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Abstract

The knee joint is often subjected to high loads, which can lead to injury and os-

teoarthritis. To better understand its behaviour, a finite element model of the joint was

created.

A hyperelastic material model was created to represent articular cartilage. A six

parameter Ogden curve was fitted against experimental stress-stretch data of cartilage.

This material was applied to two different finite element models of the knee created from

anatomical slice images.

The complete models were validated against data from experiments performed on

whole knees. Under compressive loading, the deflection of the model joints were found

to be within one-half of a standard deviation of the experimental data. One model

was tested in alternate configurations; its response was found to be strongly related to

cartilage thickness and knee flexion. Therefore, it is concluded that this cartilage material

model can be used to accurately predict the load response of knees.
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Chapter 1

Introduction

1.1 Motivation

The knee is the largest joint in the body and carries very high loads. Accordingly, it is one

of the most injured parts of the human body [1] and is highly susceptible to osteoarthritis,

a degenerative condition that can become debilitating [2]. In such cases, knee replacement

surgery may be the only option. Though the rate at which such operations are performed

in Ontario has increased to meet demand, wait times are still above target levels [3]. The

health of knees is therefore an important health care problem.

Understanding the behaviour of the knee in a variety of conditions is important to

preventing and correcting damage to it. Much work has been done analyzing real human

knees [4–10], but such analyses are necessarily limited: cadaveric knees are not readily

available, human subjects cannot be deliberately subjected to injury, and obtaining data

from inside an intact knee can be difficult and inexact.

These restrictions can be avoided by instead performing analyses on computerized

simulations of knees. Accurate simulations can provide detailed information on knee

response under a wide variety of situations.

1.2 Purpose

This thesis aims to create and validate a general-purpose computerized knee joint model

using the finite element method. Of course, a truly “complete” model requires indefinite
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1.3. ANATOMY CHAPTER 1. INTRODUCTION

amounts of work to create; instead, this thesis focuses specifically on the material model

of the articular cartilage. This will allow for the creation of a base model upon which

more advanced models can be built.

1.3 Anatomy

1.3.1 Joint structure

The knee joint is made up of three bones and a variety of soft tissues. The bones are

the femur, the tibia, and the patella [1]. The femur and tibia, which are the primary

bones of the upper and lower leg respectively, can be seen in Figure 1.1 [11]. The patella,

a sesamoid bone that helps transmit load through the quadriceps tendon, is not shown

here.

The articulating ends of the femur and tibia are divided into two condyles. The

femoral condyles are round and bulbous, with a slight gap between the two; the tibial

condyles have a slight depression to accommodate the femoral condyles, with a slight

ridge dividing them [1].

Each bone has a layer of articular cartilage covering its articulating surfaces. In the

gap between femoral and tibial cartilage, a pair of menisci wrap around the condyles.

These are all surrounded by a fluid-filled capsule, ensuring that the soft tissues are

saturated in synovial fluid. The cartilage and menisci transmit the large loads experienced

by the joint, while the fluid lubricates the articulating surfaces to lower friction and

prevent wear [1].

Four ligaments connect the femur and tibia, serving an important purpose in passive

joint mechanics. The anterior and posterior cruciate ligaments, which can be seen in

Figure 1.1, pass through the gap between the two femoral condyles. The lateral and

medial collateral ligaments attach to the outsides of the lateral and medial condyles

respectively. These ligaments ensure the femur and tibia remain in contact, and control

relative positioning of the two bones during knee flexion [1].

2



CHAPTER 1. INTRODUCTION 1.3. ANATOMY

Figure 1.1: Assembly of relevant knee joint components [11].

1.3.2 Articular cartilage structure

Articular cartilage is a type of hyaline cartilage found in all joints. It is a porous solid,

which allows synovial fluid to permeate it. Synovial fluid serves multiple purposes: it

nourishes the cartilage, which has no blood vessels; it lubricates the joint to allow for

smooth articulation; and it carries a significant portion of the joint’s load through exu-

dation from the porous solid [1].

The solid consists of a set of collagen fibrils embedded in an extra-cellular matrix.

Near the articulating surface of the cartilage, known as the superficial zone, the fibrils

are oriented parallel to the surface. This helps protect the cartilage against wear, and
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1.4. LITERATURE REVIEW CHAPTER 1. INTRODUCTION

limits the rate at which synovial fluid exudes. In the middle zone, the fibrils are oriented

somewhat randomly as they transition to the deep zone. In the deep zone, fibrils are ori-

ented perpendicularly to the bone; as they enter the calcified zone, they are mineralized,

allowing them to anchor onto the subchondral bone [1].

1.4 Literature review

There have been many different analyses of knees, through both physical experiments and

finite element models. Many models, primarily from the last decade, take very different

approaches in both geometry of knee components and choice of material models used to

represent them. A few such models and experiments are compared here.

1.4.1 Physical experiments

An early experiment by Krause et al. [4] was performed to determine the effects of the

menisci during knee loading. By loading twelve human and twelve canine knee joints up

to 1000 N at a series of different flexions, the carried load, contact area, and absorbed

energy of the joint were measured. Before testing, all soft tissues were removed except

for menisci, ligaments, and part of the capsule. The testing was done with both menisci

intact, medial meniscus removed, and both menisci removed.

This paper, along with many others published around the same time, concluded that

the menisci have an important load-bearing role. Particularly interesting to this work is

the conclusion that a knee without menisci would, under the same load, deflect twice as

much as knee with menisci intact.

A subsequent paper by Kurosawa et al. [7] reported on a similar experiment on four-

teen human knee joints. These were only tested at full extension, but were loaded up

to 1500 N. Load-deflection and load-contact area relations were noted; deflection was

measured from the end of the bone, while contact area was measured through silcone

rubber castings. These tests were performed first with menisci intact, then with menisci

removed.

This paper came to the same overall conclusion as that of Krause et al. [4]: the menisci

perform an important load-bearing function in the knee joint. However, they disagree on

the effects of meniscectomy on joint deflection: where Krause’s study reported a doubling

4
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of deflection after meniscectomy [4], Kurosawa observed an insignificant increase [7]. It is

difficult to explain this discrepancy; however, Kurosawa’s work focused more directly on

deflection and did not damage the capsule prior to loading [7], which lends more credence

to its conclusion in this matter.

This paper also found that total length of the femur and tibia did not significantly

affect total deflection under load. This implies that the bones are so stiff as to remain

almost entirely undeformed in comparison to the soft tissues in the joint.

1.4.2 Subject-specific models

One model, by Potočnik et al. [12], was made with the intriguing goal of being eas-

ily adaptable to the unique knee geometries of different people. The paper outlines a

procedure for using magnetic resonance imaging to take a sparse sequence of fast two-

dimensional images at several knee flexions and loads. Non-linear image registration is

then used to reconstruct three-dimensional knee joint geometry for the subject. Finally,

a template knee mesh is mapped onto the subject-specific geometry. This template mesh

is constructed once from high-quality imaging data; by mapping it onto the subject’s

knee joint geometry, a high-quality subject-specific mesh results [12].

However, the resulting model is limited by the material models used. Bones, menisci,

cartilage, and ligaments are all treated as linear-elastic isotropic materials [12]; though

these are simple material models that can effectively model many metals, it is well known

that many biological tissues exhibit non-linear, anisotropic behaviour [1]. Furthermore,

though the geometry can be tailored to individual subjects, the material properties cannot

without far more invasive testing; they are simply set to match those of the template.

Therefore, this model is limited in its ability to predict the behaviour of real knee joints.

Another paper, by Öhman et al. [13], similarly proposes a method to create and

validate subject-specific knee joint models, but uses a different approach. Magnetic

resonance imaging and computed tomography images are created with marker cubes on

the bones. Registration is used to align these image sets, allowing them to be used

jointly in reconstructing the surface geometry of bones, cartilage, menisci, and ligaments

through a partially-automated process. The volumes are then automatically meshed

with tetrahedral elements to create the complete finite element mesh. This work is still

preliminary; though it is intended to be used for human knees, this method has currently
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only been tested with porcine knees [13].

The material models used by Öhman et al. [13] are generally better than those of

Potočnik et al. [12]. The menisci material is represented by the neo-Hookean hyperelas-

tic material model. This material model was developed to extend linear elasticity into

nonlinear, high-strain regions; it is therefore an improvement over linear elasticity in this

context, though it is one of the simplest hyperelastic material models available. Liga-

ments were modelled with a transversely-isotropic material model discussed in an earlier

paper [14]. This material is a modification of the standard neo-Hookean material; it adds

a directionally-dependent term to the standard neo-Hookean isotropic base. Strangely,

though, both bones and cartilage are represented as rigid bodies. This is not uncommon

for bones, as they are far stiffer than the soft tissues of the knee, but this is the only

observed instance of a model with rigid cartilage. Therefore, though the models here

are largely an improvement over those of Potočnik et al., there continues to be notable

limitations in them.

1.4.3 Hyperelastic models

The model created for the Open Knee project [15] uses a collection of material models

similar to that of Öhman et al. [13]. Ligaments are modelled with the same transversely-

isotropic neo-Hookean variant, and bones are rigid. However, the articular cartilage is

modelled with a standard neo-Hookean material instead of being rigid, while the menisci

are modelled with an orthotropic Fung material. These changes give a slight improvement

over Öhman et al. by capturing the deformability of articular cartilage and the anisotropy

of the menisci. However, the previously-mentioned limitations of neo-Hookean materials

continues to hinder this model.

This model is, however, particularly notable for being freely available for any use. It

can be freely downloaded and has been placed under the Creative Commons Attribution-

Share Alike license; this allows anyone to use this model for any purpose, as long as the

original creators are acknowledged and any modifications are made available under the

same license. However, with this freedom, it is also expected that users of the model will

validate it themselves to determine if it produces accurate results for their application.

At the time of writing, only minimal validation has been performed; “only qualitatively

based on general trends” for passive flexion of the joint [15]. Therefore, the model is not
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yet in a state to be generally applied without further effort.

As was mentioned earlier, the neo-Hookean material model used by Öhman et al. [13]

and the Open Knee project [15] is much simpler than other hyperelastic material models.

It is a special case of the Mooney-Rivlin material model, which is itself a special case

of the Ogden material model, as is shown in Section 2.1.2. This implies that either of

these are certain to represent material behaviour at least as well as the neo-Hookean

model does. Furthermore, a paper by Brown et al. [16] has shown that, out of several

hyperelastic material models, the Mooney-Rivlin model is best able to fit the normalized

stress-stretch response of compressively-loaded cartilage samples. These experiments

were performed on 57 samples of bovine patellar articular cartilage; both healthy and

osteoarthritic samples were tested, at strain rates of 0.1 s−1 and 0.025 s−1. A variety of

hyperelastic stress-stretch curves — Arruda-Boyce, Mooney-Rivlin, neo-Hookean, Ogden,

Polynomial, and Yeoh — were fitted to the experimental data. The Mooney-Rivlin and

Yeoh models were found to have the best fit, with r2 values very close to 0.999. The

neo-Hookean model fared slightly worse, with one case at 0.998 [16].

However, this work is called into question simply for the reportedly poor performance

of the Ogden material, with one r2 lower than 0.993 [16]. Since the Mooney-Rivlin

material is a special case of the Ogden material, it should be possible to set the Ogden

material parameters in such a way as to give a response identical to that of Mooney-

Rivlin. A properly-fitted Ogden material must therefore perform at least as well as

Mooney-Rivlin; the fact that it did not implies that there must have been some limitation

in the curve fitting techniques. This discrepancy was unacknowledged by the authors of

this paper.

Furthermore, it has been demonstrated by Bell et al. that articular cartilage cannot

be fully modelled by homogeneous nor isotropic materials [17], though all previous models

assume this. The authors of this paper created a series of simplified three-dimensional

cylindrical articular cartilage models, assigning different linear elastic properties to each:

the first, a homogeneous isotropic material; the second, three distinct layers, each an

isotropic material; and the third, three distinct layers, each with a transversely isotropic

material.

Though it was concluded that homogeneous models are capable of giving accurate

bulk deformation response, inhomogeneous anisotropic models are needed to give accurate

per-layer deformation and stress response [17]. Therefore, all the previously mentioned

7
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models, which do not account for depth- and directional-dependence of articular cartilage,

cannot fully model small-scale cartilage response.

1.4.4 Viscoelastic models

Furthermore, hyperelastic materials cannot fully model biological tissue behaviour due to

their strain-rate-independent nature. As was seen in the study by Brown et al. [16], dif-

ferent hyperelastic material parameters can be used to model articular cartilage response

at different strain rates, but any one set of parameters will only be valid at the strain

rate to which it was fitted. Many real biological tissues, including ligaments, cartilage,

and menisci, are actually porous solids filled with fluids; the motion of this fluid strongly

affects tissues’ response to loading and leads to viscoelastic phenomena such as time-

dependent responses, history-dependent responses, and hysteresis [1]. Therefore, several

knee joint models have opted to use material models that can capture this behaviour.

A paper by Silver et al. [18] and subsequent doctoral thesis by Bradica [19], attempted

to characterize the distinct elastic and viscous responses of articular cartilage in the knee.

Cartilage samples were taken from the femoral condyles of patients undergoing total knee

replacement surgery; these samples were sorted by their degree of fibrillation, a measure

of the health of the cartilage. The samples were incrementally strained by 5% at a rate

of 10% per minute, then allowed to relax for approximately 30 to 120 minutes until

equilibrium had been reached; the next strain increment would then be applied. This

was performed in both tension and compression to strains of about 30%, with stress

measured continually throughout the process. The resulting stress-strain curves clearly

showed the difference between stresses caused by elasticity and viscosity. This allowed

for estimates of the elastic slope (i.e. Young’s modulus) and viscous slope [18].

Interestingly, these works attribute the observed viscous effects to the structure of

collagen fibrils rather than the pore fluid. The collagen fibrils, which self-assemble into

triple-helical structures, are theorized to slide against each other, giving rise to the viscous

effects. However, they acknowledge that effects from the fibrils alone are insufficient to

understand cartilage behaviour [18].

Other models attempt to directly model the flow of fluid through an elastic solid,

thereby giving rise to the observed viscoelastic phenomena. Such poroelastic or biphasic

models were initally developed to model soil consolidation, but have since been expanded

8
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to handle any fluid-filled porous solid. One such model, by Goreham-Voss et al. [20] used

a poroelastic material in modelling unstable incongruities in articular cartilage of the

ankle. The material model agreed qualitatively, but not very closely, with dynamic

tests performed on plugs of articular cartilage. The discrepancy can be attributed not

to the effects of the fluid phase, but to limitations of the solid phase: it was treated

as a homogeneous linear-elastic transversely-isotropic material. Articular cartilage is

generally considered to be transversely isotropic, but, as has already been discussed, it is

also considered to be nonlinear, with properties that vary with depth. The finite element

model is further limited in that the geometry is two-dimensional and assumed to be in

plane strain, and contact is simulated by the application of load rather than actually

modelled.

Another pair of models by Vadher, Vaziri, et al. [21, 22], created to test the effects

of partial and full meniscectomies on stress in the knee’s articular cartilage, improves

on some of the issues seen in Goreham-Voss’s work [20]. Contact is properly handled,

including fluid flow across boundaries,and the geometry is considered axisymmetric rather

than plane strain. Though the knee joint is certainly not axisymmetric, this simplification

does capture the tensile support provided by the meniscus fairly well. The material model

is also slightly improved over that of Goreham-Voss; by dividing the cartilage into three

layers with different properties — superficial, middle & deep, and calcified — the model

can better capture the inhomogeneity of real cartilage. It does seem strange to combine

the middle and deep layers into one homogeneous component, but stranger still is the

fact that this component is given isotropic properties; this is a slight regression from

Goreham-Voss’s work. Otherwise, though, Vadher and Vaziri’s models are a notable

advancement.

1.4.5 Fibril-reinforced models

A group of researchers used a very different approach in their articular cartilage and

mensici material models. Poroelastic analysis is used to divide the cartilage into solid

and fluid phases, as seen in previously discussed models, but the solid phase is further

divided into an isotropic matrix and a network of collagen fibrils. With proper placement

of the elements representing the fibrils, the anisotropy and inhomogeneity of real cartilage

naturally arises in the model.

9
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To begin, several models with simplified geometry were created [23–26]. A cylindri-

cal plug of cartilage is modelled axisymmetrically; the matrix is represented as a set

of second-order square elements, overlayed with a series of nonlinear spring elements

representing fibrils, and first-order square fluid elements. The matrix is represented as

an isotropic linear elastic material, the stiffness of the fibril springs varies linearly with

strain but carry no compressive loads, and matrix permeability varies exponentially with

dilatation. Though initially homogeneous [23], later refinements of the model included

depth-dependent properties: matrix stiffness and Poisson’s ratio vary linearly with depth,

while both matrix permeability and fibril stiffness vary quadratically with depth [24,25].

Further refinements were later made to include the effects of radially-oriented fibrils by

replacing the spring elements with axisymmetric membrane elements [26]. These models

are limited similarly to previously discussed models — axisymmetric modelling, simpli-

fied geometry, and linear elastic materials — but performs reasonably well at predicting

cartilage material behaviour.

This approach is significantly advanced when used within a whole-knee model [27].

First, the linear elastic matrix material is replaced with a hyperelastic Ogden material,

which can better model its real response. Then, this material is used in a full three-

dimensional knee joint model. Collagen fibrils are represented as membrane elements,

aligned in the directions of fibrils, with membrane thicknesses set to represent the fibril

volume fractions. This is done with both articular cartilage and menisci; ligaments are

represented as nonlinear pre-strained springs, and bones are considered to be rigid. This

model was validated against load-compression data, then applied to make predictions of

contact stresses [27]. The model seems to be one of the most advanced full models cur-

rently available. However the level of complexity involved, as evidenced by the eight-year

span between initial investigations and the creation of the model, means that reproduc-

ing this would be infeasible. They do acknowledge that simpler models can produce

valid results for many investigations, meaning that this approach will not presently be

necessary.

10



Chapter 2

Material modelling

Since the stress-strain curves for many soft biological tissues are nonlinear [1], linear elas-

tic material models are not considered to accurately model them. Instead, a hyperelastic

material model is used. These models were developed to account for large deformations

in soft materials like rubber and can similarly be applied to soft biological tissues [16].

Like all elastic material models, hyperelastic models are energy conservative and there-

fore path independent [28]; this means that they alone cannot model the time-dependent

response of many biological tissues, but they can be used to model, for example, cartilage

at a specific strain rate, or the solid component of a biphasic or poroelastic material.

It is important to note that a number of hyperelastic material models, including

the Ogden model used here, were designed for use with incompressible and isotropic

materials [29]. The incompressibility constraint coincides with the observed behaviour of

articular cartilage and menisci quite well, as is evidenced by typical estimates of Poisson’s

ratios from 0.45–0.5 [18, 21, 30]. However, articular cartilage can be divided into three

distinct layers, each with different orientation of collagen fibrils, giving each layer different

transversely isotropic properties [17]. Unfortunately, the effect of distinct layers cannot

be well addressed with the geometric construction techniques covered in Chapter 3; since

all three layers must be considered as a whole, no single fibril orientation is considered

dominant. Furthermore, homogeneous models cannot fully represent internal cartilage

behaviour, but have been noted to accurately model bulk behaviour [17, 26]. Therefore,

the cartilage as a whole will be treated as isotropic and homogeneous.

Though hyperelastic material models can be applied to many different tissues, it was

11
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decided that bones would be modelled as rigid bodies. Bone length has a negligible effect

on the deflection of the knee joint under compressive loading [7], implying that they are

far stiffer than the soft tissues found in the knee. Therefore, modelling them as rigid

bodies will decrease the amount of time required to find the solution while not severely

impacting the quality of the solution.

2.1 Continuum mechanics basis

2.1.1 Kinematics

Kinematics is the study of the movement of particles through space and time without

concern for the causes of the movement. The position of a particle within a body can be

described as a mapping from one state to another; that is, a particle’s current position,

x, can be determined from the particle’s reference configuration, X, through a mapping

function which can vary with time [31]:

x = ϕt(X) (2.1)

Linear elements can be similarly mapped from reference to current configuration.

This is done through the two-point deformation gradient tensor, F as such [31]:

dx = FdX (2.2)

This tensor can be decomposed into rotational and stretch components [28]:

F = RU = VR (2.3)

Here, R is the two-point rotation tensor that transforms material vectors into spatial

ones. This tensor is orthogonal, meaning that RT = R−1. The stretch tensors, U and

V, represent deformation in material and spatial coordinates, respectively; these tensors

are symmetric. The eigenvalues of these tensors, λi, have a physical meaning in relating

12
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the length of a linear element from reference to current configurations [28]:

li = λiLi (2.4)

Recognizing that the determinant of U and V is the product of their eigenvectors, of

which there are three in a three-dimensional space, and that the orthogonal R tensor has

a determinant of one, the determinant of F can be found. This is known as the Jacobian

of deformation [28]:

J = det F = det(RU) = det U = λ1λ2λ3 (2.5)

The Jacobian has a physical meaning in relating the volume of a volumetric element

from reference to current configurations [31]:

dv = JdV (2.6)

Also of interest is the right Cauchy-Green deformation tensor. This eliminates the

rotational component of the deformation gradient F, resulting in a diagonal second-order

tensor dependent only on the body’s stretches [28]:

C = FTF = UTRTRU = UTU = U2 (2.7)

The three invariants of this tensor are often of use. They are defined as [28]:

IC = λ21 + λ22 + λ23 (2.8a)

IIC = λ21λ
2
2 + λ21λ

2
3 + λ22λ

2
3 = λ21λ

2
2λ

2
3(λ
−2
1 + λ−22 + λ−23 ) (2.8b)

IIIC = λ21λ
2
2λ

2
3 (2.8c)
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2.1.2 Hyperelasticity

The state of a hyperelastic material is dependent solely on its current and initial config-

urations; the deformation path and elapsed time have no effect on, for example, internal

stresses in the material [28].

A hyperelastic material is defined by a strain energy density function, W . This is

typically expressed as a function of the invariants of C, which, as shown above, can be

represented as functions of the principal stretches. The strain energy density function

returns the internal strain energy per unit undeformed volume [28].

Furthermore, a hyperelastic material must respond realistically to extreme volumetric

changes [31]:

lim
J→∞

W →∞ (2.9a)

lim
J→0

W → −∞ (2.9b)

Many biological tissues, including articular cartilage and menisci, are generally consid-

ered to be incompressible. In such a case, all volumes must remain constant throughout

deformation; Equation 2.6 therefore tells us that J = 1 at all times for incompressible

materials.

There are a number of hyperelastic material models available. Some of the popu-

lar ones for biomechanics applications are Arruda-Boyce, neo-Hookean, Mooney-Rivlin,

Yeoh, polynomial, Ogden, Veronda-Westman, and Holmes-Mow material models [16,32].

The neo-Hookean model is a special case of the Mooney-Rivlin model, while the Mooney-

Rivlin model is a special case of the Ogden model.

This can be seen in the strain energy density equations for these materials. When

considering incompressible materials, the neo-Hookean formulation is given as [28]:

WnH =
µ

2
(IC − 3) (2.10)
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The incompressible Mooney-Rivlin formulation is [16]:

WMR = d1(IC − 3) + d2(IIC − 3) (2.11)

In these two equations, IC and IIC are the first and second invariants of the Cauchy-

Green tensor, C. It is easy to see in these two equations that setting d1 = µ/2 and

d2 = 0 will cause the Mooney-Rivlin strain energy density equation to reduce to that of

the neo-Hookean.

The Ogden strain energy density formulation is different, relying on stretches directly

rather than invariants of C [29]:

WO =
N∑
i=1

ci
m2

i

(λmi
1 + λmi

2 + λmi
3 − 3) (2.12)

To compare with Mooney-Rivlin, the invariants must be expanded as functions of the

three primary stretches. Making use of Equations 2.8a and 2.8b, and recognizing that

λ1λ2λ3 = J = 1, the Mooney-Rivlin strain energy density function becomes:

WMR = d1(λ
2
1 + λ22 + λ23 − 3) + d2(λ

−2
1 + λ−22 + λ−23 − 3) (2.13)

It is clear that this is equivalent to an Ogden material with N = 2, m1 = 2, c1 = 4d1,

m2 = −2, and c2 = 4d2.

The Mooney-Rivlin model is known to work well for modelling cartilage [16]. As a

more general case, Ogden will perform at least as well, if not better, than Mooney-Rivlin;

this makes it an excellent choice of material model for this application.

2.1.3 Stress

From strain energy density functions, stress-stretch relations can be derived for hypere-

lastic materials.
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The first and second Piola-Kirchoff stress tensors, P and S, can be derived as [28]:

P =
∂W

∂F
(2.14a)

S = 2
∂W

∂C
(2.14b)

The Cauchy stress tensor, σ, which is more useful in engineering analyses, can be

found in relation to the second Piola-Kirchoff stress tensor [28]:

σ = J−1FSFT (2.15)

This equation can be significantly simplified to give the three principal stresses [28]:

σi = J−1
∂W

∂ lnλi
(2.16)

For the purposes of parameter fitting, discussed in Section 2.3, several simplifying

assumptions are made to derive a stress-stretch function.

First, uniaxial unconstrained loading is considered. All stretch will be applied to the

material in the direction of λ1, while λ2 and λ3 are allowed to change freely. Since the

Ogden material formulation is inherently isotropic, it can be concluded that λ2 = λ3.

Second, as was mentioned before, incompressibility is assumed, giving J = λ1λ2λ3 =

1. Combined with the previous assumption, we find that:

λ2 = λ3 = λ
− 1

2
1 (2.17)

By applying Equation 2.17 to Equation 2.12, the strain energy density function be-

comes:

W =
N∑
i=1

ci
m2

i

(
λmi
1 + 2λ

−mi
2

1 − 3
)

(2.18)

Finally, we derive this function as per Equation 2.16 with respect to principal stretch
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λ1. This results in a stress function of:

σ1 =
N∑
i=1

ci
mi

(
λmi
1 − λ

−m1
2

1

)
(2.19)

2.2 Tool validation

In order to ensure that the finite element analysis software, FEBio, would give valid

results, its implementation of the Ogden material model was validated against the stress-

stretch function given in Equation 2.19. A simple FE model was created to match the

assumptions used in deriving Equation 2.19: a unit cube, stretched along one axis while

allowing free deformation along the other two, as shown in Figure 2.1. This model

uses an Ogden material, with parameters c1 = 6.3, m1 = 1.3, c2 = 0.012, m2 = 5.0,

c3 = −0.1, and m3 = −2.0 [29]. Note that FEBio accepts up to six pairs of parameters

(12 parameters in total) [32], so all further parameters are set so as to negate their effects:

c4 = c5 = c6 = 0 and m4 = m5 = m6 = 1. This model’s stress and stretch along the

primary axis were stored to compare with the manual calculations.

Figure 2.1: Unit cube used for material validation, in initial and stretched states.

Using these c and m parameters in Equation 2.19 allows us to plot the stress-stretch

curve for this material. Using the code shown in Appendix A.1, we show that this curve

fits the stress-stretch curve given by FEBio very well. Therefore, we can conclude that

FEBio’s implementation of the Ogden material model is correct.
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2.3 Parameter fitting

Now that FEBio’s Ogden material implementation has been validated, it can be used

in this knee model. However, Ogden material parameters for articular cartilage do not

seem to be readily available in the literature. Fortunately, though, empirical stress-stretch

curves for articular cartilage are available; the stress-stretch function found in Equation

2.19 can be fit to such curves in order to determine the best c and m parameters to

represent the cartilage. Using the code shown in Appendix A.2, a least squares method

was applied to perform the fitting.

2.3.1 Steady-state

Several stress-stretch curves were used for this parameter fitting. The first gives the

steady-state stress-stretch response of human articular cartilage under uniaxial tension

and compression [19]. Fitting the Ogden stress-stretch curve with N = 3 to these data

points gives the six parameters shown in Table 2.1, and the curve shown in Figure 2.2.

The curve fits the measured data points very well, with r2 = 0.994.

Table 2.1: Ogden material parameters for each data set.

c1 (Pa) m1 c2 (Pa) m2 c3 (Pa) m3

Steady-state 2.1251×109 0.59043 -2.5746×109 0.28020 4.5394×108 -0.82711
Bovine 4.2588×109 2.9623 -8.5102×109 2.3994 4.2537×109 1.8357
In-situ 4.2549×109 11.277 -8.5126×109 10.300 4.2581×109 9.3065

Since these parameters represent the steady-state response of cartilage, this material

would be a suitable candidate for representing the solid phase of a poroelastic material.

Unfortunately, though, it is difficult to validate the behaviour of this solid material in

a complete knee model due to a lack of data available for comparison. There currently

does not seem to be any research on the steady-state behaviour of whole knee joints,

likely because the required loading time of 30 to 120 minutes to reach steady state is far

too high to represent realistic physiological conditions. Without such data, this material

model cannot be validated independently of a complete poroelastic model. Since that is

beyond the scope of this work, this material will for now remain unvalidated, but is left
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Figure 2.2: Comparison of fitted Ogden curves.

here so that it might be built upon in future work.

2.3.2 Bovine

With the steady-state material parameters untestable for now, other parameters are

needed that represent cartilage behaviour at physiological loading rates. Two other

experimental stress-stretch curves were used for this purpose.

The stress-stretch data from [33] was assembled from three experiments. In each

experiment, bovine cartilage was given a different amount of preconditioning stretch,

then subjected to tensile stretch at a constant strain rate, until reaching a stretch ratio

of 1.12. The different preconditioning stretches were found to have little effect on the

stress response [33], allowing the data points from all three measurements to be used in

parameter fitting simultaneously.
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However, attempting to fit Ogden parameters to these points resulted in a stress-

stretch curve that is valid when near the measured data points, but not necessarily valid

otherwise. All these data points were measured under tension [33]; since cartilage in a

knee joint will often be subjected to significant compression, fitting to these data points

alone would produce material parameters with an unrealistic response to it. Therefore, in

order to make this data useful, the simple assumption is made that stress in compression

is equal and opposite to stress in tension. Represented mathematically:

σ1(λ1) = −σ1(2− λ1) (2.20)

This is assumed to be valid within the measured stretch range and its corresponding

compressive regime; that is, for 0.88 < λ1 < 1.12.

Fitting the Ogden curve to all these data points results in the bovine parameters

shown in Table 2.1. As shown in Figure 2.2, the curve fits the data points quite well,

with r2 = 0.995.

It is important to note that bovine cartilage is typically less stiff than human cartilage

[34]; this is reflected in Figure 2.2, where the in-situ material, discussed next, is notably

stiffer. Though material properties of animal cartilage have been used in human models

before [13], material parameters of human cartilage are preferred here.

2.3.3 In-situ

Given the limitations of the bovine material properties, one other source was used. Kuro-

sawa et al. presented a load-deflection curve for an axially compressed whole human knee

joint, as well as a load-contact area curve for a knee having undergone a full meniscec-

tomy [7].

These curves were combined to generate the stretch-stretch data used to fit material

parameters. A large collection of points were sampled off of the load-deflection curve

for conversion. Only four points were available on the load-contact area curve, so spline

interpolation was used to sample between them.

Deflection was converted into stretch by the standard definition of stretch, λ1 =

1−d/t. Here, d is the deflection and t is cartilage thickness. The thickness was measured

from the reconstructed models discussed in Section 3.2. This thickness is the combined
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thicknesses of the femoral cartilage, measured to be 2.69mm, and the tibial cartilage,

measured to be 2.23mm, totalling 5.92mm. Measurements were taken at the point of

contact on the medial condyle. Load was converted into stress simply by dividing by the

corresponding interpolated contact area.

Attempting to fit the Ogden curve to all these data points did not work very well.

Regardless of initial guesses of curve parameters, the resulting curve would have an

unrealistic response. Namely, it included improperly oriented stresses — negative in

tension and positive in compression — that would give an unstable response. To overcome

this, only a subset of all stress-stretch data points were used for curve fitting; high-stress

points were gradually removed from the set until the fitted curve gave a physically possible

response. When fitted to this subset, we obtain the in-situ parameters shown in Table

2.1.

This set of parameters has its own limitations. One is that they do not fit a signifi-

cant portion of the data points; another is that stress-stretch Equation 2.19 was derived

assuming unconstrained uniaxial loading, whereas the cartilage measured was not un-

constrained while in the knee joint. However, since it based directly on human cartilage

under physiological loading rates, it is the most applicable parameter set created here.

Therefore, the in-situ material will be used to model the knee’s articular cartilage.

21





Chapter 3

Finite element model

To create a complete simulation, the material properties discussed in Chapter 2 must be

used as part of a complete Finite Element model. A volumetric mesh representing real

knee geometry was made, contact relationships between the different components were

defined, and material parameters were applied.

3.1 Slice images

The basis of the reconstructed knee geometry was the female dataset of the Visible

Human Project; therefore, the model created here is referred to as the Visible Human

model. This dataset was obtained from the cadaver of a 59-year-old woman who had

died of a heart attack. A series of photographic images were taken of the interior of the

body, all in the transverse plane. The images were taken every 0.33 mm, and were scaled

such that each pixel represented a 0.33 mm square [35].

Only geometry of the knee is required for this project, so only a subset of images

surrounding the knees were used. These images, numbers 5367 to 5967, were selected

so as to include all patellar, femoral, and tibial cartilage, along with portions of bone.

Finally, since these images are very large and contain much extraneous data, they were

all cropped to include only relevant areas. One such image is shown in Figure 3.1.
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Figure 3.1: Sample image from the Visible Human Project showing femoral condyles and
cartilage.

3.2 Volumetric reconstruction

In order to construct a three-dimensional model, the image set was loaded in to 3D

Slicer [36]. The full-colour images were resampled into greyscale images, allowing for

a simple thresholding algorithm to find the volumes of individual knee components.

Though both left and right knees are visible in the images, the right was used for all

models as it had better alignment between geometric and anatomical axes.

The thresholding algorithm worked quite well on the cartilage volumes due to their

being much brighter than most other parts of the knee. However, several blemishes had

to be corrected manually. Most notably, it appears that, in the process of creating the

images, the very bottom of the femoral condyles were lost. This resulted in an apparently

empty volume where there should have been cartilage and subchondral bone. Fortunately,

surrounding tissues preserved the shape of the condyles well enough to reconstruct them.

Furthermore, there were a few notable pockmarks in the cartilage surface, possibly caused

by early osteoarthritis that is common in older females [2]. These were easily removed

by visual extrapolation from surrounding cartilage.

Thresholding did not work as well on the bone, as it contrasted less with surrounding

tissues. Instead, a more manual approach was taken to volumetric reconstruction of them.

Images were traversed slice by slice, manually defining the boundaries of the bones. The
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boundaries were created and edited in all three planes so as to minimize ripple artifacts;

the volumes were then passed through a smoothing filter in order to reduce them further.

Finally, the volumes were exported as surface models, like the one shown in Figure 3.2;

they consist of a very fine triangular mesh along the surface of the volume. The models

show certain ridge-like artifacts resulting from converting the voxel-based volumes into

surface models, but these are minor enough that they disappear after the decimation

process discussed in Section 3.3.1.

Figure 3.2: Reconstructed surface model of femoral articular cartilage.

These volumes are oriented in the same way as the slice images. Therefore, the x-axis

aligns with the mediolateral axis, positive in the lateral direction; the y-axis aligns with

the anteroposterior axis, positive in the anterior direction; and the z-axis aligns with the

superior-inferior axis, positive in the superior direction.

3.3 Mesh generation

To use in a finite element model, the surface models must be discretized with a volumetric

mesh.
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3.3.1 Decimation

In the volumetric meshing procedure, discussed in the next section, the triangular mesh

that defines the surface is used to seed the volumetric mesh; every triangular facet be-

comes the face of at least one tetrahedron. The surface models as produced by 3D Slicer

are very dense, which would result in a correspondingly dense volumetric mesh. Denser

volumetric meshes give better results at the cost of computation time and memory usage,

but, as is shown in Section 3.5, high-quality results can be obtained at densities far lower

than that of the given mesh.

Therefore, the surface mesh had to be decimated to lower its density. This was

done with Meshlab’s quadric edge collapse decimation, which reduces the number of

surface triangles by combining them together while attempting to maintain the overall

shape of the surface [37]. The models were decimated such that the number of triangles

remaining is only a small fraction of the initial number. Cartilage models were created at

four different densities for convergence testing: 0.5%, 1.0%, 1.5%, and 2.0% of the initial

number of surface triangles. Bone models, being rigid, would not affect convergence, and

were therefore decimated much further, to 0.1%.

3.3.2 Volumetric meshing

The decimated surface models were automatically discretized with first-order, four-node

tetrahedral elements, with three positional degrees of freedom per node. Though hexahe-

dral elements are generally considered to give better results with a less dense mesh, they

tend to require much manual effort to arrange. Meshing software, Gmsh, was used, ap-

plying Delaunay triangulation through the tetgen algorithm, followed by an optimization

process [38]. In this process, the meshes were also scaled down by a factor of 1000; the

models exported from 3D slicer were created in a millimeter scale, but the meshes were

converted to meter scale so as to ensure unit homogeneity during analysis. The femoral

cartilage mesh is shown in Figure 3.3.
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Figure 3.3: Volumetric mesh of femoral articular cartilage.

3.4 Contact

The meshes were loaded into PreView [39], a preprocessor for FEBio, in order to define

contact relationships between the different knee components.

3.4.1 Cartilage-bone

Since the bones in this model are considered to be rigid bodies, a very simple rigid-body

interface can be used to attach each set of cartilage to its respective bone. This type of

contact simply ensures that all designated nodes on the cartilage model are displaced by

the same amount as the rigid bone; computationally, it behaves identically to a prescribed

displacement or nodal load [40].

The contact surface for both sets of cartilage was easily defined due to its thin geom-

etry. All facets facing toward the bone were assumed to be attached to it.

3.4.2 Cartilage-cartilage

The contact between both sets of cartilage is much more interesting than with the bone.

This contact must account for the fact that both bodies are deformable, can separate,
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and can slide relatively to each other. Fortunately, articular cartilage is typically well-

lubricated by synovial fluid [1], resulting in negligible levels of friction between cartilage

surfaces.

To achieve this, FEBio’s facet-to-facet sliding algorithm was used. It “poses the con-

tact problem as a nonlinear constrained optimization problem”, with constraints enforced

by penalty or augmented Lagrangian methods [32].

Four contact surfaces were defined; two on each set of cartilage, one of which for

the lateral condyle, the other for the medial. The surfaces were defined to be as small

as possible in order to reduce computation time; this was accomplished primarily by

visual inspection and trial-and-error. However, caution was still exercised; surfaces erred

on being too-large, and solutions were inspected to ensure no faces outside the surfaces

intersected each other. These surfaces are shown in Figure 3.4.

Figure 3.4: Sliding contact surfaces defined on each set of cartilage.

3.5 Convergence testing

The final step in preparing the finite element model is determining how many elements are

needed to converge on a solution. As was mentioned in Section 3.3.1, cartilage meshes at

four different densities were created for this purpose. Each was assembled into a problem

where the tibia is fixed in place, and the femur is gradually rotated to bring the two sets

of cartilage into contact on both condyles. The stresses in the cartilage are recorded at
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every solution state, allowing comparisons throughout the femur’s motion. The average

stress throughout the cartilage over the course of the problem for each mesh density is

shown in Figure 3.5.
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Figure 3.5: Stress in convergence testing models as function of solution state (i.e. fraction
of completion).

This figure shows that calculated stresses are almost imperceptibly different between

the model with 14857 elements and the one with 21841 (corresponding to the cartilage

surface models decimated to 1.5% and 2.0%, respectively). Therefore, the 1.5% model

should contain enough elements, and is used for further analyses.

29





Chapter 4

Simulation & results

4.1 Validation

To ensure that this model produces realistic behaviour, it is compared against the be-

haviour of real knees.

The study performed by Kurosawa et al. [7] was previously used for validation of knee

joint models [27]. This is the same source of data used to find the material parameters

in Section 2.3.3; therefore, this paper both contributes to the model and validates it.

This may appear to be an instance of the Texas sharpshooter fallacy, but is not since a

different set of data was used in each case; the material parameters were found from the

load-deflection curve of a single knee, while validation is being done against aggregate

data from fourteen knees.

These fourteen knees were “obtained from patients 37 to 76 years old who had un-

dergone amputation” [7]. The reasons for the amputations varied, though most were

due to vascular insufficiency or malignant tumors. The articular surfaces were examined,

finding no arthritic or hemorrhagic changes [7]. Therefore, these samples can be assumed

to represent healthy knees.

This data consists of average joint deflections of the tested knees. The knees were

loaded axially under full extension at a strain rate of 5 mm/min, with deflections noted

at 500 N, 1000 N, and 1500 N; the maximum load roughly corresponds to double body

weight. This was done first with the knees intact, then again after removing the menisci

[7]. Since the model does not include menisci, the second dataset is used for validation.
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4.1.1 Visible Human model

The model’s boundary conditions are adjusted to match the loading state of the knees

in the experiment. A two-step process is used: first, the tibia has all degrees of freedom

fixed while the femur is moved into contact with it by rotating in the coronal (xz) plane

and descending along the superior-inferior (z) axis; second, the femur is fixed while the

tibia is loaded upwards along the z-axis and left free to rotate within the coronal plane.

Joint deflection is measured as the translation of the tibia in along the z-axis. The load is

first dropped to 1 N to provide a reference deflection of the tibia, then gradually increased

to 1500 N.

Figure 4.1: Complete Visible Human model.

Convergence criteria for the Newton-Raphson iterations were tweaked to complete the

analysis and obtain good results. Generally, tightening the tolerance on the augmented
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Lagrangian method used to enforce contact and incompressibility gave results closer

to those of Kurosawa [7]; however, ensuring convergence at all loads required that the

convergence tolerances on displacement and energy be loosened, though this did not

appear to strongly affect the results.

This simulation required about one hour of computing time to complete. This was

done on a 2 GHz, dual core Athlon 3800+ CPU, with 4 GB of memory.

The results of this analysis were very good, with deflections at all loads within one-

half of a standard deviation of the experimental deflections. These results are tabulated

in Table 4.1.

Table 4.1: Comparison of joint deflections (in mm) between real and simulated knee
joints.

500 N 1000 N 1500 N
Experimental (mean ± std. dev.) [7] 0.83±0.21 0.98±0.16 1.11±0.25
Visible Human 0.79 1.03 1.22
Open Knee 0.75 1.09 1.20 (at 1200 N)
Modified Open Knee 0.71 0.92 1.06

The von Mises stress distributions on the surfaces of the two layers of articular carti-

lage are shown in Figure 4.2. This shows stresses at the full load of 1500 N. Peak stresses

of approximately 20 MPa are seen at the central points of contact.

Interesting to note is that the contact areas are further toward the anterior than those

seen in the Open Knee models, as shown in Sections 4.1.2 and 4.1.3. It is possible that

the knees of the subject used to create the Visible Human model were actually slightly

hyperextended, rather than being at the assumed zero-degree flexion.

4.1.2 Open Knee model

For comparison purposes, the Open Knee model [15], shown in Figure 4.3, was subjected

to the same loading conditions. This model is superior to the one created for this project

in several ways — it includes menisci, modelled with an orthotropic Func material, and

ligaments, modelled with a transversely isotropic variant of the neo-Hookean material,

and is meshed very finely with hexahedral brick elements — except that it uses the very
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Figure 4.2: von Mises stress at cartilage surfaces on the Visible Human model (Pa).

34



CHAPTER 4. SIMULATION & RESULTS 4.1. VALIDATION

simple neo-Hookean material model for the articular cartilage. To compare directly to

the results obtained from the other model, while also easing convergence, the menisci are

removed from the Open Knee model for this analysis.

Figure 4.3: Complete Open Knee model.

The boundary conditions for this model are slightly different from those used in the

previous model. Here, the tibia has all degrees of freedom fixed for the duration of the

analysis, while the femur is loaded. Translation of the femur along the z-axis is therefore

measured as the joint deflection. The load is initially brought to 10 N so as to initiate

tibio-femoral contact and provide a reference deflection, then gradually increased to 1500

N. Throughout, the femur is restricted from rotating in the sagittal (yz) and transverse

(xy) planes, but is free to rotate in the coronal (xz) plane. It is also free to translate in

any direction, allowing it to settle into a natural position.
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This model was unable to fully complete the analysis, as the load was only able to

reach 1200 N before negative Jacobians prevented it from going further; some elements

had become so severely deformed that they inverted, entering a non-physical state. Yet

even at this lower load, the model had deflected notably beyond the expected deflection.

The failure of this model can be directly attributed to the cartilage material model

it employs. By comparing the stress-stretch curves of this materials and the Ogden

material used earlier, as shown in Figure 4.4, it is easy to see that the Ogden material

is much stiffer at higher compressions, thereby reducing deflection to better match the

experimental results.
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Figure 4.4: Comparison of Ogden material and Open Knee’s neo-Hookean material.

The resulting stress distribution at 1200 N is shown in Figure 4.5. Note that this

model was created on a millimeter scale, as opposed to the Visible Human model’s meter
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scale, thereby causing stresses to be displayed in units of megapascals rather than pascals.

As was mentioned earlier, the points of contact are further posterior than those of the

Visible Human model, likely due to slightly different default flexions.

Note that the peak stress is far lower than that of the Visible Human model, reaching

only 3 MPa. This is partially accounted for by the lower load, but not entirely; at 1200

N, the Visible Human model experienced a peak stress of 16.5 MPa. The difference in

material stiffness, as seen in Figure 4.4, must account for the remainder. The softer

material allows for more deflection, as is seen in Table 4.1; by deflecting further, the

curved cartilage surfaces press together, allowing the load to be distributed over a larger

contact area.

4.1.3 Modified Open Knee model

For further comparison, the Open Knee model was modified to use the Ogden material

instead of the default neo-Hookean material. Though otherwise identical to the previous

Open Knee model, Table 4.1 shows that it performs much better at high loads.

Though it required 7.5 hours of computation time, its performance is about on par

with that of the Visible Human model. However, it is interesting to note that the Visible

Human model tended to overestimate deflection, while the modified Open Knee model

consistently underestimated it, despite the fact that the two models used identical carti-

lage material parameters. This can be explained by differences in cartilage thickness: as

was mentioned in Section 2.3.3, the Visible Human model had a total cartilage thickness

of 5.9 mm; the Open Knee’s cartilage, however, totals only 4.2 mm. This difference is

not easily explained beyond the fact that different human subjects were used in creating

the geometry of each model. But despite this, both models seem to produce reasonable

results.

The stress distribution, shown in Figures 4.6 and 4.7, has a peak value of 22 MPa.

This is comparable to the peak of 20 MPa seen in the Visible Human model; the slight

increase can be attributed to the thinner material, resulting in less deflection and therefore

a smaller contact area.

Also note that the contact areas are roughly the same shape and in the same locations

as those of the unmodified Open Knee model, but they are notably smaller and with more

concentrated stresses. This corroborates the idea that large contact areas contributed to
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Figure 4.5: von Mises stress at cartilage surfaces on the Open Knee model (MPa).
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Figure 4.6: von Mises stress at cartilage surfaces on the modified Open Knee model
(MPa).
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Figure 4.7: Cross-section through areas of peak stress.

the very low stress seen in the unmodified Open Knee model.

4.2 Thickness analysis

The discrepancy between articular cartilage thickness in the Visible Human and Open

Knee models was investigated by adjusting the cartilage thickness of the modified Open

Knee model. Using the code in Appendix A.3, several different models were created with

varying cartilage thickness.

This was done simply by adjusting the z coordinate of the nodes attached to the

articular cartilage. The articulating surfaces of the cartilage were held in place; the

surface directly connected to the bones were translated into the bones, thereby increasing

the thickness; and the interior cartilage nodes were translated proportionally to their

proximity to bone. This resulted in a generally uniform increase in element thickness

throughout the articular cartilage.

By only adjusting the z coordinate, unusual geometry is created when the cartilage

is not normal to the z-axis. Particularly toward the far anterior and posterior of the

femoral cartilage, the elements can be seen to have taken on a rather sheared appearance

when the desired offset is high. Fortunately, though, these highly-angled surfaces tend

to be quite distant from the areas where the cartilage comes in contact, implying that it

should have little effect on the results.

As is obvious in Figure 4.8, there is a direct linear relation between cartilage thickness

and total deflection, with each additional millimetre of cartilage resulting in approxi-

mately 0.4 millimetres of additional deflection. Stress, as shown in Figure 4.9 appears

to vary inversely with total undeformed thickness, t, in the form of σ ∝ t−1. Both of

these results are what would be expected of a linear elastic material. The thickest model
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experiences compressive stretches as low as 0.73, while the thinnest sees 0.70; therefore,

though the cartilage material responds nonlinearly to loading, the difference between

what is experienced by these models is small enough to observe a linear relation.

1 0 1 2 3 4
Change in total undeformed thickness (mm)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Jo
in

t 
d
e
fl
e
ct

io
n
 (

m
m

)

Figure 4.8: Maximum deflection at each tested thickness offset.

The load-deflection curves of the various models, seen in Figure 4.10, reveal some in-

teresting information. In addition to the modified Open Knee model at various thickness

offsets, this figure includes the Visible Human model and the data reported by Kuro-

sawa et al. [7], with error bars indicating one standard deviation, as tabulated in Table

4.1. Note that the stepped appearance of the curve from the Visible Human model is a

byproduct of the augmented Lagrangian method used to enforce contact, which incre-

mentally adjusts contact enforcement parameters; the Open Knee model uses the simpler

penalty method, resulting in smoother curves.
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Figure 4.9: Maximum stress found at each tested thickness offset.

From these curves, it is apparent that a small change in cartilage thickness can give a

response well away from the mean. This would imply that the relation between articular

cartilage thickness and material stiffness is fairly consistent across a large group of people.

Furthermore, it may be safe to assume that thickness and material stiffness are not

directly related to each other; this would further imply that both thickness and stiffness

are fairly consistent across a large group of people.

Also notable is the fact that the response of the Visible Human model lies between

those of default and +1 mm modified Open Knee models. Though the Visible Human

model was measured as being about 1.7 mm thicker than the default Open Knee model, its

response is not similar to a 1.7 mm offset. This is likely caused by variations in cartilage

thickness throughout the model. For example, at the point of contact on the lateral
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Figure 4.10: Load-deflection curves at each tested thickness offset.

condyle, the Visible Human model is just 3.9 mm thick, less than the 4.2 mm measured

in the Open Knee model. So, though the two geometries are different, variations within

them apparently balance to create a fairly consistent response.

Finally, the maximum stress distributions at articulating surfaces are shown in Figures

4.11 and 4.12. As would be expected from the fact that deflection increases with thickness,

it can be seen that contact areas also increase with thickness. Though the general shape

of the contact areas remains consistent, the increasing thickness brings more cartilage

in contact. Also, the peak stress can be seen to shift from the lateral condyle to the

medial condyle with increasing thickness. As is seen in Figure 4.7, articular cartilage

on the lateral condyle is notably thinner with the initial geometry. Since the offset

applied here is distributed equally across all areas of cartilage, the thicker models have
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a less pronounced difference between the two condyles, thereby preventing stress from

concentrating.

(a) -1 mm (b) 0 mm

(c) +2 mm (d) +4 mm

Figure 4.11: Stress at femoral cartilage surface at different thickness offsets.

4.3 Flexion analysis

The modified Open Knee model was further analyzed by loading it while under flexion.

This was done with a further modification of the model used for validation in Section

4.1.3. The femur is rotated around the x-axis to the desired flexion angle, allowing the

ligaments to naturally hold it in position; then, load is applied along the z-axis up to
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(a) -1 mm (b) 0 mm

(c) +2 mm (d) +4 mm

Figure 4.12: Stress at tibial cartilage surface at different thickness offsets.

1500 N. All other boundary conditions are identical to those specified in Section 4.1.2.

Note that, since rotation about the x-axis is fixed, no torsions or moments are carried by

the articular cartilage.

Note that, in this analysis, the tibia remains parallel to the superior-inferior (z) axis.

Therefore, this loading condition is analogous to a person carrying a heavy weight in front

of them; the body leans back to counterbalance the weight, but the tibia stays upright

under the centre of gravity. This is different from a person squatting, which would see

the tibia rotate along with the femur; such a loading condition would require menisci or

the patella to prevent the femoral condyles from slipping off of the tibial plateau. Since

menisci and the patella are not included in this model, such a loading condition is not

tested.
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The maximum stress in the cartilage can be seen to generally rise with the flexion

angle, as is shown in Figure 4.13, though it wavers as the flexion angle rises above 40◦.
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Figure 4.13: Maximum stress found at each tested flexion angle.

The maximum deflection follows a similar relationship, as can be seen in Figure 4.14.

The same rise-and-fall seen in Figure 4.13 appears here, though it rises quickly even at a

5◦ flexion, the peak comes at a much lower angle of about 20◦, and the fall is much more

severe from 30◦ onward.

This gradual rise and levelling of the maximum stress can be seen as a result of the

geometry of the femoral condyles that can be seen in Figure 4.15. At 0◦ flexion, the

contact areas of the condyles are relatively large and flat; at higher flexions, more curved

portions of the condyles are brought into contact. As is seen in Figure 4.16, this results

in smaller contact areas, creating more concentrated stresses. The slight decrease can

similarly be attributed to a slightly flatter area toward the posterior of the condyle that
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Figure 4.14: Maximum deflection at each tested flexion angle.

would come in contact only at higher flexions.

Interesting to note is the change in contact locations on the tibial cartilage, as seen

in Figure 4.17. As the flexion angle increases, the contact areas move slightly toward the

posterior of the tibial cartilage. Since translation of the femur is not directly constrained,

this phenomenon must be caused solely by the four ligaments that connect the two bones.

This has been observed even in intact knees, where “at these larger angles of flexion the

femoral condyles ride on the posterior aspects of the menisci” [6]. Therefore, the ligaments

in this model appear to be able to produce realistic behaviour.
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Figure 4.15: Profile of the femoral cartilage through one point of contact.



(a) 0◦ flexion (b) 10◦ flexion

(c) 30◦ flexion (d) 60◦ flexion

Figure 4.16: Stress at femoral cartilage surface at different flexions.



(a) 0◦ flexion (b) 10◦ flexion

(c) 30◦ flexion (d) 60◦ flexion

Figure 4.17: Stress at tibial cartilage surface at different flexions.



Chapter 5

Summary & conclusions

The purpose of this thesis was to produce an accurate articular cartilage material model

for a general-purpose finite element model of a knee joint.

In Chapter 2, this model was developed. The stress-stretch curve for a six-parameter

Ogden material was fitted to data from several experiments. This produced hyperelas-

tic relations for human articular cartilage at both steady-state and physiological loading

rates. The steady-state material was noted only for potential future use, while the phys-

iological rate material was used for all analysis here.

To test the performance of this material model, a finite element model of the knee

joint was created in Chapter 3. This model included only bone and articular cartilage

geometry; ligaments and tendons were ignored due to their having little effect in com-

pression, while menisci were ignored to emphasize the effects of the cartilage material

model. Convergence testing was performed to find an optimum element density.

In Section 4.1, the complete model was then validated against experimentally deter-

mined load-deflection data of whole knee joints. Data for knees which had undergone

full meniscectomies was used to match the simplified geometry of the finite element

model. At loads up to 1500 N, corresponding to roughly double average body weight,

the model experienced joint deflection within a fraction of a standard deviation of the

experimental data. An alternate finite element model was similarly tested. Though it

performed poorly, replacing its cartilage material model with the material model created

here allowed it to perform as well as the previous model.

Finally, two sets of parametric analyses were performed. In Section 4.2, the thickness
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of the articular cartilage geometry was varied, then loading was applied as before. It

was found that both load-deflection and load-stress responses are strongly dependent on

articular cartilage thickness. This leads to the conclusion that thickness must not vary

widely amongst humans. In Section 4.3, the knee was passively flexed to various angles

before loading. Stress and deflection both increased when compared to 0◦ flexion due to

more curved cartilage geometry. Furthermore, passive positioning caused by the ligament

models resulted in changed contact locations consistent with observations in real knees.

The following conclusions are inferred:

1. The Ogden material parameters found here can accurately represent articular car-

tilage under high loads.

2. Knee articular cartilage thickness must not vary widely amongst the population.

3. Loading the knee while under flexion can concentrate stresses.

5.1 Future work

To make this model more generally useful, it will need to be validated under a wider

variety of loading conditions. There are a number of resources in the literature that could

be used for purposes of comparison [8–10], but these require additional features to be

present in the model. Therefore, to perform these validations, the following enhancements

to the model are recommended.

5.1.1 Geometry

Adding ligaments to the model is important to allow for passive flexion of the joint. The

ability to model passive flexion would, in turn, allow for validation against against the

study performed by Kdolsky et al. [9]. In contrast to the Visible Human model created

in Chapter 3, the Open Knee model already contains ligaments and has had basic testing

in passive flexion [15]. Therefore, it is recommended to use the Open Knee model for

future work.

Geometry for the patella, along with related cartilage and ligaments, would also

improve the model. Large amounts of force can pass through the patella, particularly
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at high flexions [1]. Furthermore, it would allow for validation against the work of

Herberhold et al. [8], which includes cartilage deformation data more detailed than that

used for validation thus far. Therefore, it is recommended that such geometry be created

and added to the model.

5.1.2 Material

The main flaw in the cartilage material model is that a hyperelastic material alone does

not model the viscous time-dependent response of actual cartilage. Time-dependent

response is necessary to model different loading rates and could be validated against the

work of Martin et al. [10]. Though there are numerous ways to model viscous material

response, a poroelastic or biphasic approach, as used in many other studes [20–26], could

be most effective. In such a material model, the steady-state Ogden material created

in Section 2.3.1 could potentially be used to represent the solid phase. Therefore, it is

recommended that such a material model be created to use with the knee model.

Another important flaw is the homogeneity and isotropy of the cartilage material.

Though a homogeneous isotropic material can effectively model articular cartilage as a

whole, it cannot accurately reproduce the relationships between its different layers [17].

The Open Knee model allows for three distinct layers of cartilage material, though it does

not yet take advantage of them. Since such an improvement to the model would allow

for better insight into cartilage behaviour, it is recommended that unique properties be

determined for each layer.
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Appendix A

Code

Several short programs were written for this project; relevant ones are included in their

entirety here. These were written in Python 2.7, taking advantage of the NumPy, SciPy,

SymPy, and Matplotlib libraries.

A.1 febio-validation.py

This program was used in validating FEBio’s material model implementations, as dis-

cussed in Section 2.2. Though only validation of the Ogden model was covered in this

thesis, this code is also capable of validating neo-Hookean and Mooney-Rivlin materi-

als against results from FEBio. It does so using symbolic mathematics; the materials’

strain-energy density equations are hard-coded, allowing the software to automatically

derive the equation for the corresponding stress-stretch curve.

1 #!/ usr / b in /env python2

2 import sympy , pylab

3 from numpy import arange , array

4

5 l n l 1 = sympy . symbol . Symbol ( ’ l n l 1 ’ )

6 s t r e t c h 1 = sympy . exp ( l n l 1 )

7 s t r e t c h 2 = s t r e t c h 1 ∗∗ −0.5

8 s t r e t c h 3 = s t r e t c h 1 ∗∗ −0.5

9
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10

11

12 F = sympy . Matrix ( ( ( s t r e t ch1 , 0 , 0) , (0 , s t r e t ch2 , 0) , (0 , 0 ,

s t r e t c h 3 ) ) )

13 J = F. det ( )

14

15

16 def mooney r iv l in (C1 , C2 , K) :

17 Fbar = J ∗∗ ( sympy . S(−1) /3) ∗ F

18 Cbar = Fbar . t ranspose ( ) ∗ Fbar

19 Ibar1 = Cbar . t r a c e ( )

20 Ibar2 = 0

21 for i in range (3 ) :

22 Csub = Cbar [ : , : ]

23 Csub . c o l d e l ( i )

24 Csub . row de l ( i )

25 Ibar2 += Csub . det ( )

26

27 W = C1∗( Ibar1−3) + C2∗( Ibar2−3) + 0.5∗K∗( sympy . ln ( J ) ) ∗∗2
28 return W

29

30

31 def ogden ( c , m, K) :

32 N = min( ( l en ( c ) , l en (m) ) )

33 W = 0.5∗K∗( sympy . ln ( J ) ) ∗∗2
34 for i in range (N) :

35 W += ( s t r e t c h 1 ∗∗ m[ i ] + s t r e t c h 2 ∗∗ m[ i ] +

s t r e t c h 3 ∗∗ m[ i ] − 3) ∗ c [ i ] / (m[ i ]∗m[ i ] )

36 return W

37

38

39 def neo hookean (E, nu) :
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40 lam = E∗nu / ( (1+nu) ∗(1−2∗nu) )

41 mu = 0.5 ∗ E / (1+nu)

42

43 C = F. t ranspose ( ) ∗ F

44 I1 = C. t r a c e ( )

45 W = 0.5∗mu ∗ ( I1−3) − mu∗sympy . ln ( J ) + 0.5∗ lam ∗ ( sympy .

ln ( J ) ) ∗∗2
46 return W

47

48

49 from sys import argv

50 i f argv [ 1 ] == ’mr ’ :

51 matl = mooney r iv l in (−84.76 , 17 .35 , 1 e6 )

52 data = open ( ’mooney−r i v l i n−FE. data ’ )

53 legend = ( ’M−R c a l c u l a t e d ’ , ’M−R FE ’ )

54 e l i f argv [ 1 ] == ’ ogden ’ :

55 matl = ogden ( [ 6 . 3 , 0 . 0 1 2 , −0 . 1 ] , [ 1 . 3 , 5 . 0 , −2 . 0 ] , 1 e6 )

56 data = open ( ’ ogden−FE. data ’ )

57 legend = ( ’Ogden c a l c u l a t e d ’ , ’Ogden FE ’ )

58 else : print ’A r e a l mater ia l , p l e a s e ! ’

59

60 s t r e s s = sympy . d i f f ( matl , l n l 1 )

61 x1 = arange ( 0 . 5 , 2 , 0 . 005 )

62 y1 = [ s t r e s s . e v a l f ( subs={ l n l 1 : sympy . ln ( i ) }) for i in x1 ]

63 #Must d i f f e r e n t i a t e wi th r e s p e c t to ln ( s t r e t c h ) , as per bonet97

64

65 pylab . p l o t ( x1 , y1 , ’b ’ )

66

67 x2 = [ ]

68 y2 = [ ]

69 try :

70 for l i n e in data . r e a d l i n e s ( ) :
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71 pt = l i n e . s p l i t ( ) [ 0 : 2 ]

72 x2 . append ( f l o a t ( pt [ 0 ] ) )

73 y2 . append ( f l o a t ( pt [ 1 ] ) )

74 pylab . p l o t ( x2 , y2 , ’ g ’ , l i n ew id th =4)

75 except NameError : pass

76

77 f e b s t r e s s = array ( y2 )

78 m a t l s t r e s s = array ( [ s t r e s s . e v a l f ( subs={ l n l 1 : sympy . ln ( i ) }) for

i in x2 ] )

79 SStot = sum( ( f e b s t r e s s − sum( f e b s t r e s s ) / l en ( f e b s t r e s s ) ) ∗∗2 )

80 SSerr = sum( ( f e b s t r e s s − m a t l s t r e s s ) ∗∗2 )

81 R2 = 1 − SSerr / SStot

82 print ’ Goodness o f f i t : %s ’ % R2

83

84 pylab . l egend ( legend , l o c=’ lower r i g h t ’ )

85 pylab . x l a b e l ( ’ S t r e t ch ’ )

86 pylab . y l a b e l ( ’ S t r e s s (Pa) ’ )

87 #p y l a b . s a v e f i g ( ’ f e b i o−v a l i d a t i o n . pd f ’ )

88 pylab . show ( )

A.2 curvefit.py

This program was used to fit material parameters to the experimental stress-stretch data

for cartilage, as discussed in Section 2.3. The centrepiece of this program is SciPy’s least

squares optimization routine.

As in febio-validation.py, this can be used to fit linear elastic, Mooney-Rivlin, and

Ogden materials (though not neo-Hookean), but was used primarily for Ogden. As an

optimization, the automatic derivation of the Ogden stress-stretch curve was replaced

with the manually derived Equation 2.19.

1 #!/ usr / b in /env python2

2 import sympy , pylab , numpy , sys

3 from s c ipy . opt imize import l e a s t s q
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4 from math import log , exp

5

6 #Read in data .

7 with open ( sys . argv [ 1 ] ) as data :

8 s t r e t c h = [ ]

9 s t r e s s = [ ]

10 for pt in data . r e a d l i n e s ( ) :

11 (x , y ) = pt . s p l i t ( ’ , ’ )

12 try :

13 s t r e t c h . append ( f l o a t ( x ) )

14 s t r e s s . append ( f l o a t ( y ) )

15 except ValueError : pass

16 s t r e t c h = numpy . array ( s t r e t c h )

17 s t r e s s = numpy . array ( s t r e s s )

18

19

20 try : matltype = sys . argv [ 2 ]

21 except IndexError : matltype = ’ ogden ’

22

23 i f matltype == ’ l i n e a r ’ :

24 def m a t l s t r e s s (p , l 1 ) :

25 return p [ 0 ] ∗ ( l 1 − 1) + p [ 1 ]

26 pguess = [ 1 7 . 4 e6 , −0.708 e6 ]

27

28 e l i f matltype == ’mr ’ :

29 l n l 1 = sympy . symbol . Symbol ( ’ l n l 1 ’ )

30 s t r e t c h 1 = sympy . exp ( l n l 1 )

31 s t r e t c h 2 = s t r e t c h 1 ∗∗ −0.5

32 s t r e t c h 3 = s t r e t c h 1 ∗∗ −0.5

33

34 F = sympy . Matrix ( ( ( s t r e t ch1 , 0 , 0) , (0 , s t r e t ch2 , 0) , (0 ,

0 , s t r e t c h 3 ) ) )
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35 C = F. t ranspose ( ) ∗ F

36 I1 = C. t r a c e ( )

37 I2 = 0

38 for i in range (3 ) :

39 Csub = C [ : , : ]

40 Csub . c o l d e l ( i )

41 Csub . row de l ( i )

42 I2 += Csub . det ( )

43

44 dI1 = sympy . d i f f ( I1 , l n l 1 )

45 dI2 = sympy . d i f f ( I2 , l n l 1 )

46 def m a t l s t r e s s (p , l 1 ) :

47 s = p [ 0 ] ∗ dI1 + p [ 1 ] ∗ dI2

48 return numpy . array (

49 [ f l o a t ( s . e v a l f ( subs={ l n l 1 : l og ( i ) }) ) for i in l 1 ] )

50 pguess = [100 , 20 ]

51

52 e l i f matltype == ’ ogden ’ :

53 def m a t l s t r e s s (p , l 1 ) :

54 s = 0

55 #a s s e r t l e n ( p )%2 == 0

56 for i in range (0 , l en (p) , 2) :

57 #Hand−d e r i v e d s t r e s s−s t r e t c h f u n c t i o n .

58 s += p [ i ] / p [ i +1] ∗ ( l 1 ∗∗p [ i +1] − l 1 ∗∗(−p [ i +1]/2 .0) )

59 return s

60 #pguess = [ 2 . 3 e9 , 0 . 2 4 , −2.4e9 , 0 . 0 3 5 , 1 .3 e8 ,−2.3]

61 pguess = [4 .25881732 e +09 ,2.96232362 , −8.51024477 e

+09 ,2.39944995 , 4 .25374435 e +09 ,1 .83572264]

62

63 else :

64 print ’A r e a l mater ia l , p l e a s e . ’

65 sys . e x i t (1 )
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66

67

68 def r e s i d u a l s (p) :

69 return m a t l s t r e s s (p , s t r e t c h ) − s t r e s s

70

71 pbest = l e a s t s q ( r e s i d u a l s , pguess , maxfev=150000) [ 0 ]

72 print ’ Optimal parameters : %s ’ % pbest

73

74 SStot = sum( ( s t r e s s − sum( s t r e s s ) / l en ( s t r e s s ) ) ∗∗2 )

75 SSerr = sum( ( s t r e s s − m a t l s t r e s s ( pbest , s t r e t c h ) ) ∗∗2 )

76 R2 = 1 − SSerr / SStot

77 print ’ Goodness o f f i t : %s ’ % R2

78

79 #m a t l s t r e t c h = numpy . arange ( s t r e t c h [ 0 ] , s t r e t c h [−1] , 0 .001∗(

s t r e t c h [−1]− s t r e t c h [ 0 ] ) )

80 m a t l s t r e t c h = numpy . arange ( 0 . 1 , 2 , 0 . 001 )

81 pylab . s c a t t e r ( s t r e t ch , s t r e s s , c=’ g ’ )

82 xlim = pylab . xlim ( )

83 ylim = pylab . ylim ( )

84 pylab . p l o t ( mat l s t r e t ch , m a t l s t r e s s ( pbest , m a t l s t r e t c h ) , ’b ’ )

85 pylab . p l o t ( mat l s t r e t ch , m a t l s t r e s s ( pguess , m a t l s t r e t c h ) , ’ r ’ )

86 pylab . xl im ( xlim )

87 pylab . yl im ( ylim )

88 pylab . show ( )

A.3 offset.py

This program was used to create versions of the Open Knee model with different cartilage

thicknesses. It reads in the default FEBio input file of the Open Knee model and creates

a new input file with the total cartilage thickness changed by the amount specified as the

first argument to the program.

This program operates on the basis that each piece of articular cartilage in the Open
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Knee model is divided into three layers of brick elements, with each layer given its own

material definition. Though all layers are given the same properties, the fact that they are

distinguished allows the code to determine where a node resides within the cartilage. All

nodes connected to the bottom layer of cartilage (closest to bone) are processed into one

set, while nodes connected to the middle layer are processed into another; the differences

between these sets gives the top and bottom sets of nodes, while the intersection gives

the middle set. The bottom node set is translated in the z direction by half of the total

desired offset, while middle and top node sets are translated proportionally in the same

direction. This is repeated on both pieces of cartilage to achieve the total desired offset.

1 #!/ usr / b in /env python2

2 import xml . e t r e e . cElementTree as e t r e e

3

4 inp = e t r e e . ElementTree ( ’ f e b i o s p e c ’ , ’ 00 . f eb ’ )

5

6 # Find m a t e r i a l i d o f c a r t i l a g e l a y e r s .

7 for mat in inp . f i n d ( ’ Mater ia l ’ ) :

8 i f mat . get ( ’name ’ ) == ’ fcartm ’ :

9 f ca r tm id = mat . get ( ’ id ’ )

10 e l i f mat . get ( ’name ’ ) == ’ f c a r t b ’ :

11 f c a r t b i d = mat . get ( ’ id ’ )

12 e l i f mat . get ( ’name ’ ) == ’ tcartm ’ :

13 tcar tm id = mat . get ( ’ id ’ )

14 e l i f mat . get ( ’name ’ ) == ’ t ca r tb ’ :

15 t c a r t b i d = mat . get ( ’ id ’ )

16

17 # Find a l l nodes t h a t are par t o f the c a r t i l a g e m a t e r i a l

18 # ( e x c l u d i n g the outermost layer , which i s not be ing modi f ied ) .

19 f t o p n o d e s = s e t ( ) ; f bottom nodes = s e t ( )

20 t top node s = s e t ( ) ; t bottom nodes = s e t ( )

21 for elem in inp . f i n d ( ’ Geometry ’ ) . f i n d ( ’ Elements ’ ) :

22 i f elem . get ( ’mat ’ ) == fca r tm id :

23 f t o p n o d e s . update ( elem . t ext . s p l i t ( ’ , ’ ) )
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24 e l i f elem . get ( ’mat ’ ) == f c a r t b i d :

25 f bottom nodes . update ( elem . t ext . s p l i t ( ’ , ’ ) )

26 e l i f elem . get ( ’mat ’ ) == tcar tm id :

27 t top node s . update ( elem . t ext . s p l i t ( ’ , ’ ) )

28 e l i f elem . get ( ’mat ’ ) == t c a r t b i d :

29 t bottom nodes . update ( elem . t ext . s p l i t ( ’ , ’ ) )

30

31 # Separate the found nodes i n t o t h r e e l a y e r s f o r d i sp lacement .

32 f mid nodes = f t o p n o d e s . i n t e r s e c t i o n ( f bottom nodes )

33 f t o p n o d e s . d i f f e r e n c e u p d a t e ( f mid nodes )

34 f bottom nodes . d i f f e r e n c e u p d a t e ( f mid nodes )

35

36 t mid nodes = t top node s . i n t e r s e c t i o n ( t bottom nodes )

37 t top node s . d i f f e r e n c e u p d a t e ( t mid nodes )

38 t bottom nodes . d i f f e r e n c e u p d a t e ( t mid nodes )

39

40 # Move each node in the z d i r e c t i o n by an amount depending on

41 # i t s l a y e r and the r e q u e s t e d t h i c k e n i n g .

42 import sys ; th i cken = f l o a t ( sys . argv [ 1 ] )

43 f bottom move = th icken /2 ; t bottom move = −f bottom move

44 f mid move = f bottom move ∗2 . 0 / 3 ; t mid move = −f mid move

45 f top move = f bottom move /3 ; t top move = −f top move

46

47 def move node ( n text , move z ) :

48 x = map( f l o a t , n t ex t . s p l i t ( ’ , ’ ) )

49 x [ 2 ] += move z

50 return ’ , ’ . j o i n (map( s t r , x ) )

51

52 for node in inp . f i n d ( ’ Geometry ’ ) . f i n d ( ’ Nodes ’ ) :

53 i f node . get ( ’ id ’ ) in f t o p n o d e s :

54 node . t ex t = move node ( node . text , f top move )

55 e l i f node . get ( ’ id ’ ) in f mid nodes :
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56 node . t ex t = move node ( node . text , f mid move )

57 e l i f node . get ( ’ id ’ ) in f bottom nodes :

58 node . t ex t = move node ( node . text , f bottom move )

59 e l i f node . get ( ’ id ’ ) in t top node s :

60 node . t ex t = move node ( node . text , t top move )

61 e l i f node . get ( ’ id ’ ) in t mid nodes :

62 node . t ex t = move node ( node . text , t mid move )

63 e l i f node . get ( ’ id ’ ) in t bottom nodes :

64 node . t ex t = move node ( node . text , t bottom move )

65

66 # Give an a p p r o p r i a t e d i sp lacement output f i l ename .

67 for i in inp . f i n d ( ’ Output ’ ) . f i n d ( ’ l o g f i l e ’ ) . f i n d a l l ( ’

r i g i d body da ta ’ ) :

68 i f i . get ( ’ f i l e ’ ) i s not None :

69 i . a t t r i b [ ’ f i l e ’ ] = sys . argv [1 ]+ ’−disp lacement . txt ’

70

71 # Write to f i l e .

72 with open ( sys . argv [1 ]+ ’ . f eb ’ , ’w ’ ) as out :

73 inp . wr i t e ( out , encoding=”ISO−8859−1” , xml dec l a ra t i on=True )
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[12] B. Potočnik, D. Zazula, B. Cigale, D. Heric, E. Cibula, and T. Tomažič, “A patient-
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