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ABSTRACT 

ROBUST NONLINEAR CONTROL OF UNDERACTUATED SATELLITE 
FORMATION 

Geoffrey Robert Me Vittie, Master of Applied Science, Electrical Engineering 
Ryerson University, Toronto, 2008 

In this thesis, the control of the underactuated satellite formation system is exarruned. The 

underactuated satellite formation consists of a leader-follower configuration where there is 

no control force available in the radial direction relative to the orbit of the leader satellite. 

Two new relay sliding mode controllers are proposed as a method of controlling the 

formation system. The first controller is developed using the Hill's equation of motion of the 

satellite formation and the sliding manifold is designed based on linear quadratic regulation 

and the algebraic Riccati equation. The second controller uses a 2nd order state dependent 

time varying approximation of the satellite formation and the sliding manifold is chosen in 

real-time through the evaluation of the causal approximation of the differential Riccati 

equation. The incorporation of the nonlinearity and time varying properties of the system into 

the control law expands the operational range of application. The theoretical stability bounds 

of the two control laws are deterrruned guaranteeing the robust nature of the closed loop 

system against both matched and unmatched disturbances. A series of numerical simulations 

are used to validate the stability and robustness of the proposed control laws. Finally, some 

simulations are provided to deterrrune the effect of controller and system parameters on the 

control laws' performance. 
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"No, you can't always get what you want, 

You can't always get what you want, 

You can't always get what you want, 

But if you try sometime you find, 

You get what you need!" 

- Mick Jagger and Keith Richards 
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Chapter 1 
Introduction 

In recent years, the satellite and space community has seen an increase in technological 

development brought about by the development of large scale launch systems, such as the 

European Space Agency' s (ESA) Ariane-5 or NASA's cargo launch vehicle Ares-V, 

combined with the availability of inexpensive high-powered computing systems and sensor 

technology. This has resulted in the renewed interest of many missions and satellite 

applications that were once deemed either too expensive or high risk for serious investment. 

One such application is satellite formation flying. 

A satellite formation consists of a group of satellites that operate together to accomplish a 

task that would either be too costly or impossible for a single satellite. In spite of the 

relatively low cost of formation deployment, it is always a primary goal in any satellite 

mission design to extend the operational lifespan of the mission. The control of the formation 

obviously becomes a key aspect in achieving the successful completion of the mission. 

Ideally, a satellite formation system can be controlled with high-precision using full and 

precise thrust available in all directions. However, in reality the satellite formation is 

subjected to disturbances and perturbations that need to be counteracted by the controllers. 

Furthermore, satellite hardware can be vulnerable to failure. When these failures occur, the 

control laws developed for the ideal system are no longer valid. 

This thesis undertakes the challenge of developing a robust controller that will stabilize a 

satellite formation using a reduced number of thrusters and provide guaranteed operation in 

the presence of perturbing forces. 
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1. 1 Motivation 

The funding required for space mission is extremely high; with many companies and 

institutions only able to meet the financial requirements necessary for a single mission. As a 

result, the cost of failure can be devastating, both scientifically and financially. From 1990 to 

2001, a total of 29% of all satellite failures, either partial or total, were attributed to the 

Guidance, Navigation and Control system (GN&C). Furthermore, 37% of the problems with 

the GN&C have resulted in a total loss of the mission [I] . In the case of satellite formations, 

if the formation consists of two satellites, the loss of either satellite would mean the loss of 

the entire mission. If the formation consists of more than two satellites, the mission may be 

able to tolerate the initial loss of one satellite in the formation and then it would be operating 

in reduced capacity and loss of vital scientific and experimental data. 

The critical question to be answered here is, 'In the event of a failure, can the formation and 

the mission be salvaged?' Since the satellite formation is already in orbit, any method that 

could be employed to extend the lifespan, especially following a failure, is beneficial. The 

failure that a satellite formation would be particularly prone to is the loss of thruster control, 

which is necessary to maintain the formation geometry. Therefore, the primary goal is the 

development of control methodologies capable of recovering the formation in a post-failure, 

reduced control state, specifically when the formation system is underactuated. Even the new 

control methods developed would still be subject to the realities of the original formation 

system, including constraints on available thrust and fuel; and, disturbances and perturbations 

acting on the satellites. Thus, determining the limits to which the new control technology 

would work is also a necessary aspect of the design. 

1.2 Literature Review 

The literature review is given in two parts. First, the research on the general area of satellite 

formation control with particular emphasis on the control methodologies is presented. 

Second, the specific area of underactuated satellite formation and the current control 

methodologies that have been explored in this area is outlined. 
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1.2.1 Satellite Formations 

The development of satellite formation flying missions has become an active area of study in 

both theory and practice [2 - 14]. A variety of interesting scientific applications exist that 

require the use satellite formations. The two most notable applications are outlined here, 

including some of the missions in which they were employed. The first application for 

satellite formations is the distribution of sensor hardware over several satellites, reducing the 

power and mass costs on each individual satellite as well as the probability of a total mission 

failure. An example of this application is shown in Figure 1.1 where the formation consists of 

the Earth Observing 1 (E0-1) satellite in conjunction with LandSat 7. The satellites are able 

to simultaneously scan the same location of the Earth's surface with a variety of sensory 

equipment and gather high-fidelity climate information that would be too costly to acquire 

using a single satellite [2- 4]. A second application of satellite formations is to achieve large 

separation distances between sensor modules, otherwise known as sparse aperture. In the 

case of imaging missions, the multiple low resolution sensors with large separation distances 

equivalent to a single, high-resolution sensor with large aperture. An illustration of this 

application is seen with TechSat 21 [5-6]. Each satellite in the formation is equipped with 

RADAR technology. Although the sensitivity of each satellite may be very small, the 

formation, as a whole, acts like a single large radio antenna. The TechSat 21 formation is 

shown in Figure 1.2. Another example of a formation employing large separation distances 

for measurement purposes is the Laser Interferometer Space Antenna (LISA) satellite 

mission where the formation of satellites is used to measure variations in the gravitational 

field [7]. 

In order to fulfill mission requirements, high-precision control of the satellite formation 

becomes crucial. As a result, several research initiatives have been directed toward controller 

design [ 15 - 28]. Linear control methodologies, including linear quadratic regulation (LQR), 

have been proven to be effective at stabilizing satellite formations [15 - 17]. Nonlinear 

control methodologies have also been proposed to stabilize the satellite formation systems, 

including feedback linearization [18], several forms of adaptive learning control [19 - 20], 

model predictive control [21], and sliding mode control [22 - 26]. Of these control 

methodologies, sliding mode control is particularly useful for the control of satellites due to 

the impulsive, or bang-bang, style of the controller output which is necessary due to the 
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physical operation of a typical thruster. An interesting design of the sliding mode control is 

proposed by Yeh et al. [26], where the basic sliding mode controller is enhanced though the 

addition of a dead zone, or boundary layer, around the sliding mode. This controller, also 

known as relay sliding mode control, is then able to stabilize the satellite formation while 

reducing the fuel consumption. 

Figure 1.1: Earth Observing-! (E0-1) and LandSat-7 in formation operation [2]. 

Figure 1.2: TechSat 21 sparse aperture formation configuration. [5] 
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1.2.2 Underactuated Satellite Formations 

The special case of the underactuated satellite formation occurs when control force is not 

available along one axis, specifically the radial axis due as a result of controllability issues. 

There are several possible reasons for control thrust not being available in the radial 

direction. First, researchers have proposed that the satellites are designed with only one 

thruster in order to minimize complexity and mass [29 - 32]. A second reason is control 

achieved through the use of differential aerodynamic drag forces. Differential drag has the 

obvious advantage of not requiring any fuel but the control is only available in the tangential 

direction [33- 34]. Finally, the thrusters can be physically disabled, due either to mechanical 

or electrical failure. Kumar et al. [29] have shown that proportional control can be applied to 

stabilize the underactuated LEO formation system. The proportional control was based on an 

ideal linear model and only marginally stable, which resulted in large tracking errors 

dependent on the initial conditions. The more advanced LQR was applied to the 

underactuated formation system and compared to the performance of the fully actuated 

system [30 - 32]. Although the LQR was able to stabilize the system, the requirement for 

variable thrust and the unconstrained control output makes it difficult to implement into a 

real satellite formation system. Furthermore, the LQR controller was developed from the 

linearized equations of motion and no considerations were given to disturbing forces acting 

on the system. Leonard et al. [33] applied a nonlinear, bang-bang controller to the system 

using linear phase-plane analysis. The phase-plane control is effective in its ability to restrict 

the control thrust and still drive the system to equilibrium. The only significant drawback of 

the phase-plane control law is the necessity to engage in maneuvers with large overshoot to 

bring the system to equilibrium. As with the proportional controller and LQR, the phase 

plane controller is developed from the linearized system model and there were no explicit 

consideration of disturbance forces acting on the formation. 

1.3 Scope of Thesis 

Based on the research that has already been conducted in the area of underactuated satellite 

control, the scope of the current research was established. In the current study, it is assumed 

that the attitude of the spacecraft in the formation is independently maintained. The 

disturbance forces acting on the spacecraft are restricted to the differential perturbations. 
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1.4 Research Objectives 

The primary research objectives of this thesis are given as follows: 

(1) Control of an underactuated satellite formation system, specifically without control 

actuation in the radial direction. 

(2) A robust nonlinear control algorithm for underactuated satellite formation flying, 

developed from the linearized system model. 

(3) A robust nonlinear control algorithm for underactuated satellite formation flying, 

developed from a time-varying 2nd order approximation of the system model. The 2nd 

order approximation is employed to expand the operational range of the linear 

controller. 

(4) Precise formation keeping in the presence of model imperfections, external 

disturbances, and initial formation errors. This consideration is critical as these 

factors are responsible for the degradation and dispersal of the formation geometry. 

1.5 Contributions of Thesis 

The thesis makes several contributions and advancements in the area of underactuated 

satellite formation flying control. The key contributions are as follows: 

(1) The application of closed-loop, nonlinear control for underactuated satellite formation 

flying, where all previous techniques have either been linear or open-loop. 

(2) Proof of the stability and robustness of the linear time invariant sliding mode 

controller. The robustness is proven against matched and unmatched disturbance 

forces acting on the system. The robustness improves the reliability and feasibility in 

applying the control method to an actual system. 

(3) Proof of the stability and robustness of the time-variant, state-dependent sliding mode 

controller against both matched and unmatched disturbing forces acting on the 

formation. 
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1.6 Thesis Organization 

This thesis is organized as follows: 

In Chapter 2 the nonlinear equations of motion for the underactuated satellite are derived 

through the Euler-Lagrange method. The nonlinear equations are simplified by first 

transforming them into a 2nd order approximation and then into the classical Hill's equations, 

representing the linear, time-invariant (LTI) approximation. Next, the projected circular 

formation is presented as a stable configuration derived from the analytical solution of Hill's 

equations. Following the development of the system model and desired trajectory, the 

disturbing forces acting on the system are described. The dominant forces are due to the 

oblateness of the Earth, aerodynamic drag, and thruster imperfections. Finally, the chapter 

concludes with a description of the performance criteria used to evaluate the performance of 

the control laws to be developed in the proceeding chapter. 

Chapter 3 begins with a brief review of variable structure control (VSC) and sliding mode 

control (SMC). This is followed by a description of the linear quadratic regulator (LQR) 

method and the state-dependent, time-variant quadratic regulator. The next section presents 

the design of the robust linear time invariant sliding mode controller. The controller is then 

redeveloped as the robust, state-dependent, time-varying sliding mode controller. In the 

design of both controllers, stability is ensured against both matched and unmatched 

disturbances acting on the system. The SMC laws are then modified into the relay control, 

with new boundaries established for the robustness of the system. Concluding remarks are 

then made concerning the issue of robustness and performance between the LTI and state

dependent, time-variant controllers. 

Chapter 4 presents the numerical simulations used to validate the control laws designed 

Chapter 3 on the underactuated satellite formation system presented in Chapter 2. First, a 

detailed description of the simulation methodology and modeling is provided. Then a set of 

tests is made to verify the expected behavior of the control. This is followed by a series of 

simulations used to test the performance of the control laws under a variety of conditions that 
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would be typical of a satellite formation mission. These conditions include variations in 

disturbance forces and eccentricity of the leader satellite's orbit. A detailed analysis of the 

results of the simulations is performed with particular emphasis placed upon the fuel 

consumption and tracking performance. Chapter 4 ends with a discussion on the advantages 

and limitations of the proposed controllers. 

Chapter 5 concludes the thesis with some remarks concerning the control laws developed for 

the underactuated formation system and possible directions on future work. 
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Chapter 2 
Underactuated Satellite Formation 

In this Chapter, the concept and model of a satellite formation flying system is developed. 

Section 2.1 develops the equations of motion of the satellite formation system through the 

Euler-Lagrange method. The nonlinear dynamics model is linearized about the equilibrium 

manifold and a framework for controllability is presented in Section 2.2. In Section 2.3, the 

analytical solution of the linear equations of motion and the resulting formation 

configurations are presented. Section 2.4 presents a general overview of the perturbing and 

disturbing forces acting on the satellite formation. Finally, Section 2.5 outlines the 

performance criteria to be used to evaluate the controllers in numerical simulation. 

2. 1 Model Formulation 

A schematic of the satellite formation is shown in Figure 2.1, where ~ and r are 

respectively the position vectors of the leader and follower satellites relative to the Earth; 

p = [X y Z r is the relative position vector between the leader and follower satellite; fJ is 

the angular position of the leader satellite in the orbital plane; and finally, x, y, and z 

define the radial, tangential, and normal (RTN) coordinate frame of the follower satellite 

relative to the leader satellite, respectively [35]. Relative motion of a single follower satellite 

with respect to a leader satellite is considered in this study. A few assumptions concerning 

the formulation of the model will be established. The leader and follower satellites are treated 

as point masses in a geocentric inertial reference frame. A spherical Earth is assumed. 

Finally, it is assumed that no perturbations or control are acting on the leader satellite's orbit. 

As a result the behavior is defined by initial conditions. 
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Under these assumptions, the leader satellite's equations of motion are given as: 

(2-1) 

(2-2) 

where rc is the radius of the leader satellite's orbit, (} is and true anomaly of the leader 

satellite's orbit, and f.le is the gravitational parameter of the Earth. From these assumptions, it 

is now possible to develop the relative equations of motion of the follower satellite. 

Inertial 
Reference 
Frame 

Follower Satellite 

Figure 2.1: Schematic of the leader follower satellite formation [23] 

2.1.1 Energy of the System 

In order to apply the Euler-Langrage equation it is first necessary to derive the potential and 

kinetic energy of the system. The potential energy of the follower satellite is given as: 

V =- f.1em = f.1em 

r ~('"c+x)2+y2+z2 
(2-3) 
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where rc is the distance of the leader, or chief, satellite from the Earth, and m is the mass of 

the follower satellite. The kinetic energy of the satellite in the inertial coordinate frame is 

given as: 

1 ( . . ) T =-m r•r 
2 

(2-4) 

Since the goal is to find the relative equations of motion, Eq. (2-4) is transformed into the 

orbital coordinate frame as follows: 

m,· .,2 T=2~+p 

=~{I~ I' +IPI' + 2~·P} 

= ~ {[rJ +~OJ]'+[ xi+ y} + zk + mxp J' + 2[rJ + r,BJ]{ xi+ y} + zk + mxp J} 
(2-5) 

= ~ {~' + ~'0' +( x-By )' +(Y+Bx )' +(Z)' + 2[~ ( x- By)+ ~B(y +Bx) J} 

where iJ is the orbital angular velocity of the leader satellite. 

2.1.2 Euler-Lagrange Equations of Motion 

The Euler-Lagrange function of a system is defined as follows: 

L=T-V (2-6) 

where T and V are the kinetic and potential energies defined earlier. The equations of 

motion are then derived using the following equations: 

(2-7) 

Where q = [ x y z~ is a generalized coordinate vector, D is a generalized disturbance 

vector, and U is the generalized force vector. The partial derivatives of the potential energy 

of the system are given as follows: 
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av =J.lem(r+x) 
':\ 3 c ox r 

av = lle;n (y) 
dy r 

av =lle:Z(z) 
dz r 

The partial derivatives of the kinetic energy of the system are given as follows: 

dT · ·2 · 
- = mO y + mO x + mrc 8 2 

dx 
dT · ·2 · 
-=-m8x+m8 y+mrcO 
dy 

dT =O 
dz 

Taking the time derivative of the partial derivatives of the system as follows: 

d (aTJ .. 8.. 8.. .. 
dt dx = mx-m y-m y+m~ 

d (dTJ ·· · · ·· - - . =my+m8x+m8x+mrc8+m~O 
dt dy 

!!_(dTJ = mz 
dt di 

(2-8) 

(2-9) 

(2-10) 

(2-11) 

(2-12) 

(2-13) 

(2-14) 

(2-15) 

(2-16) 

Combining (2-8), (2-11 ), and (2-14 ), and substituting the equation of motion of the leader 

satellite (2-1 ), the equation of motion for the x-axis is given as follows: 

!!_(dLJ- dL =U +D 
dt ax ax x x (2-17) 

.. 8.2 2 e· . e·· mJ.le J.lem ( ) U D mx-m x- m y-m y---+-- r +x = + 
2 3 C X X 

rc r 

Similarly, combining (2-9), (2-12), and (2-15), the equation of the y-axis is given as: 

!!_(dLJ- dL =U +D 
dt dy dy y y (2-18) 

my-mfiy+ 2m0x+m0x+ lle;n y = UY + Dv 
r . 
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Finally, combining (2-10), (2-13), and (2-16) results in the equation for the z-axis: 

!!_(aL)- aL =U +D 
dt a.z: az z z 

mz + flem z = U + D 
r3 z z 

Therefore, the fundamental equations of motion of the system are given as follows: 

·2 · ·· J1 m ~ m 
mx-m8 x- 2m8y- m8y ---T-+~(rc + x) +Ux + Dx = 0 

r;; r 

my-miiy+2mBx+m0x+ 11e'; y+U +D =0 r Y Y 

mz + lle'; z + U z + Dz = 0 
r 

(2-19) 

(2-20) 

(2-21) 

(2-22) 

where Dx,y,z represents the perturbing forces acting along each axis and U x,y,z is the control 

forces applied along the tangential and normal axes, respectively. The underactuated nature 

of the formation system is achieved by removing control actuation in the radial direction, i.e. 

Ux = 0. Equations (2-20), (2-21), and (2-22) can be simplified by normalizing the equations 

with respect to the mass of the follower satellite, m. The resulting equations are given as 

follows: 

(2-23) 

(2-24) 

(2-25) 

where r=~(rc+x)2 +y2 +z2 , ux,y,z =Ux,y,z /m and dx,y,z =Dx,y,z /m represent the control 

and disturbance accelerations. 
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2.2 Model Approximations 

In order to develop control laws, the nonlinear equations of motion, given by Eqs. (2-23), 

(2-24) and (2-25), are simplified. Two approximations of Eqs. (2-23), (2-24) and (2-25) are 

derived. The first approximation is a 2nd order state dependent time varying model. The 

second approximation is a linear time invariant model. 

2.2.1 Second Order, Time-Varying Approximation 

The most significant nonlinearity in the equations of motion (2-23), (2-24), and (2-25) is the 

radial norm of the follower satellite, r. Therefore, the function for r is substituted into 

(2-23), (2-24), and (2-25) and are rewritten in the following form: 

.. '2 . . .. f.le f.le (rc +x) X X2 y2 z2 2 

[ ]
-X 

x=B x+2By+By+------ 1+2-+-+-+- +d 
2 3 2 2 2 X (2 26) rc rc ~ ~ rc ~ -

2 2 2 / 2 
• • • 2 • • • • f.le Y X X y Z 

[ ]

_3/ 

Y =B y-2Bx-Bx-- 1+2-+-+-+- +u +d 
3 2 2 2 y y (2 27) 
~ ~ rc rc rc -

2 2 2 / 2 

[ ]

_y 

z = _f.leZ 1+2~+~+1__+.£_ +u +d 
3 2 2 2 z z (2 28) 
~ ~ rc rc rc -

Although a variety of methods to linearize a system, the binomial series expansion is chosen 

due to the simplicity of its application. The binomial series is given as follows: 

(2-29) 

Using the assumption that the relative distance between the two satellites is much smaller 

than the orbital radius, i.e. x, y, z << rc, the terms inside the square brackets can then be 

replaced with the two first terms of the binomial expansion as follows: 

(2-30) 

(2-31) 
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(2-32) 

Expanding (2-30), (2-31) , and (2-32), and neglecting the third and higher order terms, the 2nd 

order approximation of the equations of motion is expressed as: 

y = ( 3 ~f -8 Jx+( 8' - ~; J y+(O} z+( -2B)x+(O)Y +(0} z + dy +uy (2-34) 

z = ( 0) X + ( 0) y + ( 3 1\x - 11; J z + ( 0) X+ ( 0) y + ( 0) i + d z + u z (2-35) 
rc rc 

The 2nd order approximation of the satellite can also be represented in state space form as: 

0 0 0 0 0 

0 0 0 0 0 
X X 0 0 0 

0 0 0 0 0 
y y 0 0 0 

• 2 2J1e 3J1eX .. 3J1 y 3J1eZ 20 [:} d z B +---- 8+-e- 0 0 z 0 0 0 
3 2r;,4 2r;,4 2r;,4 (2-36) 

'"" 

+ 
dt x x 0 0 d 

X 

y 3 JleY _ jj 02 _ Jle 0 -20 0 0 y 0 d 4 3 y 

i 
'"" '"" i 0 d 

0 0 3 Jle X - Jle 0 0 0 4 3 

'"" '"" 

2.2.2 Hill's Equations --
The 2nd order system approximation can be simplified into a linear, time-invariant model. If it 

is assumed that the leader satellite is in a circular orbit, then the angular acceleration is 

reduced to zero, iJ = 0 , and the angular velocity becomes a constant, iJ = n = ~ 11/ t;;3 
• 

Substituting these new relations and neglecting the 2nd order terms, Eqs. (2-33), (2-34), and 

(2-35) are reduced to the following: 

.X = 3n 2 x + 2ny + d x 

y = -2nx+u.v +d.v 
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(2-37) 

(2-38) 



•• 2 d z = -n z+uz + z (2-39) 

Equations (2-37), (2-38), and (2-39) are commonly referred to as either the Hill's or 

Clohessey-Wiltshire equations [36- 37]. The Hill's equations can also be represented in the 

state space form as: 

X 0 0 0 I 0 0 X 0 0 0 

y 0 0 0 0 I 0 y 0 0 0 

d z 0 0 0 0 0 I z 0 0 [::]+ 0 
(2-40) = + 

dt x 3n2 0 0 0 2n 0 x 0 0 dx 

y 0 0 0 -2n 0 0 y I 0 dy 

0 0 2 0 0 0 0 I dz z -n z 

A comparison of the uncontrolled, unperturbed tracking errors between the nonlinear model, 

and the 2nd order and LTI approximations are presented in Figure 2.2. The desired formation 

and tracking reference are defined in Section 2.3. The nonlinear model and the 2nd order 

approximation experience time varying tracking error in the radial and normal directions 

combined with a constant drift in the tangential direction. Furthermore, this illustrates the 

limits of linear time invariant approximation. 

2.2.3 Controllability 

After developing the model approximations in the previous section, it is necessary now to 

ensure that the approximations of the underactuated satellite formation system are 

controllable. A linear, time-invariant (LTI) system is defined to be controllable if the rank of 

the controllability matrix: 

(2-41) 

is equal to the number of system states [38]. For the Hill's equations, it is easily verified that 

the rank of the controllability matrix is equivalent to the number of states, specifically six. 

The concept of controllability can easily be extended to time-varying, state-dependent 

systems [39]. The generalized controllability test is defined as: 
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I 

rank [ B ( x, t) A ( x, t) B ( x, t) A 2 
( x, t) B ( x, t) An-I ( x, t) B (X, t) J = n Vx, t (2-42) 

where n is the number of system states. In this formulation, the controllability of the system 

is defined for all points of x and over the entire time range. It is important to note that, 

unlike the LTI definition, controllability may only occur locally over a defined region of 

states. The 2nd order approximation of the underactuated satellite formation system can be 

verified as controllable in a realistic operational region surrounding the leader satellite, or 

reference point. 
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Figure 2.2: Comparison of approximation models 
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2.2.4 Normalization 

In order to simplify the design and tuning of control laws for the satellite formation system, 

the equations of motion are normalized by the orbital frequency [25]. A new time base is 

defined as follows: 

r=nt (2-43) 

where n = ~Jle/ a3 is the mean orbital frequency. Using the new time base, the system states 

can be expressed as follows: 

. ' x=nx 

. ' y=ny 
•• 2 , 
y=n y (2-44) 

z = nz' z = n 2z" 

Substituting (2-44) into (2-34) and dividing through by 
• 2 

(}m' the normalized 2nd order 

approximation is then given as follows: 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 
X 

fi + 2f1e - 3f1eX .. 3p y 3f1eZ 
X 0 0 0 

B+-e- 0 0 0 y r3 2r4 2~4 2~4 28 y 
c c 0 - 0 [;]+ d z 2 n2 2 z 0 0 0 n n n + 

dr 
, , 

0 0 d (2-45) X 3 f1eY _ jj fj2 _ f1c X 
X 

y r4 r3 28 y I 0 d 
c c 0 0 0 

y 

z n2 n2 n z 0 I d 

3 f1eX _ f1e 
4 3 

0 0 ~ ~ 0 0 0 
n2 

In the case of the Hill's equations, where it has been assumed that the leader satellite is in a 

circular orbit, the mean orbital frequency n is equal to iJ. Substituting (2-44) into (2-40) and 

dividing through by n2 results in the normalized Hill's equations, expressed in state space 

form as: 
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X 0 0 0 1 0 0 X 0 0 0 

y 0 0 0 0 1 0 y 0 0 0 

d z 0 0 0 0 0 1 z 0 0 [~]+ 0 
(2-46) = + 

dt 
I 

3 0 0 0 2 0 I 0 0 dx X X 

I 0 0 0 -2 0 0 I 

1 0 dy y y 

0 0 -1 0 0 0 I 0 dz z z 

where dx,y,z and U.v.z are the frequency normalized disturbance and control accelerations. 

2.2.5 Integral Augmentation 

One of the major concerns in the development of any control system is achieving steady-state 

tracking around the equilibrium point; in particular, the elimination of any constant steady

state error. In order to address this concern, the system state vector and matrix can be 

augmented with additional integral states. In the case of the underactuated satellite formation 

system, t o new integral states can be introduced. The new states are expressed as follows: 

I 

Ys = Jy(r)dr (2-47) 

0 

I 

Zs = Jz( r)dr (2-48) 

0 

VVhen (2-47) and (2-48) are combined with the normalized Hill's equations (2-46), the 

augmented system is expressed as follows: 

Ys 0 0 0 I 0 0 0 0 Ys 0 0 0 

Zs 0 0 0 0 I 0 0 0 Zs 0 0 0 

X 0 0 0 0 0 I 0 0 X 0 0 0 

d y 0 0 0 0 0 0 I 0 y 0 0 [~]+ 0 
= + (2-49) 

dr z 0 0 0 0 0 0 0 1 z 0 0 0 

' 0 0 3 0 0 0 2 0 ' 0 0 dx X X 

' 0 0 0 0 0 -2 0 0 ' 1 0 dy y y 

' 0 0 0 0 -I 0 0 0 ' 0 1 dz z z 

The 2nd order approximation of the system equations can similarly be augmented with 

integrator states. It should be noted that due to the underactuated configuration of the system, 
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specifically the absence of control actuation along the radial axis, the integration of the radial 

position error cannot be achieved as this would render the system uncontrollable, according 

to the definition given in Section 2.2.3. However, as the critical separation distance of the 

formation is on the y and z axes, a constant steady-state error on the x-axis can be tolerated. 

2.3 Minimum Energy Configurations 

One of the primary concerns with any satellite mission is the reduction of fuel consumption. 

Although there are an infinite number of possible satellite formation configurations, the 

configurations are typically chosen to minimize the fuel requirements of the controller. These 

formations are known as minimum energy configurations. The minimum energy 

configurations are derived from the analytical solution of Hill's equations [40]. As a result, 

the controller to be implemented is only required to counteract the unmodelled system 

nonlinearity and the external disturbance forces. 

2.3.1 Analytical Solution of Hill's Equations 

The analytical solutions of the Hill's equations are derived using the frequency domain 

method [41]. Assuming no disturbances or control forces are acting on the system, the state 

space representation of the system (2-40) can be expressed in the simplified notation given 

as: 

x=Ax (2-50) 

where x is the state vector and :X is the time derivative of the state vector. Taking the 

Laplace transform on both sides of (2-50) as follows: 

sX ( s) - x ( 0) = AX ( s) (2-51) 

where x ( 0) is the state vector at time t = 0. Rearranging expression (2-51) as: 

X ( s) = [ sl- A rl X ( 0) (2-52) 

Applying the inverse Laplace transform to both sides of (2-52) yields: 
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x(t) = .1:1 
{[ sl- A r1

} x(O) 

=<I>(t)x(O) (2-53) 

where <I> ( t) is the state transition matrix. For the satellite formation system, the state 

transition matrix is given as: 

-3 cos ( nt) + 4 0 0 
sin ( nt) 2cos(nt) 2 

0 +-

' n n n 

-6nt + 6sin ( nt) 0 
2cos(nt) 2 

-3t+ 
4sin ( nt) 

0 
n n n 

<l>(t)= 
0 0 cos( nt) 0 0 

sin ( nt) 

n (2-54) 
3nsin ( nt) 0 0 cos ( nt) 2sin(nt) 0 

6n cos ( nt) - 6n 0 0 -2sin(nt) 4cos( nt)- 3 0 

0 0 -nsin ( nt) 0 0 cos( nt) 

A number of interesting formation configurations can now be developed from (2-52). The 

most significant configurations include the in-plane, in-track, circular, and projected circular 

formations [40]. For brevity, only the projected circular formation will be considered in this 

thesis; however, the work can easily extended to the other formation configurations. 

2.3.2 Projected Circular Formation 

In the projected circular formation, the leader and follower satellites maintain a fixed 

separation distance in the yz -plane. In the 3-dimensional environment, the formation 

actually consists of the follower satellite traveling in an elliptical path around the leader 

satellite. Therefore, the desired formation is dictated by the following constraint: 

(2-55) 

where the subscript d represents the desired trajectory and rd is the desired radius of the 

projected circle. As seen in (2-54), some terms are linearly proportional to time, t. In order 

to counteract the secular growth caused by these terms, the following constraints are applied 

to the initial conditions: 
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(2-56) 

Substituting (2-55) and (2-56) into (2-54) and after some algebraic manipulation, the 

equations for the desired motion of the projected formation are given as follows: 

xd { t) = rd sin { nt + ¢) 
2 

Y d { t) = rd cos { nt + ¢) 

zd ( t) = rd sin { nt + ¢) 

xd ( t) = rd n cos ( nt + ¢) 
2 

(2-57) 

yd { t) = -rdn sin { nt + ¢) 

id { t) = rd n cos { nt + ¢) 

where ¢ is the phase of formation relative to the orbit of the leader satellite. A schematic of 

the projected circular formation is shown in Figure 2.3. The projected circular formation 

mission has a particular advantage for sparse aperture missions, where the projected distance 

between the satellites is required to be fixed. 

With the desired trajectory of the projected satellite formation, it is now possible to derive the 

error states of the system. The error states are given as: 

y = y- yd 

z = z- zd 

- . . x=x-xd 
- . . y = y- yd 

z = i-id 

(2-58) 

Since the desired trajectory is derived from the analytical solution of the Hill equations 

(2-40), they are also the equations for the error states. 
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Figure 2.3: Projected circular formation of the leader follower satellite system 

2.4 Perturbations and Disturbances 

The Hill equations (2-40) describe the ideal behavior of the satellite formation . However, in 

reality there are many environmental factors affecting the orbital path of the satellites. The 

following subsections describe the dominant forces affecting the satellite formation. 

2.4.1 J2 Gravitational Effect 

The most significant perturbing force acting on a satellite, while in low Earth orbit, is the 

variations in gravitational force of Earth. Of these variations, the second degree zonal 
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spherical harmonic, J 2 = 1082 X 1 o-6 
' produces the primary disturbing force due to the Earth 

oblateness [ 42]. The motion of the leader satellite a satellite in the inertial frame, see Figure 

2.1, is described by the following equations: 

(2-59) 

where ~ = [ Xc ~ Zc] is the geocentric position vector of the satellite and r is the 

corresponding acceleration. The equations of motion of a satellite with the 12 disturbing are 

expressed in the inertial frame as: 

(2-60) 

where r and rc are the orbital radii of the leader and follower satellites and Re is the radius 

of the Earth. The position of the follower satellite in the inertial frame, defined by 

r = [X Y Z], is determined from the position of the leader satellite and the relative 

position between the leader and follower satellites. The conversion is expressed as follows: 

(2-61) 

where m is the argument of periapsis, .Q is longitude of the ascending node, and i the 

inclination. By applying three rotations, the relative disturbance between the leader and 

follower satellites is expressed in the orbital frame of the leader satellite. The rotations 

sequence is given as follows: 
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(2-62) 

Since it is required to using numerical propagation to calculate the differential 12 force, it will 

be strictly treated as a bounded disturbance Dx,y,z = [ dx dY dz J acting on the Eq. (2-26), 

(2-27), and (2-28) for the purposes of developing a control law. 

2.4.2 Aerodynamic Drag 

In LEO, the density of the Earth's atmosphere is sufficient to create a noticeable drag force 

on the spacecraft. The drag force, which is a function of the speed of the spacecraft, projected 

surface area, and density of the atmosphere, is typically modeled as a free molecular impact. 

As a result, the force on the spacecraft is continuous and in the direction opposite of travel. 

The drag force can also be radically varied by the effects of solar activity on the Earth ' s 

atmosphere. Although the drag force acting on each satellite in the formation can be very 

large, the relative drag force between them is much less. Kumar et al. [34] has determined the 

typical drift values caused by differential drag for a pair of 8 kg nano-satellites, with a 10% 

difference in projected surface area over a range of solar activity. The results of the study are 

given in Table 2.1. 

Table 2.1: Drift due to differential aerodynamic drag [26] 

Low Solar Activity Normal Solar Activity High Solar Activity 
Tangential 
Drift/day 
Radial 
Drift/day 

2.4.3 Thrusters 

15 m 110 m 460 m 

0.15 m 1.2m 4.5m 

The third greatest contribution of perturbations to the satellite formation is the physical 

imperfections of the thrusters. There are two sources for deviations in thruster performance. 

The first is thruster alignment on the spacecraft or error in the spacecraft's attitude. The result 

is components of the control thrust along axes other than those desired, thus creating a 
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disturbing force. The second deviation is in the thruster output, which can be caused by 

variation in the fuel pressure or physical degradation of the thruster hardware. 

2.5 Performance Criteria 

In order to evaluate and tune the controller to be presented in the following chapter, it is 

necessary to establish a set of performance criteria. With any space mission, the two key 

requirements on the success of the mission are stabilizing the spacecraft to within a desired 

trajectory and on minimizing the magnitude and consumption of fuel, which is typically 

limited by the size and mass of the spacecraft. These criteria are presented in detail in the 

following subsections. 

2.5.1 Projected Formation Error 

The projected formation error is the distance between the satellite and desired path in the 

yz- plane. The projected formation error is given by the formula: 

~y,z ( t) = ~ y2 
( t) + z2 

( t) 
(2-63) 

Since the projected error is critical for the success of any imaging or interferometer 

experiments, it serves as a quality performance measure for the control system. The proposed 

NASA mission for low Earth orbit (LEO) satellite formations suggested a projected 

separation distance error of no more than 5 meters [9] . Therefore, this will be the primary 

practical performance requirement, beyond stability, for the control system. 

2.5.2 Fuel Consumption, 11 V 

The fuel consumption of a spacecraft is typically measured in units of L\ V which is the 

summation of the changes of acceleration of the spacecraft over the period of an orbit. The 

formula for L\ V is given as follows: 

L\V P 
-. = J~u ~ ('r)+u~ (r)dr 
orbit 

0 
· 

(2-64) 

where P is the period of the leader satellite's orbit and u are the mass normalized control y,z 

forces. It is obvious that on any spacecraft, the length of a mission is determined by the 
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amount of fuel available. Therefore, after the critical requirement of maintain the projected 

formation error within bounds is met, the task is the reduction in the L1 V consumption. 

2.5.3 In-Plane Formation Error 

The third performance measure is the in-plane formation error. This is the error in distance 

from the desired trajectory in the orbital plane of the leader satellite, which is expressed as : 

(2-65) 

Although the in-plane error will not have a significant impact on the overall success of a 

formation mission, it does provide a useful check on the radial position and stability of the 

system. 
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Chapter 3 
Robust Sliding Mode Control 

In this chapter, the development of the robust sliding mode controller (SMC) is presented. 

First a brief introduction to variable structure control (VSC) and SMC is provided. This is 

followed by a review of the linear quadratic regulator (LQR) and state-dependent, time 

variant quadratic regulation. The robust linear, time-invariant SMC is then presented. This is 

followed by the robust state-dependent, time-varying SMC. Finally, the conventional 

switching control law is modified into the relay controller and the robustness bounds are 

redefined. The chapter concludes with some remarks on the tuning parameters of the 

controllers. 

3. 1 Review of Variable Structure Control 

Variable structure control (VSC) is a powerful nonlinear control technique. The VSC, as its 

name suggests, achieves the desired response by switching control values in order to vary the 

dynamic structure of the system. Although individually each dynamic structure may be 

unstable, a stable response can be achieved by switching between the structures. Figure 3.1 

shows the construction of a variable structure system. It is evident that although both 

subsystems are unstable, when combined the system will converge towards the equilibrium 

point at zero. 

Referring to Figure 3.1, it is evident the VSC can be developed for 2nd systems. However, for 

larger systems the design becomes more complicated; this resulted in the development of the 

sliding mode controller (SMC). The SMC is based on selecting a switching function, a, that 

is composed of the system's state variables. When the switching function reaches zero, 

a = 0 , also known as the sliding manifold or surface, the system takes on the constrained 

behavior of the manifold. While the system state trajectory is on the sliding manifold, it is 
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known as the sliding mode. The sliding manifold is typically chosen to force the system 

states to converge to the desired reference states. Finally, when the system states have 

converged to zero on the sliding manifold, the system has achieved equilibrium. Figure 3.2 

shows a representation of a typical SMC and the key components of the trajectory. 

n 

(a) X (b) 

(c) 

Figure 3.1: A stable variable structure system consisting of two unstable subsystems [ 43] 

Although the SMC is a powerful controller, it does suffer from the problem known as 

chattering. Chattering is the high frequency switching of the controller when the system has 

reached the sliding manifold. A variety of techniques have been suggested to counteract the 

chattering effect, including the use of the sigmoid, or saturation functions [44]. For the case 

of spacecraft system, where control thrust is limited to fixed impulsive values, the relay 

controller, which incorporates a dead zone around the sliding manifold, is employed. Further 

detail of the relay controller is provided in Section 3.5. Before the development of the sliding 

mode controllers, a review of the linear quadratic regulator (LQR) is presented. The LQR 
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methodology will later be applied to the design of the sliding manifold due to its ability to 

guarantee the stability of both linear time-invariant (LTI) and state-dependent, time-varying 

(SDTV) control laws. 

X 

0' =0 Reaching Phase 
Sliding Manifold 

~ Sliding Mode 

X 

Figure 3.2: Sliding mode controller operation 

3.2 Linear Quadratic Regulator 

Consider the generic system represented in the following form: 

x=Ax+Bu (3-1) 

where x{t)E IR.n is the state vector; AE IR.nxn is the state matrix; BE IR.nxm is the control 

matrix; and, u E IR.m is the control input vector. In order to evaluate the performance of a 

linear control law, a quadratic performance metric for the system is proposed as follows: 

If 

] = J[ XT (-r)Qx(-r)+uT (-r)Ru{-r)]d-r (3-2) 

where Q E IR.nxn and R E IR.mxm are the state and control weighting matrices, respectively; and 

tE IR.+and t1 E IR.+ are the current and final times of the evaluation, respectively. A linear 

control law for the system (3-1) is proposed as follows: 
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u =-BrPx (3-3) 

where P E JR.nxn is a positive semi-definite, symmetric matrix. The choice of P that 

minimizes the cost function (3-2) is determined by the solution of the differential Riccati 

equation (DRE). The DRE is expressed as follows: 

(3-4) 

where P E JR.nxn is a positive definite, symmetric matrix [38, 46- 47]. Two particular cases 

exist for the solution of the DRE. These are presented in the following two subsections. 

3.2.1 Linear, Time-Invariant 

If the system (3-1) is linear time invariant (LTI), then the pair (A, B) are constant. The cost 

metric (3-2) is then evaluated from t0 = 0 to tf = oo and the solution, P, will be constant. As 

a result, the DRE (3-4) satisfying the modified cost metric can be reduced to the well known 

algebraic Riccati equation (ARE) given as: 

(3-5) 

The standard numerical solution to the ARE is found using the method presented by Zak 

[38]. 

3.2.2 State Dependent, Time-Variant 

In the case of the state dependent, time-variant (SDTV) system (3-1 ), the matrix pair {A, B) 

is no longer constant. Therefore, the optimal control solution of the cost metric (3-2) is found 

by solving the differential Riccati equation (DRE). However, the solution of the DRE 

requires the system's states over the time span t ~ r ~ tf. Since the solution uses future state 

values, it can be considered non-causal and not realizable in practice. 

In order to resolve this problem, it has been suggested that the forward integration be 

changed to a backward integration [ 46, 4 7]. The time span of integration is then defined as 

t0 ~ r ~ t. The modified differential Riccati equation is then expressed as: 
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(3-6) 

where P' is a positive-definite, symmetric matrix. Although P' is a causal solution of the 

DRE, and realizable in practice, it is important to note that it only represents a realizable 

solution, not the optimal solution. 

3.3 Robust Linear Time Invariant Sliding Mode Control 

The design and proof of robustness for the linear time invariant sliding mode controller given 

is expansion on the method given by Hui et al. [48]. Specifically, the pole placement 

technique has been superseded with the application of linear quadratic regulation. Consider 

the linear time invariant (LTI) system expressed in the following form: 

x=Ax+Bu+d (3-7) 

where x E ~n is the state vector; A E ~nxn is the state matrix; BE ~nxm is the control matrix; 

u E ~m is the control input vector; and, dE ~n is the disturbance vector. The state vector can 

be decomposed into two state vectors, x = [xi x2r, where xi E ~n-m, x2 E ~m . The system 

(3-7) can now be expressed in the more specific form: 

(3-8) 

h A TT'D(n - m)x(n-m) A TT'D(n-m)xm A TT'Dmx(n-m) A Tf])mXm h b w ere II E .IN.. , 12 E .IN.. , 2I E .IN.. , 22 E .IN.. are t e su system state 

matrices; IE ~mxm is the identity matrix; and, d1 E ~(n-m), d2 E ~m are the matched and 

unmatched disturbances, respectively. Before the design of the controllers, two assumptions 

concerning the system (3-8) are required: 

Assumption 1: The pair (A, B) is controllable for all X E ~ n • 

Assumption 2: The matched and unmatched disturbances, di and d2 are 

bounded as: 
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JJd~JJ ~ all JJx~JJ + a12JJx2JJ +A 
JJd2JJ ~ a21 JJx~JJ + a22JJx2JJ + rJJuJJ + fJ2 

(3-9) 

where a 11 , a 12 , A, a 21 , a 22 , y, /32 are nonnegative constants and JHJ represents 

the Euclidean norm of a vector or matrix. 

Corollary 1: Since the pair {A, B) is controllable for all x E ~n, then the sub-

system defined by the pair { A 11 , A 12 ) is also controllable for all x E ~ n • 

From this framework, the robust LTI sliding mode controller is next developed. 

3.3.1 Switching Function 

The switching function is defined as follows: 

(3-10) 

where PE ~(n-m)x(n-m) is a positive definite, symmetric matrix that is to be determined. The 

objective here is to select a set of Lyapunov functions for the switching function, CY, and 

unmatched states, x1 , to prove the stability of the controlled system. Therefore, the system 

disturbances are redefined in terms of CY and x1 • Rearranging the switching function, Eq. 

(3-1 0) is given as: 

(3-11) 

The norm of (3-11) can be expressed: 

(3-12) 

Substituting (3-12) into (3-9), the disturbance norms are written as: 

JJd~JI ~ (all + ai211A~2PII) Jlx~JI + a12li(YII +A 

JJd2JJ ~ ( a21 + a2211A~2PII) JJx~JJ + a22JJCYJJ + rJJuJJ + fJ2 

(3-13) 

Equation (3-13) is expressed in the simplified form: 
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llrl~ll ~all llx~ll + alzllall + fJ1 

llrlzll ~ a21 llxlll + azzllall + rllull + flz 
(3-14) 

A candidate Lyapunov function for the unmatched states, x1 , is considered as: 

(3-15) 

where PE IR(n-m)x(n-m) is the positive definite, symmetric matrix mentioned earlier. Taking 

the derivative of the ~ results in the following: 

v.. ·Tp Tp· 
I =XI XI +XI XI 

T T =(A 11 X1 +A12x2 +d1) Px1 +x1 P(A 11x1 +A12x2 +d1) (3-16) 

=x~ (A~1P+PA11 )x 1 +x~A~2Px1 +x~PA 12x2 +d~Px1 +x~Pd 1 

Substituting (3-11) into (3-16) yields: 

The Algebraic Riccati Equation (ARE) described earlier is restated here as: 

(3-18) 

where Q E IR(n-m)x(n-m) is a positive definite symmetric matrix. In order to reduce the 

complexity of the design, the R matrix defined in Eq. (3-2) has been assumed to be the 

identity matrix. Substituting the ARE into the Lyapunov derivative and rearranging the terms 

results in the following expression: 

where Q + 2PA 12A~2P-PA12R-1 A~2P is a positive definite symmetric matrix. Applying a 

property of the eigenvalues: 
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Property 1: If M is a positive definite, square matrix, and q is a state vector, 

then the following property exists: 

where ~ = { ~, ... , 2(n-mJ are the eigenvalues of M. 

and taking the norm of (3-19), ~ can be expressed as: 

~ ~-min (I2Q+2PA
12
Af

2
P-PA

12
R- 1Af

2
P I) llx~ll 2 + 2 11x~II·IIPAJ 2 11·11all + 2llx~II·IIPII·IId~ll 

~ {-min (I2Q+2PA
12
Ai

2
P-PA

12
R- 1Ai

2
P I) llx~ll + 211PA1211·11all + 2 11PII·IId~ll} llx~ll 

(3-20) 

(3-21) 

Denoting 2 =min (12 r I r I) and a12 = 2IIPA12 II, (3-21) is reduced to the Q+2PA 12A12P-PA 12R- A12P 

following expression: 

(3-22) 

Substituting the unmatched disturbance norm relation (3-14) into (3-22) gives: 

(3-23) 

Collecting the terms together results in: 

(3-24) 

the derivation Lyapunov function of the unmatched states and its derivative. The significance 

of this Lyapunov function to the stability and robustness of the closed loop system will be 

discussed in Section 3.3.3. 
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3.3.2 Reaching Law Design 

A candidate Lyapunov function for the switching surface is chosen as follows: 

(3-25) 

Taking the time derivative of (3-25) yields: 

T • T 

V. aa a(ATp· ·) 
2 =M=M I2 xi +x2 (3-26) 

Substituting the equations of motion (3-8) and the rearranged switching function (3-11) into 

(3-26) results in: 

T 

V, = 
1

;

11 

( A:,P( A11x1 + A12x2 +d, )+(A 21 x1 + A22x2 +u +d,)) 

T 

= 
1

;

11 

( ( Ai,PA11 +A, )x, +( Ai,PA12 + A22 )x2 +u + Ai,Pd, +d,) 

T 

= 
1

;

11 

( ( Ai,PA11 + A21 )x, +( Ai,PA12 + A22 ){ O"- Ai,Px,)+u + Ai2Pd1 +d,) 

(3-27) 

= aT ({ A2I + A~2PAII - A~2PA12A~2P- A22A~2P) xi J 
liall +(A22 +A~2PA12 )a+u+A~2Pdi +d2 

A22 = A22 + A~2PAI 2 , the Lyapunov derivative (3-27) can expressed in the following form: 

T 

V, = 
1

;

11

(A,x, +A,p+u+Ai,Pd, +d,) 

A control law for the system is proposed as: 

sgn( ai) 

sgn( a 2 ) 
u = -17 = -qsgn (a) 

sgn( am) 
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where 17 is a positive constant. The signum function is defined by: 

1
+1 for q > 0 

sgn(q)= 0 for q=O 

-1 for q < 0 

where q E IR. is a variable. Substituting (3-29) into (3-28) yields: 

T 

V, = 
1

;

11 

(A 21x1 +A,p-qsgn(a)+A:2Pd1 +d,) 

Taking the norm of the Lyapunov derivative (3-31) yields: 

m 

(3-30) 

(3-31) 

(3-32) 

Using the relation given by :Liail ~ llall and substituting the disturbance norms (3-14), the 
i=l 

Lyapunov derivative can be expressed as: 

v2 ~ IIA2lll·llxlll + IIA2211·11all + IIA~2PII·IIdlll + lld211-17 

~ IIA2lll·llxlll + IIA2211·11all + IIA~2PII [ allllx~ll + a121!all + fl1] 

+ a21 llxlll + a2211all + rllull + /32 -17 

(3-33) 

Using the relation for the control input !lull= 17];; and applying the following notational 

simplifications: 

a21 = IIA211i +all IIA~2PII + a21 

a22 = IIA2211 + al211A~2PII + a22 

J.L = 11 ( 1- rrm) -IIA~2PII fl1 - fl2 

the derivative of the second Lyapunov function (3-33) is expressed as: 
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This completes the derivation of the Lyapunov function of the switching function and it 

derivative. 

3.3.3 Stability Bounds 

The region of stability for the controlled system is determined by the region satisfying the 

Lyapunov theorem for local stability. This theorem is stated as follows: 

Theorem 1: If, in a ball B , there exists a scalar function V { x) with 

continuous first partial derivatives such that 

• V ( x) is positive definite (locally in B) 

• V ( x) is negative semi-definite (locally in B) 

then the equilibrium point 0 is stable. If, actually, the derivative V { x) is 

locally negative definite in B, then the stability is asymptotic [43]. 

The two Lyapunov functions (3-15) and (3-25) satisfy the first requirement of Theorem 1. 

The derivative of the first Lyapunov function is given as follows: 

(3-36) 

Since the norm of the unmatched states, llx111, is always positive, the derivative of the 

Lyapunov function (3-36) will be negative, semi-definite, given the following condition: 

(3-37) 

The derivative of the second Lyapunov function is given by the following 

(3-38) 

In order to satisfy the second requirement of Theorem 1, the following condition can be 

applied to (3-38): 

(3-39) 
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The first boundary on the stability is determined by substituting (3-37) into (3-39) as follows: 

(3-40) 

Therefore, the outer boundary on the region of stability is defined as: 

(3-41) 

With the outer boundary of the region of stability defined, the inner boundary can now be 

developed. Upon reaching the sliding manifold, 0' = 0, the derivative of the first Lyapunov 

function (3-36), can be simplified to the following relationship: 

(3-42) 

The lower boundary on the region of stability is defined as the boundary of the interior region 

of instability. Specifically, the boundary layer occurs when v; > 0; this implies: 

(3-43) 

The inner boundary of the stability region is defined as: 

(3-44) 

Therefore, any trajectory starting inside the region defined by .E in Eq. (3-41) will 

asymptotically converge to the region r and remain there for all future time. This behavior 

is guaranteed by Theorem 1, thus proving the stability and robustness of the system. 
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3.4 Robust State Dependent Time Varying Sliding Mode Control 

In order to further improve the tracking performance of the controller, the more generalized 

robust, state dependent, time varying (SDTV) sliding mode controller is derived from the 

LTI SMC law developed in the previous section. The system model is defined as follows: 

X ( t) = A (X, t) x ( t) + B (X, t) u ( t) + d ( x, t) (3-45) 

where x(t)E IRn is the state vector; A{x,t)E IRnxn is the state matrix; B(x,t)E IRnxm is the 

control matrix; u ( x, t) E IRm is the control input vector; and, d ( x,t) E IRn is the disturbance 

vector. For the derivation presented here, the system is assumed to be in the more specific 

form: 

(3-46) 

where x1 E IRn-m, x2 E IRm are the matched and unmatched states, respectively; 

A m(n-m)x(n-m) A m(n-m)xm 
II E ~ ' 12 E ~ ' A mmx(n-m) 

21E ~ ' A E IR mxm are the subsystem state 22 

matrices; IE IRmxm is the identity matrix; and, d
1 
E IR(n-m), d

2 
E IRm are the matched and 

unmatched disturbances, respectively. For simplification, the ( x, t) notation representing the 

state and time dependence is removed. 

The following assumptions concerning the system are made: 

Assumption 1: The pair {A, B) is controllable for all XE IRn and tE IR+. 

Assumption 2: The matched and unmatched disturbances, d 1 and d2 are 

bounded as: 

lid~ II~ a~~llx~ll+al211x211+ A 
lld211 ~ a21 llxlll + a2211x211 + rllull + /32 
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where a11'a12 ,A,a2l'a22 , y,/32 are nonnegative constants and IHI represents 

the Euclidean norm of a vector or matrix. 

Corollary 1: Since the pair (A, B) is controllable for all X E 1R n and t E 1R +' 

then the sub-system defined by the pair ( A 11 , A 12 ) is also controllable for all 

3.4.1 Switching Function 

The switching function is given as: 

(3-48) 

where P'(x,t)E JR(n-m)x(n-m) is a positive definite, symmetric matrix. Since the desired result 

is to have the switching function, CJ, and the unmatched states, x1 , converge to zero, it will 

be useful to rearrange the switching function (3-48) into the following form: 

(3-49) 

Using the same method used in Section 3.3.1, the disturbance forces (3-47) can be expressed 

as follows: 

lldlll ~all llxlll + ai2"(J" + /31 
(3-50) 

lld211 ~ ii21 llxlll + a22"(J" + rllull + /32 

A candidate Lyapunov function for the unmatched states is assumed as: 

(3-51) 

Taking the time derivative of the Lyapunov function yields: 
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. T., ·T ' T '· 
~=XI p XI +XI p XI +XI p XI 

=x~P'x 1 +{A11 X1 +A12x2 +d1fP'x1 +x~P'{A11x 1 +A12x2 +d1) (3-52) 

T(.' T ' ' ) T T , T, T' T' =xl p +AIIp +PAll xl +x2AI2Pxl +xl p Al2x2 +dl Pxl +xl Pdl 

Substituting the rearranged switching function (3-49) into (3-52) yields: 

Tp'A ( AT p' ) dTP' Tp'd +XI 12 (J'- 12 XI + I XI +XI I (3-53) 

T (P., AT p' P'A 2P'A AT P') =XI + II + II- 12 12 XI 

TAT p' TP'A dTP' Tp'd +0' 12 xl+xl 120'+ 1 xl+xl 1 

The state dependent differential ricatti equation (SDDRE), described in Section 3.2.2, IS 

expressed in the current framework as: 

(3-54) 

where Q E lR(n-m)x(n-m) is a positive definite symmetric matrix, again the R matrix defined in 

Eq. (3-2) has been assumed to be the identity matrix. Substituting the SDDRE into (3-54) 

yields: 

(3-55) 

Taking the norm of (3-55) and applying Property 1 from Section 3.3.1, the following relation 

for V; is achieved: 

(3-56) 

where A= min (jA , T , , _ , T , 2 ., j) and a12 = 2jjP'A12 jj. In order to guarantee that the 
Q+2P A12A12 P -P A12R A12P- P 

eigenvalue, A, is positive and Property 1 holds, the following constraint is applied: 

VtE IR+ (3-57) 

Substituting the disturbance terms (3-50) into (3-56) gives: 
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(3-58) 

Collecting the terms together, (3-58) can be simplified into the following expression: 

(3-59) 

3.4.2 Reaching Law Design 

A candidate Lyapunov function for the switching surface is then chosen as follows: 

(3-60) 

Taking the derivative of the second Lyapunov function (3-60) yields: 

(3-61) 

Substituting the equations of motion (3-46) and the rearranged switching function (3-49) into 

(3-61) results in: 

V _ CYT (A~2P'x 1 + A~~P'x 1 + A~2P' ( A1 1x1 + A12x2 + d1 )J 
2 

-IICYII + ( A21X1 + AzzXz + 0 + dz) 

(jT (( A~2p' + A~2p' + A~2p' AI I + A21) XI J 
= IICYII +(A~2P'A 12 +A22 )x2 +u+A~2P'd 1 +d2 

(jT (( A~2p' + A~2p' + A~~p' AI I + A21) XI J 
= IICYII +(A~2P'A12 +A22 ){CY-A~2P'x1 )+u+A~2P'd 1 +d2 

= CYT (( A~2P' + A~2P' + A21 + A~2P'A 11 - A~2P'A12A~2P'- A22A~2P')x 1 J 
IICYII +(A22 +A~2P'A 12 )CY+u+A~2P'd 1 +d2 

Using the following simplified notation: 
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A21 = A21 + A~2p' + A~2p' + A~~P'All- A~2P'Al2A~2p'- A22A~2p' 
A22 = A22 + A~2P'Al2 

the Lyapunov derivative function is expressed in the following form: 

T 

V, = 
1

;

11 

(A,1x1 +A,,o-+u+Ai,P'd1 +d,) 

(3-63) 

(3-64) 

The control law (3-29) proposed in Section 3.3.2, is also applied to the time-variant, state

dependent system. The control law is restated here as: 

u=-1]sgn(a) (3-65) 

Substituting the controller into (3-65) yields: 

T 

V, = 
1

;

11 

(A, 1x1 + A,,o--l]sgn ( cr}+ Ai,P'd 1 +d,) (3-66) 

Taking the norm of the Lyapunov function derivative (3-66) as follows: 

(3-67) 

m 

Using the relation given by ~]ail~ llall and substituting the disturbance norms (3-50), the 
i=l 

Lyapunov derivative (3-67) can be expressed as: 

v2 ~ IIA.2lll·llxlll + IIA.2211·11all + IIA~2P'II·IIdlll + lld211-77 
~ IIA.2lll·llxlll + IIA.2211·11all + IIA~2P'II [all llx1ll + al211all + P1] 
+ a2l llx1ll + a22llall + rllull + P2 -17 

(3-68) 

Substituting the relation for the control input, llull = 17.j;;;, and applying the following 

notational simplifications: 
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a 2l =IIX 2 111+alli1A~2P'ii+a21 
azz = IIAzz ll + al z iiA~zP'Ii + a zz 

.u = 11 ( t- rv'm) -jjA~zP'iiP~- Pz 

The derivative of the second Lyapunov function is expressed as: 

(3-69) 

(3-70) 

With the second Lyapunov function, the stability bounds on the system can be determined. 

3.4.3 Stability Bounds 

The region of stability for the state-dependent, time-varying controller is obtained using the 

same method as discussed in Section 3.3.3 for the LTI controller. The outer and inner 

boundaries on the region of stability are given by: 

(3-71) 

(3-72) 

respectively. Again, any trajectory starting within :E will converge asymptotically towards 

r, and remain for all future time. It is important to note, however, that both :E and r are 

now time dependent regions. 

3.5 Relay Control 

In the design of any control law, particularly for space applications, a major consideration is 

always on the reduction of fuel consumption. For the robust LTI and SDTV sliding mode 

controllers presented above, the switching control law: 

u = -17sgn (a) (3-73) 
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is subject to the undesirable effect known as chattering. In order to counteract the chattering 

effect, the more effective relay controller is introduced. The controller is expressed as 

follows: 

(3-74) 

where 8 is a positive constant. The relay controller derives its name from the similarity to a 

physical relay which experiences a momentary dead zone while being switched between 

states [26]. When the switching function is outside of the dead zone, 10'1 > 8, the relay 

control law (3-74) is identical to the switching controller (3-73) and it achieves improved 

performance by removing control action around the sliding manifold, which eliminates the 

chattering effect. Furthermore, since any control action while the system is within the interior 

r region has no guaranteed effect on the system behavior, eliminating the control input in 

the region will conserve fuel that would otherwise be wasted. 

3.5.1 Modified Boundary Conditions 

With the relay controller, it is necessary to redevelop the boundaries on the systems stability. 

Three regions are provided that determine the behavior of the system. The first region 

defining the stability of the system is defined by: 

(3-75) 

which shows that the norm switching function will converge asymptotically towards 8. 

Upon reaching this point, the systems performance is governed by the derivation of the 

second Lyapunov function (3-36). The second region is given as: 

(3-76) 
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where the norm of the switching function is bounded and the unmatched states, jjx1 II, will 

converge asymptotically towards zero. The final, unstable interior region is given by the 

following expression: 

(3-77) 

Therefore, any trajectory starting in L. (3-75) converges asymptotically towards either L1 

(3-76) or r (3-77). Any trajectory entering or starting in L1 (3-76) then converges 

asymptotically to r (3-77). Thus, the relay controller is proven to be stable by Lyapunov 

stability theory, i.e. Theorem 1. The regions of stability can be more easily visualized in 

Figure 3.3. 

II oil 

..uan -a:nA 
aZI an + al:~a:n 

~u o../m + ~ ..u-~2orm llx~ll 
all all a:n 

Figure 3.3: Robust stability map for the relay sliding mode controller 
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3.6 Conclusions 

From the analysis presented in this Chapter, it has been successfully proven that both the 

conventional switching and relay laws can provide robust stability to LTI and state

dependent, time-varying systems in the presence of both matched and unmatched disturbance 

forces. The tuning and hence performance of the controllers are dependent on the parameters 

Q, which define the behavior of the sliding manifold, and 7J, which affects the reaching 

operation of the controller. Furthermore, the relay control law is additionally dependent on 

the width of the dead zone, 8 , surrounding the sliding manifold. It is also apparent that the 

control output has been developed in the form of bang-bang style actuation, allowing for its 

application to typical thruster hardware on satellite systems. With the derivation of the new 

sliding mode control laws and their associated stability proofs, presented in this chapter, it is 

now possible to apply them to the underactuated satellite formation flying system. 
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Chapter 4 
Numerical Simulations 

In this chapter, the proposed robust relay controllers developed in Chapter 3 are applied to 

the underactuated satellite formation system. The primary concern in the design of the 

controller is to maintain the projected formation. In order to ensure this requirement, the 

integral augmented Hill's equation and 2nd order approximation state space models 

developed in Section 2.2 are employed. Using the augmented system models, the LTI and 

SDTV relay controllers, proposed in Chapter 3, are applied to the augmented Hill and 2nd 

order models, respectively. In order to validate the control laws on the underactuated 

formation flying system, it is necessary to perform numerical simulations. The numerical 

simulations are developed through the SIMULINK® modeling environment in the 

MATLAB® programming system. The simulations are propagated through the use of a 

variable-step fourth order Runge-Kutta ordinary differential numerical integrator [ 49]. 

4. 1 Controller Design 

The performance of the proposed controllers is determined by three parameters, the sliding 

manifold weighting matrix Q , the switching coefficient 17, and the dead zone width 8. In 

order to simplify the analysis, the weighting matrix is redefined as: 

Q = ql6x6 
(4-1) 

where q is a positive scalar and l 6x6 is a 6x6 identity matrix. Thus, the choice of the 

weighting matrix is reduced to the selection of the scalar q. In addition, the control 

weighting matrix has been chosen as R = 1 12x2 • Upon substitution of the control weighting 

matrix, eigenvalues in the robustness proof reduce to the eigenvalues of Q. Since the 
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augmented state space models are already in the specific state space form (3-8), the relay 

control laws for the underactuated satellite formation system is given as follows: 

u = tqsgn ( O"Y) for !a.v! > 8 
y 0 for !a.v ! ~ 8 

(4-2) 

u = { -qsgn ( o-J for lazl > 8 
z 0 for lazl ~ 8 

(4-3) 

where the sliding manifolds are defined as follows: 

a= A~zP { q) XI + Xz 
(4-4) 

[ : : ] = A ;,P ( q )[ y, z., x Y Z iJ' + [ ~] 

and P is the solution of the Riccati equation (3-4 ). 

4.2 Simulation Model 

The particular scenario considered here consists of formation operating in a near circular, 

sun-synchronous, low Earth orbit (LEO) with an altitude of 500 km. In the simulation, the 

system model is defined by Eq. (2-23), (2-24), and (2-25) for the relative motion between the 

leader and follower satellites, and by Eq. (2-1) and (2-2) for the motion of the leader satellite 

in orbit about the Earth. In order to maintain consistency throughout the analysis, all 

simulations use the parameters given in Table 4.1, unless explicitly stated otherwise. The 

dominant force acting on the formation is the differential J2 force, see Section 2.4.1. Figure 

4.1 shows the disturbance responses over the course of five orbits while the system follower 

satellite is in the projected formation. 

In the case of the state dependent, time varying sliding mode controller, the solution of the 

realizable differential Riccati equation is evaluated numerically. The matrix P in the case of 

the SDTV controller is initialized to the solution of the simpler algebraic Riccati equation. 

With the formation configuration and parameters defined, it is now possible to establish the 

controllers' stability bounds. 
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Table 4.1: Simulation parameters for the formation tests 

Parameter 
System 

Gravitational Parameter of Earth, 11 

Radius of the Earth, RE 

Semi-Major Axis of Leader Satellite, a 
Eccentricity of Leader Satellite, e 

Inclination of Leader Satellite, i 
Ascending Node of Leader Satellite, Q 
Peri apsis of Leader Satellite, m 
Desired Projected Formation Radius, rd 

Formation Phase, (/) 

Sliding Mode Controller 
Manifold Tuning Parameter, q 

Switching Coefficient, 1] 

Dead Zone Boundary, 8 
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Figure 4.1: External disturbance acting on the follower satellite 
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Figure 4.2: Matched and unmatched disturbance forces resulting from differential J 2 disturbance 
compared to formation radii 

4.3 Robustness 

The first step in defining the bounds on the stability is to develop the equations of the 

disturbance forces acting on the system. Referring to Eq. (3-9) the boundary approximations 

for a disturbance are restated as follows: 

lid~ II~ aJ 1 llx1 II+ aJ2IIx2ll + fJ1 
lld2ll ~ a21 llx~ II+ a22llx2ll + rllull + fl2 

(4-5) 

Using the relation between the disturbance forces and the formation radius as shown in 

Figure 4.2, the values of the coefficients in Eq. (4-5) can be derived. The values of the 

coefficients and constants of Eq. (4-5) are defined in Table 4.2. 
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Table 4.2: Disturbance parameterization 

Disturbance Parameters Value 

all 6.8569x10-3 

~2 0 

a21 6.8569x10-3 

a22 0 

/31 4.0815 

/32 4.0815 
r 0 

Following the procedure developed in Section 3.5 of Chapter 3, the regions of stability for 

the formation system are defined as follows: 

L = {( X1 'CY) f5 < II all < !'~ 1 - ~21~1 'Q21 llx~ll + Q22llall < 11} 
a22a11 + a12a21 

(4-6) 

= { ( x1, a) 11.4142 <II all< 22.2246, 7 .2696llx111 + 2.851llall < 8140.3053} 

d = {(XI' (Y) Jl-A a22 g > llxlll > ~12 l5 + ~ 'II all< g} 
a21 all ali 

(4-7) 

= { {xl'a)l1119.2256 > llx1ll > 463.9729,llall < 1.4142} 

r = {(XI' (Y) [11x1ll < ~12 
f5 + ~ ) n (II all < J)} 

ali ali 
(4-8) 

= { (XI' (Y) j(llxlll < 1.4142) n(llall <J)} 

where 1: is the region of convergence for the unmatched states and switching function, d is 

the convergence region for the unmatched states only, and r is the inner unstable region. 

The specific values of the coefficients for the satellite formation system are provided in Table 

4.3. These regions define the guaranteed stability and response of the formation system based 

on the current knowledge of the system dynamics and disturbance forces. 
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Table 4.3: Robustness boundary parameters 

Robustness Boundary Parameters Value 
a

11 
0.2932 

4.4 Simulation Responses 

9.1155 

7.2696 

2.8510 

123.1235 

8140.3 

In this section, the responses of two numerical simulations are presented. The first simulation 

assumes that the satellite formation starts in the formation with no initial error. The second 

simulation evaluates the controller when a 5% offset from the ideal initial positions is 

present. 

4.4.1 Ideal Initial Conditions 

The first simulation assumes that the follower satellite has no initial offset error from the 

desired formation trajectory. The specific starting conditions for the follower satellite are 

given in Table 4.4. The steady-state tracking errors as shown in Figure 4.3, demonstrate the 

stabilizing effect of the controller on the formation system. The y error, at steady-state, is 

bounded to within ±2m and is centered at zero. Similarly, the x error demonstrates a 

bounded steady-state operation in the range of ± 1.5 m. However, it is evident that the 

oscillations do not converge around zero but have a minor offset instead. The steady-state 

operation of the y error around zero and offset in the x error can be directly attributed to the 

presence of the integral error terms in the design of the sliding manifold. The z error, exhibits 

similar response to the x y error, demonstrating a bounded response to within the ± 1.5 m . 
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Table 4.4: Ideal initial state conditions of the satellite formation system 

System States Value 

5 

5 

Radial position, x 176.8 m 

Tangential position, y 353.6m 
Normal position, z 
Radial velocity, .X 

Tangential velocity, y 

Normal velocity, z 

10 

10 

353.6m 

0.1956m/s 

-0.3913m/s 

0.3913m/s 

15 

15 

10 15 
Orbits of Leader Satellite 

20 

20 

Figure 4.3: Satellite formation tracking errors with ideal initial conditions 

25 

25 

25 

The control forces in the tangential and normal directions have fixed magnitudes of either 0 

or ±lOmN/kg ; this behavior is better known as bang-bang style of control. When the 

control force profile is compared to the response of the switching functions, as shown in 

Figure 4.5, it is found that the control force acts to keep the switching function within the 
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dead zone boundary, 8. Furthermore, while the switching functions are within the dead zone 

region, no control action is taken. 
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Figure 4.4: Controller output response with ideal initial conditions 

Finally, the responses of the LTI and SDTV relay controllers are found to be similar with 

slight variation in phase following the 5th orbit. The probable cause for this difference might 

be due to the DRE, which changes as a result of the initial controller activity and then 

eventually reach a steady-state response. 
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Figure 4.5: Switching function response with ideal initial conditions 

4.4.2 Ten Percent Offset in Initial Conditions 

In the second simulation, the system is initialized with a 5% offset in the position errors from 

the ideal formation. The initial values of the position errors and the norms of the switching 

functions and unmatched states are given in Table 4.5. From the robustness bounds defined 

in Section 4.2, the system starts within the region of convergence, .L. As a result, the 

formation tracking error states, and the switching function and unmatched state norms, are 

guaranteed to converge toward the inner stability region, r. 
The first response, as shown in Figure 4.6, clearly demonstrates the follower satellite's 

convergence towards the desired projected formation configuration. Similarly, the formation 

tracking error response shows convergence towards a region around the equilibrium, see 

Figure 4.7. In both the plots, it is quite evident that the overall system response is stable, 

which was guaranteed by the robustness of the control law. 
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Table 4.5: Initial error states with a 5% offset from ideal conditions 

Error States Value 
Tangential integral, Ys Om· s 

Normal integral, Z
5 

Radial position, i 
Tangential position, y 
Normal position, z 
Radial velocity, i 
Tangential velocity, y 

Normal velocity, z 
Norm States 

0 

y[km] 

Unmatched states, llx1 11 
Switching functions, llall 

-0.5 

-1 -0.4 

Om·s 

8.84m 

17.67m 

17.68m 

O.Om/s 

O.Om/s 

O.Om/s 

26.5165 

16.567 

x [km] 

Figure 4.6: Satellite position state response with 5% initial offset from ideal starting conditions 
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Figure 4. 7: Tracking error response with 5% initial offset from ideal positions 

Figure 4.8 shows the response of the control thrusters. During the first orbit, while the 

tracking errors converge towards the steady-state, the controller experiences a short 

continuous pulse followed by an intense period of high-frequency control actuation. The 

short pulse is a result of the controller driving the switching functions to the sliding manifold. 

The high-frequency oscillations are due to the follower not being in the desired trajectory, 

which only requires control action to counteract the disturbing forces and nonlinearities that 

were not included in the model approximations. 
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Figure 4.8: Controller response for 5% offset from ideal initial positions 

The most interesting results are shown in the responses of the norms switching functions and 

unmatched states, given in Figure 4.9 and Figure 4.1 0, respectively. The trajectory of the 

norm of the switching function, which is initially within the .L convergence region, moves 

directly to the .d- r region, where it remains. This behavior was the expected result of the 

robustness analysis which guaranteed the convergence of the switching function to the .d- r 
if the trajectory started inside the .L region. Furthermore, since the norm of the switching 

functions is also the Lyapunov function, while in the .L region, the slope of the trajectory is 

negative, satisfying the Lyapunov stability. It is evident that the norm of the switching 

function converges within an extremely short period of time. However, this action only 

represents the reaching phase of the control law. The actual system states do not achieve 

steady-state for a full orbit. 
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Although the norm of the unmatched states begins within the .L region and enters the r 
region, it continues to demonstrate convergence to a much smaller value than was predicted 

by the robustness boundaries. It is important to note that the boundaries of r determine the 

maximum outer bounds, but the norm trajectories may settle to a much smaller value, as is 

demonstrated in the response of Figure 4.1 0. 
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Figure 4.9: Norm of switching functions response with 5% initial offset from ideal positions 
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Figure 4.10: Norm of unmatched states response with 5% initial offset from ideal positions 

4.5 Controller Tuning and Performance Trade-Offs 

5 

In controlling the satellite formation , the performance of the formation is affected by several 

parameters. To achieve the desired performance, three tuning variables can be adjusted. The 

tuning variables are the sliding manifold gain, q; the switching coefficient, 17; and, the dead 

zone boundary width, o. The following subsections analyze, through numerical simulations, 

the effect of the control variables on the formation performance criteria proposed in Section 

4.1. 

4.5.1 Sliding Manifold Gain, q 

The largest contributing factor affecting the performance of the controller is the design of the 

sliding manifold. As described in Section 4.1, the design of the sliding manifold can be 

reduced to the selection of a single positive constant gain, q . Figure 4.11 and Figure 4.12 
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show the transient responses of the performance criteria of the formation system with a 5% 

initial offset for a range of q . It is apparent that, although each transient response shares a 

similar profile, the value of q is directly influencing the settling time of the transients. In the 

case of the tracking errors, increasing the values of q results in shorter response times of the 

transients . However, the ~ V performance demonstrates the opposite trend with decreasing 

fuel consumption when q is increased, particularly for values of q > 1. Therefore, in order to 

achieve a settling time of within 1-2 orbits and reduce the total ~ V, the sliding manifold 

gain q = 0.5. 
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Figure 4.11: Comparison of the manifold tuning gain against the performance criteria for the linear time 
invariant sliding mode controller 
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Figure 4.12: Comparison of the manifold tuning gain against the performance criteria for the state 
dependent, time varying sliding mode controller 

4.5.2 Switching Coefficient, f1 

10
1 

The second factor affecting the performance of the satellite formation is the switching 

coefficient, 1J. In Figure 4.13, a comparison between the performance criteria and the 

switching coefficient is provided. The formation tracking errors show no discernable relation 

to the switching coefficient. In contrast, for values of 1J > 2, the ~ V consumption decreases 

exponentially; after which, the ~ V becomes relatively constant. Therefore, choosing 1J::::: I 0 

will reduce the fuel consumption to a reasonable level but ensure the controller is still 

capable of reaching the sliding manifold upon initialization. 
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Figure 4.13: Comparison of the switching coefficient against the formation performance criteria 

4.5.3 Dead Zone Width, l> 

The final controller parameter is the dead zone width, 8. Figure 4.14 shows the formation 

performance criteria against the width of the dead zone boundary. It is evident that for 

increasing values of 8, the formation tracking errors also increase. This is expected since 

the interior stability region r, which is a function 8, defines maximum expected steady

state error. The .L\ V performance shows the exact opposite trend. For values of 8 ~ 1, the 

.L\ V remains constant with changes in the dead zone width; however, as 8 -7 0 the fuel 

consumption begins to increase dramatically, by nearly an order of magnitude. This result is 

expected since at 8 = 0, the relay controller simplifies to the basic switching controller, 

u = -17 sgn (a) . The switching controller attempts to bring the switching function to exactly 

zero, which requires significantly greater control action, causes chattering, and provides no 

67 



significant improvement in the formation tracking error performance. Therefore, in order to 

reduce the fuel consumption and the tracking errors, the dead zone width should be chosen as 

8:::::1. 
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Figure 4.14: Dead zone bandwidth compared to the performance criteria 

4.6 Physical and Formation Parameters 

Although the performance of the system can be adjusted through the careful selection of the 

control parameters q,17, and 8, there are many other factors that effect the performance of 

the system. The most significant factors are the phase and radius of the satellite formation, 

and the eccentricity of the leader satellite's orbit. The following subsections evaluate the 

effects of each of these variables on the formation performance. 
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4.6.1 Formation Phase, cp 

As the leader-follower formation can be expanded to include multiple follower satellites, it is 

desirable to determine the effect of the phase of the follower on the formation performance 

criteria. A comparison of the formation's phase and the performance criteria is shown in 

Figure 4.15. Although the phase of the formation has no significant influence on the fuel 

consumption, it does demonstrate an effect on the tracking errors. In particular, minimums in 

the formation tracking errors occur when (jJ = 90° , 270° and maximums when (jJ = 30° , 210° . 
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Figure 4.15: Performance measures compared to formation phase 

4.6.2 Formation Radius, r d 

Figure 4.16 shows the effects of formation radii on the performance criteria. It is evident that 

both the formation tracking errors and the fuel consumption all exhibit a positive linear 

relationship with increasing values of the radius. It is interesting to note that although the 
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formation tracking error is increasing with the larger formations, the ratio of the tracking 

error to the formation radius stays constant at approximately 0.3%. 
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Figure 4.16: Comparison of the satellite formation radius against the performance criteria 

4.6.3 Formation Eccentricity, e 

A critical factor affecting the behavior of the satellite formation is the eccentricity of the 

leader satellite's orbit. As shown in Figure 4.17, the formation performance criteria are 

measured against the eccentricity of the leader satellite. Although no direct effect is evident 

between the eccentricity and the tracking performance, there is a clear degradation in the ~ V 

performance with increasing eccentricity. However, the more important result is the 

difference between the LTI and SDTV relay controllers. Although it would be expected that 

the SDTV relay controller should perform better since it is able to account for some of the 

system nonlinearities, which increase with eccentricity, the LTI relay controller uses the 
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optimal solution of the ARE as opposed to the SDTV relay controller which uses the 

realizable solution of the DRE. The result is the optimal solution of the ARE in fact performs 

better than the realizable DRE solution. 
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Figure 4.17: Comparison of the eccentricity of the leader satellite's orbit and the performance criteria 

4. 7 Conclusions 

The results of the numerical simulations have revealed many important properties of the 

relay controllers' effects on the underactuated satellite formation . First and foremost, the 

theoretical stability and robustness bounds predicted by Chapter 3 were verified through the 

numerical simulations. Second, through careful selection of the control parameters, the 

system can be tuned to provide relatively good performance. Finally, the performances of 

both the controllers were found to be similar in most cases. 
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Chapter 5 
Conclusions & Future Work 

In this thesis, the control of an underactuated satellite formation using robust nonlinear 

techniques was examined. Two new sliding mode control laws were developed in Chapter 3, 

the first using the linear, time-invariant model of the formation system, also known as the 

Hill's equations, and the second using a 2nd approximation of the equations of motion. 

Regions of stability, in the presence of matched and unmatched disturbing forces, were 

determined for both controllers. The control laws were further advanced by modifying them 

into the form of a relay sliding mode control, which incorporates a dead zone boundary 

around the sliding manifold, the desired effect being a reduction in fuel consumption and the 

chattering effect. Through the numerical simulations, presented in Chapter 4, the robustness 

of the proposed control laws were demonstrated to match the theoretical robustness 

boundaries determined from Chapter 3. 

5. 1 Conclusions 

The most significant result of the study has been the development of the robust sliding mode 

control methods for the underactuated satellite formation system. This represents a 

significant step forward since the previous control methodologies applied to the system have 

not explicitly considered controller's stability in the presence of disturbing forces. A 

secondary result was the use of the 2nd order approximation of the equations of motion in the 

design of the control law, where only the Hill's equation had been applied previously. It was 

found that the state dependent, time varying control law did not show any noticeable 

improvement in the performance. 

Through numerical simulations, the control laws were tested against a range of tuning 

parameters and formation variations. The results of the simulation showed that controllers 

could be tuned to achieve steady-state formation tracking errors within ±5 m and ~ V 
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consumption on the order of I xI o-3 
{ m/ s) /orbit. Although larger degradation in the 

controller performance occurred for more extreme formation radii, i.e. rd > 3 km , and orbital 

eccentricities, i.e. e > 0.005, this would be expected since the nonlinear equations of motion 

would start to show significant deviations from the Hill's and 2nd order approximation 

equations. 

5.2 Future Work 

Despite the advances in the control of the underactuated satellite formation developed in this 

thesis, the control laws have only been tested within a small range test conditions. The first 

recommendation, therefore, is to expand the range of testing scenarios for the proposed 

control laws. This includes the use of alternative formation configurations, larger parameters 

variations and high-fidelity models of the disturbing forces, and extending the simulations 

over larger time-spans to evaluate the long-term fuel consumption. The second area of 

development is to evaluate the performance of robust control laws in the task of formation 

reconfiguration. The third improvement in the development of the underactuated satellite 

formation is to redevelop the robust control laws in the discrete time domain. As the final 

spacecraft hardware is only capable discrete operation, the advancement to discrete control 

laws is a necessity. 
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