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RYERSON UNIVERSITY 

ABSTRACT 

3D Shape Estimation of Tendon-Driven Catheters Using Ultrasound Imaging 

by Niloufaralsadat Hashemi  

Master of Applied Science 

Biomedical Engineering, 2018 

 

Active cable/tendon-driven catheters are becoming an established part of the minimally invasive 

surgical procedures. Therefore, there has been growing interest in literature in estimating the shape 

of their distal end especially using clinical ultrasound (US) imaging systems.  The purpose of this 

thesis is to use a B-mode US imaging system to design time-efficient, accurate and robust algorithm 

for 3D shape estimation of tendon-driven catheters. Kalman filter (KF), Adaptive Kalman filter 

(AKF) and Particle filter (PF) algorithms were developed for this purpose. First, they were applied 

to a series of simulated US B-mode images where AKF provided the best estimate (error: 0.2 ± 0.1 

mm). Second, they were applied to a series of experimentally obtained US B-mode images. 

Calibration procedures were carried out to calibrate these US images in the experiment’s workspace. 

The PF was shown to provide the best 3D shape estimate (error: 8.6 ± 0.1 mm). However, since 

almost the same accuracy could be achieved with AKF in ten times less computational time, AKF 

was concluded to be the best method, in terms of accuracy and efficiency, to estimate the 3D shape 

of tendon-driven catheters.   
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 1 

C h a p t e r  I  

INTRODUCTION 

1.1. Background 

Active cable/tendon-driven catheters are a subclass of continuum robots (CRs), which are defined 

as actuatable structures whose constitutive material forms curves with continuous tangent vectors 

[1]. These interventional catheters are becoming an established part of the minimally invasive 

surgical (MIS) procedures as of 2010 [2], notably in neurosurgery (Figure 1.a) [3]-[5], 

otolaryngology (Figure 1.b) [6]-[7], ophthalmic surgery (Figure 1.c1) [8]-[9], cardiac surgery (Figure 

1.d) [10]-[13], abdominal surgery (Figure 1.e) [14]-[15], vascular surgery (Figure 1.f) [16]-[17], and 

urologic surgery (Figure 1.g) [18]-[19]. Not only do they provide curvilinear and flexible 

accessibility through dynamic anatomical environments and small incisions of MIS procedures, but 

also allow 1-2 degrees of freedom (DOF) mechanism at their proximal end to actuate their distal end 

and generate curvatures in two or three dimensions [20]-[22].  

 
 

Figure 1 - Examples of tendon-driven catheters in clinical applications: a) neurosurgery [3]-[5] b) otolaryngology [6]-

[7] c) ophthalmic surgery1 [8]-[9] d) cardiac surgery [10]-[13] e) abdominal surgery [14]-[15] f) vascular surgery [16]-

[17] g) urologic surgery [18]-[19] 

                                                 
1 https://www.aop.org.uk/ot/CET/2016/11/14/keeping-an-eye-on-robotics/article  

https://www.aop.org.uk/ot/CET/2016/11/14/keeping-an-eye-on-robotics/article
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Despite their advantageous characteristics as applicable to MIS procedures, accurately sensing and 

estimating the 3D shape of tendon-driven catheters in real-time remains a challenge [20], [23]. This 

is due to their inherent hyper flexibility and inevitable collisions with the anatomy in remote 

operations while inside the organs, which present unknown and dynamic payloads [20], [23]-[25]. 

Even so, the real-time 3D shape information of the interventional catheter is beneficial in that it helps 

to estimate external incident forces [26], to plan obstacle-free and occlusion-free trajectory toward 

the target [27], and to control its shape in navigation.  

The recent advances in 3D shape estimation are based on three categories of alternative emerging 

techniques [19], [23]:  fiber-optic-sensor (FOS)2 [25], [28], electromagnetic (EM) tracking [29] and 

intraoperative imaging modality [24], [30]-[31]. In FOS-based shape reconstruction method, 

multiple Bragg Grating Sensor fibers (typically 3-4) are arranged around the circumference of the 

catheter at fixed distance about the neutral axis of bending [32] to measure strain, force, torque, 

displacement, temperature and pressure [20], [33]. Although FOS/FBG-based shape sensing 

methods can provide accurate and fast measurements of the shape of tendon-driven catheters, their 

integration with small and hyper flexible catheters is challenging and adds significant cost [24], [34].  

EM-based sensors have also been used in-vivo to position the tip of the catheter or isolated number 

of points along its length; however, these sensors are easily susceptible to interference of 

ferromagnetic materials and electrical noise [32], [33]. They also introduce extra loading and wiring 

requirements, which could affect catheters operation. In comparison to the aforementioned, vision-

based shape sensing techniques with available imaging modalities are preferred since they do not 

impose hardware modifications to the tendon-driven catheters and therefore can measure the 

catheter’s shape without obstructing its flexibility or interfering with its kinematics [34]. 

Additionally, imaging modalities are readily available and do not introduce extra expenses into the 

operation costs. 

                                                 
2 Fabricated with Fiber Bragg Grating (FBG) technology 
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Imaging modalities studied for intraoperative image-based shape estimation techniques are magnetic 

resonance imaging (MRI) [35]-[36], x-ray fluoroscopic imaging [37]-[38], endoscopic imaging [10], 

[39], and ultrasound (US) imaging [39]-[40].   In MRI, soft tissue is imaged with better resolution 

and there are no radiation exposures; however, they are expensive, bulky and their intraoperative use 

is limited because of their inherent magnetic forces and electromagnetic interferences [35]. In 

addition, MRI has a low imaging frame rate and is not appropriate for most real-time applications 

[33]. X-ray fluoroscopic imaging depends on biplane C-arm systems that expose the patient to high 

ionizing radiation dosage and are therefore not suitable for continuous use. In addition, they are 

expensive and impose operational workspace constraints during intravascular interventions [20]. 

Conventional 2D x-ray fluoroscopy also lacks depth perception and cannot directly visualize the 

anatomic structures [53]. As an alternative to MRI and x-ray, US imaging could provide shape (and 

in particular depth) detection of interventional catheters at low cost, in real-time, and without 

exposure to ionizing radiation [20]. The use of US has been recognized as intraoperative image 

guidance in MIS procedures such as peripheral and central venous access [42], needle-based biopsy 

[43]-[44] and RF ablation for liver [45] and lung cancers/tumors [46], and cardiac catheterization 

[13], [20], [47]-[49]. Previous studies did use US not only to track the instrument’s tip [50]-[52] but 

also to realize the sensing and estimation of its shape in real time [20], [53]-[54]. Nonetheless, 

ultrasound-driven shape reconstruction algorithms suffer high computation cost and low accuracy 

mainly due to ultrasound’s low resolution, signal-to-noise ratio (SNR), and a variety of imaging 

artifacts [20].  

1.2. Research Objectives, Specific Aims and Contribution 

Given its prevalence and aforementioned advantages compared to other imaging and sensing 

techniques, the objective of this research project is to use conventional 2D US imaging system to 

design time-efficient, accurate and robust algorithm for 3D shape estimation of the tendon-driven 

cardiac catheter.  

Due to the dynamic nature of an operation, robust tracking algorithms must be designed and tested 

for the application at hand. Specifically the aims of this project is to apply Bayesian tracking 
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algorithms of Kalman filter (KF), Adaptive Kalman filter (AKF) and Particle filter (PF) to a series 

of transvers US images obtained from scanning across the length of at least three differently 

configured catheters. Algorithms are first applied to a series of artificially obtained US transverse 

images (numerical simulations in MATLAB) and then are applied to a series of experimentally 

obtained US transverse images.  

The contribution of this thesis is to present shape estimation of catheter in 3D space of a global 

coordinate frame by syncing together US images and Transducer probe pose information obtained 

while scanning across catheters. On one hand, Bayesian tracking algorithms (i.e., KF, AKF, PF) are 

developed to track catheter cross section in the sequence of transverse 2D US images. On the other 

hand, Optotracker sensor is used to keep track of the US probe pose information as the probe scans 

over the catheter. Image-based calibration is also conducted to map imaging coordinates to the probe 

coordinates.  

1.3. Outline 

The remaining of this thesis is organized into five chapters. In the second chapter a background 

review of US-guided robotic interventions is provided. Within the context of this chapter the 

importance of 3D shape estimation of surgical instruments becomes apparent. This chapter ends with 

a review of literature published solely considering different methods that estimate the 3D shape of 

cardiac catheters using US imaging modality. In chapter three, a solution to the problem of 3D shape 

estimation of tendon-driven catheters using US data is presented using three different Bayesian 

tracking algorithms: Kalman filter (KF), Adaptive Kalman filter (AKF) and particle filter (PF).  This 

chapter further discusses how numerical simulations can validate the applicability and reliability of 

these algorithms by applying them to a series of synthesized US image frames within which a known 

structure of catheter is depicted. Chapter four describes ex-vivo experiments conducted using 

SONIXTOUCH Q+ research US machine3 and NDI Optotracker4.  A series of conventional 

transverse 2D US images of 3D printed configurations emulating tendon-driven catheters are 

                                                 
3 Ultrasonix Medical ULC, Richmond, BC 

4 Northern Digital Inc., Waterloo, Ontario 
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obtained in the coordinate frame of the NDI Optotracker system. In chapter five the KF, AKF and 

PF algorithms are implemented on data obtained from the experiments. The results are compared 

and validated against the actual 3D shape of the catheter (which is independently obtained using 

Coordinate Measuring Machine (CMM5)). Finally in chapter six, the results of the KF, AKF and PF 

algorithms from the numerical simulation are discussed against the ones obtained from experimental 

data. The speed and accuracy of each of the three algorithms is further weighed against its 

applicability in the context of the complete surgical platform involving real-time US-guided robotic 

targeting.     

 

 

 

 

  

                                                 
5 Mitutoyo, Takatsu-ku, Kawasaki, Kanagawa 



 6 

C h a p t e r  I I  

ULTRASOUND-GUIDED FLEXIBLE ROBOT-ASSISTED MINIMALLY INVASIVE 

SURGERY: A REVIEW 

There is a growing interest on US image-guided robotic MIS (RMIS) [13], [41], [51], [55]-[103]. 

These surgical platforms are comprised of many components pertaining to their intended clinical 

application. In what follows, a survey of the state of the art of each component within this surgical 

platform is provided. Throughout the following sections, open problems in US-guided RMIS are 

identified and more specifically, the importance of 3D shape estimation of the surgical tool for the 

optimization of US-guided robotic visual servo control systems becomes more apparent.   

2.1. Surgical Instruments considered in US-guided RMIS  

The type of surgical tool used dictates the type of robot chosen for its manipulation, modeling 

mathematics used in robotic control systems, path/trajectory planning strategy, tracking and shape 

estimation algorithms. Therefore a discussion of commonly chosen surgical tools in literature for 

US-guided minimally invasive surgical robotic platforms is in place.   

The primary surgical tool around which the US-guided minimally invasive surgical robotics is 

designed is the asymmetric beveled-tip flexible needle [55]-[62], [64], [78]-[83], [92]-[94], [96]-

[100]. Percutaneous needle insertion used for diagnostic and therapeutic applications such as biopsy 

and brachytherapy is one of the most common minimally invasive surgical procedures [55]-[62], 

[96]-[97]. These 0.5-1 mm diameter Nitinol needles are usually beveled at 30° to easily penetrate a 

soft tissue and therefore minimize patient discomfort [55]. In addition, given their thin diameter, they 

are flexible and can be steered around obstacles (e.g. sensitive tissues) through curved needle paths. 

Steering is performed by a combination of insertion and rotation at the base of these needles using a 

robotic system [55]. As the needle is robotically steered in the soft tissue, it deflects along a curved 

trajectory in the direction of the bevel tip [59]. Consequently, there are two main mathematical 

models discussed in literature that concern bevel-tip needles. These are kinematics-based unicycle 

model of the needle, which assumes that the needle tip follows a circular path, and needle-tissue 
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interaction mechanics-based model, which predicts deflection using needle-tissue interaction forces 

[55]-[62]. These mathematical models are at the core of any control system and path planning 

algorithms concerning bevel-tip flexible needles.  

Radiofrequency (RF) ablator needle probes are the next in the list of surgical tools used in US-guided 

robotic surgical platforms. Radiofrequency ablation is one of the most promising minimally invasive 

techniques for the treatment of liver cancer where malignant tumors are unresectable such as 

hepatocellular carcinoma, colorectal metastases, neuroendocrine tumors, or other types of metastases 

[73]-[76], [104]-[105]. The rigid needle probes are usually 14–17.5 gauge, 15–25 cm long, insulated 

cannulas containing one to three straight needle electrodes or five to ten individual hook-shaped 

electrode arms or tines used for liver cancer biopsy and ablation [105]. In US-guided robotic surgical 

platforms, these needles are either inserted manually using a passive needle guide [75] or with a 

driver robot which aligns and positions the needle automatically [76]. In either case, there is no need 

for path/trajectory planning inside the liver tissue as the rigid needle’s angle and length of penetration 

is planned before the insertion.  Therefore, there is no mathematical modeling of these ablator 

needles in literature [73]-[76]. Aside from RF ablator needles, other rigid hollow cannula needles of 

1.5-2 mm in diameter have been considered in the literature [66], [71]. However, if not for liver 

malignant tumor biopsy/ablation, these rigid needles are not favorable for MIS applications (e.g. 

prostate brachytherapy [55]) as they cause deformation of tissue, which can result in target motion 

affecting the targeting accuracy.     

Forceps are also discussed in literature [85]-[88], [91], as the surgical instrument within the US-

guided robotic surgical platform. These minimally invasive instruments with a tooltip composed of 

two jaws [91], are usually made out of polyurethane (PUR), polyvinyl chloride (PVC) or nylon, 

which yields good echoes for the purpose of optimum US detection [85]. The geometrical model and 

kinematic model are two main mathematical representation of forceps upon which the controlling 

algorithms rely on. In the geometrical model [86]-[88], the instrument is modeled with three straight 

lines intersecting at a point which is used to express the instrument coordinates in the US images as 

a function of instrument pose. Furthermore, the kinematic model of the forceps is devised by 

observing the angular and translational velocity of the tip of the forceps in the US plane [86]-[88]. 
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Again these mathematical models are an essential component of the US-guided surgical robot control 

system algorithm.  

Finally, next only to bevel-tip needles, continuum/concentric tube robots (e.g., cardiac catheters [13], 

[41], [70], [72] and flexible actuated tip needle [63]) are the most common minimally invasive 

surgical instruments considered in the literature for US-guided surgical robotic platforms. Cardiac 

catheters (e.g. commercially available Artisan Control Catheters), which are also the surgical tool of 

choice in this thesis, are long and thin flexible tubes that are inserted into the vascular system and 

passed into the heart to perform minimally invasive procedures such as measuring cardiac 

physiological function, dilating vessels and valves, and implanting prosthetics and devices [70]. Due 

to their flexible structure and since they are inserted through turbulent organ such as the heart, which 

altogether may impose unpredictable backlashes, experiments conducted with cardiac catheters in 

literature are designed to restrict the motion of the catheter in a controlled manner.  For example, in 

a study a flexible sheath (out of Teflon or Nylon tubing) is already manually inserted through the 

heart vasculature before the catheter guidewire is robotically driven through it [13], [70], [72]. This 

frame of work reduces the catheter performance considerations only to guidewire-sheath interactions 

such as friction forces and backlash behavior due to gap size between the sheath and guidewire [13], 

[70], [72]. Friction forces are described with Coulombic model approximation and backlash 

behaviors are quantified as the width of the backlash hysteresis curve [13], [70], [72]. Of course, 

there has also been a study where the insertion of the cardiac catheter is not restricted by any pre-

inserted sheath [41].  In this case, the cardiac catheter is a concentric tube robot comprised of three 

telescoping curved sections inserted into the jugular vein and navigated to the right atrium of the 

heart [41].  Another type of concentric tube robot is the flexible actuated tip needle used for 

diagnostic and therapeutic purposes such as biopsy and ablation [63]. These active needles can 

change their shape either at the tip (consisted of a conical tip mounted on a ball joint) or along the 

entire length (consisted of four tendons routed through the shaft of the needle and attached to the 

conical tip) and can be steered in any direction [63]. The non-holonomic kinematics of a bicycle that 

models the bevel-tip flexible needle is adapted for this actuated-tip needle as well which assumes 

that the needle tip follows a circular path [63]. In addition, the tissue surrounding this needle, which 
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prevents sideways motion of the needle, is modeled using four Pfaffian constrains6 assigning zero 

velocities at the needle tip in x and y directions [63].  

2.2. Ultrasound Imaging Modalities used in US-guided RMIS 

In this section, different US imaging modalities used in US-guided surgical robotics is discussed 

which is a useful information in that the same modalities must be used in these platforms to estimate 

the shape of the intended surgical tool.   

In US-guided robotic surgical platforms, the US imaging is used to localize the target tissue and the 

surgical instrument during insertion [61]. After processing the acquired US frames, these images are 

used as feedback in visual servo algorithms to guide the robotic system to steer the surgical 

instrument to reach the localized target position while avoiding obstacles [61].  

In US-guided robotic surgical platforms, B-mode/2D linear probes are most commonly used to 

acquire US frames continuously during the insertion procedure [55]-[62], [64]-[65], [73]-[77], [82]-

[83], [85]-[93], [102]-[103].  The US frames have also been reported to be acquired using B-

mode/2D curvilinear transducers [51], [81], [94]. The curvilinear or convex transducers are similar 

to linear transducers except that their elements are arranged on a curved rather than a flat surface 

[106]. This format produces B-mode images in a sector or pie slice shape and is often described by 

a field of view (FOV) angle specifying its lateral angular extent [106]. The curved transducers are 

more accommodating for scans over curved surfaced specimen than the linear transducers [106]. 

Figures 2 and 3 illustrate typical linear and curvilinear US images.  

                                                 
6 In motion planning, a Pfaffian constraint is a set of k linearly independent constraints over velocity in the form of 𝐀(𝐪)�̇� = 0. [132] 
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Figure 2 – a) Linear US transducer probe, b) Linear US probe B-mode image plane [133] 

 

 

 

Figure 3 – a) Curvilinear US transducer probe, b) Curvilinear US probe B-mode image plane [133] 

 

In addition to B-mode 2D linear/curved US probes, the use of 3D US scanners are also well 

established in US-guided surgical robotics [13], [41], [63], [66]-[72], [78]-[80], [84], [95]-[99]. In 

one study, the use of convex 3D transducer is also introduced [94]. In 3D imaging, scanning in both 

xz and yz planes are combined to form a pyramidal shaped volume scan [106]. Such volumetric 

acquisition can either be obtained through a matrix array transducer [95]-[97] or through a motorized 

2D transducer [78]-[80]. Figure 4 illustrates the mechanism of matrix array transducer and Figure 5 

sketches the mechanism of motorized 2D transducer.  
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Figure 4 – a) Matrix probe using a 2D array of elements, b) the beam can be steered in two directions, c) a truncated 

pyramid of data is acquired, d) 4D (3D+t) US of the liver [134] 

 

 

 

Figure 5 – a) Motorized linear type: 3D probe with linear scanning type, b) motorized convex (curved) type: 3D probe 

with the wide field of view [135] 

 

Aside from conventional linear/curved US transducers, specialized US transducers are considered 

specifically for minimally invasive procedure of brachytherapy, namely, Transrectal US (TRUS), 

which exist both in linear (2D) [107] and matrix arrays (3D) [84]. TRUS, which is also known as 
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prostate sonogram or endorectal US, is used to look at the prostate and tissue around it in US-guided 

robotic brachytherapy or biopsy procedures.  In these procedures, the thin hollow needle, while being 

monitored by the US probe, is steered through the wall of the rectum into the prostate to either 

perform a biopsy [108] or plant seeds for brachytherapy [84], [108]. 

Summing up, robotic surgical instrument insertion platforms commonly use conventional clinical 

US imagers to guide the instrument and to improve the instrument’s placement accuracy [56]. In 

some literature 2D ultrasound is used to assist the robotically inserted instrument, but the movement 

is limited to the 2D image plane [51], [56], [90]. On the other hand, real-time 2D ultrasound images 

can be used to construct a volume within which instruments can be tracked [109]. Such volumetric 

construction with 2D US frames is also focus of this thesis within which the shape of the cardiac 

catheter is estimated or in other words the cross section of the catheter is tracked using probability 

temporal models, which will be explained in the next chapter. However, it is important to note that 

the volume reconstruction using incoming 2D US frames is a compromise between its size and 2D 

frame acquisition time [56]. Furthermore, as also mentioned in the previous paragraph, tracking 

surgical instruments such as cardiac catheters using 3D US images has also been demonstrated [50], 

[56], [110]. These modern 3D US transducers used especially for real-time applications have limited 

voxel resolution, which limits accurate surgical instrument tip detection up to 3 mm [56], [111]. In 

addition to poor accuracy, 3D US suffers from low frame rate (28 Hz) and a time delay of up to 

about 100 ms in acquisition and processing of 3D US volumes, during which time the heart’s annulus 

can potentially recoil 15 mm during the minimally invasive catheter heart surgery [67]-[69].  

2.3. Robot Hardware Specifications in US-guided RMIS  

An understanding of common robotic hardware specifications considered for experiments using US-

guided surgical robotics is useful in developing shape estimation algorithms for the surgical tools, 

as it is favorable to use the available robots to automate the procedure of shape estimation.  

Minimizing the invasiveness of surgeries involves the development of procedures in which surgeons 

no longer need to directly touch or see the structures on which they operate [112]. Robots are the 

integral part of such procedures by taking the task out of the hands of the surgeon and performing it 
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through miniscule cuts and insertions with much more accuracy, reliability and repeatability. That 

being said, the robots in the current clinical platforms are far from the intended accuracy, reliability 

and repeatability, which is why a look into literature on complexity of robots commonly used in 

respective experiments is of interest.  

In US-guided robotic minimally invasive surgical platforms either only the surgical instrument is 

robotically controlled [13], [51], [55], [65]-[72], [76], [79]-[80], [85]-[91], [94], [96], or both the US 

probe and the surgical instrument are robotically controlled [56]-[64], [73], [75], [80]-[83], [89]-

[90], [92]-[93], [95], [97]. In studies where both the surgical instrument and the US probe are 

robotically controlled, some have both the instrument and the probe controlled by a single robot [80], 

[95], [97] and some have each controlled by a separate robot [56]-[62], [81].  

The type of robot used to maneuver the surgical instrument depends on the type of the instrument. 

For example, the bevel-tip flexible needles are usually driven by needle insertion devices, which 

have 2 degrees of freedom. These devices manipulate the needle at its base by providing one 

translational DOF along the insertion axis and one rotational DOF about the insertion axis [55]-[64], 

[83], [94]. These robots can derive the needle transnationally with speed of about 0.4-10 mm/s and 

can rotate the needle with rotational speed of about 31.4 rad/s [55]-[64]. Aside from these 

conventional 2DOFs needle insertion devices, there are other mechanisms of needle insertion for 

bevel-tip flexible needles discussed in literature. For example, in one brachytherapy study, the needle 

insertion is semi-automatic, where the surgeon manually inserts the needle (manual lateral 

manipulation of the needle base) while the bevel-tip location is controlled robotically (automatic 

axial rotation of the bevel-tip needle) [82]. This study argues that such needle insertion mechanism 

where the surgeon is in charge of needle insertion is favorable since it ensures safer operation and 

continuous professional engagement, while the needle tip bevel location is controlled robotically 

[82]. To derive bevel-tip flexible needles in their respective experiments, other studies also have 

reported the use of 3DOF Gantry III Cartesian robot linear motion system with an xy stage and z-

axis slide inclined at 45°, 6DOF revolute, spherical, prismatic, revolute (RSPR) parallel robot, 
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6DOFs Viper s6507 with 6 rotational joints, 7DOFs revolute joints iARM assistive robotic 

manipulator, and 7DOFs revolute joints KUKA LBR iiwa R800 robot8 [51], [79]-[81], [95]-[97]. 

The more degrees of freedom the chosen robot has in positioning and insertion of the needle, the 

more complicated the control of robotic steering will be which in turn introduces more insertion 

uncertainties and inaccuracies. That is why in these experiments 6DOFs force/torque sensors are 

attached at each joint of the robots to measure needle insertion forces and torques [51].   

In papers experimenting with thermal RF ablator needles, the needle driver robot that aligns and 

positions the needle automatically is comprised of 3DOFs Cartesian stage with three prismatic joints 

and a 2DOF motorized rotational stage [74]-[76]. In these experiments EM tracking system (6DOFs 

FOB) interfaces the surgical workstation for easier calibration of needle holder with US probe [74]-

[76]. Other types of automation for rigid needles include 3DOF PHANToM robotic arm9 [65]-[68] 

and Motion Compensation Instrument (MCI) [69]. MCI includes a linear actuator for 1DOF 

translational 5.4 cm range of motion and includes a high linearity potentiometer for position sensing 

with accuracy of 0.01 mm [69].   

In literatures related to the control and steering of cardiac catheters, a prototype is proposed where it 

works pretty much like the aforementioned MCI device. This drive system at the base of the catheter 

consists of a single actuated linear DOF accommodating a maximum speed of 210 mm/s [13], [70], 

[72]. Specifically, it consists of a linear voice coil actuator, linear slide, linear potentiometer position 

sensor and miniature force sensor [13], [70], [72]. Using this mechanism, the cardiac catheter is 

driven inside a flexible sheath, which has already been manually inserted through the heart 

vasculature [13], [70], [72].  

Other types of continuum robots, in particular flexible actuated-tip needle and concentric tube robots 

are also worth mentioning in terms of their mechanism of automation. In one study, flexible actuated-

tip needle is steered via a linear stage [63]. However, in addition to this simple 1DOF translational 

                                                 
7 Omron Industrial Automation, Kyoto, Japan 

8 KUKA Robotics, Mississauga, Ontario. The 7th DOF corresponds to the gripping ability of the robot.   

9 SensAble Technologies, Washington, MA. 



 15 

motion, this needle can also actuate its tip using the four tendons through its flexible sheath. These 

four tendons accommodate steering direction angle in addition to the needle tip orientation [63]. In 

another study, the mechanism of a concentric tube robot that can be inserted into the jugular vein 

and navigated to the right atrium of the heart is also discussed [41]. This concentric tube robot 

consists of three telescoping curved sections: a long proximal section for navigation through the 

jugular vein (segment 1N) and two distal manipulation sections (segments 2M and 3M) for tissue 

manipulation and device deployment inside the atrium (in other words, used to position and orient 

the robot tip) [41].    

Automation of forceps is also mentioned in a number of papers [85]-[88], [91]. In one study, the 

forceps is automated using 7DOFs Mitsubishi PA1010 robot comprised of revolute joints where only 

joints 2-7 are utilized. Another example of forceps automation is with MC2E robot, which provides 

4DOFs at the instrument tip [85]-[88]. In the surgical scenario, the instrument is introduced into the 

heart through a trocar fixed on the heart wall [85]-[88]. Hence, only 4 Intracardiac DOFs remain 

[85]-[88]. Three DOFs are the x-, y-, z- components of the angular velocity of the instrument tip 

with respect to the US probe and the fourth DOF is the translational velocity of the instrument tip 

along the instrument axis [85]-[88].  

This marks the end of the survey on automation mechanisms for flexible robotic-assisted surgical 

systems and the rest of this section focuses on surveying the type of robots used for maneuvering the 

US probes. It is important to note that the robot maneuvering the US probe strives to fulfill the 

following goals as best as possible. The first goal is that the US image should visualize the instrument 

tip and overall track the instrument, keeping it well within the field of view defined by the specific 

US probe [61]. The second goal is that the image plane should be always perpendicular to 

instrument’s insertion axis as much as possible, which can usually be achieved by moving the 

transducer with variable velocities to keep the instrument in the field of view [61]. The third goal is 

the maintenance of constant contact force between the US probe and surface being scanned which 

                                                 
10 DFKI Robotics Innovation, Bremen, Osnabrück. 
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can be accomplished using force control [61]. The fourth goal is that the robot should allow the US 

probe to scan over curved surfaces [61].  

In an attempt to simplify the experiments to achieve the first three goals intuitively, a lot of studies 

discard the consideration for the fourth goal in their set up. In these studies the US probe is usually 

maneuvered using Cartesian robots that provide only translational motion along xy plane (2DOFs) 

[56]-[57], [59]-[60], [62], [64], xyz volume (3DOFs) [58], [95], [102] or only along a 1DOF linear 

stage [63], [82]-[84]. In addition in these experiments the US only scans straight surfaces.  

To better the aforementioned studies, which discard the fourth goal of US robots, one study adds on 

top of the Cartesian robot a 2DOFs rotational mechanism for transducer’s roll and pitch movement 

[61]. In addition force/torque sensors are employed to measure the contact force applied to the 

transducer [61]. In another study, for the similar purpose of achieving the fourth goal, an IBM/JHU11 

LARS robot is used where in addition to three axes Cartesian base, it employs two axis instrument 

carrier providing rotation about an instrument shaft and translation motion toward or away from the 

remote center of motion (RCM) point [75].  In this study, US probe instrument carrier is equipped 

with 6DOFs force/torque sensor to keep track of the contact force of the US probe with the uneven 

surface being scanned [75]. In addition, a Flock of Birds (FOB) EM tracking system (6DOFs 

interfaces the surgical workstation for easier calibration of the robots, US probe and surgical 

instrument [75]. The aforementioned studies in this paragraph add 2DOFs mechanisms to 3DOFs 

Cartesian robot, which in total provides the automation of US probe with a 5DOF robotic unit.    

Robots with 6DOFs and 7DOFs are also considered in literature for the manipulation of the US probe 

in their respective experiments. In one study, a UR5 (which is a 6DOFs lightweight industrial robot 

arm with rotational joints) is chosen to manipulate the US probe [77], [100]. The advantage of using 

UR5 robot is that the force exerted by it on any surface can be limited by presetting a threshold, 

which guarantees the operator and patient’s safety [77], [100]. In other studies choosing 6DOFs 

robots, one can note Viper s65012 [78] and KUKA KR 6 R9000 sixx13 [92]-[93] both with all 

                                                 
11 John Hopkins University, Baltimore, MD. 
12 Omron Industrial Automation, Kyoto, Japan 
13 KUKA Robotics, Mississauga, Ontario.  
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rotational joints manipulated to keep the surgical instrument tip in the 2D US image plane. In another 

study a prototyped 6DOFs base positioning system is used where the US automation is a combination 

of conventional three prismatic joints Cartesian positioner and three revolute joints added on top of 

it allowing the US transducer and needle manipulator to be aligned with the vessel orientation in 

venipuncture applications [101], [103].  

Studies choosing 7DOFs robots to manipulate the US probe in their experiments include 

Laparoscopic Assistance Robotic system (LARS robot) [73], KUKA LBR Intelligent Industrial 

Work Assistant (iiwa) R800 robot13 [80]-[81] and iARM Assistive Robotic Manipulator [97]. The 

LARS robot is a kinematically redundant manipulator with three-axis linear Cartesian motion stage, 

two-axis parallel four bar linkage providing two rotations along the x and y axis about the RCM 

point, and two-axis distal component providing an insertion motion and rotation about the instrument 

axis [73]. KUKA LBR only consists of revolute joints with one of them being redundant as it 

corresponds to gripping abilities of the robot [80]-[81]. In these studies, high accuracy torque sensors 

in the seven joints of the robot are incorporated [80]-[81]. In the iARM robot coordinates are read 

and written in arrays of six values, three of which describe Cartesian coordinates and three describe 

the orientation of the robot gripper hand (yaw, pitch, roll) [97]. The seventh and redundant DOF of 

the iARM robot corresponds to its gripping ability [97].     

2.4. Control Algorithms in US-guided RMIS 

An understanding of control system algorithms used in literature for US-guided surgical robotics is 

useful in developing applicable shape estimation algorithms that can be used to optimize the 

performance of these control system.   

In this section different control system algorithms for US-guided minimally invasive robotic surgery 

platforms are discussed. Most notable of the main control algorithms include: position based visual 

servo control algorithms (PBVS) [51], [55]-[64], [95], [99], [102]-[103], image based visual servo 

control algorithms (IBVS) [41], [66]-[67], [78], [85]-[90], [96], [100], nonlinear model predictive 

control [91], motion compensation control for involuntary rhythmic motions (e.g. heartbeat) which 

often consists of feed-forward Coulomb friction model compensation and backlash inverse 
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compensation [13], [68]-[72], force control algorithms [72], and virtual RCM control algorithm [74], 

[76].  

Position-based visual servoing uses visual features observed through the US and the known 

geometric model of the target to determine the pose of the target with respect to the US probe [113]. 

For instance, in a study the target’s 3D center coordinate is estimated by combining electromagnetic 

(EM) tracking of the US probe with centroid of segmented US cross section images of target (i.e. 

surgical instrument being inserted) [65]. The robot then moves toward that pose and the control is 

performed in the three-dimensional task space [113]. Several robust algorithms exist for pose 

estimation but they are computationally expensive and rely critically on the accuracy of the US probe 

calibration and the model of the object’s geometry [113]. In a number of studies, closed loop (CL) 

PBVS control is used to derive both Cartesian robot manipulating the US probe and the 2DOF needle 

insertion device [55]-[62]. In these papers, the inputs to the control system are (the preoperatively 

determined) centroid of the target (or/and obstacles [57]) and the real-time US detected surgical 

instrument (i.e., needle) tip pose in the form of Cartesian coordinates (x, y, z, roll, pitch, yaw) [55]-

[62]. It is important to mention that Kalman state observer14 is also implemented in these papers to 

minimize the noise in real-time US estimation of the needle tip pose [55]-[62]. Given these inputs, 

the CL PBVS control system commands the needle insertion device to perform duty cycled needle 

steering15 [55]-[62], [64]. Also, it derives the US’s Cartesian robot x-axis using compensator and 

gain scheduler, y-axis using a simple PD controller and z-axis using alignment control algorithm 

based on force and torque feedback from a sensor attached to transducer control robot [57], [64].  

In a different study, the US scanner does not employ any control system; instead, it scans the surface 

of interest at a constant speed of 1.55 mm/s [63]. At the same time US linear stage motor encoder 

measures the position of the transducer and therefore the anticipated needle tip [63]. This information 

                                                 
14 A statistical optimal estimation algorithm used to estimate instantaneous states of a system from indirect and uncertain measurements 

[114]  
15 As flexible bevel tip needles are inserted into tissue, the stiffness of the tissue acting on the non-symmetric needle tip deflects the needle 

[115]. By constantly spinning the needle during insertion, the bevel angle is essentially used to direct the needle through a specific trajectory. 
Therefore, incorporating duty-cycled spinning during needle insertion provides proportional control of the curvature of the needle trajectory 
through tissue. [115] 
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is fed into the CL PBVS control system of the needle insertion device which compensates for the 

needle velocity out of US plane by reducing the needle insertion speed to 1.4 mm/s or increasing it 

to 1.7 mm/s [63].  

Image-based visual servoing omits the pose estimation step and uses the US image features directly 

[113]. The control is performed in the US image 2D space [113]. The desired US probe pose with 

respect to the target is defined implicitly by the image feature values at the goal pose [113]. IBVS is 

a difficult control problem since the US image features are a highly non-linear function of camera 

pose [113]. Despite the challenge, some studies have employed IBVS in the steering of their surgical 

instruments within the US-guided robotic surgical platform [41], [66]-[67], [78], [85]-[90]. IBVS 

can be used to control the automatic steering of the surgical instrument by measuring its tip position 

error in the US image and employing PD controller for compensation and position control [66]-[67]. 

In one study, CL IBVS control is used to provide feedback for duty-cycling control strategy that 

guides the needle toward a surgeon defined target whose coordinates are expressed in US volume 

frame [79]. Usually in literature implementing IBVS, the surgeon selects a desired instrument target 

location on US image [86]-[88].  

CL IBVS is also employed in compensating for target anatomy motion visible through 3D US 

imaging [80]. In this case, intensity based similarity functions (e.g., Normalized Cross Correlation 

or NCC) are used to compute the misalignment and using this information, the visual control law 

determines new desired pose for US transducer [80]. Not only for the robot controlling the US probe 

but also for the insertion robot, CL IBVS can be used to compensate for involuntary patient motion 

in milliseconds and any other possible instrument slippages [90].  

One study also simulates IBVS control on a virtual US probe [41]. In this case, the control velocity 

applied to the virtual US probe is computed to minimize the visual error between the current visual 

features extracted from US image and the desired visual features [41]. To exponentially decrease the 

visual error, a standard classic proportional control law is used [41], [78], [85]-[88], [100]: 

𝐯𝑝 = −𝜆�̂�𝐬
+(s(𝑡) − 𝑠∗), 
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where, 𝐯𝑝 is the velocity applied to the virtual US probe, 𝜆 is the controller gain, �̂�𝐬
+ is the pseudo-

inverse of an estimate of interaction matrix that relates the variations of visual features to 𝐯𝑝, 𝑠(𝑡) is 

the current visual feature extracted from US image and 𝑠∗ is the desired visual feature [41]. In other 

non-virtual scenarios, force feedback or impedance control scheme16 is used in conjunction with 

IBVS to maintain constant pressure of the US probe on the body while the probe is automatically 

guided to keep the surgical instrument within the field of view [78].     

Nonlinear model predictive control is also studied in the context of visual servoing (applicable to 

both PBVS and IBVS) [91]. The nonlinear predictive model ensures that the instrument is positioned 

where desired more productively while satisfying constraints such as joint limits, actuator saturation, 

and visibility preserving [91]. Therefore, the proposed nonlinear model predictive control system 

incorporates the robot model, US image projection model, physical limits and model error 

adjustments [91].  Another study employs Unscented Kalman Filter (UKF), which is a nonlinear 

temporal model, in the context of IBVS [94]. In this study, UKF accommodates accurate closed loop 

robotic steering control of the needle tip in constant 5 mm incremental insertions toward the target 

defined in 3D US coordinate system [91].     

In a number of studies motion compensation control for involuntary rhythmic motions such as 

heartbeat is implemented [13], [68]-[72]. In these studies, the rhythmic movement of the heart is 

modeled using Extended Kalman Filter (EKF) and this trajectory is fed-forwarded to the robot 

controller for synchronization in real-time [68]. In other words, the robot (i.e., the MCI machine) is 

to follow the motion of the mitral valve at e.g., 60 beats per minute (bpm) [69]. Simultaneously, the 

instrument and target measurements (i.e., segmented from 3D US volumes in real-time) are used to 

automatically register the robot and imaging coordinate frames and also to position control at 1kHz 

using PD or PID algorithms [13], [68], [70]. To accommodate the robotic motion compensation, 

these studies also employ feed forward Coulomb friction compensation, which uses friction predictor 

to feed forward an additional force to compensate for the existing friction (i.e., in this case between 

the cardiac catheter and the pre-inserted sheath) [13]. In addition to friction compensation, backlash 

                                                 
16 i.e. mass-damper-spring relation between robot end effector position and external force for required US contact force [80] 
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inverse compensation is also employed which measures the backlash (i.e., in this case for the catheter 

guidewire inside the pre-inserted sheath within the heart valve) and uses the inverse value to specify 

the correction offset required to drive the system through the desired trajectory [13]. Another control 

algorithm employed in the progression, is the force control with the purpose of applying a desired 

force on a fast moving target (i.e. within the beating heart) with the robotic catheter end effector [72]. 

To achieve this, the drive system follows a desired position, 𝑥𝑑, defined by:  

𝑥𝑑 = 𝑥𝑒 + 𝑥𝑓, 

where 𝑥𝑒 is the position of the moving target and 𝑥𝑓 is the position offset required to maintain the 

desired force [72]. The PID controller running at 1kHz takes care of this position offset [72]: 

𝑥𝑓 = 𝐾𝑓(𝐹𝑑 − 𝐹𝑒) + 𝐾𝑓𝑖 ∫(𝐹𝑑 − 𝐹𝑒)𝑑𝑡, 

where 𝐾𝑓 and 𝐾𝑓𝑖 are controller gains, 𝐹𝑑 is the desired force and 𝐹𝑒 is the applied force [72]. 

There are also control methods in literature to manipulate the needle placement robot to align 

percutaneous needles using virtual RCM control algorithms, which eliminate the need for expensive, 

difficult to calibrate RCM mechanisms [74], [76].  Specifically, for percutaneous needle placement 

procedures, surgical robots with remote center of motion (RCM) wrists have demonstrated utility 

[116]. However, due to the complicated mechanical design and their need for calibration and 

registration to the medical imager prior to each use, these robots are not widespread in clinical 

applications [116]. As the result, some studies propose a virtual RCM control algorithm that only 

requires online tracking or registering of the needle to the imager (i.e., 6DOF pose of the needle from 

EM tracker) and a 5DOF un-calibrated robot of three prismatic and two rotational joints that does 

not require preoperative registration (i.e., the orientation of the robot base with respect to the tracker 

base station suffices) [74], [116]. With the virtual RCM algorithm, the robot executes RCM motion 

“virtually” without having a physically constrained fulcrum point [116]. In the virtual RCM 

algorithm, a fast convergent incremental adaptive motion cycle running on heuristic function17 

                                                 
17 An Artificial Intelligence searching method 
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guides the needle to the insertion point and aligns it with the target within very few cycles [74], 

[116]. In other words, the robot performs incremental motions and after each motion it checks to see 

if the needle is becoming more aligned or less [74], [116]. This information determines which 

direction is likely to result in more accurate alignment with the directional vector from body entry 

point to the target [74], [116].  

2.5. Path/Trajectory Planning in US-guided RMIS 

Shape estimation algorithms can also be used to optimize the performance of path/trajectory 

planning algorithms. Therefore an understanding of commonly used path/trajectory planning 

algorithms in literature is in place.  

In minimally invasive surgeries using US-guided surgical robotics, the path or trajectory through 

which the surgical instrument must travel to get to the intended target must be clearly defined [57]-

[58]. The clearly defined path is then used to command the control system toward the intended 

trajectory. Most of the time in literature, the surgeon or operator manually sets the path of the surgical 

instrument toward the target (i.e., preoperatively at the image guided surgical planning station) [41], 

[51], [55], [74]-[76], [80], [84], [98]-[99], [101]. To avoid complicated path/trajectory planning, 

some studies instruct the insertion robot to follow a constant velocity path [66]-[67]. Another study 

employs a simple trajectory planner that calculates the needle path by interpolating from start and 

end points at a 20 Hz cycle rate using an exponential decay function [102].  

Notably, the Rapidly Exploring Random Trees (RRT) algorithm is used in a number of papers to 

calculate the path/trajectory of the surgical instrument (i.e. bevel-tip needle) [57], [59]-[62], [64]. In 

this method, the desired path is calculated in a sequence of 6 mm milestones based on needle 

curvature kinematic model and pre-operative US target and obstacle(s) localization [57], [59]. In 

addition, this calculated path is updated intra-operatively according to real time needle tip position 

obtained from US images while avoiding virtual (stationary or moving)/real (stationary only) 

obstacles [57], [59]. The RRT algorithm is placed inside the closed loop control system and executed 

repeatedly at 1 Hz until target is reached [60]. At each re-planning step, out of hundreds of calculated 

plans, the one with the shortest needle path while avoiding obstacles is selected [60]. The output of 
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RRT path planning algorithm is a set of calculated needle rotation and insertion specifications that 

can be used in duty-cycled spinning strategy to steer the bevel-tip flexible needle to the target [61].  

In another study, a path/trajectory planner based on graph-based search algorithm is reported [82]. 

In this method, given target and obstacle locations, the path planner computes a large number of 

paths. These calculated paths are updated intra-operatively using Homotopy Analysis Method18 

(HAM) [82]. HAM-based needle deflection predictor is a real time predictor based on needle 

curvature information obtained from US images [82]. It is used for estimating future needle 

deflection as it is steered inside soft tissue [82]. The output of the path planner is a set of needle 

rotations at 180° that will steer the needle tip through the shortest path to the target while avoiding 

obstacles [82].   

2.6. Visual Tracking methods used in US-guided RMIS  

US-based instrument tracking can also benefit from the incorporation of shape estimation algorithms 

for the surgical robots. Therefore a survey of different tracking methods in literature provides a 

context of how the incorporation of shape estimation algorithms can be applicable.  

In literature concerning the US-guided minimally invasive robotic surgical platforms, tracking in 

2D/3D US is either only implemented for the localization of the surgical tool tip [13], [51], [56]-

[64], [66], [68]-[70], [74]-[75], [77]-[79], [83], [85]-[88], [91]-[92], [94]-[99], [100]-[101], or both 

the localization of the tool tip and the target at the same time [41], [55], [67], [71]-[73], [76], [80]-

[81], [89]-[90], [93], [98]-[99]. The real time surgical tool and/or target localization in 2D/3D US 

provided by tracking algorithms is used to update the closed loop control systems and path/trajectory 

planners and therefore it plays an integral part in literature regarding US-guided surgical robotics.  

Many different image processing algorithms applicable to B-mode US images are the central part of 

the solution to the tracking problem. For instance, the tracking of the flexible needle tip in 2D 

                                                 
18 HAM is a mathematical tool based on concepts in topology and differential geometry used to describe continuous variation or 

deformation (e.g. a continuous deformation of a circle into an ellipse can be mathematically described using homotopy between the two 

functions describing the circle and the ellipse) [82]. In this paper, the concept of HAM is used to estimate the continuous deformation 

of the flexible bevel-tip needle as it is being inserted into the tissue [82].    
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coordinates, given as 3DOF (𝑥, 𝑦, 𝜃), can be achieved using real time 2D US images, with image-

processing algorithms such as: Kalman filter, needle enhancing filter, Hough transform, Harris 

corner detection, contrast stretching, intensity thresholding, adaptive thresholding based on Otsu’s 

method, morphological operations, fast labeling algorithm based on run length coding, template 

matching, similarity functions (e.g. MI, NCC, SSD, SCV), image moments and blob analysis [55], 

[83], [85], [89]-[93], [100].  

Similarly 3D needle tip coordinates, given as 5DOF (𝑥, 𝑦, 𝑧, 𝜃, 𝜙), can be tracked by keeping the 

calibrated 2D US transducer perpendicular to the direction of needle insertion and executing image 

processing algorithms such as Hough transform on respective real time 2D US images and therefore 

localizing the needle tip in these images [56]-[62], [64]. An implicit force control can be used to 

keep transducer orthogonal to the needle insertion axis over any curved surfaces [61].  

Adebar et al. describes a recursive estimation approach based on UKF and nonlinear kinematic 

process model of needle steering to estimate the 6DOF pose, in (𝑥, 𝑦, 𝑧, 𝜃, 𝜙, 𝜑), of the steerable 

needle tip in 3D US volume [94]. In studies conducted by Liang et al. the 6DOF pose of the needle 

tip is tracked in 3D US volume using simple image segmentation algorithms such as first-arrival 

thresholding [96]-[97]. In supplement, Hungr et al. makes the point that 6DOF tracking of the needle 

tip in 3D US volume can be optimized by improving the visibility through placing a rubber sleeve 

over the needle tip [98]-[99].    

In a study the needle tip is tracked in 3D by fusing together the data from FBG-sensor with the data 

from 3D US volumes using UKF algorithm [63]. In this case, the FBG sensor helps track the needle 

tip when it is masked by anatomical structured [63]. On the other hand, the data from 3D US, 

obtained as the transducer is kept perpendicular to needle insertion direction, are processed using 

filtering, thresholding, contour tracing and shape matching using Fourier descriptors so that the 

needle tip can be localized in US volumes [63].  

Stoll et al., Novotny et al. and Yuen et al. propose the tracking of rigid needle tip in 3D US volume, 

given as 6DOF (𝑥, 𝑦, 𝑧, 𝜃, 𝜙, 𝜑), using a passive marker attached to the tip of the needle [66]-[67], 

[71]. Four out of the six DOFs, namely 𝑥, 𝑦, 𝜙 (pitch) and 𝜑 (yaw), are obtained by measuring the 
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surgical instrument’s shaft axis using Modified Radon Transform (a 3D line detection algorithm 

based on Singular Value Decomposition or SVD mathematical model) given a number of image 

points along the shaft and assuming that the rigid needle tip points away from the probe [66]-[67], 

[71]. The other two DOFs, namely 𝑧 (tip position) and 𝜃 (roll angle of the needle tip), are obtained 

using the passive marker attached to the rigid needle tip [66]-[67], [71].  A vertical 2D slice in the 

3D US volume through the centerline of the rigid needle gives the cross section image of the passive 

marker surface and ridges [66]-[67], [71]. By applying contour extraction using filtering and edge 

detection on this 2D slice, position (z) and orientation (𝜃) of the needle tip can be determined [66]-

[67], [71].  

Nadeau et al. on the other hand, reports tracking the tip of the concentric tube robot using 3D US 

visual servoing without requiring assumptions on object geometry or any segmentation steps [41]. 

This is accomplished solely by using the intensity information of the visual feature from raw 3D US 

data [41]. Kesner et al. also similarly tracks cardiac catheter tip position, employing in addition a 

GPU-based Radon transform algorithm to find the catheter’s axis in real time [13], [70], [72].  

Boctor et al. also propose tracking the ablator needle tip in 3D coordinates intra-operatively by 

collecting 2D US transverse images and compounding them into a 3D US volume using the slicer3D 

medical data visualization software package [73]-[76]. To compound the 2D US images into a US 

volume, slicer3D software requires the 6DOF pose of the US probe as it scans over the surface of 

interest. To this end, in this study, EM tracker is used to record the path of the probe during the scan 

[73]-[76]. In practical terms, the needle is inserted according to predetermined distance and real time 

2D US is used as a monitoring tool while the slicer3D visualization software package synchronizes 

real time capture of 2D US data and the probe position information to assemble a spatially registered 

3D volume which displays the needle with its current ablating range [73]-[76]. In another study by 

the same research group, Boctor et al., the tip of the catheter is tracked by embedding an active 

element (AE) near the tip of the catheter [77]. Specifically, the signal generated by the AE element 

under US wave effect is used for tracking the tip of the catheter [77].  
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In a study conducted by Chatelain et al. the needle tip is tracked in 3D US volume from the moment 

it is inserted without any prior knowledge on the insertion direction [78]. Using the information 

obtained from image differences, specifically local displacement of high intensity voxels, random 

sample consensus (RANSAC) algorithm with Kalman filtering (KF) in a closed loop is used to find 

the axis of the needle [78]. Kojcev et al. also employ the same technique but instead of KF it uses 

Extended KF (EKF) with RANSAC algorithm to find the axis of the needle [81]. Once the axis of 

the needle is found, the position of the tip along this axis is determined by looking for substantial 

intensity drop [78]. Consequently, robust real time tracking of the needle in 3D is achieved [78]. In 

another study by the same group, Chatelain et al., real time 3D needle tip tracking in 3D US volume 

is achieved by Particle Filtering (PF) [79]. In the employed PF algorithm, each particle represents a 

possible hypothesis of the location of the tip of the needle (modeled as polynomial curve) [79]. The 

measure of goodness of each particle/hypothesis is updated based on the data from 3D US using the 

Sequential Importance Re-sampling filter (SIR) algorithm which is designed to avoid the degeneracy 

phenomenon [79]. The degeneracy phenomenon is when the weight (i.e. probability) of one particle 

tends to 1 while the weight of others become negligible in which case it renders the recursive PF 

algorithm dysfunctional [79].  

In a series of studies, Vitrani et al. discuss the 2D tracking of the forceps instrument tip in real time 

2D US images [87]-[88]. Each Jaw of the forceps intersects the US plane, thus two blobs are visible 

[87]-[88]. The center of gravity of the two blobs (denoted 𝑃1 and 𝑃2 is calculated and the distance 

between 𝑃1 and 𝑃2 (denoted 𝛿) is tracked in 2D US images along with 𝜃 which is the angle between 

the horizontal axis and the line through 𝑃1 and 𝑃2[87]-[88].    

So far, the survey is this section only covers tracking of surgical tool tip. However, it is also important 

to mention that in some of the aforementioned papers, tracking of the target plays an essential role 

in the closed loops control governing the US-guided robotic surgery platform. Target tracking in 2D 

can be obtained from 2D US images obtained in real time by simple image processing techniques 

such as thresholding and calculating the centroid of the blob moments [55]. Active contour model 

can also be used to conduct a fast and robust segmentation for tumor motion in real time 2D US 

images [89]-[90]. Kaya et al. also report the use of NCC and MI similarity functions to track both 
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small and moving targets (associated with affine motion model) and deformable targets (associated 

with thin plate spline motion model) in real time 2D US captures [93]. To track the target in 3D using 

2D US images on the other hand, tracking of the 2D US probe during its scan is required [65]. In 

such case, the 3D target localization first involves calibration of US image plane with reference 

frame of the EM tracking unit [65]. Second, US images must be segmented using thresholding, 

boundary and texture identification to extract the target cross section [65]. Finally, registration is 

employed where 2D US frames are translated or rotated with respect to the EM tracking device base 

frame [65].   

Nadeau et al., Zetting et al. and Kojcev et al. execute intraoperative tracking of both the surgical 

instrument and target at the same time in real time using 3D US visual servoing [41], [80]-[81]. 

Without any prior knowledge of target shape, the 3D US probe is controlled to keep the target 

centered within the probe’s field of view (defined by 3D region of interest (ROI)) utilizing image 

intensity information as visual feature [41].  Novotny et al. and Yuen et al. also discuss intraoperative 

tracking of the target in 3D US volume by tracking an X marker attached to the surgical patch [67]-

[69]. The X marker is two intersecting and perpendicular strands of nylon, where the intersection 

point of the two lines defines the target centroid position and the cross product defines its orientation 

[67]. In these studies, the modified Radon based algorithm is used to segment 3D US data [68]. 

Using the segmented 3D US data, target positions are determined which are passed to EKF algorithm 

that estimates target positions for 132 milliseconds in the future [68]. Similarly, in studies conducted 

by Kesner et al., to compensate for 50-100 milliseconds of delay in 3D US volume acquisition and 

processing, EKF estimates the current target (i.e. cardiac tissue) location based on Fourier 

decomposition of the cardiac cycle [13], [70], [72].  

Yuen et al. introduce a real time tissue tracking technique in 3D US volume called Flashlight Tracker 

which tracks the tissue that the instrument is pointed toward [71]. First, a 2D image slice is 

constructed through the US volume that contains the shaft of the rigid needle [71]. K-means 

algorithm is used to group pixels that exceed intensity threshold, denoted by 𝐼𝑡, into two clusters 

based on Euclidean distance in which it is assumed that the more distal cluster is the target [71]. 

Next, active contour algorithm governed by real-time minimization of the energy equation through 
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a greedy algorithm is used to segment the target [71]. Finally, the first intersection point of the 

contour with the ray along the instrument shaft is taken as the target position [71]. 

Boctor et al. also report the use of slicer3D medical data visualization package to track the target in 

3D using 2D US scans [73]-[74], [76]. To use the slicer3D package for target localization in 3D, 

Hopkins calibration is used to determine the 6DOF transformation between the EM position sensor 

and the corner of the US image plane [73]. Using this transformation information and generic 3D 

US processing modules, slicer3D synchronizes real time 2D US data with EM tracked position 

information to robustly assemble a spatially registered 3D Ultrasound volume visualizing the target 

[73]-[74], [76].       

Hungr et al. and Long et al. specifically discuss intraoperative prostate (i.e., the target in 

brachytherapy procedure) motion tracking in 3D using 3D TRUS data [98]-[99]. In these studies, a 

fast 3D US registration algorithm is used where the image of the prostate before implanting the 

brachytherapy seed is registered with the image of the prostate after implanting the brachytherapy 

seed and the amount by which the target (i.e. prostate) has moved is determined [98]-[99]. The 

registration algorithm is solely based on analysis of image intensity variations and uses a multistep 

pipeline, where each step refines the registration on increasingly more complex motion models [98]-

[99].   

2.7. Shape Estimation of Surgical Tools in US-guided RMIS 

Estimating the shape of the surgical tool using US is also considered in the context of US-guided 

minimally invasive surgical robotics due to its applications in planning the trajectory and tracking 

control of surgical tools. The surgical tools under our study (e.g. flexible bevel-tip needles) deform 

as they are inserted into the tissue or surgical site, which must be taken into account in the whole 

control scheme. By updating the path planner and therefore the control system with real time shape 

estimation of these tools, better targeting accuracies can be achieved in US-guided surgery robotics 

[60], [62], [63], [78], [79], [83], [92], [95]-[97].   
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Moreira et al. implement on-line curvature estimation of the flexible needle in 3D by using 2D 

transverse US images [60]. To this end, the needle path is divided into sub-trajectories [60]. Each 

sub-trajectory is comprised of one-second duty cycling period of the needle insertion device, which 

is captured by thirty 2D US top-pose captures [60]. First, fast PCA algorithm based on SVD is used 

to find the plane of each sub-trajectory [60]. Second, circle-fitting algorithm estimates the radius of 

curvature in each sub-trajectory [60]. Finally, KF is used to reduce noise and estimate the maximum 

curvature of the flexible needle [60]. In progression of this work, this real-time flexible needle 

curvature estimation is fused with offline needle curvature estimation through indirect feed-forward 

KF [62]. Offline needle curvature estimation is based on biomechanics properties defining the 

relationship between tissue elasticity and the needle curvature [62]. In this study, tissue elasticity is 

expressed as Young’s modulus, which is estimated by Acoustic Radiation Force Impulse Imaging 

(ARFI) [62]. On the other hand, the needle curvature is estimated by fitting a circle to each of the 

ten sets of 3D US needle tip position through 50 mm insertions of 6 different phantoms [62].  

Shahriari et al. reconstruct the needle shape in 3D space and real-time using measurements from an 

array of FBG sensors fused with 3D US images using UKF [63]. In another study conducted by 

Chatelain et al., needle shape in 3D space is estimated using RANSAC algorithm where a polynomial 

curve is fitted to a candidate set obtained from 3D US captures in real-time [78]. In this study, a cost 

function is used to classify the voxels as belonging to the needle or to the background [78]. In another 

paper by Chatelain et al., SIR-based needle tracking algorithm is designed to track a curved needle 

in 3D US volume using estimation of insertion velocity [79]. Then, PF is used to detect the bending 

of the needle in 3D [79]. Liang et al. also reported 3D shape estimation of a needle using 3D US data 

[95]-[97]. The 3D needle shape is reconstructed in 3D voxel plot using 3D image segmentation 

algorithm based on first-arrival thresholding method [95]-[97].  

Summing up, the aforementioned studies discuss shape estimation in 3D space using 2D/3D US only 

for flexible needles. 3D shape estimation of catheters or other continuum robots, a more challenging 

problem due to the hyper flexibility of catheters compared to needles, are overlooked in the context 

of US-guided surgical robotics platform. Nevertheless, the 3D shape estimation of continuum robots 

is important in developing techniques of closed-loop control, path planning, human-robot interaction 
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and surgical manipulation safety concerns in minimally invasive surgeries that utilize them [20]. To 

fill this gap in literature, only a handful of papers are produced that attempt shape estimation of 

continuum robots in 3D space using the US system. Due to the importance and high relevance of 

this topic to the study at hand, these papers are summarized separately in the following section.  

2.8. Ultrasound 3D Shape Estimation of Continuum Robots: A Survey 

Continuum robots (i.e. robotic catheters, robotic instrument sheaths, snake-like robots, concentric 

tube robots), whose shape comprises a smooth curve along their length, are common in MIS such as 

endovascular intervention procedures (i.e. transcatheter intravascular US or IVUS diagnosis, 

transcatheter aortic calve implantation or TAVI, and catheter ablation) [53], [117].  An estimation 

of the shape of continuum robots in 3D space provides the surgeon with relative perspective of the 

surrounding vessels and tissues that surrounds the robot [53]. In practical terms, such 3D shape 

information can be used in tracking and servoing algorithms to prevent the formation of undesired 

loops, and damage to the vessel walls and tissues, while at the same time ensuring the stability of the 

continuum robot’s contact especially when compensating for tissue motion or during surgical task 

automation [53], [117].   

During MIS, it is desirable to provide navigational cues to the surgeon in the form of image overlays 

or virtual fixtures [117]. To this end, image-based tracking and servoing is implemented to perform 

procedures using medical continuum robots [117]. Ultrasound (US) imaging systems are preferably 

used for image-based tracking and servoing mainly due to their real time capability. In addition, its 

low cost, no radiation exposure, and good depth perception, makes clinical US widespread for 

interventional tasks [117].  

The main disadvantages of US are low special resolution and contrast and high level of imaging 

artifacts [54]. Therefore, accurate continuum robot shape detection is of vital importance in the US 

image-guided minimally invasive interventions [69], [110], [118]-[120]. In addition, current tracking 

and servoing methods of interventional devices in the context of US-guided minimally invasive 

surgical robotics are very limited in their incorporation of shape estimation algorithms [13], [41], 

[51], [55]-[103]. Mostly the previous works either track/servo a single tip point [13], [55]-[59], [61], 
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[64], [66]-[67], [70]-[72], [74], [77], [81], [85]-[88], [91] or are arranged to only be applicable to 

needles (as opposed to long and flexible composition of tendon-driven catheters) [60], [62], [63], 

[78], [79], [83], [92], [95]-[97]. These methods of tracking and servoing are not applicable to steering 

flexible devices such as catheters, particularly in tortuous vessels [53].   

Toward the goal of developing tracking and servoing algorithms for continuum robots, only a 

handful of papers have investigated estimation of curved robots in 3D space using US. These studies 

are summarized as follow.        

Ren et al. present a shape estimation algorithm for continuum robots of known constant curvature 

given the limited field of view of US imaging where only the distal curved section of the robot 

appears [117]. In this study the shape estimation of the curved robot is done in 3D space using 3D 

US. The proposed shape estimation algorithm is based on circle parameter estimation [117]. A circle 

in Cartesian coordinates of a gray-level US volume, can be parameterized with six variables, 𝑝 =

[𝑥0, 𝑦0, 𝑧0, 𝜃, 𝜙, 𝑅], where (𝑥0, 𝑦0, 𝑧0) correspond to the center of the circle, (𝜃, 𝜙) are the angular 

parameters defining the unit normal to the circular plane 𝐧 = (𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜙), and 𝑅 

is the radius of the circle [117]. The shape estimation process is accomplished in three steps. First, a 

five-step pipeline image processing is used to remove the effects of imaging artifacts. The five-step 

pipeline imaging process is comprised of automatic thresholding, median filtering, connected 

component filter, morphological erosion and skeletonization [117]. Circle detection algorithm is then 

implemented on the skeletonized image in two parts. The non-unit length normal vector (n) to the 

plane containing the circle is first estimated using RANSAC algorithm [117]. Next, all points 

determined to lie in the estimated plane are projected onto a plane perpendicular to �⃑�  for estimation 

of the radius and center of the planar circle [117].  

In progression of the study explained in the last paragraph, Ren et al. develop a method called 

Tubular Enhanced Geodesic Active Contours (TEGAC) to estimate the shape of the continuum robot 

in 3D space using 3D US [54]. TEGAC is intended to replace the five-step pipeline image processing 

discussed in the previous study by Ren et al. This scheme combines geodesic active contours with a 

speed function to emphasize the tubular structure of the continuum robot while suppressing the other 



 32 

non-tubular structures in the 3D US image [54]. Non-tubular structures in 3D US volume can be 

known artifacts such as comet tail artifacts (CTA), diffractive side lobe (DSL) artifacts and range 

ambiguity artifacts (RAA) [54]. By incorporating the characteristics of these 3D US imaging artifacts 

and the robot tubular prior information (i.e., diameter of the robot’s cross section and that the robot 

surface facing the transducer produces the clearest boundary), TEGAC detects the shape of the 

catheter in a cluttered environment [54]. In this scheme, first, the tubular enhancement module 

enhances the tubular structure of the continuum robot while suppressing the other non-tubular 

structures (i.e. artifacts) in the 3D US image [54]. This is accomplished using analysis of the 

eigensystem of the image volume’s Hessian matrix, which reveals the geometrical dissimilarity of 

structures [54]. The results from the tubular enhancement module are used to derive a speed function 

that guides the active contour evolution, smoothing and pushing the contour to tubular boundaries 

[54]. 

Finally, Chen et al. propose shape estimation of cardiac catheters in 3D space with 2D US, using 

two-step PF [53]. In this study, a 2D US probe scans an endovascular catheter fixed in place in a 

water tank while an optical tracking device collects positional information of the US probe [53]. 

First, since catheter may be occluded due to US image artifacts, a multi-feature and multi-template 

particle filter algorithm is applied to US images for catheter tracking [53]. These catheter-tracking 

results are transformed into the optical tracking device coordinates. Second, to reduce the 

localization error due to low quality of US images and obtain a more accurate estimate of the 3D 

shape of the catheter, the motion of the catheter is modeled and a particle filter shape optimization 

algorithm is applied [53]. Finally, the 3D estimated shape of the catheter is overlaid on the 

preoperative cardiac 3D structures for an intuitive 3D visualization for use in minimally invasive 

cardiac surgeries [53].  

The three aforementioned proposed methods of continuum robot shape estimation have been tested 

through experiments and validated against the ground truth as explained in the respective papers 

[53], [54], [117]. In Table 1, the average values of the error metrics reported in these papers are 

summarized. This table will act as an evaluation chart for the 3D shape estimation techniques that is 

developed for the purposes of this thesis.  
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Table 1 

Comparison of US shape estimation errors among existing studies 

Studies Year Method of Validation & The Ground Truth US 

Modality 

Error 

(mm) 

H. Ren 

[117] 

 

2011 Manual segmentation using the degree of 

volumetric overlap as computed with the DICE 

metric 

3D US 2.3 ± 1.5 

H. Ren 

[54] 

 

2012 Manual segmentation using the degree of 

volumetric overlap as computed with the DICE 

metric 

3D US 0.804
± 0.015 

F. Chen 

[53] 

 

2017 CT scan image coordinates were mapped onto 

the tracking device coordinates 

2D US 2.23
± 0.87 

 

2.9. Summary 

In this chapter, the possible constituents of the US-guided flexible RMIS platform that was of 

specific interest to the literature was reviewed in sections 2.1-2.7 (i.e., surgical instruments, US 

imaging modalities, robot hardware specifications, control algorithms, path/trajectory planning, 

visual tracking methods, and shape estimation of surgical tools). In the body of the reviewed 

literature major limitations were noted as follow. Firstly, many of these publications did not 

implement the preferred visual servoing method of IBVS to solve their tracking problem and instead 

sufficed their experimental set up to PBVS [13], [55]-[65], [70], [72]-[73], [76]-[80], [83]-[84], [92]-

[93], [95]-[97]. PBVS uses observed features, a calibrated camera and a known geometric model of 

the target to determine the pose of the target with respect to the camera. The robot then moves toward 

that pose and the control is performed in the 3D task space. Therefore, PBVS is not only 

computationally expensive but also relies critically on the accuracy of the camera calibration and the 

model of the object’s geometry [113]. On the other hand, IBVS omits the pose estimation step and 

uses the image features directly. The control is performed in 2D image coordinate space and the 

desired camera pose with respect to the target is defined implicitly by the image feature values at the 

goal pose [133]. The aforementioned IBVS specifications makes it computationally less expensive 

and more accurate. Secondly, many publications fail to account for involuntary motions inherent in 

MIS such as respiration and heartbeat in their control mechanism. In other words, there is a lack of 
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real time tracking of the target or obstacles in literature [13], [41], [51], [56]-[66], [69]-[70], [72]-

[97]. Finally, and most relevant to the purpose of this thesis is the lack of real-time 3D shape 

estimation of the surgical tools in the reviewed literature [13], [41], [51], [55]-[72], [74]-[78], [80]-

[81], [84]-[103]. This not only forsakes the effect of involuntary motions such as heart beat and 

respiration on the shape of the flexible surgical instrument but also affects the accuracy and 

efficiency of the control systems implemented to solve the targeting problems addressed in these 

studies.     

Aside from the literature concerning US-guided flexible robotic minimally invasive surgical 

platforms, section 2.8 specifically reviewed papers that separately attempted 3D shape estimation of 

tendon-driven catheter using US imaging systems. The total of these publications amounts to only 

three papers dated from 2011 – 2017. Two of these papers ([54], [117]) estimate the 3D shape of the 

catheter using 3D US systems. Compared to conventional 2D US systems, 3D US systems suffer 

from poor accuracy (~1mm), low sampling frequency, and slow acquisition and processing of 3D 

US volumes [68]-[69]. On the other hand, the latest of these papers, [53], estimates the 3D shape of 

the catheter using 2D US system but with a computationally expensive particle filter (PF) algorithm. 

Overall the small number of publications devoted to the estimation of the 3D shape of the tendon-

driven catheters using US imaging system is indicative of potential for further research in this arena. 

In addition, among the three mentioned published papers, none provides contribution applicable to 

real-time applications. This further justifies the motivation of research under the topic of real-time 

3D shape estimation of tendon-driven catheters using US imaging system.  

Summing up, the title of this thesis is motivated by the lack of contributions in research pertaining 

to 3D shape estimation of tendon-driven catheters using US imaging system. Even though, the real-

time functionality of the methods studied in this thesis have not been implemented or validated, the 

predictive nature of the chosen tracking algorithms (i.e., KF, AKF, and PF), which only depends on 

the present measured state, makes it possible to extend their development to real-time applications.  
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C h a p t e r  I I I  

THEORY: ALGORITHMS & SIMULATIONS 

The catheter which is fixed inside a gel-filled container is scanned by the US probe transversely 

across its length. Using a sequence of US transverse images as input, the primary purpose of catheter 

3D shape estimation algorithms and simulations is to track the cross section of the catheter within 

these images. These tracked cross sections, assembled in a correct configuration in a global 

coordinate frame, can provide an estimate of the 3D shape of the catheter.  

 In this thesis temporal probability models based on Bayesian statistics are deployed to track catheter 

cross sections in US frames. Bayes’ theorem is a fundamental theorem in Bayesian statistics as it is 

used to update probabilities and estimates in the evidence of new data19. Specifically, Kalman filter 

(KF) and adaptive Kalman filter algorithms (AKF) are used to track the centers of the catheter cross 

sections while particle filter (PF) algorithm is used to track the contour of these cross sections in US 

frames. These three algorithms are chosen to solve the problem of 3D catheter shape estimation 

because of their applicability to real-time applications. In other words, KF, AKF and PF can predict 

the future location of the catheter cross section, which is to be captured by the US probe in the next 

US image, only based on the current location of the catheter cross section in the current US image. 

The real time tracking of the shape of the catheter is valuable especially in real time robotic MIS. 

KF, AKF and PF tracking algorithms are explained in general terms in the first three sections of this 

chapter, respectively.  

Other than KF, AKF and PF, another method under the umbrella of Bayesian statistics using 

temporal probability models exist that even though not applicable to the problem of this thesis is 

worth mentioning, namely, Extended Kalman Filter (EKF). EKF is used for nonlinear system models 

exhibiting nonlinear dynamics which is absent in the problem studied in this thesis. More 

                                                 
19 Given two events A and B, the conditional probability of A given that B is true is expressed as follows: 𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)/ 𝑃(𝐵) 
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specifically, EKF is a heuristic solution to the nonlinear tracking problem [122] and may diverge 

from the true solution if applied to the problem of this thesis.   

To validate their applicability to the problem of catheter 3D shape estimation, each of these three 

algorithms were applied to a series of MATLAB originated US images simulating transverse 

scanning across the length of the catheter. The known 3D shape of the catheter, which was 

deliberately drawn into these MATLAB synthesized US frames, serves as the basis of validation (or 

ground truth) when it is compared with the 3D shape of the catheter estimated by each of the KF, 

AKF and PF algorithms. The generation of this demo US scan is discussed in section 4 of this chapter 

and the implementations of KF, AKF and PF on it are presented in sections 5, 6 and 7, respectively. 

In addition, an evaluation of the accuracy for the catheter 3D shape estimate via each algorithm is 

provided in section 8 along with the CPU time each algorithm takes to produce the estimates. Finally, 

in section 9, the results are discussed, specifically KF, AKF and PF are evaluated against each other 

in terms of their speed and accuracy.  

3.1. Kalman Filter Algorithm 

Kalman filter provides mathematical framework for inferring the unmeasured variables from indirect 

and noisy measurements [121]. It is also used for predicting the likely future courses of dynamic 

systems [121]. Especially in computer vision tracking applications, it can be used to cope with non-

rigid deformations of the object, background clutter, blurring, and occasional occlusion in the images 

[122]. Therefore, KF algorithm is applicable to the problem of tracking the catheter cross section 

across a series of US frames. In this section the catheter 3D shape estimation algorithm based on KF 

tracking of its cross sections across a series of US frames is presented.  

To define the KF, temporal and measurement models must be specified [122]. First, based on 

Markov assumption20, the temporal model relates the world states, {𝐰}𝑡=1
𝑇 , at times 𝑡 − 1 and 𝑡, and 

is given by equation 3.1 [122]. In this section, the world states, 𝐰𝑡−1 and 𝐰𝑡, refer to the estimated 

state of the catheter cross section when the US probe is scanning across it at times 𝑡 − 1 and 𝑡. 

                                                 
20 Markov assumption assumes that each state depends only upon its predecessor [122]. 
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Therefore, the world state is composed of the US image pixel position coordinates (𝑢, 𝑣) of the 

catheter cross-section along with time rate of these coordinates (from one US frame to the next) 

represented by (�̇�, �̇�): 𝐰 = [𝑢 𝑣 �̇� �̇�]𝑇. 

𝐰𝑡 = 𝛍𝑝 + 𝚿𝐰𝑡−1 + 𝛜𝑝                                                                                                               (3.1) 

The term 𝛜𝑝 is a realization of the transition noise, which is normally distributed with covariance 𝚺𝑝 

[122]. 

Alternatively, we can write equation 3.1 in probabilistic form [122]: 

Pr(𝐰𝑡|𝐰𝑡−1) = 𝑁𝑜𝑟𝑚𝐰𝑡
[𝛍𝑝 + 𝚿𝐰𝑡−1, 𝚺𝑝]        

(3.2) 

𝛍𝑝 is a 4 × 1 (𝐷𝐰 × 1)21 vector representing the mean change in the state. In other words, in this 

thesis KF assumes that variables (𝑢, 𝑣, �̇�, �̇�) are each normally distributed random variable having a 

mean value, which for the purposes of this section can be best represented by the center of the 

catheter cross-section. Therefore, 𝛍𝑝 = [𝑢𝑐 𝑣𝑐 �̇�𝑐 �̇�𝑐]
𝑇where (𝑢𝑐 , 𝑣𝑐) are the US image pixel 

coordinates of the position of the center of the catheter cross sections and (�̇�𝑐, �̇�𝑐) are the rate of 

positional change of the catheter cross-section center from one US image to the next. 𝚿 is a 

4 × 4 (𝐷𝐰 × 𝐷𝐰) transition matrix relating the mean of the state at time 𝑡 to the state at time 𝑡 − 1, 

and 𝛴𝑝 is also a constant 4 × 4 (𝐷𝐰 × 𝐷𝐰) transition noise matrix which determines how closely 

related the states are at times 𝑡 and 𝑡 − 1 [122].  

Second, the measurement model relates the noisy measurement data 𝐱𝑡 at time 𝑡 to the state 𝐰𝑡 as 

given in equation 3.3 [122]. In this section, the measured state, 𝑥𝑡, refers to the catheter cross section 

as segmented in the US transverse image at time 𝑡.  Therefore, the measurement state consists of 

only US image position coordinates (𝑢, 𝑣): 

                                                 
21 𝐷𝐰 refers to the larger dimension of the world state 𝐰. 𝐰 being a 4 × 1 vector makes 𝐷𝐰 = 4. 
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𝐱 = [
𝑢
𝑣
],  

𝐱𝑡 = 𝛍𝑚 + 𝚽𝐰𝑡 + 𝛜𝑚       (3.3) 

The term 𝛜𝑚 is a realization of the measurement noise, which is normally distributed with covariance 

𝚺𝑚 [122].  

In probabilistic notation equation 3.3 can be written as [122]: 

Pr(𝐱𝑡|𝐰𝑡) = 𝑁𝑜𝑟𝑚𝐱𝑡
[𝛍𝑚 + 𝚽𝐰𝑡 , 𝚺𝑚]    (3.4) 

𝛍𝑚 is a 2 × 1 (𝐷𝐱 × 1)22 mean vector. Again, in this thesis, it is assumed that variables (𝑢, 𝑣) are 

each normally distributed random variable having a mean value, which for the purposes of this 

section can be best represented by the center of the US segmented catheter cross-section. Therefore, 

𝛍𝑚 = [
𝑢𝑐

𝑣𝑐
], where (𝑢𝑐, 𝑣𝑐) are the US image pixel coordinates of the position of the center of the 

segmented catheter cross sections. 𝚽 is a 2 × 4 (𝐷𝐱 × 𝐷𝐰) matrix relating the 2 × 1 (𝐷𝐱 × 1) 

measurement vector to 4 × 1 (𝐷𝐰 × 1) state [122], and 𝚺𝑚 is the 2 × 2 measurement noise matrix 

defining additional uncertainty on the measurements that cannot be described by the state [122].  

In textbook terms [122], KF algorithm is a set of rules for computing the marginal posterior 

probability Pr (𝐰𝑡|𝐱1…𝑡) given the marginal posterior probability at the previous time 

Pr(𝐰1…𝑡−1|𝐱1…𝑡−1) and a new measurement 𝐱𝑡. The marginal posterior probability 

Pr(𝐰1…𝑡−1|𝐱1…𝑡−1) is normally distributed with mean of 𝛍𝑡−1 and variance of 𝚺𝑡−1. Finally, the KF 

algorithm is given below.  

Algorithm 3.1: The Generic Kalman Filter Algorithm [122] 

Input: Measurements {𝐱}𝑡=1
𝑇 , temporal parameters 𝛍𝑝 , 𝚿,  𝚺𝑝, measurement parameters 

𝛍𝑚, 𝚽,  𝚺𝑚  

                                                 
22 𝐷𝐱 refers to the larger dimension of the measurement state 𝐱. 𝐱 being a 2 × 1 vector makes 𝐷𝐱 = 2. 
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Output: Means {𝛍𝑡}𝑡=1
𝑇  and covariances {𝚺𝑡}𝑡=1

𝑇  of marginal posterior distributions 

Begin 

      // Initialize mean and covariance 

      𝛍0 = 0 

      𝚺0 =  𝚺0          // Typically set to a large multiple of identity 

      // For each time step 

     for 𝑡 = 1 to 𝑇 do 

          // State estimation 

          𝛍+ = 𝛍𝑝 + 𝚿𝛍𝑡−1 

          // Covariance estimation 

          𝚺+ = 𝚺𝑝 + 𝚿𝚺𝑡−1𝚿
T 

          // Compute Kalman gain 

          𝐊 = 𝚺+𝚽T(𝚺𝑚 + 𝚽𝚺+𝚽T)−1 

          // State update 

          𝛍𝑡 = 𝛍+ + 𝐊(𝐱t − 𝛍𝑚 − 𝚽𝛍+) 

          // Covariance update 

          𝚺𝑡 = (𝐈 − 𝐊𝚽)𝚺+ 

     end 

end 

 

The choice of temporal model in the Kalman filter is restricted to be linear and is dictated by the 

transition matrix 𝚿 [122]. For the purposes of this project, extended Brownian motion is used as the 

temporal model: 

𝑢𝑡 = 𝑢𝑡−1 + Δ𝑡�̇�𝑡−1  

�̇�𝑡 =                    �̇�𝑡−1  

𝑣𝑡 = 𝑣𝑡−1 + Δ𝑡�̇�𝑡−1  

�̇�𝑡 =                   �̇�𝑡−1      (3.5) 
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Therefore, the transition matrix can be derived to be: 

𝚿𝑡 = [

1 0
0 1

Δ𝑡 0
0 Δ𝑡

0 0
0 0

1 0
0 1

]    (3.6) 

We can write equations 3.5 in matrix form: 

[

𝑢𝑡

𝑣𝑡

�̇�𝑡

�̇�𝑡

] = [

1 0
0 1

Δ𝑡 0
0 Δ𝑡

0 0
0 0

1 0
0 1

] [

𝑢𝑡−1

𝑣𝑡−1

�̇�𝑡−1

�̇�𝑡−1

]    (3.7) 

Equation 3.7 corresponds to equation 3.8 as used in the algorithm 3.1 for state estimation: 

𝛍+ = 𝚿𝛍𝑡−1    (3.8) 

Additive Gaussian white noise is a common assumption in KF algorithm. Kalman filters inherently 

make the assumption that all noise processes are zero mean Gaussian, which often is a good 

assumption even when it is strictly not true. This is because as a result of assuming white Gaussian 

noise, it is a filter that does not amplify high frequency noise in its predictions. Another assumption 

in KF algorithm for optimal estimation is the choice of Brownian motion model to represent the 

problem of tracking the catheter cross section in a sequence of US transverse images.   This model 

is appropriate given the fast US frame acquisition at 25-33 Hz through which the catheter cross 

section is assumed to be displaced in any random direction. Brownian motion model is a 

mathematical model used to describe such random movements through which the underlying 

dynamics of the system does not change over time, so that the distribution of the possible 

displacements of the catheter cross section in a time step only depends on the length of timestep Δ𝑡. 

In other words, the underlying dynamics of the Brownian motion model is a random walk defined 

by a sequence of normally distributed (i.e., Gaussian) independent variables denoting the process by 

which randomly moving catheter cross section wanders away from where it started at the point of 

insertion. Random walk requires miniscule time steps which is met given the fact that US frames are 

acquired at around Δ𝑡 = 0.04 𝑠.  The normal distribution is justified to model the random variables 
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in this model considering spatial homogeneity in which it is assumed that the catheter cross section 

is no more or less likely to be jostled to the right than to the left.  

On the other hand, in the measurement model, the 2 × 4 matrix 𝚽 relates the measurements to the 

state predictions. Given the measurement being a 2 × 1 vector, 𝐱 = [
𝑢
𝑣
] and the state prediction 

being a 4 × 1 vector, 𝐰 = [𝑢 𝑣 �̇� �̇�]𝑇, Φ is chosen to be a 2 × 4 matrix given as below to 

make the relation between 𝐱 and 𝐰 mathematically possible since the multiplication of 2 × 4 matrix 

with 4 × 1 vector is a 2 × 1 vector.   

𝚽 = [
1 0
0 1

0 0
0 0

]    (3.9)    

Next, in the absence of prior information at time 𝑡 = 1, the prior mean 𝛍0 is initialized to a 

reasonable value according to the specific problem at hand. For the problem of catheter 3D shape 

estimation, 𝛍0 = [𝑢0 𝑣0 �̇�0 �̇�0]
𝑇 is initialized to the catheter cross-section center localized at 

the very first transverse US frame in the sequence. This initialization is reasonable since it is assumed 

that one always knows the insertion point coordinates. In addition, the prior covariance, 𝚺0, is set to 

a large multiple of identity matrix indicating our lack of knowledge at the start of the algorithm.  

As the KF algorithm runs recursively through US frames from 𝑡 = 1 𝑡𝑜 𝑇, the center of the catheter 

cross-section is tracked in: 𝛍+ = [𝑢 𝑣 �̇� �̇�]𝑇.   

In addition, the covariance matrix,  

𝚺+ = [

𝛴𝑢𝑢 𝛴𝑢𝑣

𝛴𝑣𝑢 𝛴𝑣𝑣

𝛴𝑢�̇� 𝛴𝑢�̇�

𝛴𝑣�̇� 𝛴𝑣�̇�

𝛴�̇�𝑢 𝛴�̇�𝑣

𝛴�̇�𝑢 𝛴�̇�𝑣

𝛴�̇��̇� 𝛴�̇��̇�

𝛴�̇��̇� 𝛴�̇��̇�

],  

keeps track of the correlation between each of the normally distributed random variables (𝑢, 𝑣, �̇�, �̇�), 

where each element of the matrix 𝚺+𝑖𝑗 is the degree of correlation between the ith state variable and 

the jth state variable.  
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The Kalman gain, denoted by 𝐊 in the algorithm 3.1, plays an important role in incorporating the 

measurement data into the algorithm. A small Kalman gain implies that the new measurement is 

unreliable relative to the marginal posterior and therefore should be weighted less in the update of 

the state estimation [122]. A large Kalman gain on the other hand implies that the measurement is 

more reliable than the prior and should be weighted more highly [122].   

3.2. Adaptive Kalman Filter Algorithm 

Similar to KF, AKF is also used in this thesis to track the centers of the catheter cross section in US 

transverse images. AKF is analogous in algorithm to KF with the exception that the process noise 

(also called the dynamic noise covariance matrix 𝚺𝑝) is set to be constant throughout KF algorithm 

but in AKF it is continuously updated. If the constant defining  𝚺𝑝 is a poor estimation of the dynamic 

noise, large errors and divergence can occur in tracking23 [123]. By continuously updating  𝚺𝑝, AKF 

achieves a more robust tracking of the catheter cross section [123]. To elaborate further,  𝚺𝑝 

represents the level of confidence that exists in the dynamic model’s ability to accurately estimate 

the actual trajectory [123]. However, without prior knowledge of the catheter 3D shape, it is not 

possible to pre-select  𝚺𝑝 to be some constant matrix. In addition,  𝚺𝑝 may have varying statistics 

throughout the catheter length. Therefore, selecting a constant  𝚺𝑝, offline, may not be satisfactory. 

In such a case,  𝚺𝑝 is better modeled as varying with time and AKF allows  𝚺𝑝 to be updated every 

sampling period based on past data [123].  

A maximum likelihood method is used to update  𝚺𝑝 at each iterative step, k, as follow [123]: 

 𝚺𝑝(𝑘) = (
1

𝑘−1
)∑ ((𝐪𝑖 − �̅�)(𝐪𝑖 − �̅�)𝑇 −

𝑁−1

𝑁
[𝚿𝚺𝑖−1𝚿

T − 𝚺𝑖])
𝑘
𝑖=𝑘−𝑁+1 , 

     (3.10)24 

                                                 
23 Other Kalman filter assumptions that may contribute to low accuracy are the inherent constant dynamics and zero mean Gaussian noise 

model which do not hold in real world processes. 

24 The 𝑇 in this equation refers to the matrix transpose mathematical operation.  
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where  𝚺𝑖−1 is the estimated state error covariance matrix calculated in the KF loop notated as  𝚺+ 

(algorithm 3.1) at (𝑖 − 1)𝑡ℎ summation step and 𝑁 is the number of past measurements chosen to 

base the process noise calculation on. In other words, the first 𝑁 state and covariance estimates 

calculated by the filter are decided to not be accurate and so the update on process noise will therefore 

start after the 𝑁 samples.  

The adaptation rule obviously adds to the computation load. Using limited memory filter algorithm 

the number of numerical computations required by equation 3.10 can be reduced by using the 

following equation instead [123]: 

 𝚺𝑝(𝑘) =  𝚺𝑝(𝑘 − 1) + (
1

𝑁 − 1
) (𝐪𝑘 − �̅�𝑘)(𝐪𝑘 − �̅�𝑘)

𝑇 

                 − (
1

𝑁 − 1
) (𝐪𝑘−𝑁 − �̅�𝑘)(𝐪𝑘−𝑁 − �̅�𝑘)

𝑇 

                + (
1

𝑁2 − 𝑁
) (𝐪𝑘 − 𝐪𝑘−𝑁)(𝐪𝑘 − 𝐪𝑘−𝑁)𝑇 

                + (
1

𝑁
) (𝚫𝑘−𝑁 − 𝚫𝑘),    (3.11) 

where 𝐪𝑘, �̅�𝑘, 𝑎𝑛𝑑 𝚫𝑘 in equation 3.11 are given by [123]  

𝐪𝑘 = 𝛍𝑘 + 𝚿𝛍𝑘−1,   (3.12) 

�̅�𝑘 = �̅�𝑘−1 + (
1

𝑁
) (𝐪𝑘 − 𝐪𝑘−𝑁),    (3.13) 

𝚫𝑡 = 𝚿𝚺𝑡−1𝚿
𝑇 − 𝚺𝑡.  (3.14) 

In equation 3.13, when 𝑘 − 1 = 𝑁, �̅�𝑘 can be calculated through the following equation: 

�̅�(𝑘−1=𝑁) = (
1

𝑁
)∑ 𝐪𝑖

𝑘
𝑖=𝑘−𝑁+1 , 

  (3.15) 
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where 𝐪𝑖 is given by 𝐪𝑖 = 𝛍𝑘 + 𝚿𝛍𝑘−1 from the first 𝑁 iterations of the filter algorithm.   

3.3. Particle Filter Algorithm 

KF and AKF only deal with linear temporal and measurement models, which could be valid in low 

dynamics operations or those with high sampling rates [122]. In addition, they represent uncertainty 

over the state as a normal distribution and are therefore not suitable in settings where the probability 

over the state is multimodal. PF addresses this limitation by representing the probability density as 

a set of particles in the state space where each particle can be thought of as representing a hypothesis 

about the possible state.  The particles can project through time to simulate measurements no matter 

how nonlinear the functions are and therefore since the estimated state is multi-modal, the 

measurement density may be multi-modal as well. This means that the PF copes much better with 

clutter in the scene, which is characteristic challenge of tracking in US images. Of course, this comes 

with the cost of significantly higher computational load, which may not be appropriate for some real-

time operations. Therefore as long as some of the predicted state (i.e. some of the particles) agrees 

with the measurement density, the tracker should remain stable [122]. In this thesis PF is used to 

track the contour of the catheter cross-section as visible across the US transverse images. Among PF 

methods, condensation algorithm was used to accomplish this tracking task.  

In condensation algorithm, the probability distribution can be found by a weighted sum of J weighted 

particles [122]: 

Pr(𝐰𝑡−1|𝐱1…𝑡−1) = ∑ 𝑎𝑗𝛿[𝐰𝑡−1 − �̂�𝑡−1
[𝑗]𝐽

𝑗=1 ], 

  (3.16) 

where the weights represented by 𝑎𝑗 are positive and sum up to 1. Each particle represents a possible 

estimation of the state, and the weight of the particle indicates our confidence in that hypothesis.  

The goal of the condensation algorithm is to calculate the probability distribution Pr (𝐰𝑡|𝐱1…𝑡) at 

the next time step. The condensation algorithm is given below [122]. 
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Algorithm 3.2: The Generic Condensation Algorithm [122] 

Input: Measurements {𝐱}𝑡=1
𝑇 , temporal model Pr (𝐰𝑡|𝐰𝑡−1), measurement model Pr (𝐱𝑡|𝐰𝑡) 

Output: weights {𝑎𝑡
[𝑗]

}
𝑡=1

𝑇

, hypothesis {𝐰𝑡
[𝑗]}

𝑡=1

𝑇

  

Begin 

      // Initialize weights to equal 

      𝑎0 = [
1

𝐽
,
1

𝐽
, … ,

1

𝐽
] 

      // Initialize hypothesis to plausible values for state 

     for 𝑗 = 1 to 𝐽 do 

          𝐰0
[𝑗]

= 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒[] 

     end 

      // For each time step 

      for 𝑡 = 1 to 𝑇 do 

            // For each particle 

            for 𝑗 = 1 to 𝐽 do 

                   // Sample from 1… 𝐽 according to probabilities 𝑎𝑡−1
[1]

…𝑎𝑡−1
[𝑗]

 

                   𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑜𝑚𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑎𝑙[𝑎𝑡−1] 

                   // Draw sample from temporal update model 

                   �̂�𝑡
[𝑗]

= 𝑠𝑎𝑚𝑝𝑙𝑒[Pr (𝐰𝑡|𝐰𝑡−1 = �̂�𝑡−1
[𝑛]

)] 

                   // Set weight for particle according to measurement model 

                    𝑎𝑡
[𝑗] = Pr (𝐱𝑡|�̂�𝑡

[𝑗])] 

              end 

              // Normalize weights 

              𝑎𝑡 =
𝑎𝑡

∑ 𝑎𝑡
[𝑗]𝐽

𝑗=1

 

      end 

end 
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Assuming that the point of insertion of the catheter is always known (i.e. the catheter cross section 

centroid location in the very first US image is known), random particles about this point are defined 

with equal weight of goodness assigned to each.   

In the condensation algorithm implemented in this project, the temporal model is defined by KF 

dynamics equations as derived in the previous sections. This is due to the fact that given the random 

nature of the problem at hand, where the next catheter cross section can be anywhere (similar to a 

random walk motion model), the best mechanism to predict the next state of each particle (i.e., 

hypothesis) is by KF based on statistical observation of the data. In other words, given 𝐽 hypothesis 

(i.e. particles) at time 𝑡 − 1, {𝐰𝑡−1
[1]

, 𝐰𝑡−1
[2]

…𝐰𝑡−1
[𝐽]

}, with associated probabilities, 

{𝑃 (𝐰𝑡−1
[1]

) , 𝑃 (𝐰𝑡−1
[2]

)…  𝑃 (𝐰𝑡−1
[𝐽] )}, KF dynamic equations can be used to estimate the next state 

for each particle, {𝐰𝑡
[1]

, 𝐰𝑡
[2]

… 𝐰𝑡
[𝐽]}. At this point, a new set of weights, {𝑎𝑡

[1]
, 𝑎𝑡

[2]
…𝑎𝑡

[𝐽]
}, for each 

particle is allocated, based on the measurement model which represents a measure of correctness of 

each particle’s state.  

The measurement model consists of catheter cross sections segmented across the US images by 

thresholding the ROI encompassing the most particles.  The goal of tracking with condensation 

algorithm is to have particles track the contour of the catheter cross section across the sequence of 

US images. For this purpose, edge detection can be applied to the thresholded binary images of the 

catheter cross-section and the average distance from the centroid to the detected edge can be 

extracted. In addition, the distance of each particle from the catheter cross-section centroid is 

calculated. The weight of each particle is then assigned by comparing the distance of each particle 

from catheter cross-section centroid against the average distance from the catheter cross-section 

centroid to its detected edge. The closer the particle is to the edge, the higher its weight would be.  

A number of particles with highest weights are sampled and updated (i.e. corrected) using KF gain 

function (as outlined in algorithm 3.1).  A fast non-iterative ellipse [124] is fitted through these 

sampled and updated particles. Such an ellipse serves as estimated representation of the catheter’s 

cross section contour captured by US images. Finally out of the sampled and updated particles, a 
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new series of particles are produced for the next round of iteration. Again, all the particles are set to 

have an equal weight for the next round to start with.         

3.4. B-Mode Ultrasound Validation Simulation 

Before experimental validation of the aforementioned temporal probability algorithms (i.e., KF, 

AKF, and PF) as the solution to the problem of catheter 3D shape estimation, MATLAB simulation 

validations are presented in this section. To this end three different catheter 3D configurations are 

programmed into a sequence of MATLAB generated US images. These catheter configurations are 

illustrated in Figures 6, 7, and 8.  

 

 

Figure 6 – Catheter 3D configuration # 1 for validation simulations 
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Figure 7 – Catheter 3D configuration # 2 for validation simulations 

 

 

 

 

Figure 8 – Catheter 3D configuration # 3 for validation simulations 
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The catheter is known to have circular and consistent cross-sections along its length (e.g., Std Crv 

Blazer II HTD® with cross section diameter of 1 mm); therefore, the 3D catheter configurations in 

Figures 6, 7 and 8 only show the longitudinal axis through the center of the catheter cross sections 

for simplicity.  

Simulating US scanning over and across the catheters depicted in Figures 6, 7 and 8, transverse and 

longitudinal images can be originated in MATLAB. To validate the KF, AKF and PF validation 

algorithms, transverse images will be used.  

To be more compliant with the nature of US images, speckle and Gaussian noises should be added 

to distort or corrupt the simulated transverse images, making it more challenging for the KF, AKF 

and PF algorithms to estimate the 3D shape of the catheters. This provides a better assessment of the 

robustness of the proposed algorithms.  

Realistic B-mode images can be simulated with scattering maps based on optical, CT, or MR images 

or parametric flow models [125]. Field II simulation program can be used to create realistic B-mode 

images [126]. The image simulation in Field II package includes 100,000-point scatterers [126]. 

Field II generates US speckle noise pattern as the signal from these 100,000 randomly placed point 

scatterers with a Gaussian amplitude [125]. In addition, the generation of US image is accomplished 

using linear acoustics where spatial impulse response is simulated for 50 image lines (i.e. 50 RF 

lines) [125]-[126]. One image line typically takes about 60 seconds to compute and the whole image 

can take 50 minutes to simulate [126]. Simulating 3D images and 3D flow takes even more time. 

Three 3D images of 50 × 231 lines corresponding to each catheter configuration takes about 24 

days (on 32 CPU 600 MHz Pentium III PC cluster), which is not practical for iterative work [125]-

[126]. In addition, developing a new fast simulation method for generating realistic B-mode US 

images is out of scope of this thesis since speckle noise in US emanates from signals generated by 

tissue cells and connective tissues. However, in the experiments conducted for this thesis, the 

catheter is submerged into a container filled with water, which does not emanate speckle noise when 

scanned as shown in Figure 9.     
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       Figure 9 – A transverse US image of the cross section of catheter submerged into water-based gel (taken using 

SONIXTOUCH RESEARCH Q+)   

 

As illustrated in Figure 9, the cross section of the catheter does not look circular in the US image due 

to reverberation artifacts (as opposed to circular cross sections programmed in US transverse 

images). These artifacts occur due to bouncing of the US wave between materials of different 

acoustic impedance such as the catheter and the surrounding water [57]. In other words, when the 

velocity of sound in the rounded structure (plastic 3D printed catheter) is different from that of the 

surrounding medium (water-based gel), a combination of reflection and refraction occur at the edge 

of the rounded cross section catheter structure. The resulting artifact in Figure 9 has a butterfly 

shaped structure, the length of which depends on the bouncing echoes that are received by the 

transducer [57]. This reverberation artifact is referred to as comet tail artifact (CTA) [57].  

Therefore, more important than speckle noise, is the effect of the CTA on the robustness of the KF, 

AKF and PF catheter 3D shape estimation algorithms. The best way to validate these algorithms 

against CTA is by directly applying them to experimental data (US transverse images like Figure 9 

of different catheter configurations submerged into water container). This experimental validation is 

presented in detail in chapter 5 of this thesis. However, in this section electronic additive Gaussian 

noise (with mean of 0.2 and variance of 0.01) and multiplicative speckle25 noise (with variance of 

                                                 
25 This multiplicative speckle noise added by MATLAB built in function is not to the same as US speckle noise. 
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0.526) are added to the simulated transverse images using MATLAB built-in functions27 for 

disturbing KF, AKF and PF algorithms in their filtering and tracking procedures. Figure 10 illustrates 

one of the simulated transverse images that comprise the sequences.  

 

Figure 10 – (a) Original simulated image (b) Original image with speckle noise (c) Original image with speckle and 

Gaussian noises 

 

In order to examine how the added noise would manifest itself in the quality of measurement states 

in KF, AKF and PF algorithms, the best threshold of the image in Figure 10(c) is achieved as shown 

in Figure 11. This thresholded image is used in KF, AKF and PF when measurement states are 

obtained to update or correct the predicted states. 

 

Figure 11 – Thresholded transverse image of Figure 10(c) 

                                                 
26 The numbers chosen for mean and variances that define the noises are arbitrary with the purpose of distorting the US images enough to 

provide distraction for the tracking algorithms.  

27 In MATLAB the function: imnoise(Original Image, type of noise (i.e. Gaussian/Speckle/…), specifications 

(i.e. mean/variance/…)) is used to simulate Figure 14. The code for this section is provided in Appendix B.1.  
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The thresholding technique used is the based on the common binary classification of pixels: 

𝐂[𝑢, 𝑣] = {
0        𝐈[𝑢, 𝑣] < 𝑡
1        𝐈[𝑢, 𝑣] ≥ 𝑡

     ∀(𝑢, 𝑣) ∈ 𝐈 

Where the decision is based simply on the value of the pixel [113]. 𝑐[𝑢, 𝑣] refers to pixel coordinates 

of the resulting thresholded image, I[𝑢, 𝑣] refers to the pixel coordinates of the original image and 𝑡 

refers to the threshold. The threshold 𝑡 to obtain the best threshold is 0.75 (i.e. normalized pixel 

intensity value) and it is the optimum number obtained by inspection using MATLAB Toolbox 

function ithresh.  

The white pixels in Figure 11 serve as distraction to the tracking algorithms and also as the result of 

the added noises the cross section of the catheter is no longer circular and this deviates the measured 

center of the blob. 

The code for this section can be found in Appendix B.1.  

3.5. Kalman Filter Simulation Validation 

In this section, the 3D shape estimation of the three catheters using KF is presented. The Kalman 

filter algorithm explained in section 3.1 and algorithm 3.1 is implemented for the catheters shown in 

Figures 6, 7 and 8. The distorted versions of the transverse images containing the cross section of 

these catheters are inputted to the KF algorithm one at the time through the KF loop and at each 

iteration the next state of the catheter cross section is first predicted and then corrected using the 

measured state and the associated Kalman gain. The corrected predicted state is then used to predict 

the state in the next iteration. All of the predicted states are then plotted together to give the estimate 

of the 3D shape of the catheters.  

The flow chart of the KF algorithm provided in Figure 12 shows the inputs to the algorithm, which 

are discussed next.  
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In the absence of prior information at time 𝑡 = 1, the prior mean 𝛍0 is initialized to the catheter’s 

point of insertion or the center of the catheter cross section in the very first transverse image, as 

follow. 

𝛍0 = [

60
40
0
0

]   

In addition, as also declared in algorithm 3.1, at 𝑡 = 1, the prior covariance matrix 𝚺0 is typically set 

to a large multiple of the identity matrix, I, of size 4 × 4, i.e., 𝚺0 = 100𝐈4×4.   

The frame acquisition of the SONIXTOUCH RESEARCH Q+ US from BK Ultrasound (Peebody, 

MA) which is used for experiments in this thesis is also known to be 25 Hz. Therefore,  

Δ𝑡 =
1

25
𝑠𝑒𝑐 = 0.04 𝑠𝑒𝑐  

Substituting the Δ𝑡 above in equation 3.6 leads to: 

𝚿 = [

1 0
0 1

Δ𝑡 0
0 Δ𝑡

0 0
0 0

1 0
0 1

] = [

1 0
0 1

0.04 0
0 0.04

0 0
0 0

1 0
0 1

]  

Considering the fast US image acquisition, the mean change in the state as the consequence of 

external influences imposed by the dynamic model can be neglected, i.e., 𝛍𝑝 = 0.   

The 4 × 4 matrix 𝚺𝑝 representing the process noise is arbitrarily set in the KF algorithm 

implementation by inspection to: 𝚺𝑝 = 0.01𝐈4×4. 𝚺𝑝 is kept constant throughout the KF algorithm 

simulation.  
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                                                                             Figure 12 – KF algorithm flow chart 

 

The 2 × 2 matrix,  𝚺𝑚, quantifies additional uncertainty on the measurements and it is set by 

inspection until the best fit that leading to the best estimate can be found. In this thesis the first trial 

of  𝚺𝑚 is set by measuring the variance along catheter cross section in the direction of 𝑢 and 𝑣 pixel 

coordinates. The variances along the pixel coordinates are 𝜎𝑣 = 33 and 𝜎𝑢 = 31 (as derived from 

Figure 11). The covariance given these two numbers is calculated to be 2 using the MATLAB built-

in function: cov([33 31]) = 2. Therefore,  𝚺𝑚 can be set to: 

 𝚺m = [
2 2
2 2

]  

By far, the  𝚺m set by the method described above produces the best estimate of the catheter 3D 

shape compared to other trials.  

Finally, 𝐱𝑡 − 𝛍𝑚, is the measurement obtained from the thresholded frame which is the center of the 

largest identified blob representing the catheter cross section. This measurement is used with Kalman 
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gain to adjust or correct the current prediction before using it to derive the next prediction of the 

catheter cross-section state.  

Figure 13 illustrates the predicted state against the measured state in a single iteration of the KF loop 

on its respective corrupted transverse image of the catheter cross section. The red asterisk 

corresponds to the predicted state and the blue asterisk represents the measured state corresponding 

to the center of the catheter cross section. 

 

 

Figure 13 – KF based predicted state (red) and measured state (blue) in a single iteration 

 

The code for KF algorithm in this section is provided in Appendix B.2. The results of KF algorithm 

or rather the 3D shape estimation of the catheters using KF algorithm is presented in Figures 14, 15 

and 16. The blue line represents the actual configuration of the catheter as programmed in section 

3.4, Figures 6, 7, and 8, while the red line represents the estimated configuration of the catheter as 

obtained by KF algorithm. 

As shown in these figures the KF algorithm starts very well keeping a good track of the catheters 

while they are straight. However, KF falls short on tracking the curved segment of the catheter.  

Therefore one can conclude that KF delivers good tracking performance of the catheter cross-section 

while it is in linear motion.  
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The accuracy of the results in Figures 14, 15 and 16 is quantified and discussed in section 3.8. In 

section 3.8, the CPU run time of the KF-based catheter 3D shape estimation algorithm is also 

reported and discussed.  

 

Figure 14 – 3D shape estimation of catheter configuration #1 with KF 

 

 

Figure 15 – 3D shape estimation of catheter configuration #2 with KF 
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                                         Figure 16 – 3D shape estimation of catheter configuration #2 with KF 

 

Next section repeats the validation presented above only with AKF algorithm instead. 

3.6. Adaptive Kalman Filter Simulation Validation 

As explained in section 3.2, AKF algorithm is similar to KF algorithm with the exception that special 

attention is given to the definition of the process noise covariance matrix  𝚺p in AKF.  In the previous 

KF simulation, the process covariance noise was taken to be constant: 𝚺𝑝 = 0.01𝐈4×4. However, 

poor estimation of 𝚺𝑝can lead to large tracking error and divergence as also evident in Figures 14, 

15 and 16.  On the other hand using equations 3.11-3.15 𝚺𝑝 is updated in AKF. The code of 3D 

catheter shape estimation using AKF is provided in Appendix B.3.  

All the inputs to the AKF algorithm are the same as the ones in KF algorithm discussed in the 

previous section. The one new input required by AKF as also introduced in equations 3.11-3.15 is 

N. In this simulation program N is set by inspection. N in AKF program dictates that updating the 

process noise does not start until after the Nth transverse image in the sequence. Instead 𝐪1 …𝐪N 

(calculated in the first N rounds) are used to base the estimate for the process noise starting from the 
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(N + 1)th round according to equation 3.15 which calculates �̅�N = (
1

N
)∑ 𝐪i

N+1
i=1 . In these 

simulations N is set to 5 and 𝐪1 is set to 𝛍0 as follow: 

 𝐪1 = 𝛍0 = [

60
40
0
0

]. 

In addition, in equation 3.14, given as:  

Δ𝑡 = 𝚿𝚺𝑡−1𝚿
𝑇 − 𝚺𝑡, where 𝚺𝑡 is updated as 𝚺+ in algorithm 3.1. Also for 𝑡 = 1: 

Δ1 = −𝚺1 = −100I4×4 

The results of 3D shape estimation algorithm based on AKF are presented next.  As it can be seen in 

Figures 17, 18 and 19, updating the process noise, 𝚺𝑝, presents significant improvements in the 3D 

shape estimation of the catheters especially along the curvy segments of the catheter.  

 

Figure 17 – 3D shape estimation of catheter configuration #1 with AKF 
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Figure 18 – 3D shape estimation of catheter configuration #2 with AKF 

 

 

Figure 19 – 3D shape estimation of catheter configuration #3 with AKF 
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Even though KF failed to accurately estimate the nonlinear section of the catheters, AKF provides 

good estimation of the shape of the catheter in both linear and nonlinear sections.  

The accuracy of the results in Figures 17, 18 and 19 is quantified and discussed in section 3.8. In 

section 3.8, the CPU run time of the AKF-based catheter 3D shape estimation algorithm is also 

reported and discussed.  

3.7. Particle Filter Simulation Validation 

In this section, the PF algorithm is implemented as discussed in section 3.3 to estimate the 3D shape 

of the catheters in Figures 6, 7, and 8. The MATLAB code for PF is provided in Appendix B.4 and 

the results are as follow. 

PF algorithm implemented here starts with 400 particles each with equal weight of goodness of 
1

400
=

0.0025. At time 𝑡 = 1, these particles are randomly distributed about the catheter point of insertion, 

which is assumed to be known to be (60,40), representing the center of the catheter cross section at 

the very first transverse image of the sequence. These particles are shown in blue in Figure 20.  

                        

                                              Figure 20 – Randomly distributed particles at the start of PF iteration 

Next, each of the randomly distributed particles are reweighed according to how close they are to 

the edge of the largest blob in the transverse image which corresponds to the catheter cross section. 
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Out of the reweighed particles, the ones with highest weighs and therefore closest to the detected 

edge of the catheter cross section are sampled out through which an ellipse is fitted. The fitted ellipse 

represents an estimation of the contour of the catheter cross-section. Figure 21 illustrates the sampled 

particles, which are rated closest to the contour of the largest blob. In addition, the green ellipse is 

fitted through these points, which follows the equation noted on top of Figure 21.  

 

                                              Figure 21 – Sampled particles (blue) and fitted circle (green) 

 

The center of the fitted ellipse as shown in Figure 21 corresponds to the predicted state of the catheter 

cross-section center. These predicted states are put together in a 3D plot to provide a 3D estimate of 

the configuration of each catheter as modeled in Figures 6, 7 and 8. The results of 3D shape 

estimation with PF algorithm are presented in Figures 22, 23 and 24 respectively.  
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                                              Figure 22 – 3D shape estimation of catheter configuration #1 with PF 

 

                     

                                              Figure 23 – 3D shape estimation of catheter configuration #2 with PF 
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                                              Figure 24 – 3D shape estimation of catheter configuration #3 with PF 

 

As shown in Figures 22, 23 and 24, even though the PF estimation of the catheter maintains an 

oscillatory pattern of fluctuations, it tracks the catheter cross section fairly close and stable 

throughout both straight and curvy sections.  

The accuracy of the results in Figures 22, 23 and 24 is quantified and discussed in section 3.8. In 

section 3.8, the CPU run time of the PF-based catheter 3D shape estimation algorithm is also reported 

and discussed.  

3.8. Speed and Accuracy 

Table 2 summarizes the CPU time each algorithm (KF, AKF and PF) takes to perform the 3D shape 

estimation of the catheters. These CPU times were obtained by running the algorithms on the state-

of-the-art HP OMEN 3.4 GHz PC with windows 10 operating system.  

As evident in Table 2, KF presents with the shortest CPU run time and PF with the longest run time 

with AKF in between. 
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 Table 2 

CPU times of each temporal probability algorithm 

Algorithm Type CPU time in seconds (± 0.01sec) 

KF 0.24  

AKF 0.46  

PF 1.98  

 

 

Table 3 summarizes the root mean square error (RMSE) and the Hausdorff distance between the 

actual catheter configurations (Figures 6, 7, 8) and the estimated 3D catheter shape  

Table 3 

Accuracy of 3D shape estimation algorithms 

Algorithm/Catheter  Hausdorff 

distance 

(± 1 pixels) 

Hausdorff 

distance 

(± 0.1 mm)28 

RMSE  

(± 1 pixels) 

RMSE  

(± 0.1 mm) 

KF/Catheter #1 67 6.7 5 0.5 

KF/Catheter #2 67 6.7 5 0.5 

KF/Catheter #3 35 3.5 15 1.5 

AKF/Catheter #1 3 0.3 2 0.2 

AKF/Catheter #2 2 0.2 2 0.2 

AKF/Catheter #3 5 0.5 3 0.3 

PF/Catheter #1 6 0.6 3 0.3 

PF/Catheter #2 8 0.8 3 0.3 

PF/Catheter #3 6 0.6 3 0.3 

 

The presented RMSEs and Hausdorff distances were calculated using MATLAB functions [130]-

[131]. The RMSE is a measure of how concentrated the estimation is around the line representing 

the actual configuration of the catheter. Similarly, Hausdorff distance29 represents how far the 3D 

estimate configurations are from the actual 3D configurations. Both of these methods may be used 

to assign a scalar score to the similarity between the estimates and actual models. However, in 

                                                 
28 As determined in experiments using ULTROSONIX RESEARCH Q+, 1 mm is equivalent to approximately 10 pixels.  

29 A discussion of mathematical details in calculating Hausdorff distance is out of scope of this thesis; however, the reader may refer to: 

https://en.wikipedia.org/wiki/Hausdorff_distance, for more information 

https://en.wikipedia.org/wiki/Hausdorff_distance
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literature RMSE is usually the one used to report the accuracy of methods and algorithms in shape 

estimation and tracking of the catheters.  

According to Table 3, the best estimate of catheter # 1, # 2 and #3 is provided by the AKF algorithm 

followed by PF and then KF. KF does not exhibit good tracking of catheter cross section along curvy 

segments of the catheter. However, along the linear segments of the catheter, KF provides the best 

and smoothest estimate than AKF and PF. PF provides a close track of the catheters cross section 

throughout their length, however, this tracking is not smooth and tends to fluctuate. On the other 

hand, AKF provides the closest and smoothest track of the catheters cross-section along their length.  

3.9. Summary  

Table 4 summarizes this chapter by putting together the RMSE scores of catheter 3D shape 

estimations reported in Table 3 of section 3.8.  

Overall, from table 4, one may expect that the 3D shape estimation of the catheter with AKF and PF 

algorithms can provide best results, even compared to the methods described in literature (Table 4). 

This expectation is validated in Chapter 5 where the 3D shape estimation algorithms presented in 

this thesis are applied to the experimental data. 

 

Table 4 

Summary of simulation RMSEs 

Methods RMSE (mm) 

KF/Catheter #1 0.5 ± 0.1 mm 

AKF/Catheter #1 0.2 ± 0.1 mm 

PF/Catheter #1 0.3 ± 0.1 mm 

KF/Catheter #2 0.5 ± 0.1 mm 

AKF/Catheter #2 0. 2 ± 0.1 mm 

PF/Catheter #2 0.3 ± 0.1 mm 

KF/Catheter #3 1.5 ± 0.1 mm 

AKF/Catheter #3 0.3 ± 0.1 mm 

PF/Catheter #3 0.3 ± 0.1 mm 
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A note on the speed of KF, AKF and PF algorithms against their corresponding estimation accuracies 

is in order. According to Table 2, KF has the shortest run time but according to Table 3 it provides 

the worst estimate of the catheter 3D configuration especially along the curvy segments. On the other 

hand, AKF and PF exhibit comparable estimation of the 3D catheter shape especially along the curvy 

segments with AKF providing much smoother estimations. However, PF takes approximately 4 

times longer time than AKF for estimation. Therefore, even though PF exhibits better estimation 

most of the time, it comes with high computation cost. 

Even though in this section the numerical simulation method was used to validate the performance 

of KF, AKF and PF in estimating the 3D configuration of the catheter, experimental validation is 

still required to evaluate these algorithms against real disturbances such as authentic US image 

artifacts and unstable handling of the US probe while scanning the volume of interest manually. The 

experimental validation is described and analyzed in chapters 4 and 5 that follow.    
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C h a p t e r  I V  

EXPERIMENTS 

KF, AKF and PF based catheter 3D shape estimation algorithms developed in the previous chapter 

are further validated by experiment. The aim is to evaluate the robustness of these algorithms in 

estimating the 3D shape of the catheters in the face of actual US artifacts and other inherent 

experimental discrepancies. In this chapter, the materials, methods and procedures involved in 

obtaining the experimental data are described.   

In section 4.1, catheter modeling and their set up inside the plastic container is described. In section 

4.2, the catheter’s 3D configuration inside the container is measured using CMM. These 

measurements serve as the ground truth to validate the 3D shape estimation results from the US and 

Optotracked US experimental data. Section 4.3 presents un-calibrated manual US scanning over the 

catheters in the container to obtain a series of transverse US images. Calibration of manual transverse 

US scans in the CMM’s frame is achieved using Optotracker sensors by first calibrating the 

transducer probe in the CMM’s frame in section 4.4 and then calibrating the US image frame with 

respect to the US probe in section 4.5. The overall calibration error is considered in section 4.6. 

Finally in section 4.7, the appropriate syncing/matching of the data from the two machines (i.e. US 

system and NDI Optotracker) is discussed.   

4.1. Catheter Modeling and Placement 

Three different configurations of catheters were modeled in TINKERCAD, which is a 3D CAD 

design tool. The layouts of these catheters are illustrated in Figure 30 as they appear in the CAD 

design tool’s work plane. The smallest grid on this work plane is 1mm adding up to 1 cm squares. A 

ruler in centimeters is also added to this work plane to provide a better perspective on the size and 

layout of the catheters.    

As shown in Figure 30, catheter #1 has 3 mm diameter circular cross section, extending 95 mm in 

length. This catheter curves in plane for 30 mm at the last 25 mm of its length. It’s important to note 
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that the whole structure of catheter #1 lies in the work plane. Catheter #2 has square cross section 

with 3 mm sides and it follows an arbitrary curvy path along its 100 mm length. This catheter also 

lies on the work plane entirely. Catheter #3 has 3 mm diameter circular cross-section and it extends 

to 90 mm in length.  This catheter curves out of plane for 30 mm at the last 20 mm of its length. To 

facilitate the out of plane curve, a support structure had to be placed under it so that the structure 

would not collapse while the printing is in progress.   

 

Figure 25 – (a) Catheter modeling in TINKERCAD work plane (b) 3D printed catheters with their attachment 

structures 

 

The catheters #1, 2 and 3 illustrated in Figure 25(a) were modeled after observing different 

configurations possible by Std Crv Blazer II HTD® (110 cm in length and 2.5 mm in cross section 

diameter). This catheter is shown in Figure 26. It is important to note that out of the whole length of 

this catheter only the distal end about 7 cm from the tip of the catheter can be manipulated into 

different configurations.  Three of the possible configurations of this distal end are shown in Figure 

27.  
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Figure 26 – Std Crv Blazer II HTD® Catheter 

 

 

Figure 27 – (a) Arbitrary curve which inspires the 3D model, Catheter #2, in Figure 30 (b) In-plane curve which 

inspires 3D model of catheter # 1 and (c) Out of plane curve which inspires 3D model of catheter #3 

 

For each of the three catheters an attachment structure is designed. These three attachment structures 

are shown in Figure 25 (a) as red rectangular cuboids of 40 mm × 40 mm × 4 mm. These attachment 
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structures also include a groove in their middle that is designed to hold the catheters in place. Figure 

25 (b) shows the finish print. The catheters and attachment parts were printed using a white PLA 

filament that went through a 0.4 mm nozzle. The 3D printer used for this job is Creality CR-10 

(Creality 3D, Shenzhen, China), which is Cartesian robot machine type with rectangular-build 

volume of 300 mm × 300 mm × 400 mm.    

The catheter attachments were glued to rectangular plastic containers as shown in Figure 28. The 

catheters were also glued securely in their respective grooves.  

  

Figure 28 – Catheters’ placement in containers (a) catheter #2 and a straight catheter (b) catheter #1 and #3 

 

Water resistant and heat resistant UHU polymer super glue was used for attachments to the plastic 

containers. The container in Figure 28(a) holds catheter #2 and a straight plastic rod of 3 mm circular 

diameter and 70 mm total length. This straight catheter is separately printed by the same 3D printer 

and is used as a simple exercise for implementation of the shape estimation algorithms. The container 

in Figure 28(b) holds the planar catheter #1 and non-planer catheter #3. 
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The final step in setting up the experiment is to set water based gel inside the plastic containers. For 

each container, 1.42 litres of 60℃ water is mixed with 18.5 grams of Porcine Gelatin powder (one 

teaspoon gelatin powder sets one cup of liquid). The mixture is poured inside the containers holding 

the catheters carefully from a corner so that the liquid volume builds up slowly from underneath the 

catheters. The containers are then placed inside the fridge (at 6℃). It takes minimum of four hours 

for the gel to set. Setting the water-based gel inside the containers makes the scanning of US probe 

over the volume containing the catheters safer for the transducer probe and more manageable (no 

splashing of water) without introducing speckle noise to the US images. Figure 29 shows one of the 

containers after the water-based gel is set inside of it.  

 

Figure 29 – water-based gel set inside the plastic container 

 

4.2. Experimental Strategy for Validation of Results 

Before setting the water-based gel inside the containers, the are measured in the 3D frame of a CMM 

machine. These concrete measurements are then used to build up a 3D measurement model of each 

of the four catheters. Each measurement model represents the ground truth of their respective 

catheter and is used to validate the 3D US shape estimation results. A MITUTOYO CMM (Mitutoyo, 

Takatsu-ku, Kawasaki) machine is used to measure the catheters in its 3D frame (Figure 30).  
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Before taking any measurements, the origin with respect to which the measurements are reported by 

the CMM machine must be defined. This is achieved by first choosing the point of origin, then 

positioning the measuring needle tip at this chosen point and resetting the system by pushing down 

the ZER button on the machine as shown in Figure 31. Now, this point will be the origin (x=0, y=0, 

z=0) and every other point in the CMM’s space is measured with respect to this origin in units of 

mm.   

 

Figure 30 – The MITUTOYO CMM machine 

 

Figure 32 illustrates the direction of positive and negative x, y and z measurements with respect to 

the origin. Figure 33 demonstrates the procedure of measuring the catheters along their length using 

the machine. As shown in Figure 33, a series of points along each of the four catheters are measured 

with respect to the designated origin. These points are then plotted in 3D space using MATLAB and 

shown in Figures 34 and 35. The configuration of the four catheters shown in these figure are 

considered as the ground truth representations of these catheters and are used to validate the 3D US 

shape estimation results as presented in chapter 5 of this thesis.   
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Figure 31 – Setting the origin of CMM measurements 

 

 

Figure 32 – Direction of x, y and z measurements with respect to the origin in CMM machine 

 

The origin is chosen to be the mid-point between the two Optotracker sensors as shown in Figure 

31. This point also marks the origin of the reference frame in the Optotracker field of view, as its set 

up will be explained in section 4.4. The origin of the CMM machine measurement frame and the 

origin of the Optotracker reference frame must be the same if their respective measurements are to 

be compared against one another. This comparison will be discussed in greater detail in chapter 5.    
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Figure 33 – Measuring points along the length of catheters 

 

 

 

Figure 34 – CMM measurements of the container with the straight (blue) catheter and catheter #2 (red) (all 

measurements in mm) 
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Figure 35 – CMM measurements of the container with catheter #3 (blue) and catheter #1 (red) (all measurements in 

mm) 

 

As depicted in Figures 34 and 35, the four catheters are measured with respect to the origin as they 

are positioned and oriented in the CMM’s measuring frame. The same position and orientation of 

the origin and catheters are maintained for experiments with Optotracker and US as discussed in 

section 4.4. All the measurements are in millimeters. It is also important to mention that since these 

catheters consist of either circular cross section of 3 mm or square cross section of 3 mm × 3 mm 

(only catheter #2), the measured z-axis of each point on the surface of these catheters is subtracted 

by 
3 𝑚𝑚

2
= 1.5 𝑚𝑚, so that the measured points are representative of the center axis through the 

catheters.  

Also, as it can be seen in Figure 34, the straight catheter tilts a bit upward and catheter # 2 tilts a bit 

downward. In Figure 35, catheter # 3 (plotted in blue) curves out of plane and upward while catheter 

# 1 (red) curves in plane and to the right.  These orientations are consistent with how these catheters 
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came out after gluing them to their attachments. Therefore, measurements depicted in Figures 34 

and 35 serving as calibrated direct measurements obtained in CMM’s measuring frame can be 

considered as ground truth to be used for validation of calibration procedures and 3D shape 

estimation algorithms. 30  

4.3. Un-calibrated Ultrasound Experiments 

A series of US transverse images were obtained by scanning the US probe across the catheters inside 

the water-based gel. The probe was manually moved steadily with constant speed so to prevent any 

deviations in its orientation.  No calibration is performed at this point.  

About 5 mm of cold water was poured onto the surface of the gel inside the container to assist in 

smoother movement of the US transducer over the gel. If this small amount of water is not added, 

the US transducer would ruin the surface of the gel due to resistance during the scan and also the 

transducer beams would disperse.   

Figure 36 shows a sample transverse US image from each of the four catheters. These images show 

the cross section of each catheter at a point in time. As evident, the water-based gel provides a speckle 

free US image and the only artifact present in these images are the occasional comet tail artifact 

emitted from the surface of the 3D printed plastic catheters (e.g., Figure 36(a)).   

                                                 
30 The numbering of catheters mentioned in the text corresponds to the catheter numbers presented in Figure 30 
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Figure 36 – sample US transverse images of (a) straight catheter (b) catheter #1 (c) catheter #2 and (d) catheter #331 

 

To obtain the US images of Figure 45, SONIXTOUCH RESEARCH Q+ US system with access to 

clinical grade grey-scale image and raw B mode data was utilized. The scans were performed using 

L14-5W/60 linear wide transducer of 5-14 MHz bandwidth and 4mm × 60.4 mm footprint. The US 

system and the linear transducer are shown in Figure 46.  

The US transverse images were obtained by setting the transducer frequency to 14.0 MHz, 

transmission depth to 4 cm (as shown in Figure 38), and B-mode gain of 50%. Other settings were 

kept in their default values such as speed of sound (SOS) of 1540 m/s, mechanical index of less than 

0.74 (MI<0.74), and thermal index of less than 0.27 (TIS<0.27). By inspection these settings 

produced the best and crispiest US images. In addition, the acquisition frame rate was set to high, 

which correspond to 33 frames per second (FPS). 

                                                 
31 Catheter # 1, 2 and 3 refer to the ones modeled in Figure 30 
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Figure 37 – ULTRASONIX RESEARCH Q+ US system along with L14-5W linear transducer 

 

 

Figure 38 – US image plane specifications 

 

As shown in Figure 38, the dots on the left side indicate the depth captured by US which in this case 

correspond to a total of 4 cm as set manually before. In addition, the white circle at the top left corner 



 79 

(marked by the dashed green circle) indicates that the top left corner of the image corresponds to the 

transmissions received at the notched side of the transducer. This information assists in orienting the 

transducer to the desired direction and provides a guide of the orientation of the image with respect 

to the transducer. This information will be useful in calibrating the US image plane with respect to 

the US probe frame as discussed in the next section.  

4.4. Calibration of Ultrasound Probe using NDI Optotracker  

The un-calibrated US experiments presented in the previous section lack spatial perspective and 

therefore the implementation of tracking algorithms cannot be validated against CMM’s 

measurements of Figures 34 and 35. In order to calibrate the US transverse images, the first step is 

to calibrate the US transducer probe with respect to the designated world frame using the NDI 

Optotracker (Northern Digital Inc., Waterloo, Ontario) as discussed in this section. The world 

reference frame referred to here has the same origin and x, y, z axes orientation as the one designated 

for the CMM’s frame within which the direct measurements were obtained. Defining the Optotracker 

reference frame to be the same as the CMM is intuitive in that the measurements obtained using the 

Optotracker can then be compared with direct measurements of the CMM.  

The NDI Optotracker shown in Figure 39 provides 3DOF pose, (x, y, z), for any number of sensors 

attached to it with respect to the internally defined global reference frame. The sensors of the NDI 

Optotracker are shown in Figure 40. A triangular frame (Figure 40) supplied by the NDI Optotracker 

manufacturer can hold three individual sensors, which together can be used to define a coordinate 

frame. In this section one triangular frame is used to designate the reference coordinate frame (i.e. 

the previously mentioned world frame) and another triangular frame is used to designate the US 

transducer probe coordinate frame. The goal here is to set the NDI Optotracker to measure (i.e. by 

detecting the triangularly framed sensors) the position and orientation of the US transducer probe 

frame with respect to the reference frame.  

The reference coordinate frame is stationary as it is secured in position to the frame of the CMM’s 

machine given the whole experiment is set up in the CMM’s base. However, the US transducer probe 

coordinate frame moves as the probe scans across the catheters over the water-based gel (container 
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of which is securely fixed in position on the CMM’s base). The NDI Optotracker is configured to 

provide the position and orientation (i.e. pose, 𝜉, defined by 6DOF (𝑥, 𝑦, 𝑧, 𝜃𝑟, 𝜃𝑝, 𝜃𝑦)32) of the US 

probe’s frame with respect to the pose of the reference frame. This configuration is set using NDI 

Optotracker’s computer software package (NDI First Principle and NDI Architecture). The 

Optotracker sensor placement on the CMM’s frame and US probe are demonstrated in Figures 41 

and 42 respectively. These figures also demonstrate how each coordinate frame was configured in 

the NDI software package in terms of the location of its origin and direction of axes. This 

configuration is important in that it designates the increasing or decreasing directions of sensors 

reading especially as they move through space against one another. For the reference frame to be 

consistent with the CMM’s reference frame (both being the same), sensor #1 is set to be on the -z 

axis, sensor #2 on -y axis and sensor #3 on +y axis. Therefore, the origin of the reference frame is 

set to be exactly in the midpoint between sensor #2 and sensor #3 and the +x axis is perpendicular 

to the triangular frame as shown in Figure 41. For simplicity, the US probe coordinate frame is 

configured in a similar fashion to the reference frame coordinate frame with the origin in the middle 

of sensor #7 and #8, +y axis passing through sensor #7, -y axis passing through sensor #8, -z axis 

passing through sensor #9 and +x axis perpendicular to the triangular frame as shown in Figure 42.   

                                                 
32 (x in mm, y in mm, z in mm, roll angle in degrees, pitch angle in degrees, yaw angle in degrees) 
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Figure 39 – The NDI Optotracker 

 

 

Figure 40 – Sensors of the NDI Optotracker 
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Figure 41 – Configuring world reference coordinate frame 

 

 

Figure 42 – Configuring US transducer probe coordinate frame 

 



 83 

Summing up, the concept of the intended calibration is illustrated in Figure 43. The global reference 

frame, {G}, is internally defined by the NDI Optotracker manufacturer. The reference frame, {R}, 

is configured so that the Optotracker provides its pose with respect to {G}.  Since the reference frame 

is secured fixed on the CMM’s frame, the pose 𝜉𝑅
𝐺 (i.e. the position and orientation of the frame {R} 

with respect to the frame {G}) is constant and never changes through time.  

On the other hand, the US transducer probe is not stationary as it scans across the volume of interest 

to accumulate a series of US transverse image frames. Therefore, the pose of the US probe changes 

over time and is not constant. The NDI Optotracker is configured to provide the position and 

orientation of the US probe frame, {𝑃}, with respect to the reference frame, {𝑅} over time. Figure 44 

illustrates a sample reading of the position and orientation of the US probe frame with respect to the 

reference frame over 25 time-steps provided by the NDI Optotracker.     

 

Figure 43 – Experimental Calibration setting 

 

 



 84 

 

Figure 44- Screen shot of Optotracker reading providing the position and orientation of the US probe frame with 

respect to the reference frame over 25 steps of time 

 

Rx corresponds to the roll angle, Ry corresponds to the pitch angle, and Rz corresponds to the yaw 

angle.  

The pose of {P} with respect to {R}, 𝜉{𝑃}
{𝑅}

~𝐓{𝑃}
{𝑅}

∈ 𝑆𝐸 (3) can be obtained using the following 

equation33: 

𝐓 = [

𝑐𝛾𝑐𝛽
𝑠𝛾𝑐𝛽
−𝑠𝛽
0

−𝑠𝛾𝑐𝛼 + 𝑐𝛾𝑠𝛽𝑠𝛼
𝑐𝛾𝑐𝛼 + 𝑠𝛾𝑠𝛽𝑠𝛼

𝑐𝛽𝑠𝛼
0

𝑠𝛾𝑠𝛼 + 𝑐𝛾𝑠𝛽𝑐𝛼

−𝑐𝛾𝑠𝛼 + 𝑠𝛾𝑠𝛽𝑐𝛼

𝑐𝛽𝑐𝛼

0

𝑥
𝑦
𝑧
1

],  (4.1) 

where 𝛼 = 𝑅𝑥, 𝛽 = 𝑅𝑦 , 𝛾 = 𝑅𝑧, 𝑥 = 𝑥{𝑃}
{𝑅}

, 𝑦 = 𝑦{𝑃}
{𝑅}

  and 𝑧 = 𝑧{𝑃}
{𝑅}

. 

                                                 
33 Whenever convenint, the shorthand notations 𝑐𝜃 = cos (𝜃) and 𝑠𝜃 = sin (𝜃) are used. 
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Finally, to calibrate the US image frame, {𝐼}, with respect the reference frame, {𝑅}, the homogeneous 

transformation denoted by 𝜉{𝐼}
{𝑃}

 must be derived. Here, 𝜉{𝐼}
{𝑅}

 is also constant as the position and 

orientation of the US image frame does not change with respect to the probe’s frame over time given 

they are both part of the probe structure which does not deviate through time. The derivation of 𝜉{𝐼}
{𝑅}

 

requires additional experiments and procedures, which are explained in detail in the next section.   

4.5. Calibration of Ultrasound Image Frame using Calibration Phantom 

To calibrate the US image coordinate frame in the world reference frame, in addition to 𝜉{𝑅}
{𝐺}

 and 

𝜉{𝑃}
{𝑅}

, 𝜉{𝐼}
{𝑅}

 (i.e., the pose of the US image frame with respect to the probe frame), which is constant 

in time throughout the whole experiment, must be derived. This is accomplished by applying the N-

wire fast calibration method proposed by Pagoulatos et al. [136].  

A special calibration phantom was printed using Creality CR-10 3D printer and 1.75 mm white PLA 

filament. The STL design file34 and the 3D printed phantom are shown in Figures 45.  

 

Figure 45- STL design file of the calibration phantom (fCal2.0) used to calibrate the US image frame 

 

 

                                                 
34 The phantom model in STL format is downloadable from the following link: 

https://subversion.assembla.com/svn/plus/trunk/PlusLib/data/CADModels/fCalPhantom/ 

 

https://subversion.assembla.com/svn/plus/trunk/PlusLib/data/CADModels/fCalPhantom/
https://subversion.assembla.com/svn/plus/trunk/PlusLib/data/CADModels/fCalPhantom/
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The fCla2.0 phantom s recommended for 30-90 mm calibration depth, which is applicable to the 

purposes of this thesis.  

Galvanized steel wires of about 0.2-0.3 mm were passed through the phantom holes to form fiducial 

lines. The wires were placed as to form a set of 6 fiducials, each with the shape of the letter ‘N’, 

hence called N-fiducials. The N-fiducials are grouped in five planes, each containing six N-fiducials. 

Figure 46 draws the top view of the five planes showing the arrangement of the six N-fiducials in 

each plane. Figure 47 shows a picture of the wired fCal phantom.  

 

Figure 46- The width and direction of the N-fiducials for the five rows of the fCal2.0 phantom. Solid lines denote the 

parallel wires (perpendicular to the phantom walls) and dashed lines denote the oblique wires of the N-fiducials 
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Figure 47- Wired fCal2.0 phantom  

 

Originally, in [136]-[137], the fCal2.0 phantom is designed in its structure to be calibrated using an 

EM tracker or SonixGPS (BK Ultrasound, Richmond, BC) by plugging the sensors into the cubic 

(with 5mm/10mm cross section side length) or cylindrical (with 5mm/10mm cross section diameter) 

holes provided on each side of the fCal2.0 phantom as shown in Figure 47. However, in this thesis 

since the US transducer probe is tracked using the Optotracker, it is preferable to calibrate the 

phantom also using the Optotracker with respect to the world reference frame, which was configured 

using Optotracker in the previous section. The Optotracker sensors however cannot be attached to 

the body of the phantom since the phantom is going to be submerged into the water, which can defect 

the sensors. To remedy this limitation, a rectangular cube of 150 mm in length and 

10 mm ×  10 mm square cross section was fabricated using the 3D printer to be fitted onto the top 

left corner cubic hole of 10 mm sides square cross section and it was glued securely using UHU 

Polymer super glue.  Finally, a triangular frame of three Optotracker sensors was secured on the 

rectangular cube attachment as shown in Figure 48. A phantom coordinate frame using these three 

sensors is configured using the Optotracker’s NDI First Principle and NDI Architecture software 

packages, where –y axis passes through sensor #4, +y axis passes through sensor #5, and -z axis 

passes through sensor #6. The origin of the phantom coordinate frame lays midway between sensors 
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#4 and #5 on the triangular frame and the +x axis is perpendicular to this triangular frame as shown 

in Figure 48.  

 

Figure 48- Configuring the phantom coordinate frame 

The five rows (i.e. planes) of six N-fiducials are therefore parallel to the x-y plane of the phantom as 

shown in Figure 49.  

 

Figure 49- N-fiducials are parallel to the phantom’s coordinate frame x-y plane 



 89 

In an US image oriented approximately parallel to the z-axis of the phantom (Figure 50), an N-

fiducial appears as a set of three points (ellipses), as illustrated in Figure 51, which shows the 

phantom as imaged through its upper face. Figure 52 illustrates the actual US image obtained from 

this experiment.  

 

Figure 50- Calibration phantom experiments 

 

Figure 51- the geometric configuration of the four coordinate systems involved in the calibration procedure. The 

intersection of the US plane with one N-fiducial is illustrated as a set of three ellipses 
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Figure 52- The US image obtained from the wired fCal2.0 phantom and used to calibrate the US image frame 

 

The NDI Optotracker is set up so that it provides the position and orientation of the US probe with 

respect to the world reference frame, 𝜉{𝑃}
{𝑅}

, and the phantom with respect to the world reference, 

𝜉{𝑃𝐻}
{𝑅}

. Also, as shown in Figure 67, the NDI Optotracker also provide the 3D position, (𝑥, 𝑦, 𝑧), of 

each of the sensors (markers #1-9) and the position and orientation of the world reference frame with 

respect to the internally defined global frame.  

 

Figure 53- Screen shot of Optotracker readings used to calibrate the US frame 
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As shown in Figure 51, four coordinate systems are relevant to the description of the calibration 

method. These coordinate systems are illustrated in Figure 54 along with the various transformations 

between them.  

 

Figure 54- Coordinate transformations between various coordinate systems 

 

The objective of the calibration is to determine 𝜉{𝑃}
{𝐼}

, which is the transformation from the US image-

based coordinate systems to the US probe coordinate system. Spatial relationships can be written by 

composing relative poses and ⊕/⊖ (pose composition operator/inverse of a pose) operators as 

follow: 

𝜉{𝑃𝐻}
{𝐼}

= 𝜉{𝑃}
{𝐼}

⊕ 𝜉{𝑅}
{𝑃}

⊕ 𝜉{𝑃𝐻}
{𝑅}

.  (4.2) 

A concrete representation of relative pose 𝜉 is 𝜉~𝐓 ∈ 𝑆𝐸 (3). Also given properties, 

𝐓1 ⊕ 𝐓2 → 𝐓1𝐓2,  (4.3) 

which is a standard matrix multiplication and 

⊖ 𝐓 → 𝐓−1             (4.4) 

Equation 4.2 can be rewritten as: 
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𝐓{𝑃𝐻}
{𝐼}

= 𝐓{𝑃}
{𝐼}𝐓{𝑅}

{𝑃}
𝐓{𝑃𝐻}

{𝑅}
.  (4.5) 

𝐓{P}
{I}

 is extracted out of equation 4.5 since it corresponds to 𝜉{𝑃}
{𝐼}

 which is the transformation of interest 

in this section: 

𝐓{PH}
{I}

(𝐓{R}
{P}

𝐓{PH}
{R}

)
−1

= 𝐓{P}
{I} (𝐓{R}

{P}
𝐓{PH}

{R}
) (𝐓{R}

{P}
𝐓{PH}

{R}
)
−1

 Leading to: 

𝐓{P}
{I} = 𝐓{PH}

{I}
(𝐓{R}

{P}
𝐓{PH}

{R}
)
−1

 (4.6) 

Here 𝐓{PH}
{R}

, which corresponds to the pose of the phantom coordinate frame with respect to the world 

reference frame (i.e. 𝜉{𝑃𝐻}
{𝑅}

), can be derived by the 6DOF pose components (𝑥, 𝑦, 𝑧, 𝑅𝑥, 𝑅𝑦, 𝑅𝑧) 

provided by the output of the NDI Optotracker as shown in Figure 53 in front of the word “phantom”. 

For the specific experiment shown in Figure 50, which resulted in the US image of Figure 52, the 

𝑇{𝑃𝐻}
{𝑅}

 can be obtained.  

𝐓{PH}
{R}

= [

0.5526 0.8335 −0.0031 142.2180
−0.8142 0.5406 0.2116 115.8248
0.1781

0
−0.1144

0
0.9773

0
−35.9345

1

]   

Similarly, 𝐓{𝑅}
{𝑃}

 noted equation 4.6 can be calculated using 6DOF readings of the position and 

orientation of the probe frame with respect to the world reference frame provided by the Optotracker. 

Using equation 4.1 and considering the relation given by: 

(𝐓{𝑃}
{𝑅}

)
−1

= 𝐓{𝑅}
{𝑃}

  (4.7)  

𝐓{𝑅}
{𝑃}

= [

0.5153 −0.8403 0.1686 1.0532
0.8488 0.4732 −0.2361 −258.9608
0.1186

0
0.2647

0
0.9570

0
     5.8358

1

]  
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For the transformation 𝐓{𝑃𝐻}
{𝐼}

 (i.e. the transformation of the phantom coordinate frame, {PH}, with 

respect to the US image coordinate frame, {I}), homologous points provided by the N-fiducials can 

be used [136]. In an US image approximately transverse to a fiducial, the “N” will be visualized as 

a set of three ellipses whose centers are collinear (Figure 51). Because each N-fiducial is parallel to 

the x-y plane of the phantom coordinate system, all three ellipse centers must have the same z 

coordinate in the phantom space. For the middle ellipse, the x and y phantom space coordinates of 

its centers can be determined based on the similar triangles BEF and FGD in Figure 55. The phantom 

coordinates of the points of the intersection of the US imaging plane with an N-fiducial can then be 

determined by 

𝑥𝐹
{𝑃𝐻}

= 𝑥𝐵
{𝑃𝐻}

+ 𝑎 (𝑥𝐶
{𝑃𝐻}

− 𝑥𝐵
{𝑃𝐻}

)  (4.8) 

𝑦𝐹
{𝑃𝐻}

= 𝑦𝐵
{𝑃𝐻}

+ 𝑎 (𝑦𝐶
{𝑃𝐻}

− 𝑦𝐵
{𝑃𝐻}

)  (4.9) 

The ratio 𝑎 =
𝐹𝐸

𝐸𝐺
 can be measured using the locations of the three ellipses in the US image (Figure 

56), and the coordinates of the vertices (i.e. 𝑥𝐵
{𝑃𝐻}

, 𝑥𝐶
{𝑃𝐻}

, 𝑦𝐵
{𝑃𝐻}

, 𝑦𝐶
{𝑃𝐻}

) in the phantom space {PH} 

are known based on the phantom design and measured using CMM as shown in Figure 58. Therefore, 

for each N-fiducial, the middle ellipse provides a pair of homologous points with known coordinates 

in the US (𝑧𝑈𝑆 = 0 for all points in the US image) and phantom coordinate frames.  

 

Figure 55- A top view of an US plane intersecting a single N-fiducial. The dashed line represents the US imaging plane 
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The US plane that is transverse to the N fiducial and shown in a dashed line in Figure 55 is shown 

in Figure 56. In this figure the US transverse image is shown in appropriate units of millimeters 

where the points E1, F1 and G1 (Corresponding to points E, F, G in Figure 69) are measured.   

 

Figure 56- US transverse image of the N-fiducial phantom at 5 cm imaging depth 

 

The code to convert and resize the pixel-based image to millimeter-based image  is provided in 

Appendix B.5. To appropriately produce the conversion from pixels to millimeters, the information 

of the specific transducer used must be retrieved specifically for “Element Pitch” and “Element 

Number”. In this thesis, the linear transducer L14-5W/60 is used to carry out the experiments and 

Figure 57 summarizes this transducer’s specifications. The element pitch of this transducer is 0.46 

mm and this transducer has 128 elements in total. The Lateral length of the US image produced by 

the L14-5W/60 transducer can therefore calculated to be: 

Total Lateral Length (in mm) = Total # of Elements ×  Pitch per Element = 128 × 0.46 = 58.8800 mm 
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Dividing the calculated total lateral distance (i.e. 58.8800 mm) by the total number of pixels in the 

lateral direction of transverse US image provides the amount in millimeters each pixel represents. 

To accurately retrieve the total number of lateral pixels in the saved US image, the default header 

file must be retrieved.  

 

Figure 57- L14-5W/60 transducer specifications 

 

The total number of pixels in the lateral direction of the US image is 497, which leads to: 

Total Lateral Length

Total Number of Lateral Pixels
=  

58.8800 mm

497 pixels
=  0.1185 mm/pixel    

Given a pixel to be square we can derive the axial length of the US image to be: 

0.1185
mm

pixel
×  416 total number of axial pixels =   49.2839 mm axial length of US image    

Given the total lateral and axial lengths of the transverse US image (i.e. 58.8800 mm and 49.2839 mm 

respectively), the original pixel-based US image can be interpolated to the millimeter-based image 

of Figure 56.  
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The lateral distances F1E1 and E1G1 can be read off Figure 56 to be 12.47 mm and 24.83 mm 

respectively, which leads to 𝑎1 =
F1E1

E1G1
= 0.5022.  

 

Figure 58 – Measuring points A and B in {PH} frame referring to Figure 69 and required by equations 4.8 and 4.9  

 

In addition, using CMM, the following measurements (in mm) were obtained: 

A1{PH} = [
18.631
72.492

−142.212
]  mm , B1{PH} = [

54.976
57.046

−142.212

]  mm , C1{PH} = [
28.988
95.621

−142.212
]  mm , D1{PH} = [

63.850
79.813

−142.212

]  mm  

By substituting these measurements into equations 4.8 and 4.9, 𝑥𝐹1
{𝑃𝐻}

= 41.9248mm  and 𝑦𝐹1
{𝑃𝐻}

=

76.4183mm are obtained. Therefore, the point F1 in the phantom coordinate {PH} is given by: 

F1
{PH} = [

41.9248
76.4183
−142.212

]  mm  

On the other hand, as measured in Figure 56 and considering that zUS = 0, the point F1 in the US 

image frame coordinate is given by: 

F1
{I}

= [
18.94
12.62

0
]mm  

The points F{PH} and F{I} should be turned into their homogeneous forms by appending a one and 

the following will hold: 
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F̃1
{I}

= 𝐓{PH}
{I}

F̃1
{PH}

  (4.10) 

According to equation 4.10, T{PH}
{I}

 is a homogeneous transformation transferring the point F1 from 

the calibration phantom coordinate, {PH}, to the US image coordinate frame {I}. Substituting the 

known homogeneous vectors into this equation: 

[

18.94
12.62

0
1

] = 𝐓{PH}
{I}

[

41.9248
76.4183

−142.212
1

] →  𝐓{PH}
{I}

= [

m11 m12 m13 m14

m21 m22
m23 m24

m31

0
m32

0
m33

0
m34

1

]  (4.11) 

As shown in matrix 4.11, the 12 unknowns of the transformation matrix 𝐓{𝑃𝐻}
{𝐼}

 cannot be solved only 

with one point, F1. To solve for this transformation matrix, nine more points (for the total of ten 

points) are measured experimentally in both {PH} and {I}, in the same manner as explained for 

measuring F1. These ten points, F1…F10, are shown in the US frame, {I}, in Figure 59 where they 

can be directly measured. These ten points should also be measured in the phantom frame, {PH}, 

Table 5 summarizes these points measured in both frames. No more than ten points can be measured 

in the fCal 2.0 phantom using L14-5W/60 linear probe, given that fCal 2.0 only includes five rows 

as shown in Figure 57 and the ~60 mm lateral length of the linear probe can only capture 2 N-

fiducials leading to an F point. Hence 5 rows x 2 F points = 10 points in total.  

 

Figure 59- points F1
{I}

…F10
{I}
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Table 5 

Measuring ten points in both {PH} and {I} 

Point # Measured in {I} Ratio a (mm/mm) Measured in {PH} 

F1 
[
18.94
12.62

0
] 

0.5022 
[

41.9248
76.4183
−142.212

]   

F2 
[
19.95
17.45

0
] 

0.4755 
[

40.1326
75.9731
−147.212

]    

 F3 
[
18.15
25.09

0
] 

0.5637 
[

40.3266
78.7907
−152.212

]    

F4 
[
21.41
31.72

0
] 

0.4244 
[

37.8219
75.5990
−157.212

]    

F5 
[
16.80
35.88

0
] 

0.6453 
[

38.2059
81.9384
−162.212

]    

F6 
[
42.65
11.95

0
] 

0.4218 
[

29.8694
55.0558
−142.212

]    

F7 
[
41.19
18.35

0
] 

0.5284 
[

32.0980
56.4807
−147.212

]    

F8 
[
43.43
23.86

0
] 

0.2955 
[

24.3852
54.6211
−152.212

]    

F9 
[
39.39
30.15

0
] 

0.6131 
[

29.6793
59.3563
−157.212

]    

F10 
[
43.32
38.47

0
] 

0.5131 
[

33.8338
55.3700
−162.212

]    

 

Finding the optimal rotation and translation between two sets of 3D points (i.e. one set belonging to 

the US frame, {I}, and the other set belonging to the phantom frame, {PH}) is the problem of finding 

the Euclidean or Rigid transformation between these two sets of points. In this thesis the method, 

“Corresponding Point Set Registration”, discussed by Besl et al. [138] is followed to find the rigid 

transformation between F{I} and F{PH}. In what follows the notations and equations from this paper 

are used to present the procedure involved. 
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Denoting 𝐪R = [𝑞0 𝑞1 𝑞2 𝑞3]
𝑇 to be a four-vector unit quaternion representing the rotation between 

the two dataset, where 𝑞0 ≥ 0 and 𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 = 1, the 3x3 rotation matrix that maps F{PH} 

to F{I} can be derived as follow. 

𝐑(𝐪R) = [

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞1𝑞2 + 𝑞0𝑞3) 𝑞0
2 + 𝑞2

2 − 𝑞1
2 − 𝑞3

2 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 + 𝑞0𝑞1) 𝑞0
2 + 𝑞3

2 − 𝑞1
2 − 𝑞2

2

]  (4.12)  

Denoting 𝐪T = [𝑞4 𝑞5 𝑞6]
𝑇 to be the translation vector, the complete registration state vector 𝐪 

(which maps the set of points in {PH} onto the ones in {I}) is denoted 𝐪 = [𝐪R|𝐪T]
𝑇.  Let F{PH} =

{Fi
{PH}

} be the measured data point in the phantom frame, {PH}, set to be aligned with point set 

F{I} = {Fi
{I}

} measured in the US image frame, {I}, where N = NF{I} = NF{PH} = 10 and where each 

point Fi
{PH}

 corresponds to the point Fi
{I}

 with the same index as shown in Table 8. The mean square 

objective function to be minimized is given by the following equation. 

𝑓(�⃗�) =
1

N
∑ ||Fi

{I}
− (𝐑(𝐪R)Fi

{PH}
+ 𝐪T)||

2
N
i=1   (4.13) 

In equation 4.13, (𝐑(𝐪R)Fi
{PH}

+ 𝐪T) maps the point Fi
{PH}

 from frame {PH} to the frame {I} using 

optimal rotation 𝐑(𝐪R) and translation 𝐪𝑇. After this mapping, the Euclidean distance between the 

two points is calculated35. In other words, equation 4.13 is nothing more than root mean square error 

between the points measure in {I} and the points mapped onto {I}.   

The center of mass 𝛍F{PH} of the measured point set F{PH} and the center of mass 𝛍F{I} of the measured 

point set F{I} are given by (using the data in Table 8): 

                                                 
35 The Euclidean distance between the two points 𝐫1 = (𝑥1, 𝑦1, 𝑧1) and 𝐫2 = (𝑥2, 𝑦2, 𝑧2) is 𝑑(𝐫1, 𝐫2) = ||𝐫1 − 𝐫2|| =

√(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2 
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𝛍F{PH} =
1

N
∑ Fi

{PH}N
i=1 = [

34.8277
66.9603

−152.2120
] mm  (4.14) 

 𝛍F{I} =
1

N
∑ Fi

{I}N
i=1 = [

30.5230
24.5540

0

] mm  (4.15) 

The cross-covariance matrix 𝚺F{PH}F{I} of the sets F{PH} and F{I} is given by: 

𝚺F{PH}F{I} =
1

N
∑ [(Fi

{PH}
− 𝛍F{PH}) (Fi

{I}
− 𝛍F{I})

T

]N
i=1   (4.16) 

Using equations 4.14, 4.15 and Table 8, 𝚺F{PH}F{I} is calculated to be: 

𝚺F{PH}F{I} = [
−56.2376 −1.5682 0
−126.6650 8.0770 0

1.6400 −62.8150 0

]   

The cyclic components of the anti-symmetric matrix, 

𝐀𝑖𝑗 = (𝚺F{PH}F{I} − 𝚺
F{PH}F{I}
T )

𝑖𝑗
  (4.17) 

are used to form the column vector, 

∆= [𝐴23 𝐴31 𝐴12]
𝑇 = [62.8150 1.6400 125.0968]𝑇.  (4.18) 

Where the anti-symmetric matrix is calculated to be: 

𝐀 = [
0 125.0968 −1.6400

−125.0968 0 62.8150
1.6400 −62.8150 0

]   

Subsequently, the symmetric 4x4 matrix 𝐐(𝚺F{PH}F{I}) can be formed as follow. 

𝐐(𝚺F{PH}F{I}) = [
𝑡𝑟(𝚺F{PH}F{I}) ∆T

∆ 𝚺F{PH}F{I} + 𝚺
F{PH}F{I}
T − 𝑡𝑟(𝚺F{PH}F{I})𝐈𝟑

]  (4.19) 
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where 𝐈𝟑 is the 3x3 identity matrix and 𝑡𝑟(𝚺F{PH}F{I}) refers to the trace of the square matrix 𝚺F{PH}F{I}.  

The calculated matrix 𝐐(𝚺F{PH}F{I}) is given by: 

𝐐(𝚺F{PH}F{I}) = [

−48.1606 62.8150 1.6400        125.0968
62.8150 −64.3145 −128.2333    1.6400
1.6400

125.0968
−128.2333

1.6400
64.3145
−62.8150

 −62.8150
48.1606

]   

The unit eigenvector 𝐪R = [𝑞0 𝑞1 𝑞2 𝑞3]
𝑇 corresponding to the maximum eigenvalue of the matrix 

𝐐(𝚺F{PH}F{I}) is selected as the optimal rotation. 

Using MATLAB, the eigenvector corresponding to the biggest eigenvalue of the matrix 

𝐐(𝚺F{PH}F{I}) is:  

𝐪R = [𝑞0 𝑞1 𝑞2 𝑞3]
𝑇 = [0.3776 0.3915 −0.6198 0.5656 ]𝑇   

Substituting the unit quaternion rotation vector presented above into the matrix, 𝐑(𝐪𝑅), in 4.12, the 

3x3 rotation matrix that maps the measured points in {PH} onto {I} is given by: 

𝐑{PH}
{I}

= 𝐑(𝐪R) = [
−0.4082 −0.9125 −0.0252
−0.0581 0.0535 −0.9969
0.9110 −0.4055 −0.0749

]   

Finally, the optimal translation vector can be obtained by the following equation: 

𝐭{PH}
{I}

= 𝐪T = 𝛍F{I} − 𝐑(𝐪R)𝛍F{PH} = [
102.0074
−128.7426
−15.9775

]  (4.20) 

In addition, using the calculated rotation matrix and translation vector, the 4x4 transformation matrix 

in equation 4.10 can be obtained to be: 
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𝐓{PH}
{I}

= [𝐑{PH}
{I}

𝐭{PH}
{I}

0 1
] = [

−0.4082 −0.9125 −0.0252
−0.0581 0.0535 −0.9969
0.9110

0
−0.4055

0
−0.0749

0

102.0074
−128.7426
−15.9775

1

]   (4.21) 

The last step is to find the root mean square error of the transformation matrix presented in 4.21 

using the mean square objective function in equation 4.13.  

RMSE =
1

N
∑ ||Fi

{I}
− (𝐑(𝐪R)Fi

{PH}
+ 𝐪T)||

2
N
i=1 = 7.6223 mm   

To estimate a more accurate rigid transformation matrix, the goal must be to minimize the RMSE 

value obtained through equation 4.13. The more points measured in both frames {PH} and {I}, the 

more accurate the estimation of 3D rigid transformation will be and hence the lower RMSE value 

can be achieved. However, as explained before in experiments conducted using fCal2.0 and L14-

5W/60 linear US probe, no more than ten points are measurable given the small size of fCal2.0 

phantom. To be able to measure more points using N-fiducials, the use of fCal3.1 phantom is 

recommended36. This phantom is bigger in size than fCal2.0 phantom (76 mm in width, 220 mm in 

length and 150 mm in height) and incorporates a total of 238 holes in 14 rows and 17 columns, which 

can be used to incorporate more N-fiducials.  

The MATLAB code to calculate the optimal 3D rigid transformation between F{I} and F{PH} is 

provided in Appendix B.5.  

After estimating 𝐓{PH}
{I}

 in equation 4.21, this matrix can be substituted in equation 4.6, along with 

calculation of 𝐓{PH}
{R}

 and 𝐓{R}
{P}

 from Tables 6 and 7 respectively, to obtain the transformation matrix 

that relates the US probe frame to the US image frame as follow.  

                                                 
36 The .stl file of fCal3.1 can be downloaded from:  
http://perk-software.cs.queensu.ca/plus/doc/nightly/modelcatalog/printable/fCal_3.1.stl 
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𝐓{P}
{I} = 𝐓{PH}

{I} (𝐓{R}
{P}

𝐓{PH}
{R}

)
−1

= [

−0.3672
−0.0457
0.9290

0

−0.9172
0.1834

−0.3535
0

−0.1542
−0.9820
−0.1094

0

25.5202
−97.6940
−13.4112

1

]   

 (4.22) 

 

4.6. Calibration Error 

In addition to measuring the pose of the frames against one another, The NDI Optotracker also 

reports the estimated error in its relative pose readings. In the calibration experiments of this thesis, 

the NDI Optotracker First Principle software console reports 0.0767 mm estimated error in sensing 

the pose of the US probe frame, {P}, with respect to the reference frame, {R}. In addition, the 

estimated error in sensing the pose of the fCal2.0 phantom frame, {PH}, with respect to {R} is 

reported to be 0.3245 mm. The reference frame, {R}, itself is reported to have 0.4134 mm estimated 

error in its sensed pose with respect to the internal global frame.  

On the other hand, the estimated transformation between the US probe frame and US image frame 

(𝐓{P}
{I}

) was calculated to have RMSE error of 7.6223 mm. To elaborate on this inherent error, it 

should be noted that the corresponding point set registration estimation technique proposed by Best 

et al. [138] is not expected to produce an accurate transformation matrix. The source of this 

inaccuracy, according to [136], is the challenge inherent in making sure that features used for 

calibration (point targets) are centered with respect to the thickness (elevational resolution) of the 

US image. This centering is very important, especially in the near-field zone where the US beam 

thickness is large. Noise and outliers are also other sources of inaccuracy. For example, inaccuracies 

in phantom construction (affecting the localization of the N-fiducials in the phantom coordinate 

space) and identification of the N-fiducial ellipses in the US images (affecting the coordinates of the 

middle ellipse of each N-fiducial in the US and phantom coordinate space). In addition, the inherent 

deficiency of this method is that it attempts to estimate the unknown non-rigid spatial transformation 

in the context of rigid transformation by considering the alignment of two point-sets as a probability 
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density estimation problem [142]. That is why this technique comes with a cost function. This cost 

function, f(q) in eq 4.13, is used to find the RMSE associated with the estimated transformation. The 

goal of optimization must be to reduce the RMSE error and this is accomplished by accommodating 

more point measurements. In other words, more accurate and precise calibrations can be achieved 

provided that a large number of N-fiducials are included in one US image. This can be achieved by 

either constructing a separate phantom (e.g. fCal3.1) or providing multiple sections with different 

density of N-fiducials in a single phantom. The exact number of points required to make an accurate 

estimation can only be determined by conducting more experiments within the calibration 

experimental protocols discussed in this thesis. For example, in [136], through acquiring a large (30-

40) number of images it was determined that calibration matrix obtained for US imaging depth of 

16 cm (12 feature points) provides both more precision and accurate calibrations than calibration 

matrix obtained for US imaging depth of 9 cm (8 points) simply due to the fact that at larger imaging 

depth settings, a larger US field of view is acquired and thus more feature points can be contained in 

the US image; therefore, a more representative sampling of the US plane is possible.  

The aforementioned calibration errors may offset the 3D shape estimation results of the catheters, 

which will be presented in chapter 5 in comparison with the direct CMM measurements of the same 

catheters presented as ground truth in Figures 42 and 43.   

4.7. Calibration of Ultrasound Image Frame using Direct Structural Measurements 

In section 4.5, the transformation matrix between the US probe and US frame was estimated using 

N-wire fast calibration method proposed by Pagoulatos et al. [136] and quaternion-based point set 

registration algorithm discussed by Besl et al. [138]. In this section this transformation is calculated 

directly by measuring the US image frame position and orientation with respect to the US probe 

reference frame position and orientation. This is illustrated in Figure 60.  
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Figure 60 – Steps involved in manual calibration of US image frame with respect to the US probe frame 

 

As shown in Figure 60, by having an intuitive anticipation of the location and orientation of the US 

image, one can estimate the transition matrix using direct measurements. In other words, the US 

probe coordinate frame can match the position and orientation of the US image frame  by translating 

it by -117 mm in the z-direction, +22 mm in the y-direction and -15 mm in the x-direction. In terms 

of orientation, the US probe frame will match the US image frame by first rotating it along the y-

axis by +90° and second rotating the resulting frame about its z-axis by -90°. This translation is 

therefore derived to be: 

𝐓{P}
{I}

= (𝐓{I}
{P}

)
−1

= [

0
0
1
0

−1
0
0
0

0
−1
0
0

22
−117
15
1

]  (4.23) 

Figure 61 shows this transformation (equation 4.23) in MATLAB against the one obtained in section 

4.5 (equation 4.22).  
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Figure 61- Manually calibrated US image frame {I} (in magenta) vs. estimated {I} (in red) 

 

The problem with determining the transition matrix between the US image frame and probe frame 

using manual measurements as described in this section is that its correctness cannot be validated, 

and its accuracy cannot be quantified. However, it is still valuable to compare the calibration results 

using 𝐓{I}
{P}

 obtained in this section with the ones obtained using 𝐓{I}
{P}

 obtained in section 4.5 as it 

provides an observation of the reliability and feasibility of manual calibration. This issue is further 

discussed in chapter 5 where 3D shape estimation results of KF, AKF and PF are calibrated within 

the workspace using both versions of  𝐓{I}
{P}

.  

4.8. Syncing of Ultrasound Data with Optotracker Data 

The purpose of using the NDI Optotracker with US experiments is to record the position of the US 

transducer probe in space at each point in time the US frames are acquired. This is to estimate the 

3D shape of the catheter within a calibrated space that can be validated by Figures 34 and 35. 

Therefore, after the aforementioned calibration procedures, one can properly set the acquisition rate 
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of the US frames and Optotracker readings so that they can be synced together correctly. For this 

purpose, the acquisition rate of both the US system and the NDI Optotracker are set to 33 Hz as 

shown in Figure 62. In addition while performing experiments special care was given to starting both 

machines at exactly the same time so that the data obtained at the same points in time can be matched 

and synced together. US machine stores the frames at 33 Hz in the .b8 file while the NDI Optotracker 

stores the pose readings at 33 Hz in an excel file. These data are matched and synced together in 

chapter 5 and the shape estimation algorithms of KF, AKF and PF are applied to them accordingly.  

 

Figure 62 – Setting acquisition rate for both US system and NDI Optotracker to 33 FPS 

 

In an experiment it was verified that in five seconds, the US system used for the experiments of this 

thesis obtains and records exactly 149 US image frames at 33 Hz. On the other hand, the NDI 

Optotracker obtain and records exactly 150 frames at 33 Hz. Therefore, the US lags behind the 

Optotracker in frame acquisition by an offset of 0.03 seconds. This offset is taken to account while 

syncing the two datasets together.  

 

 

 



 108 

4.9. Summary 

Summing up, four catheters with different configurations were 3D printed and secured within 

containers. The configuration of each of these catheters were directly measured using CMM as they 

were placed inside the CMM’s workspace. These directly measured configurations as shown in 

Figures 34 and 35 are used as basis to validate the calibrated estimation results of KF, AKF, and PF. 

Therefore, the experiments were all carried out within the CMM workspace while keeping the 

containers at the same spot CMM measurements were obtained. Next the containers were filled with 

water-based gel and US transverse images were obtained by scanning across each of the four 

catheters. The US probe was tracked using NDI Optotracker with respect to the reference frame, that 

was set to be the same as the origin of the reference frame within which the CMM measurements of 

the catheters were obtained. Calibration procedures were carried out to find the transformation 

matrices that relate the US image frame, {I}, to the US probe frame, {P}, and to the reference frame, 

{R}. A calibration phantom was used to estimate the transformation of US probe frame, {P}, to the 

US image frame, {I}, 𝐓{P}
{I}

, with RMSE of 7.6223 mm, by implementing N-wire fast calibration 

method proposed by Pagoulatos et al. [136] and quaternion-based point set registration algorithm 

discussed by Besl et al. [138]. 𝐓{P}
{I}

 was also calculated by direct measurements between the US probe 

frame and image frame. However, the accuracy of 𝐓{P}
{I}

 obtained manually in this way cannot be 

determined until the calibrated 3D shape estimation results of KF, AKF and PF using both versions 

of 𝐓{P}
{I}

 is validated against the CMM measurements of Figures 34 and 35. Finally, the frame 

acquisition of both the NDI Optotracker and US system are set to be 33 Hz. This allows the both 

systems to produce same number of frames/sensor readings within a certain time with the US system 

lagging behind the NDI Optotracker by 0.03 seconds.  
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C h a p t e r  V  

RESULTS AND VALIDATION 

In this chapter, the KF, AKF and PF algorithms for 3D shape estimation of tendon-driven catheters 

are applied to the experimentally obtained US transverse images that are calibrated within CMM’s 

workspace. At 33 Hz acquisition rate, the spatial pose data obtained by the NDI Optotracker is 

synced with frames obtained by the US system.  The purpose of this chapter is to validate the 

calibrated 3D shape estimation results of the KF, AKF and PF against CMM direct measurements 

presented in Figures 34 and 35 and quantify their accuracy. In addition, the catheter’s 3D shape 

estimation results are calibrated using both 𝐓{P}
{I}

, one obtained by the calibration phantom and one 

by manual measurements. The two sets of results are then compared against one another with 

CMM’s measurements of Figures 42 and 43 to evaluate the feasibility of manual calibration 

procedure of the US image frame with respect to the US probe frame.    

 In section 5.1, the US transverse B-mode images are processed to remove any artifacts and 

emphasize the cross section of the catheters within them. Section 5.2 demonstrates the position and 

orientation within which each of the US transverse images were obtained in the calibrated CMM 

workspace. In sections 5.3, 5.5, and 5.7 the cross section of the catheters is tracked within the 

experimentally obtained US transverse images using KF, AKF and PF algorithms respectively. 

Subsequently, in sections 5.4, 5.6 and 5.8, the KF, AKF and PF results are calibrated within the 

CMM workspace and validated against the direct measurements of figures 42 and 43. Finally in 

section 5.9, the accuracy of the shape estimation algorithms before and after the calibration are 

discussed. In addition, in this section the feasibility of manual calibration of the US image frame 

with respect to the US probe frame is evaluated by comparing the accuracy of calibrated 3D shape 

estimation results using the two methods (i.e., calibration by manual measurement vs. calibration by 

calibration phantom).  
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5.1. Ultrasound Image Processing 

Before implementing any of the tracking algorithms (i.e., KF, AKF and PF), the grey-scale US 

images should be processed removing any artifacts and segmenting the region of interest containing 

the cross section of the 3D-printed catheters. The image processing procedure serving this purpose 

is explained in this section. 

The water-based gel surrounding the 3D-printed catheters as shown in Figure 36, does not produce 

visible speckle noise in the US images, which simplifies the image processing and catheter cross 

section segmentation. The only US artifact present is the comet tail artifact (CTA), which occurs due 

to bouncing of the US wave between materials of different acoustic impedance such as the PLA 

catheter and the surrounding water [57]. This reverberation artifact is shown in Figures 13 and 45 to 

have a symmetrical tail shaped structure, the length of which depends on the bouncing echoes that 

are received by the transducer [57]. Fortunately the pixel grey-level intensity of the CTA in the US 

images is lower than that of catheter cross section and therefore it can be thresholded out of the 

image.  

Figures 63 and 64 summarizes the segmentation of each of the four PLA catheters’ cross-section 

using thresholding and blob analysis in MATLAB.  

As shown in Figure 63, each US frame is first thresholded at grayscale37 intensity level range of 120-

130 resulting in a binary image38 that contains a number of blobs. Each of these blobs is measured 

in MATLAB for its centroid, area, major axis length and minor axis length.  

                                                 
37 For a grayscale images, the pixel value is a single number that represents the brightness of the pixel. Possible values range from 0 to 255, 

where zero is taken to be black, and 255 is taken to be white. 
 
38

 Whereas in grayscale image the intensity values of the pixels vary from 0 to 255 (or 0 to 1), in Binary image the pixel value is either 0 or 

1. 
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Figure 63 – US transverse image of a) straight catheter (thresholded at gray level intensity of 130 (e)), b) catheter #1 

(thresholded at gray level intensity of 120 (f)), c) catheter #3 (thresholded at gray level intensity of 120 (g)), d) catheter 

#2 (thresholded at gray level intensity of 125 (h)) 

 

As shown in Figure 64, the blob with largest area represents the catheter cross section which is 

masked out of the image. Also, its major and minor axis lengths are measured and used as diameters 

of an equivalent ellipse for catheters with circular cross section (Figures 63a, 63b, 63c, 64a, 64b and 

64c) and as sides of an equivalent rectangle for the catheter with square cross section (Figures 63d 

and 84d). Figures 64e, 64f, 64g and 64h demonstrate the detected catheter cross-section using an 

equivalent ellipse for the straight catheter, catheter #1 and #339 which have circular cross-section and 

using an equivalent rectangle for catheter #2 which has the square cross section.  

                                                 
39 Catheter #1, #2, and #3 refer to the ones indicated in Figure 30 
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Figure 64 – a) Straight catheter cross section (along with its equivalent ellipse (e)), b) Catheter #1 cross section (along 

with its equivalent ellipse (f)), c) Catheter #3 cross section (along with its equivalent ellipse (g)), d) Catheter #2 cross 

section (along with its equivalent rectangle (h))  

 

All of US transverse images taken from the four PLA 3D-printed catheters are processed into frames 

that look like Figures 64e, 64f, 64g and 64h upon which the tracking algorithms (i.e. KF, AKF and 

PF) are executed.  

All the code for this section is provided in appendix B.6. 
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5.2. Ultrasound Probe Scanning Direction 

To estimate the 3D shape of the catheters, US transverse images are obtained by scanning across the 

four catheters as shown in Figure 65. The position and orientation, (x, y, z, Rx, Ry, Rz), at which the 

US probe scans across the containers with respect to the predefined reference frame is recorded using 

NDI Optotracker from the three sensors attached to the US probe as shown.  Using the NDI 

Optotracker sensor readings, the transformation between the US probe frame, {P}, and the reference 

frame, {R}, (𝐓{P}
{R}

 in Figure 66) can be calculated. In addition, the transformation between the US 

image frame, {I}, and the reference frame, {R}, (𝐓{I}
{R}

 in Figure 66) can be obtained using the 

following equation.  

𝐓{𝐈}
{R}

= 𝐓{P}
{R}

𝐓{I}
{P}

,  (5.1) 

where 𝐓{I}
{P}

 can be obtained using equation 4.22 or 4.23.   

 

Figure 65 – The direction of US probe scan across the four catheters: a) un-planar (left), planar (right), b) straight (left) 

and curvy (right) 

 

Using 𝐓{I}
{R}

 and 𝐓{P}
{R}

, the orientation and position of the US probe frame ({P}) and US image frame 

({I}) while scanning across the four catheters can be plotted in MATLAB with respect to the 

reference frame ({R}) as shown in Figures 85 and 86.  
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The US probe scans across the planar and un-planar catheters with distal curves in a non-straight 

path. As the result, in the obtained sequence of US images, the catheter cross section appears to be 

in the middle of the US image frame throughout. In other words, when these transverse US images 

are stacked together in a cuboid (without incorporating their true position an orientation in space), 

they form a straight catheter. Therefore, to obtain the correct perspective of the KF, AKF and PF 

results, they should be calibrated within the workspace. 

 

Figure 66 – US probe and US image frame calibration with respect to the reference frame 

 

In Figures 67 and 68, all frames are illustrated with respect to the reference frame, {R}. The blue 

frames represent the US probe ({P}), the red frames represent the US image, {I}, as obtained in 

equation 4.22 and the magenta frames represent {I}, as obtained in equation 4.23.  In addition, the 

catheters as measured using CMM machine and previously presented in Figures 34 and 35 are shown 

again in Figures 67 and 68 in black.   
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Figure 67 – US probe and US image frames shown with respect to the reference frame during scanning of planar and 

unplanar catheters  

 

 

Figure 68 – US probe and US image frames shown with respect to the reference frame during scanning of straight and 

curvy catheters  

 

 

The MATLAB code used to obtain the Figure in this section can be found in Appendix B.7.  
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5.3. Uncalibrated Results of Catheter 3D Shape Estimation using Kalman Filter Algorithm 

Transverse US images were obtained from four differently configured 3D printed catheters. In this 

section Kalman filter algorithm is applied to a series of US transverse images (i.e., one for each of 

the straight, curvy, planar and un-planar catheters) to estimate the 3D shape of the each of the 

catheters by tracking their cross section over the sequence of US transverse images. The results for 

the straight, curvy, planar and un-planar catheters are presented in Figures 69. 

Figure 69 – Uncalibrated KF algorithm results for the (a) straight, (b) curvy, (c) planar, and (d) unplanar catheters 

 

In Figures above, the red curve represents the KF filter tracking results (i.e., the estimated states) and 

the blue curve represents the measured states. Here, “state” refers to the position of the center of the 

catheter cross section estimated or measured in US transverse images.  
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The KF tracking results demonstrated above are within US image frame, {I}, and are not calibrated 

within the CMM workspace. Therefore, 3D estimation of the shapes is not shown within the correct 

perspective. In other words, the KF tracking of the cross section of the catheter is performed through 

a sequence of US images that are stacked together in a cuboid. This, however, does not represent the 

correct position and orientation (i.e., of the US probe) at which these transverse images were 

obtained. Consequently, the correctness of these results cannot be validated against the direct CMM 

measurements in Figures 34 and 35 until the next section where calibration transformations are 

applied to the tracking results.  

The accuracy of the estimated states (red) against the measured states (blue) are quantified using 

both RMSE and Haussdorff distance in Table 9 of section 5.8 

The MATLAB code used to obtain the Figure in this section can be found in Appendix B.7.  

5.4. Calibrated Results of Catheter 3D Shape Estimation using Kalman Filter Algorithm  

In this section, the KF tracking results presented in section 5.2 are calibrated in the CMM frame so 

that they can be comparable to the direct measurements of catheter shapes shown in Figures 34 and 

35. NDI Optotracker provides sensor readings, (i.e., x, y, z, Rx, Ry, and Rz) at 33 Hz, of the frame 

{P}, US probe frame, with respect to the reference frame {R} as shown in Figure 70. In addition, 

through calibration procedures the transformation matrix between the US image frame, {I}, and {P} 

was calculated. Therefore, the points estimated in {I} using KF (i.e., 𝐩{I}) can be mapped into {R} 

(i.e., 𝐩{R}) through the following calibration transformations. 

𝐩{R} = 𝐓{P}
{R}

𝐓{I}
{P}

𝐩{I}  (5.2) 
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Figure 70 – Calibrating a point in {I} into a point in {R} 

 

As discussed in section 4.7, there are two methods by which the transformation 𝐓{I}
{P}

 can be 

calculated. One by using N-fiducials in calibration phantom (equation 4.22) and one by manual 

measurements (equation 4.23). The transformation process in equation 5.1 is carried out with both 

versions of 𝐓{I}
{P}

. As shown in Figure 71, the transformation in equation 4.22 provides the shape 

estimation with an offset pertaining to the calculated RMSE error of 7.6223. Therefore, the results 

of shape estimation obtained through the transformation in equation 4.23 will be presented 

henceforth.  

 
Figure 71 – Calibrated KF (a) using 𝐓{I}

{P}
of eq.4.22, (b) 𝐓{I}

{P}
of eq.4.23 for 3D shape estimation of the straight catheter 
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Figures 72 demonstrate the calibrated KF 3D shape estimation results overlaid on the respective 

CMM measurements (Figures 34 and 35) for each of the straight, curvy, planar and un-planar 

catheters. 

 

Figure 72 – Calibrated KF 3D shape estimation of the (a) straight, (b) curvy, (c) planar and (d) nonplanar catheters   

 

In Figures above the blue frames represent 𝐓{P}
{R}

, and the magenta frames represent 𝐓{I}
{P}

 through 

equation 4.23. Also, for clearer presentation out of thirty consecutive frames only one is plotted. The 

black curves represent the CMM measurements of the catheter and the green curves represent the 

calibrated KF estimations of the 3D shape of the corresponding catheter. 

The Haussdorff distance between the KF 3D shape estimations and CMM measurements for each of 

the figures above is summarized in Table 10 of section 5.8.  

The MATLAB code used to obtain the Figure in this section can be found in Appendix B.7.  
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5.5. Uncalibrated Results of Catheter 3D Shape Estimation using Adaptive Kalman Filter 

Algorithm 

In this section, AKF tracking results of the cross section of the catheters are demonstrated (Figure 

73). The red curve represents the estimated states and the blue curve represents the measured states. 

These results are not calibrated within the CMM workspace; therefore, the figures below are not in 

a correct spatial perspective to be validated against direct CMM measurements of Figures 34 and 35.  

 

Figure 73 – Uncalibrated AKF algorithm results for the (a) straight, (b) curvy, (c) planar, and (d) unplanar catheters 

The accuracy of the estimated states (red) against the measured states (blue) are quantified using 

both RMSE and Haussdorff distance in Table 9 of section 5.8. The MATLAB code used to obtain 

the Figure in this section can be found in Appendix B.7.  
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5.6. Calibrated Results of Catheter 3D Shape Estimation using Adaptive Kalman Filter 

Algorithm 

The AKF tracking results of section 5.4 are calibrated within the CMM workspace frame using 

equation 5.1 and 5.2. The calibrated AKF 3D shape estimations of the four catheters are therefore 

obtained as shown in Figure 74 which are comparable to the direct CMM measurements of Figures 

34 and 35 and can be validated accordingly. The AKF results calibrated using 𝐓{I}
{P}

 from equation 

4.23 is the one without an offset error and therefore the only one presented.  

 

Figure 74 – Calibrated AKF 3D shape estimation of the (a) straight, (b) curvy, (c) planar and (d) nonplanar catheters   

 

The Haussdorff distance between the AKF 3D shape estimations and CMM measurements for each 

of the figures above is summarized in Table 10 of section 5.8. 
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5.7. Uncalibrated Results of Catheter 3D Shape Estimation using Particle Filter Algorithm  

In this section, PF tracking results of the cross section of the catheters are demonstrated in Figure 

75. The red curve represents the estimated states and the blue curve represents the measured states. 

These results are not calibrated within the CMM workspace; therefore, the figures below are not in 

a correct spatial. 

 

Figure 75 – Uncalibrated PF algorithm results for the (a) straight, (b) curvy, (c) planar, and (d) unplanar catheters 

The accuracy of the estimated states (red) against the measured states (blue) are quantified using 

both RMSE and Haussdorff distance in Table 9 of section 5.8 

The MATLAB code used to obtain the Figure in this section can be found in Appendix B.7.  
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5.8. Calibrated Results of Catheter 3D Shape Estimation using Particle Filter Algorithm  

PF tracking results of section 5.4 are calibrated within the CMM workspace frame using equations 

5.1 and 5.2. The calibrated PF 3D shape estimations of the four catheters are therefore obtained as 

shown in Figure 76 which are comparable to the direct CMM measurements of Figures 34 and 35 

and can be validated accordingly.  

 
Figure 76 – Calibrated AKF 3D shape estimation of the (a) straight, (b) curvy, (c) planar and (d) nonplanar catheters 

 

The Haussdorff distance between the PF 3D shape estimations and CMM measurements for each of 

the figures above is summarized in Table 10 of section 5.8. 

 

5.9. Accuracy of Results 

Table 6 compiles the RMSE and Haussdorff distance (HD) between the estimations and 

measurements shown in the uncalibrated KF, AKF and PF results presented in sections 5.2, 5.4 and 
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5.6. As shown in Figures of these sections the estimated states are shown in red and the measured 

states are shown in blue. RMSE and HD are calculated between these two-color coded curves.   

Table 6 

Accuracy of uncalibrated estimated states against the measured states for each of the four catheters 

(all measurements are in mm ± 0.1 mm) 

Method Straight Curvy Planar Un-planar 

RMSE HD RMSE HD RMSE HD RMSE HD 

KF 0.7  12.0  1.1 24.7 1.0 27.7 0.8 23.0 

AKF 0.2 3.3 0.2 5.1 0.2 4.3 0.6 16.3 

PF 0.1 0.4 0.1 0.6 0.1 0.6 0.1 0.8 

 

According to Table 6, PF algorithm provides the most accurate tracking of the catheter cross section 

through consecutive US transverse image frames. After PF, AKF provides the best results. Finally, 

KF demonstrates the least accurate tracking of the catheter’s cross section. These conclusions are 

consistent in all of the four catheters as shown both in RMSE figures and Haussdorff distances of 

Table 9. 

Table 7 

Accuracy of calibrated estimated states against the CMM measurements for each of the four 

catheters using Haussdorff distance (all measurements are in mm ± 0.1 mm) 

Method Straight Curvy Planar Un-planar 

KF: 𝐓{I}
{P}

 from 4.22 41.4 50.0 36.8 46.0 

KF: 𝐓{I}
{P}

 from 4.23 11.7 10.4 14.9 16.9 

AKF: 𝐓{I}
{P}

 from 4.22 41.2 46.7 36.2 45.8 

AKF: 𝐓{I}
{P}

 from 4.23 11.3 8.8 14.9 16.7 

PF: 𝐓{I}
{P}

 from 4.22 41.1 46.5 35.7 45.4 

PF: 𝐓{I}
{P}

 from 4.23 11.2 8.6 14.8 16.5 

 

For quantifying accuracy in the case of calibrated results (Table 7), RMSE is not applicable since it 

requires same number of points in the two datasets. However, the number of CMM measured points 

is not equal to the number of the tracked points. The Haussdorff distance method on the other hand 
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does not require the same amount of points in the two datasets and therefore is applicable to this 

situation.  

As shown in Table 7, the accuracy of 3D shape estimation results is greatly affected by the calibration 

errors discussed in section 4.6. In particular, the transformation between the US image frame and the 

US probe frame, 𝐓{I}
{P}

, introduces the most error in the accuracy of the calibrated results. This is 

especially apparent in the case of calibration using 𝐓{I}
{P}

 estimated using calibration phantom in 

section 4.5 (equation 4.22) where the Haussdorff distances amount to 35.7 - 50.0 mm. On the other 

hand, 𝐓{I}
{P}

 derived using direct measurements between the US probe frame and US image frame 

(i.e., section 4.7) produce Haussdorff distances of about 8.6 - 16.9 mm which are comparable to the 

Haussdorff distances summarized in Table 9 for uncalibrated results.  

Even though, the Haussdorff distances calculated in Table 7 are affected by the calibration errors, 

the pattern observed in Table 6 still holds. In other words, PF provides the best estimate of the 3D 

shape of the catheters and KF provides the worst estimate of the 3D shape of the catheters. One also 

may note that Haussdorff distance calculated in AKF across the four catheters shown in Table 7 is 

almost identical to the Haussdorff distances calculated in PF across the four catheters.  

5.10. Summary 

In this section, the KF, AKF and PF 3D shape estimation algorithms were applied to experimentally 

obtained US transverse images. These transverse US images were each obtained at specific position 

and orientation which was tracked by NDI Optotracker. First, the catheter cross section was tracked 

in the sequence of transverse US images using KF, AKF and PF, of which PF provided the best 

tracking results (Haussdorff distances of 0.4 - 0.8 mm) and KF the worst (Haussdorff distances of 

12.0 - 27.7 mm). Next, the tracking results were calibrated in CMM’s workspace using the 

transformation of the US probe frame with respect to the reference frame (𝐓{P}
{R}

) and the 

transformation of the US image frame with respect to the US probe frame (𝐓{I}
{P}

). Two versions of 

𝐓{I}
{P}

were used to calibrate the results in CMM workspace. One obtained from manual measurements 
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(eq. 4.23) between the anticipated US image frames with respect to the probe frames and one 

estimated using calibration phantom (eq. 4.22). It was observed that calibration using  𝐓{I}
{P}

 from 

equation 4.22, produced a noticeable offset between the calibrated 3D shape estimation results and 

their direct CMM measurements. This offset is clearly translated in the Haussdorff distance between 

the shape estimation results and CMM measurements (i.e., 35.7 - 50.0 mm). On the other hand, it 

was observed that calibration using 𝐓{I}
{P}

 from equation 4.23, mapped the 3D shape estimation results 

to almost the same place as the CMM measurements with calculated Haussdorff distances of 8.6 - 

16.9 mm.   
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C h a p t e r  V I  

CONCLUSIONS, LIMITATIONS & FUTURE WORK 

In this thesis Bayesian tracking algorithms of KF, AKF and PF were developed for 3D shape 

estimation of catheters. The object of interest tracked using these algorithms is the catheter cross 

sections captured in a sequence of US transverse B-mode images as the probe scans across the 

catheters. First, the performance of KF, AKF and PF shape estimation algorithms were validated by 

applying them to a series of MATLAB generated US images simulating US scanning along catheters 

with known shapes. The results of these numerical simulations demonstrated that AKF provides the 

most accurate estimate of the 3D shapes of the catheters (i.e., 0.2 ± 0.1 mm to 0.5 ± 0.1 mm in 

Haussdorff distance) within the computational time of 0.24 s.  This is as opposed to the KF shape 

estimation with lowest accuracy (i.e., 3.5 ± 0.1 mm to 6.7 ± 0.1 mm in Haussdorff distance) and PF 

shape estimation with the longest computational time (i.e., 1.98 s)40.  

Since the series of MATLAB simulated US images are not the true representative of actual noise 

and artifacts typically present in US images, the KF, AKF and PF shape estimation algorithms are 

further validated on experimentally obtained US transverse B-mode images. For this purpose, four 

different and conventional configurations of a catheter were fabricated using a 3D printer and were 

securely placed inside containers. These containers were placed inside CMM workspace and were 

directly measured along their length using CMM. These direct CMM measurements were used as 

ground truth to validate the accuracy of 3D shape estimation results of KF, AKF and PF. After 

obtaining the CMM measurements, the containers were filled with water-based gel and transverse 

US images were obtained by scanning across the length of the catheters over the water-based gel 

using an US linear array probe of 60 mm in lateral length. The major artifact present in these US 

images were identified as the comet-tail artifacts which could easily be filtered out by simple 

thresholding because of their lower intensity values in the images compared to the catheter cross 

sections. These experimentally obtained pixel-based US images were then transformed into mm-

                                                 
40 Obtained by running the algorithms on the state-of-the-art HP OMEN 3.4 GHz PC with windows 10 operating system 
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based images using the fact that a single pixel in these images accounts for a 0.1185 x 0.1185 mm 

square. At this point KF, AKF and PF shape estimation algorithms were applied to each of the four 

sequences of transverse US images each belonging to one of the four 3D printed catheters.  The PF 

shape estimation algorithm was shown to provide best tracking of catheter cross section along the 

consecutive experimentally obtained transverse US images with errors (calculated using Haussdorff 

distance) of 0.4 ± 0.1 mm to 0.8 ± 0.1 mm. Next to PF, AKF provided the most accurate estimates 

with errors of 3.3 ± 0.1 mm to 16.3 ± 0.1 mm and KF provided the least accurate estimates with 

errors of 12.0 ± 0.1 to 27.7 ± 0.1 mm.   

The tracking results of KF, AKF and PF of each of the four 3D printed catheters were then calibrated 

in the CMM workspace so that they can be validated against the direct CMM measurements of these 

catheter obtained earlier before the container was filled with water-based gel. To calibrate the results 

in the CMM workspace, the position and orientation of US probe in the CMM workspace was 

tracked by NDI Optotracker with accuracy of 0.0767 mm using three sensors configured to represent 

the US probe coordinate frame in 3D space. In addition, the US image frame was calibrated in the 

CMM workspace by deriving the rigid transformation between the US probe coordinate frame and 

the US image coordinate frame. This was done using two different methods. In the first method, a 

custom-made calibration phantom is used to estimate the transformation of US probe frame, {P}, to 

the US image frame, {I}, 𝐓{P}
{I}

, with RMSE of 7.6223 mm, by implementing N-wire fast calibration 

method proposed by Pagoulatos et al. and quaternion-based point set registration algorithm 

discussed by Besl et al. In the second method, this transformation is calculated directly by measuring 

the US image frame position and orientation with respect to the US probe reference frame position 

and orientation. There is no way to mathematically quantify the accuracy of the transformation 𝐓{P}
{I}

 

obtained by the second method due to its intuitive nature and being derived by direct measurements 

from the US probe’s orientation notch. However, the calibrated KF, AKF and PF shape estimation 

results using this manual calibration produces much more accurate results when validated against 

the CMM measurements of the four catheters (errors calculated by HD: 8.6 ± 0.1 mm to 16.9 ± 0.1 

mm). As opposed to the accuracy of the results calibrated by the first method which lead to errors of 
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35.7 ± 0.1 to 50.0 ± 0.1 mm, demonstrating a noticeable offset between the KF, AKF, PF estimated 

shapes and the CMM measurements of the respective catheters.    

Table 8 compiles the accuracy of KF, AKF, and PF shape estimation algorithms implemented on 

simulated data along with the ones obtained from their implementation on the experimental and 

calibrated data. In this table the errors calculated by means of Haussdorff distance method are used 

to compare the accuracy of the results from simulated and experimental data. The reason for 

choosing Haussdorff distance instead of RMSE is that RMSE requires same number of points in the 

two datasets (i.e., estimated data and measured data). However, the number of CMM measured 

points (e.g., about 20-30 measured points) along the four 3D printed catheters in the experiments is 

not equal to the number of the estimated points obtained from KF, AKF, and PF algorithms (e.g., 

about 300-500 estimated points obtained at 33 Hz). The Haussdorff distance method on the other 

hand does not require the same amount of points in the two datasets and therefore is applicable to 

this situation. Therefore, to compare the accuracy of results from different validation methods (i.e., 

simulation vs. experiment), Haussdorff distance which is applicable to either datasets of equal or 

unequal number of points is a reasonable choice.  

 Table 8 

Simulated data (Table 2) vs. calibrated experimental data (Table 7) vs. errors reported by literature 

(Table 1) 

 (all measurements are in mm ± 𝟎. 𝟏 mm excluding the ones reported by literature) 

Validation Method KF AKF PF 

Simulated US images41 Catheter 1 6.6 0.3 0.6 

Catheter 2 6.7 0.1 0.8 

Catheter 3 3.5 0.4 0.5 

Experimentally obtained & 

Calibrated US images42 

Catheter 1 11.7 11.3 11.3 

Catheter 2 10.4 8.8 8.6 

Catheter 3 14.9 14.8 14.8 

Catheter 4 16.9 16.6 16.6 

Error reported by relevant 

literature 

H. Ren [117] 2.3 ± 1.5 mm 

H. Ren [54] 0.804 ± 0.015 mm 

F. Chen [53] 2.23 ± 0.87 mm 

                                                 
41 Catheter 1, 2, and 3 refer to catheters depicted in Figures 6, 7 and 8. 

42 Catheter 1, 2, 3 and 4 refer to straight, curvy, planar and un-planar catheters respectively as depicted in Figure 35.  
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Even though calibration errors are inherent in the accuracy of the results from experimental data, PF 

shape estimation algorithm demonstrates the least error as per Table 8. On the other hand, when 

comparing the accuracy of PF shape estimation with AKF shape estimation in Table 8, one may 

concede that in experimental validation they are not far away from each other in terms of accuracy. 

In conclusion, given the fact that AKF produces almost the same accuracy as PF in ten times less 

computational time (0.24 s vs. 1.98 s)43, AKF is the best algorithm for the estimation of the 3D shape 

of the catheter in terms of accuracy and efficiency. 

In addition, the accuracy reported in the relevant literature concerning 3D shape estimation using US 

imaging is included in Table 8 for side by side comparison with simulated and experimental 

accuracies. The 3D shape estimation accuracy of experimental results is highly influenced by 

calibration error; therefore, the accuracy reported in Table 8 for calibrated results is much less 

accurate than the ones reported in literature.     

At this point a discussion about the role of US resolution and image slice thickness on accuracy of 

the results is in place. Regarding US resolution, it is important to notice that the transducer with a 

relatively high frequency of 14 MHz used to obtain the US images in this thesis provides better 

spatial resolution for shallow depths of 2-3 cm [140].  This is because high-frequency waves are 

more attenuated than lower frequency waves for a given distance. Considering that the depth of US 

images in this thesis range from 4-5 cm, it should be recognized that spatial resolution is degraded 

at depths >3cm and this factors in the accuracy of tracking algorithms especially in tracking of the 

contour or center of catheter cross section as segmented in image processing steps. However, one 

may compensate for such US attenuation by adjusting time gain compensation (TGC) module 

provided on US systems. Using TGC, signal gain is increased as time passes from the emitted wave 

pulse. This correction makes equally echogenic medium look the same even if they are in different 

depths. In this thesis TGC of B-mode images was set to 50%44 which by inspection produced the 

best resolution of the scanned catheter cross section. On the other hand, US image slice thickness 

                                                 
43 obtained by running the algorithms on the state-of-the-art HP OMEN 3.4 GHz PC with windows 10 operating system 

44 Meaning that each echo received from greater depths are amplified by 50%. In this case, the TGC amplification setting can be modeled 

as a straight line with constant slope representing equal amplification at depth increments.  
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should also be noted to affect the accuracy of the detected and segmented catheter cross section. 

Even though the US image frame acquired in real time is interpreted as the result of a thin planar 

scan plane, it has associated with it out-of-plane thickness (slice thickness), which can seriously 

affect the information content of the US image [141]. When the scan plane is thin, the resultant US 

image provides an accurate representation of the scanned medium. When the scan plane is thick, 

however, the resultant US image represents an average of the echo signals received from the scan 

plane at each image depth. This can result in distortions of the imaged echo amplitude data. Also, 

artificial structures may sometimes appear in the image due to strongly scattering mediums located 

at the other margins of the slice thickness [141]. To make matters more complicated, the US image 

slice thickness is not constant and instead is seen to change throughout the range of image depths, 

much like the beam pattern of a simple lens. The minimum slice thicknesses occur at a range of 5-8 

cm image depths. At shallow image depths close to the transducer the slice thickness appears to be 

composed of several thin, closely spaced scan planes [141]. A. Goldstein proposes a method in [141] 

to experimentally determine the US image slice thickness at different depths.   

To improve the results of algorithms on experimentally obtained data, calibration must be refined, 

especially in the case of the rigid transformation (𝐓{P}
{I}

) between the US image frame and US probe 

frame. To estimate a more accurate rigid transformation matrix using N-wire fast calibration method 

proposed by Pagoulatos et al. and quaternion-based point set registration algorithm discussed by 

Besl et al, more points must be measured that are common in both calibration phantom frame and 

US image frame. Incorporating more measured points in the rigid transformation estimation 

algorithm may reduce the error from 7.6223 mm as obtained in this thesis. However, as explained 

before in experiments conducted using fCal2.0 and L14-5W/60 linear array US probe, no more than 

ten points are measurable given the small size of fCal2.0 phantom. To be able to measure more points 

using N-fiducials, the use of fCal3.1 phantom is recommended45. This phantom is bigger in size than 

fCal2.0 phantom (76 mm in width, 220 mm in length and 150 mm in height) and incorporates a total 

of 238 holes in 14 rows and 17 columns, which can be used to incorporate more N-fiducials. The 

                                                 
45 The .stl file of fCal3.1 can be downloaded from:  

http://perk-software.cs.queensu.ca/plus/doc/nightly/modelcatalog/printable/fCal_3.1.stl 
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more N-fiducials, the more measurable points common to both the calibration phantom and US 

image and therefore the lower the calculated error will be. Another option is to perform the US image 

frame calibration using the Plus Toolkit46 which automatically calibrates the US image with typical 

calibration error of 0.8-1.5 mm and can even go down to <0.5 mm with an optimal set up. The Plus 

toolkit software package automatically obtains the image-to-probe transform by point-matching. For 

this purpose, the toolkit utilizes SonixTouch GPS extension, Stylus tracker and fCal2.x calibration 

phantom.     

Another major limitation inherent in the simulations and experiments presented in this thesis is the 

lack of consideration for speckle noise in US images. Speckle noise in US emanates from signals 

generated by tissue cells and connective tissues. However, in the experiments conducted for this 

thesis, the catheter was submerged into a container filled with water-based gel, which did not 

emanate speckle noise in the US B-mode transverse images obtained. Therefore in future work, to 

evaluate the applicability of KF, AKF and PF algorithms in realistic scenarios especially in the 

presence of speckle noise in US B-mode transverse images, the use of ex-vivo tissue models or 

realistic tissue-mimicking phantoms instead of the water-filled container is required. In addition, the 

variability of the speed of sound through different tissues should be taken into consideration. In this 

thesis the speed of sound is fixed to the default of 1540 m/s. However, the speed of sound varies 

from tissue to tissue. For example, in bone, blood, fat, kidney and liver the speed of sound is 4080 

m/s, 1570 m/s, 1450 m/s, 1560 m/s and 1570 m/s respectively.  

Future work also involves implementing the presented AKF shape estimation algorithm in real time 

where as soon as US transverse images are acquired they are fed into the shape estimation algorithm 

which continuously updates the anticipated shape of the catheter (especially at its distal end). In 

addition, AKF can be incorporated in a visual servo control unit to track a catheter using robotically 

maneuvered US probe. In other words, by considering the next AKF estimate of the US detected 

catheter cross section, the robot can move the US probe efficiently so that the catheter’s distal end is 

always within the field of view of the US probe. Such robotic US 3D shape estimation mechanism 

                                                 
46 http://perk-software.cs.queensu.ca/plus/doc/nightly/user/index.html 
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not only assists the surgeon in the hand/eye synchronization involved in MIS procedures with 

tendon-driven catheters but also provide the surgeon with 3D structures of these catheters from 2D 

US planes obtained by scanning across them over the region of interest.   
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APPENDIX A 

MATLAB CODES 

 

B.1. MATLAB Codes for Section 3.4 

B.1.1: Catheter Configuration # 1  

% ************************************************************************** 
%             Modeling Catheter Configuration #1 in 3D 
%                 Written By: Niloufaralsadat Hashemi 
%                      Last Updated: June 9, 2018 

%                           Libraries used:  

%             MATLAB Computer Vision & MATLAB Image Processing   

% ************************************************************************** 
  
r = 10; % radius of the blob in pixels 
j=1; 
  
%  The straight section of the catheter 
for i=1:194 
        A = zeros(231,447); % Overal size of frames (v,u) 
        m = {40,60}; % midpoint (v, u) of the blob        
        A(m{:})=1; 
        B = imdilate(A,strel('disk', r,0) ); 
        idisp(B) 
        testDemo{i} = B; 
end 
  
% The curved section of the catheter 
for i=195:223 
        A = zeros(231,447); % size of frames (v,u) 
        m = {floor(40+(1.5)^j),60}; % midpoint (v, u) of the blob 
        A(m{:})=1; 
        B = imdilate(A,strel('disk', r,0) ); 
        idisp(B) 
        testDemo{i} = B; 
        j=j+0.4;     
end 
  
% Extracting the centeroid of the blobs  
MM=[]; 
figure, 
hold on 
for i=1:223 
    [limage, nblobs] = bwlabel(testDemo{i}); 
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    info = regionprops(limage, 'area', 'Centroid'); 
    x = info.Centroid; 
    xm = [x(1); x(2); i]; 
    MM = [MM xm]; 
end 
  
% Plotting results 
 plot3(MM(3,:), MM(1,:), MM(2,:), 'r-') 
  
 title('Catheter 3D Configuration # 1','FontSize', 12) 
 xlabel('z (in number of US frames)', 'FontSize', 12) 
 ylabel('u (in pixels)', 'FontSize', 12) 
 zlabel('v (in pixels)', 'FontSize', 12) 
 grid on 
 axis square equal  
 hold off 
  
% Stacking on the Images into a volumetric matrix 
O=[]; 
for i=1:223 

      O = cat(3, O, uint8(255*testDemo{i}));   
end 
idisp(testDemo{100}) 

 

 

B.1.2: Catheter Configuration # 2  

% ************************************************************************** 
%             Modeling Catheter Configuration #2 in 3D 
%                 Written By: Niloufaralsadat Hashemi 
%                      Last Updated: June 9, 2018 

%                           Libraries used:  

%             MATLAB Computer Vision & MATLAB Image Processing   

% ************************************************************************** 
  
r = 10; % radius of the blob in pixels 
j=1; 
  
%  The straight section of the catheter 
for i=1:194 
        A = zeros(231,447); % Overal size of frames (v,u) 
        m = {40,60}; % midpoint (v, u) of the blob        
        A(m{:})=1; 
        B = imdilate(A,strel('disk', r,0) ); 
        idisp(B) 
        testDemo{i} = B; 
end 
  
% The curved section of the catheter 
for i=195:223 
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        A = zeros(231,447); % size of frames (v,u) 
        m = {40,floor(60+(1.5)^j)}; % midpoint (v, u) 
        A(m{:})=1; 
        B = imdilate(A,strel('disk', r,0) ); 
        idisp(B) 
        testDemo{i} = B; 
        j=j+0.4;     
end  
% Extracting the centeroid of the blobs  
MM=[]; 
figure, 
hold on 
for i=1:223 
    [limage, nblobs] = bwlabel(testDemo{i}); 
    info = regionprops(limage, 'area', 'Centroid'); 
    x = info.Centroid; 
    xm = [x(1); x(2); i]; 
    MM = [MM xm]; 
end 
  
% Plotting results 
 plot3(MM(3,:), MM(1,:), MM(2,:), 'r-') 
  
 title('Catheter 3D Configuration # 1','FontSize', 12) 
 xlabel('z (in number of US frames)', 'FontSize', 12) 
 ylabel('u (in pixels)', 'FontSize', 12) 
 zlabel('v (in pixels)', 'FontSize', 12) 
 grid on 
 axis square equal  
 hold off 
  
% Stacking on the Images into a volumetric matrix 
O=[]; 
for i=1:223 

      O = cat(3, O, uint8(255*testDemo{i}));   
end 
idisp(testDemo{100}) 

 

 

B.1.3: Catheter Configuration # 3  

% ************************************************************************** 
%             Modeling Catheter Configuration #3 in 3D 
%                 Written By: Niloufaralsadat Hashemi 
%                      Last Updated: June 9, 2018 

%                           Libraries used:  

%             MATLAB Computer Vision & MATLAB Image Processing   

% ************************************************************************** 
 

r = 10; % radius of the blob in pixels 
j=1; 
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jj=0; 
c=0; 

 

% The straight section of the catheter 

for i=1:192 
        A = zeros(231,447); % Overall size of frames (v,u) 
        m = {40+c,60+c}; % midpoint (v, u) of the blob 
        A(m{:})=1; 
        B = imdilate(A,strel('disk', r,0) ); 
        idisp(B) 
        testDemo{i} = B; 
        c=c+1; 
end 
 

% The curved section of the catheter  

for i=193:223 
        A = zeros(231,447); % size of frames (v,u) 
        m = {floor(233-(1.5)^j), floor(253-jj^1.5)}; % midpoint (v, u) 
        A(m{:})=1; 
        B = imdilate(A,strel('disk', r,0) ); 
        idisp(B) 
        testDemo{i} = B; 
        j=j+0.4;  
        jj=jj+1; 
end 
 

% Extracting the centroid of the blobs  
MM=[]; 
figure, 
hold on 
for i=1:223 
    [limage, nblobs] = bwlabel(testDemo{i}); 
    info = regionprops(limage, 'area', 'Centroid'); 
    x = info.Centroid; 
    xm = [x(1); x(2); i]; 
    MM = [MM xm]; 
end 
  
% Plotting results 
 plot3(MM(3,:), MM(1,:), MM(2,:), 'r-') 
  
 title('Catheter 3D Configuration # 1','FontSize', 12) 
 xlabel('z (in number of US frames)', 'FontSize', 12) 
 ylabel('u (in pixels)', 'FontSize', 12) 
 zlabel('v (in pixels)', 'FontSize', 12) 
 grid on 
 axis square equal  
 hold off 
  
% Stacking on the Images into a volumetric matrix 
O=[]; 
for i=1:223 



 138 

      O = cat(3, O, uint8(255*testDemo{i}));   
end 
idisp(testDemo{100}) 

 

 

B.1.4: Transverse and Longitudinal Images  

% ************************************************************************** 
%     Plotting Catheter Transverse and Longitudinal Cross-sections in 3D 
%                 Written By: Niloufaralsadat Hashemi 
%                      Last Updated: June 9, 2018 

%                           Libraries used:  

%        MATLAB Computer Vision, MATLAB Image Processing & image3 [127]   

% ************************************************************************** 
 

% Setting the orientation   

T = [1 0 0 0;0 1 0 0;0 0 1 0; 0 0 0 1]*trotx(pi/2)*trotz(pi/2)*trotx(pi/2); 

 

% Slicing through the volumetric matrix O 

      h0 = slice3(O,T,2,60); 
      h1 = slice3(O,T,3,20); 
      h2 = slice3(O,T,3,40); 
      h3 = slice3(O,T,3,60); 
      h4 = slice3(O,T,3,80); 
      h5 = slice3(O,T,3,100); 
      h6 = slice3(O,T,3,120); 
      h7 = slice3(O,T,3,140); 
      h8 = slice3(O,T,3,160); 
      h9 = slice3(O,T,3,180); 
      h10 = slice3(O,T,3,200); 
      h11 = slice3(O,T,3,220); 
  
      set([h0, h1, h2, h3, h4, h5, h6,],'EdgeColor','blue','LineStyle','-'); 
      set([h6, h7, h8, h9, h10, h11],'EdgeColor','blue','LineStyle','-'); 
  
      colormap gray(88); 
      view(30,30); axis equal; axis vis3d; 
      light; 
      title('Ultrasound Images', 'FontSize', 14); 

 

 

B.1.5: Adding Noise  

% ************************************************************************** 
%     Adding Noise to Transverse Images of the Catheter Cross Section 
%                 Written By: Niloufaralsadat Hashemi 
%                      Last Updated: June 9, 2018 

%                           Libraries used:  

%              MATLAB Computer Vision, MATLAB Image Processing  
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% ************************************************************************** 
 

thresholdF = 0.5; 
kernelStd = 1.8; 
se = strel('disk',12); 
figure, 
hold on 
for i=1:223 
    kernelRadius = ceil(5 * kernelStd); 
    kernelLength = (2 * kernelRadius ) + 1; 
    G = fspecial('gaussian', [kernelLength, kernelLength], kernelRadius); 
    J = imfilter(testDemo{i},G,'same'); 

 

    % Adding the speckle noise 
    J = imnoise(J,'speckle', 0.05); 

    % Adding the Gaussian noise 
    J = imnoise(J,'gaussian', 0.2); 
  
    Corrupted{i} = J; 

    thresholdedF{i} = (Corrupted{i} > thresholdF); 
    idisp(Corrupted{i}) 
end 

 

 

B.2. MATLAB Codes for Section 3.5 

B.2.1: 3D Shape Estimation with Kalman Filter Algorithm  

% ************************************************************************** 
%             3D Shape Estimation of the Catheter with KF  
%                 Written By: Niloufaralsadat Hashemi 
%                      Last Updated: June 9, 2018 

%                           Libraries used:  

%             MATLAB Computer Vision, MATLAB Image Processing &  

%                  Peter Cork Computer Vision Toolbox [128] 

% ************************************************************************** 
 

TT = cputime; 
tic 
% KF inputs: 
DT    = 1/25;   % inter-sample time interval (s) 
                
Q     = eye(4)*0.01;  % continuous process noise covariance  
R     = [2 2;2 2];    % measurement noise variance 
C     = [1 0 0 0; 0 1 0 0]; % measurement sensitivity matrix 
A     = [1 0 DT 0; 0 1 0 DT; 0 0 1 0; 0 0 0 1]; % Transition Matrix 
  
% Initializations: 
 xh   = [60;40;0;0]; % initial estimate of x 
P    = 100*eye(4);   % initial covariance of estimation uncertainty 
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measurements = []; 
predictions = []; 
  
for i=2:223 
 

    % State Prediction 
     
    xp = A*xh; 
    predictions = [predictions xp]; 
     
    % Covariance Prediction 
     
    Pp = Q + A*P*A'; 
  
    % Drawing the predicted state on the next frame 
     
    imshow(thresholdedF{i}) 
    hold on; 
    plot(xp(1), xp(2), 'r*', 'MarkerSize', 10); 
    hold off; 
    pause(0.01) 
 

 
    % Obtaining the next measurement: 
    % step 1 - defining the ROI: 
     
     ROI{i-1} = imcrop(thresholded{i}, [xp(1)-50 xp(2)-50 100 100]); 
     
    % Obtaining New Measurement: 
     
     BLOBS = iblobs(thresholdedF{i}); 
     CRSEC = BLOBS(2:end); 
     CRSEC_Area = CRSEC.area; 
     [Area, Index] = max(CRSEC_Area); 
     x = CRSEC(Index).p; 
     xm = [x(1)+xp(1)-50; x(2)+xp(2)-50]; 

     xm = [x(1); x(2)]; 
     measurements = [measurements xm]; 
  
    % Drawing the measured cross section center 
     
      imshow(thresholdedF{i}) 

      hold on; 

      plot(xm(1), xm(2), 'b*', 'MarkerSize', 10); 
      hold off 
      pause(0.01) 
 
    % Kalman Gain: 
  
    K_Gain = Pp*C'*inv(R+C*Pp*C'); 
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    % State Update: 
     
    xh = xp + K_Gain*(xm - C*xp);  
  
    % Covariance Update: 
     
    P = (eye(4) - K_Gain*C)*Pp; 
  
end 
toc 
EE = cputime-TT; 
  
len_m = size(measurements); 
len_p = size(predictions); 
Z_m = [1:len_m(2)]; 
Z_p = [1:len_p(2)]; 
predictions = [predictions; Z_p]; 
measurements = [measurements; Z_m]; 
Catheter_R = 5 % in mm 
  
figure, 
hold on 
  
for l=1:len_m(2) 
    teta=0:0.01:2*pi ; 
    xc=measurements(1,l)*ones(1,629) + Catheter_R*cos(teta); 
    yc=measurements(2,l)*ones(1,629) + Catheter_R*sin(teta) ; 
    zc=measurements(3,l)*ones(1,629) + zeros(size(xc)) ; 
    patch(xc,yc,zc,'k') 
    axis equal 
    plot3(predictions(1,l),predictions(2,l),predictions(5,l),'.r') 
end 
    
grid on 
 
%  

% Kalman Filter Results 
figure, 
hold on 
grid on 
axis equal 
plot3(MM(3,:), MM(1,:), MM(2,:), 'b-') 
plot3(predictions(5,:),predictions(1,:),predictions(2,:),'r-') 
legend('Actual','Estimated','FontSize') 
M = [measurements(1,:)' measurements(2,:)']; 
P = [predictions(1,:)' predictions(2,:)']; 
A = [MM(1,:)' MM(2,:)']; 
xlabel('z (in number of US frames)', 'FontSize', 12) 
ylabel('u (in pixels)', 'FontSize', 12) 
zlabel('v (in pixels)', 'FontSize', 12) 
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B.3. MATLAB Codes for Section 3.6 

B.3.1: 3D Shape Estimation with Adaptive Kalman Filter Algorithm  

% ************************************************************************** 
%             3D Shape Estimation of the Catheter with AKF  
%                 Written By: Niloufaralsadat Hashemi 
%                      Last Updated: June 9, 2018 

%                           Libraries used:  

%             MATLAB Computer Vision, MATLAB Image Processing &  

%                  Peter Cork Computer Vision Toolbox [128] 

% ************************************************************************** 
 

TT = cputime; 
tic 
% KF inputs: 
DT    = 1/25;   % inter-sample time interval (s) 
                
Q     = eye(4)*0.01;  % continuous process noise covariance  
R     = [2 2;2 2];    % measurement noise variance 
C     = [1 0 0 0; 0 1 0 0]; % measurement sensitivity matrix 
A     = [1 0 DT 0; 0 1 0 DT; 0 0 1 0; 0 0 0 1]; % Transition Matrix 
  
% Initializations: 
 xh   = [60;40;0;0]; % initial estimate of x 
P    = 100*eye(4);   % initial covariance of estimation uncertainty 
measurements = []; 
predictions = []; 
 

% Adaptive KF Set up: 
  
N = 5; 
q_i{1} = xh; 
q_k{1} = xh; 
delta_k{1} = -P; 
q_bar_N = 0; 
  
for i=2:223 
 

    % State Prediction 
     
    xp = A*xh; 
    predictions = [predictions xp]; 
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    % Covariance Prediction 
     
    Pp = Q + A*P*A'; 
  
    % Figure 17: Drawing the predicted state on the next frame 
     
    imshow(thresholdedF{i}) 
    hold on; 
    plot(xp(1), xp(2), 'r*', 'MarkerSize', 10); 
    hold off; 
    pause(0.01) 
 

 
    % Obtaining the next measurement: 
    % step 1 - defining the ROI: 
     
     ROI{i-1} = imcrop(thresholded{i}, [xp(1)-50 xp(2)-50 100 100]); 
     
    % Obtaining New Measurement: 
     
     BLOBS = iblobs(thresholdedF{i}); 
     CRSEC = BLOBS(2:end); 
     CRSEC_Area = CRSEC.area; 
     [Area, Index] = max(CRSEC_Area); 
     x = CRSEC(Index).p; 
     xm = [x(1)+xp(1)-50; x(2)+xp(2)-50]; 

     xm = [x(1); x(2)]; 
     measurements = [measurements xm]; 
  
    % Drawing the measured cross section center 
     
      imshow(thresholdedF{i}) 

      hold on; 

      plot(xm(1), xm(2), 'b*', 'MarkerSize', 10); 
      hold off 
      pause(0.01) 
 
    % Kalman Gain: 
  
    K_Gain = Pp*C'*inv(R+C*Pp*C'); 
  
    % State Update: 
     
    xh = xp + K_Gain*(xm - C*xp);  
  
    % Covariance Update: 
     
    P = (eye(4) - K_Gain*C)*Pp; 

     

    % Adaptive KF starts here 
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    q_i{k} = (Predictions{k} - A*Predictions{k-1}); 
    q_k{k} = (Predictions{k} + A*Predictions{k-1}); 
    delta_k{k} = A*P_stack{k-1}*A' - P_stack{k}; 
     
    if k > N 
         
        if ((k-1) == N) 
             
            for i=(k-N+1):k 
                q_bar_N = q_bar_N + q_i{i}; 
            end 
             
            q_bar_N = (1/N) * q_bar_N; 
             
            q_bar_k{k} = q_bar_N + (1/N) * (q_k{k} - q_k{k-N}); 
         
        else 
             
            q_bar_k{k} = q_bar_k{k-1} + (1/N) * (q_k{k} - q_k{k-N}); 
             
        end 
     

         
        Q = Q + (1/(N-1))*(q_k{k} - q_bar_k{k})*(q_k{k} - q_bar_k{k})'... 
            -(1/(N-1))*(q_k{k-N} - q_bar_k{k})*(q_k{k-N} - q_bar_k{k})'... 
            +(1/((N^2)-N))*(q_k{k} - q_k{k-N})*(q_k{k} - q_k{k-N})'... 
            +(1/N)*(delta_k{k-N} - delta_k{k}); 
         

 

  
end 
toc 
EE = cputime-TT; 
  
len_M = size(Measurements); 
len_P = size(Predictions); 
Z_M = [1:len_M(2)]; 
Z_P = [1:len_P(2)]; 
Measurements = [Measurements; Z_M]; 
Catheter_R = 10 % in pixels 
  
figure, 
hold on 
 
for l=1:len_M(2) 
    teta=0:0.01:2*pi ; 
    xc=Measurements(1,l)*ones(1,629) + Catheter_R*cos(teta); 
    yc=Measurements(2,l)*ones(1,629) + Catheter_R*sin(teta) ; 



 145 

    zc=Measurements(3,l)*ones(1,629) + zeros(size(xc)) ; 
    patch(xc,yc,zc,'k') 
    axis equal 
end 

 
PP=[]; 
for h=1:len_P(2) 
    Predictions{h} = [Predictions{h}; h]; 
    plot3(Predictions{h}(1),Predictions{h}(2),Predictions{h}(5),'.r') 
    PP = [PP Predictions{h}(1:2)]; 
end       
grid on 
hold off 
  
%  

% Adaptive Kalman Filter Results 
figure, 
hold on 
grid on 
axis equal 
plot3(MM(3,:), MM(1,:), MM(2,:), 'b-') 
plot3(MM(3,:),PP(1,:),PP(2,:),'r-') 
legend('actual','predicted','measured') 
M = [Measurements(1,:)' Measurements(2,:)']; 
P = PP'; 
A = [MM(1,:)' MM(2,:)']; 
xlabel('z (in number of US frames)', 'FontSize', 12) 
ylabel('u (in pixels)', 'FontSize', 12) 
zlabel('v (in pixels)', 'FontSize', 12) 
axis square equal 

 

 

B.4. MATLAB Codes for Section 3.7 

B.4.1: 3D Shape Estimation with Particle Filter Algorithm  

% ************************************************************************** 
%              3D Shape Estimation of the Catheter with PF  
%                 Written By: Niloufaralsadat Hashemi 
%                      Last Updated: June 9, 2018 

%                           Libraries used:  

%             MATLAB Computer Vision, MATLAB Image Processing &  

%                  Peter Cork Computer Vision Toolbox [128] & 

%                 Ellipse Fit (Direct Method) Function [129] 

% ************************************************************************** 
 

TTT = cputime; 
tic 
numFrames = size(thresholded, 2); 
[MR, MC, Dim] = size(thresholded{1}); % The size of US frames 
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% Kalman Filter Initializations 
  
DT    = 1/25;   % intersample time interval (s) 
                
Q     = eye(4)*0.01;  % continuous process noise covariance  
R     = [22.5 15; 15 10];   % measurement noise variance 
  
C     = [1 0 0 0; 0 1 0 0]; % measurement sensitivity matrix 
A     = [1 0 DT 0; 0 1 0 DT; 0 0 1 0; 0 0 0 1]; 
  
xm   = [60;40;0;0];           % initial estimate of x 
                         % Assuming we know the 1st insertion 
                              % Particles are defined about this 
  
% Contour Tracking by Particle Filter 
  
nparticles = 400; 
x = zeros(4, 1, nparticles, numFrames); % state vectors  
P = zeros(4, 4, nparticles, numFrames); % est. covariance of state vector 
for i = 1 : nparticles % Initialize estimated covariance 
    for j = 1  : numFrames 
        P(1,1,i,j) = 100; 
        P(2,2,i,j) = 100; 
        P(3,3,i,j) = 100; 
        P(4,4,i,j) = 100; 
    end 
end 
  
% Initialize weigths to equal 
weigths(1, 1:nparticles) = (1/nparticles);  
  
% Initialize hypothesis to plausible values for states 
  
area1PR = 20; % Range of pixels of area 1 
X1 = randi([floor(xm(1)-area1PR)  floor(xm(1)+area1PR)], 1, nparticles); 
X2 = randi([floor(xm(2)-area1PR)  floor(xm(2)+area1PR)], 1, nparticles); 
X3 = zeros(2, nparticles); 
X = [X1; X2; X3]; % particle states 
  
% show_particles of hypothesis: 
figure(1) 
imshow(thresholdedF{1}) 
title('Showing Particles', 'FontSize', 14) 
hold on 
plot(X(1,:), X(2,:), 'r.') 
Pred = []; 
Meas = []; 
 

% For each time step: 
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for t = 2:223 
     
imshow(thresholdedF{t}) 
hold on 
 
    % Forecasting - Using Kalman Filter/ Adaptive Kalman Filter 
     

 
    for np = 1 : nparticles 
        x(:,1,np,t) = A*X(:,np); % state prediction 
        P(:,:,np,t) = Q + A*P(:,:,np,t)*A'; % covariance prediction 
       plot(x(1,1,np,t), x(2,1,np,t),'b.');  % imp code 
    end 
     
    hold off 
 
    % Calculating the weigths: Set weigth for particles according to 
    % measurement model 
     
    ROI = edge(thresholded{t}); 
    imshow(ROI)  
    pixel_num = sum(ROI(:) == 1); 
     
    [u,v] = find(ROI); % (v,u) are the pixel coordinates - measurements 
     

    % Normalise weigths  
     
    BLOBS = iblobs(thresholded{t}); 
    CRSEC = BLOBS(2:end); 
    CRSEC_Area = CRSEC.area; 
    [Area, Index] = max(CRSEC_Area); 
    x_middle = CRSEC(Index).p; 
     

     
    D = []; 
    for i=1:pixel_num 
        D = [D; sqrt((v(i)-x_middle(1))^2+(u(i)-x_middle(2))^2)]; 
    end 
    Dmin = min(D); 
    Dmax = max(D); 
    Dmid = median(D); 
     
    DP = []; 
    for i=1:nparticles 
        W = sqrt((x(1,1,i,t)-x_middle(1))^2+(x(2,1,i,t)-x_middle(2))^2); 
        DP = [DP 1/abs(Dmid-W)];     
    end 
    total = sum(DP); 
    weigths = (1/total)*DP; 
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    % Resampling 
    % Extracting the closest particles to the contour 
    for i=1:sqrt(nparticles) 
        [M, Index] = max(weigths); 
        weigths(Index) = -1; 
        P_index(i) = Index; 
    End 

 
    % Draw the particles: 
    x_ellipse = []; 
    y_ellipse = []; 
    imshow(thresholdedF{t})  
    hold on  
    for i=1:sqrt(nparticles) 
         plot(x(1,1,P_index(i),t), x(2,1,P_index(i),t),'b.'); % imp code 
        x_ellipse = [x_ellipse; x(1,1,P_index(i),t)]; 
        y_ellipse = [y_ellipse; x(2,1,P_index(i),t)]; 
    end 
    E = [x_ellipse y_ellipse]; 

 
    % Fit an ellipse to the particles 

 
    [a b]=EllipseDirectFit(E, [0 1 0]); % Predicted Ellipse in red 
    Pred=[Pred b']; 
     
    pause(5) 
    hold off  
    x_corrected = []; 

 
    % Correction and corrected Ellipse 
    for i=1:sqrt(nparticles) 
        Pp = P(:,:,P_index(i),t); 
        K_Gain = Pp*C'*inv(R+C*Pp*C'); % Kalman Gain 
         

        % Finding corresponding points on measured edge: 
        OG1 = abs(v-x(1,1,P_index(i),t)); 
        OG2 = abs(u-x(2,1,P_index(i),t)); 
        [k1 og1] = min(OG1); 
        [k2 og2] = min(OG2); 
        x_corrected = [x_corrected (x(:,1,P_index(i),t) + K_Gain*([v(og1);    

        u(og2)] - C*x(:,1,P_index(i),t)))]; % State Update 
        P(:,:,i,t+1) = (eye(4) - K_Gain*C)*Pp; % Covariance Update 
    end 
    imshow(thresholdedF{t}) 
    hold on 
    plot(x_corrected(1,:), x_corrected(2,:), 'r*')  
       

    % Fit an ellipse to the corrected particles 
    F=[x_corrected(1,:)', x_corrected(2,:)']; 
    [aa bb]= EllipseDirectFit(F, [0  0 1]); % corrected Ellipse in blue 
    Meas=[Meas bb']; 
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    hold off 
       

    % Breeding new particles for the next round 

    X = []; 
    X = [X x_corrected];  
    newParticles = sqrt(nparticles); 
      range = 30; 
      for h=1:sqrt(nparticles) 
          X_B1 = randi([floor(x_corrected(1,h)-range) …      

                 … floor(x_corrected(1,h)+range)], 1, newParticles); 
          X_B2 = randi([floor(x_corrected(2,h)-range) …   

                 … floor(x_corrected(2,h)+range)], 1, newParticles); 
          X_B3 = x_corrected(3:4,h)*ones(1,newParticles); 
          X = [X [X_B1;X_B2;X_B3]]; 
          for lp = h*(sqrt(nparticles)+1):(h+1)*sqrt(nparticles) 
            P(:,:,lp,t+1) = P(:,:,h,t+1); 
          end 
      end 
     
end 
EEE = cputime-TTT; 
toc 
 

% Particle Kalman Filter Results 
 
figure, 
hold on 
grid on 
axis equal 
plot3(MM(3,:), MM(1,:), MM(2,:), 'b-') 
plot3([1:222],Pred(1,:),Pred(2,:),'r-') 
legend('actual','estimated') 
M = [Meas(1,:)' Meas(2,:)']; 
P = [Pred(1,:)' Pred(2,:)']; 
A = [MM(1,:)' MM(2,:)']; 
hd = HausdorffDist(A,M) 
xlabel('z (in number of US frames)', 'FontSize', 12) 
ylabel('u (in pixels)', 'FontSize', 12) 
zlabel('v (in pixels)', 'FontSize', 12) 
axis square equal 
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B.5. MATLAB Codes for Section 4.5 

B.5.1: Converting US image from pixels to millimeters  

% ************************************************************************** 
%                      US images from pixels to mm 
%                 Written By: Niloufaralsadat Hashemi 
%                      Last Updated: June 9, 2018 

%                           Libraries used:  

%             MATLAB Computer Vision, MATLAB Image Processing  

%                           ULTRASONIX SDK 

% ************************************************************************** 
 

% Reading the data 
[Data, Header] = RPread('test3.b8', 241); 
  
% Creating a new plot 
hF = figure(1); 
hA = axes; 
  
% Plotting the first frame 
plot_SonixRP(Data(:, :, 1), Header , [hA 1], 1); 
 
% The lateral length of the L14-5W/60 linear transducer 
lateralTotalWidth_mm=0.46*128 
  
%The lateral size in relation to the header is the total elements times 
%each pitch then divided by the header size listed 
lateralSinglePixel=lateralTotalWidth_mm/(Header.ur(1)-Header.ul(1)+1) 
  
axialSinglePixel = lateralSinglePixel 
  
axialTotalLength_mm = axialSinglePixel*(Header.bl(2)-Header.ul(2)+1)  
  
Iin = Data(:,:,120); 
Iin = Iin(82:578,142:473); 
  
%  Converting axes to mm 
idisp(Iin) 
conversion=axialSinglePixel; % in mm/pixel 
addMM=@(x) sprintf('%.2fmm',x*conversion); 
xticklabels(cellfun(addMM,num2cell(xticks'),'UniformOutput',false)); 
yticklabels(cellfun(addMM,num2cell(yticks'),'UniformOutput',false)); 
  
%  Resizing the Image to mm 
Iout = imageresize(Iin,axialTotalLength_mm,lateralTotalWidth_mm,2); % cubic interpolation  
figure, 
idisp(Iout) 
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B.5.2: Deriving the 3D rigid transformation between 𝑭{𝑰} 𝒂𝒏𝒅 𝑭{𝑷𝑯} 

% ************************************************************************** 
%                        3D Rigid Transformation 
%                 Written By: Niloufaralsadat Hashemi 
%                      Last Updated: June 9, 2018 

% ************************************************************************** 
% F_I: points measured in the US image frame 
% F_PH: Points measured in fCal2.0 phantom frame 
% N: Total number of points measured which is the same in {I} and {PH} 
function [T, rmse] = Rigid3D(F_I, F_PH, N) 

% Center of mass of each dataset 
    u_F_I  = mean(F_I); 
    u_F_PH = mean(F_PH); 
% Calculating the cross covariance matrix     
    cov = 0; 
    for i=1:N 
        H=(F_PH(i,:)-u_F_PH)'*(F_I(i,:)-u_F_I); 
        cov = cov + H; 
    end 
    cov = (1/N) * cov; 
     
% Calculating the anti-symmetric matrix 
    A = cov - cov'; 
    Delta = [A(2,3) A(3,1) A(1,2)]'; 
  
% Calculating the 4x4 matrix  
% of which eigenvalues and eigenvectors are calculated     
    Q = [ 
        trace(cov)     Delta' 
        Delta          cov+cov'-trace(cov)*eye(3) 
        ]; 
     
    [V, D] = eig(Q); 
     
% Deriving the quaternion rotaation vector 
    q = V(:,4); 
    q0 = q(1); 
    q1 = q(2); 
    q2 = q(3); 
    q3 = q(4); 
  
% Calculating the rotation matrix that relates {PH} to {I} 
    R = [ 
        q0^2+q1^2-q2^2-q3^2  2*(q1*q2-q0*q3)      2*(q1*q3+q0*q2) 
        2*(q1*q2+q0*q3)      q0^2+q2^2-q1^2-q3^2  2*(q2*q3-q0*q1) 
        2*(q1*q3-q0*q2)      2*(q2*q3+q0*q1)      q0^2+q3^2-q1^2-q2^2 
        ]; 
% Calculating translation vector that relates {PH} to {I}     
    t = u_F_I' - R*(u_F_PH)'; 
  
%  Calculating the 3D rigid transformation matrix    
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    T = [ 
        R            t 
        zeros(1,3)   1 
        ]; 
     
% Calculating RSME 
rmse = 0; 
for i=1:N 
    err = norm((F_I(i,:))'-R*(F_PH(i,:))'-t); 
    err = err^2; 
    rmse = rmse+err; 
end 
rmse = (1/(N))*rmse; 

end 

 

 

B.6. MATLAB Codes for Section 5.1 

B.6.1: Importing, cropping, and thresholding of US images and equivalent ellipse/square 

% ************************************************************************** 
%                 Importing and cropping of US images & 

%      Catheter cross section segmentation and equivalent ellipse/square 
%                 Written By: Niloufaralsadat Hashemi 
%                      Last Updated: June 9, 2018 

%                           Libraries used:  

%             MATLAB Computer Vision, MATLAB Image Processing  

%                 Peter Cork Computer Vision Toolbox [128]  

% ************************************************************************** 
% Straight catheter: 
% Importing .b8 US file    
[Data1, Header1] = RPread('straight001.b8', 209); 
% cropping the region of interest using Header1 info 
Data1 = Data1(82:578,142:473,1:176); 
Num1 = 176; % number of useful frames in the file 
T1 = 130; % The threshold value 
% converting pixel-based image to mm-based image 
lateralTotalWidth_mm=0.46*128; 
lateralSinglePixel=lateralTotalWidth_mm/(Header1.ur(1)-Header1.ul(1)+1); 
axialSinglePixel = lateralSinglePixel; 
axialTotalLength_mm = axialSinglePixel*(Header1.bl(2)-Header1.ul(2)+1);  
% Thresholding and estimating an ellipse for catheter cross-section 
for i=1:num 
    Data1_mm(:,:,i) = imageresize(Data1(:,:,i),axialTotalLength_mm*10,lateralTotalWidth_mm*10,2);  
    thresholdedF(:,:,i) = Data1_mm(:,:,i)>T1; 
    blobAnalysis1 = iblobs(thresholdedF(:,:,i)); 
    [section1 index1] = max(blobAnalysis1(2:end).area);  
    radius1X = blobAnalysis1(index1+1).a; % major axis length of equivalent ellipse 
    radius1Y = blobAnalysis1(index1+1).b; % minor axis length of equivalent ellipse 
    center1Y = blobAnalysis1(index1+1).uc; % centroid, horizontal coordinate 
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    center1X = blobAnalysis1(index1+1).vc; % centroid, vertical coordinate 
    imageSize1X = 588; 
    imageSize1Y = 393; 
    [columnsInImage1 rowsInImage1] = meshgrid(1:imageSize1X, 1:imageSize1Y); 
    ellipsePixels1 = (rowsInImage1 - center1Y).^2 ./ radius1Y^2 ... 
    + (columnsInImage1 - center1X).^2 ./ radius1X^2 <= 1; 
    straight1{i} = ellipsePixels1; 
    out{i} = straight1{i}; 
end 
 

% Curvy catheter: 
% Importing .b8 US file    
[Data2, Header2] = RPread('curvy005.b8', 257); 
% cropping the region of interest using Header1 info 
Data2 = Data2(82:578,142:473,1:252); 
num2 =252; % number of useful frames in the file 
T2 = 120; % The threshold value 
% converting pixel-based image to mm-based image 
lateralTotalWidth_mm=0.46*128; 
lateralSinglePixel=lateralTotalWidth_mm/(Header2.ur(1)-Header2.ul(1)+1); 
axialSinglePixel = lateralSinglePixel; 
axialTotalLength_mm = axialSinglePixel*(Header2.bl(2)-Header2.ul(2)+1);  
% Thresholding and estimating an ellipse for catheter cross-section 
for i=1:num2 
    Data2_mm(:,:,i)= imageresize(Data2(:,:,i),axialTotalLength_mm*10,lateralTotalWidth_mm*10,2);  
    thresholdedF(:,:,i) = Data2_mm(:,:,i)>T2; 
    blobAnalysis2 = iblobs(thresholdedF(:,:,i)); 
    [section2 index2] = max(blobAnalysis2(2:end).area);  
    radius2X = blobAnalysis2(index2+1).a; % major axis length of equivalent ellipse 
    radius2Y = blobAnalysis2(index2+1).b; % minor axis length of equivalent ellipse 
    center2Y = blobAnalysis2(index2+1).uc; % centroid, horizontal coordinate 
    center2X = blobAnalysis2(index2+1).vc; % centroid, vertical coordinate 
    imageSize2X = 588; 
    imageSize2Y = 393; 
    [columnsInImage2 rowsInImage2] = meshgrid(1:imageSize2X, 1:imageSize2Y); 
    ellipsePixels2 = (rowsInImage2 - center2Y).^2 ./ radius2Y^2 ... 
    + (columnsInImage2 - center2X).^2 ./ radius2X^2 <= 1; 
    curvy5{i} = ellipsePixels2; 
    out{i} = curvy5{i}; 
end 

 

% planar catheter: 
% Importing .b8 US file    
[Data3, Header3] = RPread('planar009.b8', 346); 
% cropping the region of interest using Header1 info 
Data3 = Data3(82:578,142:473,1:346); 
num3 = 346; % number of useful frames in the file 
T3 = 120; % The threshold value 
% converting pixel-based image to mm-based image 
lateralTotalWidth_mm=0.46*128; 
lateralSinglePixel=lateralTotalWidth_mm/(Header3.ur(1)-Header3.ul(1)+1); 
axialSinglePixel = lateralSinglePixel; 
axialTotalLength_mm = axialSinglePixel*(Header3.bl(2)-Header3.ul(2)+1);  
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% Thresholding and estimating an ellipse for catheter cross-section 
for i=1:num3 
    Data3_mm(:,:,i)= imageresize(Data3(:,:,i),axialTotalLength_mm*10,lateralTotalWidth_mm*10,2);  
    thresholdedF(:,:,i) = Data3_mm(:,:,i)>T3; 
    blobAnalysis3 = iblobs(thresholdedF(:,:,i)); 
    [section3 index3] = max(blobAnalysis3(2:end).area);  
    radius3X = blobAnalysis3(index3+1).a; % major axis length of equivalent ellipse 
    radius3Y = blobAnalysis3(index3+1).b; % minor axis length of equivalent ellipse 
    center3Y = blobAnalysis3(index3+1).uc; % centroid, horizontal coordinate 
    center3X = blobAnalysis3(index3+1).vc; % centroid, vertical coordinate 
    imageSize3X = 588; 
    imageSize3Y = 393; 
    [columnsInImage3 rowsInImage3] = meshgrid(1:imageSize3X, 1:imageSize3Y); 
    ellipsePixels3 = (rowsInImage3 - center3Y).^2 ./ radius3Y^2 ... 
    + (columnsInImage3 - center3X).^2 ./ radius3X^2 <= 1; 
    planar9{i} = ellipsePixels3; 
    out{i} = planar9{i}; 
end 
 
% unplanar catheter: 
% Importing .b8 US file    
[Data4, Header4] = RPread('unplanar007.b8', 402); 
% cropping the region of interest using Header1 info 
Data4 = Data4(82:578,142:473,1:363); 
num4 = 363; % number of useful frames in the file 
T4 = 140; % The threshold value 
% converting pixel-based image to mm-based image 
lateralTotalWidth_mm=0.46*128; 
lateralSinglePixel=lateralTotalWidth_mm/(Header4.ur(1)-Header4.ul(1)+1); 
axialSinglePixel = lateralSinglePixel; 
axialTotalLength_mm = axialSinglePixel*(Header4.bl(2)-Header4.ul(2)+1);  
% Thresholding and estimating an ellipse for catheter cross-section 
for i=1:num4 
    Data4_mm(:,:,i) = imageresize(Data4(:,:,i),axialTotalLength_mm*10,lateralTotalWidth_mm*10,2);  
    thresholdedF(:,:,i) = Data4_mm(:,:,i)>T4; 
    blobAnalysis4 = iblobs(thresholdedF(:,:,i)); 
    [section4 index4] = max(blobAnalysis4(2:end).area);  
    radius4X = blobAnalysis4(index4+1).a; % major axis length of equivalent ellipse 
    radius4Y = blobAnalysis4(index4+1).b; % minor axis length of equivalent ellipse 
    center4Y = blobAnalysis4(index4+1).uc; % centroid, horizontal coordinate 
    center4X = blobAnalysis4(index4+1).vc; % centroid, vertical coordinate 
    imageSize4X = 588; 
    imageSize4Y = 393; 
    [columnsInImage4 rowsInImage4] = meshgrid(1:imageSize4X, 1:imageSize4Y); 
    ellipsePixels4 = (rowsInImage4 - center4Y).^2 ./ radius4Y^2 ... 
    + (columnsInImage4 - center4X).^2 ./ radius4X^2 <= 1; 
    unplanar7{i} = ellipsePixels4; 
    out{i} = unplanar7{i}; 
end 
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B.7. MATLAB Codes for Sections 5.2-5.9 

B.7.1: KF, AKF and PF results and accuracy - Uncalibrated 

% ************************************************************************** 
%            Uncalibrated KF, AKF and PF results and accuracy 

%                 Written By: Niloufaralsadat Hashemi 
%                      Last Updated: June 9, 2018 

%                           Libraries used:  

%             MATLAB Computer Vision, MATLAB Image Processing  

%                 Peter Cork Computer Vision Toolbox [128]  

% ************************************************************************** 
% Uncalibrated KF Results 
figure(1), 
hold on, 
grid on 
axis equal 
plot3(predictions_KF(5,:),predictions_KF(1,:)/10, predictions_KF(2,:)/10,'r-') 
plot3(measurements_KF(3,:),measurements_KF(1,:)/10, measurements_KF(2,:)/10,'b-') 
xlabel('z (in number of US frames)', 'FontSize', 12) 
ylabel('Lateral Distance (in mm)', 'FontSize', 12) 
zlabel('Axial Distance (in mm)', 'FontSize', 12) 
UnCal_RMSE_KF = rmse(predictions_KF,measurements_KF); 
UnCal_hd_KF = HausdorffDist(predictions_KF,measurements_KF) 
  
% Uncalibrated AKF Results 
figure(2), 
hold on, 
grid on 
axis equal 
plot3(predictions_AKF(5,2:end),predictions_AKF(1,2:end)/10, predictions_AKF(2,2:end)/10,'r-') 
plot3(measurements_AKF(3,:),measurements_AKF(1,:)/10, measurements_AKF(2,:)/10,'b-') 
xlabel('z (in number of US frames)', 'FontSize', 12) 
ylabel('Lateral Distance (in mm)', 'FontSize', 12) 
zlabel('Axial Distance (in mm)', 'FontSize', 12) 
UnCal_RMSE_AKF = rmse(predictions_AKF,measurements_AKF); 
UnCal_hd_AKF = HausdorffDist(predictions_AKF,measurements_AKF); 
  
% Uncalibrated PF Results 
figure(3), 
hold on, 
grid on 
axis equal 
plot3([1:size(Pred,2)],Pred(1,:)/10, Pred(2,:)/10,'r-') 
plot3([1:size(Meas,2)],Meas(1,:)/10, Meas(2,:)/10,'b-') 
xlabel('z (in number of US frames)', 'FontSize', 12) 
ylabel('Lateral Distance (in mm)', 'FontSize', 12) 
zlabel('Axial Distance (in mm)', 'FontSize', 12) 
UnCal_RMSE_PF = rmse(Pred,Meas); 
UnCal_hd_PF = HausdorffDist(Pred,Meas); 
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B.7.2: KF, AKF and PF results and accuracy - Calibrated 

% ************************************************************************** 
%              Calibrated KF, AKF and PF results and accuracy 

%                 Written By: Niloufaralsadat Hashemi 
%                      Last Updated: June 9, 2018 

%                           Libraries used:  

%             MATLAB Computer Vision, MATLAB Image Processing  

%                 Peter Cork Computer Vision Toolbox [128]  

% ************************************************************************** 
% CMM Measurements of the straight catheter 
CMM_X_straight = [122.176 
                  133.564 
                  146.945 
                  162.546 
                  173.158]; 
  
CMM_Y_straight = [95.811 
                   83.375 
                   70.524 
                   53.379 
                   42.63]; 
   
CMM_Z_straight = [-201.166 
                    -199.218 
                    -196.954 
                    -194.341 
                    -192.892]; 
  
CMM_Z_straight = CMM_Z_straight - 1.5;                 
CMM_straight = [CMM_X_straight';CMM_Y_straight';CMM_Z_straight']; 
  
% CMM Measurements of the curvy catheter 
CMM_X_curvy = [188.767 
               197.314 
               202.677 
               205.994 
               210.216 
               214.59 
               220.584 
               228.11 
               233.409 
               243.547 
               248.648 
               251.905 
               253.606]; 
  
CMM_Y_curvy = [158.893 
               150.315 
               144.654 
               140.192 
               135.707 
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               131.495 
               124.11 
               117.17 
               110.656 
                99.733 
                93.839 
                91.28 
                88.256]; 
  
CMM_Z_curvy = [-198.709 
               -199.762 
               -202.582 
               -204.04 
               -202.469 
               -201.685 
               -202.51 
               -204.945 
               -208.844 
               -209.95 
               -208.907 
               -211.171 
               -210.73]; 
  
CMM_Z_curvy = CMM_Z_curvy - 1.5;  
CMM_curvy = [CMM_X_curvy';CMM_Y_curvy';CMM_Z_curvy']; 
  
% CMM Measurements of the planar catheter 
CMM_X_planar = [194.565 
                205.265 
                223.04 
                235.863 
                244.408 
                260.952 
                269.077 
                273.078]; 
  
CMM_Y_planar = [158.233 
                142.66 
                120.005 
                103.889 
                 98.344 
                 97.692 
                101.047 
                100.18]; 
  
CMM_Z_planar = [-203.682 
                -203.73 
                -202.429 
                -202.736 
                -201.629 
                -199.939 
                -198.416 
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                -197.495]; 
             
CMM_Z_planar = CMM_Z_planar - 1.5; 
CMM_planar = [CMM_X_planar';CMM_Y_planar';CMM_Z_planar']; 
  
% CMM Measurements of the unplanar catheter 
CMM_X_unplanar = [132.193 
                  142.048 
                  152.385 
                  156.197 
                  165.803 
                  167.176 
                  173.016 
                  176.657 
                  176.26 
                  181.04 
                  187.086 
                  191.175 
                  200.426 
                  207.445]; 
  
CMM_Y_unplanar = [113.21 
                  106.702 
                   91.852 
                   87.421 
                   74.045 
                   71.622 
                   63.226 
                   59.793 
                   58.448 
                   57.888 
                   57.109 
                   56.909 
                   56.826 
                   59.818]; 
  
CMM_Z_unplanar = [-205.969 
                  -204.921 
                  -205.204 
                  -204.879 
                  -205.128 
                  -205.156 
                  -204.02 
                  -205 
                  -204.158 
                  -204.402 
                  -203.696 
                  -201.958 
                  -194.215 
                  -186.922]; 
  
 CMM_Z_unplanar = CMM_Z_unplanar - 1.5; 
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 CMM_unplanar = [CMM_X_unplanar';CMM_Y_unplanar';CMM_Z_unplanar']; 
  
 num = size(out,2); 
% KF Calibrated Results 
T_probe_wrt_Image = [ 
-0.3672     -0.9172     -0.1542     25.5202 
-0.0457      0.1834     -0.9820    -97.6940 
 0.9290     -0.3535     -0.1094    -13.4112 
 0           0           0           1 
]; 
T_IwrtP = (T_probe_wrt_Image)^-1; 
  
% % Uncomment for Straight Catheter NDI Optotracker Sensor Readings 
% % units: deg/mm 
% X = xlsread('straight001.xlsx','S616:S791'); 
% Y = xlsread('straight001.xlsx','T616:T791'); 
% Z = xlsread('straight001.xlsx','U616:U791'); 
% Rx = xlsread('straight001.xlsx','R616:R791'); 
% Ry = xlsread('straight001.xlsx','Q616:Q791'); 
% Rz = xlsread('straight001.xlsx','P616:P791'); 
  
% % Uncomment for curvy Catheter NDI Optotracker Sensor Readings 
% % units: deg/mm-->251 frames 
% X = xlsread('curvy005.xlsx','S651:S902'); 
% Y = xlsread('curvy005.xlsx','T651:T902'); 
% Z = xlsread('curvy005.xlsx','U651:U902'); 
% Rx = xlsread('curvy005.xlsx','R651:R902'); 
% Ry = xlsread('curvy005.xlsx','Q651:Q902'); 
% Rz = xlsread('curvy005.xlsx','P651:P902'); 
  
% % Uncomment for planar Catheter NDI Optotracker Sensor Readings 
% % units: deg/mm -->338 
% X = xlsread('planar009.xlsx','S609:S947'); 
% Y = xlsread('planar009.xlsx','T609:T947'); 
% Z = xlsread('planar009.xlsx','U609:U947'); 
% Rx = xlsread('planar009.xlsx','R609:R947'); 
% Ry = xlsread('planar009.xlsx','Q609:Q947'); 
% Rz = xlsread('planar009.xlsx','P609:P947'); 
  
% % Uncomment for unplanar Catheter NDI Optotracker Sensor Readings 
% % units: deg/mm -->389 
% X = xlsread('unplanar007.xlsx','S790:S1179'); 
% Y = xlsread('unplanar007.xlsx','T790:T1179'); 
% Z = xlsread('unplanar007.xlsx','U790:U1179'); 
% Rx = xlsread('unplanar007.xlsx','R790:R1179'); 
% Ry = xlsread('unplanar007.xlsx','Q790:Q1179'); 
% Rz = xlsread('unplanar007.xlsx','P790:P1179'); 
  
KF_m_PinI = [ 
    measurements_KF(1,:)./10 % X 
    measurements_KF(2,:)./10 % Y 
    zeros(1,size(measurements_KF,2)) 
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    ones(1,size(measurements_KF,2))]; 
KF_p_PinI = [  
    predictions_KF(1,:)./10 % X 
    predictions_KF(2,:)./10 % Y 
    zeros(1,size(predictions_KF,2)) 
    ones(1,size(predictions_KF,2))]; 
KF_m_PinR = zeros(4,size(measurements_KF,2)); 
KF_p_PinR = zeros(4,size(predictions_KF,2)); 
  
AKF_m_PinI = [ 
    measurements_AKF(1,:)./10 % X 
    measurements_AKF(2,:)./10 % Y 
    zeros(1,size(measurements_AKF,2)) 
    ones(1,size(measurements_AKF,2))]; 
AKF_p_PinI = [  
    predictions_AKF(1,:)./10 % X 
    predictions_AKF(2,:)./10 % Y 
    zeros(1,size(predictions_AKF,2)) 
    ones(1,size(predictions_AKF,2))]; 
AKF_m_PinR = zeros(4,size(predictions_AKF,2)); 
AKF_p_PinR = zeros(4,size(predictions_AKF,2)); 
  
PF_m_PinI = [ 
    Meas(1,:)./10 % X 
    Meas(2,:)./10 % Y 
    zeros(1,size(Meas,2)) 
    ones(1,size(Meas,2))]; 
PF_p_PinI = [  
    330.8659/10  Pred(1,:)./10 % X 
    307.0230/10  Pred(2,:)./10 % Y 
    zeros(1,size(Pred,2)) 
    ones(1,size(Pred,2))]; 
PF_m_PinR = zeros(4,size(Meas,2)); 
PF_p_PinR = zeros(4,size(Pred,2)); 
  
for i=1:num 
    T_PwrtR(:,:,i) = transl(X(i),Y(i),Z(i))*trotx(Rx(i),'deg')*troty(Ry(i),'deg')*trotz(Rz(i),'deg'); 
    T_IwrtR(:,:,i) =  T_PwrtR(:,:,i) * T_IwrtP; 
    IPose(:,:,i) = T_PwrtR(:,:,i) * transl(-15,22,-117)*troty(90,'deg')*trotz(-90,'deg'); 
    KF_m_PinR(:,i) =  T_IwrtR(:,:,i) * KF_m_PinI(:,i); 
    KF_p_PinR(:,i) =  T_IwrtR(:,:,i) * KF_p_PinI(:,i); 
    KF_m(:,i) =  IPose(:,:,i) * KF_m_PinI(:,i); 
    KF_p(:,i) =  IPose(:,:,i) * KF_p_PinI(:,i); 
    AKF_m_PinR(:,i) =  T_IwrtR(:,:,i) * AKF_m_PinI(:,i); 
    AKF_p_PinR(:,i) =  T_IwrtR(:,:,i) * AKF_p_PinI(:,i); 
    AKF_m(:,i) =  IPose(:,:,i) * AKF_m_PinI(:,i); 
    AKF_p(:,i) =  IPose(:,:,i) * AKF_p_PinI(:,i); 
    PF_m_PinR(:,i) =  T_IwrtR(:,:,i) * PF_m_PinI(:,i); 
    PF_p_PinR(:,i) =  T_IwrtR(:,:,i) * PF_p_PinI(:,i); 
    PF_m(:,i) =  IPose(:,:,i) * PF_m_PinI(:,i); 
    PF_p(:,i) =  IPose(:,:,i) * PF_p_PinI(:,i); 
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end 
  
figure(1), 
grid on 
hold on 
for i=1:10:num 
    trplot(T_PwrtR(:,:,i), 'length',20) 
    trplot(T_IwrtR(:,:,i), 'length',20, 'color', 'r') 
    trplot(IPose(:,:,i), 'length',20, 'color', 'g') 
end 
  
  plot3(KF_p_PinR(1,1:end), KF_p_PinR(2,1:end), KF_p_PinR(3,1:end), 'r-') 
  plot3(KF_m_PinR(1,1:end), KF_m_PinR(2,1:end), KF_m_PinR(3,1:end), 'b-') 
   
  plot3(KF_p(1,1:end), KF_p(2,1:end), KF_p(3,1:end), 'r-') 
  plot3(KF_m(1,1:end), KF_m(2,1:end), KF_m(3,1:end), 'b-') 
   
  plot3(AKF_p_PinR(1,2:end), AKF_p_PinR(2,:), AKF_p_PinR(3,:), 'r-') 
  plot3(AKF_m_PinR(1,2:end), AKF_m_PinR(2,:), AKF_m_PinR(3,:), 'b-') 
   
  plot3(AKF_p(1,1:end), AKF_p(2,1:end), AKF_p(3,1:end), 'r-') 
  plot3(AKF_m(1,1:end), AKF_m(2,1:end), AKF_m(3,1:end), 'b-') 
   
  plot3(PF_p_PinR(1,:), PF_p_PinR(2,:), PF_p_PinR(3,:), 'r-') 
  plot3(PF_m_PinR(1,:), PF_m_PinR(2,:), PF_m_PinR(3,:), 'b-') 
  
  plot3(PF_p(1,:), PF_p(2,:), PF_p(3,:), 'r-') 
  plot3(PF_m(1,:), PF_m(2,:), PF_m(3,:), 'b-') 
% % Uncomment for the straight catheter   
% plot3(CMM_X_straight, CMM_Y_straight, CMM_Z_straight) 
% % Uncomment for the curvy catheter   
% plot3(CMM_X_curvy, CMM_Y_curvy, CMM_Z_curvy) 
% % Uncomment for the planar catheter   
% plot3(CMM_X_planar, CMM_Y_planar, CMM_Z_planar) 
% % Uncomment for the unplanar catheter   
% plot3(CMM_X_unplanar, CMM_Y_unplanar, CMM_Z_unplanar) 
plot3(0,0,0, 'g*') 
xlabel('X') 
ylabel('Y') 
zlabel('Z') 
  
% Error Calculations 
% % Uncomment for straight catheter: 
% Cal_hd_KF_v1 = HausdorffDist(KF_p_PinR,CMM_straight); 
% Cal_hd_AKF_v1 = HausdorffDist(AKF_p_PinR,CMM_straight); 
% Cal_hd_PF_v1 = HausdorffDist(PF_p_PinR,CMM_straight); 
% Cal_hd_KF_v2 = HausdorffDist(KF_p,CMM_straight); 
% Cal_hd_AKF_v2 = HausdorffDist(AKF_p,CMM_straight); 
% Cal_hd_PF_v2 = HausdorffDist(PF_p,CMM_straight); 
% % Uncomment for curvy catheter: 
% Cal_hd_KF_v1 = HausdorffDist(KF_p_PinR,CMM_curvy); 
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% Cal_hd_AKF_v1 = HausdorffDist(AKF_p_PinR,CMM_curvy); 
% Cal_hd_PF_v1 = HausdorffDist(PF_p_PinR,CMM_curvy); 
% Cal_hd_KF_v2 = HausdorffDist(KF_p,CMM_curvy); 
% Cal_hd_AKF_v2 = HausdorffDist(AKF_p,CMM_curvy); 
% Cal_hd_PF_v2 = HausdorffDist(PF_p,CMM_curvy); 
% % Uncomment for planar catheter: 
% Cal_hd_KF_v1 = HausdorffDist(KF_p_PinR,CMM_planar); 
% Cal_hd_AKF_v1 = HausdorffDist(AKF_p_PinR,CMM_planar); 
% Cal_hd_PF_v1 = HausdorffDist(PF_p_PinR,CMM_planar); 
% Cal_hd_KF_v2 = HausdorffDist(KF_p,CMM_planar); 
% Cal_hd_AKF_v2 = HausdorffDist(AKF_p,CMM_planar); 
% Cal_hd_PF_v2 = HausdorffDist(PF_p,CMM_planar); 
% % Uncomment for unplanar catheter: 
% Cal_hd_KF_v1 = HausdorffDist(KF_p_PinR,CMM_unplanar); 
% Cal_hd_AKF_v1 = HausdorffDist(AKF_p_PinR,CMM_unplanar); 
% Cal_hd_PF_v1 = HausdorffDist(PF_p_PinR,CMM_unplanar); 
% Cal_hd_KF_v2 = HausdorffDist(KF_p,CMM_unplanar); 
% Cal_hd_AKF_v2 = HausdorffDist(AKF_p,CMM_unplanar); 
% Cal_hd_PF_v2 = HausdorffDist(PF_p,CMM_unplanar); 
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