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Abstract 

RFID Security Protocols Simulation and Prototyping 

©Xiaohui Yu, 2011 

Master of Applied Science 

Electrical and Computer Engineering 

Ryerson University 
 

As Radio Frequency Identification (RFID) technology achieves commercial success, its privacy 

and security issues are becoming a barrier to limit its potential for future state of the art 

applications. In this report, we present an investigation of the past and current research related to 

RFID security algorithms and protocols for product authentication. We also present a novel 

RFID security protocol based on eXtended Tiny Encryption Algorithm (XTEA). Analysis of the 

security and privacy level of our proposed protocol is performed using SystemC based modeling 

and different attack models are simulated to show that the protocol is robust and safe against 

major attacks. Furthermore, to evaluate the functionality and workability of the protocol in real 

application, prototypes of these attack models are implemented on FPGA platform. We also 

compare our proposed protocol technique with similar protocols presented in the near past that 

also use symmetric key algorithms to verify and demostrate main advantages of our protocol in 

terms of security and performance. 

 

 

 



iv 

 

 

 
Acknowledgements 

 
First and foremost I want to greatly thank my supervisor Dr. Gul N. Khan for his supervision and 

guidance throughout my research. His inspiration and resource has made this work exciting and 

fruitaful. His direction allowed me to consentrate on the goal without straying away from it. I 

highly appreciate his contributions of time, ideas and invaluable feedbacks. Without his patience 

and enthusiasm, I definately could not have made such a progress.  

I would also like to express my innermost gratitude to my superisor Dr. Fei Yuan for his heartfelt 

support ever since the beginning of my graduate study. I am deeply grateful to him for allowing 

me to achieve further goals in this program. His considerate help and advice strongly encouraged 

me at critical moments in this work and his spirit of integrity and commitment greatly motivated 

me throughout my graduate study.  

My time in the Microsystems Research lab was made enjoyable due to a group of labmates that 

has become a part of my life. My knowledge definately was enriched by the warm discussion 

and information sharing among group members. I want to sincerely thank all of them for their 

help when I encountered difficulty and needed their support.  

My special thanks go to all my family members. Without their love and understanding, this work 

could never have been completed. I feel proud to have their strong support beside me whenever I 

need strength to move forward. Their happiness and joy is the best reward to me. 



v 

 

 

Table of Contents 

1.  Introduction        1 

   1.1    Background        1 

   1.2    The RFID Security       5 

   1.3    Security and Authentication Approaches    6 

   1.4    Motivation        7 

   1.5    Objective         8 

  1.6    Contribution of This Work      9 

2.  RFID Security and Encryption Techniques   10 

  2.1    RFID Security Attacks       10 

   2.2    Cryptographic Algorithms      11 

            2.2.1 Unkeyed Algorithms      12 

             2.2.2 Symmetric Key Algorithms     15 

            2.2.3 Asymmetric Key Algorithms     16 

   2.3    Symmetric Key Encryption and Decryption Algorithms  17 

            2.3.1 Advanced Encryption Standard     18 

           2.3.2 Tiny Encryption Algorithm     22 

            2.3.3 Extended Tiny Encryption Algorithm    24 

  2.4    Related Works of RFID Security Protocols    26 

 

 



vi 

 

3.   Novel RFID Authentication Key Management Protocol 37 

  3.1    System Assumptions       37 

  3.2    Robust RFID Authentication Key Management Protocol Design 38 

  3.3    Security Analysis       41 

4.   Modeling and Simulation      44 

  4.1    Simulation of Protocol Using SystemC     44 

  4.2    Cloning Attack Model       47 

  4.3    Replay Attack Model       49 

  4.4    Man-in-the-Middle Attack Model     52 

  4.5    Denial-of-Service Attack Model     54 

   4.6    Active Scanning Attack Model      55 

5.   Protocol Analysis by Prototyping     58 

  5.1   RFID Security Protocol Experimental Analysis System  58 

  5.2    The Active Scanning Attack Model     59 

  5.3    The Cloning Attack Model      61 

  5.4    The Replay Attack Model      64 

  5.5    The Denial-of-Service Attack Model     67 

  5.6    The Man-in-the-Middle Attack Model     70 

6.   Performance and Security Analysis     73 

  6.1    Security Level Analysis       73 

  6.2    Performance Analysis       78 

            6.2.1 Code Size        78 

             6.2.2 Communication Cost      82 



vii 

 

            6.2.3 Number of Clock Cycles      83 

            6.2.4 Cipher        91 

            6.2.5 Scalability        93 

7.   Conclusion and Future Works     95 

Reference           98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

 

List of Tables 

2.1     Notation  used in Toiruul and Lee’s Protocol      31 

2.2     Notation  used in Kim et al.’s Protocol       34  

5.1   Active Scanning Attack Messages Exchanged     61 

5.2   Cloning Attack Messages Exchanged       63 

5.3   Replay Attack Messages Exchanged       66 

5.4   Denial-of-Service Attack Messages Exchanged     69 

5.5   Man-in-the-Middle Attack Messages Exchanged     72 

6.1 Security Level Comparison        77 

6.2 Code Size Comparison          81 

6.3 Communication Cost Comparison       82 

6.4 Timestamp Difference Measured in Our Protocol     85 

6.5 Timestamp Difference Measured in Toiruul and Lee’s Protocol   87 

6.6 Timestamp Difference Measured in Kim et al.’s Protocol    89 

6.7 Number of Clock Cycles Comparison      90 

6.8 Cipher Usage Comparison        91 

6.9 Scalability Analysis         94 

 

 

 



ix 

 

 

List of Figures 

1.1 Basic Components of a RFID System       2 

2.1 Symmetric Key Algorithm        15 

2.2 Asymmetric Key Algorithm        17 

2.3 AES Encryption         19 

2.4 AddRoundKey Operation        20 

2.5 S-Box Operation         20 

2.6 ShiftRows Operation         21 

2.7 AES Decryption         22 

2.8 One Cycle of Tiny Encryption Algorithm      24 

2.9  One Cycle of eXtended Tiny Encryption Algorithm     26 

2.10  Hash-Locking Protocol        27 

2.11  Randomized Hash-Locking Protocol       27 

2.12  Hash-chain Protocol         28 

2.13 Improved Security Solution        29 

2.14 Toiruul and Lee’s Protocol        32 

2.15 Kim et al.’s Protocol         35 

3.1  Novel XTEA Based RFID Security Protocol      38 

3.2 Key Update Message Format        39 

3.3 Key Update Acknowledgement  Format      40 

4.1 SystemC Model of Proposed Protocol      45 



x 

 

4.2 State Diagram of the Reader        45  

4.3 State Diagram of the Tag        46  

4.4 SystemC Modeling and Simulation of the Proposed Protocol   47 

4.5 Cloning Attack Model        48 

4.6 Cloning Attack  Model Simulation       49 

4.7 Replay Attack Model         50 

4.8 Replay Attack Model Simulation       51 

4.9 Man-in-the-Middle Attack Model       52 

4.10  Man-in-the-Middle Attack Model Simulation     53 

4.11  Denial-of-Service Attack Model       54 

4.12  Denial-of-Service Attack Model Simulation      55  

4.13  Active Scanning Attack Model       56 

4.14  Active Scanning Attack Model Simulation      56 

5.1 Active Scanning Attack Model Implementation using Nios-II System  59 

5.2  Active Scanning Attacker Module       60 

5.3  Cloning Attack Model Implementation using Nios-II System   62 

5.4  Reader Module for the Cloning Attack Model     63 

5.5  Replay Attack Model Implementation using Nios-II System    64 

5.6  Attacker Module for the Replay Attack Model     65 

5.7   Denial-of-Service Attack Model Implementation using Nios-II System  67 

5.8  Attacker Module for the Denial-of-Service Attack Model    68 

5.9 Man-in-the-Middle Attack Model Implementation using Nios-II System  70 

5.10  Attacker Module for the Man-in-the-Middle Attack Model    71 



xi 

 

6.1   Toiruul and Lee’s protocol Simulation      74 

6.2    Simulation of Denial-of-Service Attack in Toiruul and Lee’s Protocol  75 

6.3    Simulation of Denial-of-Service Attack in Kim et al.’s Protocol   76 

6.4    Nios-II System with Reader and Tag CPUs      79 

6.5    Compilation of the Reader Code       80 

6.6    Compilation of the Tag Code        81 

6.7    Reader System with Timestamp Timer      83 

6.8    Timestamp Difference Measured in our Protocol     84 

6.9    Timestamp Difference in Our Protocol      86 

6.10    Timestamp Difference Measured in Toiruul and Lee’s Protocol   87 

6.11    Timestamp Difference in Toiruul and Lee’s Protocol    88 

6.12    Timestamp Difference Measured in Kim et al.’s Protocol    89 

6.13 Timestamp Difference in Kim et al.’s Protocol     90 

 

 

 

 

 

 



1 

 

Chapter 1 

Introduction 

1.1 Background 

The “identification friend-or-foe” (IFF) cryptographic system for military aircraft command and 

control used during the second world war II is commonly regarded as the first Radio Frequency 

Identification (RFID) application [1]. However, the first patent of modern RFID transponder was 

submitted by Cardullo and Parks and published in 1973 [2]. The initial device was passive, 

powered by the interrogating signal and with a memory of 16 bits. 

The popularity of this technology has been grown tremendously during recent years and 

nowadays, RFID is widely used and can be found almost everywhere. RFID systems are 

deployed widely in many applications including automation, manufacturing, logistics control and 

asset tracking. The fundamental trend of ubiquitous computing is to embed tiny advanced 

electronic device into the environment and make data processing automatic. As compared with 

other automatic data identification techniques, RFID enjoys numerous advantages such as longer 

reading range, larger storage capacity, higher data throughput, more rewritable capability and 

less human intervention [3]. Its support of multiple reading and non-line-of-sight data capture 

makes it useful in many applications. Even when working in adverse and harsh environments, 

tags are less sensitive to ambient conditions and produce robust and reliable performance. 
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A typical RFID system is shown in the Figure 1.1.  

 

Figure 1.1 Basic Components of a RFID System (Courtesy www.rfid-handbook.de ) 

Every RFID application contains three basic components: tag (transponder), reader, and back-

end database application or server. Because RFID systems radiate electromagnetic waves, other 

radio services might be disrupted or impaired by their operation if the frequency and power are 

not controlled properly. Therefore, it is only possible to use special frequency ranges that are 

reserved for industrial, scientific or medical applications or for short range devices. They are 

classified worldwide as Industrial-Scientific-Medical (ISM) frequency ranges and they can also 

be utilized in RFID applications [4]. Tags can be classified into two categories: the active and the 

passive [5]. Active tags must be connected to a powered infrastructure or use energy stored in an 

integrated battery, while the passive ones obtain power from readers. In terms of passive tag 

design, there are two fundamentally different methods to transfer power from the reader to the 

tag: magnetic induction and electromagnetic wave capture. Generally, active tags are more 

expensive due to the requirement of extra power source. 
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Each tag has a unique number that is often called the tag identification (TID). When the reader 

queries the tag, the tag responds with its identification number to the reader and then the reader 

forwards it to the back-end server. If the TID is verified, the back-end server processes the data 

and notifies the reader if the reading process succeeds or fails.  

As RFID technology starts to achieve more commercial success, its security and privacy issues 

are becoming major concerns to the public and might become a great obstacle for its future 

development if these risks are not addressed properly. After all, readers have to communicate 

with tags through an unsecured radio channel, which is vulnerable to different kinds of attacks. A 

strong attacker is capable of intercepting, recording, analyzing, blocking and modifying the 

signals over the air. The wide deployment of RFID tags also implies that using this technology 

might bring unintended risks, because unauthorized data collection may happen. 

Currently, a number of standards for RFID systems coexist. Most important standards include 

ISO 11784-5 for animal identification, ISO 15693 for vicinity card and ISO14443 for high-end 

RFID tags used as contact-less smartcards. EPC Global is a joint venture between European 

Article Number (EAN) international in Europe and Uniform Commercial Code (UCC) in USA, 

and currently it is responsible for the standardization of present barcode systems. The 

organization proposed electronic product code (EPC) Class-1 Generation-2 (C1G2) standard tags 

to replace or complement the existing barcode technology [6]. Normally, RFID tags have to be 

low-cost and highly efficient. It is estimated that the total cost per tag should not be more than 

five cents [7]. However, very limited security features can be deployed on a C1G2 tag because it 

only supports functions used in passive tags such as anti-collision, 16-bit cyclic redundancy code 

(CRC) checksum, 10-bit pseudo-random number generator (PRNG), and a simple kill command 
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to ensure user privacy [8]. If a reader wishes to permanently disable a tag, it must send a kill 

command to the tag and prove its legitimacy via a 32-bit PIN number. Although this simple 

approach solves the privacy issue so that the user is not prone to be tracked anymore, the benefit 

of using RFID to update and analyze data is lost.  

To find better solutions, numerous RFID security authentication proposals have been put 

forwarded and hundreds of papers have been published during recent years, but designing a good 

protocol to meet the requirements of a secure RFID system still remains challenging. An 

essential factor that causes the difficulty is the dynamic range of technologies RFID combines 

with, while the other reason is the wide area of its application. Juels’s work has provided an in-

depth and valuable analysis of this reality [7]. 

Active tags have more power source and storage memory than passive ones and therefore 

additional privacy features can be easily implemented on them to achieve strong security level. 

Unfortunately, due to the requirements of lower cost and less maintenance effort, most RFID 

tags are still passive nowadays and come with extremely limited computational resource and 

memory space. As a result, to achieve the desired level of security, any practical design of RFID 

protocol has to take into account the constraints and balance between the level of security, cost 

and performance. 
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1.2 The RFID Security  

There are a number of security concerns in communication systems. Manfred and others 

summarize that a secure communication system should achieve following objectives [9]: 

i) Confidentiality: Information is unreadable for adversaries. Only authorized party is able to 

interpret the information. 

ii) Authentication: A party is able to be sure that the information received is from the source it is 

claimed to be. 

iii) Integrity: It is assured that the message is not modified after being transmitted. 

iv) Non-Repudiation: It can prove that the sender has actually sent out the message and the 

receiver has actually received the message. 

v) Access Control: It refers to the capability to restrict a system and control the access to it.  

vi) Availability: It means that whenever it is needed, the system is available. The system is 

guarded from loss of service and reduction in availability.  

Since there is a lack of categorization of security level, Schechter proposed the concept of Cost 

To Break (CTB) as the measurement of security level [10]. He suggests a cryptographer should 

estimate the cost for an adversary to break a system by purchasing the latest and the cheapest 

tools and using the best known techniques. As an example, a system that takes an adversary not 

less than $1000 to break is secure enough to protect an item of $100 in value. In addition, 

another matrix of security level in a system is what punishment an attacker will get if it is caught 

by the security mechanism, and how likely hacking activities can be detected [11]. Apparently, 

more stringent punishment makes intruders more hesitant to launch attacks. 
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In order to define the concept of secure and privacy, A. Juels suggests that a formal security 

model that characterizes the capabilities of potential adversaries should be constructed [7]. As an 

example to compare with, in a security model for the Internet an adversary can have access to a 

server at any time, because the server have to respond to the queries coming from around the 

world all the time. On the other hand, around-the-clock access by attackers to RFID tags is an 

assumption that is too strong. An attacker has to come to a tag’s proximity to transmit and 

receive messages and thus it is only a sporadic event. In another work, a “minimalist” security 

model is proposed such that an adversary comes into scanning range of a tag on a limited rate 

basis [12]. In the model, there is a cap on the number of times that an attacker may scan a real 

tag and impersonate a valid reader. Once the limit is reached, the tag should continue to interact 

with a legitimate reader.  

1.3 Security and Authentication Approaches 

RFID technology is very helpful in authenticating genuine products. Lehtonen et al. define 

authentication as “Product authentication = Identification + Verification of the Claimed Identity” 

[13]. There are many different ways to achieve authentication using RFID technology. In another 

work, Lehtonen et al. classify in details the approaches to authenticate RFID-based product [14]. 

Product authentication can be based on the authentication factors of what the product is (object-

specific features-based authentication), what the product has (tag authentication) and where the 

product is (location-based authentication). 

The object-specific features based authentication approach was proposed by Nochta et al. and 

their proposal is to make products hard to be cloned [15]. In this approach, the information about 

physical or chemical features which are unique to a particular product (such as weight, electric 
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resistance, geometrics, and a serial number printed on the product itself) are stored on its tag. 

However, the cost of checking each product is generally very high.  

Tag authentication approach takes advantages of tag security features that are hard to be cloned. 

General method is that a reader, through a challenge-response protocol, checks if its tag knows a 

secret shared by the authentication database in the back-end server. Normally, the secret should 

not be revealed in plain messages so that attackers may not be able to learn the secret. 

The third approach to authenticate products is based on their locations. In such a system, the 

product carries only an identifier, whereas the back-end server registers all the information about 

the locations of genuine products. If the track and trace records show that a genuine product is at 

one place and in another place another product with the same identifier is found, it can be 

concluded that the second product is a fake one. Such an approach put the complexity of the 

system into the back-end server.  

So far, the second approach appears to be the most economic way to enforce security in RFID 

systems. How to use robust authentication protocols to protect critical messages has drawn 

attention from researchers. As technologies are evolving and both the security systems and the 

potential adversaries are becoming more sophisticated, designing and implementing strong RFID 

authentication schemes will continue to be dynamic and challenging. 

1.4 Motivation  

Although, numerous RFID security authentication proposals have been put forward recently, 

very few of them address the security issues successfully and provide strong security level. A 

basic assumption made in the past works is that strong encryption algorithms such as symmetric 
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key ciphers are beyond considerations for passive tags. For example, in Juels’ early work, it is 

concluded that a basic passive tag cannot contain Advanced Encryption Standard (AES) 

algorithm, which is a symmetric key cipher [7]. However, a number of recent works have already 

presented efficient implementation of AES on the latest Complementary Metal Oxide 

Semiconductor (CMOS) technology [36, 51 and 52]. As CMOS technology continues to 

improve, symmetric key ciphers will become more and more common in robust RFID security 

solutions. However, how the security keys should be managed and handled safely and efficiently 

in the context of limited tag hardware resource still need more investigation and results should be 

proved and verified with experimental analysis and performance evaluation.  

1.5 Objective 

Although there are many considerations in a practical RFID security system, the practical 

requirements of any RFID protocol fall into only two basic categories:  

i) Strong security level  

ii) High performance level.  

In this work, we will select a lightweight symmetric key algorithm suitable for the passive RFID 

application to provide desired security level. Based on that, we propose a protocol in which 

messages are securely handled so that hackers cannot obtain secrets easily. Furthermore, secrets 

must be dynamically updated as it is not safe to assume that secrets can never be disclosed.  

Instead of relying only on theoretical analysis, the practical approach in this work will provide 

experimental analysis on simulation and prototyping. In order to demonstrate the advantages of 
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our proposal, security and performance levels of our protocol must be compared with similar 

works that also use symmetric key algorithms.  

1.6 Contribution of This Work 

In this work, we propose a novel RFID security key management protocol based on symmetric 

key algorithm eXtended Tiny Encryption Algorithm (XTEA). We summarize our contributions 

as follows: 

i) First of all, we analyze related works regarding RFID security algorithms and protocols and 

the issues of existing solutions. We review some recent development in RFID hardware 

resource for security solutions. 

ii) Then, we propose a novel RFID authentication key management protocol based on XTEA. 

Key management is handled efficiently so that one sub-key is dynamically updated in every 

session. 

iii) The proposed protocol is analyzed using SystemC based modeling and we present the 

simulation and modeling results of different types of attacks on the protocol to evaluate its 

security and privacy level.  

iv) To evaluate the functionality and workability in real application, prototypes of these models 

are implemented on Altera Field-Programmable Gate Array (FPGA) platform using multi-

processor architecture.  
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Chapter 2 

RFID Security and Encryption Techniques  

In the following sections, we discuss those research efforts that have inspired our work. First of 

all, we investigate different types of attacks that may happen in a RFID system. A look into the 

cryptographic primitives that can be applied in RFID application will follow. Furthermore, we 

will discuss some lightweight symmetric key algorithms proposed to be used in RFID systems. 

Finally, the last portion of this chapter also reviews and analyzes some related RFID protocols.  

2.1 RFID Security Attacks  

As potential adversaries can attack a RFID system in many different ways, a secure protocol 

should prevent following attacks [9]: 

i) Active Scanning Attack: An adversary actively queries a genuine tag to get critical information 

without the authorization of tag’s owner. 

ii) Cloning Attack: Cloning attack means the duplication of security features in a system such 

that an attacker is likely to pass authentication inspection.  

iii) Replay Attack: An attacker records the response of a tag and uses it as the message to replay 

when it is queried, though the message itself does not reveal the critical secrets of the tag. 

iv) Man-in-the-middle Attack: It is a form of attack where the attacker acts like a reader to a tag 

as well as a tag to a reader.  
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v) Denial-of-service Attack: It is a type of attack caused by adversary to block the message 

exchange between the reader and the tag. The purpose of doing this is to desynchronize the 

reader and its tag.  

vi) Forward Security: Assuming that all the secrets of a tag are compromised by an adversary at 

present, the security of past sessions is still guaranteed.  

vii) Backward Security: Assuming that all the secrets of a tag are compromised by an adversary 

at present, backward security protects the security of future sessions. 

 

2.2 Cryptographic Algorithms 

To achieve high level security and prevent the threats as mentioned above, appropriate 

cryptographic algorithms must be applied in a communication system. If a series of algorithms 

must be used in a well-defined way, it is referred to as a protocol [9]. A protocol consists of the 

cryptographic algorithms that make original messages unreadable to adversaries and the process 

of how the messages are exchanged between different parties. Essentially, these two factors are 

equally important in a security solution. 

Cryptographic algorithms are classified as unkeyed algorithms, symmetric key algorithms and 

asymmetric key algorithms [9]. Unkeyed algorithms are not based on any keys in their 

operations. Symmetric key algorithms use the same key for encryption and decryption, whereas 

asymmetric key algorithms use a public key for encryption and a private key for decryption. 
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2.2.1 Unkeyed Algorithms 

Unkeyed algorithms can be briefly separated into two categories: hash functions and random 

number generators. 

A hash function is a computationally efficient function y = h(x) with the following two 

properties [16]: 

i) Compression – The hash function maps a string of arbitrary length to a sting of fixed length.  

ii) Ease of computation – Given a hash function h(x) and an input x, it is easy to compute h(x). 

For a good hash function to be used in cryptographic tools, a few requirements have to be 

satisfied. Firstly, the hash function must be a one way function and secondly, the function must 

be collision resistant. The first condition implies that there is no simple way and is 

computationally infeasible to reverse a good hash function. Since the number of input for the 

function is infinite while the output length is fixed, collision at the output is unavoidable. 

However, there should not be any simple method to find a pair of input x1 and x2 such that h(x1) 

= h(x2). Practically, the function should be a random mapping, which implies that distinguishing 

a hash function from a random mapping is computationally infeasible. Hash functions are very 

important primitives in cryptography. They are used when fixed length output is required instead 

of arbitrary length results.  

Unkeyed hash functions are often called Modification Detection Codes (MDC) because of their 

capability to detect whether an original message is altered. Well-known MDCs include Message-

Digest Algorithm 5 (MD5) and Secure Hash Algorithm 1 (SHA-1). MD5 is designed by Ron 

Rivest in 1992 to replace the earlier design of Message-Digest Algorithm 4 (MD4) [17]. It is 
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simple to implement and provides 128-bit message digest of an arbitrary length input. It is 

intended for applications where a large file must be compressed. However, it has been shown 

that MD5 is not as collision resistant as it is claimed to be [18]. Therefore, it is no longer secure 

enough to be applied in protocols, such as the Secure Socket Layer (SSL) protocol for 

communications over Internet. SHA-1 is designed by the National Security Agency (NSA) and 

published by the National Institute of Standards and Technology (NIST). SHA-1 is very similar 

to its predecessor Secure Hash Algorithm 0 (SHA-0), but it corrects a significant error found in 

SHA-0 that collision can be identified by using two differing 2048 bit files. It is the most widely 

used among the existing SHA hash functions. However, Wang et al. found its security flaws and 

attacks were announced [19]. It is shown in their work that collisions of SHA-1 can be found 

with complexity less than 269 hash operations on the full 80 step SHA-1.  

NIST published four additional hash functions in SHA-2 family, named after their digest length 

in bits, SHA-224, SHA-256, SHA-384, and SHA-512. Collectively these four algorithms are 

called SHA-2. The attacks found in SHA-1 are not extended to SHA-2. A new standard, 

specifically SHA-3 is currently under development. An NIST held public competition is 

underway and the new standard for SHA-3 is expected to be announced in 2012 [20]. Finding a 

good hash function is a challenging and on-going research area. 

Another important type of unkeyed algorithms in cryptography is random number generators. 

Ideal source of random number should be based on physical means similar to coin flipping and 

dice rolling. Most random number generators are based on software algorithm. Since pure 

software algorithms are deterministic, they are not completely random. Therefore, these random 

number generators are called pseudo-random number generators [9]. 
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Physical Unclonable Function (PUF) is another type of random number generators. A PUF is a 

function embedded in a physical structure that is easy to evaluate but hard to characterize. The 

first PUF device is invented by Naccache and Fremanteau [21]. Ranasinghe et al. presented an 

interesting design based on metastability and thermal noise and a PUF random number generator 

circuit was implemented using CMOS 0.18 µm technology [22]. It is proved that true random 

number source based on hardware method is feasible on standard CMOS technology. Recent 

literatures mostly focus on four types of PUF design [23]:  

    i) Ring Oscillator based PUFs  

    ii) Arbiter PUFs  

    iii) Memory based PUFs  

    iv) Glitch Counter-based PUFs 

Unkeyed algorithms are important cryptography tools and are widely used in RFID security 

systems. As compared to symmetric key algorithms and asymmetric key algorithms, they require 

less hardware resource for implementation. 
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2.2.2 Symmetric Key Algorithms 

Symmetric key algorithm is a system in which the sender and the receiver of a message share a 

common private key for encryption and decryption.  

A system based on this type of algorithms is described in Figure 2.1. 

 

Figure 2.1 Symmetric Key Algorithm 

 

In this cryptographic system, a sender A intends to transmit a confidential message to a receiver 

B through an unsecured channel without allowing any unauthorized party, such as an attacker, to 

understand the meaning. In order to achieve this goal, A and B agree to use a secret key for 

encryption and decryption. The private key has to be distributed to A and B through a secured 

channel. A uses an encryption algorithm to encrypt the message using the private key. Although 

the message is unreadable to adversaries, B is able to decrypt the message using the same private 

key. Symmetric key algorithms are simple and fast, but they have a drawback that the two parties 

must exchange the key in a secure way. As for a good symmetric key algorithm, it is 

computationally infeasible to recover the cipher text without knowing the key. 
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Symmetric key algorithms can be divided into block ciphers and stream ciphers. Block ciphers 

divides the message into fixed size blocks. Each block is transformed into a block of cipher text 

of the same length. The fixed length of the block is called the block size [9]. Decryption is 

performed using the same secret key. Typical block ciphers include Data Encryption Standard 

(DES), Advanced Encryption Standard (AES), Tiny Encryption Algorithm (TEA) and eXtended 

Tiny Encryption Algorithm (XTEA) etc. 

Unlike block ciphers, stream ciphers operate on smaller units of data, such as bits [16]. A stream 

cipher generates what is called a keystream (a stream of random bits used as a key). Encryption 

is performed using the keystream to combine with the information that the sender needs to 

transmit. One example of stream cipher is Rivest Cipher 4 (RC4), which is designed by Rivest 

[24]. It is widely used in many protocols, such as Secure Socket Layer (SSL) and TLS (Transport 

Layer Security).  

2.2.3Asymmetric Key Algorithms  

Asymmetric key algorithms also referred to as public-key encryption algorithms assume that 

there exists a key source for a sender to obtain an authentic copy of the receiver’s public key 

[16]. It is also assumed that the receiver owns a private key which is abstained in a secure way. 

For a receiver, its public and private keys are normally different and not related. A system based 

on asymmetric key algorithm is shown in Figure 2.2. When A needs to send a message to B, it 

has to obtain B’s public key from the key source at first. Then the message is encrypted using the 

public key and is sent to B. Upon receiving the message, B decrypts it using its private key. 

Without knowing the private key, an adversary is not able to decrypt the message sent to B 
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through the communication channel.  Despite the fact that the public key is available to 

everyone, it cannot be utilized for decryption. 

 

Figure 2.2 Asymmetric Key Algorithm 

There are many techniques by which authentic public keys are distributed, such as exchanging 

keys over a trusted channel, using a trusted public file, using an on-line trusted server or using an 

off-line server and certificates. Public-key encryption schemes normally are substantially slower 

than symmetric key encryption algorithms [16]. Therefore, they are most commonly used to 

transport keys subsequently used for bulk data encryption by symmetric algorithms or to encrypt 

small data items such as credit card numbers or PIN number. Major examples of asymmetric key 

algorithms include Data Security Standard (DSS) and Rivest-Shamir-Adelman (RSA). 

2.3 Symmetric Key Encryption and Decryption Algorithms 

In the past, it is generally believed that symmetrical key algorithms are very power consuming, 

thus not suitable for traditional RFID technology. However, with the improvement of CMOS 

technologies, some lightweight symmetrical key algorithms have shown great potentials to be 

implemented in next generation passive tags. 
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2.3.1 Advanced Encryption Standard 

Advanced Encryption Standard (AES) is a symmetric key encryption and decryption algorithm 

that attracts a great deal of attention in RFID applications. It was first published by the National 

Institute of Standards and Technology (NIST) in 2001 to replace the Data Encryption Standard 

(DES) [25]. The algorithm was selected among fifteen qualifying candidates based on their 

security, performance and algorithm characteristics. The winner algorithm is called Rijndael 

designed by Daemen and Rijmen [26]. It is a symmetric cipher that can process 128-bit data 

blocks, using cipher keys with lengths of 128, 192, and 256 bits.  

Figure 2.3 shows the encryption process of AES algorithm. Generally, there are four major 

operations involved (AddRoundKey, SubBytes, ShiftRows and MixColumns). All the operations 

in the block diagram are performed on a two-dimensional array of bytes that is called state. A 

state can be regarded as a rectangular array of bytes consisting of four rows and a number of 

columns defined by the block size in bytes divided by four. For example, a 128-bit block can be 

depicted as a state of four rows by four columns. Each round of operation is based on a round 

key derived from the encryption key. The number of rounds is dependent on the key size. For 

AES-128, the key length is 128-bits and the number of rounds is 10. The number of rounds for 

AES-192 and AES-256 are 12 and 14 respectively.  
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Figure 2.3 AES Encryption  

AddRoundKey operation combines a 128-bit state with a 128-bit round key using exclusive-or 

operation. The operation of this stage is described in Figure 2.4, where the input state is A and 

the output state is B. State B is obtained by exclusive-oring corresponding bytes in the state A 

and the round key K that are derived from the cipher key using a key expansion routine known as 

Rijndael's key schedule.  
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Figure 2.4 AddRoundKey Operation 

SubBytes is an operation that substitutes each byte of a state. It is non-linear and sometimes the 

transformation is called S-Box. It is often implemented as a look-up table. Figure 2.5 illustrates 

the effect on the state.  

 

Figure 2.5 S-Box Operation 
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ShiftRows is a cyclic shift operation of the bytes in the rows. The actual value of the offset is 

equal to the row index. For example, the first row is not rotated but the last row is rotated three 

bytes to the left. The impact to the state is illustrated in Figure 2.6. 

 

Figure 2.6 ShiftRows Operation 

MixColumns transforms columns of the input state using matrix multiplication. Following matrix 

is used in AES-128 algorithm and each column in the output state is obtained by multiplying the 

matrix with the corresponding column in the original state. The computation is performed such 

that each column is treated as a polynomial over GF (28) and is then multiplied modulo x4 + 1 

with a fixed polynomial 3x3 + x2 + x + 2. 

 

Because all the operations in the algorithm are invertible, decryption is possible. The decryption 

process is the reverse of the encryption also consisting of four major operations, which are 
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AddRoundKey, InvShiftRows, InvSubbytes and InvMixColumns respectively. The decryption 

algorithm is shown as Figure 2.7. 

 
 

Figure 2.7 AES Decryption 

 

2.3.2 Tiny Encryption Algorithm 

Tiny Encryption Algorithm (TEA) family algorithms belong to symmetric key category in 

cryptography and became of interest in RFID security solutions during recent years. TEA was 

proposed by Roger Needham and David Wheeler in 1994 [27]. Their work was to create a Feistel 

itineration based routine using a large number of rounds rather than complicated and memory-

consuming approaches.  
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The Tiny Encryption Algorithm is believed to be one of the fastest and most efficient 

cryptographic algorithms. Tiny Encryption Algorithm is a Feistel cipher that uses only XOR, 

ADD and SHIFT operations to provide Shannon's properties of diffusion and confusion 

necessary for a secure block cipher without the need for Permutation box (P-box) and 

Substitution box (S-box). S-box is a non-linear operation, and is typically keyless. It can be 

applied in an intermediate stage of an algorithm. In cryptography, P-box is used to perform bit-

shuffling across S-boxes inputs. Tiny Encryption Algorithm operates on a 64-bit data block using 

a 128-bit key. The C language implementation of encoding and decoding could be expressed as 

follows: 

void code(long* v, long* k)  
{ 

unsigned long y=v[0],z=v[1], sum=0, /* set up */ 
delta=0x9e3779b9, /* a key schedule constant */ 
n=32 ; 
while (n-->0)  
{ /* basic cycle start */ 

sum += delta ; 
y += ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ; 
z += ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; 

} /* end cycle */ 
v[0]=y ;  
v[1]=z ;  

} 
 
void decode(long* v,long* k)  
{ 

unsigned long n=32, sum, y=v[0], z=v[1], 
delta=0x9e3779b9 ; 
sum=delta<<5 ; 
while (n-->0) 
{/* start cycle */ 

z-= ((y<<4)+k[2]) ^ (y+sum) ^ ((y>>5)+k[3]) ; 
y-= ((z<<4)+k[0]) ^ (z+sum) ^ ((z>>5)+k[1]) ; 
sum-=delta ;  

}/* end cycle */ 
v[0]=y ;  
v[1]=z ;  

} 
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The code and decode routines use 32 bit words in operations. The inputs of the routines are two 

words for data, which is 64 bits totally. There are four words for keys, thus the total size of the 

key is 128-bits. The routine uses XOR, ADD and bit shift operations to provide non-linearity for 

encryption. One cycle of the encryption is shown in Figure 2.8.  

 

Figure 2.8 One Cycle of Tiny Encryption Algorithm 

2.3.3 Extended Tiny Encryption Algorithm 

Although TEA algorithm is compact to implement for different platforms, it is reported to suffer 

from related key attacks and its actual key size is reduced to 126-bits [28]. In order to correct the 

weakness, Roger Needham and David Wheeler proposed the eXtended Tiny Encryption 

Algorithm (XTEA) [29]. As compared to TEA, the key scheduling has been changed and its key 
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material is introduced more slowly. Despite the adjustment that was made on the key operation, 

XTEA remains as compact as TEA. The reference code in C programming language is shown as 

follows:  

tean( long * v, long * k, long N)  
{ 

unsigned long y=v[0], z=v[1], DELTA=0x9e3779b9 ; 
if (N>0)  
{ 

/* coding */ 
unsigned long limit=DELTA*N, sum=0 ; 
while (sum!=limit) 
y+= (z<<4 ^ z>>5) + z ^ sum + k[sum&3], 
sum+=DELTA, 
z+= (y<<4 ^ y>>5) + y ^ sum + k[sum>>11 &3] ; 

} 
else  
{ 

/* decoding */ 
unsigned long sum=DELTA*(-N) ; 
while (sum) 
z-= (y<<4 ^ y>>5) + y ^ sum + k[sum>>11 &3], 
sum-=DELTA, 
y-= (z<<4 ^ z>>5) + z ^ sum + k[sum&3] ; 

} 
v[0]=y, v[1]=z ; 
return;  

} 

Like TEA algorithm, the block size is two words and the key size remains four words. XTEA 

algorithm completes encryption and decryption in 32 Festiel cycles. The only disadvantage is 

that complete change diffusion is delayed by one cycle, but there is no need to change the 

number of cycles from 32 to 33. Figure 2.9 shows the structure of one cycle of encryption. 
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Figure 2.9 One Cycle of eXtended Tiny Encryption Algorithm 

Under certain weak key assumption, a related-key rectangle attack on the first 36 rounds of 

XTEA has been reported [30]. The time complexity of the attack is about 2 104. 33, which is faster 

than exhaustive key search among the 2 110. 67 weak keys. The success probability of the attack is 

about 80%. It is claimed to be the best known attack on XTEA algorithm. Since XTEA uses 64 

rounds, it is still considered to be a very secure cipher. TEA and XTEA are not subject to any 

patents and are free to use in security applications.  

2.4 Related Works of RFID Protocols  

An authentication protocol is a safe way to verify if a tag is genuine or not. During recent years, 

many researchers proposed different solutions. Sarma et al.’s early work defined a so-called 

Hash-based Access Control (HAC) scheme [31]. The scheme is presented in Figure 2.10. 
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Figure 2.10 Hash-Locking Protocol 

This scheme assumes that tag is only equipped with a hash function. When being queried, the tag 

sends out the hash of a random key as its metaID instead of revealing the tag ID directly. The 

reader forwards it to the back-end server to search the key and unlock the tag. If the key is found, 

it is passed to the tag. The tag hashes the key and compares it to the stored metaID. If the reader 

has sent the right key to the tag, the hash value of the key will match the metaID. If the values 

match, the tag enters un-locked state and sends the ID to reader for authentication. The protocol 

relies on a back-end server for authentication. However, the key, metaID and ID could be 

obtained by an eavesdropping adversary and therefore the tag can be cloned easily.  

To overcome the weakness in Hash-Locking protocol, Sarma et al. also proposed another so-

called Randomized Hash-locking Protocol [31]. The scheme is presented in Figure 2.11. 

 

Figure 2.11 Randomized Hash-Locking Protocol 
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It is assumed that the tag is equipped with a hash function and a random number generator. The 

tag responds to the reader queries by generating a random number R, then computing the hash 

value h(IDk || R). Both of them are sent back to the reader. The reader performs a brute-force 

search for the tag ID by calculating the hash value h(IDk || R) for each tag until it finds one value 

that matches the tag response. Although this protocol works well with a few tags, it is not 

practical for retail application where a large number of tags are deployed.  

Ohkubo et al. proposed a Hash-chain protocol to solve the secrecy and forward security issue 

[32]. The message exchange process of the protocol is shown in Figure 2.12. 

 

Figure 2.12 Hash-chain Protocol 

In this protocol, the tag ID is never revealed in plaintext. It is assumed that the tag and back-end 

server share an initial secret of S1 and it is equipped with two hash functions, H(x) and G(x). In 

the i-th protocol session, when the tag is queried, it sends out a message Ai = G(Si) to the reader. 

The reader forwards it to the back-end server for authentication. The back-end server maintains a 

list of pairs (ID, S). When receiving Ai, it checks all the existing tag secrets and computes the 

hash value for each of them using function G(x). If a matched value is found, the tag ID is sent to 

the reader. In every new session, the tag and the back-end database update the secret using H(x) 
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function to get Si+1 = H(Si). The main weakness of the protocol is that the back-end is much 

overloaded since it has to perform brute force search for the tag ID. Furthermore, if a malicious 

attacker keeps sending query to the tag, the tag will continuously update its own secret, which 

will make the tag desynchronized with the server. Furthermore, denial-of-service attack is 

another possible threat for this protocol.  

An improved security solution for RFID security is proposed by Wang et al., which corrects the 

weaknesses found in hash lock scheme [33]. Their scheme is shown in Figure 2.13. 

 

Figure 2.13 Improved Security Solution 

In this protocol, the reader first generates a random number and sends it to the tag when querying 

it. The tag calculates the hash value h(IDk || R) and sends it back to the reader in response, where 

IDk is the tag ID. The back-end server search for an IDt where h(IDt || R) = h(IDk || R). The 

back-end server does not assume that the reader is legitimate and therefore generates a message 

to be sent to the reader by exclusive-oring the correct reader ID, the random number R and the 

tag ID. The reader has to generate a reply by exclusive-oring its own ID to get (R ⊕ IDk). The 

tag receives this message and exclusive-ors it to derive IDk. If it matches with its own ID 

number, the reader is authenticated. Nevertheless, the protocol shows a weakness in the last step. 
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An attacker can get the tag ID by exclusive-oring this message with R, which can be 

eavesdropped in the first step.  

Toiruul and Lee proposed an advanced mutual authentication protocol to address three major 

problems: forgery of the tags, unwanted tracking of the tags, and unauthorized access to tag 

memory [34]. Their objective is to provide reader authentication to a tag, exhibit forgery 

resistance against a simple copy, and prevent the counterfeiting of RFID tags. We use notation 

shown in Table 2.1 to illustrate this protocol. 
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Table 2.1 Notation used in Toiruul and Lee’s Protocol 

Symbols Notations 

T RF tag, or transponder 

R RF tag reader, or transceiver 

B Back-end server, which has a database 

k1 , k2 Random secret keys, shared between T and B 

k Cryptographic key, shared between T and B 

IDk Unique identification number of T, shared between T and B 

Ek AES cipher using key k  

* Operation or the value in the real T 

⊕ Exclusive-or 

It is assumed that the tag has an AES encryption cryptographic hardware and a memory space to 

store the identification number IDk and two secrets, k1 and k2. Toiruul and Lee’s protocol is 

presented in Figure 2.14. Initially each T is given two fresh random secrets, k1 and k2, and a 

unique identification, IDk. The database of B also stores them as the shared secrets and manages 

a record pair for each tag consisting of (IDk, TagID). T has an AES-128 encryption circuit while 

both T and B have a 128-bit cipher key k. In the first challenging step, the reader R applies a 

collision protocol to singularize T out of many tags. In their work, the binary tree walking 

protocol was suggested as an example [35]. The Reader, R receives Ek(k1 ⊕ k2) from the back-
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end server, B. Then R sends Ek(k1 ⊕ k2) to query T. Ek(k1 ⊕ k2) is used to authenticate the 

validity of R. 

 

Figure 2.14 Toiruul and Lee’s Protocol [34] 

In the second stage of authentication, the tag authenticates the reader’s validity. When being 

queried, T generates E*k (k1 ⊕ k2) and checks whether the received message Ek(k1 ⊕ k2) 

equals to E*k(k1 ⊕ k2) or not. If they do not match, R is not authenticated and T will keep 

silent. If they match, T authenticates R and sends out Ek(k1 ⊕ k2 ⊕ IDk), which is the 

encryption of AES-128, to the reader. Then T updates its secrets k1 = k1 ⊕ Ek(k2 ⊕ k1) and k2 

= k2 ⊕ Ek(k2 ⊕ k1). 
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In the third authentication stage, the reader authenticates the tag. R simply forwards Ek(k1 ⊕ k2

⊕ IDk) to B and B decrypts it using cipher key k. IDk is obtained by exclusive-oring the result 

with k1 and k2. Then B verifies whether IDk is valid by comparing the IDk with ID*k, which is 

the real tag ID. The secrets, k1 and k2, and the cipher key, k are shared only between B and T. 

Therefore, B can detect an illegal T and discards the message. When T is authenticated, B 

retrieves the records corresponding to IDk and sends the real TagID to R. Then it update its 

secrets k1 and k2 in the same way, k1 = k1 ⊕ Ek(k2 ⊕ k1) and k2 = k2 ⊕ Ek(k2 ⊕ k1). The 

protocol is claimed to withstand active attacks such as the man-in-the-middle attack, the replay 

attack, the eavesdropping attack, and the unwanted tracking of customers. 

Inspired by the efficient implementation of AES by Feldhofer et al. [36, 37], Kim et al. proposed 

a lightweight RFID authentication protocol using step by step symmetric key change [38]. To 

illustrate the protocol, we use notations in Table 2.2. In a RFID system which may consist of a 

server, a reader and one or multiple tags, it is assumed that the tag and back-end server can 

perform AES encryption and decryption operation. They are also equipped with pseudo-random 

number generators that can generate random numbers.  
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Table 2.2 Notation used in Kim et al.’s Protocol 

Symbols Notations 

E( ) Block cryptogram 

M The mask bit of the random number 

PRNG Pseudo-random number generator 

Rtag The random number generated in the tag 

Rreader The random number generated in the reader 

Rserver The random number generated in the server 

|| Concatenation 

K0 Initial symmetric key 

K1, K2, K3 Changed symmetric key 

⊕ Exclusive-or 

ID The unique identifier of the tag 

 

The operation of this protocol can be divided into initialization stage and authentication stage. In 

the initialization stage, the tag and the server are assigned the same symmetric key (K0) in 

advance. The tag and the reader share the same mask bit (M) for masking the generated random 

number. The operation of the authentication stage can be illustrated in Figure 2.15.  
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Figure 2.15 Kim et al.’s Authentication Protocol  

The protocol consists of five operations. In operation one, the reader generates a random number 

and exclusive-ors it with M to obtain a mask variable called MOR. Then the reader sends MOR 

with the query to the tag. 

In operation two, the tag uses M to exclusive-or with MOR to obtain the random number 

generated by the reader. Then it is exclusive-ored with K0 to generate the new key K1 which is 
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used to encrypt R’reader || R’tag. The encrypted message is sent to the reader and then is passed 

to the back-end server. 

In the third operation, the server obtains Rreader transmitted by the reader. Then K1 is obtained 

by exclusive-oring it with K0. The server decrypts the message using K1 to get R’reader and 

R’tag. The authentication is performed by comparing R’reader with Rreader delivered from the 

reader. If the comparison fails, the operation exits. If it is successful, the back-end server 

generates the key K2, which is used to encrypt R’server || R’tag. The encrypted message is sent 

to the reader and is then passed to the tag. 

In operation four, the tag obtains K2 by exclusive-oring K1 with Rtag. The message from the 

server is decrypted using K2, and R’tag and R’server is obtained. Comparing R’tag and tag’s 

Rtag, the tag authenticates the reader. If the operation is successful, the tag generate K3 = K2 ⊕ 

R’server. Then the tag encrypts the ID || R’server using K3, and sends it to the server.  

In operation five, K3 is computed by the back-end server using its own K2 and Rserver. It is 

used to decrypt the message from the tag to obtain ID and R’server. If the R’server matches 

Rserver of its own, the response from the tag is confirmed. By searching the ID, the back-end 

finds the tag info and sends it to the reader.  

Their work is to solve the problem of using fixed key in authentication to prevent eavesdropping, 

replay attack and location tracking security issue. In the mutual authentication process, random 

numbers are generated by the server, reader and tag to make the messages different in each 

round.  
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Chapter 3 

Novel RFID Authentication Key Management Protocol 

Some previous works used hash functions because symmetric key algorithms are considered to 

be too resource consuming at early development of RFID, while other recent works tried to 

achieve more security level by using symmetric key algorithm. The objective of our proposal is 

to achieve mutual authentication using symmetric key algorithm. The key should be dynamically 

updated and the process should be initiated from the back-end server in a synchronized way to 

avoid possible vulnerabilities and to make tags as lightweight as possible. 

3.1 System Assumptions 

Previous research has shown that XTEA has great potential to be utilized in new RFID 

authentication protocols [42, 49], because of its low power consumption, high speed and high 

security level characteristics. In order to solve security and privacy issues in RFID systems, we 

are proposing a novel and robust authentication protocol based on XTEA algorithm. In this 

protocol, we assume that a tag has a 64-bit non-volatile tag ID number and 128-bit key set, 

which can be dynamically updated. It is also assumed that the tag has the encryption and 

decryption capability using XTEA algorithm. One key set consists of four 32-bit sub-keys. Each 

tag and the back-end server share a random secret key set at initialization. We also assume that 

the links between back-end server and readers are secure against attacks. This assumption is 

based on the fact that advanced security mechanisms can be deployed in networked RFID 

infrastructures.  
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3.2 Robust RFID Authentication Key Management Protocol Design 

Our proposed protocol is summarized in Figure 3.1.  

 

Figure 3.1 Novel XTEA Based RFID Authentication Key Management Protocol 
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The protocol is described as follows. 

1) The reader sends a query message to read the tag. 

2) Once being queried, the tag transmits an encrypted tag ID. The encryption is carried 

using XTEA algorithm with current key set k0. 

3) The reader forwards this message to the back-end server for authentication. 

4) The back-end server checks the database of expected response of known tags to find the 

corresponding tag ID. Then the back-end server immediately generates a key update message 

and the corresponding acknowledgement message. The message format of key update message is 

shown in Figure 3.2. It consists of a field containing the last 30 bits of the tag ID, a 2-bit field 

indicating the number of the sub-key to be updated and a 32-bit field of new sub-key. 

 

Figure 3.2 Key Update Message Format 

The number of the sub-key and the new sub-key value are generated using random number 

generator, such as PUF. The total length of the message is 64 bits and it must be encrypted using 

the current key set k0. The encrypted message is also 64 bits in length, but the message content is 

unreadable for outsiders. The back-end server computes the tag response for the next query 

based on the new key set k1. Meanwhile, it backups the current response just in case the key 

update process fails for some reasons.  

The back-end server also generates a key update acknowledgement message with the format 

shown in Figure 3.3 and it is expected to come from the tag after the key update process is 
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successful. The message is also 64-bit and is encrypted with the next key set k1. It consists of the 

first 32 bits of the tag ID and 32 bits of the sub-key that is to be replaced.  

The server sends the tag ID, the key update message and the key update acknowledgement to the 

reader. 

 

Figure 3.3 Key Update Acknowledgement Format 

5) The reader forwards the key update message to the tag. The tag decrypts the message 

using the current key set k0 and it verifies the field of the last 30 bits of tag ID to see if it 

matches with its own. If there is a match, it will continue to extract the sub-key value and sub-

key number to update the key set to k1. If not, it will continue to wait for other key update 

message for a time window.  

6) The tag generates a key update acknowledgement in the format shown in Figure 3.3 and 

sends it back to the reader. It indicates that the key update operation has been successful. 

7) The reader verifies if the key update acknowledgement is received. After receiving the 

acknowledgement message successfully, the reader terminates the authentication process.  

8) If the reader fails to receive the acknowledgement it will re-send the key update message. 

The tag will respond with an acknowledgement again even if it has earlier sent it out. In the real 

implementation, the reader can re-send this key update message several times. If the reader is 

still not able to receive correct key update acknowledgement, it will send a warning to the back-

end server that the tag might be a fake one. If the key-update process fails due to a fake tag, the 

tag response record in back-end server should be reverted to the previous value.  
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3.3 Security Analysis 

The key update acknowledgement message in this scheme is important, because it is essential to 

prove that the key is updated properly by the tag. It also indicates that the tag is a genuine one, 

because only the tag that possesses the correct key set is able to generate a correct 

acknowledgement. 

A good protocol should allow for mutual authentication of the reader and its tags. In our scheme, 

the tag verifies if the key update message is coming from a legitimate reader by decoding the 

message using current key set and verifying the ID field. Only the legitimate reader can pass this 

verification, since the reader can not generate it by itself and it can only obtain it from the trusted 

back-end server. In this protocol, the only information source of authentication is kept in the 

back-end server. The legitimacy of a reader should be verified by the back-end server before any 

message is sent to the reader, which means some security mechanisms should be implemented in 

the networked RFID infrastructure. This is beyond the discussion of this work. 

In our protocol, the tag ID and the key are never disclosed in plain messages. Unless the current 

key set is disclosed, the messages being exchanged are unreadable to an adversary. The key 

length of XTEA is 128 bits and is secure enough against any brute force hacking. Since the key 

is updated dynamically, guessing the key becomes more difficult.  

An adversary can not just record a tag response and replay it to pass the authentication process, 

because the key set is updated in every new session and therefore the correct response is also 

changed. As the correct key update acknowledgement is also different in every session, it is even 

harder for an adversary to counterfeit a genuine tag. Replaying a key update message to the tag is 
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also not effective. Since the key set is changed, the tag will find the field of the first 32 bits of its 

tag ID does not match its own after decrypting a replayed key update message.   

Denial-of-service attack is a bigger threat for RFID security system to deal with. It might 

desynchronize the tag and the trusted server. The acknowledgement message eliminates such a 

problem, because it notifies that a correct key update process is finished. In case the 

acknowledgement is blocked or is not received properly because of noisy environment, the 

reader will re-send it and the tag should response to it even if it has already updated its key and 

sent the acknowledgement. How many times the reader should repeat this message if it still 

cannot get the acknowledgement from a tag depends on the real application. On the tag side, it 

should stop responding with acknowledgement at some point if the key update message is 

received repeatedly. This is also a consideration that depends on the practical situation, and 

therefore we do not make any assumption in our protocol. 

Prevention of tracking deals with the threat that privacy might be violated without actually 

identifying tag IDs. If a specific tag response can be associated with a particular item, this 

message could indicate the location of the item even the tag ID is not disclosed. In our protocol, 

the tag’s response varies every time when it is queried, because the key is updated in every 

successful round of operation. This makes attackers unable to track the location of the tag.  

Forward security means that if an attacker compromises a tag and knows all the information 

shared between the tag and its reader, it still cannot identify the previous responses of the tag. It 

is also impossible for the attackers to guess how the key has been updated previously even it 

manages to compromise a real tag and learns its secrets because how the key set is updated is 
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only controlled by the trusted server. Therefore, the proposed protocol meets requirements of 

forward security. 

Since the back-end server can make the key set update process truly random, even if a tag’s 

current key is compromised, the tag’s future key set is still not predictable. In a formal security 

model, potential attacker cannot always be at the proximity of a tag to send and receive messages 

[7]. If the tag is authenticated and the key set is updated while the attacker is not close to the tag, 

it is impossible for the attacker to get the new key set and understand the messages between the 

reader and tag again. Therefore, our protocol is also able to provide backward security.  
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Chapter 4 

Modeling and Simulation  

In this section, we demonstrate the workability and the functionality of our protocol using 

SystemC modeling technique. In order to verify the security level, we model different kinds of 

attacks using SystemC. SystemC is a C++ library addressing the modeling of both software and 

hardware [39]. It supports both high level system modeling and register transfer level (RTL) 

modeling. However, the major advantage of using this tool in this work is to model a RFID 

system at a higher abstraction level rather than the RTL level. 

First of all, the SystemC modeling of our protocol is explained in details in section 4.1 including 

the state diagram of the reader and the tag module. Section 4.2 illustrates the cloning attack 

model and simulation results. Following that, modeling of replay attack is also demonstrated in 

section 4.3. Then we will discuss man-in-the-middle, denial-of-service and active scanning 

attack models and their simulation results in Section 4.4, 4.5 and 4.6 respectively. 

4.1 Simulation of Protocol Using SystemC  

A model of our proposed protocol is implemented using SystemC which is shown in Figure 4.1. 

This is a simplified model and the back-end server is integrated into the reader, because it is 

assumed that there is only one reader and one server in this simulation. This means that the 

reader here is integrated with the capability of saving and retrieving tag messages like a back-end 

server. Figure 4.2 shows the reader protocol in a state machine diagram. The tag is also 

implemented as a state machine as shown in Figure 4.3. 
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Figure 4.1 SystemC Model of Proposed Protocol 

 

 

Figure 4.2 State Diagram of the Reader  
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Figure 4.3 State Diagram of the Tag  

 

The model is simulated on Sun Solaris workstation with SystemC 2.0.1 environment. The results 

are shown in Figure 4.4. It is observed that in every new session the tag replies with different 

response which is encrypted with a different key set. However, the reader can decrypt the 

response using the current key set. The reader generates a different key update message and the 

tag sends out different key update acknowledgement. The reader can identify the same tag ID in 

every session of the simulation, and interruption does not happen. 
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Figure 4.4 SystemC Modeling and Simulation of the Proposed Protocol 

 

4.2 Cloning Attack Model 

As described in section 2.1, a security system suffers from cloning attack if its security features 

can be duplicated. 
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Figure 4.5 is the protocol model constructed to simulate this attack on protocol layer. A cloning 

attacker module is added in the model to examine whether the attacker can duplicate the tag by 

eavesdropping the tag’s secrets.  

 

Figure 4.5 Cloning Attack Model 

The simulation results are shown in Figure 4.6. When the attacker intercepts a message sent by 

the tag, the content is compared with the tag ID. If the content happens to be equal to the tag ID, 

the simulation code will indicate that the attacker is able to clone the tag. The simulation was run 

for one hour with a new session triggered in every 200 clock cycles, but we did not observe that 

the attack has been successful. Therefore, it verifies that the communication channel is secure 

against cloning attacks.  

Since the key size of the XTEA algorithm is 128-bits, it is computationally infeasible for the 

adversary to launch a brute force attack. Therefore, the cipher is also resistant against cloning 

attack.  
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Figure 4.6 Cloning Attack Model Simulation 

4.3 Replay Attack Model 

To prove our protocol is safe against replay attack, a replay attacker module is added to our 

original model. The attack model is shown in Figure 4.7.  
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Figure 4.7 Replay Attack Model 

In this model, an enable signal is added to both attacker and the tag modules, which allows the 

reader to query the tag and the attacker individually. The attacker records the tag response when 

it is not enabled. If the attacker is enabled while being queried, it replays the message it recorded. 

The simulations results of the replay attack are presented in Figure 4.8. 
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Figure 4.8 Replay Attack Model Simulation 

The results show that when the reader tries to read the attacker, the attacker replays the same tag 

response message recorded in the last session. However, the reader finds that the attacker’s reply 
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is not correct. The attacker cannot decrypt the key update information because it does not know 

the correct key set. Therefore, in the real world application, a counterfeit tag using the replay 

attack technique can be detected by the system. 

4.4 Man-in-the-Middle Attack Model 

Man-in-the-middle is a form of the attack where the attacker hides itself between the reader and 

the tag. It acts like a reader to the tag and appears like a tag to the reader. In the previous model, 

it is proved that the attacker cannot simply clone a real tag or deceive the reader by replying with 

the same tag message. In this section, we provide an analysis to examine whether a man-in-the-

middle attacker can be authenticated by the tag or not. The model of man-in-the-middle attack is 

shown in Figure 4.9. 

 

 

Figure 4.9 Man-in-the-Middle Attack Model 

In this simulation, the man-in-the-middle attacker simply passes the signal received from port 

rx1 to tx1. When receiving the query signal from rx0, it forwards the message to the tx0 port. If 

the reader sends out a key update message, the attacker tries to alter it randomly and sends it to 

the tag. The attack is simulated, and the results are shown in Figure 4.10. 
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Figure 4.10 Man-in-the-Middle Attack Model Simulation 

It is observed that in simulation number four, the attacker tries to send a false message to the tag. 

The tag finds that the key update message received is illegal and therefore will not send out a key 

update acknowledgement based on that. Furthermore, the tag cannot be desynchronized from the 

server because the reader re-sends the key update message and the key set is updated finally. 
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4.5 Denial-of-Service Attack Model 

In the denial-of-service attack, an attacker is capable of blocking any specific communication 

process. In our protocol, blocking the query message in the first step or the tag reply in the 

second step makes the reader unable to read the tag in the first attempt, but the reader can still 

read the tag in the next reading operation when the RF channel is not blocked. For this reason, 

our analysis concentrates on the key update message in this model simulation. The purpose of the 

attack is to desynchronize the tag and the back-end server. We put the attacker at the downlink to 

block the key-update message and such a model is described in Figure 4.11.  

 

Figure 4.11 Denial-of-Service Attack Model 

The simulation results are presented in Figure 4.12. When the attacker launches the denial-of-

service attack in every second session, the key update message is blocked and no signal is passed 

to the tag module. The reader cannot receive an update acknowledgement in an expected period, 

and therefore re-sends key update message at a later time. When the tag receives the key update 

message and it generates a key update acknowledgement. Finally, the reader and the tag are able 

to achieve synchronization. The simulation results show that the system is secure against denial-

of-service attacks. 
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Figure 4.12 Denial-of-Service Attack Model Simulation  

4.6 Active Scanning Attack Model 

In the active scanning attack model, the tag is isolated from the reader. An attacker can scan it 

continuously without authorization of the tag owner. The purpose of this attack is to retrieve 

useful messages from the tag. The configuration of the model is shown in Figure 4.13. 



56 

 

 

 

Figure 4.13 Active Scanning Attack Model 

In this simulation, the attacker selects the tag as its target and sends query messages repeatedly 

without giving a key update message. The results of the attack are shown as in Figure 4.14.  

 

Figure 4.14 Active Scanning Attack Model Simulation 
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When the attacker keeps scanning the tag, the tag only responds with an encrypted message. If 

no other key update message is transmitted to the tag, the tag will go back to its initial state 

waiting for the next query. Attacker cannot get authenticated by the tag and the tag secrets are 

not disclosed. The simulation results prove that our scheme is safe against active scanning 

attacks. 
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Chapter 5 

Protocol Analysis by Prototyping 

5.1 RFID Authentication Protocol Experimental Analysis System 

In the last chapter, the simulation of our protocol is performed using SystemC based modeling 

techniques. In order to analyze its workability and robustness, it will be interesting to implement 

our protocol in a hardware experimental platform.  

Previous works on RFID protocols presented different implementation options on various 

platforms. Luo et al.’s work evaluated encryption algorithms in sensor nodes consisting of 

ATMEGA128 microcontroller and Chipcon CC1100 transceiver [40]. Chae et al. implemented 

RC5 algorithm on WISP UHF tag, which is a programmable battery-free tag with back-scatter 

communication capability [41]. Israsena synthesized TEA and XTEA encryption cores in ASIC 

using Mentor Graphic's LeonardoSpectrum targeting 0.35µm CMOS technology [42]. Luo et al. 

analyzed their proposal by implementing reader and tag modules using JAVA TCP/IP socket 

application and database using MySQL [43]. Gilbert proposed a variable key authentication 

scheme and a variable round authentication scheme with implementation applied on Altera 

FPGA platform. The reader module was designed as a Nios-II processor using SOPC tool and 

the tag module was implemented using hardware description language [44]. Borghei’s hash 

based authentication protocol was inspired by SRAC protocol. In her implementation, the reader 

design was achieved on a PC console using windows application programming interface and the 

tag was designed as an Altera Nios-II system with smart card [45]. Angerer et al.’s work 
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proposed a flexible RFID prototyping system consisting of a RF front end, a protocol stack 

operating on a DSP and a signal processing module implemented on FPAG [46].  

The methods used in [40, 41] require complex hardware systems, while the implementation in 

[42, 43] is essentially software based. Overall, we prefer a system that is implemented on a 

FPGA platform similar to the works in [44, 45 and 46]. As compared with other implementation 

schemes, FPGA environment enjoy many advantages, including low cost, time saving and 

flexible prototyping.  In this chapter, we present the implementation of our protocol on an Altera 

FPGA DE2 board. A DE2 board consists of an Altera Cyclone II EP2C35F672C6 FPGA device 

and an EPCS16 serial configuration device as well as other components including memories, 

USB port, Ethernet port, VGA port, audio connectors, a number of switches and LEDs [47].  

5.2 The Active Scanning Attack Model 

In an active scanning attack, the tag is isolated from legitimate readers and the attacker is 

constantly scanning the tag without owner’s authorization. Figure 5.1 shows the Nios system 

implementation of this model. 

 

Figure 5.1 Active Scanning Attack Model Implementation using Nios-II System 
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The model is implemented using SOPC builder, a powerful tool available in Quartus II 

environment. The attacker module and the tag module are implemented as individual Nios-II 

processors. Figure 5.2 shows the configuration of the attacker module processor. Parallel ports 

are used to connect the attacker and the tag modules and allow them to communicate with each 

other.  

 

Figure 5.2 Active Scanning Attacker Module 

In this test, we recorded the messages exchanged in the first seven sessions. The results are 

summarized in Table 5.1. 
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Table5.1 Active Scanning Attack Messages Exchanged 

Protocol Round Attacker Send Message Tag Response Message 

1 Tag Query B57183930FE7A64B 

2 Tag Query B57183930FE7A64B 

3 Tag Query B57183930FE7A64B 

4 Tag Query B57183930FE7A64B 

5 Tag Query 0000000000000000 

6 Tag Query 0000000000000000 

7 Tag Query 0000000000000000 

As it is observed in the test, if the tag is scanned more than four times, the tag will stop 

responding to further queries with the encrypted reply message. This is due to a parameter 

introduced for the tag for additional security considerations. If the tag is queried more than this 

threshold without receiving correct key update messages, it will respond with a meaningless 

message. In our implementation, the tag simply replies with a constant string of ‘0’, which also 

serves as a warning that the tag has been attacked by active scanning attackers. The 

implementation verifies that this protocol is resistant to the active scanning attacks. 

5.3 The Cloning Attack Model  

Cloning attack happens when a reader and its tag are communicating in a channel which is 

insecure and attackers can intercept the messages coming from the tag and the reader. Figure 5.3 

shows the Nios-II system of this model. Since there is only one UART interface connected to the 

reader in the configuration, we combine the function of the channel with the attacker module. In 

the implementation of this attack model, the reader first queries the tag in a normal operation. 

Then, the reader is going to check whether the message recorded by the attacker matches with 
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the secrets it currently has. If they do not match, it means our protocol is safe against cloning 

attack. 

 

Figure 5.3 Cloning Attack Model Implementation using Nios-II System 

The reader, the attacker and the tag modules are implemented as separate Nios-II processors. The 

communications between these processors are established through parallel ports. In each 

direction, the rising signal of enable port defines exact timing that the data in the data port is 

ready for sampling. Figure 5.4 shows the reader modules deployed in this model. For the cloning 

attack test, we recorded the messages exchanged for a period of an hour with a new session 

started every five seconds. However, we did not observe any case of failure. The results for the 

first seven sessions of the protocol operation are given in Table 5.2. 
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Figure 5.4 Reader Module for the Cloning Attack Model 

Table 5.2 Cloning Attack Messages Exchanged 

Session 

Number  

Tag Response Message To 

Query 
Tag ID 

Effectiveness 

of Attack 

1 B57183930FE7A64B 2233221221314783 No 

2 AF4D7FD9DDF60A22 2233221221314783 No 

3 97E6D6FC8072E812 2233221221314783 No 

4 CF964D1BB89D2299 2233221221314783 No 

5 E06B1A8697863DA6 2233221221314783 No 

6 9F5649FB374A23EC 2233221221314783 No 

7 3A2C61372888A673 2233221221314783 No 
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As confirmed from the results, the tag replies with an encrypted message in every new session. 

The cloning attacker cannot obtain the secrets of tag because it does not know the key set. The 

implementation verifies that our protocol is resistant against cloning attacks.  

5.4 The Replay Attack Model 

In a replay attack, when a reader and its tags communicate via an insecure channel, an attacker 

can intercept the messages between the tags and the reader. Figure 5.5 shows the Nios-II system 

that is prototyped to model such an attack. In this implementation, the reader first queries the tag 

in a normal way. Then, it queries the attacker to see if the recorded message matches with the 

secrets it has currently. If there is no match condition, it verifies that our protocol is safe against 

replay attacks. 

 

Figure 5.5 Replay Attack Model Implementation using Nios-II System 
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The reader, attacker, channel and tag modules are implemented as individual Nios-II processors. 

The processors are connected with each other through parallel ports so that communications 

between modules can happen. The attacker module is able to monitor all the messages going 

through the channel module. Figure 5.6 shows the attacker module created using the SOPC 

Builder tool. 

 

Figure 5.6 Attacker Module for the Replay Attack Model 

During the protocol testing, we recorded the messages exchanged for an hour period with a new 

reading operation triggered every ten seconds. Then the attacker is queried after the reading is 

finished to verify the effectiveness of replay attack. We did not observe any case of a replay 
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attack succeeding. The results for the first seven sessions of the protocol operation are 

summarized in Table 5.3. 

Table 5.3 Replay Attack Messages Exchanged 

Session 

Number 

Tag Response 

Message 
Tag Key Set 

Attacker 

Replay 

Message 

Effectiveness 

of Attack 

1 
B5718393, 

0FE7A64B 

AB47856C, 902C729A,  

70BC93E4 , 247DC618 

B5718393, 

0FE7A64B 
No 

2 
AF4D7FD9, 

DDF60A22 

AB47856C, 902C729A 

70BC93E4, DA6B4E51 

AF4D7FD9, 

DDF60A22 
No 

3 
97E6D6FC, 

8072E812 

7825DFCB, 902C729A 

70BC93E4,  DA6B4E51 

97E6D6FC, 

8072E812 
No 

4 
CF964D1B, 

B89D2299 

7825DFCB, 9D7A9053 

70BC93E4, DA6B4E51 

CF964D1B, 

B89D2299 
No 

5 
E06B1A86, 

97863DA6 

7825DFCB, C217C338 

70BC93E4, DA6B4E51 

E06B1A86, 

97863DA6 
No 

6 
9F5649FB, 

374A23EC 

4E9221E0, C217C338 

70BC93E4, DA6B4E51 

9F5649FB, 

374A23EC 
No 

7 
3A2C6137, 

2888A673 

792F11CF, C217C338 

70BC93E4, DA6B4E51 

3A2C6137, 

2888A673 
No 

The prototyping results show that the tag is able to reply with an encrypted message in every 

new session when being queried. Furthermore, one sub-key in its key set is also updated. The 

replay attacker tried to impersonate a genuine tag by replaying the previous tag output, but it is 

not the correct response the reader expects. Therefore, the replay attacker cannot pass the 

authentication process. The prototyping of the replay attack model verifies that our novel 

protocol is safe against replay attacks.  
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5.5 The Denial-of-Service Attack Model 

In the denial-of-service attack model, the communication channel between a reader and its tag 

can be blocked by an attacker. The configuration of this model is prototyped as shown in Figure 

5.7. In the implementation of this prototype, the reader module first queries the tag module and 

then receives the reply from it. When the key update message arrives, the denial-of-service 

attacker tries to block it in attempt to desynchronize the tag and the reader. If the reader and the 

tag can reestablish normal operation, then it verifies our protocol is robust and safe against 

denial-of-service attacks. 

 

Figure 5.7 Denial-of-Service Attack Model Implementation using Nios-II System 

The reader, the attacker and the tag modules are implemented as individual Nios-II processors. 

Using the same technique in previous models, the processors are linked to each other through 
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parallel ports. Figure 5.8 shows the Nios-II processor for the attacker module configured using 

SOPC Builder tool environment. 

 

Figure 5.8 Attacker Module for the Denial-of-Service Attack Model 

During the protocol verification, we recorded the messages exchanged for one hour with a new 

reading operation triggered every ten seconds. We did not observe a case that an attack could be 

successful. The results for the first seven sessions are summarized in Table 5.4. 
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Table 5.4 Denial-of-Service Attack Messages Exchanged 

Session 

Number 

Tag Response 

Message To 

Query 

Tag Key 

Update 

Message 

Tag Key Update 

Message Reader 

Re-send 

Tag Key 

Update ACK 

Message 

Effectiveness 

of  Attack 

1 
B5718393, 

0FE7A64B 

8EA3D37C,  

3F5198CA 

8EA3D37C,  

3F5198CA 

2B6EDC58,  

1B49A4D8 
No 

2 
AF4D7FD9, 

DDF60A22 

BE0B6D17,  

27D8F698 

BE0B6D17,  

27D8F698 

A7C5352E,  

CB059EBD 
No 

3 
97E6D6FC, 

8072E812 

70F67232,  

FAA7DB1A 

70F67232,  

FAA7DB1A 

110D71D7,  

99059299 
No 

4 
CF964D1B, 

B89D2299 

EE83D92B, 

2D52F3F9 

EE83D92B, 

2D52F3F9 

DC693F94  

E0076EFE 
No 

5 
E06B1A86, 

97863DA6 

C6C69B41,  

94A7E2F1 

C6C69B41,  

94A7E2F1 

37BDFDA6,  

FBE840A1 
No 

6 
9F5649FB, 

374A23EC 

F2D1EB14,  

EDEE7EC1 

F2D1EB14,  

EDEE7EC1 

41D18FB4,  

0B60BEBD 
No 

7 
3A2C6137, 

2888A673 

B88CCB65,  

1F511A01 

B88CCB65,  

1F511A01 

92238AA7,  

B0FE05E7 
No 

It shows that the tag key update operation is successful in every session. The key update message 

can be blocked by the denial-of-service attacker periodically in the test. In the timeout period, if 

the reader does not receive the key update acknowledgement, it will re-send the message and the 

tag is able to receive it. Finally, the key update acknowledgement arrives indicating that the tag’s 

key set is synchronized with the reader.  



70 

 

5.6 The Man-in-the-Middle Attack Model 

In the man-in-the-middle attack model, an attacker stays between a reader and its tags and acts 

like a reader to the tag or appears to be a tag to the reader. Figure 5.9 shows the Nios-II system 

implemented for the prototype of this model. In this test, the reader first queries the tag and 

receives its reply. When the key update message is sent out from the reader, the man-in-the-

middle attacker attempts to modify it. If the tag is able to detect the message is not legitimate, it 

verifies that our protocol is safe against man-in-the-middle attacks. 

 

Figure 5.9 Man-in-the-Middle Attack Model Implementation using Nios-II System 

The reader, attacker and tag modules are implemented as individual Nios-II processors. Figure 

5.10 shows the attacker module of this model designed in the SOPC Builder environment. 
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Figure 5.10 Attacker Module for the Man-in-the-Middle Attack Model 

In the experimental test, we recorded the messages exchanged for one hour with a new reading 

operation triggered every ten seconds. We did not observe any case that a successful attack could 

happen. A sample of the test results from session 28 to 34 is summarized in Table 5.5. 
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Table 5.5 Man-in-the-Middle Attack Messages Exchanged 

Session 

Number 

Tag Response 

Message To 

Query 

Tag Key Update 

Message Reader 

Send 

Tag Key Update 

Message Reader 

Re-send 

Tag Key 

Update ACK 

Message 

Effectiveness 

of Attack 

28 BE0F3DF6,  

DD11E327 

7C6F3423, 

DA1EE993 

7C6F3423, 

DA1EE993 

51B7093F,  

4E4B5E76 

No 

29 2962986F,  

2B17C3FA 

F6D59CA9,  

F92AF59B 

F6D59CA9,  

F92AF59B 

685BF097,  

DBECF678 

No 

30 D7F46FAE,  

F0FE0ADF 

63C4CFEF,  

C12C399C 

63C4CFEF,  

C12C399C 

A8A9C526,  

4F35367B 

No 

31 6ACF5229,  

4D6B3B82 

20951352,  

B3E721FD 

20951352,  

B3E721FD 

2CAB2088,  

597F2810 

No 

32 71861D2C,  

12174846 

0CEF9372, 

BA89253D 

0CEF9372, 

BA89253D 

EF222F41, 

1FE998C4 

No 

33 A8F5EE0,  

89E2D8DF 

71E95F13,  

16D89577 

71E95F13,  

16D89577 

80198675  

1A0FA400 

No 

34 D9BD752A, 

888FBF27 

FC907F17,  

B7F84EC8 

FC907F17,  

B7F84EC8 

88781C4F, 

64990BE8 

No 

 

The results of model prototyping show that a successful tag key update is realized in every 

session. The man-in-the-middle attacker tries to modify the key update message. However, when 

the tag decrypts the key update message, it finds the field of the last 30 bits of the tag ID does not 

match its own. As a result, the key update operation does not take place based on the false 

message. In the timeout period, since the reader cannot receive the key update acknowledgement, 

it re-sends the key update message. The key update acknowledgement in the last step is finally 

received and the reading process is finished successfully.  
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Chapter 6 

Performance and Security Analysis 

In the following sections, we analyze and compare our protocol with Toiruul and Lee’s protocol 

and Kim et al.’s protocol [34, 38]. We select them for comparison because, like our work, they 

both use symmetric key algorithms in their protocols. We apply the same approaches as we make 

analysis on our authentication scheme. SystemC based modeling is also used to evaluate the 

security level for different threat models and FPGA prototyping environment is applied to 

analyze the performance level of these protocols and compare with ours.  

6.1 Security Level Analysis  

We first analyze the security level of Toiruul and Lee’s protocol by building the same model as 

shown in Figure 4.1. In this simulation, there is no attack module applied in the model. The 

values of secrets are initialized as follows: 

ID:{0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,0xbb,0xcc,0xdd,0xee,0xff,0x00} 

k: {0xe3,0x25,0x87,0x34,0x19,0x34,0x90,0x90,0x56,0x13,0xdf,0x56,0x94,0x61,0x4b,0x1a} 

k1:{0x23,0x19,0x83,0x84,0x91,0xdc,0xd8,0x3e,0x09,0x59,0x3c,0xb2,0xb6,0x46,0x39,0x92} 

 k2:{0xc1,0x50,0xd7,0xc9,0xb2,0xc8,0xb2,0x89,0xa2,0x79,0x04,0x06,0x82,0x56,0x90,0x23} 

In every new session, the secrets are changed with the same process as described in the section 

2.4.  Protocol simulation results of from session number 38 to 43 are shown in Figure 6.1. 
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Figure 6.1 Toiruul and Lee’s protocol Simulation 

Once a tag’s current secrets are disclosed, an attacker does not need to intercept the messages in 

the next sessions to keep track of how the secrets are updated, because this process is fixed in the 

second stage of the protocol. Therefore, the future secrets can be deduced and the subsequent 

tag’s responses can be computed. Thus, the protocol does not provide backward security. 



75 

 

However, it ensures forward security because it is hard to compute k1 and k2 value in a previous 

session even if the current secrets are known. To analyze the protocol behavior in denial-of-

service attacks, we construct the model using the same configuration as shown in Figure 4.11. 

The model is simulated and the results are presented in Figure 6.2. 

 

Figure 6.2 Simulation of Denial-of-Service Attack in Toiruul and Lee’s Protocol 

The first simulation is a normal session where the system is not attacked. When the attacker 

starts the denial-of-service attack at the second session, the attacker attempts to block the tag 

reply message and the reader cannot receive the tag reply. When the reader tries to start reading 

operation again it cannot identify the tag because the tag’s secrets are already updated but the 

reader’s secrets are not. We also simulated all the other attack models using SystemC modeling, 

but we did not observe any other successful attacks. Thus, we can conclude that Toiruul and 

Lee’s protocol [34] is not secure against denial-of-service attacks and it is also vulnerable in 

backwards security.  
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To evaluate the security level of Kim et al.’s protocol [38], we simulate the protocol in all the 

attack models in SystemC modeling and examine the results. The protocol simulation results of 

the denial-of-service attack are shown in Figure 6.3. 

 

Figure 6.3 Simulation of Denial-of-Service Attack in Kim et al.’s Protocol 
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It is found that if the denial-of-service attack happens in the third step, the tag is kept in a state 

that it is waiting for the next message to come from the reader. The reader does not receive any 

response from the tag and starts the query from the beginning again. At this point the tag could 

not response with the right message the reader is waiting for. Although the reader must start the 

reading operation from the beginning, it cannot identify the tag correctly after the attack. 

Therefore, we can conclude that this protocol is weak against denial-of-service attacks. We also 

implemented other security attack models, but no other successful attacks are observed. If the 

current secrets of a tag are disclosed, the tag’s previous and subsequent responses are predictable 

because its secrets are not updated. Although random number generators are used, the values of 

Rtag, Rreader and Rserver can be computed by intercepting the messages between the reader and 

the tag. Therefore, it is also weak in both forward security and backward security. We summarize 

the security level comparison of our proposed protocol with Toiruul and Lee’s and Kim et al.’s 

protocols as shown in Table 6.1.  

Table 6.1 Security Level Comparison 

 
Forward 
Security 

Backward 
Security 

Replay 
Attack 

Resistance 

Cloning  
Attack 

Resistance 

Denial-of 
-Service 
Attack 

Resistance 

Man-in-
the-Middle 

Attack 
Resistance 

Active 
Scanning 

Attack 
Resistance 

Our Proposal Strong Strong Strong Strong Strong Strong Strong 

Toiruul and 
Lee ’s 

Protocol [34] 
Strong Weak Strong Strong Weak Strong Strong 

Kim et al.’s 
Protocol [38] 

Weak Weak Strong Strong Weak Strong Strong 
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6.2 Performance Analysis 

To evaluate the performance of a protocol, its efficiency must be measured using different 

parameters. If two protocols provide the same level of security, the protocol using less resource 

is obviously more efficient. In this section, we present the performance analysis of Toiruul and 

Lee’s and Kim et al.’s protocols [34, 38] and then compare our proposal with them. The main 

parameters we will use in this analysis include code size (tag, reader/server), communication 

cost, execution time, scalability and the type of cipher used. 

6.2.1 Code Size  

We have implemented our protocol, Toiruul and Lee’s and Kim et al.’s protocols in Altera Nios-

II DE2 development environment. Using the same methodology as shown in chapter 5, a 

multiprocessor application consisting of only a reader module and a tag module is implemented 

as a Nios-II system in the same FPGA device. The reader and tag codes for each protocol are 

applied to the same Nios-II multiprocessor platform to evaluate their efficiency. To facilitate 

prototyping, the System-on-a-Programmable-Chip (SOPC) Builder tool is used to generate the 

multiprocessor system as shown in Figure 6.4. The reader and the tag modules are implemented 

as 32-bit RISC Nios-II processors (economic type) and the top level configuration is designed 

using VHDL hardware description language. The communication between reader and tag 

processors are also realized using parallel input/output (PIO) ports. As illustrated in Figure 6.4, 

the reader_out_en, tag_in_en, tag_out_en and reader_in_en signals are 8-bit PIO ports and 

the reader_out_data, tag_in_data, tag_out_data and reader_in_data signals are 32-bit PIO 

ports. The signals of reader_out_en, reader_out_data, tag_out_en and tag_out_data are 
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output type only while the signals of tag_in_en, tag_in_data, reader_in_en and 

reader_in_data are of input type.  

 

Figure 6.4 Nios-II System with Reader and Tag CPUs  

JTAG UART is added to download codes to processors and to serve as a user interface. On-chip 

memory (RAM) is included to store code and data. After the Nios-II system is generated 

completely by the SOPC builder, we only need to add connections between PIO ports using 

VHDL hardware description language. The system architecture is compiled and uploaded into 

the FPGA on the DE2 board using the programmer utility available in Quartus II design 

environment.  

Implemented as C application, the reader and the tag’s protocol source codes use only a reduced 

subset of device driver and a small C library so that the size of the code is optimized. The 

communication between Nios-II CPUs is implemented as following C-like pseudo code: 
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Define  DELAY_CONSTANT   T 
Send_Function (Value) { 
    Data_Out_Port = Value; 
    Delay(T); 
    Set_Data_Out_En; 
    Delay(T); 
    Clear_Data_Out_En; 
    Clear_Data_Out_Port; 
    Exit; 
} 
Receive_Function (Value) { 
   While(Timeout = False) { 
        If ( Detected Rising Edge) { 
         Receive_Data = Data_In_Port; 
         Exit; 
      } 
   } 
   Set_Fail_To_Receive_Flag; 
   Exit; 
} 
 
A screen snapshot of the reader and tag codes after being compiled successfully are displayed in 

Figures 6.5 and 6.6 respectively. 

 

Figure 6.5 Compilation of the Reader Code  
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Figure 6.6 Compilation of the Tag Code  

We observe that the reader code size is 3524 bytes and the tag code size is 1944 bytes. The same 

method is applied to determine the code size of the other two protocols. As for Toiruul and Lee’s 

protocol, the tag code size is 5700 bytes while the reader code size is 7836 bytes. For Kim et al.’s 

protocol, the tag code size is 6440 bytes while the reader code size is 9544 bytes. The reader and 

the tag code size for each protocol are summarized as shown in Table 6.2. 

Table 6.2 Code Size Comparison   

 
Our Proposal Toiruul and Lee’s 

Protocol [34] 
Kim et al.’s 
Protocol [38] 

Reader Tag Reader Tag Reader Tag 

Code Size 3523 1944 7836 5700 9544 6400 
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6.2.2 Communication Cost 

In order to evaluate the communication cost of each protocol, we can assume that a reader needs 

to authenticate “n” number of tags. In our protocol,  when a reader query tags, it needs to send 

out only one query message for all the tags to respond, therefore the communication cost of the 

first step is only 64 bits. If “n” tags are responding, then “n” tags’ response consist of 64n bits. 

Therefore, the communication cost in the second step is 64n bits. Similarly, it is concluded that 

the communication cost for step 3 and step 4 are all 64n bits each.  

As for the Toiruul and Lee’s protocol communication cost, we used the same method to analyze. 

When a reader queries “n” tags, it has to initiate “n” messages in step one. However, since the 

output of encryption algorithm AES is 128 bits, the communication cost of the first step is 128n 

bits. In the second step, n tags send back 128n bits to the reader, making the total communication 

cost to be 256n bits.  

The Kim et al.’s protocol consists of four steps in over-the-air communication channel. If a 

reader queries n tags, the communication cost in each step is 128n bits due to the message size of 

AES encryption algorithm. The comparison of communication cost is summarized in Table 6.3. 

It is demonstrated that our scheme is also more efficient than the other two schemes in terms of 

communication cost, especially when reading multiple tags. 

Table 6.3 Communication Cost Comparison 

 Our Proposal Toiruul and Lee’s 
Protocol [34] 

Kim et al.’s 
Protocol [38] 

Communication Cost 
64 + 3 x 64n       

= 64 +192n bits 
2 x 128n               

= 256n bits 
4 x 128n          

= 512n bits 
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6.2.3 Number of Clock Cycles 

Generally speaking, the number of clock cycles required for executing a protocol is a critical 

measurement because it is proportional to power consumption when the clock frequency remains 

unchanged.  

Measuring the number of clock cycles can be achieved using a timestamp timer peripheral. First 

of all, a timestamp timer, timer_1 is added into the Nios-II system for the reader module in our 

protocol. The screen snapshot of the reader system in an SOPC Builder is shown in Figure 6.7. 

 

Figure 6.7 Reader System with Timestamp Timer  
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It is selected as a full feature option timer and is specified as timestamp timer in the project 

system library. The first timestamp is obtained at the beginning of the protocol execution. After 

the operation is finished, the second timestamp is recorded. The execution time of each session is 

measured by calculating the difference of the two timestamps. For better accuracy, the timestamp 

difference is measured 20 times and the average value is calculated for each evaluation. Since the 

communication between the reader and the tag also takes time, we have to measure the 

timestamp difference with different delay constant T. The delay constant is initially defined as 60 

and the timestamp difference is acquired as shown in Figure 6.8. 

 

Figure 6.8 Timestamp Difference Measured in our Protocol  



85 

 

It may be noticed that the timer frequency is 0x2faf080 in hexadecimal value, which is 

equivalent to 50MHz in decimal number. The average timestamp difference is 0x16721 and is 

equal to 91937 clock cycles. Since each clock cycle is 0.02µs, it is computed that the average 

timestamp difference is 1.838 milliseconds.  

Since communication between reader processor and tag processor takes certain amount of time, 

we can only get the protocol execution clock cycle by calculating the ideal execution time when 

T approaches zero. In fact, if T is set below five in the experiment, the protocol cannot run 

successfully. Table 6.4 shows the timestamp difference in hexadecimal format with different T 

values defined in the source code. The execution time is also converted and shown in the bracket 

beside. 

Table 6.4 Timestamp Difference Measured in Our Protocol 

Delay Constant T Timestamp Difference 
60 0x16721  ( 1.838 ms) 
50 0x14dda  ( 1.709 ms) 
40 0x13482  ( 1.580 ms) 
30 0x11b34  (1.450 ms) 
20 0x101d1  (1.320 ms) 
10 0xe884    (1.190 ms) 

 

A chart is plotted as shown in Figure 6.9 to show the relation between the timestamp difference 

and different delay constant T values. As it is expected, the pattern is linear.  
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Figure 6.9 Timestamp Difference in Our Protocol  

It shows that as T decreases, the timestamp difference also decreases linearly and the value drops 

by 0.13ms whenever T is reduced by 10. We can conclude that in an ideal condition where the 

communication delay is zero, the execution time of our protocol is 1.060 ms or about 53000 

clock cycles. 

We apply the same method to analyze the number of clock cycles for Toiruul and Lee’s Protocol. 

Initially, the delay constant is defined as 60 and the average timestamp difference is shown in 

Figure 6.10. Then the timestamp difference using different delay constants is obtained as shown 

in Table 6.5.  
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Figure 6.10 Timestamp Difference Measured in Toiruul and Lee’s Protocol  

 

Table 6.5 Timestamp Difference Measured in Toiruul and Lee’s Protocol 

Delay Constant T Timestamp Difference 

60 0x935ff    ( 12.073 ms) 
50 0x91f83   ( 11.958 ms) 
40 0x90909  ( 11.843 ms) 
30 0x8f289   ( 11.728 ms) 
20 0x8dc07  ( 11.612 ms) 
10 0x8c587  ( 11.497 ms) 
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A chart is plotted as presented in Figure 6.11 to show the relation between the timestamp 

difference and different delay constant T values.  

 

Figure 6.11 Timestamp Difference in Toiruul and Lee’s Protocol 

It appears that as T decreases, the timestamp difference also decreases linearly. The average 

value drops by 0.115ms whenever T is reduced by 10. It can be observed that if T approaches 

zero, the timestamp difference converges to 11.382ms. Therefore, in an ideal condition where 

communication delay is zero, the execution time for Toiruul and Lee’s protocol is 11.282 or 

about 569100 clock cycles. 

We use the same method to examine the number of clock cycles for Kim et al.’s protocol. When 

the delay constant T is defined as 60, the average timestamp difference is shown in Figure 6.12. 

The timestamp difference with different delay constant values is also obtained as shown in Table 

6.6.  
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Figure 6.12 Timestamp Difference Measured in Kim et al.’s Protocol  

Table 6.6 Timestamp Difference Measured in Kim et al.’s Protocol 

Delay Constant T Timestamp Difference 

60 0xa989d  (13.889ms) 
50 0xa6bae  (13.659ms) 
40 0xa3eab  (13.428ms) 
30 0xa11ad  (13.198ms) 
20 0x9e4b4  (12.967ms) 
10 0x9b7af   (12.737ms) 

 

In the same way, the relation between the timestamp difference and different delay constant T 

values can be plotted in a chart as shown in Figure 6.13.   
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Figure 6.13 Timestamp Difference in Kim et al.’s Protocol  

It can be observed that as T decreases, the timestamp difference also decreases linearly and the 

value drops by 0.23ms when T is reduced by 10. It is concluded that if T approaches zero, the 

timestamp difference converges to 12.507ms. Therefore, if there is no communication delay, 

Kim et al.’s protocol takes about 625350 clock cycles to execute. As discussed above, our 

protocol takes far less number of clock cycles than Toiruul and Lee’s protocol and Kim et al.’s 

protocol. The comparison of each protocol’s execution time and the number of clock cycles is 

summarized in Table 6.7. 

Table 6.7 Number of Clock Cycles Comparison  

 Our Proposal Toiruul and Lee’s 
Protocol [34] 

Kim et al.’s 
Protocol [38] 

Execution Time 1.060ms 11.382ms 12.507ms 

Number of Clock Cycles  53000 569100 625350 
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The advantages of consuming less number of clock cycles include: 

 Less power consumption 

 Longer reading range 

 Lower risk of being attacked 

6.2.4 Cipher  

The cipher used in a protocol is very important for its security as well as resource requirement. 

As a back-end server have more computational resource than a tag, the efficient implementation 

of a protocol on tags relies on lightweight ciphers. The right and suitable cipher must have a very 

small size in real implementation, consume less power and provide satisfactory level of security. 

We list the ciphers used in our protocol as compared with the other protocols as shown in Table 

6.8. 

Table 6.8 Cipher Usage Comparison 

 
Our 

Proposal 
Toiruul and Lee’s         

Protocol [34] 
Kim et al.’s 

Protocol [38] 

Back-end Server XTEA AES AES 

Tag XTEA AES AES 

 

Our proposal is based on XTEA cipher, while Toiruul and Lee’s Protocol and Kim et al.’s 

protocol are based on AES cipher. As the platform for prototyping is Nios-II CPU based 

multiprocessor system and protocols are implemented as software, we cannot get the footprint of 
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a cipher directly from compilation results of the source codes. However, both ciphers have been 

implemented and examined by the academic world extensively during recent years.  

Feldhofer and Wolkerstorfer introduced an efficient implementation of AES algorithms in 

CMOS 0.35 µm process [36]. The results show that the Advanced Encryption Standard (AES-

128) data path implementation achieves a current consumption of 8.5 μA at the frequency of 100 

kHz. It consumes 1016 clock cycles to encrypt a 128-bit data block. It is also estimated that the 

hardware takes about 3595 gates.  

Israsena and Wongnamkum compared the implementation of TEA algorithm with AES in 

CMOS 0.35 µm technology [48]. It shows that TEA encryption takes an equivalent gate count of 

3872, but it consumes a much less current of 2.90 μA. XTEA algorithm was implemented in .35 

µm CMOS technology and was compared with TEA in Israsena’s another work [42]. It is 

estimated that the layout area of XTEA is 0.212 mm2 and its maximum clock throughput is 

47.5MHz. The TEA algorithm takes a similar area of 0.207 mm2 and the maximum throughput is 

53 MHz. These results demonstrate XTEA consumes less power than AES cipher in the same 

technology.  

Jens-Peter Kaps’s work made an in-depth study of ultra low power implementation of XTEA 

algorithm on FPGA [49]. His work introduced an efficient implementation of XTEA, called 

TinyXTEA-3 and it was experimented on XC3S50 Xilinx FPGA device [50]. The results show 

that XTEA-3 uses an area of 254 slices and takes 112 clock cycles. He has also compared with 

other related works about AES implementations on FPGA. The smallest AES implementation 

mentioned is the 8-bit AES by Good and Benaissa [51]. It achieved an area of 264 slices which is 

similar to XTEA-3, but it takes 3900 clock cycles. In another work by Chodowiec and Gaj, AES 
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algorithm uses 112 clock cycles, which is the same as XTEA-3, however its area is 522 slices 

[52]. It is shown that XTEA is more efficient in ultra-low power and needs less resource than 

AES algorithm. 

Therefore, our proposal selects XTEA as the best candidate of cipher because of its high 

efficiency proved on both CMOS and FPGA technologies.  

As Kim et al.’s protocol is designed based on AES algorithm, using XTEA cipher instead of 

AES will make the key operations inefficient. As XTEA’s message size is 64 bits, the size of 

Rserver, Rtag, Rreader, M, MOR and ID must be reduced to 32 bits to fit into it, which is too 

small for a security application. It also means that as the key size of K0 is 128 bits, the generated 

key K1, K2 and K3 will always have 96 bits unchanged. For the same reason, in Toiruul and 

Lee’s protocol, the secrets of K1 and K2 will also always have 64 bits remained the same if 

XTEA cipher is applied. These results are not the intention of the original authors as the secrets 

are not sufficiently altered in every new session. 

6.2.5 Scalability 

In this subsection, we compare our scheme with Toiruul and Lee’s Protocol and Kim et al.’s 

protocol in terms of scalability. In our protocol, if a reader initiates a reading operation, it just 

needs to issue a query message. The back-end server compares the tag reply with the list of 

expected reply from tags. The search time do not increase significantly with more tags added into 

the system. In Toiruul and Lee’s Protocol, the reader relies on other anti-collision protocols to 

singularize a tag out of many. Therefore, it is considered to be scalable as well. In Kim et al.’s 

protocol, in order to initiate a reading operation, a reader has to know the tag’s mask bit secret M 

in advance. If a reader does not know the value, a brute force search for known M values must be 
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performed. As the population of tags grows, it will become very time consuming to identify a 

tag. Obviously, this scheme is not scalable. Table 6.9 summarizes the comparison of each 

protocol’s scalability. 

Table 6.9 Scalability Analysis 

 Our Proposal Toiruul and Lee ’s 
Protocol [34] 

Kim et al.’s 
Protocol [38] 

Scalability Yes Yes No 

 

From the performance analysis shown above, our scheme has demonstrated to be more efficient 

in terms of code size, communication cost, number of clock cycles, cipher used and scalability. 

Achieving a high security level does not have to come with a high demand of resource.  
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Chapter 7 

Conclusion and Future Works 

As RFID technology attracts widespread attention from the public, its security issues need to be 

addressed properly. As “Moore’s Law” continues to remain true and silicon chips are becoming 

more sophisticated with improved computation power and storage capability, stronger 

cryptographic primitives such as symmetric key encryption and decryption are no longer beyond 

the considerations for passive tags.  

Our work focuses on the security and privacy aspects in the RFID applications. We have 

investigated a study of authentication methodologies and reviewed some cryptographic tools 

used in authentication protocols. Then, some related works on symmetric key cipher are studied 

and some proposed mutual authentication protocols used in RFID systems are reviewed. 

To find a robust and efficient solution to RFID security issues, a novel RFID authentication key 

management protocol based on XTEA algorithm is proposed. Key update process in the protocol 

ensures high security level and mutual authentication is achieved. The simulation of the protocol 

and different attack models using SystemC based modeling proves that our scheme is safe 

against major attacks. Various attack models are prototyped on FPGA device to verify the 

robustness of our protocol. Unlike previous works, prototyping is realized efficiently on a FPGA 

multiprocessor platform. Overall, it is demonstrated that our scheme is safe against replay, active 

scanning, man-in-the-middle, denial-of-service and cloning attacks. It also provides forward 

security and backward security to the system.  
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We have compared the security and performance level of our protocol with Toiruul and Lee’s 

and Kim et al.’s protocols. It is shown that both protocols are found to have weaknesses under 

denial-of-service attacks. We also analyzed the performance level in terms of code size, 

communication cost, execution time, scalability and the type of cipher used in the same FPGA 

multiprocessor platform. The comparison indicates that our scheme is more advantageous in 

terms of both security and performance levels. 

For future work, it is necessary to implement the authentication protocol in real RFID systems to 

evaluate its performance. An attacker model should also be a part of the implementation in such 

a system so that it can launch different kinds of attacks. It will also be interesting to evaluate our 

scheme using WISP tag platform, because it will demonstrate the possibility for our scheme to be 

integrated into EPC tags in the future. The performance of power consumption and data rate can 

also be evaluated on tag level. 

As silicon technology continues to evolve, the tag in the future will change significantly. The 

hardware and software co-design concept will play a key role in the efficient implementation of a 

RFID authentication protocol.  

As discussed in our work, XTEA cipher has shown great potential in low power wireless security 

applications. Our scheme is proved to be helpful to create mutual authentication and trust 

between two entities. Therefore, some efficient applications in wireless sensor networks will be 

an interesting area to investigate in the future. 
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In our protocol, we used XTEA as cryptographic cipher because of its simplicity and high 

security level. As cryptographic technology keep evolving, new algorithms might come out in 

the future, therefore new encryptions can also be adapted into our protocol to improve its level of 

the security and performance. 
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Glossary 

AES  Advanced Encryption Standard 

C1G2  Class-1 Generation-2 

CMOS  Complementary Metal Oxide Semiconductor 

CRC  Cyclic Redundancy Code 

CTB  Cost to Break 

DES  Data Encryption Standard 

DSS  Data Security Standard 

EPC  Electronic Product Code  

FPGA  Field-Programmable Gate Array 

HAC  Hash-based Access Control 

IFF  Identification Friend or Foe 

ISM  Industrial-Scientific-Medical 

ISO  International Organization for Standardization 

JTAG  Joint Test Action Group 

MD4  Message-Digest Algorithm 4 

MD5  Message-Digest Algorithm 5 

MDC  Modification Detection Codes 

NIST  National Institute of Standards and Technology 

NSA  National Security Agency 

PIO  Parallel Input/Output 

PRNG  Pseudo-random Number Generator 

PUF  Physical Unclonable Function 
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RC4  Rivest Cipher 4 

RF  Radio Frequency 

RFID  Radio Frequency Identification 

RISC  Reduced Instruction Set Computing 

RSA  Rivest-Shamir-Adelman 

RTL  Register Transfer Level 

SHA  Secure Hash Algorithm  

SOPC  System on a Programmable Chip 

SSL  Secure Socket Layer 

TEA  Tiny Encryption Algorithm 

TID  Tag Identification 

TLS  Transport Layer Security 

UART  Universal Asynchronous Receiver/Transmitter 

UHF  Ultra High Frequency 

VHDL  Very High Speed Integrated Circuit Hardware Description Language 

WISP  Wireless Identification and Sensing Platform 

XOR  Exclusive OR 

XTEA  eXtended Tiny Encryption Algorithm 
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