
Unit Commitment Using Complementarity

by

Steven Victor Craig

Bachelor of Engineering, McMaster University, 2007

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2015

c©Steven Victor Craig 2015



AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of

scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in

total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

ii



Unit Commitment Using Complementarity

Master of Applied Science 2015

Steven Victor Craig

Electrical and Computer Engineering

Ryerson University

Abstract

A need exists to optimally dispatch power generation to meet per-hour requirements on the power grid.

This is a well documented and established problem called Unit Commitment (UC). It is commonly

formulated as a Mixed Integer Linear Program (MILP), which utilizes intelligent solvers to produce a

solution with speed and accuracy. The linear nature of MILP requires linear approximations of nonlinear

constraints.

This work introduces the Theory of Complementarity in order to remove integer variables, resulting in

a continuous rather than a discontinuous solution space. This permits use of classical solution techniques,

as well as nonlinear constraints, thereby increasing accuracy.

A formulation is developed to demonstrate a proof of concept of the complementarity theory as

used in UC. A subset of constraints will be used and the results will be compared against an MILP

optimization, for 10- and 26-generator configurations. Similar trends in generator status and total cost

are noted.
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Chapter 1

Introduction

In this chapter, a high level description of power systems and the Unit Commitment problem is first

presented, followed by a survey of related work. Finally, an overview of the thesis objective and document

summary is presented. By the end of this chapter, the reader will have an understanding of the Unit

Commitment problem, how the problem has been addressed in the past, what the goals are of this thesis,

and how the thesis is organized.

1.1 Introduction to Unit Commitment

A power system operator’s core objective is to keep the power system running. The operators are given

day-ahead load demands and generation source availabilities, where their task is to switch on generation

sources in order to meet the load demands. The operator’s task is made more complicated with events

such as unforeseen generator outages and/or unforeseen spikes in demand. When these contingencies

are not planned for, the system’s operating frequency may drop, or worst case, the reliability of the

system may be in jeopardy. Two common solutions to maintain system stability are to have additional

generation running on standby (ready to be connected to the grid), or practise load shedding (“blackouts”

for customers). Having such additional generation is expensive, and being without power is not desirable

for any consumer.

The system operator’s secondary objective is to keep the system running in a cost-effective manner.

Costs associated with each generation source include the cost to simply remain available for selection
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CHAPTER 1. INTRODUCTION 1.1. INTRODUCTION TO UNIT COMMITMENT

(dispatch), the cost of switching the unit(s) on and the cost per unit of energy produced. Such costs vary

dramatically with the type of generator in question, e.g. a nuclear reactor will have different start-up

costs than a modestly sized natural gas generator. Careful selection of which generators are dispatched

can have a dramatic effect on the cost of energy to the final consumer.

Reliability and cost planning must be done in conjunction with each other, which becomes a very

complex challenge. The Unit Commitment (UC) optimization problem mathematically facilitates system

operators to dispatch power generation reliably and optimally against day-ahead forecasted demands.

It follows that sources of generation whose outputs are not certain, namely renewable sources such as

wind and solar, present challenges to the UC problem. Such sources cannot be dispatched in the sense

that they cannot be commanded to produce a certain output at a certain time.

The UC problem is well documented and well established. UC is calculated for day-ahead use,

typically for a full 24 hour period, and in per-hour increments. For a generator to be mapped as

committed or not, a status variable is assigned and classically restricted to an integer value of 0 or 1

(off or on, respectively) for each generator segment, for each hour. Generators available for dispatch

generally carry with them a host of properties beyond cost that will affect how UC commits them for

use, for example that they cannot be turned on instantly and take time to produce full power. These

properties are formulated mathematically as optimization constraints: power input/output balance at

each bus in the system, limits to how quickly a generator requires to be turned on or off, limits to

how long a generator must remain on or off for and initial running conditions of the generator if it is

running at time “t−1” to when the UC computation begins. Practical systems also account for operating

contingencies such as generator outages or a demand in excess of the prediction, so additional generation

is typically dispatched to remain on standby for potential use.

The industry standard method [1] of computing UC is as a “Mixed Integer Linear Program” (MILP).

An MILP is a subset of a “Integer Linear Program”, where all variables of the optimization are restricted

to the set of Integers, while as an MILP can also have continuous variables. In the case of UC, the

generator status variable is the one restricted to be an integer, or more specifically a binary integer,

with a possible value from the set {0, 1}. The first disadvantage of using a Linear Program for UC is

the requirement that all constraints have to be linear; nonlinear constraints need to be approximated.

An inherent property of an optimization with an integer restricted variable is that the solution space is

discontinuous, which introduces a major disadvantage in that solution methods involving derivatives –
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CHAPTER 1. INTRODUCTION 1.2. REVIEW OF THE STATE OF THE ART

or more generally a smooth objective function – cannot be used. An example of such solution method

is the well-known Newton-Raphson method, which relies heavily on function derivatives.

1.2 Review of the State of the Art

The past few decades have seen numerous approaches to solving the UC problem, each of course with its

own benefits and drawbacks. Methods described in this section have formulations very similar to each

other, so a common and generalized formulation is presented first, with individual nuances described in

detail on a per method basis.

Minimize Total Cost TC, made up of a quadratic cost function involving fixed unit costs an, energy

costs bn, startup costs dn. Ptn represents the amount of power to be generated, Utn represents the on/off

status of the unit, and Stn represents the off to on state transition of a unit such that the associated

startup cost is accounted for.

TC =
∑
t

∑
n

[
(an · P 2

tn + bn · Ptn) · Utn + dn · Stn

]
(1.1)

Subject to constraints featuring the same variables and coefficients with the addition of PDti which

represents the respective demand, and Rtn which represents the spinning reserve capacity:

a) Power Balance: ∑
n

Ptn =
∑
i

PDti ∀t (1.2)

b) Generator Limits:

Utn · Ptn ≤ Ptn ≤ Utn · Ptn ∀t, n (1.3)

c) Spinning Reserve: ∑
n

Utn · (Ptn − Ptn) ≥ PDti +Rtn ∀i, n (1.4)

Dynamic Programming is a solution method where the main optimization problem is broken

down into numerous sub-problems. As each sub-problem is solved, the solution to the main problem is

realized recursively [2] [3]. In the case of solving UC, the sub-problems solved are each period, i.e. each

hour. Despite being flexible [4] [5], it’s performance tends to suffer as the input system grows [4] [5] [6]
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[7] [8] [9] [10]; although it can be improved by use of a supercomputer [3] or by implementing heuristics

[11], its use requires simplification of complex constraints which reduces accuracy [3] [7] [12]. Dynamic

Programming appears commonly today in bioinformatics.

A detailed example can be found in [13]. The total cost comprises of the “production cost” (cost of

fuel) and the “startup cost” (cost of generators turning off), and they are the sub-problems solved at

each iteration. With traditional Dynamic Programming, the inefficiencies stem from the available paths

of feasible solutions the solver has to deal with. The authors presented an equation to determine the

number of paths, which for a 4 unit system and 24 hours, amounts to (24 − 1)24. In their proposed

method, only a subset of feasible paths are saved between states, which vastly reduces the computa-

tional burden and maintains an accurate/optimal solution provided the saved number of paths is chosen

intelligently.

Mixed-Integer Linear Programming (MILP) is a solution method similar to Dynamic Program-

ming, in that some algorithms break down the problem into sub-problems and solved with algorithms

such as cutting-plane method, branch and bound method, branch and cut method, and branch and price

method. MILP is the current industry standard [1], performs well on large systems [7] and adapts well

to fundamental system changes [14]. Recent years have seen a vast improvement in commercial solver

intelligence, providing generous improvements in computation speed [1]. MILP problems are useful any-

where an output cannot take on a fractional form, e.g. 2.2 houses cannot be built, or 1.5 drivers would

not drive a bus.

A detailed example can be found in [15]. The authors used the CPLEX optimization package to

implement the formulation. The package is configured to use the interior-point method initially, and

refined subsequently using the branch-and-cut algorithm.

Fuzzy Logic is a logic form which extends a binary {true, false} decision into more of a continuous

[completely true, completely false] range. It is the most straightforward approach to dealing with system

or input uncertainties (“fuzziness”) [16] [17], however it introduces tradeoffs [16] such as slow performance

[17]. Due to the good handling of uncertainty, fuzzy problems are a useful way to incorporate renewable

sources to the UC problem and can also handle contradictory objectives [1]. Fuzzy problems are less

of a solution method than they are an extended way of thinking, as the respective problems can be
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solved using MILP [1], Dynamic Programming [17], or the Priority List method [16]. Inherently, despite

the conceptual useful of fuzzy logic, using MILP, Dynamic Programming or Priority List methods still

subject the overall result to the limitations of the solution methods. Fuzzy logic has other applications

in learning algorithms.

A detailed example can be found in [18]. The “fuzzy” variables are normalized to be ∈ [0, 1] and

defined as Load Capacity of Generators (LCG)={Low, Below average, Average, Above Average, High},
Fuel Cost (FC)={Zero, Small, Large}, and similar for Startup Cost (SUP) and Production Cost (PRC).

Input variables are mapped to output variables; PRC= LCG and FC and SUP, or in fuzzy set

notation, PRC=LCGˆFCˆSUP. Fuzzy “If-Then” rules for each fuzzy variable are defined; If LCG is low

and FC is zero Then PRC is low. As well, membership functions are constructed for output variables.

Then, the “Defuzzification Process” takes place where the fuzzy result is mapped back to numerical

values.

Lagrangian Relaxation (LR) is an approach which decouples the problem into subproblems and

relaxes the constraints by use of Lagrange multipliers [11] which introduce a “cost” to constraint violation,

resulting in an approximation from the original problem. While fast [4] [5] [10], it tends to lose accuracy

as the input system gets larger [4] [10]. LR requires the use of heuristics in order to handle complex

constraints [3] [5] at the expense of speed and accuracy [19]. LR is not unlike fuzzy logic, in that it is

an extension of thinking and can be solved by other methods such as Dynamic Programming [19].

A detailed example can be found in [20]. The UC problem is formulated as cost minimization. The

dual is then established and then maximized using the LR method. The Lagrangian function, L, is

then defined as follows, where φ represents the objective function as defined in (1.1), and λ and μ are

Lagrangian multipliers:

L = φ+
∑
t

λ ·
(
PDti −

∑
n

Utn · Ptn

)
+
∑
t

μ ·
(
PDti +Rtn −

∑
n

Utn · Ptn

)
∀i (1.5)

The optimal value of the Lagrangian function is defined as θ = min {L}, such that the dual of the

UC problem is defined as:

D : max θ, s.t. μ ≥ 0 (1.6)

With this formulation and dual problem D, the authors solved the problem using Dynamic Program-
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ming.

Simulated Annealing (SA) is a method that likens an optimization problem to the mathematical

description of molten metal cooling to a crystal structure, as thermodynamic law states that a crystal

structure corresponds to a state of lowest energy [12]. SA has the advantage of being adaptable to system

changes and complex constraints [12] and producing accurate solutions [4] [6], however it is known for

being very slow [3] [12] perhaps due to it beginning with a randomly generated solution over which to

iterate [4]. Parallelism and solver improvements have been expected to improve computational demand

[12].

A detailed example can be found in [21]. First, an initial guess solution for the problem is deter-

mined. For each temperature unit drop in the simulated cooling process, the initial solution is modified

slightly (randomly). A comparison is then made to the “Total Cost“ using the modified guess and the

unmodified guess, modelled after the change in energy of the element being annealed. Depending on the

result, the modified solution is either accepted, or accepted based on a Boltzmann distribution proba-

bility. After each temperature change, a local optimization is performed until the stopping criteria is met.

Artificial Neural Network (ANN) is an artificial intelligence based computing method modelling

after an imitation of the human brain. It is premised on the biological fact that the brain consists

of billions of neurons, which function as small limited computers working in tandem [8], while also

breaking the problem down into subproblems [9] and using cascaded networks. While fast [8] it is very

system dependent [8] [9] as it requires “training” about the system in advance of performing the desired

optimization [8]. The said training does improve performance [8] [9] however it is generally known for

being inaccurate [8]. Use of multi-stage networks can improve both time and accuracy [9]. ANNs are

used extensively today in machine learning applications.

A detailed example can be found in [8]. A three layer ANN model is used by the authors, where the

inputs (one load demand, Ld, for each hour in the simulation) are normalized (Lj) upon input to the

network by the following equation:

Lj =
Lj − Lmin,j

Lmax,j − Lmin,j
(1.7)

6
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The output of the network is an NxM matrix (where N is the number of units and M is the number

of hours) consisting of the binary on/off commitment for each unit at each hour, unless the network

cannot produce a schedule with complete certainty. In that case, it is the result of insufficent training,

and a non-binary value is assigned and is handled in the following stage. After the “pre-schedule” is

ascertained from the ANN, it is fed to a modified Dynamic Program for optimization.

Genetic Algorithm (GA) is a parallel search based optimization technique modelled after the

biological theories of natural selection and genetic recombination [22]. Over the past decade, there

have been vast improvements in the performance of the method [23]. A series of “genetic operators”

are defined (such as initialize population, copy, mutation, crossover, shift, intelligent mutation, and

evaluation) [22] [23] and used throughout the process. A unique aspect of GA is the use of the mutation

operator that is able to identify local minima and prevent the algorithm from getting stuck [22].

A detailed example can be found in [22] or [23]. The algorithm begins with a randomized popula-

tion of P members called chromosomes, where chromosomes are either binary or continuous encoded

strings (variables), each representing possible solutions. Members are evaluated against the objective

function and given a solution quality measure, and depending on the result, recombination (crossover

operation) occurs and a new candidate population is chosen. This process is repeated iteratively and

in conjunction with other methods (e.g. LR or DP) for the economic dispatch aspect of the UC problem.

Bender’s Decomposition (BD) is a solution method that divides the problem into a master prob-

lem and subproblems. The master problem typically consists of an optimization of the objective function

and typical constraints solved by any method, such as MILP or LR [24] [25] [26]. The subproblems can

serve the method in a number of ways, most commonly to solve power flow and network operating limit

aspects, and solved by methods such as Newton-Raphson [24].

Detailed examples can be found in [25]. The example aims to solve the transmission constrained

UC problem. The master BD problem solves the unconstrained UC using augmented LR method, and

the subproblems solve the transmission flow problem. Upon violation in a subproblem, a benders cut is

generated and sent back to the master problem for inclusion in the next iteration.

7
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Table 1.1: State of the Art Comparison

Method Advantages Disadvantages
Dynamic Programming Can be useful with heuristics; fast Doesn’t scale well; requires simplifi-

cation of complex constraints
MILP Scales well; fast Must be entirely linear
Fuzzy Logic Inherits from partner method Slow; inherits from partner method
Lagrangian Relaxation Fast; inherits from partner method Inaccurate; inherits from partner

method
Simulated Annealing Accurate Slow
Artificial Neural Network Fast System dependent; inaccurate
Genetic Algorithm Fast Complex
Bender Decomposition Inherits from partner method Inherits from partner method

Conclusion It should be noted that in all cases, a {0,1} binary constrained variable was employed

for generator on status. This implies that the optimization is not necessarily continuously differentiable.

The disadvantage of a nondifferentiable optimization problem is that the solution method must be

custom tailored to handle the discontinuities. Conversely, if the problem is differentiable, then a much

wider range of generalized solution methods can be applied. A table presenting a summary of the above

advantages versus disadvantages is presented in Table 1.1.

1.3 Research Objective

The research in this thesis transforms the MILP-based UC problem from a discontinuous optimization

to a continuous optimization. This is done by using the theory of complementarity and succeeds in not

adding a great deal of complexity or change to the formulation. The goal is to demonstrate a proof-of-

concept to provide a foundation for future work using the proposed method. The formulation presented

will be vastly simplified and is intended to serve as a proof of concept rather than a proposed alternative

to methods currently in use today.

8
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1.4 Thesis Overview

Chapter 2 presents the mathematics of a classical MILP formulation of the UC problem, explaining the

objective and constraints in detail. Results are presented for an optimization using this method.

Chapter 3 introduces the mathematics behind the theory of complementarity, proposes a comple-

mentarity basis of the UC problem presented in Chapter 2, and walks through the reduction and trans-

formation of the MILP formulation into a complementarity formulation.

Chapter 4 presents the system data used for testing, and the results of the simulation of the proposed

method of Chapter 3.

Chapter 5 concludes the thesis with an overview of the results of Chapter 4, a review of how the

results relate to the research objective, and how the results can be utilized in future work.

9



Chapter 2

Mixed-Integer Linear Programming

Formulation

In this chapter, a full Mixed Integer Linear Program formulation of the UC problem is presented,

the resulting solution space is demonstrated graphically, and results of a corresponding simulation are

presented. By the end of this chapter, the reader will appreciate a standard solution of the UC problem

and its drawback.

2.1 UC Formulation

A UC formulation using Mixed Integer Linear Programming by Venkatesh, Yu, Gooi and Choling is

adapted and presented from [1], focusing on conventional generators only. Here, Utnm (generator unit

segment on/off status) and Stn are binary variables capable of assuming values from the set {0, 1}.

Minimize total cost TC, consisting of generator unit segment fixed costs anm and per-segment energy

costs bnm against the segment-wise output power Ptnm, spinning reserve costs cn, and start-up costs dn

over all generator unit segments m to total segment count NM , all generator units n to total unit count

10
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NG, and all hours t to total hour count NT :

TC =

NT∑
t

NG∑
n

NM∑
m

(anm · Utnm + bnm · Ptnm) +

NT∑
t

NG∑
n

(cn ·Rtn + dn · Stn) (2.1)

Where each generator follows a typical cost curve, as shown in Figure 2.1, adapted from Table X

of [1]. Even when producing no power, the fixed and startup costs attribute to a non-zero cost, which

increases per unit power produced until the generator maximum limit is reached.

11
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Figure 2.1: Cost curve of typical generator

Figure 2.2: Two-generator one load bus example

12
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The minimization is subject to the following constraints:

a) Power balance - this constraint follows from the fact that a power system bus (node) does not consume

energy between output power Ptnm and demand PDti. Note that this equation represents a linear

approximation of actual power balance equations, for all buses i to bus count NB. Any number of

generators and any number of loads may theoretically be connected to a given bus, and this equation

governs the connections such that the load must consume all provided power. Figure 2.2 demonstrates

a two-generator, one-load bus.

NG∑
n

NM∑
m

Ptnm =

NB∑
i

PDti ∀t (2.2)

b) Generator output limits - this constraint specifies lower and upper limits on the power output of a

given generator unit. Generators are often designed to operate at certain efficiencies, which can best

be achieved by ensuring the generator isn’t running too light or too heavy.

Utnm · Ptnm ≤ Ptnm ≤ Utnm · Ptnm ∀t, n,m (2.3)

c) Segment switching rule - this constraint limits the individual generator segments to be on or off, and

ensures that only one segment of the unit operates for a given time, for conventional generators.

0 ≤
NM∑
m

Utnm ≤ 1 ∀t, n (2.4)

d) Spinning reserve capacity - this constraint ensures the spinning reserve capacity Rtn of a generator

unit is limited to the 10-minute reserve capacity, 0, or the difference between what is currently being

generated and the maximum capacity - whichever is less. This ensures no needless excess of reserve

capacity.

Rtn ≤ min

{
R10n · Utnm, PnM · Utn −

NM∑
m

Ptnm

}
∀n (2.5)

e) Capacity of largest online generator - this constraint ensures the minimum available spinning reserve

of the system SRt is at least as large as the largest generator unit of the system, in case of an

13
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operating contingency.

SRt ≥ PnM · Utn ∀t, n (2.6)

f) Spinning reserve criteria

i. Online - this constraint ensures that the total spinning reserve capacity of the system is at least

a percentage (α) of the specified minimum spinning reserve capacity. This ensures the minimum

spinning reserve capacity value is obeyed.

NG∑
n

Rtn ≥ α · SRt ∀t (2.7)

ii. 10-minute reserve - similar to the online reserve, but this constraint looks after the offline units,

to ensure that specified units (set in G10) that can start within 10 minutes are available as

needed, based on their 10-minute quick start capacity P10.

NG∑
n

Rtn +
∑

n∈G10

(1− Utn) · P10 ≥ SRt ∀t (2.8)

g) Generator ramp rates - this constraint ensures that the dispatch levels of a generator between intervals

obeys the (likely thermal) limits of changes to generator output according to their 60-minute ramp

limit R60n.

−R60n ≤
NM∑
m

Ptnm −
NM∑
m

Pt−1,nm ≤ R60n ∀t, n (2.9)

h) Minimum up time - this constraint ensures that a generator is dispatched for at least the amount

of time required in order to obey the (likely thermal) limits on the run time, represented by UT .

In order to achieve the best performance and lifetime of a generator, a minimum amount of time it

should be run for is specified.

(Ut+1,n − Utn) · UTn −
min{T,t+UTn}∑

s=t+2

Usn ≤ max
{
1, UTn − T + t+ 1

} ∀n, t = 1, . . . , T − 2 (2.10)

i) Minimum down time - this constraint ensures that when a generator is turned off, it remains off for

the amount of time required by the generator (DT ), for likely thermal reasons. This helps to ensure
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the best performance and lifetime of the generator.

(Utn − Ut+1,n) ·DTn +

min{T,t+DTn}∑
s=t+2

Usn ≤ DTn, ∀n, t = 1, . . . , T − 2 (2.11)

j) Initial conditions - these constraints ensures that minimum up (2.10) and down (2.11) times are

enforced with consideration for the generator’s status in the interval before the current period of

dispatch.

i. Uptime: If ICn > 0 & UTn > +ICn, then

UTn−ICn∑
t=1

Utn ≥ UTn − ICn ∀n (2.12)

ii. Downtime: If ICn < 0 & DTn > −ICn, then

DTn+ICn∑
t=1

Utn ≤ 0 ∀n (2.13)

k) Generator start-up - this constraint determines whether a generator starts up (i.e. turns from off in

the previous interval to on in the current interval) for the purpose of adding the associated cost to

the objective.

Stn = max{Utn − Ut−1,n, 0} ∀t, n (2.14)

l) Line flow - this constraint limits the power flow through the transmission system (PL) between buses

(also see (2.2)) over their respective admittances from Θki.

PLk ≤
NB∑
i

[
Θki ·

[∑
n∈i

NM∑
m

Ptnm − PDti

]]
≤ PLk ∀t, k (2.15)

where in l),
[∑

n∈i

∑NM
m Ptnm −PDti

]
represents the power flow to the respectively indexed bus at the

respectively indexed time.
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CHAPTER 2. MILP 2.2. SOLUTION SPACE

2.2 Solution Space

Consider an example with two generators U1 and U2 as inputs to the optimization in (2.1)–(2.15), it

results in the discontinuous, non-differentiable solution space shown in Figure 2.3. As this formulation is

written as a Mixed Integer Problem, its implementation (software, or bravely otherwise) must explicitly

have a restriction on Utn and Stn limiting the possible values to the set of {0, 1}. The authors of the

formulation used the “MOSEK” solver in their work, which allows such explicit integer restrictions [27].

2.3 Simulation

The formulation presented in Section 2.1 was implemented by the authors using the “MOSEK optimiza-

tion engine,” albeit for use studying wind generators, their results are shown here for comparison as the

input data is being reused [1] [28].

2.3.1 10-generator 24-hour System

This system features 14 buses and 10 generators, where load demand input data is listed in Table 2.1,

and unit price input data is listed in Table 2.2. Generator on/off output statuses are provided in Table

2.4. The metrics chosen for comparison are Total Cost and the running time of the simulation. These

are shown in Table 2.3.

2.3.2 26-generator 24-hour System

The system features 57 buses and 26 generators, with load demand input data listed in Table 2.5. Unit

price input data is listed in Table 2.7. The metrics chosen for comparison are Total Cost and the running

time of the simulation. These are shown in Table 2.6. Generator output statuses were not provided by

the authors.
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Figure 2.3: MILP Discontinuous Solution Space

Table 2.1: Load Data for 10-Generator System

Hour Load (MW) Hour Load (MW) Hour Load (MW)

1 700 9 1300 17 1000

2 750 10 1400 18 100

3 850 11 1450 19 1200

4 950 12 1500 20 1400

5 1000 13 1400 21 1300

6 1100 14 1300 22 1100

7 1150 15 1200 23 900

8 1200 16 1050 24 800
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Table 2.2: Price Data for 10-Generator System

Gen # an1 = an2 = an3 bn1 bn2 bn3 dn R60n

1 1000 16.38 16.48 15.57 1000 1000

2 970 17.38 17.45 17.51 970 1000

3 700 16.97 17.54 18.11 700 1000

4 680 16.75 17.07 17.39 680 1000

5 450 20.20 20.79 21.39 450 1000

6 370 23.09 24.18 25.27 370 1000

7 480 27.84 27.96 28.08 480 1000

8 660 26.13 27.51 27.65 660 1000

9 665 27.38 27.51 27.65 665 1000

10 670 27.88 27.98 28.08 670 1000

Table 2.3: Output Data From 10-Generator System - Full MILP

Variable UC - Full MILP

Total Cost $575 932

Running Time 8 sec
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Table 2.4: Status Values from 10-Generator System - Full MILP

Generators

Hours 1 2 3 4 5 6 7 8 9 10

1 1 1 1 0 1 0 0 0 0 0

2 1 1 1 0 1 0 0 0 0 0

3 1 1 1 0 1 0 0 0 0 0

4 1 1 1 1 1 0 0 0 0 0

5 1 1 1 1 1 0 0 0 0 0

6 1 1 1 1 1 0 0 0 0 0

7 1 1 1 1 1 0 0 0 0 0

8 1 1 1 1 1 0 0 0 0 0

9 1 1 1 1 1 0 0 0 0 0

10 1 1 1 1 1 1 0 0 0 0

11 1 1 1 1 1 1 0 0 0 0

12 1 1 1 1 1 1 0 0 0 0

13 1 1 1 1 1 1 0 0 0 0

14 1 1 1 1 1 0 0 0 0 0

15 1 1 1 1 1 0 0 0 0 0

16 1 1 1 1 1 0 0 0 0 0

17 1 1 1 1 1 0 0 0 0 0

18 1 1 1 1 1 0 0 0 0 0

19 1 1 1 1 1 1 0 0 0 0

20 1 1 1 1 1 1 0 0 0 0

21 1 1 1 1 1 1 0 0 0 0

22 1 1 1 1 1 1 0 0 0 0

23 1 1 1 0 1 1 0 0 0 0

24 1 1 1 0 1 0 0 0 0 0

Table 2.5: Load Data for 26-Generator System

Hour Load (MW) Hour Load (MW) Hour Load (MW)

1 1700 9 2540 17 2550

2 1730 10 2600 18 2530

3 1690 11 2670 19 2500

4 1700 12 2590 20 2550

5 1750 13 2590 21 2600

6 1850 14 2550 22 2480

7 2000 15 2620 23 2200

8 2430 16 2650 24 1840
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Table 2.6: Output Data From 26-Generator System - Full MILP

Variable UC - Full MILP

Total Cost $681 634

Running Time 23 sec

Table 2.7: Price Data for 26-Generator System

Gen # an1 bn1 an2 bn2 an3 bn3 dn R60n

1 24.05 25.75 23.14 25.91 21.71 26.07 13.04 900

2 24.06 25.89 23.11 26.06 21.61 26.23 13.11 900

3 24.26 26.03 23.26 26.21 21.68 26.39 13.19 900

4 24.38 26.16 23.36 26.34 21.76 26.52 13.26 900

5 24.50 26.29 23.48 26.47 21.87 26.65 13.32 900

6 117.31 37.71 116.11 37.84 114.24 39.97 18.98 900

7 117.64 37.83 116.38 37.97 114.41 38.10 19.05 900

8 117.95 37.96 116.60 38.10 114.47 38.25 19.12 900

9 118.29 37.08 116.86 38.23 114.62 38.39 19.19 900

10 76.41 13.77 63.82 14.13 44.03 14.48 7.24 900

11 76.47 13.81 63.61 14.17 43.39 14.53 7.26 900

12 76.56 13.84 63.48 14.21 42.92 14.58 7.29 900

13 76.60 13.88 63.20 14.26 42.15 14.64 7.32 900

14 120.67 11.35 93.36 11.66 55.60 11.97 5.99 900

15 120.49 11.39 92.59 11.71 54.01 12.02 6.01 900

16 120.40 11.42 92.02 11.74 52.80 12.07 6.03 900

17 120.39 11.45 91.66 11.78 51.95 12.10 6.05 900

18 239.20 23.47 214.51 23.69 180.39 23.91 11.96 900

19 239.64 23.57 214.86 23.79 180.61 24.01 12.01 900

20 239.93 23.67 214.87 23.90 180.22 24.12 12.06 900

21 132.08 11.39 87.09 11.61 27.12 11.83 5.91 900

22 271.20 8.07 193.60 8.46 77.20 8.85 4.43 900

23 272.91 8.09 194.91 8.48 77.91 8.87 4.43 900

24 273.91 7.99 273.91 8.38 273.91 8.77 4.43 900

25 274.91 7.89 273.91 8.28 273.91 8.67 4.43 900

26 275.91 7.89 273.91 8.18 273.91 8.57 4.43 900
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2.4 Conclusion

This chapter presents a detailed UC formulation featuring many practical system constraints. The

solution space of the problem is visually represented using a simple 2-generator example. The formulation

is then used against a 10-generator and 26-generator test system for demonstration and as an example

for future comparison. It should be noted that the formulation and commercial solver produced very

fast and accurate results, as well as scale very well for the larger system.
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Chapter 3

Complementarity Formulation

This chapter is intended to introduce the mathematical theory of complementarity into the UC prob-

lem. The first connection between complementarity and Unit Commitment is presented here, and then

cascaded into the MILP UC formulation of Chapter 2.

By the end of this chapter, the reader will be familiar with the basic concept of complementarity

and how it relates to optimization, will understand the entire transformation and be equipped for the

presentation of results in the next chapter.

3.1 Mathematical Definition

Complementarity optimization arises as a solution [29] to a 1964 problem introduced by Cottle in his

Ph.D thesis [30]. The goal is to solve for example variable x such that the example function F:

• x ≥ 0

• F (x) ≥ 0

• 〈x, F (x)〉 = 0

To present more plainly, consider an example problem (f) to maximize over example variables x and

y:

f(x, y) = (3x− 2)3 + (5y − 1)3 (3.1)
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subject to

x · y = 0 (3.2)

By inspection, it is determined only feasible when either x = 0 or y = 0, or, only along (0, 0 ≤ y ≤ 1)

and (0 ≤ x ≤ 1, 0) and as such violates the Mangasarian-Fromowitz Constraint Qualification. Instead,

the constraint is moved to the objective as an l1-penalty function,

f(x, y) +M · x · y, (3.3)

where M is a sufficiently large penalty coefficient [31] [32]. From optimization theory, the use of a

constraint as a penalty function and its coefficient serve to make a violation of that constraint very

“expensive” in terms of what it adds to the objective. In this presented example, if x · y = 0 then the

whole term disappears from the objective. However, even a small non-zero result is magnified by the

coefficient.

The problem solution space is shown in Figure 3.1 (adapted from [33]) to clearly demonstrate the

optimal solution is X = 0, Y = 1, which is also notably an integer result.

3.2 Solution Space

The complementarity based solution space shown in Figure 3.1 should be compared to the MILP based

solution space shown earlier in Figure 2.3. It is immediately noted that the discontinuous nature of the

MILP based solution space is completely absent, and that the complementarity based solution space is

continuous.

3.3 Corollary into UC

Two related variables meeting the above criteria are required of the UC formulation to proceed. The

variables Ptnm (output power) and Utnm (generator segment status) are chosen, as they are closely

related as follows:

Ptnm =

⎧⎪⎨
⎪⎩

0 if Utnm is 0 ∀t, n
Ptnm if Utnm is 1 ∀t, n

23



CHAPTER 3. COMPLEMENTARITY 3.3. COROLLARY INTO UC

A simple substitution can make the generator status and output power variables orthogonal:

Vtnm = 1− Utnm (3.4)

where Vtnm is the dual of Utnm, and thus:

Ptnm =

⎧⎪⎨
⎪⎩

0 if Vtnm is 1 ∀t, n
Ptnm if Vtnm is 0 ∀t, n

It is shown that by complementing the definition of generator status as in (3.4), two variables in the

optimization have an inner product of 0, and thus the basis of a complementarity optimization problem

is formed. The complementarity constraint is then constructed such that when:

• Utnm = 1, the segment is active with Ptnm > 0; Vtnm = 0 and the product Vtnm · Ptnm = 0

• Utnm = 0, the segment is inactive with Ptnm = 0; Vtnm = 1 and the product Vtnm · Ptnm = 0,

which, on a per-generator basis can be expressed as:

Vtn ·
∑
m

Ptnm = 0 ∀t, n (3.5)
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Figure 3.1: Complementarity Continuous Solution Space
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As discussed in Section 1.2, many of the other solution methods introduce complexities to the for-

mulation or computation process. It should be noted that since equations (3.4) and (3.5) are the only

requirements for reformulation, no complexity is added to the problem by complementarity. The variable

Utn is replaced merely with its complement Vtn, and the complementarity constraint utilizes existing

variables. Additionally, the constraint (2.4) is made redundant as the status limits are set by (3.5).

The MILP formulation using Utn (2.1)–(2.9), can then be transformed to using Vtn by substituting

(3.4).

3.4 Making UC Nonlinear

A full UC formulation in practice is very complex [1]. To demonstrate the introduction of the comple-

mentarity theory, a minimalistic formulation will be used going forward. Therefore, a substantial portion

of variables and constraints will not be included in this new formulation. We still seek to determine an

on/off schedule of generators on a per-hour basis, and will use only generator startup and ramp rate

constraints.

The bigger picture purpose of the UC problem is cost minimization. As the aim of this thesis is to

prove the concept of complementarity, cost too will be simplified; only fixed unit costs, segment costs and

start-up costs will be considered. Similar to the MILP formulation presented, no consideration is given

to the effects of renewable energy sources. These would be added as an independent cost to the Total

Cost if not used, or their delivered power subtracted from what conventional generators are required to

supply.

Consider a simplified MILP formulation, first transformed and restated below in terms of Vtnm =

1− Utnm (3.4) or Vtn = 1− Utn where appropriate. Thereafter, the complementarity theory is used.

Minimize:

TC =

NT∑
t

NG∑
n

NM∑
m

[anm − anm · Vtnm + bnm · Ptnm] +

NT∑
t

NG∑
n

dn · Stn (3.6)

Subject to the constraints below, following only (2.2), (2.9) and (2.14) for simplicity:
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a) Power balance (linear approximation):

NG∑
n

NM∑
m

Ptnm =

NB∑
i

PDti ∀t (3.7)

b) Generator ramp rate:

−R60n ≤
NM∑
m

Ptnm −
NM∑
m

Pt−1,nm ≤ R60n ∀t, n (3.8)

c) Generator start-up:

Stn = max{Vt−1,n − Vtn, 0} ∀t, n (3.9)

d) Complementarity:

Vtn ·
∑
m

Ptnm = 0 (3.10)

3.5 UC with Complementarity

The solution space remains discontinuous and non-differentiable when Vtn · Ptn 	= 0. Instead of being

a constraint, Vtn · Ptn must be moved to the objective as a penalty function and minimized in order to

make the solution space continuous and differentiable.

Using the substitution given in (3.4) and the complementarity constraint defined in (3.5) as a penalty,

the formulation in (3.6)–(3.9) is transformed using complementarity. The penalty coefficient used in this

formulation, 102, was nondeterministically chosen. The coefficient was experimented with in the range

of 100–106, where the smallest coefficients produced poor results and the largest coefficients had detri-

mental effects on the run time with no measurable advantage.

Minimize total cost =

NT∑
t

NG∑
n

NM∑
m

[
anm − anm · Vtnm + bnm · Ptnm

]
+

NT∑
t

NG∑
n

dn · Stn + 102 · Vtn ·
NM∑
m

Ptnm ∀t (3.11)
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Subject only to the constraints below, following (3.7)–(3.9):

a) Power balance:
NG∑
n

NM∑
m

Ptnm =

NB∑
i

PDti ∀t (3.12)

b) Generator ramp rate:

−R60n ≤
NM∑
m

Ptnm −
NM∑
m

Pt−1,nm ≤ R60n ∀t, n (3.13)

c) Generator start-up:

Stn = max{Vt−1,n − Vtn, 0} ∀t, n (3.14)

3.6 Conclusion

The UC formulation (3.11)–(3.14) featuring complementarity consists of a proof-of-concept model, and

can be solved using any nonlinear solver.

Equation (3.12) consists of a linear approximation of actual power balance equations in order to

remain consistent with the MILP formulation. The MILP formulation is for a linear program and requires

the approximation, however, the complementarity formulation does not require such an approximation.

The following equations could be used instead, where both real and reactive power formulas are shown

for completeness:

NG∑
n

NM∑
m

Ptnm =
NB∑
i

PDti + Vi ·
NB∑
k

Vk ·
[
Gik · cos (δi − δk) +Bik · sin (δi − δk)

]
(3.15)

NG∑
n

NM∑
m

Qtnm =

NB∑
i

QDti + Vi ·
NB∑
k

Vk ·
[
Gik · sin (δi − δk)−Bik · cos (δi − δk)

]
(3.16)

Where the relevant quantities above are as follows: Qtnm - reactive power per segment, QDti -

reactive power demand, Gik, Bik, are the real and imaginary components of the admittance between

buses i and k, and δi and δk are the phase angles at buses i and k. This data would be retrieved from

the Y-Bus Matrix for the system. Vi and Vk are the voltages at buses i and k.
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Chapter 4

Results and Evaluation

The formulation proposed in Chapter 3 was implemented for testing in MATLAB R2014a using the

nonlinear solver “fmincon” from the Optimization Toolbox. It was tested accordingly on the same two

test systems described in Section 2.3, and the same metrics are compared. The test simulations were

run on a custom built desktop PC with an Intel Core i5 (2nd gen) quad-core processor (1600 MHz per

core) and 16 GB of RAM running 64-bit Ubuntu Linux.

4.1 10-generator 24-hour System

This system features 14 buses and 10 generators, with input data listed in Tables 2.1–2.2. The metric

comparison is shown in Table 4.1. Generator statuses are provided in Table 4.2.

Less constraints were used in the proposed formulation for complementarity than were used in MILP,

making a direct comparison of results invalid. Focusing, then, more on trends in the results, it follows that

a less restrictive formulation produces a more minimized objective, since the selection of a cheap generator

isn’t prevented due to another constraint. Therefore, the resulting Total Cost of the complementarity

formulation being significantly less than that observed of the MILP formulation indicates that the

simulation followed the prediction.

It can be seen that the optimization completes and results in generator statuses similar to the MILP

case (given in Table 2.4) and a similar total cost. The proposed solution using complementarity based

nonlinear optimization formulation took almost 6000 times as long as the solution time of the MILP
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based formulation. Comparing the run times in [34] from MILP simulations run many years ago with

those in [1], it can be seen that as solvers and computers improve, so does the run time. It follows that

the same will happen for nonlinear solvers, and investigation of this scopes under future work described

in the next chapter. The benefit of being able to use the more accurate power balance equations given

in (3.15)–(3.16) applies.

Figure 4.2 presents a comparison of the net system demand plotted alongside net system scheduled

generation. Figure 4.1 presents the hourly marginal price of generation for the system, calculated using

simulation results and (3.11) on an hourly basis, and then dividing by hourly demand.

4.2 26-generator 24-hour System

The system features 57 buses and 26 generators, with input data listed in Tables 2.5–2.7. The metric

comparison is shown in Table 4.3. Generator statuses are provided in Table 4.4.

As was the case with the 10-generator system simulation, less constraints were used in the proposed

formulation for complementarity than were used in MILP, making a direct comparison of results invalid.

The resulting Total Cost of the complementarity formulation being significantly less than that observed

of the MILP formulation once again indicates that the simulation followed the prediction.

It can be seen that the optimization completes, but with a less similar total cost to the MILP case.

Unfortunately, generator status data for the non-complementarity case is not available. The proposed

solution using complementarity based nonlinear optimization formulation took almost 7500 times as

long as the solution time of the MILP based formulation. Comparing the run times in [34] from MILP

simulations run many years ago with those in [1], it can be seen that as solvers and computers improve,

so does the run time. It follows that the same will happen for nonlinear solvers, and investigation of

this scopes under future work described in the next chapter. The benefit of being able to use the more

accurate power balance equations given in (3.15)–(3.16) applies.

Figure 4.4 presents a comparison of the net system demand plotted alongside net system scheduled

generation. Figure 4.3 presents the hourly marginal price of generation for the system, calculated using

simulation results and (3.11) on an hourly basis, and then dividing by hourly demand.
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Table 4.1: Output Data Comparison For 10-Generator System

Variable UC - Complementarity UC - Full MILP
Total Cost $533 150 $575 932

Running Time 13 hrs 8 sec

Table 4.2: Complemented Status Values from 10-Generator System - Complementarity

Generators
Hours 1 2 3 4 5 6 7 8 9 10

1 1 0 1 1 0 0 0 0 0 0
2 1 0 1 1 0 0 0 0 0 0
3 1 0 1 1 0 0 0 0 0 0
4 1 0 1 1 0 0 0 0 0 0
5 1 1 1 1 0 0 0 0 0 0
6 1 1 1 1 0 0 0 0 0 0
7 1 1 1 1 0 0 0 0 0 0
8 1 1 1 1 0 0 0 0 0 0
9 1 1 1 1 0 0 0 0 0 0
10 1 1 1 1 0 0 0 0 0 0
11 1 1 1 1 0 0 0 0 0 0
12 1 1 1 1 0 0 0 0 0 0
13 1 1 1 1 0 0 0 0 0 0
14 1 1 1 1 0 0 0 0 0 0
15 1 1 1 1 0 0 0 0 0 0
16 1 1 1 1 0 0 0 0 0 0
17 1 1 1 1 0 0 0 0 0 0
18 1 1 1 1 0 0 0 0 0 0
19 1 1 1 1 0 0 0 0 0 0
20 1 1 1 1 0 0 0 0 0 0
21 1 1 1 1 0 0 0 0 0 0
22 1 1 1 1 0 0 0 0 0 0
23 1 1 1 1 0 0 0 0 0 0
24 1 1 0 0 0 0 0 0 0 0

Table 4.3: Output Data Comparison For 26-Generator System

Variable UC - Complementarity UC - MILP
Total Cost $537 961 $681 634

Running Time 48 hrs 23 sec
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Figure 4.1: 10 Generator System Marginal Hourly Prices

Figure 4.2: 10 Generator System Power Demand vs Supply
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Table 4.4: Complemented Status Values from 26-Generator System - Complementarity

Generators
Hours 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
3 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 1 1 0
4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1
5 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
7 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1
8 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1
9 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1
11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1
13 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1
15 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1
17 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 1 1
18 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1
20 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1
22 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1
23 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1
24 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0
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Figure 4.3: 26 Generator System Marginal Hourly Prices

Figure 4.4: 26 Generator System Power Demand vs Supply

34



CHAPTER 4. RESULTS AND EVALUATION 4.3. CONCLUSION

4.3 Conclusion

The success of the complementarity formulation is presented in this chapter. For the two test systems,

the simulation results clearly show that the formulation is able to successfully dispatch power to meet the

demands and furthermore, the associated costs are in line. It should be carefully noted that the resulting

costs of the complementarity simulations are expected to be lower than the MILP simulations due to

fewer constraints being used in the complementarity formulation. While the run-times of the MILP

and complementarity formulation simulations may not seem desirable, the benefit of the continuous

solution space and ability to use the accurate power balance equations must be considered, along with

improvements in the chosen solver.
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Chapter 5

Conclusion & Future Work

Optimized dispatch of generators minimizes the total cost of the energy to the consumer. Performing

the optimization using MILP works well in practise, however the resulting discontinuous solution space

limits solution methods and further analysis using classical methods only available for use on continuous

spaces, i.e. differentiation or gradients.

The objective of this work is to provide a basic proof-of-concept of incorporating complementarity

into the UC optimization problem. The concept has been proven, and provides a foundation upon which

to further research the problem and potential applications.

5.1 Contribution

In this thesis, the theory of complementarity was introduced as can be applied to the optimization

of power system unit commitment. By complementing the generator status variable in the objective

function and all constraints, and using the complementarity constraint itself, it was demonstrated that

it works to produce similar output as current accepted methods. The resultant solution space of the

proposed formulation, provided by complementarity, is continuous, and successfully allows for generator

dispatch to be optimized. This proof of concept merits further exploration into the use of a continuous

solution space, including but not limited to, use of non-approximated power balance equations.
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5.2 Future Work

Using the work of this thesis, future work on the UC problem using complementarity can be completed.

A logical first step is experimentation with other solvers and/or parallel computing in hopes of finding

substantially better performance. Following that, a detailed UC problem can be formulated using the

proposed substitutions, to further prove the concept. The penalty function coefficient should also be

deterministically chosen. Since the objective is now a continuous and differentiable function, one is not

limited to using non-classical optimization techniques/algorithms to solve the UC problem as well as

analyze the solution to observe the interaction of constraints. Once these basics are implemented, one

may wish to explore the power balance equations in (3.15)–(3.16).
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