whole system can be specified. Therefore, the parametric selection for

each component of the workload can be performed by system architect (or possibly by

operating system). Due to the consistency of the internal structure of FPGA devices all

virtual components can remain to be compliant for all FPGAs in the same family. The

processing unit of the Reconfigurable Functional Module (RFM) is a partially

reconfigurable FPGA. Hence, the configuration control signals need to be designated to

access the internal configuration circuitry at run-time. The proper control of the

designated signals grants the access to write or read on-chip configuration SRAM. The

explanation of the Virtex-4 FPGA system architecture is given in the following section

and the overview of configuration interface is laid out in section 6.1.4.1.

189

6.43.36.2 Run-time Reconfigurable Platform (Xilinx Virtex FPGA)

There are several companies who manufacture Field Programmable Gate Arrays

(FPGA): Altera Corporation [56] Lattice semi-conductor Corporation [54], Cypress

Incorporated [92] Xilinx Inc . [55], Atmel Corporation [93], Actel Corporation [53] and

QuickLogic Corporation [94]. While Xilinx and Altera still own the biggest share of

FPGA market, other players are renowned in a niche market of FPGAs. For example,

Cypress is famous for mixed-signal FPGAs. Actel is famous for One Time

Programmable (OTP) FPGAs that are popular in space applications. They can be also

divided by configuration technology. Xilinx, Altera, Atmel, Lattice semi-conductor and

Cypress offer volatile SRAM-based FPGAs while Actel and QuickLogic mainly focus on

antifuse and non-volatile flash-based FPGAs. The distinctions between companies

become thinner as they explore different processing and configuration technologies to

benefit wider customer attractions.

Among them, there are a few companies who provide run-time partial

reconfigurable FPGAs: Xilinx and Atmel provide SRAM-based reconfigurable FPGAs

for reusable hardware and flexible operations. The FPGAs from both companies aim for

providing the architecture and the internal organization of the resources can reflect the

current requirements of data processing. However, due to the differences in the logic

density and system speed, Atmel can not provide the possibility of implementing a

complex multi-task and multi-mode workload that Xilinx FPGAs can offer. Additionally

Xilinx put many efforts to develop the support tools for partial reconfiguration.

190

Depending on how the run-time and partially reconfigurable FPGAs is adapted,

the system can reach a nearly perfect architectural point whenever computational

requirement changes. In the following sections one will explore how the internal

architecture of the device helps the system to dynamically adapt for various

computational requirements from the system organization point of view.

6.43.37 Micro Level

Computer architecture is the structure of interactions between various components

to produce intended outputs. Since the outcome of micro-level architecture provides the

organization of interconnected components, properly arranged micro-level components

can create optimal computer architecture. The different interactions among the different

components decide the overall system performance (i.e., speed, throughput, latency and

hardware usage). Therefore, it is our intention to provide the architecture synthesis

methodology for creating static interconnections and for choosing adaptable micro-level

components. The unique combination of micro-level components and partial

reconfiguration provides adaptable computer architecture that is dynamic for a specific

workload when it is necessary.

6.43.37.1 Abstraction of micro-level implementation

The modular design is a methodology of system design that combines physical

area constraints into hardware description level to allow the partition of large system into

191

manageable sub-functions that are logically and physically separable. This enables the

creation of the reusable components that can reside in memory. In the context of the

modular design, the Virtual Hardware Component (VHC) is a uniformly shaped reusable

component that can fit in any part of homogeneous programmable devices. The only

limitation of the VHC is that it must have the module size that is the multiples of a certain

number (e.g., an island of 16-row columns for Xilinx Virtex-4 and 5 families). This

limitation originates from the organization of routing architecture in the Xilinx Virtex-4

FPGA devices that GLOBAL lines (i.e., vertical HCLK routing resources) are not

allocated with homogeneous architecture but they are grouped by 16-row columns of

CLBs.

The entire structure should be defined in a top level design with all reconfigurable

modules instantiated as a “black box”. As in any system design using HDL tools, the

VHC needs to be synthesized, mapped and placed & routed. The implementations

specified by VHCs are described in HDL which enables flexible implementation.

However the design process for each VHC does not employ the locking of pin locations

as a normal HDL tool would do. But rather it uses the pseudo port(s) to terminate the

connections. The description of hardware is translated into netlist that is passed into

physical implementation stage with the area constraints. When the both ends of

connections are joined through the interconnection called the Virtual Bus (VB), the

computer architecture that is assembled by micro-level components reveals data

processor(s) for a specific application.

192

6.43.37.2 Architecture of Xilinx Virtex-4 FPGA

Each Virtex FPGA device consists of Configurable Logic Blocks (CLB),

Input/Output Blocks (IOB), Block RAMs (BRAM), First-In First-Out buffers (FIFO),

clock resources, local/global routing, configuration SRAM, configuration controller and a

number of DSP blocks and a few to several PowerPC cores depending on the family of

FPGAs. As it is shown in Figure 6-2 the Virtex FPGA contains the resources such as

Arrays of CLBs, Arrays of IOBs, SRAM memory blocks – so-called BRAM, DSP

blocks, Clock resources (DCMs, etc.) and Routing resources (global, long and local

routing). Figure 6-2 illustrates the organization of these resources in a device (i.e.,Virtex-

4 LX Family). While the BRAM, FIFO, DSP and clock resources have its own routing to

interconnect with the rest of the device, the CLBs need to communicate via a general

routing matrix. The switch matrix comprises an array of routing switches located at the

intersections of horizontal and vertical routing channels.

Figure 6-2: Virtex-4 LX Architecture Overview

193

Due to the homogeneous structure of the CLBs and its routings, it is possible to

implement swappable components. However, there is a need to have a hierarchical

routing structure to interconnect components across the physical boundaries. One of them

is called long lines in Xilinx Virtex-4 FPGAs as shown in Figure 6-5. As noted in

Figure 6-2 there are the interleaved FIFO, BRAM and DSP blocks along with CLBs.

These specialized hardware cores prevent the relocation of hardware components in the

FPGA. If hardware components only consist of CLBs, it can be relocated anywhere in the

FPGA where CLBs are present. However, if hardware components consist of specialized

cores other than CLBs, it can only be moved along the vertical lines of the same

hardware structure that hardware component is developed with.

The routing architecture of Xilinx Virtex-4 provides a segmented, hierarchical

routing structure that connects to the heterogeneous fabric of elements through a General

Switch Matrix (GSM) block. The General Switch Matrix (GSM) is the switching fabric

that allows connection to input(s)/output(s) of CLBs as well as to other GSMs. The

routing resources that are programmable are physically located in horizontal and vertical

routing channels between each GSM. The routing resources available from GSM are

shown in Figure 6-3.

194

The majority of lines that the GSM has are hex and double lines. Hex lines

connect 3 GSMs that are 4 GSMs apart. Double lines connect 3 GSMS that are adjacent

to one another. Depending on the affix (e.g., H or V) given for the lines, it indicates

whether the lines spans vertical by V or horizontally by H. Additionally if the lines have

the arrow pointing upward, it indicates that the GSM is the last one at the bottom in the

group. The same can be applied for left and right as shown in Figure 6-4

Figure 6-3: The overview of GSM interconnects

195

The GSM also consists of all lines shown in Figure 6-5. Due to the segmented

routing structure of global lines, the global lines can go either or both direction(s)

depending on where in the row organization of FPGA the GSM belongs to as shown in a)

of Figure 6-5.

Figure 6-4: Hex and Double line routing structure

196

To summarize the routing resources in GSM, they are listed as:

 10 long lines that spans 48 height (rows) and width (columns) of the

device;

 10 global lines that connect groups of 16 GSMs;

 128 hex lines that route to every fourth or eighth block away in all four

directions;

a) Vertical 16-row GSM global line routing structure

b) Vertical and horizontal 5-port and 6-hopping long lines

Figure 6-5: Long & global line routing structure

197

 128 double lines that route to every first or second block away in all four

directions;

 42 direct connect routes that route to all immediate neighbors.

Among these routings, the global lines are used as clock signals and double, hex and

direct lines are considered to be local lines. However, the long line routings can be used

as the framework of static architecture that interconnects far-distanced components and

I/Os ports. In order to assist this purpose, CLBs are allocated to form the ports of the

single/multi-port line(s). The slice-based BUS macro is a term used to refer the

construction of multi-port bus using the long or local line routings. An example of BUS

macro is given in Figure 6-6.

Figure 6-6: An example of sliced BUS macro

198

The sliced BUS macro given in Figure 6-6 is deployed to enable communication

between adjacent components that requires 8-bit of communication from bottom to top

with enable signal using local double lines. Yet, for non-adjacent components or I/O

ports, the ad-hoc long lines need to be used to create a specific micro-network.

Overall, the analysis of routing structure is important to realize how static

architecture can be realized. Static architecture is a part of micro-network that is assumed

to be separated from functional implementation of the system as stated in the previous

chapters. But, there is no commercially available chip that allows this separation. The

routing structure of FPGA chips is interleaved within the logical ones. Moreover, the

routings do not have any meaningful role in CAD tools as they are expressed as ideal

wires. As it is emphasized before, the DSM effects should be accounted to ensure

successful construction of modular systems. The proposed solution is to use the long lines

for communication between components that are not adjacent and I/O ports that are hard

to reach by local routings. Because Xilinx FPGA allows “glitchless” reconfiguration30,

the separation of micro network and components can be achieved. When the

reconfiguration of components is requested, the pre-existing micro-network is inserted on

to the reconfiguring component(s). Hence, there is no change(s) written for micro-

network.

30 “glitchless” configuration means that if the same configuration information is written over the region
then, the region carries on its operation without knowing that it is reconfigured. Particularly, this type of
operations can be applicable for static routing structure.

199

6.43.38 Component Level

The configuration memory of FPGAs can be considered to be a rectangular array

of bits organized in 16-row columns. The bits are grouped into a vertical line that is one-

bit wide and is called a “frame”. Here are the characteristics of frames:

 Frames provide the configuration array (bit-wise) of 16-row columns;

 The size of the frames is fixed to be 41 words that is same as 1312 bits;

 The frames are the smallest unit of configuration that can be written into

or read from.

The frames are grouped together into a larger unit. In the Virtex FPGAs, there can be

several different units. However, in the context of the swappable (or re-locatable)

components, the 16-row columns that consist of CLB units can only be considered. The

swappable components that consist of the number of these columns create functional

units that are reconfigurable and are interconnected via the bus lines.

FPGA vendors produce the chips that guarantee the maximal operations of the

core elements limited by connectivity of clock resources. In the Xilinx FPGA chips, this

limitation is apparent by 16-row wide global lines. The Xilinx FPGA chips divide the

clock regions imposed by the limitation of 16-row global lines. Therefore, the 16-row is a

physical limitation of reconfiguration granularity that is constrained by the routing

structure as well as clock reach-ability. One assumes that usage of local routings within

16-row granularity guarantees its timing closure.

200

6.43.38.1 Virtual Hardware Component

The Virtual Hardware Components (VHCs) are the reconfigurable hardware

modules that are assigned to use multiple sections of homogenous structure in the FPGA.

VHCs are flexible in terms of their sizes, I/O width and algorithms to be implemented.

The reconfiguration of FPGAs is achieved through loading the configuration data

into the appropriately addressed configuration RAM. The configuration data controls

logic functions of Look-Up-Table (LUT) and interconnections among logic, I/O, clock

and memory resources. The organization of uniformly distributed columns allows the

insertion of hardware components independent with placement within the units of 16-row

column. The multiple unit(s) of the configuration data file that defines the units of

homogenous structure in the FPGA can be represented as a Virtual Hardware Component

(VHC). Each VHC consists of a processing element that embeds required functionality

and Virtual I/O that connects with physical BUS macro that is pre-routed. The width of

communication link is determined at the initial stage of the design. Thus, unless the

whole architecture with the different link width is reloaded, the width of communication

link remains a static part of the system. However, the processing element of the VHC can

be reconfigured at run-time by utilizing the addressable uniform hardware resources.

The implementation of partial reconfiguration in the Xilinx Virtex FPGA has the

certain limitation that the addressable unit of configuration is given by the 16-row

column-organized structure.

201

6.43.38.2 Virtual Bus

While the VHCs are independently developed system modules, the virtual bus is

an assembling medium to bridge these components together. Since the virtual bus is not

bounded by area constraints, they can make signals to cross over partial areas that are

occupied by VHCs. The Virtual Bus (VB) utilizes long (or local) lines so that internal

communication among VHCs can be constructed. Unlike the VHCs that are created from

the descriptions of hardware components the VBs are created in technology dependant

hardware level in order to keep static hardware structure over the entire design process.

The VBs are instantiated in the same way as the VHCs in the top level. The VBs are used

as fixed data paths for inter-module communication as well as external IO

communication.

A design method with direct hardware resource bounding is the best way to

construct the VBs because they should guarantee fixed performance. One of the suitable

tools that are available is Xilinx FPGA editor. The FPGA editor is a graphical application

for displaying and configuring FPGAs. Since the structure of the VBs overlaps between

different instances, one can use a fundamental design of a VB to create more complicated

VB structures. A fundamental design of VB is called Macro BUS. Macro BUS has

properties that combine HDL level instantiation with physical level hardware.

Input/Output ports that are declared in HDL level are assigned to the hardware that has

matched parameters for netlist integration.

202

6.43.39 Configuration

Because the reconfiguration system spares a considerable amount of the system

for controlling and executing (re)configuration, it is important to look at the mechanical

and timing aspects of configuration to evaluate its overhead.

6.1.4.1 Configuration interface

Systematic configuration process provides a versatile relationship to system

controllability. It also makes the system configure as quickly as possible when each tick

of clock relates with the system cost in a real-life situation. The parallel mode

configuration for the FPGA is designed so that it satisfies the goal of minimizing cost and

timing issues and is compatible with the interfaces of the available hardware – cache or

VCL. The design aspect of parallel configuration is similar to the memory access control.

The Virtex family of Xilinx FPGAs uses the term SelectMAP for 8-bit, 16-bit and

32-bit parallel configuration modes. The SelectMAP utilizes a bi-directional access port

for reading or writing configuration data of Virtex FPGAs. Several designated pins in the

Xilinx Virtex FPGA are used for configuration. Among them a few pins are the dedicated

control pins that need to be monitored or driven and are listed in Table 6-1

203

The system level architecture using these configuration ports allows configuration

of the RFM. The architecture attempts to minimize the reconfiguration overhead by

increasing configuration speed. The system level components ensure that the bandwidth

allocated by hierarchical structure of configuration memory always provides the

maximum speed of (re)configuration.

6.43.39.2 Configuration chart

The external configuration process needs to follow the configuration chart

illustrated in Figure 6-7.

After successful completion of the configuration’s initial sequences the

configuration data is loaded into the device. Only at this stage the determination of partial

or full configuration is achieved. At the end of loading, the pre-calculated CRC value is

compared with internally generated CRC. Once the CRC values are matched, the startup

sequence is initiated to invoke the operational state.

Table 6-1: Configuration Ports

Name Direction Description
CCLK IN/OUT Configuration Clock
PROGRAM IN Asynchronous Reset
DONE IN/OUT Configration Statue
CS IN Chip Select
WRITE IN Low(write)/High(read)
BUSY OUT Busy/Ready statue
INIT IN/OUT Configuration Error Indication
CDATA IN/OUT Configuration Data

204

Figure 6-7: Configuration Flow Chart

205

6.43.39.3 Configuration steps

The biggest difference between partial configuration and full configuration is in

the bit file structure. The full configuration follows the flow chart that requires a specific

bit file structure shown in Figure 6-8.

First, the initialization is used to prepare the internal configuration circuitry for

loading the configuration frames. Then, it loads the synchronization word to recognize

the word boundaries of 32-bit. From this point, the CRC calculation circuitry is initialized

by reset process. The frame length is loaded followed by asserting the command that

holds the outputs of all CLBs to one (i.e., GHIGH_B command). Then the configuration

options are loaded. After loading all data words, the configuration file sends out the last

frame command. If the calculated CRC matches the given CRC, the device can run into

operational mode.

The differences that partial reconfigurations make from full configurations are: it

has no need for synchronization stage; it does not place GHIGH_B command to halt CLB

operations; the starting address of the frame does not start from the first column, but

starts from the address where the VHC resides. However, both files share the same

overhead that requires for (re)configuration because it follows the same flow in Figure 6-

8. The size of overhead is 1312 bytes. The size of configuration stream depends on the

size of the region that needs to be reconfigured and the overhead that needs to be passed

on the configuration circuitry of FPGAs. Therefore, the smaller VHCs, the faster

reconfiguration.

206

Figure 6-8: Configuration Processing Flow

207

Each step of configuration flow can be considered as either the delay or the

overhead of reconfiguration. When the delay of reconfiguration is assumed to be

negligible, then the (re)configuration time can be estimated as Eq. 6-1

where Tcf indicates the time that takes to (re)configure, cfsize represents the size of

(re)configuration stream in byte, 2-byte or 4-byte and cfspeed indicates the configuration

speed that the interface can achieve. The cfsize counts the overheads that are necessary to

carry the information for configuration steps mentioned in section 6.43.39.3. Depending

on the interface setups – refer to section 6.1.4.1, the byte size of cfsize should be changed.

Moreover, the time that is taken to reconfigure the FPGA also depends on the

characteristics of reconfigurable units that Xilinx FPGA can handle. The Xilinx FPGA

uses the physical reference points such as rows and columns to illustrate its

reconfigurable units.

6.43.39.4 Reconfigurable Units

Figure 6-9 illustrates the column and row address allocation inside XC4VLX160.

One row consists of 16 CLBs vertically. The row of 16-CLB is the smallest unit of

reconfiguration. Since each row can be sized depending on the number of column(s)

attached, the unit of reconfiguration (i.e., reconfiguration granularity) can be modified.

cf size speedT cf cf  6-1

208

6.43.39.5 On-chip assembling of Virtual Hardware Components

There is a hierarchy in the system design that implements the VHCs as the parts

of the system. From the HDL point of view, the system is the layered hierarchical

functions. In the top level of the hierarchy, the VHCs are defined as the instantiated HDL

entities. The defined VHCs declare the port directions and the size of ports. The top level

design also attaches the specific placements that are associated with each module. The

top level design creates a template of the interconnections between components and

external I/Os as well as the placement for each module to finalize the “sketching” of

Figure 6-9: Virtex-4 Family: Allocation of Frames

209

system structure. Once the inclusion of module declaration (i.e., port mapping in HDL) is

finished in the top level, the design can go on implementing details of applications for

each module with inherited placements constraints. As long as the implementation is

compliant with the system limitation and assigned area, active partial reconfiguration

procedure provides placed and routed modules as well as a module-specific bit files.

Once connections to the bus are established and there are no other unrouted lines within

the placement, the design can be used to reconfigure the module. The example of the run-

time partial reconfiguration is given in the following sections.

6.44 Run-time Reconfiguration Example

A simple example of partial data files is generated to give an easy look at the

configuration file structure. The example shown in Figure 6-10 is constructed to use the

partial reconfiguration procedure to reconfigure the different counters for the LED

controller in the FPGA.

Figure 6-10: Schematic of “LED counter” example

210

The system contains two major components in the circuit. The first component is

a static component that does not get changed. The second component is a reconfigurable

component that behaves as one of counters (e.g., upcounter, downcounter, right shifter

and left shifter). The communication links between the static and reconfig_counter are

inserted as the sliced BUS macros that create virtual ports around the boundary of the

reconfigurable region. The details of Hardware Description Language (HDL) files

involving these modules are introduced in Appendix B.

According to the structure of the system, the reconfig_counter should reside in the

constrained area in the FPGA. In this example, the area constraint of reconfig_counter is

given as the white space (e.g., from X112Y31 to X143Y0) in Figure 6-11 to

accommodate the input pins (e.g., clk, button_start, button_stop, reset) that are located in

the centre I/O block and output pins (e.g., LEDs) that are in the right.

Figure 6-11: Device XC4VLX160 Floorplan

211

Because the design is based on modular approach, the partial stream files for the

reconfig_counter should consist of the same amount of configuration information. All the

files contain the same command set that initializes the configuration circuitry without

holding CLB outputs and the data contents that are necessary for parts to be modified.

In order to identify the constraint area of (re)configuration, one should study the

configuration stream files, especially the content of Frame Address Register (FAR) in the

file. The file consists of the FRAME address assignments (0x3000 2001) and frame

address (0x0041 4F00) according to [95]. Table 6-2 shows the bit map of FAR that

assigns the top/bottom bit, Block type, row, column and minor addresses for the data to

be stored. For instance, the 0x0041 52D3 means that it belongs with CLB type of data

and has the row and column address of 0b0010 = 5, 0b00111110 = 62 respectively and

minor address of ob010011 = 19. One CLB column of Virtex-4 FPGA contains 22 frames

and the size of each frame for XC4VLX160 is 1392 bits (41 words) – each word is 32

bits for Virtex FPGA family.

The given frame address, 0x00414F00 in the configuration stream file for the

example indicates that it is the first frame of the 5th row that is in the bottom half and 60th

Table 6-2: Frame Address Fields Register (FAR)

Top/Bottom

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 x

Minor AddressColumn AddressRow AddressBlock Type

Block Type Codes
CLB/IO/CLK 000

RAM Interconnect 001
block RAM content 010
CFG_CLB 011
CFG_BRAM 100

212

column from the left side of the chip according to Table 6-2. It bears the data size of

0x3889. It indicates that the following data covers the area of 353 frames which is

equivalent of 16 columns. The above findings conform with the area constraint inserted

for the design from HDL assembling level referring to section 6.43.39.5, where two

increments of index indicate one CLB column or row.

Therefore, including the overhead (e.g., 500 bytes) cfsize becomes 14598. If the

maximum configuration speed is achieved (e.g., cfspeed = 100MHz in Virtex-4

configuration architecture), it takes 145.98 s to reconfigure the “reconfig_counter” that

is one order smaller than 1.2 ms to configure a full system. Moreover, the stream files can

be compressed further to reduce bits. For example, the “reconfig_counter” file can be

compressed31 to cfsize as 2558 that takes 25.58 s to reconfigure. Furthermore, the

reconfigurable system can reload (or reconfigure) difference between the currently loaded

component with newly deployed one. For example, the system only needs to reload 34

frames to change the functionality of “reconfig_counter” from upcounter to left shift,

which takes 13.94 s to reconfigure compared to 145.98 s.

The above mentioned techniques are the efforts to reduce the size of

reconfigurable files (i.e., VHCs), therefore increasing the opportunity to reconfigure more

components that fits into the timing allowance that each configuration event offers in the

reconfigurable system. The time that takes to reconfigure, Tcf strictly depends on the size

of column(s) involved, where Tcf determines the reconfiguration granularity of the VHCs.

31 The compression ratio depends on the common data words that can be written into multiple slots of
configuration RAM. If the data are different, the ratio of compression would not be high as shown in the
example.

213

The above example illustrates the different ways to create cost-effective

configuration files, how to obtain parametric information regarding VHCs and hardware

details associated with Xilinx Virtex FPGAs for partial reconfiguration. In summary, the

micro-level architecture provides a framework of on-chip assembly which is called static

architecture. The static architecture provides the parametric information such as size,

location and available resources.

6.45 Run-time partial reconfigurable implementation of on-chip multi-stream
processors

The cores of real-time multi-stream video processors are implemented into the

reconfigurable system to give a visual demonstration of partially reconfigurable

processors in real-time using image capture and display devices. This implementation

shows the effectiveness of the proposed reconfigurable system methodologies when it is

deployed for stream data applications.

6.45.1 System Organization

The Reconfigurable Functional Module (RFM) of the reconfigurable system

consists of two groups of cores: static and dynamic. To demonstrate the benefits of the

stream processing system, the real-time video processors were implemented on the RFM.

The static cores are the controllers that interface four major hardware components. The

first component is a VGA interface board utilizing a 4-channel Digital-to-Analog

Converters (DACs). The second component is a camera interface board that controls the

214

camera setting and acquires the video data. The third component is a PC interface that

enables the communication among task memory of PC, configuration cache and internal

configuration of the RFM. The fourth component is the RFM where the dynamic and

static cores reside.

The general organization of hardware in Figure 6-12 illustrates the roles of each

component to fulfill the functions of the platform. The PC interface provides an access

point to bridge between large pool of virtual components (i.e., VHC Library) and

immediate configuration cache and run-time reconfigurable functional hardware (i.e.,

RFM). The Hardware Operating System (HOS) encapsulates the control of a few devices.

It also works as an arbitration mechanism to deal with reconfiguration of the RFM.

Ultimately the HOS needs to include hardware mechanism to access task memory or

cache and analyze the situation to invoke reconfiguration of the RFM autonomously. The

data processing of our implementations on the RFM is uniquely designed to give a

highlight on partial reconfigurability of the platform based on the methodologies

provided in Chapter 5.

The RFM transfers the data with the stream data devices (e.g., stereo camera).

The camera is the input device to the RFM. Conversely, the 4-channel RGB 24-bit DACs

are the output devices that display processed images to the multiple video display

devices. The controllers of these devices are embedded as a part of static core. While the

data acquisition processor (i.e., camera related cores) actively participates to store the

video data onto the data memory, the VGA display processor takes the data from the

memory to portrait the images into the display devices. The steps of the video processing

takes:

215

1. The raw data is captured from the camera and then stored into the

memory;

2. The raw video data is fetched out from the memory and fed into multiple

video processing units;

3. Processed outputs of each unit are transferred to the VGA devices for

displaying different processing results.

Figure 6-12: Hardware Organization

216

6.45.2 Multi-task Adaptive Reconfigurable System Platform

The Multi-task Adaptive Reconfigurable System (MARS) platform allows

designers to explore various embedded reconfigurable system architectures where

massive parallel computation is inevitable and is equipped with various configuration

capabilities to determine their benefits depending on computation requirements. The

platform consists of the followings:

 Xilinx Virtex-4 LX 160 FPGA with 4-lookup table 150K logic cells;

 Xilinx CPLD (i.e., Configuration Stream Loader) with 4 banks of 8-Mbyte

FLASH memory with 64-bit parallel architecture for supporting fast

FPGA configuration;

 Two banks of 72 Mega bits of Flow Through Synchronous Random

Access Memory at 200MHz with 16-bit data interface;

 Two banks of 512 Mega Bytes Double Data Rate Synchronous Dynamic

Random Access Memory at 166MHz with 32-bit data interface;

 4 SVGA DB-15 connectors supported by Digital to Analog Converters

(DAC) with 80 MHz conversion rate;

 2 Gigabit serial transceivers;

 4-bit 4-bank LVDS transceivers at 200 MHz data rate;

 64-bit compliant VME BUS connection at 66MHz data rate;

 Microchip microcontroller to create USB/serial to CPLD/FPGA

communication.

A block diagram of the MARS platform is shown in Figure 6-13.

217

The Xilinx Virtex-4 LX FPGA used in the platform is the result of Xilinx’s

Advanced Silicon Modular Block (ASMBL) initiatives where the families of FPGAs are

manufactured with the target applications in mind. Because LX family provides more

homogeneous logics than other families of FPGAs, the largest LX FPGA, XC4V160LX

is chosen to be used at the time of manufacturing of the platform. The XC4V160LX

contains 152064 logic cells, 67584 slices, 1056 kb distributed RAM, 96 XtremeDSP

slices, 5184 Kb Block RAMs and 12 Digital Clock Managers. The picture of the MARS

platform is given in Figure 6-14.

Figure 6-13: Block diagram of MARS platform

218

Because of the VME BUS connector that is available in the platform, the FPGAs

can be aggregated to process much more complex functionality than one FPGA can

handle as shown in Figure 6-15.

Figure 6-14: MARS platform

Figure 6-15: An illustration of aggregated operation of MARS platforms

219

6.45.2.1 Stereo camera board

The environment of real-time and stream applications is well described by the

data sequence of the visual capture module as shown in Figure 6-16.

Inspired by recent interests in stereo processing for distance calculation and object

tracking of autonomous satellite tracking system, the visual capture module is equipped

by two cameras that produce an effective stereo vision by processing the pixels. The

Stereo Camera Module (SCM) generally needs to have a glue logic (or processor) that

combines (or interleaves) the data. The micro-controller provides the camera setting

control via USB interface connecting to PC executed GUI software. The SCM consists

of:

 Two CMOS color cameras;

Figure 6-16: Stereo Camera Module

220

 Xilinx CPLD as data interleave and glue logic for microcontroller, LVDS and

camera modules;

 LVDS transceiver at running at 96MHz;

 USB controller and microcontroller for camera setting control.

While the camera data processing with 30fps can be dealt with general processors,

the processing of camera data exceeding 100fps becomes challenging depending on what

functionality that image processing requires. Moreover, the nature of stereo vision

processing requires two cameras work synchronously. When the cameras are in operation

by its internal control, then the system can not be synchronized. Therefore, there is a need

to control the cameras from the processor’s point of view. To reserve the space for the

camera controller, an FPGA is deployed instead of CPLD as used in Figure 6-16. To

fulfill the above requirements, a new version of the SCM is constructed as shown in

Figure 6-17.

Figure 6-17: New Stereo Capture Module

221

The data lines are expanded to accommodate the increased speed of camera

modules which demands two LVDS implementation. The evolution of the camera

modules reveals where the focus of the reconfigurable system should be.

6.45.3 Identifying a multi-thread and multi-mode workload

The system requires outlining the interfaces between the system and the

environment. The system involves taking visual data from two cameras, processing them

and producing processed data as outputs. As long as the environment is concerned, there

are several terminators (e.g., clock, stereo-camera and multiple display devices) as shown

in Figure 6-18.

There can be three applications that require different micro-network as shown in

Figure 6-19 .

Figure 6-18: Context diagram: Level 0

222

One application (i.e., f2) is the minimal approach, “live video” that acquires the

data set (e.g., controlled slave camera with 60 fps) that can be only seen by display

device (VGA 60 fps). But because of lack of temporal data, complex processing can not

be achieved.

The second application (i.e., f1) provides more flexibility in term of processing.

Due to the bandwidth difference between input device and output device the store works

as the frame buffer. The third application (i.e., f3) is where artificial data is created to be

displayed on the display devices based on the clock signal.

Figure 6-19: Context diagram: Level 1

223

Associating memory and its controller as shown in Figure 6-20 result static tasks

(or isolated tools in the level 2) from the leveled tool diagram view32. The isolated tools

in the level 2 are only associated with a particular value of configuration event, e1 that f1

associates with. The bubbles in the level 2 reveal not only the relationship with the

configuration events but also hardware arrangement that the system needs to

accommodate as shown in Figure 6-20. Some of hardware arrangements are discussed in

the following.

f1.1 or f2.1 is the camera controller that acquires the data from the stereo camera. In

case of f1.1 the camera controller can accommodate either master or slave mode camera

because the speed of camera just needs to be faster than one of display device, where the

32 Refer to section 5.7.

Figure 6-20: Context diagram: Level 2

224

camera controller, f2.1 can only work in slave mode to synchronize with display devices.

The memory controller, f1.2 should take care of three way communication among camera

data, memory and image processors. Because the memory device is not dual ported, f1.2

needs to sit in the center of communication to arbitrate its access. However, the speed of

f2.1 should match exactly with one of threee display devices. Due to the particularity of its

role that oversees other components, f1.2 provides auxiliary outputs (e.g., vertical and

horizontal control signals) to synchronize the display devices.

The workload can be decomposed further as shown in Figure 6-21.

Figure 6-21: Context diagram: Level 3

225

f3 is not displayed in the context diagram for level 3. Because its outputs are

indivisible33 from its functionality point of view, the functionality of f3 can not be

decomposed further. Each bubble of the context diagram can have further applications,

tasks and modes depending on the functionality that each node assigns with.

However, because of difficulties associated with establishing the micro-network

interwoven with functional cores of the hardware components, one stops decomposing

the context diagram further and focuses on finding a reconfiguration granularity.

6.45.4 Constructing a static architecture

Many systems are expected to deliver the performance that is required to deal

with fixed input/output(s) of the system. It is the situation of many embedded systems

that are developed for a specific application. However, because of the flexibility of the

reconfigurable system, the implementation can look at the problem from a different point

of view. The reconfigurable system can provide a scalable functionality to adapt to the

changing environment or control the performance of terminal devices in order to provide

an adaptable solution.

Extending with the previous implementation, one looks at how performance can

be adapted. According to the decision tree given in Figure 5-17, f1, f2 and f3 are

applications that result in various functionalities implemented in different temporal

domain as shown in Figure 6-22.

33 Refer to section 5.7

226

Some tasks in the level 2 are found to be isolated tools as they represent the

specific hardware arrangement that is the device controller or driver. In the level 3, each

VGA output requires a particular image processing. Hence, it assigns the designated areas

Figure 6-22: Leveled tool diagram

227

for each VGA output. Each thread of VGA output can be composed of many complex

applications, tasks and modes. Before exploring what functionality can be implemented

inside the threads of each VGA driver, let us examine what criteria affects the area that

these functionalities can be implemented with.

According to the Eq. 5-7, the area of thread can be calculated. Then, the task that

consists of multiple threads would occupy the sum of these areas. The area should be

equal to the area engaged by image processors shown in Figure 6-24. Because the area

designated for Ts1.3, Ts2.3 and Ts3.2 covers 6-row and 80-column, the time to reconfigure

the area is equivalent to 4.33ms34. Any functionality changes happen within the area can

be programmed by partial reconfiguration. The input terminal devices can increase data

acquisition, which in turn increases the system performance, as long as its timing

allowance lies within 4.33ms that is very close to the frame rate of 200fps camera (i.e.,

5ms). However, due to the practical reasons such as the contention of latchups, short

circuits during dynamic reconfiguration, the empty configuration stream file needs to be

loaded first. This takes, in the worst case, two times longer to configure. An empty

configuration file resets the states of all CLBs in the region to a default value. Therefore,

the region that is occupied by image processors requires 8.66ms to reconfigure its

functionality as a whole. The frame rate of camera can only go up to 115 frames per

second (fps).

Considering that there are four independent threads that exist in the region, the

area needs to be divided further, where each thread still deals with the same data

34 It is assumed that the configuration is performed at 100MHz speed with 32-bit SelectMAP interface.

228

structure of a frame. There is no difference for the time that it takes to process a frame.

Therefore the same timing allowance (i.e., configuration time) is imposed on

reconfiguring the functionality of each thread. As the area that reconfiguration deals with

is decreased by four, TsArea , the deadline of configuration events,  kd e   stays the

same based on Eq. 5-6.

Moreover, there is processing of data that deals with a smaller unit than a frame.

For instance, the MPEG-4 encoding schemes utilizes the functional module that is based

on 8 × 8 pixel matrix that is called macro block. In a MPEG-4 standard that

accommodates the frame rate of 30 fps with 640 × 480 resolution of visual data, the

macro block requires 8 pixels of data rate, 0.87s. Considering that an island style of a

reconfigurable tile (i.e., a 16-row of column) takes 9.02s35 the MPEG-4 encoding can

not be dynamically reconfigured using the data structure of 8 pixels. The encoding

scheme needs to be modified at the system level to accommodate a bigger data structure

that gives a bigger area to implement the functionality of MPEG-4 encoding.

Processing of images such as edge detections, transformation, image enhancing

techniques requires smaller area of changes (e.g., a number of frames) between its modes

of operations, where timing allowance is relatively large. More analysis of

reconfiguration time and data structure is presented in Chapter 7.

In the implementation of threads, one considers the implementation of image

processors. Because of dependant operations occurring in the image processor, it

becomes redundant to separate their operations into smaller tasks. Any variation that

35 MPEG-4 encoding blocks would require more than one column of 16-row CLBs.

229

results due to the changes of image processing core is classified to be modes of the tasks

that are equivalent with threads. In the subsequent levels, the tasks, Ts1.3 and Ts2.3 are

represented as shown in Figure 6-23.

Incorporating I/O constraints of the system, the initial conceptual assembly

diagram can be achieved as Figure 6-24.

Figure 6-23: A portion of the leveled tool diagram for Ts1.3

230

Figure 6-24: Conceptual assembly: Level 2

231

The first conceptual assembly in Figure 6-24 illustrates the organization of f1.1,

f1.2, and f1.3 in the level 2 of the context diagram, namely camera controller, memory

controller and image processors. Then the second one represents f2.1 and f2.2. Because the

camera controller does not have any requirement of interface with memory, it can be

placed left or right side of the chip. The third one shows image generator controlled by

VGA driver. The placement of VGA driver is confined by I/O ports that connect to the

RGB ports of video display devices.

As it may been seen, there are many possible ways to assemble the components.

However, considering I/O constraints and possible signal routing complications that rise

by placing components (e.g., controllers) far from its I/O ports, the conceptual assemblies

shown in Figure 6-24 seem reasonable. In other words, in order to minimize the long

routing lines between components, the components should be located right beside each

other where it is possible.

Referring to the information available from Figure 6-21 and Figure 6-23, a static

architecture can be identified.

6.45.5 The procedure of on-chip assembly

In this implementation, each image processor has the direct connection to a

Digital to Analog Converter (DAC) that outputs red, green and blue 8-bit pixel data. In

return, each module requires VSYNC and HSYNC signal to synchronize with VGA

display devices and 32-bit signal to import camera data. Figure 6-25 illustrates the

connections that are populated by module called “inst_video_processor_v1”. They are

232

two synch signals, R, G and B 8-bit data and 16-bit wide camera data port available for

each of image processors. The placement of signal ports, width, protocol and available

resources that are used for communication are all subject to be parameters for the

selection of VHCs.

The area occupied by image processor coincides with 16-row island style

reconfigurable unit. Because there is a need for 2 units of Block RAM (BRAM) for each

video processor, the modules can be placed either at the right or at the left side of the chip

where the BRAMs are located in a column-wise manner. The full implementation shown

in Figure 6-26 shows the placements of Ts1.3.1.1, Ts1.3.1.2, Ts1.3.1.3, Ts1.3.1.4 with respect to

Xilinx Virtex-4 LX 160 device.

Figure 6-25: An illustration of inst_video_processor_v1

233

Figure 6-26: An implementation with e1=1, e2=1, e3=1, e4=1, e5=1

234

The precondition of the design is e1=1 which allows reconfiguration of the tasks,

Ts1.3.1.X
36

. The size of tasks varies depending on how many logics are required by its

functionalities. However, the allocated area should be the same as the biggest area needed

by the functions. Because there is no further thread(s) or task(s) exists under the “image

processor” modules, there is no need to create the static architecture for the area that are

designated under those functions. The static architecture in this application becomes

everything but “image processor” modules. The shape or configuration of static

architecture greatly depends on the location and the way how interconnects are

established one another. The modes of the tasks (e.g., image processors) should provide

the same interface and protocol that the static architecture employs where the complexity

of the functionality can be increased or reduced within the area given for the module.

The on-chip assembly of a reconfiguration system is the result of system

organization that divides micro and component level architecture while the system level

supports the (re)configuration procedures. The procedure of on-chip assembly is:

 Acknowledge configuration events and reconfigure the static architecture

if needed;

 Identify the given parameters for reconfiguration and search for the

functionality to be loaded in;

 Modify the header of configuration stream file(s);

 Load an empty configuration file for the area(s) if the initial state of

registers can lead to misrepresentation of functionality;

36 Subscribed X indicates that there are the multiple values of possible numbers. For example, Ts1.3.1.1,
Ts2.3.1.1, Ts3.3.1.1, Ts4.3.1.1 for TsX.3.1.1

235

 Load a specific VHC(s).

Overall, the HOS that acknowledges the incoming configuration events can create a

specific VHC as the detailed parametric information is discovered going through the

design steps. The detailed procedure of the configuration as well as the information about

hardware structure provides a way to partially reconfigure the programmable platform.

6.46 Summary

Because the intention of the experimental implementation is to show the

feasibility of on-chip system assembly based on the commercially available FPGA

architecture (e.g., Xilinx Virtex-4 architecture), this chapter outlines the system

organization of the implementation platform called Multi-task Adaptive Reconfigurable

System (MARS) from its system level to component level architecture.

This chapter also shows the procedural steps needed for run-time reconfiguration

to be achieved. The general run-time reconfiguration example, “led counter”, illustrates

the details of configuration streams that are important to construct the specific

reconfigurable VHCs for on-chip assembly.

The Stereo camera board and SVGA display devices that produce and require

real-time and stream data is attached to the MARS platform to create the environment

that the reconfigurable system can become more cost-effective. The proposed

reconfigurable system design methodologies are applied for the workload to figure out

what components are needed to support run-time reconfiguration and what information is

236

needed to create Virtual Hardware Components (VHCs) so that a suitable reconfiguration

granularity that results in an optimal static architecture can be employed.

The following chapter will analyze the results of the implementation in details to

figure out what structure of applications, architectures and granularity can make the

reconfigurable system more cost-effective.

 237

Chapter 7

Analysis of Results

This chapter investigates the results of the multiple image processing cores of

stereo camera data on the MARS platform based on a set of metrics which include

resource utilization, reconfiguration granularity, scalability and power consumption. All

of the metrics affect the cost-effectiveness of the reconfigurable system either by

accommodating more powerful application or by reducing system costs when they are

adjusted correctly.

7.1 Analysis of Cost-effectiveness

The main motivation of the proposed architecture synthesis methodology is the

cost-effectiveness of the reconfigurable system. The easiest way to measure the cost-

effectiveness is the amount of silicon used to implement the intended functions. Using the

assumptions given for the analysis in section 5.5, the estimation of the silicon costs can

be obtained. However, to make the cost analysis clearer, the cost comparison between

fixed and reconfigurable hardware is substituted with implementation of the intended

workload in a presumably non-reconfigurable FPGA and run-time reconfigurable FPGA

respectively. According to the cost analysis given in section 5.5, the multitude of tasks

238

needs to be in the range of 10s to 100s37. The cost analysis of the implementation in

section 6.3 (with 14 modes) is used as the basis of explaining the cost benefits of many

complex systems (with 10s to 100s reconfigurable functions), namely multi-task and

multi-mode reconfigurable system.

The silicon cost for a non-reconfigurable implementation is the silicon usage that

is required by multiplexing all the functions that are presented in section 6.3. It consists

of three applications that exist in different times. Depending on the applications, there

are changes to be made. Due to non-reconfigurability, the changes require the system to

reconfigure as a whole. Yet, when they are implemented as multiplexed functionalities on

a chip, only a portion of hardware contributes to the functionality of the system at a time.

Note that the results analyzed in this chapter can be greatly different depending on how

the functionalities are described in HDL and synthesized into RTL and assigned with

technology-level components.

Nonetheless, the question for silicon cost comes down to whether each application

in a run-time reconfigurable FPGA requires bigger or smaller silicon area than the

multiplexed applications in a non-reconfigurable FPGA. In order to do the analysis, we

need to find the leaves of Figure 6-22. Each leaf (i.e., task) should be big enough to

accommodate all of its modes. For the implementation on a run-time reconfigurable

FPGA, the required number of 4-input Look Up Tables (LUTs) for each mode is obtained

as shown in Table 7-1.

37 Referring to the silicon analysis obtained in section 5.5.1.

239

Each mode can be potentially applied to any video processor designated for the

outputs of VGA1, VGA2, VGA3 and VGA4. If one accounts for left and right of the

stereo camera, the number of modes that each video processor can have is 14.

In order to implement these modes in a run-time reconfigurable FPGA, a fixed

area needs to be designated. Considering many aspects of reconfiguration such as:

 the number of available LUTs;

 the number of RAM, FIFO or DSP (heterogeneous) blocks involved;

 the area required by local routings including ones by heterogeneous

blocks;

 the minimum reconfigurable units (i.e., 16-row columns);

 the boarder area that is sufficient enough to plug in all required interface

signals – Macro Blocks (e.g., sync, camera data and VGA Red, Blue and

Green signals),

the designated silicon space accommodates all the modes and is chosen to be 8 columns

of a 16-row reconfigurable unit because of the maximum number of logics needed and

the local routings which are associated with them. The number of LUTs available within

Table 7-1: The list of video processing modes for a camera

Mode 4-input LUTs RAMB16 4-input LUTs RAMB16

Camera Display 172 2 33.6% 50.0%

Normal Edge 177 2 34.6% 50.0%

Inverse Edge 174 2 34.0% 50.0%

PingPong Edge 341 2 66.6% 50.0%

Color Intensity (Red) 102 2 19.9% 50.0%

Color Intensity (Green) 102 2 19.9% 50.0%

Color Intensity (Blue) 102 2 19.9% 50.0%

Required Resource Resource Utilization

240

the unit is 512 which produce the results of the resource utilization given in Table 7-1.

Figure 7-1 illustrates the examples of these modes that occupy the same designated area

of Virtex-4 LX 160 FPGA as shown in Figure 6-25. Figure 7-1 shows the images of

physical FPGA logic and routing structure along with visual output of these

functionalities. The variation in logic utilization depending on the mode of the tasks can

be observed by placed logics and routed wires on the left hand side of Figure 7-1.

The overall resource utilization (i.e., utilizations) of modes is 32.6% for the reconfigurable

design.

The common area (i.e., commonA) that is shared by the modes of functions is

obtained by taking the difference between the area needed for combining all

functionalities in a non-reconfigurable FPGA and the area needed for all functions in a

reconfigurable FPGA. The combined functionality can be created by putting all functions

in hardware. The total number of logics required to combine all modes for the tasks (e.g.,

TsX.2.3.X,) in hardware is found to be 7866 4-input LUTs. The total number of logics, 9360

is calculated by adding all the areas needed for each mode of the functions. commonA can

be extracted by calculating the difference between these two values. Thus, commonA is

found to be 16%.

241

Figure 7-1: Examples of modes in FPGA implementation vs. visual display

242

For the implementation in a non-reconfigurable FPGA, the controller is

developed to multiplex the modes of the functions based on the configuration events that

are triggered by the environment. The number of logics required by the controller is

referred as the multiplexer overhead, multiplexerov . The multiplexerov is found to be 17% based

on the 4-input LUTs used for the controller which sum up to be 1336 when there are 14

modes possible.

In conclusion, the silicon cost of a non-reconfigurable FPGA for the multi-task

and multi-mode video processor implementation, fixedsc is found to be 9202 4-input

LUTs, while the silicon cost of the same implementation, reconfiguredsc in a run-time

reconfigurable FPGA is given as 2480 4-input LUTs. The visual comparison of the

silicon costs between the reconfigurable design and the fixed design that implements

exactly the same functionalities is shown in Figure 7-2.

243

The silicon costs required by the fixed design is represented by the number of

logics required by the implementing all modes of the functions in hardware as shown in

b) of Figure 7-2. Without even counting the routings that are occupied by multiplexing,

the logic difference accounts for 73% of hardware compared to the fixed approach (i.e.,

ASIC).

Today38 Xilinx Virtex-4 LX160 FPGA costs $4,286.6700 where the FPGA with

75% less logic in the same family (i.e., XC4VLX40) costs $609.3300. The cost of service

hardware, $69.96 that enables run-time reconfiguration, is two magnitudes smaller than

38 The prices are available from http://avnetexpress.avnet.com on January, 20, 2009

Figure 7-2: A visual comparison of the fixed design and the reconfigurable design

244

the cost difference, $3677.34, that can be made by reconfigurable design as shown in

Table 7-2. Let us assume that the reconfiguration overhead, reconfigurationov is 10% of the

reconfigurable hardware.

It seems that as the number of modes or reconfigurable functions increases, the

more savings can be made. Based on the real values found for the implementation of

video processors, let us evaluate how cost-effective the implementation becomes

depending on the number of modes of the functions. The equations in section 5.5.1

employ the ratio of reconfigurable functions to express the application’s multi-

functionality. Yet in this chapter the equations are reformulated to use the number of

modes for the multi-functionality. First the silicon cost for the fixed hardware, fixedsc is

given in Eq. 7.1.

where N is the number of reconfigurable functions and n is the average of the number

of modes available for each function. The function,  multiplexerov x represents the amount

of overhead required by the number of functions and is formulated by curve fitting with

the real data that are extracted from the implementation. The function appears to be a

quadratic polynomial with   24.188 15.5 173multiplexerov x x x   where 2x  in term of

Table 7-2: Costs for run-time reconfiguration service hardware

Function Description Part number Unit Price

Program Loader Xilinx Spartan-3 FPGA 1 milion gates XC3S1000 $62.10
VHC memory Micron Flash memory 2Gbit MT29F2G16 $7.86

   (1) []fixed common LUT multiplexersc N n A c ov N n LUT     7.1

245

4-input LUTs. In order to get the output of fixedsc in terms of 4-input LUTs, the

conversion constant for LUT, LUTc = 157.3 is used. 39.

Conversely, the silicon cost for reconfigurable hardware, reconfiguredsc is articulated

as Eq. 7.2.

where reconfigurationov is assumed to be 10% owing to the observations in Table 7-2. For

Eq. 7.1 and Eq. 7.2, the static functions of the system are excluded from the silicon cost

calculation. Figure 7-3 plots the silicon saving versus the silicon cost that can be made on

the multi-task and multi-mode video processor implementation.

As the number of modes increases, the reconfigurable design utilizes the smaller

area of a device. If you combine both trends shown in Figure 7-3, it indicates that the

linear increase of silicon savings results in quadratic savings where in real life the

39 Refer to the Appendix B.

[]reconfigured LUT reconfigurationsc N c ov LUT   7.2

Figure 7-3: Silicon saving vs. Silicon cost

246

designers spend less money to purchase small devices. In other words, the designers are

expected to spend more money than the rate that the number of modes increases.

7.2 Estimation of Configuration Granularity

The full reconfiguration requires 4926Kbytes to be loaded in. With the 32-bit

SelectMAP at 100MHz, it will take 12.31ms. If each application is the function that

needs to be changed within the unit of the output device (e.g., one VGA frame – 30

frames per second), it should be able to accommodate the reconfiguration of all the

applications.

In short, the full configuration can be conducted to produce the different

functionality, if the loss of a frame that is less than 81fps can be tolerated. One of 56

modes can be loaded in to reconfigure the functionality of all functions. One of these

functionalities is shown in Figure 7-4.

247

However, full reconfiguration requires all parts of the system to be halted. As a

result, there will be no output in any part of the system. All VGA outputs should be

halted even though change in only one functionality may be required.

Therefore, if the system desires to continue its operations while there is change(s)

of functionality, then a full configuration is not applicable. From the synthesis of

functionalities, one finds that there is a need for 512 4-input LUTs. It is equivalent to a

16-row 8-column of reconfigurable logics. The size of the configuration file contains

Figure 7-4: An example of full configuration for a mode of functions

248

232,224 bits of information. Hence, it takes 72.57µs to reconfigure a function at

100MHz with 32-bit SelectMAP.

If the system’s goal is to produce the visual output of stereo camera for

continuous display, the output data should not be disturbed by any change required for

functionalities. Timing allowance (or deadline) must be smaller than the duration of data

unit that the function deals with. The following table, Table 7-3 summarizes the different

data units.

Additionally there are periods that do not produce any output in VGA standards.

They are called:

 Vertical Blank (e.g., 64µs)

 Vertical Front Guard (e.g., 1.02ms)

 Vertical Rear Guard (e.g., 0.35ms)

 Horizontal Blank (e.g., 3.77µs)

 Horizontal Front Guard (e.g., 1.89 µs)

 Horizontal Rear Guard (e.g., 0.94 µs)

Because the data should be continuously valid, the reconfiguration of functionality for the

multi-task and multi-mode video processor can not be interleaved in between the data

units. Interleaving the reconfiguration between the outputs of data can be successfully

Table 7-3: Different data units at 30 fps with 640×480 resolution

Data Unit Duration Example

Pixel 22.6ns color intensity
Lines multiples of 14.4us Stereo rectification

Macro block multiples of 42.4us MPEG-2 and 4 JPEG
Frame 33.3ms Object identification

249

achieved in other applications where the valid outputs need to be available at times but

not all times.

The reconfiguration of a task takes 72.57µs. That is longer than any horizontal

periods available (e.g., 72.57 µs > 3.77+1.89+0.94 µs). Thus, the reconfiguration of a

task can only be realized at the data unit of a frame where the periods (e.g., vertical blank,

front guard and rear guard) are larger than the time that takes to reconfigure the task(s).

At the same time, it allows the possibility of implementing much more complex

functionality. For instance, the allowance time (e.g., 1,414 µs) can reconfigure the area

up to 32-row 78 columns (or 48-row 52 columns) that is 19.5 times larger in functionality

than the currently allocated silicon space, 16-row 8 columns. The equation states that the

reconfiguration time that is required by the reconfigurable components,

   i jarea Md area Lk      should not exceed the shortest deadline,  kd e   where the

configuration events are invoked between data units.

7.3 Scalability

Another advantage of the reconfigurable design is its ability to adapt. In many

cases, the deadline of the application can be scaled up or down depending on the

performance of input/output devices that the system interfaces with. In other words, there

can be dynamic requests from input/output terminal(s) to change its performance,

therefore changing its interface, not physically, but temporally. The temporal processing,

as long as it utilizes the same datapaths, can be achieved within the same reconfigurable

area.

250

In our implementation, the scalability of input/output devices is demonstrated by

adapting a new Stereo Capture Module (SCM) shown in Figure 6-17. The new SCM is

capable of providing the frame rate up to 200 fps. Since all of the Virtual Hardware

Components (VHCs) implemented for the tasks of “video processor”, can work with the

frequency that supports the frame rate up to  500 fps, there is virtually no change

required for the VHCs to support a faster or slower input/output performance.

Since the reconfiguration time required for a reconfigurable video processor is

known as 72.57 µs, the frame rate of a camera (or VGA display) device can theoretically

scale up to 1169 fps. However, considering the changes required for the static task(s)

(e.g., camera controller) and the possibilities of reconfiguring all 4 tasks at the same time,

the maximum frame rate that the implementation of reconfigurable design can support is

146.125 fps. If the desired video processing is faster than the frame rate of 146.125 fps,

the video processing tasks should be scaled down in order to be fitted in the area for

which reconfiguration is still possible.

7.4 Analysis of Power Consumption

In order to tell the power benefits that the reconfiguration brings, it is necessary to

obtain the power consumption of individual video processors that are located in a specific

location in the FPGA (i.e., XC4V160LX). One way to find the power consumption of

these components is by direct measurement. Table 7-4 shows the measurements based on

the given description.

251

Due to the integration of power supply for all hardware components in the MARS

platform, it is not possible to find out what percentage of power is consumed by the

reconfigurable device (i.e., FPGA) from the measurements. However, it is possible to

extract the power consumption that is caused by each individual function from Table 7-4.

Comparing each mode of functionality with the power measurements of all blank

functionality, the following information can be generated as shown in Table 7-5.

Table 7-4: Power measurement for reconfigurable multi-video processor implementation

VP1 VP2 VP3 VP4

blank blank blank blank 964 5 4820

Normal edge
+ pingpong

(c1)
blank blank blank 966 5 4830

Normal edge
(c1)

blank blank blank 967 5 4835

Inverse edge
(c1)

blank blank blank 967 5 4835

blank blank blank
Normal edge
+ pingpong

(c2)
965 5 4825

blank blank blank
Normal edge

(c2)
967 5 4835

blank blank blank
Inverse edge

(c2)
966 5 4830

Normal edge
(c1)

Normal display
(c1)

Normal
display (c2)

Color intensity
(c2)

972 5 4860

Inverse edge
(c1)

Normal display
(c1)

Normal
display (c2)

Color intensity
(c2)

972 5 4860

1109 5 5545

Power
[mW]

Fixed application with all the modes

Description Current
[mA]

Supply
Voltage

[V]

252

Real-life systems would deal with the applications of higher logic utilization and

faster frequency which demands higher power than the experimental results obtained in

Table 7-5. Nonetheless, the power difference obtained between fixed and reconfigurable

designs shows the fundamental difference due to the logical utilization.

In order to find out how much power is saved by reconfigurable design, the total

power consumption of a reconfigurable design needs to be obtained. The power

consumed by FPGAs can be broken down into two components, dynamic and static

(quiescent) power. The dynamic power consumption of a digital design is a function

related to the supply voltage, capacitance and switching activity [96]. For FPGAs, the

power consumption is also dependent on the amount of time the resource is being utilized.

Eq. 7.3 shows the FPGA power can be modeled as a function of capacitance Ci, voltage

swing, Vi, and operating frequency activity f for resource i according to [97].

Eq. 7.3 makes the designer pay attention to three factors: effective capacitance;

resource utilization and switching activity. The power consumed by video processor

modules was estimated using XPower, which is a utility available from Xilinx to estimate

Table 7-5: Power consumption of VHCs in operation.

Description Power [mW]

VP1 (normal edge + pingpong) 10
VP1 (normal edge) 15
VP1 (inverse edge) 15
VP4 (normal edge + pingpong) 5
VP4 (normal edge) 15
VP4 (inverse edge) 10

Average power difference between
fixed and reconfigurable

685

ii
i

i fVCP 2 7.3

253

power using Eq. 7.3. XPower uses gate level simulations of the design to estimate the

average switching activity of the resources and power consumption over time. The

simulation allows XPower to estimate the dynamic power consumption associated with

utilized resources and their effective capacitance. However, XPower does not model

routings as the resources that consume power. The method adapted by [97] would model

the power consumption more accurately because of deep submicron effects and multi-

functionality of the target applications. The analysis using XPower can not measure

precise difference. However, it would still show the difference in power consumption.

The average power consumption for a mode of the tasks is shown in Table 7-6.

Unused elements found on the FPGA can have a base rate of power consumption

identified by the static power as shown in Table 7-5. Thus, the power consumption of the

fixed design with multiplexed functions would cost more power to keep them in

hardware even when they are not in use. The fixed system only utilizes one mode at a

time that is the same as the functions of reconfigurable system given in Table 7-6. The

power consumption of the fixed design is given in Table 7-7

Table 7-6: Reconfigurable design power consumption

Component Name Value [W] Used Utilizatoin [%]
BRAMs 6 2.1
Clocks 0.08066 1
DCMs 0.02891 1 8.3

IOs 0.21188 209 27.1
Logic 1572 1.2

Signals 0.00225 2235

Total Quiescent Power 1.26697

Total Dynamic Power 0.29625

Total Power 1.56323

254

The cost benefits (e.g., 29.8% for multi-vide processor implementation) of power

consumption of the reconfigurable system (e.g., 1563 mW) compared to the fixed system

(e.g., 2030 mW) are due to mainly its lower resource utilization in the temporal domain.

All results related-documents are listed in Appendix C.

7.5 Summary

The multi-task and multi-mode reconfigurable system has many advantages of

savings compared to the fixed systems. However, the quantitative analysis of these cost

matrixes is a difficult task because there are many factors to be considered. In this chapter,

the results were obtained through quantitative analysis of multi video processor

implementation in a fixed and reconfigurable system. Such result is that the

reconfigurable system can quadratically reduce the system cost as you reduce the area

utilized by modes of the tasks (e.g., 75% area saving results in $3677.34 when the cost of

the reconfigurable device is $609.33). Another is that the power used by the multiplexers

and multiplexed functions in a fixed design costs 29.8% more power than the

Table 7-7: Fixed design power consumption

Component Name Value [W] Used Utilizatoin [%]
BRAMs 0.40229 88 30.6
Clocks 0.33895 1
DCMs 0.06037 1 8.3

IOs 0.02192 216 28
Logic 0.00015 10042 7.4

Signals 0.00222 14983

Total Quiescent Power 1.33895

Total Dynamic Power 0.6913

Total Power 2.03025

255

reconfigurable designs. The reconfigurable granularity and scalability is part of a design

process that requires the designer’s attention to make the reconfigurable system more

optimized in terms of their performance and flexibility.

 256

Chapter 8

Conclusions

The fast changing market trends, the ever increasing logic density and the recent

surge of multi-functional applications have been challenging the effectiveness of

conventional computing approaches. Using the run-time reconfigurability, the

reconfigurable system can adapt its internal structure and behaviour in response to a

dynamic environment. A new architecture synthesis methodology for reconfigurable

systems is necessary to construct cost-effective reconfigurable architecture that is more

competitive than conventional computing approaches. In this thesis one accomplishes:

 A new architecture synthesis methodology that reflects the specifications of a

multi-task and multi-mode workload into the physical structure of a

programmable device;

 A novel system-level architecture that dynamically changes its functionality

while keeping the structure of essential communication;

 A novel reconfiguration granularity that results in optimal static architecture;

 A new design procedure that enables on-chip self-assembly of a

reconfigurable system.

In order to demonstrate the benefits of the above features, the Multi-task Adaptive

Reconfigurable System (MARS) platform is manufactured with a reconfigurable

functional module, a cache for reconfigurable components, a virtual component library

and a hardware operating system. The cost analysis of the MARS platform reveals the

257

advantages of the proposed architecture synthesis methodology compared to fixed design

approach (e.g., 73% area saving, 29.8% power saving and 19.5 times functional

scalability). This thesis shows that reconfigurable system increases its cost-effectiveness

when the proposed design methodology is applied to a multi-task and multi-mode

workload.

The cost-effective implementation of reconfigurable computing is enabled by an

interesting concept – virtualization of processing resources. However, in our

implementation, the experiments are implemented on the fixed size of processing

resources depending on the reconfiguration granularity. The proposed architecture

synthesis methodology does not optimize the area of micro-level components (i.e.,

VHCs). To fully realize the potential of run-time reconfigurable systems, the

virtualization of processing resources should be decoupled from its physical constraints.

Hence, the system should be able to take any shape or form to represent a lively aspect of

current requirements. In order to achieve the above potential, the future of the

reconfigurable system requires the implementation of a complex and intelligent Hardware

Operating System (HOS) that is capable of creating, relocating and (re)loading arbitrarily

shaped VHCs autonomously. The full implementation of the HOS also should enable

self-restorable reconfigurable system methodologies that can relocate VHCs and adapt

static and network level architecture due to error(s).

With the support of fast configuration mechanism and full implementation of a

virtual hardware library and a cache, the reconfigurable system can take the advantages

of cost savings that the run-time reconfiguration provides and can offer the services that

computation-intensive and high performance applications require.

 258

 259

Bibliography

 1. Young-Oak Kim, “Oullim Syncacophony”, In ICOGRADA Millennium Congress,
Keynote Speech, Seoul, Korea, 2000.

 2. Henry Petroski, The Evolution of Useful Things: How Everyday Artifacts-From
Forks and Pins to Paper Clips and Zippers-Came to be as They are, New York:
Random House of Canada, 1992.

 3. Laurence A. Moran, University of Toronto, “The Modern Synthesis of Genetics
and Evolution”, updated by Sep., 11, 2008,
http://bioinfo.med.utoronto.ca/Evolution_by_Accident/Modern_Synthesis.html.

 4. Petri Kukkala, Marko Hamnikainen, and Timo D. Hamalainen, “Implementing a
WLAN video terminal using UML and fully automated design flow”, In
EUROSIP Journal on Embedded Systems, Vol. 2007, Issue 1 (January 2007), pp.
20-34.

 5. Touradj Ebrahimi, and Fernando Pereira, The MPEG-4 Book, Prentice Hall IMSC
multimedia series, New Jersey: Prentice Hall RTR, Chapter 1, 2002.

 6. T. Weyrich, H. Pfister, and M. Gross, “Rendering Deformable Surface Relectance
Fields”, In IEEE Transactions on Visualization and Computer Graphics, Volume
11, Issue 1, January 2005, pp. 48-58.

 7. A. Gersht, and S. Kheradpir, ”Real-time bandwidth allocation and path
restorations in SONET-based self-healing mesh networks”, In Proceedings of
Communications, 1993. ICC 93, Volume 1, 1993, pp. 250-255.

 8. D. Kim, J. Young, S. Milton, H. J. Kim, and Y. Kim, ”A real-time MPEG encoder
using a programmable processor”, In IEEE Transactions on Consumer
Electronics, Volume 40, Issue 2, May 1994, pp. 161-170.

 9. J. Dunlop, J. Pons, J. Gozalvez, and P. Atherton, ”A real-time GSM link
adaptation hardware demonstrator”, In Proceedings of Vehicular Technology
Conference 2000, VTC 2000-Spring Tokyo. IEEE 51st
Volume 1, May 2000, pp. 590-594.

 10. Hubert Zimmermann, “OSI reference model—the ISO Model of Architecture for
Open Systems Interconnection”, In IEEE transactions on Communication,
Volume COM-28, Number 4, April 1980, pp. 425-432.

260

 11. M. Sgroi, “Addressing the system-on-a-chip interconnect woes through
communication-based design”, In Proceedings of the 38th conference on design
automation, Las Vegas, Nevada, 2001, pp. 667-672.

 12. Dennis Sylvester, and Kurt Keutzer, “Rethinking deep-submicron circuit design”,
IEEE Transactions on Computer, Volume 32, Number 11, November, 1999, pp
25-33.

 13. D. Sylvester, and K. Keutzer, “Impact of small process geometries on
microarchitectures in systems on a chip”, In Proceedings of the IEEE, Volume 89,
Issue 4, April 2001, pp. 467-489.

 14. D. Edenfeld, A.B. Kahng, M. Rodgers, and Y. Zorian, “2003 Technology
Roadmap for Semiconductors”, IEEE Transactions on Computer, Volume 37,
Number 1, Jan. 2004, pp. 47-56.

 15. Michael D’Amour, “Reconfigurable Systems Craft a New Breed of Soft
Appliances that Deliver Topnotch Performance”, SOCcentral, August, 1, 2007,
http://www.soccentral.com/results.asp?CatID=488&EntryID=21328.

 16. J.F. Miller, D. Job, and V.K. Vassilev, “Principles in the Evolutionary Design of
Digital Circuits Part I”, In Proceedings of Genetic Programming and Evolvable
Machines, Volume 1, Number 3, 2000, pp. 7-35.

 17. J.F. Miller, D. Job, and V.K. Vassilev, “Principles in the Evolutionary Design of
Digital Circuits Part II”, In Proceedings of Genetic Programming and Evolvable
Machines, Volume 1, Number 3, 2000, pp. 259-288.

 18. V.K. Vassilev, D. Job, and J.F. Miller, “Towards the Automatic Design of More
Efficient Digital Circuits”, In Proceedings of Evolvable Hardware 2000, Palo
Alto, CA, USA, 2000, pp. 151-160.

 19. H. de Gari, “Evolvable Hardware”, In Proceedings of Artificial Neural Nets and
Genetic Algorithms, Innsbuck, Austria, April 1993, pp. 441-449.

 20. Daniel Mange, Maxime Goeke, Dominik Madon, André Stauffer, Gianluca
Tempesti, and Serge Durand, “Embryonics: A new family of coarse-grained field-
programmable gate array with self-repair and self-reproducing properties”,
Lecture Notes in Computer Science, Volume 1062, Springer Berlin/Heidelberg,
pp. 192-220.

 21. C. Ortega-Sanchez, and A. Tyrrell, “Fault-Tolerant Systems: The way Biology
Does it”, In Proceedings of 23rd Euromicro conference: New Frontiers of
Information Technology-Short Contributions, Budapest, Hungary, 1997, pp. 146-
151.

261

 22. John A. Stankovic, Deadline scheduling for real-time systems: EDF and related
algorithms, Kluwer Academic publishers, 1998.

 23. USENET, Comp.realtime: Frequently asked questions, Version 3.6 (May 2002).
http://www.faqs.org/faqs/realtime-computing/faq/.

 24. S.D. Bruda, and S.G. Akl, ”Real-time Computation: a Formal Definition and its
Applications”, In Proceedings of 15th International Parallel and Distributed
Processing Symposium, San Francisco, CA, April 2001, pp. 1377-1384.

 25. J. A. Watlington, and V. Micheal Bove Jr., “Stream-Based Computing and Future
Television”, In Proceedings of 137th SMPTE Technical conference, New Orleans ,
USA, September 1995, pp. 69-79.

 26. Dennis, J. B., “Data Flow Supercomputers”, IEEE Transactions of Computer
Volume 13, Issue 11, November 1980, pp. 48-56.

 27. Ray Weiss, “CoreConnect: The on-chip bus system”, Electronic Design, Volume
49, Number 7, April, 2001, p. 110.

 28. http://www.amba.com/.

 29. ITRS. 2005. International Technology Roadmap for Semiconductors –
Interconnect. International Technology Roadmap for Semiconductors (ITRS),
http://www.itrs.net/Links/2005ITRS/Interconnect2005.pdf.

 30. T. Bjerregaard, and S. Mahadevan, “A survey of research and practices of
Network-on-chip”, ACM Computing. Survey, Volume 38, Issue 1, June, 2006, pp.
1-54.

 31. http://www.ocpip.org/.

 32. http://www.vsi.org/.

 33. OCP-IP, “Open Core Protocol Specification”, Release 2.0, Revision 1.1.1, 2003.

 34. R. Hartenstein,” A decade of reconfigurable computing: a visionary
retrospective”, In Proceedings of Design, Automation and Test in Europe, 2001.
Conference and Exhibition 2001, Munich, Germany, March, 2001, pp. 642-649.

 35. J. Becker et al., “Architecture and Application of a Dynamically Reconfigurable
Hardware Array for Future Mobile Communication Systems”, In Proceedings of
FCCM’00, Napa, CA, USA, April 17-19, 2000, pp. 205-214.

 36. X.Tang, et al., “A Compiler Directed Approach to Hiding Configuration Loading
Latency in Chameleon Reconfigurable Chips”, In Proceedings of FPL2000,
August, 2000, Springer-Verlag, Villach, Austria, 2000, pp. 29-38.

262

 37. H. Singh, et al., “MorphoSys: An Integrated Re-configurable Architecture”, In
Proceedings of the NATO RTO Symp. on System Concepts and Integration,
Monterey, CA, USA, April 20-22, 1998, pp. 465-481.

 38. K. Syano, and T. Shirakawa, “Pleiades: a prototype of inter-processor network
generation system”, In Proceedings of I-SPAN ’97 Third International Symposium
on Parallel Architectures, Algorithms, and Networks, Taipei, Taiwan, Dec. 18-20,
1997, pp. 202-206.

 39. D. Chen, and J. Rabaey, “PADDI: Programmable arithmetic devices for digital
signal processing”, In Proceedings of IEEE Workshop on VLSI Signal Processing,
November 1990, pp. 240-249.

 40. A. K. W. Yeung, J.M. Rabaey, “A Reconfigurable Data-driven Multiprocessor
Architecture for Rapid Prototyping of High Throughput DSP Algorithms”, In
Proceedings of HICSS-26, Kauai, Hawaii, Jan. 1993, pp. 169-178.

 41. J. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a Reconfigurable
Coprocessor”, In Proceedings of IEEE FCCM‘97, Napa, April 16-18, 1997, pp.
12-21.

 42. R. Kress et al., “A Datapath Synthesis System for the Reconfigurable Datapath
Architecture” In Proceedings of ASP-DAC'95, Chiba, Japan, Aug. 29 - Sept. 1,
1995, pp. 479-484.

 43. U. Nageldinger et al.,”KressArray Xplorer: A New CAD Environment to
Optimize Reconfigurable Datapath Array Architectures”, In Proceedings of ASP-
DAC, Yokohama, Japan, Jan. 25-28, 2000, pp. 163-168.

 44. E. Mirsky, and A. DeHon, “MATRIX: A Reconfigurable Computing Architecture
with Configurable Instruction Distribution and Deployable Resources”, In
Proceedings of IEEE FCCM‘96, Napa, CA, USA, April 17-19, 1996, pp. 157-
166.

 45. E. Waingold et al., “Baring it all to Software: RAW Machines”, IEEE
Transaction of Computer, September 1997, pp. 86-93.

 46. H. Hinkelmann, A. Gunberg, P. Zipf, L. S. Indrusiak, M. Glesner, “Multitasking
Support for Dynamically Reconfigurable Systems” In Proceedings of 2006
International Conference on Field Programmable Logic and Applications (FPL),
Spain, Madrid, 2006, pp. 219-224.

 47. H. Kalte, and M. Porrmann, “Context Saving and Restoring for Multitasking in
Reconfigurable Systems” In Proceedings of 2005 International Conference on
Field Programmable Logic and Applications, Tampere, Finland, 2005, pp. 223-
228.

263

 48. T. Marescaux et al., ”Run-time Support for Heterogeneous Multitasking on
Reconfigurable SoCs”, Integration, The VLSI Journal, Volume 38, Number 1,
Oct. 2004, pp. 107-130.

 49. S. Jovanovic, C. Tanougast, S. Weber, ”A Hardware Preemptive Multitasking
Mechanism Based on Scan-path Register Structure for FPGA-based
Reconfigurable Systems”, 2007 2nd NASA/ESA Conference on Adaptive
Hardware and Systems, Edinburgh, Scotland, UK, Aug. 2007, pp. 328-334.

 50. Huang, I.-Hsuan, Wang, Chih-Chun, Chu, Shih-Min, and Yang, Cheng-Zen,
“Function-level Multitasking Interface Design in an Embedded Operating System
with Reconfigurable Hardware”, Lecture Notes in Computer Science, Volume
4808 LNCS, Embedded and Ubiquitous Computing - International Conference,
EUC 2007, 2007, pp. 45-54.

 51. G. Wigley, and D. Kearney, “Research Issues in Operating Systems for
Reconfigurable Computing”, In Proceedings of the International Conference on
Engineering Reconfigurable Systems and Architecture 2002, Las Vegas, USA,
June 2002, pp. 10-16.

 52. B. Bailey, G. Martin, T. Anderson, Taxonomies for the Development and
Verification of Digital Systems, New York: Springer Science+Business Media,
2005.

 53. Actel Corporation, “IGLOO family FPGAs”, http://www.actel.com/

 54. Lattice Semiconductor Corporation, “EC family FPGAs”,
http://www.latticesemi.com/

 55. Xilinx Incorporated, “Virtex family FPGAs”, http://www.xilinx.com/

 56. Altera Corporation, “Stratix family FPGAs”, http://www.altera.com/

 57. Xilinx, Datasheet (DS302), “Vitex-4 FPGA Data Sheet”, June 8, 2008, Version
3.3.

 58. Xilinx, Datasheet, “XC6200 Field Programmable Gate Arrays”, April 24, 1997,
Version 1.10.

 59. J. Heron and R. F. Woods, “Architecture Strategies for Implementing Image
Processing Algorithms on an XC6200 FPGA”, In International conference on
Field Programmable Logic and Applications, Glasgow, UK, 1996, pp. 174-184.

 60. Xilinx, Application note, XAPP081, “High performance, low area, interpolator
design for the XC6200”, 1997, Version 1.0.

264

 61. R.F. Woods, D.W. Trainor, and J. Heron, “Applying an XC6200 to Real-time
Image Processing”, IEEE Design and Test of Computers, Volume 15 Issue 1,
1998, pp. 30-38.

 62. Xilinx, Datasheet (DS003-2), “Virtex 2.5V Field Programmable Gate Arrays”,
December 9, 2002, v2.8.1.

 63. Xilinx, Datasheet (DS031-2), “Virtex-II Platform FPGAs”, November 5, 2007,
v3.5.

 64. http://www.xilinx.com/support/documentation/virtex-5.htm/

 65. Xilinx, Datasheet, “XC4000 XLA/XV Field programmable Gate Arrays”, 1997,
Version 1.10.

 66. Usama Malik, “Configuration Encoding Techniques for Fast FPGA
Reconfiguration”, Ph.D. Dissertation, The university of New South Wales, June
2006.

 67. S. Hauck, T.W. Fry, M.M. Hosler and J.P. Kao, “The Chimaera Reconfigurable
Functional Unit”, In IEEE Symposium on Field-Programmable Custom
Computing Machines, Napa, CA, USA, 1997, pp. 87-96.

 68. H. Schmit, “Incremental recognization for pipelined applications”, In IEEE
Symposium on Field-Programmable Custom Computing Machines, Napa Valley,
CA, USA, 1997, pp. 47-55.

 69. A.B. Ray and P.M. Athanas, “Wormhole run-time reconfiguration”, In
International Symposium on Field-Programmable Gate Arrays, Monterey, CA,
USA, 1997, pp. 79-85.

 70. Paul Beckett, Andrew Jennings, “Towards Nanocomputer Architecture”, In
Proceedings of the seventh Asia-Pacific conference on Computer systems
architecture, Volume 6, Australian Computer Society Incorporated, NTU, Taiwan,
2002, pp. 141-150.

 71. David Manners, Electronics Weekly, January, 1991.

 72. Tsugio Makimoto, “Towards the Second Digital Wave”, CX-News, Volume 33,
Sony, http://www.sony.net/Products/SC-HP/cx_news/vol33/sideview.html.

 73. R. Hartenstein, “The Microprocessor is No Longer General Purpose: Why
Reconfigurable Platforms Will Win” In Proceedings of Second Annual IEEE
International Conference on Innovative in Silicon, Austin, Texas, USA, 1997, pp.
2-12.

265

 74. Kurt Keutzer, et al., Building ASIPs: The Mescal Methodology, Springer US,
2005.

 75. R. Goodall, D. Fandel, A. Allan,P.Landler, H. R. Huff, “Long-term Productivity
Mechanisms of the Semiconductor Industry”, American electrochemical society:
Semiconductor Silicon 2002, 9th edition, May 2002, pp. 125-144.

 76. International Roadmap Committee, The International Technology Roadmap for
Semiconductors, 2003 Edition.

 77. Pil Woo Chun, “Dynamically Reconfigurable Parallel Stream Processor”, Master
Thesis, Ryerson University, Toronto, 2004.

 78. “FPGA vs. ASIC project cost calculator”,
http://www.altera.com/products/devices/cost/cst-cost_step1.jsp

 79. Lev Kirischian, Vadim Gurkov, Valeri Kirischian, Irina Terterian, “Multi-
parametric optimization of the modular computer architecture”, International
Journal of Technology Policy and Management, 2006, Vol. 6, No. 3, pp. 327 –
346.

 80. Giovanni De Micheli, Synthesis and Optimization of digital circuits, Electronics
and VLSI Circuits, McGraw-Hill Incorporated, 1994.

 81. D. Andrews, D. Niehaus, R. Jidin, “Implementing the thread programming model
on hybrid FPGA/CPU computational components”, Workshop on Embedded
Processor Architectures of the international Symposium on Computer
Architecture, Madrid, Spain, 2004, pp. 23-48.

 82. A. Abnous, H. Zhang, M. Wan, G. Varghese, V. Prabhu, and J. Rabaey, The
Pleiades architecture, Application of Programmble DSPs in Mobile
Communications, Wiley, 2002.

 83. M. H. Sunwoo, Ong Soowan, Ahn Byungdug, Lee Kyoungwoo, “Design and
implementation of a parallel image processor chip for a SIMD array processor”,
In proceedings of Application Specific Array Processors, Strasbourg, France,
July, 24-26, 1995, pp. 66-75.

 84. Laurie J. Flynn, “Intel Halts Development of 2 New Microprocessors”,
New York Times, Published in May, 8, 2004.

 85. Michael J. S. Smith, Application-specific Integrated Circuits (ASICs … the book),
Addison-Wesley Publishing Company, VLSI Design Series, June, 1997.

266

 86. Edward Yourdon, Modern Structured Analysis, Yourdon Press Computing Series,
New Jersey: Prentice hall, 1989.

 87. Edward A. Lee, and David G. Messerchmitt, “Synchronous Data Flow”, In
Proceedings of the IEEE, volume. 75, number. 9, September 1987, pp. 1235-1245.

 88. David Harel, “Statecharts: a visual formalism for complex systems”, Science of
Computer Programming, Volume 8, Issues 3, pp. 231 – 274, June, 1987.

 89. Paul T. Ward, Stephen J. Mellor, Structured Development for Real-time Systems,
New York: Yourdon Press, 1985.

 90. J. Shi, A.Randhar, and D. Bhatia, “Macro Block Based FPGA Floorplanning”, In
Proceedings of tenth international conference on VLSI Design, Hyderabad, India,
January, 4-7, 1997, pp. 21-26.

 91. Habib Youssef, Khalid Al-Farra, Sadiq M. Sait, "Timing influenced force directed
floorplanning," European Design Automation Conference with EURO-VHDL,
volume 0, Number 0, European Design Automation Conference with EURO-
VHDL '95, Brighton, Great Britain, 1995, pp. 156-161.

 92. Cypress Semiconductor Corporation, “PLD devices”, http://www.cypress.com/

 93. Atmel Corporation, “AT40KAL family FPGAs”, http://www.atmel.com/

 94. Quicklogic Corporation, “PolarPro devices”, http://www.quicklogic.com/

 95. Xilinx, User Guide (UG071), “Virtex-4 FPGA Configuration User Guide”,
v1.10,April 8, 2008.

 96. Jamin Islam, Pil Woo Chun, W. James MacLean and Lev Kirischian, “Lowering
Power Consumption Using Run-time Reconfiguration for Stereo Rectification”,
In 21st Canadian Conference on Electrical and Computer Engineering, Niagara
fall, Canada, 2008, pp. 1693-1698.

 97. Gary Yeap, Practical Low Power Digital VLSI Design, Kluwer Academic
Publishers, 1998.

 98. Xilinx Incorporated, “Application Note 059: Gate Count Capacity Metrics for
FPGAs”, February, 1997.

 267

Appendix A

Cost Estimation

A.1 Estimation of Unit Cost

The following data shown in Table A-1 is taken from Xilinx application note [98].

From this data set it is possible to extract what is the typical gate average for a given

device when the number of CLBs is known. Table A-1 shows the typical gate average for

XC4000 FPGA – internal memory is also included in the gate number estimation.

Furthermore to estimate the gate average for larger devices such as Xilinx Virtex-

4 devices, the graph is plotted to find the relationship between the number of CLBs and

the gate average. Figure A-1 illustrates the relationship that found to be linear with the

slope of 36 [gate/CLB]. Typically the given assumption that the Xilinx FPGAs have 36

Table A-1: XC4000 FPGA typical gate average (internal memory is included)

Device Number of CLBs Typical Gate Average
XC4003E 100 3.50
XC4005E/XL 196 2.00
XC4006E 256 8.00
XC4008E 324 10.50
XC4010E/XL 400 13.50
XC4013E/XL 576 20.00
XC4020E/XL 784 26.50
XC4025E 1024 30.00
XC4028EX/XL 1024 34.00
XC4036EX/XL 1296 43.50
XC4044XL 1600 53.50
XC4052XL 1936 66.50
XC4062XL 2304 85.00

268

gate used per a CLB given, is assumed – including unpopulated areas of logic and

memory.

Particularly to extract the average gate usage of the target device, Xilinx Virtex-4

XC4VLX160, the number of CLBs (i.e., 152064 for the target device) is applied with the

above rule (36). Then, the typical gate for XC4VLX160 is calculated to be 5474

[Kgate].

A.2 Estimation of Software Tools Cost

The software tool cost between FPGA and ASIC is quite different due to the

verifications and tests steps involved in the ASIC design process. This section tries to

discover the actual costs by exploring the details of design processes. Table A-2 shows

the related software tools and associated hardware platform to carry their executions.

Xilinx FPGA XC4000 series

0.00

20.00

40.00

60.00

80.00

100.00

0 500 1000 1500 2000 2500

Number of CLBs

T
y

p
ic

a
l G

a
te

 A
v

e
. [

K
]

Figure A-1: The relationship between the number of CLBs and the gate average

269

Depending on their involvements in the process the ‘per seat usage’ is

determined. If it is one time purchase then, the ‘program usage’ is quoted as 1 instead.

Table A-3 shows the detailed software tools cost for an FPGA.

 Table A-4 shows the detailed software tools cost for an ASIC.

Table A-2: Software Tool Usage

Vendor/Tool Per Seat Usage Program Usage
Leading ASIC Synthesis Tool 0.4
Optimization 0.4
Cores with Test Benches 0.4
ASIC Schematic Debugging Tool 0.4
ASIC Static Timing Analysis 0.25
ATPG Test Pattern Generator 1
RTL Simulator 2
Testbench Automation 0.5
Memory Tools
Memory Design Software 1
Memory Simulation Software 1
LINT, Code, Coverage, Revision Control, ... 0
Low-end Workstation 1
High-end Server 0.2

Table A-3: Detailed Software Tools Cost for an FPGA

Vendor/Tool List Price Discount Street Price Yearly Maintenance Per Seat Usage Cost Per Seat

 $25,000 45% $11,250 $2,625 0.4 $7,125

VHDL or Verilog Simulator $15,000 45% $6,750 $1,575 1 $8,325

Low-end Workstation $8,000 1 $8,000
High-end Server $300,000 0.1 $30,000

$53,450
$1,485

Detailed Software Tools Cost for an FPGA

High-end FPGA Synthesis Tool

High-end Verilog or VHDL Tool

Engineering Workstation

Total Cost Per Seat (Usage * Street Price) + Maintenance
Amortization Expense/Man Month

270

A.3 Development Costs

Table A-5 numerates the assumptions that are made to estimate the development

costs of FPGAs and ASICs.

Table A-4: Detailed Software Tools Cost for an ASIC

Vendor/Tool List Price Discount Street Price Yearly Maintenance Per Seat Usage Program Usage Cost per Seat Program Cost

Leading ASIC Synthesis Tool $143,000 45% $64,350 $21,450 0.4 $47,190

Optimization $26,000 45% $11,700 $3,900 0.4 $8,580

Cores with Test Benches $48,500 45% $21,825 $7,275 0.4 $16,005
ASIC Schematic Debugging To $8,500 45% $3,825 $1,275 0.4 $2,805
ASIC Static Timing Analysis $60,000 45% $27,000 $9,000 0.25 $15,750
ATPG Test Pattern Generator $96,000 45% $43,200 $14,400 1 $57,600
RTL Simulator $45,000 45% $20,250 $6,750 2 $47,250

Testbench Automation $14,500 45% $6,525 $2,175 0.5 $5,438

Memory Design Software $15,000 45% $6,750 $2,250 1 $9,000
Memory Simulation Software $7,500 45% $3,375 $1,125 1 $4,500

ASIC Library $0

LINT, Code, Coverage, Revision $35,000 45% $15,750 $5,250 0 $0 $5,250

Low-end Workstation $8,000 $0 1 $8,000
High-end Server $300,000 $0 0.2 $60,000

$211,018
$76,350

$7,982

Detailed Software Tools Cost for an ASIC

Engineering Workstation

Other

Architectural Synthesis

ASIC Design Tools

Amortization Expense/Man Month
Total Program "One Time" Charges

Total Cost Per Seat (Usage * Street Price) + Maintenance

Portfolio of Synthesizable IP

Formal Verification Tool

Memory Tools

Cell Library

Table A-5: Assumptions given for the development costs

$165,000 per year
$13,750 per month

ASIC Gates (K) 5474

PLD Logic Elements (Configuration Logic
Block) (K) 152

ASIC Re-Spins Estimated 1

Mask Set & protype Wafers $250,000 at 0.18um

$200,000 at 0.25um

ASIC support and Services $300,000 with processor

$150,000 without processor

Assumptions
Assumptions

271

Table A-6 summaries the detailed development costs of FPGA and ASIC

Table A-6: Detailed FPGA and ASIC Development Costs

Time Spend Personnel Supply Time Spend Personnel Supply

(Man Months) Costs Costs (Man Months) Costs Costs

RTL Development 3/50K Gates $4,516,050 $2,621,749 3/1.39K CLBs $4,516,050 $487,642

RTL Verification 6/50K Gates $9,032,100 $5,243,499 2/1.39K CLBs $3,010,700 $325,095

Mask Set & Prototype Wafers $250,000.00 $0

Re-Spins, Mask Sets & Wafers $250,000.00 $0

Hardware Simulation Tools - $76,350 $0

ASIC Support and Services $150,000 $0

Bug Fix and Code Verification 16 $220,000 4 $55,000
Subtotal $13,768,150 $8,591,598 $7,581,750 $812,737
Total Development Cost $22,359,748 $8,394,487

ASIC FPGA
Detailed FPGA vs. ASIC Development Cost

 272

Appendix B

Experimental Details

B.1 Estimation of Silicon Costs

Because the service hardware that accounts for the reconfiguration overhead,

reconfigurationov is constructed outside of a run-time reconfigurable FPGA and can be reused

numerous times, one assumes that the reconfigurationov is amortized over the life time of the

device40. The ratio of reconfigurable functions, reconfigurabler is the ratio between static or

reconfigurable tasks in the workload. It seems that all the functions given in the workload

are reconfigurable tasks. However, if you take a close look at Figure 6-26, the area

designated for the static tasks inevitably occupies a quarter of the chip that is located on

the upper left side of the chip due to their I/O placements where the VGA ports

associated with reconfigurable functions are located at the bottom half of the chip. This

arrangement of I/O ports allows the reconfigurable functions to be located anywhere in

the bottom half of the device according to Figure 6-24. Because the area needed for

reconfigurable modules is about a third of static area, the ratio of reconfigurable functions

can be estimated as 33%.

40 The reconfigurationov is a part of the system costs that can be easily compared at the system level in terms

of dollar value (e.g., $) rather than silicon costs of the device.

273

The parametric values that determine the silicon costs are given as: commonA =

0.16, multiplexerov = 0.17, reconfigurabler = 0.33, reconfigurationov = 0 and utilizations = 0.32. Using

Eq. 5-4, the silicon cost of a non-reconfigurable FPGA, fixedsc can be obtained as 56(1-

0.16) + 562*0.17/4 = 180.32. reconfiguredsc is found to be 100. The multiplexing overhead

needed to combine the functions of the systems,

B.2 How to calculate LUTc

The constant to convert the unit cost of the reconfiguration functions into 4-input

LUTs, LUTc is obtained by averaging the values found in the implementation. These

values are shown in Table B-1.

B.3 Examples of LED counter

pr_test_led.vhd Wed Feb 18 02:24:55 2009

1 ---

Table B-1: LUTC values for the multi-task and multi-mode video processors

The number of
modes

The logic
required by

ov_multiplexer [4-
input LUT]

Total logic
required by the

fixed design

The logic
occupied by

static functions

C_LUT
[LUT/unit cost]

4 302 2904 358 140.25
8 565 7014 358 190.34375

12 962 8103 358 141.3125
Average 157.3020833

274

2 -- Company:
3 -- Engineer:
4 --
5 -- Create Date: 15:04:08 12/08/2008
6 -- Design Name:
7 -- Module Name: pr_test_led - Behavioural
8 -- Project Name:
9 -- Target Devices:
10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --
19 --

20 library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24
25 entity pr_test_led is
26 Port (clk : in STD_LOGIC;
27 reset : in STD_LOGIC;
28 led_right : out STD_LOGIC_VECTOR (1 downto 0));
29 end pr_test_led;
30
31 architecture Behavioural of pr_test_led is
32
33 component BUFGP
34 port (
35 I : in std_logic;
36 O : out std_logic);
37 end component;
38
39 component static is
40 port(
41 clk : in std_logic;
42 reset : in std_logic;
43 rst : out std_logic);
44 end component;
45
46 component reconfig_led_right is
47 port(
48 clk : in std_logic;
49 reset : in std_logic;
50 O : out std_logic_vector(1 downto 0));
51 end component;
52
53 component busmacro_xc4v_l2r_async_narrow is
54 port(
55 input0 : in std_logic;

275

56 input1 : in std_logic;
57 input2 : in std_logic;
58 input3 : in std_logic;
59 input4 : in std_logic;
60 input5 : in std_logic;
61 input6 : in std_logic;
62 input7 : in std_logic;
63
64 output0 : out std_logic;
65 output1 : out std_logic;
66 output2 : out std_logic;
67 output3 : out std_logic;
68 output4 : out std_logic;
69 output5 : out std_logic;
70 output6 : out std_logic;
71 output7 : out std_logic);
72 end component;
73
74 component busmacro_xc4v_r2l_async_narrow is
75 port(
76 input0 : in std_logic;
77 input1 : in std_logic;
78 input2 : in std_logic;
79 input3 : in std_logic;
80 input4 : in std_logic;
81 input5 : in std_logic;
82 input6 : in std_logic;
83 input7 : in std_logic;
84
85 output0 : out std_logic;
86 output1 : out std_logic;
87 output2 : out std_logic;
88 output3 : out std_logic;
89 output4 : out std_logic;
90 output5 : out std_logic;
91 output6 : out std_logic;
92 output7 : out std_logic);
93 end component;
94
95
96 signal reset_temp : std_logic;
97 signal clk_int : std_logic;
98
99 signal rst : std_logic;
100 signal rst_imod : std_logic;
101 signal en_imod : std_logic;
102 signal en : std_logic;
103 signal led_right_omod : std_logic_vector (1 downto 0);
104
105 begin
106
107 bufgp_0 : BUFGP
108 port map (
109 I => clk,
110 O => clk_int

276

111);
112
113 static_inst: static
114 port map (
115 clk => clk_int,
116 reset => reset,
117 rst => rst
118);
119
120 reconfig_led_right_inst: reconfig_led_right
121 port map (
122 clk => clk_int,
123 reset => rst_imod,
124 O => led_right_omod
125);
126
127 macro_1: busmacro_xc4v_l2r_async_narrow
128 port map(
129 input0 => rst,
130 input1 => '1',
131 input2 => '1',
132 input3 => '1',
133 input4 => '1',
134 input5 => '1',
135 input6 => '1',
136 input7 => '1',
137
138
139 output0 => rst_imod,
140 output1 => open,
141 output2 => open,
142 output3 => open,
143 output4 => open,
144 output5 => open,
145 output6 => open,
146 output7 => open
147);
148
149 macro_2: busmacro_xc4v_l2r_async_narrow
150 port map(
151 input0 => led_right_omod(0),
152 input1 => led_right_omod(1),
153 input2 => '1',
154 input3 => '1',
155 input4 => '1',
156 input5 => '1',
157 input6 => '1',
158 input7 => '1',
159
160
161 output0 => led_right(0),
162 output1 => led_right(1),
163 output2 => open,
164 output3 => open,
165 output4 => open,

277

166 output5 => open,
167 output6 => open,
168 output7 => open
169);
170
171
172 end Behavioural;

278

static.vhd Wed Feb 18 02:26:37 2009
1 ---

2 -- Company:
3 -- Engineer:
4 --
5 -- Create Date: 19:43:15 12/08/2008
6 -- Design Name:
7 -- Module Name: static - Behavioural
8 -- Project Name:
9 -- Target Devices:
10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --
19 --

20 library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24
25 entity static is
26 Port (clk : in std_logic;
27 reset : in STD_LOGIC;
28 rst : out STD_LOGIC);
29 end static;
30
31 architecture Behavioural of static is
32
33 begin
34
35 process(clk)
36 begin
37 if(clk = '1' and clk'event) then
38 rst <= reset;
39 end if;
40 end process;
41 end Behavioural;
42
43

279

reconfig_led_right.vhd Wed Feb 18 02:36:06 2009
1 ---

2 -- Company:
3 -- Engineer:
4 --
5 -- Create Date: 18:35:52 12/08/2008
6 -- Design Name:
7 -- Module Name: reconfig_led_right - Behavioural
8 -- Project Name:
9 -- Target Devices:
10 -- Tool versions:
11 -- Description:
12 --
13 -- Dependencies:
14 --
15 -- Revision:
16 -- Revision 0.01 - File Created
17 -- Additional Comments:
18 --
19 --

20 library IEEE;
21 use IEEE.STD_LOGIC_1164.ALL;
22 use IEEE.STD_LOGIC_ARITH.ALL;
23 use IEEE.STD_LOGIC_UNSIGNED.ALL;
24
25 entity reconfig_led_right is
26 Port (
27 clk : in std_logic;
28 reset : in std_logic;
29 O : out STD_LOGIC_VECTOR (1 downto 0));
30 end reconfig_led_right;
31
32 architecture Behavioural of reconfig_led_right is
33
34 signal GND : std_logic_vector(1 downto 0) := "00";
35 signal VCC : std_logic_vector(1 downto 0) := "11";
36
37 begin
38
39 process(clk, reset)
40 begin
41 if(clk = '1' and clk'event) then
42 if(reset = '0') then
43 O <= "00";
44 else
45 O <= VCC;
46 end if;
47 end if;
48 end process;
49
50 end Behavioural;

 280

Appendix C

Power Estimation Details

Even though the obtained results show sufficient evidences that the proposed

architecture synthesis methodology produces a cost-effective design solution, there are a

few areas that the analysis of reconfigurable system can be improved. Since the

architecture synthesis methodology assumes that the network level architecture takes care

of the communication interfaces for VHCs, the overhead caused by interfaces is not

counted as the reconfiguration overhead. The currently available programmable devices

(e.g., Xilinx Virtex-4 FPGAs) embody all the routings including the global and local

routing as a part of reconfigurable architecture (i.e., micro architecture). Additionally the

full estimation of power consumption for multiplexed functionalities could not be

calculated correctly. Since a big portion of power consumption in the design of

multiplexed functionalities is caused by complex routing resources, it is crucial to include

the power consumption of these resources for power estimation. However, due to the lack

of appropriate design support from the programmable device vendor (e.g., Xilinx Design

Language) the routing resources could not be accounted for power estimation. Thus, the

power consumption for multiplexed functionalities appears smaller than the real case.

C.1 Example of Power Estimation Testbench

281

testbench.vhd Wed Feb 18 03:06:05 2009
1
2 ---

3 -- Company:
4 -- Engineer:
5 --
6 -- Create Date: 15:36:01 01/25/2009
7 -- Design Name: top
8 -- Module Name:
C:/users/peter/PhD_demo_stereo_cam_4vgas_v2/pr/Flat/testbench.vhd
9 -- Project Name: stereo_cam
10 -- Target Device:
11 -- Tool versions:
12 -- Description:
13 --
14 -- VHDL Test Bench Created by ISE for module: top
15 --
16 -- Dependencies:
17 --
18 -- Revision:
19 -- Revision 0.01 - File Created
20 -- Additional Comments:
21 --
22 -- Notes:
23 -- This testbench has been automatically generated using types
std_logic and
24 -- std_logic_vector for the ports of the unit under test. Xilinx
recommends
25 -- that these types always be used for the top-level I/O of a design
in order
26 -- to guarantee that the testbench will bind correctly to the post-
implementation
27 -- simulation model.
28 --

29 LIBRARY ieee;
30 USE ieee.std_logic_1164.ALL;
31 USE ieee.std_logic_unsigned.all;
32 USE ieee.numeric_std.ALL;
33
34 ENTITY testbench_vhd IS
35 END testbench_vhd;
36
37 ARCHITECTURE behaviour OF testbench_vhd IS
38
39 -- Component Declaration for the Unit Under Test (UUT)
40 COMPONENT top
41 PORT(
42 cam_data : IN std_logic_vector(7 downto 0);
43 clk : IN std_logic;
44 cam_hsync : IN std_logic;
45 cam_vsync : IN std_logic;
46 pix_sync : IN std_logic;
47 SRAM_B_D : INOUT std_logic_vector(15 downto 0);

282

48 SRAM_A_D : INOUT std_logic_vector(15 downto 0);
49 txrx : OUT std_logic_vector(3 downto 0);
50 dac_clk : OUT std_logic;
51 SRAM_B_BW : OUT std_logic_vector(1 downto 0);
52 SRAM_A_ADSC_N : OUT std_logic;
53 SRAM_B_ADSC_N : OUT std_logic;
54 SRAM_A_MODE : OUT std_logic;
55 SRAM_A_ADV_N : OUT std_logic;
56 SRAM_B_ADV_N : OUT std_logic;
57 SRAM_A_ZZ : OUT std_logic;
58 SRAM_B_ZZ : OUT std_logic;
59 SRAM_B_OE_N : OUT std_logic;
60 SRAM_A_CE : OUT std_logic;
61 SRAM_A_ADDR : OUT std_logic_vector(19 downto 0);
62 SRAM_B_CE : OUT std_logic;
63 SRAM_B_ADDR : OUT std_logic_vector(19 downto 0);
64 SRAM_A_OE_N : OUT std_logic;
65 SRAM_A_BW : OUT std_logic_vector(1 downto 0);
66 SRAM_B_MODE : OUT std_logic;
67 SRAM_B_GW_N : OUT std_logic;
68 SRAM_A_GW_N : OUT std_logic;
69 SRAM_B_ADSP_N : OUT std_logic;
70 SRAM_A_ADSP_N : OUT std_logic;
71 sram_b_clk : OUT std_logic;
72 sram_a_clk : OUT std_logic;
73 vsync : OUT std_logic;
74 hsync : OUT std_logic;
75 vga1_r : OUT std_logic_vector(7 downto 0);
76 vga2_r : OUT std_logic_vector(7 downto 0);
77 vga3_r : OUT std_logic_vector(7 downto 0);
78 vga4_r : OUT std_logic_vector(7 downto 0);
79 vga1_g : OUT std_logic_vector(7 downto 0);
80 vga2_g : OUT std_logic_vector(7 downto 0);
81 vga3_g : OUT std_logic_vector(7 downto 0);
82 vga4_g : OUT std_logic_vector(7 downto 0);
83 vga1_b : OUT std_logic_vector(7 downto 0);
84 vga2_b : OUT std_logic_vector(7 downto 0);
85 vga3_b : OUT std_logic_vector(7 downto 0);
86 vga4_b : OUT std_logic_vector(7 downto 0)
87);
88 END COMPONENT;
89
90 --Inputs
91 SIGNAL clk : std_logic := '0';
92 SIGNAL cam_hsync : std_logic := '0';
93 SIGNAL cam_vsync : std_logic := '0';
94 SIGNAL pix_sync : std_logic := '0';
95 SIGNAL cam_data : std_logic_vector(7 downto 0) := (others=>'0');
96
97 --BiDirs
98 SIGNAL SRAM_B_D : std_logic_vector(15 downto 0);
99 SIGNAL SRAM_A_D : std_logic_vector(15 downto 0);
100
101 --Outputs
102 SIGNAL txrx : std_logic_vector(3 downto 0);

283

103 SIGNAL dac_clk : std_logic;
104 SIGNAL SRAM_B_BW : std_logic_vector(1 downto 0);
105 SIGNAL SRAM_A_ADSC_N : std_logic;
106 SIGNAL SRAM_B_ADSC_N : std_logic;
107 SIGNAL SRAM_A_MODE : std_logic;
108 SIGNAL SRAM_A_ADV_N : std_logic;
109 SIGNAL SRAM_B_ADV_N : std_logic;
110 SIGNAL SRAM_A_ZZ : std_logic;
111 SIGNAL SRAM_B_ZZ : std_logic;
112 SIGNAL SRAM_B_OE_N : std_logic;
113 SIGNAL SRAM_A_CE : std_logic;
114 SIGNAL SRAM_A_ADDR : std_logic_vector(19 downto 0);
115 SIGNAL SRAM_B_CE : std_logic;
116 SIGNAL SRAM_B_ADDR : std_logic_vector(19 downto 0);
117 SIGNAL SRAM_A_OE_N : std_logic;
118 SIGNAL SRAM_A_BW : std_logic_vector(1 downto 0);
119 SIGNAL SRAM_B_MODE : std_logic;
120 SIGNAL SRAM_B_GW_N : std_logic;
121 SIGNAL SRAM_A_GW_N : std_logic;
122 SIGNAL SRAM_B_ADSP_N : std_logic;
123 SIGNAL SRAM_A_ADSP_N : std_logic;
124 SIGNAL sram_b_clk : std_logic;
125 SIGNAL sram_a_clk : std_logic;
126 SIGNAL vsync : std_logic;
127 SIGNAL hsync : std_logic;
128 SIGNAL vga1_r : std_logic_vector(7 downto 0);
129 SIGNAL vga2_r : std_logic_vector(7 downto 0);
130 SIGNAL vga3_r : std_logic_vector(7 downto 0);
131 SIGNAL vga4_r : std_logic_vector(7 downto 0);
132 SIGNAL vga1_g : std_logic_vector(7 downto 0);
133 SIGNAL vga2_g : std_logic_vector(7 downto 0);
134 SIGNAL vga3_g : std_logic_vector(7 downto 0);
135 SIGNAL vga4_g : std_logic_vector(7 downto 0);
136 SIGNAL vga1_b : std_logic_vector(7 downto 0);
137 SIGNAL vga2_b : std_logic_vector(7 downto 0);
138 SIGNAL vga3_b : std_logic_vector(7 downto 0);
139 SIGNAL vga4_b : std_logic_vector(7 downto 0);
140
141 BEGIN
142
143 -- Instantiate the Unit Under Test (UUT)
144 uut: top PORT MAP(
145 txrx => txrx,
146 dac_clk => dac_clk,
147 cam_data => cam_data,
148 SRAM_B_D => SRAM_B_D,
149 SRAM_B_BW => SRAM_B_BW,
150 SRAM_A_D => SRAM_A_D,
151 SRAM_A_ADSC_N => SRAM_A_ADSC_N,
152 SRAM_B_ADSC_N => SRAM_B_ADSC_N,
153 SRAM_A_MODE => SRAM_A_MODE,
154 SRAM_A_ADV_N => SRAM_A_ADV_N,
155 SRAM_B_ADV_N => SRAM_B_ADV_N,
156 SRAM_A_ZZ => SRAM_A_ZZ,
157 SRAM_B_ZZ => SRAM_B_ZZ,

284

158 SRAM_B_OE_N => SRAM_B_OE_N,
159 SRAM_A_CE => SRAM_A_CE,
160 SRAM_A_ADDR => SRAM_A_ADDR,
161 SRAM_B_CE => SRAM_B_CE,
162 SRAM_B_ADDR => SRAM_B_ADDR,
163 SRAM_A_OE_N => SRAM_A_OE_N,
164 SRAM_A_BW => SRAM_A_BW,
165 SRAM_B_MODE => SRAM_B_MODE,
166 SRAM_B_GW_N => SRAM_B_GW_N,
167 SRAM_A_GW_N => SRAM_A_GW_N,
168 SRAM_B_ADSP_N => SRAM_B_ADSP_N,
169 SRAM_A_ADSP_N => SRAM_A_ADSP_N,
170 sram_b_clk => sram_b_clk,
171 sram_a_clk => sram_a_clk,
172 clk => clk,
173 cam_hsync => cam_hsync,
174 cam_vsync => cam_vsync,
175 pix_sync => pix_sync,
176 vsync => vsync,
177 hsync => hsync,
178 vga1_r => vga1_r,
179 vga2_r => vga2_r,
180 vga3_r => vga3_r,
181 vga4_r => vga4_r,
182 vga1_g => vga1_g,
183 vga2_g => vga2_g,
184 vga3_g => vga3_g,
185 vga4_g => vga4_g,
186 vga1_b => vga1_b,
187 vga2_b => vga2_b,
188 vga3_b => vga3_b,
189 vga4_b => vga4_b
190);
191
192 -- 100MHz main clock simulation
193 contant main_clk : time := 5 ns;
194 clock_gen : process is
195 begin
196 clk <= '0' after main_clk, '1' after 2 * main_clk;
197 wait for 2*main_clk;
198 end process clock_gen;
199
200 -- 12MHz pix_sync clock generation
201 pix_sync_gen : PROCESS(clk)
202 variable pix_sync_flag : std_logic_vector(3 downto 0);
203 BEGIN
204 if(clk'event and clk = '1') then
205 pix_sync_flag := pix_sync_flag + 1;
206 if(pix_sync_flag = "1011") then
207 pix_sync_flag := (others =>'0');
208 pix_sync <= '0';
209 elsif(pix_sync_flag = "0101") then
210 pix_sync <= '1';
211 end if;
212 end process pix_sync_gen;

285

213
214 -- pix_hsync strobe generation
215 pix_hsync_gen : process(pix_sync)
216 variable pix_hsync_cnt : std_logic_vector(10 downto 0);
217 variable pix_hsync_flag : std_logic;
218 begin
219 if(pix_sync'event and pix_sync = '1') then
220 pix_hsync_cnt := pix_hsync_cnt + 1;
221 if(pix_hsync_cnt = "00000000000" and pix_hsync_flag = '1') then
222 pix_hsync <= '1';
223 pix_hsync_flag <= '0';
224 elsif(pix_hsync_cnt = "01010010011") then
225 pix_hsync_cnt := (others => '0');
226 pix_hsync <= '1';
227 pix_hsync_flag <= '1';
228 end if;
229 end if;
230 end process pix_hsync_gen;
231
232 -- pix_vsync strobe generation
233 pix_vsync_gen : process(pix_hsync)
234 variable pix_vsync_cnt : std_logic_vector(9 downto 0);
235 variable pix_vsync_flag : std_logic;
236 begin
237 if(pix_hsync'event and pix_hsync = '1') then
238 pix_vsync_cnt := pix_vsync_cnt + 1;
239 if(pix_vsync_cnt = "0000000000" and pix_vsync_flag = '1') then
240 pix_vsync <= '1';
241 pix_vsync_flag <= '0';
242 elsif(pix_vsync_cnt = "1000001100") then
243 pix_vsync_cnt := (others => '0');
244 pix_vsync <= '1';
245 pix_vsync_flag <= '1';
246 end if;
247 end if;
248 end process pix_vsync_gen;
249
250 --cam_data generator PRBS (Pseudo Random Binary Sequence)
251 cam_data_gen : process(pix_sync)
252 variable reg : std_logic_vector(7 downto 0);
253 begin
254 if(pix_sync'event and pix_sync = '1') then
255 reg(7) := reg(6);
256 reg(6) := reg(5);
257 reg(5) := reg(4);
258 reg(4) := reg(3);
259 reg(3) := reg(2);
260 reg(2) := reg(1);
261 reg(1) := reg(0);
262 reg(0) := (reg(7) xor reg(6)) xor reg(5);
263 end if;
264 cam_data <= reg;
265 end process cam_data_gen;
266 END;

286

C.2 Examples of Video Processors

video_processor_v1.vhd Wed Feb 18 03:16:50 2009
1 library IEEE;
2 use IEEE.STD_LOGIC_1164.ALL;
3 use IEEE.STD_LOGIC_ARITH.ALL;
4 use IEEE.STD_LOGIC_UNSIGNED.ALL;
5
6 -- Uncomment the following lines to use the declarations that are
7 -- provided for instantiating Xilinx primitive components.
8 --library UNISIM;
9 --use UNISIM.VComponents.all;
10
11 entity video_processor_v1 is
12 Port (CLOCK : in std_logic;
13 vsync, hsync : in std_logic;
14 DATA_RD1 : in std_logic_vector(15 downto 0);
15 DATA_VGA1_R : out std_logic_vector(7 downto 0);
16 DATA_VGA1_G : out std_logic_vector(7 downto 0);
17 DATA_VGA1_B : out std_logic_vector(7 downto 0)
18);
19 end video_processor_v1;
20
21 architecture Behavioural of video_processor_v1 is
22
23 component ramb512_32
24 port (
25 clka: IN std_logic;
26 dina: IN std_logic_VECTOR(31 downto 0);
27 addra: IN std_logic_VECTOR(8 downto 0);
28 wea: IN std_logic_VECTOR(0 downto 0);
29 douta: OUT std_logic_VECTOR(31 downto 0));
30 end component;
31
32 component ramb512_16
33 port (
34 clka: IN std_logic;
35 dina: IN std_logic_VECTOR(15 downto 0);
36 addra: IN std_logic_VECTOR(8 downto 0);
37 wea: IN std_logic_VECTOR(0 downto 0);
38 douta: OUT std_logic_VECTOR(15 downto 0));
39 end component;
40
41 subtype counter is std_logic_vector(11 downto 0);
42 -- it is based on 100MHz clock
43 constant B : natural := 377; -- horizontal blank: 3.77 us
44 constant C : natural := 189; -- front guard: 1.89 us
45 constant D : natural := 2517; -- horizontal columns: 25.17 us
46 constant E : natural := 94; -- rear guard: 0.94 us

287

47 constant A : natural := B + C + D + E; -- one horizontal sync cycle:
31.77 us
48
49 constant P : natural := 2; -- vertical blank: 64 us
50 constant Q : natural := 32; -- front guard: 1.02 ms
51 constant R : natural := 480; -- vertical rows: 15.25 ms
52 constant S : natural := 11; -- rear guard: 0.35 ms
53 constant O : natural := P + Q + R + S; -- one vertical sync cycle:
16.6 ms
54
55 constant threshold : std_logic_vector(7 downto 0) := "00011111";
56 -- Signals latching pixel data read from SRAM (current line) and
SRAMB (previous line)
57 signal button : std_logic;
58 signal data16c_1 : std_logic_vector(15 downto 0);
59 signal data16p_1 : std_logic_vector(15 downto 0);
60 signal data16c_2 : std_logic_vector(15 downto 0);
61 signal data16p_2 : std_logic_vector(15 downto 0);
62 --

63 -- FOR VGA
64 ---+-----+-----+-----+
65 -- | p11 | p12 | p13 |
66 -- +-----+-----+-----+
67 -- | p21 | p22 | p23 |
68 -- +-----+-----+-----+
69 -----Signals for VGA#1--

70 signal c1_p11, c1_p12, c1_p13 : std_logic_vector(7 downto 0); --
these registers hold 8-
71 -- previous line pixel values
72 signal c1_p21, c1_p22, c1_p23 : std_logic_vector(7 downto 0); --
these registers hold 8-
73 -- current line pixel values
74 -----Signals for VGA#2--

75 signal c2_p11, c2_p12, c2_p13 : std_logic_vector(7 downto 0); --
these registers hold 8-
76 -- previous line pixel values
77 signal c2_p21, c2_p22, c2_p23 : std_logic_vector(7 downto 0); --
these registers hold 8-
78 -- current line pixel values
79 --

80 signal c1_red22, c1_green22, c1_blue22, c1_green22_pre :
std_logic_vector(7 downto 0);
81 signal c1_red23, c1_green23, c1_blue23, c1_green23_pre :
std_logic_vector(7 downto 0);
82 --

83 signal c2_red22, c2_green22, c2_blue22 : std_logic_vector(7 downto
0);
84 signal c2_red23, c2_green23, c2_blue23 : std_logic_vector(7 downto
0);

288

85 --

86
87 signal y : std_logic_vector(2 downto 0);
88 signal edge : std_logic_vector(7 downto 0);
89
90
91 signal pix_flag : std_logic_vector(3 downto 0);
92 signal din1, din2: std_logic_vector(31 downto 0);
93 signal din3, din4: std_logic_vector(15 downto 0);
94 signal addr1, addr2, addr3, addr4 : std_logic_vector(8 downto 0);
95 signal dout1, dout2 : std_logic_vector(31 downto 0);
96 signal dout3, dout4 : std_logic_vector(15 downto 0);
97 signal we1, we2, we3, we4 : std_logic_vector(0 downto 0);
98 signal pix_flag2 : std_logic;
99 signal pix_addr : std_logic_vector(18 downto 0);
100 signal hsync_flag : std_logic;
101 begin
102
103
104 ram512_32_inst2 : component ramb512_16
105 port map(
106 clka => CLOCK,
107 dina => din3,
108 addra => addr3,
109 wea => we3,
110 douta => dout3);
111
112
113 ram512_32_inst3 : component ramb512_16
114 port map(
115 clka => CLOCK,
116 dina => din4,
117 addra => addr4,
118 wea => we4,
119 douta => dout4);
120
121 process(CLOCK)
122 variable vertical, horizontal : counter; -- define counters
123 begin
124 if (CLOCK'event and CLOCK = '1') then
125
126 if(vsync = '0') then
127 vertical := (others => '0');
128 hsync_flag <= '0';
129 else
130 if(hsync = '0') then
131 horizontal := (others => '0');
132 if(hsync_flag = '0') then
133 vertical := vertical + 1;
134 hsync_flag <= '1';
135 end if;
136 else
137 horizontal := horizontal + 1;
138 hsync_flag <= '0';

289

139 end if;
140 end if;
141 end if;
142 pix_addr <= vertical(8 downto 0) & horizontal(11 downto 2);
143 end process;
144
145 process(CLOCK)
146 begin
147 if (CLOCK'event and CLOCK = '0') then
148 if(pix_addr(0) = '0') then
149 pix_flag2 <= '0';
150 pix_flag <= pix_flag + 1;
151 if(pix_flag = "0000") then
152 addr3 <= pix_addr(9 downto 1);
153 addr4 <= pix_addr(9 downto 1);
154 elsif(pix_flag = "0011") then
155 if(pix_addr(18 downto 10) >"000000000" and pix_addr(18 downto 10) <
"111100000" and
156 pix_addr(9 downto 0) >"0000000000" and pix_addr(9 downto 0)
<"101000000
then
157 data16c_1 <= data_rd1;
158 else
159 data16c_1 <= (others =>'0');
160 end if;
161 end if;
162 else
163 pix_flag <= "0000";
164 if(pix_flag = "0000") then
165 pix_flag2 <= '0';
166 else
167 pix_flag2 <= '1';
168 end if;
169 end if;
170 end if;
171 end process;
172
173 process(CLOCK)
174 begin
175 if (CLOCK'event and CLOCK = '0') then
176 if pix_flag2 = '1' then
177 -----Latching data for VGA#1--------------
178 c1_p22 <= data16c_1(7 downto 0);
179 c1_p23 <= data16c_1(15 downto 8);
180 c1_p21 <= c1_p23;
181 c1_p12 <= data16p_1(7 downto 0);
182 c1_p13 <= data16p_1(15 downto 8);
183 c1_p11 <= c1_p13;
184 --
185 elsif pix_flag = "0001" then
186 ------------COLOUR MATCHING ------------------------
187 if pix_addr(10) = '0' then
188
189
190 -- G R G

290

191 -- B G B
192 ---+-----+-----+-----+
193 -- | p11 | p12 | p13 |
194 -- +-----+-----+-----+
195 -- | p21 | p22 | p23 |
196 -- +-----+-----+-----+
197 ------for VGA#1--------------------------LEFT
198 c1_red22 <= c1_p12;
199 c1_green22 <= c1_p22;
200 c1_blue22 <= c1_p21;
201
202 c1_red23 <= c1_p12;
203 c1_green23 <= c1_p22;
204 c1_blue23 <= c1_p23;
205
206 ---
207 else
208
209 -- B G B
210 -- G R G
211 ---+-----+-----+-----+
212 -- | p11 | p12 | p13 |
213 -- +-----+-----+-----+
214 -- | p21 | p22 | p23 |
215 -- +-----+-----+-----+
216 ------for VGA#1--------------------------LEFT
217 c1_red22 <= c1_p22;
218 c1_green22 <= c1_p21;
219 c1_blue22 <= c1_p11;
220
221 c1_red23 <= c1_p22;
222 c1_green23 <= c1_p23;
223 c1_blue23 <= c1_p13;
224
225 ---
226 end if;
227 end if;
228 end if;
229 end process;
230
231 process(CLOCK)
232 begin
233 if (CLOCK'event and CLOCK = '0') then
234 we3 <= "0";
235 we4 <= "0";
236 if(pix_flag = "0011") then
237 if(pix_addr(10) = '0') then
238 din3 <= c1_green23 & c1_green22; -- write to bank3
239 c1_green22_pre <= dout4(7 downto 0); -- read from bank4
240 c1_green23_pre <= dout4(15 downto 8);
241 else
242 din4 <= c1_green23 & c1_green22; -- write to bank4
243 c1_green22_pre <= dout3(7 downto 0); -- read from bank3
244 c1_green23_pre <= dout3(15 downto 8);
245 end if;

291

246 elsif(pix_flag2 = '1') then
247 if(pix_addr(10) = '0') then
248 we3 <= "1"; -- write to bank3
249 else
250 we4 <= "1"; -- write to bank4
251 end if;
252 end if;
253 end if;
254 end process;
255
256
257
258 process(clock)
259 variable a_c1, b_c1 : std_logic_vector(7 downto 0);
260 begin
261 if(clock'event and clock = '0') then
262 if(pix_flag = "0001") then
263 if(c1_green22_pre > c1_green23) then
264 if(c1_green23_pre > c1_green22) then
265 a_c1 := c1_green22_pre - c1_green23;
266 b_c1 := c1_green23_pre - c1_green22;
267 else
268 a_c1 := c1_green22_pre - c1_green22;
269 b_c1 := c1_green22 - c1_green23_pre;
270 end if;
271 else
272 if(c1_green23_pre > c1_green22) then
273 a_c1 := c1_green23 - c1_green22_pre;
274 b_c1 := c1_green23_pre - c1_green22;
275 else
276 a_c1 := c1_green23 - c1_green22_pre;
277 b_c1 := c1_green22 - c1_green23_pre;
278 end if;
279 end if;
280 edge <= a_c1 + b_c1;
281 elsif(pix_flag = "0000") then
282 if(threshold < edge) then
283 DATA_VGA1_G <= (others => '1');
284 DATA_VGA1_B <= (others => '1');
285 DATA_VGA1_R <= (others => '1');
286 else
287 DATA_VGA1_G <= (others => '0');
288 DATA_VGA1_B <= (others => '0');
289 DATA_VGA1_R <= (others => '0');
290 end if;
291 elsif pix_flag2 = '1' then
292 if(threshold < edge) then
293 DATA_VGA1_G <= (others => '1');
294 DATA_VGA1_B <= (others => '1');
295 DATA_VGA1_R <= (others => '1');
296 else
297 DATA_VGA1_G <= (others => '0');
298 DATA_VGA1_B <= (others => '0');
299 DATA_VGA1_R <= (others => '0');
300 end if;

292

301 end if;
302 end if;
303 end process;
304 end Behavioural;

293

VITA

Pil Woo (Peter) Chun

Objective

Dedicated to be an integral part of a progressive group that enables
me to demonstrate and exercise my expertises

Selected Qualification
 Familiarity with peripheral devices: memory – flash, sram and sdram, image

sensor – high-speed (200fps) and high-resolution (3M), transceiver – LVDS
(200MHz), CAMERA Link (2Gbit), USB and RS232, video standard – VGA
and XVGA

 Excellence in dealing with engineering related software: Microchip, Atmel
and Motorola ASM, MATLAB, SIMULINK, LABVIEW, PTDS (Photonic
Transmission Design Suite), PSPICE, Xilinx ISE, Cadence ORCAD, Allegro
(capture and layout) and ModelSim

 Fluent usage of computer and HDL languages: C, Java, C# and VHDL
 Professional Engineer of Ontario

294

Projects

2006-2008 FAST TRACK: High Frame Rate Stereovision
Tracking System

Funded by: MDA space missions, Ontario Centers of Excellence (OCE)
and CITO

 Investigated space-borne computer stereovision system for automated satellite
grasping and automated satellite docking for recent space robotic systems
developed at MDA Space Missions

 developed application specific (200 frames per second) stereo video sensors
with on-board preprocessing FPGA-based reconfigurable multi-stream
platform

 Implemented stereovision algorithms on the FPGA based computing platform

 Embedded CAMERA setting control on microchip microcontroller via USB
communication — i.e., FTDI

2005-2006 FPGA based Stream Processing Platform with Partial
reconfiguration Mechanism

Funded by: Unique Broadband Systems (UBS Limited), Ontario Centers
of Excellence (OCE) and CITO

 Developed the prototype of the platform for the new generation of
Multimedia, DVB (Digital Video Broadcasting) and DAB (Digital Audio
Broadcasting) systems

 Designed to explore the concept of a run-time reconfigurable FPGA by
utilizing on-chip resources and by allocating stream processing tasks operators
efficiently in the FPGA based multi-mode and multi-task applications.

 Implemented image sensor, memory and display controller on Xilinx Virtex-4
FPGA

 Embedded Flash controller on CPLD and USB communication via microchip
microcontroller

2002-2004 Adaptive Group Organized Reconfigurable
Architecture (AGORA) parallel Platform

Funded by: National Science Engineering Research Counsel (NSERC)

 Developed the partial reconfigurable mechanism for Xilinx Virtex-E FPGA
device

 Implemented SRAM based configuration stream loader to enable partial
reconfiguration via RS232 serial com. and Java programming

 Designed Hardware oriented operating system deployed in Xilinx Virtex
device

 Demonstrated the feasibility of partial reconfiguration through Live visual
acquisition and real-time display of the conveyed information

Employment

295

2004-present Ryerson University Toronto, Canada

Part-time Faculty member for ELE804 (Winter07) – course coordinator

 Enrollment 26 students

 Topics: monolithic integrated circuit analysis and designs including analog
multipliers, low noise op-amps, log amplifiers, oscillators, voltage regulators,
timer and waveform generators

 Taught 4th year electrical engineering students with emphasis on monolithic
integrated circuit analysis and design of practical Phase-Lock-Loops and
designed the project involving hardware construction and emulation of high-
speed communication channels using PLL components

Part-time Faculty member for EES512 (Spring/Summer06, Fall07,
Spring/Summer07 and Spring/Summer08)

 Enrollment: 70 to 90 students

 Topics: covers the basic concepts of charge, current, voltage and power and
static and transient analysis of R-L-C components

 Taught 3rd and 4th year engineering students with the topic that enables them
to be familiar with general electric R, L and C components and their
applications and aided students to encourage their participation by running
virtual classrooms and online tutorials

Part-time Faculty member for EES612 (Winter06)

 Enrollment: 138 students

 Topics: covers the various electronics devices and their applications such as
op-amps, transistor, diode and principle operations of electric machines such
as generators and motors

 Taught 3rd and 4th year engineering students with the goal of leading them into
design and operation principles of electronic devices and electric machines
and prepared the DUMMY user’s guides for the laboratory experiments

Part-time Faculty member for EES/COE538 (Fall04 and Fall05)

 Enrollment: 70 to 85 students

 Topics: Microprocessor architecture and structure, I/O serial/parallel
communication with/without handshaking, Timing, Interrupts and Exceptions,
Internal structure and design of peripheral devices, Memory system design
analysis

 Instructed 3rd year students with emphasis on software and hardware
interfacing, provided the detail implementation examples of M68HC11
architecture and structure and assisted students with the usage of lab firmware
development tools and guided them to understand hardware and software
aspects of the embedded system

May 2006 MDA Space mission CorporationBrampton, Canada

Hardware Engineer – contractor

 Reported to Piotr Jasiobedzki

296

 Evaluated the Alpha-Data card to restore its previous operational status and
developed a test suite for its associated memory modules with Xilinx-II device

1999-2001 Nortel (Advance Design Tech.) Kanata, Canada

Researcher

 Investigated on new advance technology such as SONET FEC using RS
en/decoder, Electro-absorption (EA) modular, , EDFA amplifier, optical
MEM switches and Thermo Electric Cooler (TEC) laser

 Involved in link budget engineering process that requires communication with
vendors and testing various electrical/optical components

 Characterized optical tests for 10G Ethernet model involving Optera Metro
8600, HP BERT system and Oki TPG generator with GEthernet framing
capability

Education

2004-2009 Ryerson University Toronto, Canada

 Doctor of Philosophy candidate in Electrical and Computer Eng.

2002-2004 Ryerson University Toronto, Canada

 Master of Science in Electrical and Computer Engineering

1997-2002 Ryerson University Toronto, Canada

 Bachelor of Electrical and Computer Engineering with honor

Scholarships and Awards

Ryerson Entrance (1997), Jack Roy Longstaffe Memorial (1998),
NSERCUSRA (2002), Graduate school scholarship (2003-2007), OGSA
(2003), NSERC (2005-2008), OGS (2005), Winners of OCE professional
Outreach Award (08), three times 1st prize winner on SVAR 05, 07 and 08
conferences

Published papers

Journal

 Macro-Programmable Reconfigurable Stream Processor for Collaborative
Manufacturing Systems”, - accepted for publication in the Journal of
Intelligent Manufacturing (JIM), accepted in August 30, 2007

 Laser thermal therapy: utility of interstitial fluence monitoring for locating
optical sensors, Phys. Med. Biol. 46 (2001) pp.91-96

Conferences

 Lowering Power Consumption using Run-Time Reconfiguration for Stereo
Rectification, in Proc. of Canadian Conference on Electrical and Computer
Engineering – CCECE 2008, Niagara Falls, Canada, May 4-7, 2008

 Implementing a Cost-effective Run-time Reconfigurable System for Stream
Applications, - in Proc. of 2-nd International Conference on Electrical
Engineering – ICEE2008, Lahore, Pakistan, March 25-26, 2008

297

 Improving Cost-Effectiveness using a Micro-Level Static Architecture on
Stream Processors, - in Proc. of 4-th International Symposium on Electronic
Design, Test & Application – DELTA2008, Hong-Kong, Jan. 23-25, 2008

 Reconfigurable Macro-Processor – Cost-Efficient Platform for Rapid
Prototyping, FAIM2007 – Proc. of the 17-th International Conference on
Flexible Automation and Intelligent Manufacturing, Philadelphia, USA, June
2007,Vol. 2, pp. 781-788

 A Cost-Efficient Reconfigurable Video-Processing Platform for Machine
Vision, AMT2007- The 7-th International Workshop on Advanced
Manufacturing Technologies, London, Canada, June 2007, p.44

 A Framework for a Partially Reconfigurable System in a Parallel Multi-
tasking Environment, FPL 2006 - 16th International Conference on Field
Programmable Logic and Applications, Madrid, Spain, August 28-30, 2006

 Uniform Reconfigurable Processing Module for Design and Manufacturing
Integration, - in Proceedings of the Fifth International Workshop on Advanced
Manufacturing Technologies – AMT2005, London, Canada, May 2005, pp.
77-82

 Reconfigurable Multiprocessor with Self-optimizing Self-assembling and
Self-restoring Micro-architecture, WARFP05 – Workshop on Architecture
Research using FPGA Platforms –in conjunction with HPCA-11, San
Francisco, Feb. 13, 2005

 Laser thermal therapy: Utility of interstitial fluence monitoring for locating
optical sensors, CDROM Proc. World Congress on Medical Physics and
Biomedical Engineering (also 22nd Annual International Conference of the
IEEE Eng. Med. Biol. Soc.)

Workshops

 Closed loop high speed design seminar, mentor graphics, Mississauga,
Canada, November, 2007

 High-speed interconnect design with Xilinx Virtex-5: XpressTrack series,
December, 2007, nu horizons electronics, Brampton, Canada

 Business Development and Entrepreneurship Core Course, OCE Value Added
Personnel (VAP) initiative, Mchill Business School, August, 2007

 Multi-stream Adaptable Reconfigurable System, SVAR 2007 (Space Vision
and Advanced Robotics), MDA corporation

 Project Management Core Course, OCE Value Added Personnel (VAP)
initiative, Queen Business School, March, 2007

 Dynamically Reconfigurable Network-On-Chip, Ryerson ELEC colloquium,
March, 2007

 Real-time Multi-video Stream Processing System with Dynamic Partial
Reconfiguration, TEXPO2006

 Fast Track: A High Frame Rate Stereovision Tracking System, SVAR 2006
(Space Vision and Advanced Robotics), MDA

298

 Multi-task Parallel Video-stream Processor with Self-Assembling Micro-
architecture, SVAR 2004 (Space Vision and Advanced Robotics), MD
Robotics

 Implementation of Partially Reconfigurable Computing Platform for Multi-
task Video-Processing Applications, SVAR 2003 (Space Vision and Advanced
Robotics), MD Robotics

