

Early Detection and Mitigation of DDoS Attacks
In Software Defined Networks

by

Maryam Kia

A Thesis Presented to the School of Graduate Studies at

Ryerson University

In partial fulfillment of the

Requirements for the degree of

Master of Applied Science

In the program of

Computer Networks

Toronto, Ontario, Canada, 2015

© Maryam Kia 2015

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals

for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or

by other means, in total or in part, at the request of other institutions or individuals

for the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

Early Detection and Mitigation of DDoS Attacks
in Software Defined Networks

© Maryam Kia 2015

Master of Applied Science

In Computer Networks
Ryerson University

Abstract

Software Defined networking (SDN) is a new approach for the design and

management of computer networks. The main concept behind SDN is the separation

of the network’s control and forwarding planes with the control plane moved to the

centralized controller. In SDN networks with the centralized controller structure

DDoS attacks can easily exhaust the controller's or the switches' computing and

communication resources, thus, breakdown the network within a short time.

In this thesis, the scheme, running at the controller, can detect DDoS attacks at the

early stage. The method not only can detect the attacks but also identify the

attacking paths and start a mitigation process to provide some degree of protection

of the network devices the moment an attack is detected. The Proposed method is

based on the Entropy variation of destination IP address, Flow initiation rate and

study of the Flow specifications.

https://www.sdxcentral.com/flow/sdn-software-defined-networking/?utm_source=pink_ball&utm_medium=link&utm_campaign=links&utm_content=sdn-software-defined-networking

iv

Acknowledgement

I would like to express my sincere appreciation to my supervisor Dr. Ngok-Wah Ma,

and my co-supervisor Dr. Xiaoli Li, for their continuous support, patience,

motivation, encouragement and time throughout my graduate studies. It was a great

experience to study and work under their supervision throughout my research work

and thesis writing.

Special thanks to the Computer Networks Master’s program and the school of

Graduate studies. It was an immense opportunity to study in this great citadel of

learning.

Last, but not least, I would like to thank my husband for his inspiration,

encouragement and support, my mom and dad for being the best parents and

grandparents in the world and taking care of my precious little girl days and nights

and my little Raha for her beautiful smile that encouraged me all through the way.

v

Table of Contents

List of Tables .. vii

List of Figures ... viii

List of Abbreviation ... x

Chapter 1 .. 1

1 Introduction .. 1

1.1 Problem Statement .. 1

1.2 Research Objective and Contribution .. 3

1.3 Thesis Organization ... 4

Chapter 2 .. 5

2 Background and Related Works ... 5

2.1 What is SDN? .. 5

2.2 Advantages and Disadvantages of SDN ... 7

2.3 OpenFlow Protocol ... 10

2.3.1 OpenFlow Operation ... 12

2.3.2 Flow Table Entry ... 12

2.3.3 OpenFlow Message Types ... 14

2.3.4 Flow Duration... 16

2.4 SDN Controllers ... 16

2.5 SDN Security .. 18

2.6 DDoS Attacks ... 20

2.6.1 DDoS Attack Operation ... 20

2.6.2 Various DDoS Attack Types ... 22

2.6.3 DDoS Attacks in SDN ... 23

2.7 Previous Work in SDN DDoS Attack Detection .. 23

Chapter 3 ... 30

3 Proposed DDoS Detection and Mitigation Algorithm ... 30

3.1 Entropy Variation of Destination IP address ... 32

3.1.2 Implementation of Entropy Variation of Destination IP address 33

3.2 Flow Initiation Rate .. 36

3.2.2 Implementation of Flow Initiation Rate .. 37

3.3 Study of Flow specification .. 39

vi

3.3.2 Implementation of Study of Flow Specification ... 41

3.4 Attack Mitigation ... 44

Chapter 4 ... 47

4 Simulation and Results .. 47

4.1 Mininet ... 47

4.2 Traffic Generation ... 47

4.3 Simulation Scenarios and Results ... 48

4.3.1 False Positive and False Negative Attack Detections ... 49

4.3.2Detailed Analysis of Attack Path Detection and Detection Delays................................. 56

4.3.3 Algorithm Detection Changes with Changes of Legitimate and Attack Flow Types

 ... 68

4.3.4 Attack Mitigation Effectiveness ... 72

Chapter 5 ... 74

5 Conclusion and Future work ... 74

5.1 Conclusion .. 74

5.2 Future Work .. 75

Appendix ... 76

Bibliography ... 101

vii

List of Tables

TABLE 1 CURRENT CONTROLLER IMPLEMENTATIONS COMPLIENT WITH THE OPENFLOW STANDARD ... 17

TABLE 2 TRAFFIC PATTERN “A” LEGITIMATE AND ATTACK TRAFFIC SPECIFICATIONS 50

TABLE 3 THRESHOLD VALUES SET FOR THE STUDY OF THE FLOW SPECIFICATIONS IN TRAFFIC PATTERN

“A” .. 51

TABLE 4 TRAFFIC PATTERN “B” LEGITIMATE AND ATTACK TRAFFIC SPECIFICATIONS 51

TABLE 5 THRESHOLD VALUES SET FOR THE STUDY OF THE FLOW SPECIFICATIONS IN TRAFFIC PATTERN

“B” .. 52

TABLE 6 THRESHOLD VALUES SET FOR THE STUDY OF THE FLOW SPECIFICATIONS IN TRAFFIC PATTERN

“C” .. 52

TABLE 7 FP AND FN REPORTS UNDER DIFFERENT TRAFFIC PATTERNS IN SINGLE VICTIM ATTACKS 53

TABLE 8 FP AND FN REPORTS UNDER DIFFERENT TRAFFIC PATTERNS IN SINGLE VICTIM ATTACKS 55

TABLE 9 FALSE NEGATIVE REPORT STATISTICS IN TRAFFIC PATTERN “A” SINGLE VICTIM ATTACK

SCENARIO ... 59

TABLE 10 FALSE POSITIVE REPORT STATISTICS IN TRAFFIC PATTERN “A” SINGLE VICTIM ATTACK

SCENARIO ... 59

TABLE 11 COMPARING ENTROPY AND FLOW INITIATION RATE EFFECTIVENESS IN DETECTING ATTACKS

IN TRAFFIC PATTERN “A” SINGLE VICTIM ATTACKS .. 63

TABLE 12 FALSE NEGATIVE REPORT STATISTICS IN TRAFFIC PATTERN “A” MULTIPLE VICTIM ATTACK

SCENARIO ... 66

TABLE 13 FALSE POSITIVE REPORT STATISTICS IN TRAFFIC PATTERN “A” MULTIPLE VICTIM ATTACK

SCENARIO ... 66

TABLE 14 COMPARING ENTROPY AND FLOW INITIATION RATE EFFECTIVENESS IN DETECTING ATTACKS

IN TRAFFIC PATTERN “A” MULTIPLE VICTIM ATTACKS .. 67

TABLE 15 CHANGING LEGITIMATE TRAFFIC PARAMETERS ... 69

TABLE 16 FP ERROR PROBABILITY CHANGES WITH CHANGE OF LEGITIMATE TRAFFIC CHARACTERISTICS

... 69

TABLE 17 CHANGING ATTACK TRAFFIC PARAMETERS ... 71

TABLE 18 FN ERROR PROBABILITY CHANGES WITH CHANGE OF ATTACK TRAFFIC CHARACTERISTICS ... 71

TABLE 19 EFFECTIVENESS OF THE APPLIED MITIGATION METHOD .. 72

viii

 List of Figures

FIGURE 1 COMPARING TRADITIONAL NETWORKS AND SDN ... 5

FIGURE 2 SDN FUNCTIONAL ARCHITECTURE .. 6

FIGURE 3 FLOW PROCESSING IN OPENFLOW PROTOCOL ... 7

FIGURE 4 COMPARING CENTRALIZED AND DISTRIBUTED SDN ARCHITECTURE 9

FIGURE 5 OPENFLOW TABLE ENTRY ... 11

FIGURE 6 SUPPORTED COUNTER FIELDS ... 11

FIGURE 7 OPENFLOW FLOW PROCESSING PROCEDURE .. 12

FIGURE 8 OPENFLOW TABLE ENTRY HEADER FIELD ... 13

FIGURE 9 DDOS ATTACK STRUCTURE ... 21

FIGURE 10 DETECTION LOOP OPERATION .. 26

FIGURE 11 ENTROPY VARIATION OF DESTINATION IP ADDRESS DDOS DETECTION FLOWCHART

 ... 29

FIGURE 12 ALGORITHM FLOWCHART ... 31

FIGURE 13 IMPLEMENTATION OF ENTROPY VARIATION OF DESTINATION IP ADDRESS IN THE

PROPOSED ALGORITHM ... 34

FIGURE 14 IMPLEMENTATION OF FLOW INITIATION RATE IN THE PROPOSED ALGORITHM 38

FIGURE 15 IMPLEMENTATION OF STUDY OF FLOW SPECIFICATION IN THE PROPOSED ALGORITHM

 ... 41

FIGURE 16 IMPLEMENTING ATTACK MITIGATION IN THE PROPOSED ALGORITHM 45

FIGURE 17 NETWORK TOPOLOGY ... 49

FIGURE 18 FALSE POSITIVE / FALSE NEGATIVE REPORTS IN TRAFFIC PATTERN “A” SINGLE VICTIM

ATTACK SCENARIO UNDER 13% ATTACK RATE .. 57

FIGURE 19 FALSE POSITIVE / FALSE NEGATIVE REPORTS IN TRAFFIC PATTERN “A” SINGLE VICTIM

ATTACK SCENARIO UNDER 28% ATTACK RATE .. 57

FIGURE 20 FALSE POSITIVE / FALSE NEGATIVE REPORTS IN TRAFFIC PATTERN “A” SINGLE VICTIM

ATTACK SCENARIO UNDER 45% ATTACK RATE .. 58

FIGURE 21 FALSE POSITIVE / FALSE NEGATIVE REPORTS IN TRAFFIC PATTERN “A” SINGLE VICTIM

ATTACK SCENARIO UNDER 63% ATTACK RATE .. 58

ix

FIGURE 22 FALSE NEGATIVE REPORTS BEHAVIOUR IN TRAFFIC PATTERN “A” SINGLE VICTIM

ATTACK SCENARIO ... 59

FIGURE 23 FALSE POSITIVE REPORTS BEHAVIOUR IN TRAFFIC PATTERN “A” SINGLE VICTIM

ATTACK SCENARIO ... 60

FIGURE 24 SAMPLE FN REPORTING FROM ATTACK SCENARIO 13 .. 62

FIGURE 25 ATTACK DETECTION DELAY IN TRAFFIC PATTERN “A” SINGLE VICTIM ATTACKS 63

FIGURE 26 FALSE POSITIVE / FALSE NEGATIVE REPORTS IN TRAFFIC PATTERN “A” MULTIPLE

VICTIM ATTACK SCENARIO UNDER 26% ATTACK RATE ... 64

FIGURE 27 FALSE POSITIVE / FALSE NEGATIVE REPORTS IN TRAFFIC PATTERN “A” MULTIPLE

VICTIM ATTACK SCENARIO UNDER 42.5% ATTACK RATE ... 65

FIGURE 28 FALSE POSITIVE / FALSE NEGATIVE REPORTS IN TRAFFIC PATTERN “A” MULTIPLE

VICTIM ATTACK SCENARIO UNDER 54% ATTACK RATE ... 65

FIGURE 29 FALSE NEGATIVE REPORTS BEHAVIOUR IN TRAFFIC PATTERN “A” MULTIPLE VICTIM

ATTACK SCENARIO ... 66

FIGURE 30 FALSE POSITIVE REPORTS BEHAVIOUR IN TRAFFIC PATTERN “A” MULTIPLE VICTIM

ATTACK SCENARIO ... 66

FIGURE 31 ATTACK DETECTION DELAY IN TRAFFIC PATTERN “A” MULTIPLE VICTIM ATTACKS .. 67

FIGURE 32 FP ERROR PROBABILITY CHANGE WITH THE CHANGE OF LEGITIMATE TRAFFIC FLOW

TYPE .. 70

FIGURE 33 FN ERROR PROBABILITY CHANGE WITH THE CHANGE OF ATTACK TRAFFIC FLOW TYPE

 ... 72

x

List of Abbreviation

ACL Access Control List

ACK Acknowledgement Notice

API Application Programming Interface

CPU Central Processing Unit

DNS Domain Name Service

DOS Denial of Service

DDoS Distributed Denial of Service

FN False Negative

FP False Positive

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IPS Intrusion Prevention System

IP Internet Protocol

ISP Internet Service Provider

NETAD Network Traffic Anomaly Detector

OS Operating System

OVS Open vSwitch

QOS Quality of Service

RAM Random-access Memory

SDN Software Defined Networks

sFlow sampled flow

SOM Self-Organizing Maps

SSL Secure Socket Layer

SYN Synchronization Message

TCP Transport Control Protocol

TLS Transport Layer Security

TTL Time to Live

UDP User Datagram Protocol

VLAN Virtual Local Area Network

VM Virtual Machine

1

Chapter 1

1 Introduction

1.1 Problem Statement

Software Defined Networking (SDN) is a new networking approach that is

introduced with the goal to simplify the network management by separating the

data and control planes. SDN has brought with itself programmability in the

network control plane. The shift of the control logic from networking devices, such

as switches and routers, in traditional networks to a centralized unit known as the

controller permits the physical network hardware to be detached from the control

Plane. This separation simplifies the design of new protocols and implementation of

new network services such as access control, QOS, enforcement of new policies,

bandwidth management, traffic engineering and etc. No longer does every small

change need to come at the cost of reconfiguring all the network devices [1].

The data plane consists of devices that contain tables of flow entries. These devices

use a secure transport layer protocol to securely communicate with a controller

about new entries that are not currently in the flow table. Each flow entry includes

matching rules and actions that guide the data plane on the action to take for the

matched flow. When a packet arrives at a switch the header fields will be matched

against the matching rules available in the flow table and if a match is found the

action specified by the flow entry will be taken by the switch otherwise the packet

header will be forwarded to the controller for further process. The controller then

processes the header and constructs a flow rule to be installed in the flow tables of

the switches along the chosen path.

The centralized structure of the controller could lead to many security challenges.

One of such critical challenges is the impact of distributed denial of service attacks

(DDoS) on SDN networks.

2

In a DDoS attack multiple compromised systems are usually infected with a Trojan

and are used to target a single or multiple victims in the network. The attack traffic

flooding the victim uses many different spoofed source IP addresses. This effectively

makes it impossible to stop the attack by only blocking traffic based onsource IP

addresses. It is also very difficult to distinguish legitimate user traffic from attack

traffic when the attack traffic sources are spread across the Internet. Over the years,

effective deployment of DDoS detection and response methods has always been

critical factors for the proper network operation. This issue is even more

pronounced in SDN networks.

The centralized role of the controller in SDN makes it a perfect target for the

attackers. Such attacks can easily bring down the entire network by bringing down

the controller. Since the attack packets are sent with many spoofed source IPs, the

DDoS attack can cause problems to both switches and the controller [2]. At the

arrival of each of the attack packets a new flow rule needs to be created and

therefore the switch will need to store the packets in its memory and forward the

header field to the controller. Receiving a large number of attack packets will use up

a lot of switch memory and eventually install many new flow entries in the flow

tables.This may cause the depletion of memory and slow down the flow table lookup

very quickly, and in the worst case scenario, it may bring down the switch.

Meanwhile all these packets from all over the network will be forwarded to the

controller for processing. The large volume of packets sent to the controller with

each of them consuming part of the memory and the processing power of the

controller may also eventually break down the controller.

The effectiveness of DDoS attacks will be seen in a much faster pace and with a

greater damage in SDN networks compared to the traditional networks. Hence it is

vital to make sure an effective and trustable detection method is in place to detect

such attacks and appropriate action is taken followed by an early detection.

http://www.webopedia.com/TERM/T/Trojan_horse.html

3

Since SDN networks are used mainly in large data centers with many switches, it is

critical to also find the targeted parts of the network through the detection process.

This will reduce the time required to carry out a mitigation measure. Controllers are

usually designed with backups and also are very powerful devices with huge

amounts of memory but the resources in the switches are much more limited. This

makes the switches to be more susceptible against these types of attacks and hence

it is very important to have quick provisional methods in place to prevent the

switches from breaking down as soon as first signs of an attack are detected. It is

also very important to design the detection method as light weight as possible to

prevent putting any extra load on the controller.

1.2 Research Objective and Contribution

This thesis concentrates on DDoS attacks on SDN networks. A method is proposed to

protect the SDN switches and controller from the destructive effects of DDoS attacks

by adding a lightweight detection mechanism at the controller. The main

contributions of this thesis are as follows:

 Designing a DDoS detection algorithm by adding a light weight code to the

SDN controller. The algorithm is designed to be effective to detect both

single-victim and multiple-victim DDoS attacks with very high accuracy.

Different detection methods are used including the Entropy variation of

destination IP address, Flow initiation rate and study of the Flow

specifications.

 A mitigation method based on the shorting of the flow idle timer is

implemented at the time of an attack to help the switches survive when

under attack.

 The algorithm is successfully implemented using Mininet and the pox

controller.

 The effectiveness of the method is analyzed through extensive testing

scenarios.

4

1.3 Thesis Organization

The remainder of this thesis is organized in the following order:

 Chapter 2 covers some background information on SDN and OpenFlow

architecture. The SDN security features and concerns are discussed followed

by a glance at the DDoS attack operation, features and SDN related issues.

Lastly some previous work in SDN DDoS attack detection is presented.

 Chapter 3 describes the proposed DDoS attack detection and mitigation

algorithm. The Step by step implementationof the algorithm will also be

described.

 Chapter 4 presents the simulation results, along with their detailed analysis.

 Chapter 5 concludes the thesis and presents some future work highlights.

5

Chapter 2

2 Background and Related Works

2.1 What is SDN?

Software defined networking (SDN) provides a different approach in network

design and management. The nature of conventional networking is static and even

small changes in networking conditions would exact a high cost of re-configuring

large number of switches, routers and other network resources [3].

As shown in figure 1(a), the operation of a network node in a traditional network

consists of the interaction between the data and control planes. It is the control

plane’s responsibility to calculate the paths across the network and push them to

the data plane to enable data forwarding. Therefore after a flow policy has been

established in most cases any policy changes would require altering the

configurations on each of the devices. In large networks this might mean that the

network operators would need to spend quite a time reconfiguring the devices

routinely to adapt to the changing traffic demands and network conditions.

Figure 1Comparing Traditional Networks and SDN [4]

6

The main concept of SDN lies in the notion of decoupling the control and data planes

that is shown in figure 1(b). In SDN, the control plane is no longer distributed among

network nodes, as in the traditional network, but instead centralized at the

controller which communicates with network nodes to setup the data plane through

a southbound SDN protocol [5]. OpenFlow is a standardized southbound SDN

protocol used to support communications between the controller and network

nodes. Figure 2 illustrates the communication path between the application, control

and data layers. Control plane applications such as load balancing at the application

layer of the SDN architecture interact with the data plane through application

programming interfaces (APIs). Both the application and control layers are

implemented at the controller while the data layer is implemented distributed by

the networking devices such as routers and switches. APIs are utilized to implement

network services that are customized base on the application layer requirements

(quality of service, access control, bandwidth management, energy management and

etc.) [6]. More detail on different controller types is given in section 2.4.

Figure 2 SDN Functional Architecture [7]

Since the controller gains a complete vision of the entire network, it can alone

manage appropriate changes according to the traffic conditions. This approach

significantly simplifies the implementation of some of the network functions.

7

As shown in figure 3, once the first packet arrives at the switch, the flow table is

checked for a matching flow rule. If a match is found the flow actions specified by

the flow rule will be executed and the flow statistics are updated otherwise the

packet header is forwarded to the controller over a secure channel. The controller

processes the packet according to the defined algorithm in the controller and

specifies the actions that are to be taken by the switches along the chosen path

between the source and destination. The new flow rule will be sent to the switches

in the path to be installed in their flow tables. The switch will start taking

appropriate actions on the data packets of the flow based on the new flow rule. If no

matching flow entry is found in the controller the packets will be dropped.

Figure 3 Flow Processing in OpenFlow Protocol [8]

2.2 Advantages and Disadvantages of SDN

As pointed out by sakir sezer et al. [9]the network programmability introduced by

SDN provides continuous and smooth communication at all levels from hardware to

software and eventually to the end users and builds awareness between the

8

network and the running applications. SDN helps to improve the use of resources by

the applications and simplifies the introduction of new applications. Network

changes are managed at a much lower cost and faster pace. Applications no more

need to have a full view of the underlying network structure and the network

complexity is hidden from the business applications [10].

In addition, having a global view of the network enhances the decision-making and

consequently improves the network behavior efficiency. The introduction of new

protocols and mechanisms in handling packets inside a network is more relaxed and

data plane and control planes can develop impartially without having major

influence on one another.

Apart from all the advantages that SDN has brought there are major concerns with

the SDN implementation that need to be studied carefully before employing this

newly emerging technology.

The centralized control in SDN provides a single point of failure in the network that

if not well taken care of could be quite dangerous. Querying the controller to

determine new flows for new connections will bring a control overhead and delay

that in high traffic conditions could result in bottlenecks. Having a distributed SDN

architecture and utilizing a number of controllers could help in mitigating the effects

of network expansions. Using control hierarchy, implementing parallel controllers

and classifying the flows according to their duration and priority are some of the

approaches taken to prevent such conditions. Figure 4 illustrates the two network

architectures that could be considered in the SDN networks. In the centralized

architecture a single controller handles the entire controlling functionalities. To

avoid the single point of failure issue in the network and provide redundancy a

backup controller usually operates in parallel to the main controller. In the

distributed architecture a number of controllers are running simultaneously, each

controlling part of the network.

9

Figure 4 Comparing Centralized and Distributed SDN Architecture [6]

One other key area that requires more attention and is a crucial factor in any

network is the security concerns. The concept of having a centralized controller

would mean that all the traffic that is going through every node in the network could

be monitored and controlled by the controller. Therefore the controller could be

utilized to monitor, analyze and respond to any malicious activity in the network

with minimum delay. Subsequently the required security policies can be

implemented on the network by generating new flow actions or modifying the

previously installed flows. On the other hand, having a centralized controller means

a single point of failure/attack and therefore makes SDN very susceptible to Denial

of Service attacks. Being able to control the entire network by a central

programming point also means that unauthorized or malicious access to the

controller could result in the loss of the entire network. Therefore it is crucial to

ensure a highly sophisticated trust system resides among the data, control and

application planes. A better analysis of the security concerns related to SDN

networks is presented in the upcoming chapters.

Despite all the challenges that SDN is facing it has secured its place in the cloud

computing and virtualization technologies and it is moving on much faster than

expected. SDN has attracted the attention of many data center operators that deal

10

with large scale network structure and data exchanges. Google and NEC are among

two of the well-known service providers that have already implemented SDN in

their backbone networks [6].

2.3 OpenFlow Protocol

OpenFlow is the most well-known SDN protocol that has been chosen as the

standard bearer in software defined networking. It was first created at Stanford

University in 2008 [11]. The open Networking foundation is responsible for the

update and development of this protocol [10]. The latest version of this protocol

1.4.0 was published in October 2013 but it is not widely implemented yet. OpenFlow

version 1.3.0 is used as the baseline for the purpose of this research.

OpenFlow allows the switches to be controlled by an independent controller. The

communication between the switch and controller is often over a Transport Layer

Security (TLS) enabled channel. According to the specification each switch must

contain one or more flow tables that will keep the flow entries specified by the

controller.

A flow entry includes a header that identifies the individual flow that the packets are

matched against and a set of actions that are to be taken by the switch for the

matched packets. The matching is made on packet header fields. The actions taken

can vary from packet forwarding, drop, further lookups in other flow tables,

rewriting of the header fields and etc.

11

Figure 5 OpenFlow Table Entry [12]

Per table, per flow, per port and per queue counters are the four available statistic

scopes kept in the flow table. The controller could query the switch to forward the

statistics [12].

Figure 6Supported Counter Fields [2]

12

2.3.1 OpenFlow Operation

Jad Naous et al. [13] present a well described figure of the steps taken in routing a

flow between two hosts across two switches in an SDN network. As we see in Figure

7 the switch flow tables are empty in the initial startup phase. When a new packet

arrives in step 1, since no match is found in the switch flow table, it is forwarded to

the controller (step 2). The controller observes the packet and decides on the action

that should be taken (forward or drop) and creates a flow entry accordingly. This

flow entry is sent to the switches in the path that the packet will traverse (step 3).

The packet is then sent through to the receiving host in steps 4 and 5. In steps 6, 7,

and 8 any new packets belonging to the same flow are routed directly since they

would match the new entry in the flow tables.

Figure 7 OpenFlow Flow Processing Procedure [13]

2.3.2 Flow Table Entry

The basic OpenFlow switch [8], the OpenFlow Type-0 switch, classifies packets into

flows based on a 10- tuple. The 10-tuple entails of the following fields:

- Switch input port

- Source MAC address

13

- Destination MAC address

- Ethernet Type

- VLAN ID

- IP source address

- IP destination address

- IP protocol

- TCP/UDP source port

- TCP/UDP destination port

Figure 8 shows the header fields used as the match structure. If any of the fields are

wild carded that field will be ignored while matching against the incoming packets.

Figure 8 OpenFlow table entry header field [14]

Flow table entries are matched using a 10-tuple to find the corresponding actions

associated with the flow. The OpenFlow Type-0 switch has three required actions:

- Forward to a specified set of output ports: This is used to move the packet across

the network.

- Encapsulate and send to the controller: The packet is sent via the secure channel to

the remote OpenFlow controller. This is typically used for the first packet of a flow

to establish a path in the network.

- Drop: Can be used for security, to curb denial of service attacks, or to reduce

spurious broadcast discovery traffic from end-hosts [13].

14

2.3.3 OpenFlow Message Types

OpenFlow protocol consists of a number of message types that are used for

communication between the switch and the controller. These messages can be

classified into three groups: controller to switch messages, Asynchronous messages

and Symmetric messages.

2.3.3.1 Controller to switch messages

The controller to switch messages, such as Packet_out and modify messages, are

inducted by the controller and are used to configure the switch, manage the flow

table and gather statistics about flow entries in the switch flow table [10].

Packet_Out messages are sent from the controller to the data plane to inject the

packets generated by the controller into the data plane. These packets are either a

raw packet ready to be injected into the switch to install a new flow or indicate a

local buffer on the switch containing a raw packet to modify an existing flow [8].

Flow_Mod messages are sent from the controller to the data plane to add, delete or

modify the flow entries in the switch flow table. To identify which flow entries are to

be modified the Flow_Mod messages contain a match structure. This match

structure has the same format of the match structure used in matching the packets

with the incoming packets in the switch [8].

Information about tables is requested with the OFPMP_TABLE multipart request

type. The request does not contain any data in the body.

The body of the reply sent from the switch to the controller consists of following

information [8]:

/* Body of reply to OFPMP_TABLE request. */

struct ofp_table_stats {

 uint8_t table_id; /* Identifier of table. Lower numbered tables are consulted first. */

15

uint8_t pad[3]; /*Align to 32-bits. */

 uint32_t active_count; /* Number of active entries. */

 uint64_t lookup_count; /*Number of packets looked up in the table. */

 uint64_t matched_count; /* Number of packets that hit table. */

};

OFP_ASSERT(sizeof(struct ofp_table_stats) == 24);

A flow is defined by a group of packets that share the same matching structure at a

certain time interval. As we see in the above reply sent from the switch to the

controller flow statistics can be considered based on three characteristics:

1- Received Packets: The number of packets that match the flow entry matching

structure.

2- Received Bytes: The amount of Bytes received by the flow.

3- Flow Duration: the time interval a flow entry has been in the flow table since

its initial installation.

These characteristics will be used in the initial detection stage of the proposed

algorithm.

2.3.3.2 Asynchronous messages

Asynchronous messages are sent from the switch to the controller and inform the

controller of an event that is a change in the switch or network state. A sample of the

asynchronous messages is the Packet_In messages.

Packet_In messages are sent from the data plane to the controller whenever a flow

entry could not be found for a received packet on the switch or if the flow entry

action asks for the packet to be forwarded to the controller. Packet_In messages

could contain the whole packet or only part of the received packet. After receiving

the Packet_In message the controller must either act on the packet itself or install a

flow entry on the switches that must act on the packet [15].

16

2.3.3.3 Symmetric messages

Symmetric messages are used to assist in diagnosing problems in the data plane and

controller connection. Hello and echo messages are among this group of messages.

2.3.4 Flow Duration

idle_timeout and hard_timeout fields are used to control the duration a flow entry

kept in the flow table. The fields idle_timeout and hard_timeout are set when a flow

entry is being pushed to the flow table. When a flow entry is modified, the

idle_timeout and hard_timeout fields do not change.

If the idle_timeout is set, the flow will expire if no traffic is received during the set

time. If the hard_timeout is set, the flow entry will expire regardless of whether or

not packets are being received during the set time. If both idle_timeout and

hard_timeout are set, the flow entries will timeout if any of the two timers expires. If

both idle_timeout and hard_timeout are not set, the flow entry will be a permanent

entry and can only be removed with a deleting flow_mod message [8].

2.4 SDN Controllers

Controllers are the focal point in the SDN networks also known as the brain of the

network. The southbound application programming interfaces (APIs) are used to

communicate with the OpenFlow switches [16]and the northbound APIs are used to

communicate with the SDN applications.

Different jobs are performed by the controller using a variety of modules. Some of

these tasks include identifying the devices within the network and the capabilities of

each, gathering network statistics, etc. add-ons can be installed on the controller

that will improve and widen the controller functionalities such as network

monitoring and traffic anomaly detections.

17

Currently a number of well-known controller implementations are available that are

open source and are written with different programming languages such as python,

C++ and Java. Table 1, summarizes the current implementations of different

available controllers. The table provides a brief overview of the controller

characteristics.

Table 1 Current Controller Implementations complient with the OpenFlow Standard [17]

POX controller is one of the most popular in the research and academic field. POX is

a lightweight OpenFlow controller that is a suitable platform for SDN research,

academic work, education, and experimentation. Having a straightforward and

lightweight design a great amount of tasks have been performed to prototype SDN

projects or do academic research in POX [18]. The proposed algorithm in this

research project is implemented over POX but this does not mean that the proposed

algorithm is dependent to a particular type of controller In order to simplify the

setup, as well as to improve repeatability; a virtualized network setup based on

Mininet will be used [2].

https://www.sdncentral.com/sdnuniversity-course-201-purchase/

18

2.5 SDN Security

The main characteristics of securing a network would be to ensure the

confidentiality and integrity of the transmitted data and availability of network

resources even when the network is under attacked.

The new networking architecture introduced by SDN has raised many debates on

whether having a centralized controller would be a security threat or could help in

achieving the security goals. An example of the advantages that SDN can simplify the

security provisioning within the network is the easier use of random virtual IP

addresses within the SDN. The real IP of the hosts can easily be hidden from the

external world by the OpenFlow controller which will make it much harder for the

attackers to find vulnerable ends within the network [7].

Since all network traffic is guided through the controller, at least for the flow

initiation, the controller is the best place to monitor the flows to detect any

abnormal events [7]. Furthermore, with the feature of programmability the

mitigation process after identifying the attack will be deployed much quicker and

more efficiently. The controller can easily install new flow rules or delete/modify

the previous flows in order to reduce the effect of the attack. The other positive

feature of SDN networks is that most of the proposed attack detection and

mitigation methods are open source, light weight and usually don’t require the

installation of separate devices. As mentioned in the overview of the SDN networks

by sakir Sezer et al. [4] SDN can support:

 Network Forensic: enables quick and predefined threat identification and

management mechanisms.

 Security Policy Alteration: diminishing the rate of misconfiguration and

conflicting policies within the network through the easy installation of new

policies throughout the whole infrastructure with minimum delay.

19

 Security Service insertion: a required service insertion (e.g. firewalls and

intrusion detection system) within the network is simplified due to the SDN

structure.

On the downside to the aforementioned facts, Controllers are an appealing target for

the attackers. If an attacker is able to use the network vulnerabilities to gain

unauthorized access to the network resources and cover-up as a controller it can

control the entire network. Introduction of open interfaces and protocols within

SDN also opens the doors to malicious attackers to plan and execute their attacks

with a better overview and knowledge of the network structure and actions.

One method to prevent the breakdown of the controller within a network is the use

of multiple controllers in the network. In such cases, authorization and access

controls become much more complex.

SDN is a growing platform especially for data centers and cloud computing centers

[3]. In such setup multiple organizations will be accessing the network resources

simultaneously and they each demand for their data protection. Providing a

comprehensive security prototype to support the appropriate level of network

privileges to each application comes with its own challenges. The controller must be

able to handle conflicting flow rules received from different applications while it

must isolate the applications from one another.

DoS and DDoS attacks are another major security concern. As explained previously

in section 2.3.1once a switch receives a new packet that does not match any of the

flow table entries, it will either forward the whole packet or a partial segment of the

packet, the header field, to the controller so a new flow rule could be created and

installed on the switch. By generating high level of traffic with spoofed source IPs

the attacking traffic could consume most of the bandwidth if the complete packet is

forwarded to the controller. If only the packet header is forwarded to the controller

20

the packet must be buffered in the switch. The attacker could easily target the

switch by over loading the switch memory.

The aim of this project is to propose a high efficiency, lightweight DDoS detection

mechanism with minimum delay that could be easily integrated into the SDN

controller. In addition, a mitigation approach is proposed that could help the SDN

network administrators to better handle the attack.

2.6 DDoS Attacks

Denial of Service attacks or DoS is one of the major issues in today’s network

security. The devastating effects of such attacks are well documented in many cases.

It is also well understood that the structure of SDN is vulnerable to such attacks.

The goal of DoS attacks is to block network services by limiting the access to the

nodes that provide these services in the network. This could be achieved by using

up the entire network bandwidth or by consuming the resources available on the

service provider nodes such as memory and CPU. The attacker simply sends high

volumes of packets to occupy the entire channel bandwidth or breaks down the

service by taking the entire processing capacity available on the service provider

nodes. As an example this attacking traffic could be generated by sending high

volume of UDP packets that take away the entire bandwidth so that the legitimate

traffic cannot reach its destination [12]. Distributed Denial of Service (DDoS) attacks

add a many-to-one characteristic to DOS attacks. Consequently, higher level of

attack prevention, detection and mitigation complexity are required.

DDoS attacks are conducted by sending many packet streams from sources that are

hijacked by the attacker. An experienced attacker could vary the packet fields and

traffic characteristics to avoid detections which are based only on traffic

classification policies [12].

2.6.1 DDoS Attack Operation

21

A DDoS attack consists of four elements [19]:

1. The main attacker that is behind all the attack planning and intelligence.

2. The handlers or masters are compromised hosts that have special programs

running on them that control multiple agents.

3. The compromised hosts that run the attacking program and generate the

packet streams destined for the targeted victims. These agents are also

known as zombie hosts as the owner of the agent system is usually unaware

of the malicious program that is running on his/her computer.

4. The targeted destination

Figure 9 DDos attack structure [19]

The attacker finds the machines that have security vulnerabilities and that can be

compromised to gain access to them through the internet. The attacker must make

sure that the chosen hosts have the required system requirements to run the

attacking program. This task is now done by available programs that make the job

easy for the attacker. By compromising the found vulnerabilities the attacker can

install its code on the host. These codes are designed in a format that consumes a

share of their host system resources so that no major issues can be detected on the

system performance by their owners. On the other hand the codes are designed to

hide in the best way to avoid being detected by the applications that are running on

the host system. The attacker needs to communicate with the handlers to find out

22

which hosts can take part in the attacking process or use them to update the codes

on the hosts. Each host is controlled by one or a number of handlers and this

communication can run over UDP, TCP or ICMP protocols [19].

The attacker schedules the attack, the destination victim address, characteristics of

the attack traffic sent such as the port, duration, TTL, traffic type and etc. All these

features could vary during the attack phase to help avoid detection.

2.6.2 Various DDoS Attack Types

Three example DDoS attacks that have had the highest reported attack incidents are

the UDP flood attack, ICMP flood attack and TCP flood attack. These attacks will be

briefly explained below.

In UDP flood attack a large volume of UDP packets are sent to random or specified

port forcing the system to look for the application attached to this port. Since no

waiting application is usually found an ICMP destination unreachable message is

sent back to the spoofed source address. The processing of the attack UDP packets

and generation of ICMP responses may cause the targeted host to run out of

resources and crash [20].

In ICMP flood attack the zombie hosts, send a large number of

ICMP_ECHO_REQUEST packets also known as ping packets to the target address.

The target shall reply back to all the requests simultaneously which causes it to

crash [21].

TCP SYN flood attack takes advantage of the nature of TCP three way connection

setup handshakes. Upon receiving an initial SYN the server replies back with a

SYN/ACK and waits for the final ACK that is never replied back by the attacking host.

Exhausting the network resources using heavy traffic loads is the mutual aspect of

all the aforementioned attacks [22].

23

2.6.3 DDoS Attacks in SDN

In addition to the aforementioned attacks that target specific services and servers

another type of DDoS attack is more hazardous to the SDN. These attacks are

independent of the traffic type. Every new packet received with no matching flow is

processed by the switches and the controller. After a path is installed for the flow

the switches will forward the packets of the flow along the installed path. The inside

servers might be targeted by the attackers using the characteristics of different

traffic types but the switches and the controller take no notice of the type of traffic

that is passed through the network. Therefore if the attacker targets the switches or

the controller the detection methods applied that are based on identifying the traffic

characteristics will not be effective.

When a DDoS attack targets a destination within the SDN network the huge number

of different spoofed source addresses will result in initiation of many flow entries by

the controller. Each packet header must be sent to the controller while the packet

waits in the switch till a new flow entry is installed in the flow table. Both the size of

the packet queue and flow table is restricted within the switch. Receiving a large

number of entry packets will cause the overflow in both the queue and flow table

very quickly and breakdown the switch. Meanwhile all these packets from all over

the network will be forwarded to the controller for processing. No matter how

powerful the controller, it will eventually run out of resources and cannot handle

any Packet_In requests. The crash of the controller will mean the crash of the entire

SDN network. This single point of failure in SDN networks is the vulnerability that

the DDoS attacks can use to cause the utmost damages. This thesis concentrates on

the switch and controller attacks although the server specific attacks will also be

detected effectively.

2.7 Previous Work in SDN DDoS Attack Detection

It is very interesting to know that implementing SDN architecture is proposed by

Seungwon shin et al. [23]as a method for the intrusion detection in cloud

24

environment. In the proposed scheme OpenFlow is integrated into the network

structure to control the network flows and diverts the traffic through a path that it is

inspected by the preinstalled security devices (e.g. network intrusion detection

system (NIDS), firewall, etc.). Employing the SDN infrastructure will simplify the

network operator’s job in a huge cloud infrastructure. The changes in the flow

directions and network policies can easily be performed by running simple scripts

on the controller that will install new flow entries on the switches. The controller

itself is not involved in the abnormal activity detection but it is responsible for

calculating the best and shortest paths that will guide the traffic through the NIDS.

In a similar approach Snort, an Intrusion Detection Systems (IDS), is used to monitor

network traffic and measures to identify mischievous activities in the network.

Intrusion prevention System (IPS) is an IDS that has the power to spontaneously

take action towards the suspect events upon attack detection. Tianyi Xing et al. [24]

have implemented an IPS called snortflow by integrating Snort and OpenFlow

modules. In this approach the cloud networking environment is dynamically

reconfigured utilizing the power of OpenFlow switches in real time to dynamically

detect and prevent the attacks.

Kreutz et al. [25] reveal the need of building protected and trustworthy SDNs in the

design phase. Bringing replication, diversity and dynamic switch association to SDN

control platform design are the main arguments described as mitigation methods

for several threat vectors that enable the exploit of SDN vulnerabilities. In the

proposed example by implementing a number of replicated controllers the backup

controller will take over if one controller malfunctions. The controllers must be

designed with interoperation capabilities. Meanwhile the switches must have the

ability to dynamically associate to the controllers. To prevent simultaneous attack

on all controllers, controllers’ diversity must be considered to improve the

robustness of the system. FRESCO [25] is an extension of this work that makes it

easy to create and deploy SDN security services.

25

FRESCO [23] is a framework proposed for easier design of secure SDN networks.

FRESCO presents an OpenFlow security application development framework that

assists in prototyping new compassable security services in OpenFlow networks.

FRESCO offers a library of reusable security modules that can detect and mitigate

different attacks. The scripting API offered by FRESCO enables the rapid design and

development of these modular libraries. Essential security functions (e.g. firewalls,

IDS, attack deflector, etc.) can be simulated by assigning values to the interfaces and

connecting the necessary modules. The modules can produce flow rules used to

enforce the security directives.

Braga et al. [26] propose a DDoS detection method built into the NOX controller

based on Self-Organizing Maps (SOM). SOM is an unsupervised artificial neural

network trained with the features of the network flow that is periodically collected

from the switches. The traffic is classified as either normal or abnormal based on the

SOM pattern. This detection method as shown in figure 10 runs in three modules

running periodically within a loop in the NOX controller:

 The flow collector module queries the switches periodically for their flow

tables.

 The feature extractor module extracts the main features that are studied for

DDoS attack detection and gathers them in 6-tuples. The main elements that

are calculated based on the collected features and will be studied in the next

module for the traffic classification include average of packets per flow,

average of bytes per flow, average of duration per flow, percentage of pair

flows, growth of single-flows and growth of different ports.

 The classifier module must analyze and decide whether the given 6-tuple

corresponds to a DDoS attack.

26

Figure 10Detection Loop Operation [26]

Querying the switches periodically especially in the large scale cloud architecture

with large number of switches will put an extreme overhead on the system and will

eventually affect the performance of the controller. Processing that high volume of

flows in the flow tables is another issue that must also be well-thought-out.

Tamihiro Yuzawa [27] implements new generation database that does the heavy

lifting of sFlow data processing for DDoS attack detection. sFlow or "sampled flow",

is an industry standard for packet export at Layer 2 of the OSI model. To keep the

legitimate traffic running and provide source-and-destination-based filtering

OpenFlow or more specifically Floodlight’s static flow pusher API is executed. Static

Flow Pusher is a Floodlight module that allows a user to manually insert flows into

an OpenFlow network. This is known as the proactive approach to flow insertion. To

do DDoS mitigation in this way requires lots of preparation, and a strong

understanding of the network flows.

http://packetpushers.net/author/tlee/
http://en.wikipedia.org/wiki/OSI_model
http://www.openflowhub.org/display/floodlightcontroller/Static+Flow+Pusher+API+%28New%29

27

YuHunag et al. [28] from Chungwa Telecom Co. proposes an OpenFlow DDoS

Defender that monitors flows on an open flow switch. If the number of packets

received in 5 seconds exceeds 3000 then the number of packets will be studied in

per second duration. If the number packets per second exceed 800 for 5 continuous

times then an attack is detected and the DDoS defender will start dropping the

incoming packets until the flow entry times out.

Syed Akbar Mehdi et al. [29] argue that network security tasks should be delegated

to the home and office networks instead of ISPs. In the presented work security

policy implementation is delegated to the downstream networks. Four prominent

traffic anomaly detection algorithms, threshold random walk with credit based rate

limiting, rate-limiting, maximum entropy detector and Network Traffic Anomaly

Detector(NETAD) are implemented in NOX controller and it is observed that the

anomaly detection can function well at line rates without any performance

degradation in the home network traffic. It is suggested that this approach can

monitor the network activities without the need of the excessive sampling.

C.Dillon and M.Berkelaar [12] monitor the flow statistics sent from the open flow

switch to the controller to find the large spikes in traffic that could be signs of an

attack. The OpenFlow controller then finds the sources of the attack traffic and as a

mitigation method flows are installed on the switches to drop the traffic from the

suspected sources. The proposed detection techniques include using packet

symmetry and temporary blocking of the traffic. In routine traffic state a

symmetrical behavior exists between the two sides of a communication. In the

learning phase the symmetry ratio is analyzed in the network and sources with high

asymmetric ratio are suspected of an attack. In temporary blocking the flows are

blocked for a short period and the traffic behavior to this blocking is used to analyze

if the traffic is legitimate or not. The three phases of this strategy include: sampling,

blocking and analysis.

28

Entropy variation of destination IP address is used as an early detection method in

the pox controller in a work done by Seyed Mohammad Mousavi [30]. Entropy is

known as a measure of randomness. The maximum entropy happens when each

incoming packet is destined for a different host and the minimum entropy is seen

when all the packets are destined to the same destination address. As explained in

the previous chapters a characteristic of DDoS attack is sending high volume of

packets to the same destination. In the proposed method the destination IP is used

for entropy computation. The algorithm flow chart is shown in figure 11. A window

of packets is studied and the entropy is calculated for their destination IP addresses.

If the calculated entropy is less than the threshold for a continuous number of times,

an attack will be reported. There are a number of limitations to this method. When

the number of hosts under attack within the network rise or when the entire

network is under attack the entropy detection will fail. On the other hand when the

load of the traffic increases in the network with legitimate traffic in the peak times

using the proposed entropy detection mechanism alone will result in false positive

attack detections. This is because the provided algorithm does not adapt to the

traffic load changes dynamically. The work done in this project is an improvement

to the previous work done in [32].

29

Figure 11Entropy Variation of Destination IP address DDOS Detection Flowchart [30]

30

Chapter 3

3 Proposed DDoS Detection and Mitigation Algorithm

 This detection algorithm is designed based on three main concepts including

Entropy variation of destination IP address, Flow Initiation Rate and study of Flow

Specification. The proposed detection algorithm can be broken into seven phases.

1- Data Collection.

2- Entropy calculation and comparison.

3- Flow initiation rate computation and comparison.

4- Finding the possible attack path(s) if an attack is suspected in steps 2 or 3,

otherwise returning to step 1.

5- Polling the switches in the attack path for flow statistics and studying the

returned results from the switches to confirm or cancel an attack state.

6- Updating the thresholds according to the detection result in step 5.

After an attack is detected a mitigation method will be applied to prevent the

network switches from breaking down and to give enough time to network

administrators to take the required actions. The mitigation approach set the flow

idle_timer to a small value for the new flows.

All the above steps are performed by adding a set of lightweight codes to the

controller. The flowchart in figure 12 illustrates the proposed detection and

mitigation method.

31

Figure 12 Algorithm Flowchart

32

3.1 Entropy Variation of Destination IP address

Entropy or Shannon-Wiener index [31] is an important concept in information

theory. Entropy is a measure of uncertainty or randomness associated with a

random variable which in this case is the destination address. A higher randomness

will result in higher entropy. The entropy value lies in the range of [0,log2 𝑚] where

𝑚 is the number of destination IP addresses. The entropy value is at its minimum

when all the traffic is heading to the same destination. On the other hand the

entropy value is at its maximum when the traffic is equally distributed to all the

possible destinations.

The entropy-based detection algorithm used here is similar to that in [32]. To collect

packets for entropy analysis, we use a fixed size window. Using a fixed size window

simplifies the entropy computation complexity. The window size can be fixed in

terms of Elapsed time or Number of received packets. Since during light traffic load

period, at a fixed-time window might degrade the accuracy of the entropy

calculations. Instead of using a fixed-time window, the algorithm uses a window that

is measured by n number of packets, where n is the window size. For each window,

the packets will be classified into groups based on their destination IP addresses. All

the packets in each group will have the same destination address but they may have

distinct source addresses. The destination IP address is used as the characteristic

metric and the frequency of each distinct destination IP address in the window is

adopted as a measure of randomness. Let m be the total number of destination IP

addresses associated with these n packets. The relative frequency of destination IP

address 𝐼𝑃𝑖 is calculated in equation 3.1:

𝐹𝑖 =
𝑛𝑖

𝑛
 (3.1)

where𝑛𝑖is the number of packets with destination IP address 𝐼𝑃𝑖 .

The entropy formula is calculated according to equation 3.2:

𝐻 = − ∑ 𝐹𝑖
𝑚
𝑖=1 log2 𝐹𝑖 (3.2)

Since 0 ≤ 𝐹𝑖 ≤ 1 ⤇ H ≥ 0

33

The entropy value is maximum when the relative frequencies associated with the m

IP destination addresses are equal (𝐹𝑖 = 1/m for all i). For instance if we have fifty

packets and each packet is destined to a distinct destination the calculated

probability for each destination address will be 𝐹𝑖 =
1

50
 and H = − ∑

1

50

50
1 ∗ log2

1

50
 =

5.643. If, instead, 10 of the 50 packets are delivered to one of the destination

addresses then the entropy value is reduced s to 5.213.

In the normal network state we expect that the traffic spreads out to many different

hosts. During a DDoS attack the number of packets destined for a specific host or a

small set of hosts rises suddenly and the entropy decreases. A decrease in the

entropy is an alarm for the network to watch out for a possible attack.

It is vital in SDN networks to have a fast detection method and to detect the attacks

at its early stages. SDN networks are more vulnerable against the DDoS attacks than

the traditional networks. If the detection time takes too long the attacker could

break the switches or the controller and so an early detection is extremely

important. For an early detection the window should not be too large. On the other

hand a small window will add to the computational overhead. As proposed by S.

Oshima et al. [32] in this thesis we will use the window size of fifty to balance the

two concerns.

A module is added to the pox controller for the entropy calculations. For every fifty

packets that arrive in the controller the relative frequencies are calculated. The

calculated entropy is compared against the threshold value. If the calculated entropy

is less than the threshold for five consecutive entropy calculations an attack is

suspected and further analysis will be performed to determine if the attack is real.

3.1.2 Implementation of Entropy Variation of Destination IP address

The steps related to the application of Entropy Variation of Destination IP address

are highlighted in the below algorithm flowchart.

34

Figure 13 Implementation of Entropy Variation of Destination IP address in the proposed Algorithm

In step 1 a window of fifty packets is collected on the controller. These packets

represent a window of fifty flow initiation requests that was sent to the controller

by the switches. A timer (ftimer) calculates the duration it takes for this window of

fifty packets to be collected. This timer will be used in the next phase of detection

based on the flow initiation rate.

As we know the controller computes the shortest path for each flow and installs the

flows on the path. By default the controller does not keep the calculated paths.

However, in order to easily find the attack path in later stages of the detection

algorithm a module is added to record the calculated paths (path_for_stat). After

reaching a window of fifty collected packets the destination IP address for each

35

packet is examined to determine how many times each IP address is repeated

within the collected window. The destination IP address that is repeated the most

number of times is confirmed as the max_ip and the paths that are used to reach this

IP address are stored for later processing (max_path).

The entropy function is then called to calculate the entropy. This function takes the

destination IP addresses and the number of times they are repeated as input, and

calculates the frequency of each destination IP address. The calculated frequencies

are used to derive the current entropy (Ec) using eq. (3.2). When an attacker targets

a host within the network the number of new flows destined for certain address will

rise dramatically. Accordingly the entropy will start to decline. In the beginning of

the algorithm a default entropy value is calculated under normal to low network

traffic condition that is considered as the initial entropy threshold value (Eth). The

calculated entropy (Ec) is compared to this threshold (Eth). If for five consecutive

times the calculated entropy is lower than the threshold an attack is suspected and

the switches in the possible attack path are identified and their flow tables and

statistics are polled and analyzed by the controller.

If an attack is not detected after the study of the switches’ flow tables and statistics

the entropy threshold will be updated to the current calculated entropy to prevent

further false positive detections. This approach will enable the detection algorithm

to adjust itself dynamically with the current traffic flow pattern. Moreover, if an

attack is confirmed, the entropy threshold will return to its default value to raise the

level of sensitivity and awareness in the detection process. Since simple changes in

the traffic pattern could change the entropy in short spikes of time, that is why the

detection algorithm only suspect possible attack if the computed entropy is below

the threshold in five consecutive windows.

Although entropy has proven to be a successful detection method, using entropy

alone cannot detect many attack scenarios. For example at peak times with the

sudden rise of legitimate traffic, the demand to a certain network destination such

as the web server or email server grows and the entropy based detection method

36

may continuously report false positive alarms. On the other hand when the attacker

distributes the attack among many victims the entropy may not show a significant

decrease and so it will result in a false negative report. To overcome the mentioned

limitations of the entropy detection the proposed detection method in this project

also incorporates other detection algorithms.

3.2 Flow Initiation Rate

 As mentioned in the previous chapter entropy is an approach used in other DDoS

attack systems and has been an effective element in single-victim DDoS attack

detections. But due to the limitations of the entropy method, especially in multiple

victim attacks, it cannot be considered as a standalone, effective scheme for DDoS

attack detection. It is because in the multiple victim attack, the attack traffic targets

many different destinations resulting possibly insignificant changes of entropy. A

more efficient detection algorithm in this case will be based on the flow initiation

rate.

When a DDoS attack is underway the attacker will be sending a large volume of

packets through its agents to the targeted destination(s). The results obtained in

experiments Braga et al. [26] suggest that the flow initiation follows a linear growth

during a DDoS attack.

Similar to the entropy computation, the algorithm computes the flow initiation rate

every 50 packets , using equation 3.3 to compute the rate

𝐹𝑅 =
𝑛

𝑇𝑊
 (3.3)

Where 𝐹𝑅 is the flow rate, n is the window size and 𝑇𝑊 is the duration of the

window.

37

 If the calculated flow initiation rate is above the threshold then an attack is

suspected and further investigation is performed. If the calculated rate is below the

threshold the system is considered to be in a safe state.

In the proposed algorithm the initial threshold is fixed at a level that we know is an

acceptable traffic level for our network and that at such rate the network will be

able to operate safely. This threshold can be calculated in an initial learning phase

by studying the controller while legitimate traffic is running at an average to low

rate. The threshold, however, must be adaptive to the network traffic load to reflect

the current traffic flow pattern.

When the flow initiation rate starts to grow, the calculated rate will start to increase

and at some point it will go over the threshold. If this behavior continues to occur

for five consecutive times, it will be considered as a sign of attack. In such cases the

network traffic statistics need to be further studied to confirm the attack. If a further

study of the flow statistics does not indicate an attack then the threshold must be

updated to the current calculated rate to avoid false positive attack reports in the

system.

When the traffic load decreases and flow rate starts to drop the threshold must

again be updated to the current value of the flow rate to avoid any false negative

scenarios. In the case of an attack being confirmed the network will move in to an

alert state and the threshold will drop to the initial value to increase the sensitivity

of the detection algorithm.

3.2.2 Implementation of Flow Initiation Rate

 The steps related to the application of Flow Initiation Rate are highlighted in the

algorithm flowchart of figure 14.

38

Figure 14 Implementation of Flow Initiation Rate in the proposed Algorithm

As mentioned in the previous section the flow initiation rate is calculated by

dividing the window size by the window duration given by equation (3.3).

If the calculated flow initiation rate,𝐹𝑅, is higher than the threshold frate_th, for five

continuous times we suspect that there may be an attack to the network and will

look at the flow statistics for confirmation. Using five consecutive windows to

identify a suspected attack will help in lowering probability of false positive

detections

The frate_th value should be chosen to match the network flow initiation rate of the

normal network traffic. The default threshold is set to a value such that the network

will be able to easily handle the traffic at that rate.

39

The threshold value will be constantly updated according to the current traffic load.

When using flow initiation rate as a detection method we should always keep in

mind that high volume of flow initiations may be caused by the sudden increase of

legitimate traffic. Relying on only the flow initiation rate to report an attack may

cause high probability of false positive. Therefore in the proposed algorithm the

flow initiation rate monitoring is only used as a mean of detecting the sign of an

attack but not confirming the attack. If an attack is suspected, the flow statistics

from flow tables of the switches that are suspected to be in the attack path are

analyzed to confirm the attack.

3.3 Study of Flow specification

In this part of the detection process, the controller will examine the flow statistics of

the switches that are suspected in the paths of the attack traffic. Through the use of

OpenFlow protocol, the controller is able to poll any of the switches for the flow

table and the flow statistics. Three flow statistics are analyzed for the attack

detection:

1- Received Packets per flow.

2- Received Bytes per flow.

3- Flow duration.

In what follows, we will study the characteristics of these three statistics associated

with malicious flows.

In order to maximize the attack to the controller and the switches under a given

attack traffic load, the attacker will try to create as many attack flows as possible. It

is because the controller only needs to process the first packet of the flow. The data

rate and duration of the flows do not affect the performance of the controller. In the

case of the switch, the size of the flow table corresponds to the number of flows

currently handled by the switch. Again, the data rate and duration has no effect on

the processing resources of the switch. An example should clarify this point.

Suppose the attacker can generate in total 100 Mbps of attack traffic and suppose

40

the minimum packet size is 100 bytes. The maximum flows (and the maximum

damage) generated by the attacker per second are 125,000. In this case, each flow

only consists of one packet with the smallest packet size, but the controller needs to

handle 125,000 flow request per sec and a switch may have to setup 125,000 entries

per sec in its flow table. This kind of attack can crash the controller or overflow the

switch flow table. On the other end of the spectrum, if an attacker only generates

100 Mbps of attack traffic in one attack flow, the attack will have no effect on the

controller and the flow table.

Based on the above argument, we can conclude that attack traffic usually has the

characteristics of small packet size, small number of packets per flow and short flow

duration. Also note that if the attack traffic is TCP-based, then the number of packets

per flow is just one and the flow duration depends on the connection wait time,

which is usually small. If the traffic is UDP based, the duration of the flow depends

on the idle timer, which is also small, set at the switch.

Thus, a large volume of flows with small number of packets (short flows) and small

payloads may imply a DDoS attack. We should note that legitimate external cloud

traffic may also consist of many flows with short duration. What distinguishes

legitimate and malicious traffic flows is that legitimate traffic flow usually involves a

higher number of packets and/or larger payload.

There are a number of previous studies on the DDoS attack detection that rely on

the study of the statistics polled from the network switches but since polling the

switches and processing their fairly large flow tables consume a lot of bandwidth

and resources, consequently detection algorithms that only rely on the analysis of

the flow table statistics are not recommended as they could result in the breakdown

of either, the controller, switches or both. In the proposed algorithm the study of the

flow tables is only used as a mechanism for final assurance of an attack after an

attack is suspected based on the analyses of entropy and flow initiation rate.

Furthermore, the proposed algorithm does not examine the flow table statistics

41

from all the switches. Instead, it only examines the flow table statistics of some of

the switches that are presumably under attack.

3.3.2 Implementation of Study of Flow Specification

 The attack path is determined by finding the destination IP addresses with highest

relative frequency found in the packets processed by the controller. In DDoS, there

are two main types of attacks. In the first type, the attacker targets a specific host. In

the second type, the attacker might just distribute the attack traffic evenly over the

network. As the external attackers can attack a limited number of IP addresses that

are known to the outside, it is most likely that the attack can only target a restricted

list of addresses, thus, limited set of hosts. In both cases, the controller should be

able to locate the hosts that are under attack by examining the destination IP

address frequency, 𝐹𝑖 , computed in section 3.1. Our algorithm will determine the

target host(s) as follows:

1. Find the host with the highest frequency, 𝐹ℎ. The host will be put in the target

host list.

2. All the other hosts whose frequencies that is greater than 0.5*𝐹ℎ will also be

put into the target host list.

Figure 15 Implementation of Study of Flow Specification in the proposed Algorithm

42

After deriving the targeted host list, the algorithm determines a set of switches that

are suspected under attack. The derivation can be formulated as follows:

Let m be the total number of paths to the hosts in the target host list. In other words,

𝑚 is the total number of paths whose destination(s) is (are) suspected under attack.

Let 𝑃𝑖 be the set of switches that the 𝑖𝑡ℎ of the 𝑚 paths traverses

𝑃𝑖 = {𝑆𝑖1, 𝑆𝑖2, … , 𝑆𝑖𝑛} (3.4)

Where 𝑆𝑖𝑗 is the 𝑗𝑡ℎswitch of path i and n is the length of the path in terms of number

of switches.

Let SA be the set of switches that could be under attack, then

𝑆𝐴 = 𝑃1 ∪ 𝑃2 ∪ … ∪ 𝑃𝑚 (3.5)

After finding the set SA, the algorithm will send a request to download the flow

tables from all the switches in the set. In order to prevent from creating excessive

flow table download, the request is limited to at most once in every 10 second.

Every switch that is queried for flow tables from the controller is added to a list

called sent_sw list. The controller will not make a flow-table download request to the

switches in the sent_sw list. The switches remain in this list for 10 seconds before

being removed.

Processing the flow tables also puts a load on the controller and the network. This is

the reason that the proposed algorithm does not perform periodic querying as some

other detection methods do. This algorithm only queries the switches when an

attack is suspected and the same switch will not be queried more than once within a

certain time interval (10 sec in this thesis).

43

The handle_flowstats_received is the function used to analyze the flow tables

received from switches. Having too many short flows or flows with small number of

bytes or packets is considered as indications of an attack. For every received flow

table every flow is checked for these three features and a counter (count2) is

incremented by one when a flow matches two out of three of the following

conditions:

1- Is the number of byte counts of the flow, f.byte_count, less than f.byte_th

(f.byte_count < f.byte_th)

2- Is the number of packets received of the flow, f.pack_count, less than

f.packet_th packets

(f.packet_count < f.packet_th)

3- Is the flow duration, f.duration_sec. less than f.duration_th

(f.duration_sec < f.duration_th)

The threshold values are chosen based on the averages reported by the algorithm

under normal traffic flow in the learning phase with a 30% safety margin. This is

shown in equation 3.6:

 threshold_values = Average_values *0.7 (3.6)

It is important to make sure that as the average values change under different

network traffic load the threshold values are also updated.

When all the flows in the flow table are examined, an attacking rate, 𝐴𝑟𝑎𝑡𝑒 , is

calculated to represent the probability that this switch might be under attack. This

attacking rate is calculated (equation 3.7) by dividing the number of flows that

satisfy two of the above conditions by the total number of flows in the flow table:

𝐴𝑟𝑎𝑡𝑒 =
𝑐𝑜𝑢𝑛𝑡2

𝑛𝑢𝑚𝑏𝑒𝑟_𝑓𝑙𝑜𝑤𝑠
 (3.7)

Finally, the proposed detection method will declare there is an attack if

𝐴𝑟𝑎𝑡𝑒 > 𝑓𝑟𝑎𝑡𝑒𝑡ℎ

44

where 𝑓𝑟𝑎𝑡𝑒𝑡ℎis the threshold computed (equation 3.8) by multiplying the average

rate of 𝐴𝑟𝑎𝑡𝑒during the learning phase by 1.4(a 40% safety margin)

𝐹𝑟𝑎𝑡𝑒𝑡ℎ = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 (𝐴𝑟𝑎𝑡𝑒) ∗ 1.4 ; (3.8)

Note that the value of 𝐹𝑟𝑎𝑡𝑒𝑡ℎ depends on how we choose f.byte_th, f.packet_th and

f.duration_th. Normally, these thresholds are chosen such that 𝐹𝑟𝑎𝑡𝑒𝑡ℎis relatively

small, in the range between 0 and 0.5. In general choosing an appropriate value of

𝐹𝑟𝑎𝑡𝑒𝑡ℎ is very vital in the false positive and false negative detection rates. If this

threshold is too high it might result in high rate of false negative especially in its

early stage. If the threshold is too low it will result in high rate of false positive.

Choosing this value very much depends on the level of sensitivity we require in our

network protection. If the network is very sensitive and an early detection is crucial,

it is better to lower the value of 𝐹𝑟𝑎𝑡𝑒𝑡ℎ ; otherwise, we set it at a higher value.

3.4 Attack Mitigation

 If a switch is reported as being under attack the algorithm should try to mitigate

the attack. A number of possible attack mitigation approaches include installing

flows in the attack paths to drop packets until the attack is stopped or blocking the

incoming ports where the attack traffic is arriving at.

Although all these methods will mitigate the attack and will buy time for the

network operators to find the attack sources before the break down of the

controller or switches the adoptions of these methods will also affect the legitimate

traffic as much as the attack traffic and the network services will become

unavailable or respond slowly to legitimate traffic.

45

Figure 16 Implementing Attack Mitigation in the proposed Algorithm

The controller is usually designed with high capacities and therefore it will not crash

very easily. The switches on the other hand have limited resources and are not very

robust against attacks. When an attack is underway the flow table on the switches

will be filled with a large number of short flows that will eventually break the

switch. In the proposed mitigation algorithm the flow idle timer will be changed

from the default value to the mitigated value to prevent the breakdown of the

switches. The mitigated value is smaller than the default value; consequently, the

short malicious flows will time out quickly and are deleted from the switch flow

tables. The legitimate traffic flows on the other hand are expected to have a longer

connection with a larger number of packets. If the mitigated value is chosen

correctly it will not affect the legitimate flow entries significantly but will clear out

the malicious flows quickly.

Great care must be taken to choose the mitigated value. If the mitigated value is

shorter than the time out set for the sent_sw list the algorithm may oscillate. This

can be explained as follows. As soon as the attack is detected the default value of the

idle_timer will shorten to the mitigated value. In the next check for attack most of

the malicious flows have timed out and been cleared from the flow table and so no

more attack might be reported resulting in a false negative. Consequently the

idle_timer will return back to its default value that will result in the overload of the

flow tables of the switches that are still under attack. In a short while the algorithm

len(attackswitch) == 0

FLOW_IDLE_TIMEOUT =

Mitigated Value
YES

NO

FLOW_IDLE_TIMEOUT =

Default Value

46

will detect an attack again and the same process will repeat. This behavior results in

instability in the detection system. Therefore we must always ensure that:

Mitigated value of the idle_timer> Timer set for the sent_sw list (10 sec in this thesis)

47

Chapter 4

4 Simulation and Results

The simulation and testing of the proposed method for DDoS attack detection is

explained through the following sections. The algorithm is implemented on the

python based pox controller in the Mininet virtualized network environment. Scapy

scripts [33] are used to generate the legitimate and attack traffics on the network

hosts during the simulation.

4.1 Mininet

Mininet [34] is a tool used to simulate the Software Defined Networks, allowing a

simple and quick approach to create, interact and customize prototypes for

Software Defined Networks. Mininet allows network topologies to be specified

parametrically [2]. It also allows configuration of a range of performance

parameters for every virtual link. This is necessary for simulating real world

systems and a requirement to implement most attack scenarios simulated in this

thesis [11].

4.2 Traffic Generation

The tool used in this project to generate both the legitimate and attack traffic is

scapy [35]. Scapy is a powerful interactive packet manipulation program. It is able

to forge or decode packets of a wide number of protocols, send them on the

network, simulate attacks, capture packets, match requests and replies, and much

more. Scapy can be run in two different modes, interactively from a terminal

window and programmatically from a Python script. The normal and attack traffic

scripts used in this study are written in python. Three different scripts are written

for the normal and attack traffic flows.

In Mininet the IP addresses are assigned incrementally starting from 10.0.0.1. For

the normal traffic the destination IP address is generated based on the range we

48

have specifies in the script (e.g. 10.0.0.1 – 10.0.0.64). The source IP addresses are

generated using a random function “randrange(1,256)”.

Two different attack scripts are used to simulate single victim attack and multiple

victim attacks. In the single victim attack script all the packets will be forwarded to a

single victim’s destination address that is specified while calling the attack script

(e.g. python attack.py 10.0.0.13). The source IP addresses of attack traffic are

generated using the same mechanism used for normal traffic.

The other parameters that are set in scapy are the packets type, the number of

packets to be sent, packet payload and the traffic interval. The type of packets

chosen is UDP packets for both attack and normal traffic. Normal traffic packets

carry a payload while the attack traffic does not carry a payload. Normal traffic

flows have a longer connection time than attack traffic flows and also have longer

transmission interval.

4.3 Simulation Scenarios and Results

The simulation is performed on a laptop. Dell Inspiron 5, 7000 series with Intel Core

i7-4500U CPU, 1.80 GHZ and 16 GB RAM. As shown in figure 17 the network

structure built for the current simulation is a tree type network of depth two and

fan-out of eight that creates sixty four hosts. A tree structure is chosen based on the

fact that it is the network structure widely used in data centers. The switches used

in the network are open virtual switches or OVS.

49

Figure 17 Network Topology

In the first step, in section 4.3.1 we will have a look at the overall algorithm behavior

in detecting attacks under different legitimate traffic patterns. Three traffic patterns

will be tested for the legitimate traffic running in the network and the algorithm

behavior is observed under different traffic loads. In section 4.3.2 more detailed

analysis is performed on how effective the algorithm proves to be in identifying the

exact attack paths and minimizing the detection delay. A study is also performed on

how effective each applied detection technique is in detecting the reported attacks.

Section 4.3.3 performs a study over the algorithm detection performance with

different legitimate and attack flow types. A study of the effectiveness of the

mitigation method is covered in section 4.3.4.

4.3.1 False Positive and False Negative Attack Detections

In this section the algorithm is run under three different traffic patterns and the

False Positive and False negative detection rates are observed in each case. Three

different traffic patterns are tested under two attacking types: Single victim attack

and Multiple victim attack.

50

The characteristics of each traffic pattern are as follows:

Traffic Pattern A

In this traffic pattern there is a distinct difference in the characteristics of legitimate

and attack traffic parameters. Legitimate traffic is defined as traffic with long

duration flows, large number of packets and bytes whereas the attack traffic has

short duration flows with small number of packets and no payload. Table 2

summarizes the traffic specifications in each attack scenario.

Table 2 Traffic Pattern “A” Legitimate and Attack Traffic Specifications

The interval set for normal traffic is 0.2 sec whereas the interval for attack traffic is

set to 0.08 sec for single victim attack and 0.03 sec for multiple victim attacks. The

reason to change the interval between the single victim attack and multiple victim

attack is to generate the same amount of attack traffic for both attack scenarios.

Let's define Attack Traffic Ratio as the ratio of the attack traffic rate to the total

traffic rate as is described in equation 4.1:

Attack Traffic Ratio = Attack Traffic Rate / Total Traffic Rate (4.1)

The total number of traffic sources is fixed at twenty, and with n attackers, the

number of legitimate traffic sources is 20-n. In the single victim attack when one

host is sending attack traffic with traffic rate of 12.5 packets/sec (1/0.08 = 12.5

packets per second) nineteen other hosts will be sending normal traffic with

individual traffic rate of 5 packets/sec (1/0.2 = 5 packets per second) that will result

in 13% attack traffic ratio. With two attacking hosts we will have 28% attack traffic

Packets Type UDP Packets Type UDP Packets Type UDP

Packet Payload 21 Bytes Packet Payload - Packet Payload -

Number of Packets to be sent 7 Number of Packets to be sent 1 Number of Packets to be sent 1

Traffic Interval 0.2 sec Traffic Interval 0.08 sec Traffic Interval 0.03 sec

Traffic Rate 5 Packet/sec Traffic Rate 12.5 Packet/sec Traffic Rate 33.3 Packet/sec

Flow Rate 0.6 Flow/sec Flow Rate 12.5 Flow/sec Flow Rate 33.3 Flow/sec

SINGLE VICTIM ATTACK TRAFFIC SPECIFICATIONLEGITIMATE TRAFFIC SPECIFICATION MULTIPLE VICTIM ATTACK TRAFFIC SPECIFICATION

51

ratio, with three attacking hosts 45% attack traffic ratio and with four attacking

hosts 63% of attack traffic ratio.

In the multiple victim attack scenario with an interval of 0.03 approximately 33.3

packets will be generated per second with nineteen hosts generating 5 packets of

legitimate traffic per second. This results in 26% attack traffic ratio with a single

host sending attack traffic to four different destinations. In the next phase when two

different hosts start the attack destined to eight different destinations the attack

traffic ratio changes to 42.5% and when three hosts attack twelve destinations the

attack traffic ratio changes to 54%.

Table 3 summarizes the threshold values set for the study of the flow specifications.

Table 3Threshold values set for the Study of the Flow Specifications in Traffic Pattern “A”

As explained in section 3.3.2 the threshold values are calculated according to

equation 3.7 based on the average rates reported by the algorithm under normal

traffic flow in the learning phase with a 30% safety margin.

Traffic Pattern B

In this traffic pattern there is less difference in the characteristics of legitimate and

attack traffic parameters. Legitimate traffic is defined as traffic with shorter

duration flows, less number of packets but large payload. The attack traffic has short

duration flows with small number of packets and no payload. Table 4 summarizes

the traffic specifications in each attack scenario.

Table 4Traffic Pattern “B” Legitimate and Attack Traffic Specifications

f.byte_th f.packet_th f.duration_th

120 bytes 5 packets 9.999999999 seconds

Packets Type UDP Packets Type UDP Packets Type UDP

Packet Payload 21 Bytes Packet Payload - Packet Payload -

Number of Packets to be sent 4 Number of Packets to be sent 1 Number of Packets to be sent 1

Traffic Interval 0.1 sec Traffic Interval 0.08 sec Traffic Interval 0.03 sec

Traffic Rate 10 Packet/sec Traffic Rate 12.5 Packet/sec Traffic Rate 33.3 Packet/sec

Flow Rate 2.5 Flow/sec Flow Rate 12.5 Flow/sec Flow Rate 33.3 Flow/sec

LEGITIMATE TRAFFIC SPECIFICATION SINGLE VICTIM ATTACK TRAFFIC SPECIFICATION MULTIPLE VICTIM ATTACK TRAFFIC SPECIFICATION

52

Table 5 summarizes the threshold values set for the study of the flow specifications.

Table 5Threshold values set for the Study of the Flow Specifications in Traffic Pattern “B”

Traffic Pattern C

This traffic pattern is a mix of traffic patterns “A” and “B”. Half of the hosts with

legitimate traffic will be sending traffic according to pattern “A” and the other half

will send traffic according to pattern B. This traffic pattern generates a combination

of different flow types. The attack traffic will remain unchanged.

Table 6 summarizes the threshold values set for the study of the flow specifications.

Table 6Threshold values set for the Study of the Flow Specifications in Traffic Pattern “C”

The simulation consists of two attack types: Single victim attack and Multiple victim

attack.

In the single victim attack twenty simulation runs are performed. Each simulation

run consists of four attack scenarios with one, two, three or four hosts attacking a

single victim with destination IP (10.0.0.13).

In the multiple victim attack, twenty simulation runs are performed. Each

simulation run consists of four attack scenarios. In these scenarios the attacker

distribute the attacks among a group of four, eight, twelve and sixteen victims while

sending the attack traffic from one, two, three or four hosts, respectively.

4.3.1.1Single Victim Attacks

In Single victim attacks simulation run, Normal traffic is run on 20 hosts for at least

one minute to let the network stabilize and the algorithm to derive appropriate

f.byte_th f.packet_th f.duration_th

120 bytes 2 packets 5.699999999 seconds

f.byte_th f.packet_th f.duration_th

120 bytes 2 packets 7.309999999 seconds

53

values for different thresholds before any attacks are carried out. This period can

also be regarded as the initial learning phase for the algorithm.

Each run covers four attacks scenarios. Each simulation run continues between

twenty to forty minutes and each attack scenario lasts for about three minutes.

While the simulation is running if an attack is suspected either due to entropy

changes or changes in the traffic rate an event is created within the log file and time

stamped. The switches suspected of being in the attack path are also identified and a

list of these switches is written to the logfile along with a time stamp. Further along

the analysis of this event if an attack is confirmed on any of the switches a warning

is created that warns of an attack with the exact switch number mentioned. This

attack report is simultaneously printed on the screen, written to the logfile and

emailed to the network administrator with the exact time stamp mentioned. The

rate of the suspected attack being an attack is also logged that could be significant

information for the network administrator to set the threshold value used for

distinguishing between legitimate and malicious flows in the study of flow

specifications. After an attack is cleared the clearance of the attack is also reported

and written to the logfile.

The table below summarizes the number of False Positive (FP) and False Negative

(FN) reports on while traffic patterns “A”, “B” and “C” are tested.

Table 7FP and FN Reports under different Traffic Patterns in Single Victim Attacks

As shown in table 7 when the attack and legitimate traffic have distinct

characteristics as it was in traffic pattern “A”, the algorithm is able to perform with a

100% detection rate. The results and log files obtained under this traffic pattern will

be studied under much more detail in the next section.

Total Number of Attacks on the System

Error Counts Error Probability Error Counts Error Probability Error Counts Error Probability

FP 0 0% 1 1.3% 5 6.3%

FN 0 0% 0 0% 3 3.8%

Algorihm Detection Rate

Algorithm Failure Rate

100.00% 98.75% 90.00%

0.00% 1.25% 10.00%

Traffic Pattern C

80

Traffic Pattern A

80 80

Traffic Pattern B

54

The algorithm also performs very well in traffic pattern “B”. Even though the

legitimate traffic and attack traffic characteristics start to move closer and look alike

still only one case of false positive report is seen in eighty simulation runs that

results in an error probability of less than 1.3%. This high rate of detection is a

result of dynamic threshold selection values and the ability of the algorithm to

adjust to different traffic characteristics.

Traffic pattern C is the point that although it still has a high detection rate of 90.00%

but starts to show an increase in both false positive and false negative detections. In

traffic pattern C the assumption is that the legitimate traffic is a mix of short and

long flows. The shorter flows in this traffic pattern are very similar to the flows

generated by the attack traffic. In this case finding the appropriate threshold is very

difficult.

4.3.1.2 Multiple Victim Attacks

 In this part of the simulation twenty different runs are performed. Each run

consists of three scenarios. In the first scenario nineteen hosts will be running

normal traffic and one host is generating attack traffic 26% attack traffic ratio under

traffic pattern “A”). The attacker will be attacking four different destinations. In the

second scenario two hosts will send their attack traffic to eight victims. Two

attacking hosts will leave eighteen hosts generating legitimate traffic (generating a

42.5% attack traffic ratio under traffic pattern “A”). In the third scenario three hosts

will send attack traffic leaving seventeen hosts generate legitimate traffic while

attacking twelve victims (resulting in 54% attack traffic ratio under traffic pattern

“A”). In the fourth scenario four hosts will send attack traffic leaving sixteen hosts

generate legitimate traffic while attacking sixteen victims.

Each simulation starts with a two-minute learning period with all twenty hosts

running legitimate traffic. Each simulation lasts around ten to twenty minutes. All

the detecting events including suspecting of an attack, list of switches on the

suspected paths, confirmation of an attack on detected switches and clearing of an

55

attack are written to a log file. The other elements of the attack remain the same as

the single victim attack.

The table below summarizes the number of FP and FN reports under the traffic

patterns “A”, “B” and “C”.

Table 8FP and FN Reports under different Traffic Patterns in Single Victim Attacks

As we see in table 8, the results obtained in the multiple victim attacks show a high

detection rate for all three types of traffic patterns. Similar to the single victim

attack, traffic pattern “A” is detected with 100% detection rate and the algorithm

proves to perform extremely well in these cases.

Although the legitimate and attack traffic characteristics are close to each other in

traffic pattern B, the threshold update helps to keep the detection rate at 96.25%

that is a very high detection rate especially in multiple victim attacks. When the

attacks are distributed among different victims the chances of an attack not being

detected, FN, increases as the attack traffic is distributed among different

destinations and the effect of the attack might not reach the threshold values.

As we see in the above table the detection rate in Traffic pattern “C” shows a little

decline to 88.75%. Traffic pattern “C”, is the complicated case where finding the

appropriate threshold is very difficult. Since this traffic pattern is a mix of different

flow types that some are very long, with higher number of packet counts and some

are very short with limited number of packets it is difficult to find the appropriate

margin to fit both flow types.

Total Number of Attacks on the System

Error Counts Error Probability Error Counts Error Probability Error Counts Error Probability

FP 0 0% 1 1.3% 4 5.0%

FN 0 0% 2 0% 5 6.3%

Algorihm Detection Rate

Algorithm Failure Rate

100.00% 96.25% 88.75%

0.00% 3.75% 11.25%

Traffic Pattern A Traffic Pattern B Traffic Pattern C

80 80 80

56

In the case of single victim attacks while running traffic pattern “A” the proposed

algorithm was 4% more effective compared to the algorithm proposed in [30] which

only chooses entropy as the alone detection method and has a detection rate of

96%. Through the experiments performed in section 4.3.2.2 we see that comparing

our algorithm with the entropy variation detection algorithm [30] the proposed

algorithm is 52.16% more effective in detecting multiple victim attacks in traffic

pattern “A”.

The other SDN based technique in detecting DDOS attacks is the use of Self

Organizing Maps (SOM) in the NOX controller for DDOS attack detections [26]. The

detection results presented show a detection rate between 98.57% and 99.11%.This

method requires a very long training period that will take several hours. The

switches are polled in short periods (every 3 sec) for their flow statistics and

complicated computations are performed to generate the required comparison data.

This consumes a lot of network and controller resources, thus, it might not be

always practical especially in larger network structures.

The proposed algorithm in this thesis provides a light weight detection method that

requires minimal network resources while it delivers a very high detection rate.

This detection method has proven to function well under different traffic behaviors

with minimal detection delays. This method is the only proposed method that in

addition to detecting the attacks it is able to detect the attack paths and report the

switches affected by the malicious traffic with high accuracy.

4.3.2Detailed Analysis of Attack Path Detection and Detection Delays

4.3.2.1 Single Victim Attacks

In this section, we study the performance of the proposed methods on identifying

the switches that are under attack.

57

Figures 18 to 21 illustrate the false negative and false positive rates under 13%,

28%, 45% and 63% attack traffic ratio. If a switch is not in the attack path but it is

reported as being under attack it is counted as an instance of FP report. If a switch is

in the attack path but is not reported as being under attack it is counted as a FN

report.

Figure 18 False Positive / False Negative reports in Traffic Pattern “A” Single Victim Attack scenario
under 13% Attack Rate

Figure 19 False Positive / False Negative reports in Traffic Pattern “A” Single Victim Attack scenario
under 28% Attack Rate

58

Figure 20 False Positive / False Negative reports in Traffic Pattern “A” Single Victim Attack scenario
under 45% Attack Rate

Figure 21 False Positive / False Negative reports in Traffic Pattern “A” Single Victim Attack scenario
under 63% Attack Rate

As we can see in the above figures the highest rate of false negative reports are

detected while the attack traffic is at its lowest rate. At 13% attack rate the FN

reports reaches its peak at 18 reports in scenario 3. This is expected for the lower

the attack traffic is, the harder the attack will be detected.

Table 9 shows the average false negative reports under different attacking rates.

Although the highest FN rate belongs to the lowest attack rate but as we can see in

the figure 22, the FN rate does not follow a linear behavior. Statistically, the result

59

shows that the algorithm gives a very low FN rate in all range of attacks. Although

the diagram shows a small drop and peak with the change of attack traffic but the

fluctuation is less than 0.93%.

Table 9 False Negative Report Statistics in Traffic Pattern “A” Single Victim Attack scenario

Figure 22 False Negative Reports Behaviour in Traffic Pattern “A” Single Victim Attack scenario

Table 10 shows the average false positive reports under different attack rates. For

the first three attacking rates the false positive reports tend to increase with the

traffic rate but as the traffic grows more in the network the FP reports begin to fall

back to its minimum value. The result shows that the algorithm gives a very low FP

rate in all range of attacks. The fluctuation in the peak and lowest probability of FP

reports is less than 0.5%. The average probability of FP report in a single victim

attack is 0.6%.

Table 10 False Positive Report Statistics inTraffic Pattern “A” Single Victim Attack scenario

13% Attack Traffic 28% Attack Traffic 45% Attack Traffic 63% Attack Traffic

Total Reports 3069 3069 3168 3177

FN 55 27 50 37

% 1.792114695 0.879765396 1.578282828 1.164620711

13% Attack Traffic 28% Attack Traffic 45% Attack Traffic 63% Attack Traffic

Total Reports 3069 3069 3168 3177

FP 11 23 27 15

% 0.358422939 0.749429782 0.852272727 0.472143532

60

Figure 23 False Positive Reports Behaviour in Traffic Pattern “A” Single Victim Attack scenario

The total probability of error in identifying the exact attacking path inclusive of FN

or FP reports is approximately 1.3%.

Not only are the error probability of false reporting (both negative and positive) so

low but it could easily be reduced by small changes in the algorithm. In the results

obtained from the simulations it can be observed that as long as the controller and

the switches are not taken down by the attacks a FP or FN report will not be

repeated more than two times. This means that in the pattern shown in all the

simulations run through this thesis a FN or FP report is continuously repeated for

maximum two times and the error is corrected through the results generated in

maximum third rounds of consecutive reports. For example if a switch is reported as

being under attack and this is a FP report it will not be reported as being under

attack after two more rounds of reports. As the switch list is cleared after each ten

seconds we could approximately say that an error will be corrected after maximum

of thirty seconds as long as the switches and the controller are still operational

through the attacks.

Figure 24 shows part of the logged events by the algorithm. The red switch IDs

indicate a report of an attack on a switch and the cells highlighted in blue indicate a

false negative report. Switches 2, 4 and 5 are reported as being under attack at

5:37:34 PM that are FN reports. In the next round of reports in around 5 seconds

later at 5:37:40 PM another report confirms that there’s no attack running on these

switches and the switches show as being safe in the reports generated afterwards

too.

61

Likewise switches 4 and 5 have FN attack reports on them at 5:38:39 PM. The

switches are reported as being under attack in the next round of reports at 5:38:50.

In the next round of reports at 5:39:02 that is around 23 seconds later the switches

are reported as being safe and the FN reports are corrected by the algorithm.

62

Figure 24 Sample FN Reporting from Attack Scenario 13

Attack from Attack Path Attack Suspected at: Switches list Attack Reported at:

h35,h42,h51 s6,s7,s8,s3,s1 5:37:34 PM 00-00-00-00-00-01', 5:37:34 PM

00-00-00-00-00-02', 5:37:34 PM

00-00-00-00-00-03', 5:37:34 PM

00-00-00-00-00-04', 5:37:34 PM

00-00-00-00-00-05', 5:37:34 PM

00-00-00-00-00-06' 5:37:34 PM

00-00-00-00-00-07', 5:37:34 PM

00-00-00-00-00-08', 5:37:34 PM

00-00-00-00-00-09',

h35,h42,h51 s6,s7,s8,s3,s1 5:37:39 PM 00-00-00-00-00-01', 5:37:40 PM

00-00-00-00-00-02',

00-00-00-00-00-03', 5:37:39 PM

00-00-00-00-00-04',

00-00-00-00-00-05',

00-00-00-00-00-06' 5:37:39 PM

00-00-00-00-00-07', 5:37:39 PM

00-00-00-00-00-08', 5:37:39 PM

00-00-00-00-00-09',

h35,h42,h51 s6,s7,s8,s3,s1 5:38:22 PM 00-00-00-00-00-01', 5:38:23 PM

00-00-00-00-00-02',

00-00-00-00-00-03', 5:38:23 PM

00-00-00-00-00-04',

00-00-00-00-00-05',

00-00-00-00-00-06' 5:38:22 PM

00-00-00-00-00-07', 5:38:22 PM

00-00-00-00-00-08', 5:38:22 PM

h35,h42,h51 s6,s7,s8,s3,s1 5:38:33 PM 00-00-00-00-00-01', 5:38:34 PM

00-00-00-00-00-02',

00-00-00-00-00-03', 5:38:34 PM

00-00-00-00-00-04',

00-00-00-00-00-05',

00-00-00-00-00-06' 5:38:34 PM

00-00-00-00-00-07', 5:38:34 PM

00-00-00-00-00-08', 5:38:34 PM

00-00-00-00-00-09',

h35,h42,h51 s6,s7,s8,s3,s1 5:38:39 PM 00-00-00-00-00-01', 5:38:39 PM

00-00-00-00-00-02',

00-00-00-00-00-03', 5:38:39 PM

00-00-00-00-00-04', 5:38:39 PM

00-00-00-00-00-05', 5:38:39 PM

00-00-00-00-00-06' 5:38:39 PM

00-00-00-00-00-07', 5:38:39 PM

00-00-00-00-00-08', 5:38:39 PM

00-00-00-00-00-09',

h35,h42,h51 s6,s7,s8,s3,s1 5:38:50 PM 00-00-00-00-00-01', 5:38:50 PM

00-00-00-00-00-02', 5:38:50 PM

00-00-00-00-00-03', 5:38:50 PM

00-00-00-00-00-04', 5:38:50 PM

00-00-00-00-00-05', 5:38:50 PM

00-00-00-00-00-06' 5:38:50 PM

00-00-00-00-00-07', 5:38:50 PM

00-00-00-00-00-08', 5:38:50 PM

00-00-00-00-00-09', 5:38:50 PM

h35,h42,h51 s6,s7,s8,s3,s1 5:39:01 PM 00-00-00-00-00-01', 5:39:02 PM

00-00-00-00-00-02',

00-00-00-00-00-03', 5:39:02 PM

00-00-00-00-00-04',

00-00-00-00-00-05',

00-00-00-00-00-06' 5:39:02 PM

00-00-00-00-00-07', 5:39:02 PM

00-00-00-00-00-08', 5:39:02 PM

00-00-00-00-00-09',

63

One of the goals of this thesis is to offer a solution to detect an attack at its early

stages or in other words to have the minimum detection time. Figure 25 illustrates

the average attack detection time under each attack traffic load. As we can see in the

diagram with the increase in the attack load the detection time starts to drop. This is

because the higher the traffic load the quicker the packet sampling window will be

collected and therefore the faster the attack is detected. The average detection time

for the single victim attack is 14.86 seconds.

Figure 25 Attack Detection Delay in Traffic Pattern “A” Single Victim Attacks

As discussed in the previous chapter the attack detection procedure in the proposed

algorithm is based on two measurements: entropy variations and sudden changes in

the flow initiation rate. It is very interesting to have a study over the algorithm

performance and see which parts of the algorithm are more effective on detecting

certain types of attacks. Table 11illustrates the probability of detecting single victim

attacks through each of the two detection techniques.

Table 11Comparing Entropy and Flow Initiation Rate Effectiveness in Detecting Attacks in Traffic
Pattern “A” Single Victim Attacks

13% Attack Traffic % 28% Attack Traffic % 45% Attack Traffic % 63% Attack Traffic %

Report of Attack being suspected 341 341 278 353

Attack Detected through Entropy

Changes 331 97.07 336 98.53 277 99.64 353 100

Attack Detected through Flow

Initiation Rate Changes 10 2.93 5 1.47 1 0.36 0 0

64

As we can see chances of single victim attacks being detected through entropy

changes is much higher than through flow initiation rate changes. With the

probability of detection being between 97% and100% we can definitely say that

entropy variation is the most effective method in detecting attacks that target a

limited number of destinations in the network. This is because in such attacks most

of the attack traffic is destined to a certain destination address and this lowers the

entropy significantly.

4.3.2.2 Multiple Victim Attacks

As we saw in section 4.3.1.2 while running the simulations with traffic pattern “A”

that is distinct legitimate traffic and attack traffic characteristics no false negative or

false positive reports were perceived in the attack detection stage as in the single-

victim case; but in finding the exact attack path and reporting the exact switches

that are under attack there were instances that the algorithm reported false positive

or false negative detections.

When studying the FN reports in multiple victim attacks, only the reports on the end

switches (switches that are attached to the attacking hosts) are considered. This is

to avoid querying and examining a large number of switches that could put a great

load on the network and the controller. Figures 26 to 28 illustrate the false negative

and false positive report instances under 26%, 42.5%, 54% attack traffic rates.

Figure 26 False Positive / False Negative reports in Traffic Pattern “A” Multiple Victim Attack scenario
under 26% Attack Rate

65

Figure 27 False Positive / False Negative reports in Traffic Pattern “A” Multiple Victim Attack scenario
under 42.5% Attack Rate

Figure 28 False Positive / False Negative reports in Traffic Pattern “A” Multiple Victim Attack scenario
under 54% Attack Rate

As we can see in the above figures as the attack rate increases so does the chances of

having false negative reports. This behavior can be explained as follows. In the

experiments as the attack traffic increases so do the number of attacking victims

and consequently the number of switches reported as being under attack also

increases. Since the attack traffic is distributed to multiple victims, not all switches

will receive a high volume of attack flows and the number of false negative reports

starts to rise. Table 12 shows the FN reporting percentage. As we see the fluctuation

is less than 1.3% and the average is less than 0.6% which is a low and acceptable

error rate.

66

Table 12 False Negative Report Statistics in Traffic Pattern “A” Multiple Victim Attack scenario

Figure 29False Negative Reports Behaviour in Traffic Pattern “A” Multiple Victim Attack scenario

The false positive reporting percentage shows a relative stable behavior with a

slight decline at the attack traffic increases. The average FP percentage is 0.5% and

the fluctuation is only around 0.1%.

Table 13 False Positive Report Statistics in Traffic Pattern “A” Multiple Victim Attack scenario

Figure 30 False Positive Reports Behaviour in Traffic Pattern “A” Multiple Victim Attack scenario

Figure 31 illustrates the average attack detection times under different attack traffic

loads. As we can see in the figure with the increase in the attack load the detection

time starts to drop. Again this is because the higher the traffic load the shorter

duration of the packet sampling window and thus the faster the attack is detected.

%26 Attack Traffic %42.5 Attack Traffic %54 Attack Traffic

Total Reports 1746 2016 1863

FN 0 7 25

% 0 0.347222222 1.341921632

26% Attack Traffic 42.5% Attack Traffic 54% Attack Traffic

Total Reports 1746 2016 1863

FP 10 11 8

% 0.572737686 0.545634921 0.429414922

67

Compared to single victim attacks the drop in attack detection time continues at a

much slower pace. The average detection time for the multiple victim attack is 20.97

seconds that is 6.11 seconds longer than the case of single-victim attacks.

Distributing the attack among different victims will result in less generation of short

flows in each switch and also will reduce the effectiveness of entropy detection ,

both of which will result in a longer detection time.

Figure 31 Attack Detection Delay in Traffic Pattern “A” Multiple Victim Attacks

Table 14 illustrates the probability of detecting multiple victim attacks through

entropy and flow initiation rate variation detection techniques.

Table 14Comparing Entropy and Flow Initiation Rate Effectiveness in Detecting Attacks in Traffic
Pattern “A” MultipleVictim Attacks

As we can see in multiple victim attack, the entropy technique is not as effective as

in single victim attacks. In fact chances of multiple victim attacks being detected

through flow initiation rate changes is higher than through entropy changes.

Comparing this algorithm with the entropy variation detection algorithm [30] the

proposed algorithm is 52.16% more effective in detecting multiple victim attacks in

26% Attack Traffic % 42.5% Attack Traffic % 54% Attack Traffic %

Report of Attack being suspected 194 224 207

Attack Detected through Entropy

Changes 98 50.52 106 47.32 95 45.89

Attack Detected through Flow

Initiation Rate Changes 96 49.48 118 52.68 112 54.11

68

traffic pattern “A”. A detection rate of 52.16% through flow initiation rate changes

shows that the entropy variation technique cannot be considered as a standalone

detection method for the multiple victim attack.

4.3.3 Algorithm Detection Changes with Changes of Legitimate and Attack
Flow Types

 As we saw in the above discussed results the proposed algorithm is proven to

detect attacks with minimal detection errors. Although the effort in choosing the

parameters throughout the algorithm and in generating the attack and legitimate

traffic flows has been based on the known attack characteristics and the observable

differences between legitimate traffic and malicious traffic, we should always keep

in mind that some legitimate traffic flows might be short and although they are

legitimate they show the characteristics of malicious flows. Therefore in studying

the proposed algorithm detection level it is also important to compare the detection

rates while the legitimate traffic has similar characteristics to the attack traffic. In

other words when the legitimate flows consists of many short flows instead of

longer flows. In order to achieve shorter legitimate flows the number of packets sent

in each flow and the traffic interval is decreased gradually. Table 15 shows the

parameters set in each scenario. In all cases the legitimate flow is run over 35 hosts

in the network.

69

Table 15 Changing Legitimate Traffic Parameters

It is clear from table 16 that as the flows become shorter we start to see more false

positive reports in the network. The algorithm proves to be quite reliable till a 30%

margin where we start to see the first signs of false positive reports. The growth is

very slow until the flows are fifty percent shorter where it starts to change very

rapidly. As the flows are shortened by ten percent the false positive reports are

doubled.

Table 16 FP Error Probability changes with Change of Legitimate Traffic Characteristics

Packets Type UDP Packets Type UDP

Packet Payload 21 Bytes Packet Payload 21 Bytes

Number of Packets to be sent 7 Number of Packets to be sent 5

Traffic Interval 0.18 Traffic Interval 0.15

Traffic Rate in the Newtork (Packet /Sec) 194.44 Traffic Rate in the Newtork (Packet /Sec) 233.33

Flow Rate in the Newtork (Flow/sec) 27.78 Flow Rate in the Newtork (Flow/sec) 46.67

Packets Type UDP Packets Type UDP

Packet Payload 21 Bytes Packet Payload 21 Bytes

Number of Packets to be sent 6 Number of Packets to be sent 4

Traffic Interval 0.17 Traffic Interval 0.14

Traffic Rate in the Newtork (Packet /Sec) 205.88 Traffic Rate in the Newtork (Packet /Sec) 250.00

Flow Rate in the Newtork (Flow/sec) 34.31 Flow Rate in the Newtork (Flow/sec) 62.50

Packets Type UDP Packets Type UDP

Packet Payload 21 Bytes Packet Payload 21 Bytes

Number of Packets to be sent 6 Number of Packets to be sent 3

Traffic Interval 0.16 Traffic Interval 0.12

Traffic Rate in the Newtork (Packet /Sec) 218.75 Traffic Rate in the Newtork (Packet /Sec) 291.67

Flow Rate in the Newtork (Flow/sec) 36.46 Flow Rate in the Newtork (Flow/sec) 97.22

10% Shorter Flows 40% Shorter Flows

20% Shorter Flows 50% Shorter Flows

30% Shorter Flows 60% Shorter Flows

10% Shorter Flows 20% Shorter Flows 30% Shorter Flows 40% Shorter Flows 50% Shorter Flows 60% Shorter Flows

Report of Attack being Suspected 0 8 26 25 58 104

Report of Attack being Detected 0 0 2 4 23 73

FP Error Probability 0% 0% 7.69% 16.00% 39.66% 70.19%

70

Figure 32 FP Error Probability Change with the Change of Legitimate Traffic Flow Type

In addition, the attackers are always seeking new attack methods and therefore

their attack traffic characteristics might also adapt to defeat the detection method.

One of such methods is to make the malicious flows look like legitimate flows by

making them appear as longer flows. It is very important to see how the algorithm

starts to behave when the malicious traffic starts to generate longer flows with more

number of packets in other words when attack flows start to look like legitimate

flows. In order to achieve longer attack flows the number of packets sent in each

flow and the traffic interval is increased gradually. Table 17 shows the parameters

set in each scenario. In all cases the attack flow is run over 4 hosts all attacking a

single victim in the network and ten attacks are tested for each attack traffic pattern.

71

Table 17 Changing Attack Traffic Parameters

Looking at table 18, as the flows become longer some attacks are not reported.

Again the algorithm proves to be quite reliable till a 30% margin where we start to

see the first signs of false negative reports. The FN error rate shows an approximate

10% growth as the flows are longer by ten percent. The thresholds set in the

algorithm play an important key in the algorithm tolerance level.

Table 18 FN Error Probability changes with Change of Attack Traffic Characteristics

Packets Type UDP Packets Type UDP

Packet Payload - Packet Payload -

Number of Packets to be sent 2 Number of Packets to be sent 4

Traffic Interval 0.092 Traffic Interval 0.128

Traffic Rate in the Newtork (Packet /Sec) 43.48 Traffic Rate in the Newtork (Packet /Sec) 31.25

Flow Rate in the Newtork (Flow/sec) 21.74 Flow Rate in the Newtork (Flow/sec) 7.81

Packets Type UDP Packets Type UDP

Packet Payload - Packet Payload -

Number of Packets to be sent 2 Number of Packets to be sent 4

Traffic Interval 0.104 Traffic Interval 0.14

Traffic Rate in the Newtork (Packet /Sec) 38.46 Traffic Rate in the Newtork (Packet /Sec) 28.57

Flow Rate in the Newtork (Flow/sec) 19.23 Flow Rate in the Newtork (Flow/sec) 7.14

Packets Type UDP Packets Type UDP

Packet Payload - Packet Payload -

Number of Packets to be sent 3 Number of Packets to be sent 5

Traffic Interval 0.116 Traffic Interval 0.152

Traffic Rate in the Newtork (Packet /Sec) 34.48 Traffic Rate in the Newtork (Packet /Sec) 26.32

Flow Rate in the Newtork (Flow/sec) 11.49 Flow Rate in the Newtork (Flow/sec) 5.26

10% Longer Flows 40% Longer Flows

20% Longer Flows 50% Longer Flows

30% Longer Flows 60% Longer Flows

10% Longer Flows 20% Longer Flows 30% Longer Flows 40% Longer Flows 50% Longer Flows 60% Longer Flows

Number of Attacks 10 10 10 10 10 10

Number of Not Reported Attacks 0 0 1 2 4 5

FN Error Probability 0% 0% 10.00% 20.00% 40.00% 50.00%

72

Figure 33 FN Error Probability Change with the Change of Attack Traffic Flow Type

4.3.4 Attack Mitigation Effectiveness

To test the effectiveness of the mitigation method the attack traffic is run in five

simulation tests over 9, 10, 11, 12 and 13 hosts in the network. In the first attack

scenario nine random hosts will run the attack traffic. In the second scenario ten

random hosts run the attack traffic and so on. A single-victim attack is deployed in

these tests. In the first set of tests the mitigation method is in place on the controller

and as soon as the attack is detected the idle timer’s timeout period is changed from

the default value (15 sec) to mitigated value (11 sec) on the new flows. In the next

set of tests the mitigation method will not be performed in the controller and the

idle_timer’s timeout period remains at 15 seconds before and after an attack

detection. Table 19 illustrates test results.

Table 19 Effectiveness of the Applied Mitigation Method

With Mitigation Method Without Mitigation Method

Number of Attackers
Time it takes to Congest

the First Switch

Time it takes to Congest the

First Switch
sec %

9 3 min 38 sec = 218 sec 3 min 21 sec = 191 sec 19 8.72%

10 3 min 10 sec = 190 sec 2 min 50 sec = 170 sec 20 10.53%

11 2 min 40 sec = 160 sec 2 min 26 sec = 142 sec 18 11.25%

12 2 min 5 sec = 125 sec 1 min 38 sec = 98 sec 27 21.60%

13 1 min 14 sec = 74 sec 57 sec 17 22.97%

AVG 20 15.01%

Mitigation Effectiveness

73

As we can see in table 19 on average the mitigation method is able to delay the

congestion of the switch flow table by 15%. Although this number is calculated

about an average of 20 seconds delay in our simulation runs but we could be sure

that in real networks with larger idle_timers and greater timer changes the

mitigation method could be much more effective.

74

Chapter 5

5 Conclusion and Future work

5.1 Conclusion

The initial objectives of this thesis were to propose a reliable and light weight

solution for detecting a range DDoS attacks independent of their structure in its

early stages. The types of DDOS attacks performed in SDN networks have a wider

range. In traditional networks the attacker tries to bring down a service running in

the network by congesting it with excessive traffic loads or to reduce the network

speed by congesting the available bandwidths, therefore a huge load of attack traffic

need to target a certain destination. In SDN this is not a required characteristic to

make the attacks effective. The attack traffic could be distributed as much as

possible to skip the detection mechanisms in place and still target the controller and

switches. The detection method used in SDN must be able to detect both isolated

and multiple victim attacks. The detection delay must be very short to provide

enough time to establish a mitigation method.

With around 300 lines of coding added to the controller not only any mischievous

activities will be detected but also the affected attack paths are identified. The high

detection rates for different traffic patterns in our results show that the algorithm is

able to perform well under different network conditions and it is not limited to a

specific network condition. In a detailed study of the results obtained under traffic

pattern “A” the algorithm shows to detect the Single victim attacks with an average

delay of 14.86 seconds and False Negative probability/False Positive of less than

1.3%. Similarly under same traffic pattern multiple victim attacks are detected with

an average delay of 20.97 seconds with False Negative / False Positive probability of

less than 1%. Based on the results, it seems that the proposed algorithm has been

successful in achieving the intended goals.

75

5.2 Future Work

As mentioned in section 4.3.1 when the traffic flows running in the network have

different characteristics, using a single threshold margin could increase the chances

of FP and FN reports. Hence it is advised to create a system that will use a range of

thresholds that will each be used with their matching flow types when

implementing the study of flow specifications. In order to implement this, the

legitimate flows in the system first need to be distinguished and the appropriate

thresholds must be calculated in relation to each flow group specifications.

76

Appendix

Controller Codes

coding=utf-8

2012 James McCauley

This file is part of POX.

POX is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as

published by

the Free Software Foundation, either version 3 of the License,

or

(at your option) any later version.

POX is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public

License

along with POX. If not, see <http://www.gnu.org/licenses/>.

"""

A shortest-path forwarding application.

This is a standalone L2 switch that learns ethernet addresses

across the entire network and picks short paths between them.

You shouldn't really write an application this way -- you should

keep more state in the controller (that is, your flow tables),

and/or you should make your topology more static. However, this

does (mostly) work. :)

Depends on openflow.discovery

Works with openflow.spanning_tree

"""

from colors import red,green,yellow

from pox.core import core

import pox.openflow.libopenflow_01 as of

from pox.lib.revent import *

from pox.lib.recoco import Timer

from collections import defaultdict

from pox.openflow.discovery import Discovery

from pox.lib.util import dpid_to_str

import time

import datetime

from Mail_Handler import Mail

77

from pox.lib.util import dpidToStr

from pox.openflow.of_json import *

import math

import test_flow_stat3

log = core.getLogger()

pointer = 0

Adjacency map. [sw1][sw2] ->port from sw1 to sw2

adjacency = defaultdict(lambda:defaultdict(lambda:None))

Switches we know of. [dpid] -> Switch

switches = {}

ethaddr -> (switch, port)

mac_map = {}

[sw1][sw2] -> (distance, intermediate)

path_map = defaultdict(lambda:defaultdict(lambda:(None,None)))

Waiting path. (dpid,xid)->WaitingPath

waiting_paths = {}

Time to not flood in seconds

FLOOD_HOLDDOWN = 5

Flow timeouts

FLOW_IDLE_TIMEOUT = 15

FLOW_HARD_TIMEOUT = 30

How long is allowable to set up a path?

PATH_SETUP_TIME = 4

#keeps track of the number of flows until we reach 50

my_counter = 0

#used as the starting point of the timer to calculate the time it

takes to receive 50 packets. used to calculate and monitor the

receiving rate

my_start = 0

#stores the IP destination for each flow so that the suspected

attack destination could be identified

ipList = []

#saves the path for detecting the switches in the attack path

when an attack is suspected

path_for_stat = []

#keeps track of the switches that a statistic request has been

sent to. This is to prevent sending duplicate requests.

sent_sw = []

#If the entropy change is repeated for 5 times in a row we

suspect an attack and poll the switches in the attack path to

send their statistics.

entropy_counter = 0

#The variable used as the entropy threshold.

Entc2 = 0

#The variable used as the receiving rate threshold.

frate_th = 20

frate2 = 0

attackswitch = {}

def _calc_paths ():

 """

 Essentially Floyd-Warshall algorithm

 """

78

 def dump ():

 for i in sws:

 for j in sws:

 a = path_map[i][j][0]

 #a = adjacency[i][j]

 if a is None: a = "*"

 print a,

 print

 sws = switches.values()

 path_map.clear()

 for k in sws:

 for j,port in adjacency[k].iteritems():

 if port is None: continue

 path_map[k][j] = (1,None)

 path_map[k][k] = (0,None) # distance, intermediate

 #dump()

 for k in sws:

 for i in sws:

 for j in sws:

 if path_map[i][k][0] is not None:

 if path_map[k][j][0] is not None:

 # i -> k -> j exists

 ikj_dist = path_map[i][k][0]+path_map[k][j][0]

 if path_map[i][j][0] is None or ikj_dist <

path_map[i][j][0]:

 # i -> k -> j is better than existing

 path_map[i][j] = (ikj_dist, k)

 #print "--------------------"

 #dump()

def _get_raw_path (src, dst):

 """

 Get a raw path (just a list of nodes to traverse)

 """

 if len(path_map) == 0: _calc_paths()

 if src is dst:

 # We're here!

 return []

 if path_map[src][dst][0] is None:

 return None

 intermediate = path_map[src][dst][1]

 if intermediate is None:

 # Directly connected

 return []

 return _get_raw_path(src, intermediate) + [intermediate] + \

 _get_raw_path(intermediate, dst)

def _check_path (p):

 """

 Make sure that a path is actually a string of nodes with

connected ports

 returns True if path is valid

 """

79

 for a,b in zip(p[:-1],p[1:]):

 if adjacency[a[0]][b[0]] != a[2]:

 return False

 if adjacency[b[0]][a[0]] != b[2]:

 return False

 return True

def _get_path (src, dst, first_port, final_port):

 """

 Gets a cooked path -- a list of (node,in_port,out_port)

 """

 # Start with a raw path...

 if src == dst:

 path = [src]

 else:

 path = _get_raw_path(src, dst)

 #keep a copy of the path to find the switches suspected of

being in the attack path

 path_for_stat = path

 if path is None: return None

 path = [src] + path + [dst]

 # Now add the ports

 r = []

 in_port = first_port

 for s1,s2 in zip(path[:-1],path[1:]):

 out_port = adjacency[s1][s2]

 r.append((s1,in_port,out_port))

 in_port = adjacency[s2][s1]

 r.append((dst,in_port,final_port))

 assert _check_path(r), "Illegal path!"

 return r

class WaitingPath (object):

 """

 A path which is waiting for its path to be established

 """

 def __init__ (self, path, packet):

 """

 xids is a sequence of (dpid,xid)

 first_switch is the DPID where the packet came from

 packet is something that can be sent in a packet_out

 """

 self.expires_at = time.time() + PATH_SETUP_TIME

 self.path = path

 self.first_switch = path[0][0].dpid

 self.xids = set()

 self.packet = packet

 if len(waiting_paths) > 1000:

 WaitingPath.expire_waiting_paths()

 def add_xid (self, dpid, xid):

 self.xids.add((dpid,xid))

 waiting_paths[(dpid,xid)] = self

80

 @property

 def is_expired (self):

 return time.time() >= self.expires_at

 def notify (self, event):

 """

 Called when a barrier has been received

 """

 self.xids.discard((event.dpid,event.xid))

 if len(self.xids) == 0:

 # Done!

 if self.packet:

 log.debug("Sending delayed packet out %s"

 % (dpid_to_str(self.first_switch),))

 msg = of.ofp_packet_out(data=self.packet,

 action=of.ofp_action_output(port=of.OFPP_TABLE))

 core.openflow.sendToDPID(self.first_switch, msg)

 core.l2_multi.raiseEvent(PathInstalled(self.path))

 @staticmethod

 def expire_waiting_paths ():

 packets = set(waiting_paths.values())

 killed = 0

 for p in packets:

 if p.is_expired:

 killed += 1

 for entry in p.xids:

 waiting_paths.pop(entry, None)

 if killed:

 log.error("%i paths failed to install" % (killed,))

class PathInstalled (Event):

 """

 Fired when a path is installed

 """

 def __init__ (self, path):

 Event.__init__(self)

 self.path = path

class Cleanswitch (object):

 def __init__(self):

 pass

 def _do_remove(self):

 t = time.time()

 if len(attackswitch) == 0:

 print red('no switch under attack')

 return False

 else:

 for dpid, switch_ts in attackswitch.items():

 print green('checking the attack switch list')

 time_t = int(t - switch_ts)

 print time_t

 if time_t >= 12:

81

 print time_t

 del attackswitch[dpid]

 print 'Deleted switch from the attack list: %s', dpid

 if len(attackswitch) == 0:

 print green('Hurray We are Secured')

 return False

 return True

 def _do_sleep(self):

 r = self._do_remove()

 if r == False:

 core.callDelayed(12, self._do_sleep)

 else:

 s = min(attackswitch, key=attackswitch.get)

 sleep_time = 12 - int(time.time() - attackswitch[s])

 core.callDelayed(sleep_time, self._do_sleep)

class Switch (EventMixin):

 entDic = {} #Table for the IP address and its occurrence

 all_ip = {}

 dstEnt = [] #List of entropies

 count1 = 0

 start_time = 0

 end_time = 0

 ftimer = 0

 count3 = 0

 max_path = []

 Entth = 1

 Entc = 0

 @staticmethod

 def cleaning_sent_sw ():

 del sent_sw[:]

 print "deleting sent_sw"

 def statcolect(self, path_stat, element, element_src):

 global my_counter

 # my-counter : counts the number of packets. We collect 50

packets

 global ipList

 #my_start is used as the starting point for the timer.

 global my_start

 global entropy_counter

 global frate_th

 global frate2

 global Entc2

 print "Packet Counter:", my_counter

 #This function collects IP statistics

 ipList.append(element)

 #Increment until we reach 50

 if my_counter == 0:

 #we need to calculate the time it takes o collect 50

packets so we could use in calculating the rate

 self.start_time = time.time()

82

 my_start = self.start_time

 print "start time" ,my_start

 my_counter +=1

 #keep the path statistics so that we could find the switches

in the attack path when an attack is suspected

 if element in self.all_ip:

 self.all_ip[element].append(path_stat)

 else:

 self.all_ip[element]= (path_stat)

 if my_counter == 50:

 self.end_time = time.time()

 self.ftimer = self.end_time - my_start

 print "we reach 50 and our start_time %s end_time %s and

timer is %s" % (str(my_start), str(self.end_time),

str(self.ftimer))

 self.start_time = 0

 self.entDic = {}

 for i in ipList:

 if i not in self.entDic:

 self.entDic[i] =0

 self.entDic[i] +=1

 #print the hash table and clear all

 print self.entDic

 max_ip = max(self.entDic, key=self.entDic.get)

 print "max seen ip=", max_ip

 self.max_path = self.all_ip[max_ip]

 #call the entropy function

 self.Entc = self.entropy(self.entDic)

 print "Entc", self.Entc

 print "Entth", self.Entth

 #using math.floor to compare the integer part of the

entropies

 if math.floor(self.Entc) >= math.floor(self.Entth):

 frate = 50 / self.ftimer

 #frate2 is used to pass the receiving rate. frate is

reset before being passed so a new variable is defined to pass

the value

 frate2 = frate

 Entc2 = self.Entc

 print "frate2 is updated:",frate2

 if frate <= frate_th:

 print "Be happy frate<=frate_th frate= ",frate

 print "frate_th=",frate_th

 self.Entth Entc = self.

 print "Entth is updated to Entth=",self.Entth

 if frate >= 20:

 self.frate_th = frate

 print "frate_th is updated to",frate_th

 frate = 0

 entropy_counter = 0

 print "entropy_counter is reset",entropy_counter

 self.count1 = 0

 self.ftimer = 0

83

 else:

 self.count1 +=1

 print "frate=", frate

 print "frate_th=",frate_th

 print "count1=",self.count1

 #count1 is used to detect attacks using the receiving

rate of new flows. when count1 is 5 we suspect an attack.

 if self.count1 == 5:

 self.max_path = self.all_ip[max_ip]

 #eliminating duplicate paths

 self.max_path = sorted(self.max_path)

 dedup = [self.max_path[i] for i in

range(len(self.max_path)) if i == 0 or self.max_path[i] !=

self.max_path[i-1]]

 print "we suspect an attack because count1=5 so we

will go to test_flow_stat3"

 print ""

 dtm = datetime.datetime.now()

 msg = "we suspect an attack because counter1=5, we

will query switches" + " Time:" + str(dtm)

 with

open('/home/mininet/pox/pox/forwarding/logfile.txt','a+') as

flog:

 flog.write('\n')

 flog.write(msg)

 flog.write('\n')

 #although the duplicate paths are eliminated but

still a list of individual switches apear in the list. Since

these switches will be also in the switch path list we will not

consider them and will only look a the list type members of our

sitch path list.

 for raha in dedup:

 if type(raha) == type(list()):

 dtm = datetime.datetime.now()

 msg= "The switches suspected of being in the

Attack path are:" +str(raha) +" Time:" + str(dtm)

 with

open('/home/mininet/pox/pox/forwarding/logfile.txt','a+') as

flog:

 flog.write(msg)

 flog.write('\n')

 print "The switches suspected of being in the

Attack path are:", raha

 print ""

 for raha in dedup:

 if type(raha) == type(list()):

 self.flow_stat(raha) #calling the flow_stat

function that will send request to all the switches in the Raha

list to send their flow tables to the controller

 self.count1 = 0

 self.ftimer = 0

 frate = 0

 else:

84

 self.ftimer = 0

 self.frate = 0

 else:

 self.count1 = 0

 self.ftimer = 0

 frate = 0

 entropy_counter +=1

 print "count3=",entropy_counter

 #The entropy changes continue for 5 times so we suspect

an attack.

 if entropy_counter == 5:

 self.max_path = self.all_ip[max_ip]

 self.max_path = sorted(self.max_path)

 dedup = [self.max_path[i] for i in

range(len(self.max_path)) if i == 0 or self.max_path[i] !=

self.max_path[i-1]] #deleting the duplicate paths

 dtm = datetime.datetime.now()

 msg = "we suspect an attack because entropy_counter=5,

we will query switches" + " Time:" + str(dtm)

 with

open('/home/mininet/pox/pox/forwarding/logfile.txt','a+') as

flog:

 flog.write('\n')

 flog.write(msg)

 flog.write('\n')

 print "we suspect an attack because entropy_counter=5

so we will go to test_flow_stat3"

 print ""

 for raha in dedup:

 if type(raha) == type(list()):

 dtm = datetime.datetime.now()

 msg= "The switches suspected of being in the

Attack path are:" +str(raha) +" Time:" + str(dtm)

 with

open('/home/mininet/pox/pox/forwarding/logfile.txt','a+') as

flog:

 flog.write(msg)

 flog.write('\n')

 print "The switches suspected of being in the

Attack path are:",raha

 print""

 for raha in dedup:

 if type(raha) == type(list()):

 self.flow_stat(raha)

 self.count1 = 0

 entropy_counter = 0

 self.ftimer = 0

 frate = 0

 self.entDic = {}

 ipList = []

 #l =0

 my_counter = 0

 def entropy (self, lists):

85

 #this function computes entropy

 #l = 50

 elist = []

 print lists.values()

 print sum(lists.values())

 for p in lists.values():

 print p

 c = float(p)/50

 print "c=",c

 elist.append(-c * math.log(c, 2))

 Ec = sum(elist)

 print 'Entropy = ',sum(elist)

 self.dstEnt.append(sum(elist))

 print len(self.dstEnt)

 return Ec

 # handler for timer function that sends the requests to the

switches in the attack path that a request is not sent to them

in the last 10 seconds.

 def _timer_func (self, attack_p):

 sent_connection = 0

 for connection in core.openflow._connections.values():

 for item in attack_p:

 if dpidToStr(connection.dpid) == str(item[0]):

 if dpidToStr(connection.dpid) not in sent_sw:

 print"sending flow request to switch",

dpidToStr(connection.dpid)

 dtm = datetime.datetime.now()

 msg= "Sending flow request to:"

+dpidToStr(connection.dpid) + " Time:" + str(dtm)

 with

open('/home/mininet/pox/pox/forwarding/logfile.txt','a+') as

flog:

 flog.write(msg)

 flog.write('\n')

 connection.send(of.ofp_stats_request(body=of.ofp

_flow_stats_request()))

 sent_connection +=1

 sent_sw.append(dpidToStr(connection.dpid))#the

sent_sw is the list used to prevent sending duplicate request for

statistics to same switch. This list is cleared every 10 sec.

 log.info("Sent %i flow stats request(s)", sent_connection)

 dtm = datetime.datetime.now()

 msg= "Sent Switches list:" +str(sent_sw) +" Time:" + str(dtm)

 with open('/home/mininet/pox/pox/forwarding/logfile.txt','a+')

as flog:

 flog.write(msg)

 flog.write('\n')

 print "sent switches",sent_sw

 #function used to analyze the flow tables received from

switches. Having too many short flows, flows with small number of

bytes or packets are considered as signs of attack.

 def _handle_flowstats_received (self, event):

 global frate2

86

 global Entc2

 global frate_th

 stats = flow_stats_to_list(event.stats)

 log.info("FlowStatsReceived from

%s",dpidToStr(event.connection.dpid))

 flowlist = []

 for flow in event.stats:

 flowlist.append({

 "table_id": flow.table_id,

 "duration_sec": flow.duration_sec,

 "duration_nsec": flow.duration_nsec,

 "idle_timeout": flow.idle_timeout,

 "hard_timeout": flow.hard_timeout,

 "packet_count": flow.packet_count,

 "byte_count": flow.byte_count,

 })

 # print flowlist

 count_flow = 1

 count_3 = 0

 for f in event.stats:

 count_2 = 0

 count_flow +=1

 if f.byte_count <20:

 count_2 +=1

 if f.packet_count <4:

 count_2 +=1

 if ((f.duration_sec*pow(10,9)) + f.duration_nsec)

<9999999999:

 count_2 +=1

 if count_2 >=2:

 count_3 +=1

 rate = (float(count_3)/count_flow) * 100

 log.info("on switch %s: we have count_3 %s count_flow %s with

a rate of %s percent",

 dpidToStr(event.connection.dpid), count_3, count_flow,

rate)

 if rate>87:

 dtm = datetime.datetime.now()

 print "WE HAVE AN ATTACK!!!"

 msg = "There is an attack at switch :" +

dpidToStr(event.connection.dpid) + "with rate of:" + str(rate) +

" Time: " + str(dtm)

 attackswitch[dpidToStr(event.connection.dpid)] =

time.time()

 #sub = "Attack!!!"

 #m = Mail(msg, sub)

 #m.send_email()

 with

open('/home/mininet/pox/pox/forwarding/logfile.txt','a+') as

flog:

 flog.write(msg)

 flog.write('\n')

 frate_th = 20

87

Entth = 1# Since we have an attack the system is in alert status

and so the threshold values are reset.

 print "frate_th is updated to:",frate_th

 else:

 self.Entth = Entc2

 print "we didnt have an attack on switch %s so the Entth is

updated=",self.Entth

 print "frate2",frate2

 frate_th = frate2

 print "frate_th is updated to",frate_th

 dtm = datetime.datetime.now()

 msg= "We didn't have an attack on switch" +

dpidToStr(event.connection.dpid) + "rate=" +str(rate) + "and the

new entth=" +str(self.Entth) + "New frate_th=" +str(frate_th) +

"Time:" + str(dtm)

 with

open('/home/mininet/pox/pox/forwarding/logfile.txt','a+') as

flog:

 flog.write(msg)

 flog.write('\n')

 # main functiont to launch the module

 def flow_stat (self, attack):

 from pox.lib.recoco import Timer

 self._timer_func(attack)

 def __init__ (self):

 self.connection = None

 self.ports = None

 self.dpid = None

 self._listeners = None

 self._connected_at = None

 def __repr__ (self):

 return dpid_to_str(self.dpid)

 def _install (self, switch, in_port, out_port, match, buf =

None):

 if len(attackswitch) == 0:

 FLOW_IDLE_TIMEOUT = 15

 else:

 FLOW_IDLE_TIMEOUT = 11

 msg = of.ofp_flow_mod()

 msg.match = match

 msg.match.in_port = in_port

 msg.idle_timeout = FLOW_IDLE_TIMEOUT

 msg.hard_timeout = FLOW_HARD_TIMEOUT

 msg.actions.append(of.ofp_action_output(port = out_port))

 msg.buffer_id = buf

 switch.connection.send(msg)

 def _install_path (self, p, match, packet_in=None):

 wp = WaitingPath(p, packet_in)

 for sw,in_port,out_port in p:

 self._install(sw, in_port, out_port, match)

 msg = of.ofp_barrier_request()

88

 sw.connection.send(msg)

 wp.add_xid(sw.dpid,msg.xid)

 def install_path (self, dst_sw, last_port, match, event):

 """

 Attempts to install a path between this switch and some

destination

 """

 p = _get_path(self, dst_sw, event.port, last_port)

 if p is None:

 log.warning("Can't get from %s to %s", match.dl_src,

match.dl_dst)

 import pox.lib.packet as pkt

 if (match.dl_type == pkt.ethernet.IP_TYPE and

 event.parsed.find('ipv4')):

 # It's IP -- let's send a destination unreachable

 log.debug("Dest unreachable (%s -> %s)",

 match.dl_src, match.dl_dst)

 from pox.lib.addresses import EthAddr

 e = pkt.ethernet()

 e.src = EthAddr(dpid_to_str(self.dpid)) #FIXME: Hmm...

 e.dst = match.dl_src

 e.type = e.IP_TYPE

 ipp = pkt.ipv4()

 ipp.protocol = ipp.ICMP_PROTOCOL

 ipp.srcip = match.nw_dst #FIXME: Ridiculous

 ipp.dstip = match.nw_src

 icmp = pkt.icmp()

 icmp.type = pkt.ICMP.TYPE_DEST_UNREACH

 icmp.code = pkt.ICMP.CODE_UNREACH_HOST

 orig_ip = event.parsed.find('ipv4')

 d = orig_ip.pack()

 d = d[:orig_ip.hl * 4 + 8]

 import struct

 d = struct.pack("!HH", 0,0) + d #FIXME: MTU

 icmp.payload = d

 ipp.payload = icmp

 e.payload = ipp

 msg = of.ofp_packet_out()

 msg.actions.append(of.ofp_action_output(port =

event.port))

 msg.data = e.pack()

 self.connection.send(msg)

 return

 log.debug("Installing path for %s -> %s %04x (%i hops)",

 match.dl_src, match.dl_dst, match.dl_type, len(p))

 print "maryam dest ip is" , match.nw_dst

 #calling the statcolect function when a new flow is to be

installed. This function collects statisctics to monitor the

network behavior to detect DDOS attacks.

 send_path = p

 tuple(send_path)

 self.statcolect(send_path, match.nw_dst, match.nw_src)

89

 # We have a path -- install it

 self._install_path(p, match, event.ofp)

 # Now reverse it and install it backwards

 # (we'll just assume that will work)

 p = [(sw,out_port,in_port) for sw,in_port,out_port in p]

 self._install_path(p, match.flip())

 def _handle_PacketIn (self, event):

 def flood ():

 """ Floods the packet """

 if self.is_holding_down:

 log.warning("Not flooding -- holddown active")

 msg = of.ofp_packet_out()

 # OFPP_FLOOD is optional; some switches may need OFPP_ALL

 msg.actions.append(of.ofp_action_output(port =

of.OFPP_FLOOD))

 msg.buffer_id = event.ofp.buffer_id

 msg.in_port = event.port

 self.connection.send(msg)

 def drop ():

 # Kill the buffer

 if event.ofp.buffer_id is not None:

 msg = of.ofp_packet_out()

 msg.buffer_id = event.ofp.buffer_id

 event.ofp.buffer_id = None # Mark is dead

 msg.in_port = event.port

 self.connection.send(msg)

 packet = event.parsed

 loc = (self, event.port) # Place we saw this ethaddr

 oldloc = mac_map.get(packet.src) # Place we last saw this

ethaddr

 if packet.effective_ethertype == packet.LLDP_TYPE:

 drop()

 return

 if oldloc is None:

 if packet.src.is_multicast == False:

 mac_map[packet.src] = loc # Learn position for ethaddr

 log.debug("Learned %s at %s.%i", packet.src, loc[0],

loc[1])

 elif oldloc != loc:

 # ethaddr seen at different place!

 if loc[1] not in adjacency[loc[0]].values():

 # New place is another "plain" port (probably)

 log.debug("%s moved from %s.%i to %s.%i?", packet.src,

 dpid_to_str(oldloc[0].connection.dpid),

oldloc[1],

 dpid_to_str(loc[0].connection.dpid), loc[

1])

 if packet.src.is_multicast == False:

 mac_map[packet.src] = loc # Learn position for ethaddr

 log.debug("Learned %s at %s.%i", packet.src, loc[0],

loc[1])

 elif packet.dst.is_multicast == False:

90

 # New place is a switch-to-switch port!

 #TODO: This should be a flood. It'd be nice if we

knew. We could

 # check if the port is in the spanning tree if it's

available.

 # Or maybe we should flood more carefully?

 log.warning("Packet from %s arrived at %s.%i without

flow",

 packet.src, dpid_to_str(self.dpid),

event.port)

 #drop()

 #return

 if packet.dst.is_multicast:

 log.debug("Flood multicast from %s", packet.src)

 flood()

 else:

 if packet.dst not in mac_map:

 log.debug("%s unknown -- flooding" % (packet.dst,))

 flood()

 else:

 dest = mac_map[packet.dst]

 match = of.ofp_match.from_packet(packet)

 self.install_path(dest[0], dest[1], match, event)

 def disconnect (self):

 if self.connection is not None:

 log.debug("Disconnect %s" % (self.connection,))

 self.connection.removeListeners(self._listeners)

 self.connection = None

 self._listeners = None

 def connect (self, connection):

 if self.dpid is None:

 self.dpid = connection.dpid

 assert self.dpid == connection.dpid

 if self.ports is None:

 self.ports = connection.features.ports

 self.disconnect()

 log.debug("Connect %s" % (connection,))

 self.connection = connection

 self._listeners = self.listenTo(connection)

 self._connected_at = time.time()

 @property

 def is_holding_down (self):

 if self._connected_at is None: return True

 if time.time() - self._connected_at > FLOOD_HOLDDOWN:

 return False

 return True

 def _handle_ConnectionDown (self, event):

 self.disconnect()

class l2_multi (EventMixin):

91

 _eventMixin_events = set([

 PathInstalled,

])

 def __init__ (self):

 # Listen to dependencies

 def startup ():

 core.openflow.addListeners(self, priority=0)

 core.openflow_discovery.addListeners(self)

 core.call_when_ready(startup,

('openflow','openflow_discovery'))

 def _handle_LinkEvent (self, event):

 def flip (link):

 return Discovery.Link(link[2],link[3], link[0],link[1])

 l = event.link

 sw1 = switches[l.dpid1]

 sw2 = switches[l.dpid2]

 # Invalidate all flows and path info.

 # For link adds, this makes sure that if a new link leads to

an

 # improved path, we use it.

 # For link removals, this makes sure that we don't use a

 # path that may have been broken.

 #NOTE: This could be radically improved! (e.g., not *ALL*

paths break)

 clear = of.ofp_flow_mod(command=of.OFPFC_DELETE)

 for sw in switches.itervalues():

 if sw.connection is None: continue

 sw.connection.send(clear)

 path_map.clear()

 if event.removed:

 # This link no longer okay

 if sw2 in adjacency[sw1]: del adjacency[sw1][sw2]

 if sw1 in adjacency[sw2]: del adjacency[sw2][sw1]

 # But maybe there's another way to connect these...

 for ll in core.openflow_discovery.adjacency:

 if ll.dpid1 == l.dpid1 and ll.dpid2 == l.dpid2:

 if flip(ll) in core.openflow_discovery.adjacency:

 # Yup, link goes both ways

 adjacency[sw1][sw2] = ll.port1

 adjacency[sw2][sw1] = ll.port2

 # Fixed -- new link chosen to connect these

 break

 else:

 # If we already consider these nodes connected, we can

 # ignore this link up.

 # Otherwise, we might be interested...

 if adjacency[sw1][sw2] is None:

 # These previously weren't connected. If the link

 # exists in both directions, we consider them connected

now.

 if flip(l) in core.openflow_discovery.adjacency:

 # Yup, link goes both ways -- connected!

92

 adjacency[sw1][sw2] = l.port1

 adjacency[sw2][sw1] = l.port2

 # If we have learned a MAC on this port which we now know

to

 # be connected to a switch, unlearn it.

 bad_macs = set()

 for mac,(sw,port) in mac_map.iteritems():

 #print sw,sw1,port,l.port1

 if sw is sw1 and port == l.port1:

 if mac not in bad_macs:

 log.debug("Unlearned %s", mac)

 bad_macs.add(mac)

 if sw is sw2 and port == l.port2:

 if mac not in bad_macs:

 log.debug("Unlearned %s", mac)

 bad_macs.add(mac)

 for mac in bad_macs:

 del mac_map[mac]

 def _handle_ConnectionUp (self, event):

 sw = switches.get(event.dpid)

 if sw is None:

 # New switch

 sw = Switch()

 switches[event.dpid] = sw

 sw.connect(event.connection)

 else:

 sw.connect(event.connection)

 def _handle_BarrierIn (self, event):

 wp = waiting_paths.pop((event.dpid,event.xid), None)

 if not wp:

 #log.info("No waiting packet %s,%s", event.dpid, event.xid)

 return

 #log.debug("Notify waiting packet %s,%s", event.dpid,

event.xid)

 wp.notify(event)

def launch ():

 core.registerNew(l2_multi)

 core.registerNew(Cleanswitch)

 core.Cleanswitch._do_sleep()

 timeout = min(max(PATH_SETUP_TIME, 5) * 2, 15)

 Timer(timeout, WaitingPath.expire_waiting_paths,

recurring=True)

 print "will go to execute the timer for sent_sw"

 #we will call the cleaning_sent_sw function in the switch class

to erase the list of the switches that have been already polled

for statistics. As long as the switches are in the sent_sw list

no statistics request will be sent to them.

 Timer(10, Switch.cleaning_sent_sw, recurring=True)

 core.openflow.addListenerByName("FlowStatsReceived",

Switch()._handle_flowstats_received)

93

Normal Traffic Code
#!/usr/bin/env python

import sys

import getopt

import time

from os import popen

from scapy.all import sendp, IP, UDP, Ether, TCP

from random import randrange

def sourceIPgen():

 #this function generates random IP addresses these values are

not valid for first octet of IP address

 not_valid = [10,127,254,255,1,2,169,172,192]

 first = randrange(1,256)

 while first in not_valid:

 first = randrange(1,256)

 ip =

".".join([str(first),str(randrange(1,256)),str(randrange(1,256)),

str(randrange(1,256))])

 return ip

host IPs start with 10.0.0. the last value entered by user

def gendest(start, end):

 #this function randomly generates IP addresses of the hosts

based on

 #entered start and end values

 first = 10

 second = 0; third = 0;

 ip = ".".join([str(first),str(second), str(third),

str(randrange(start,end))])

 return ip

 #send the generated IPs

def main():

 start = 2

 end = 30

 #main method

 try:

 opts, args =

getopt.getopt(sys.argv[1:],'s:e:',['start=','end='])

94

 except getopt.GetoptError:

 sys.exit(2)

 for opt, arg in opts:

 if opt =='-s':

 start = int(arg)

 elif opt =='-e':

 end = int(arg)

 if start == '':

 sys.exit()

 if end == '':

 sys.exit()

 # open interface eth0 to send packets

 interface = popen('ifconfig | awk \'/eth0/ {print

$1}\'').read()

 # send normal traffic to the destination hosts

 for i in xrange(1000):

 # form the packet

 payload = "my name is maryam kia"

 packets = Ether()/IP(dst=gendest(start,

end),src=sourceIPgen())/UDP(dport=80,sport=2)/payload

 print(repr(packets))

 m = 0

 # send packet with the defined interval (seconds)

 while m <= 8:

 sendp(packets,iface=interface.rstrip(),inter=0.2)

 m +=1

 #main

if __name__=="__main__":

 main()

95

Single Victim Attack Traffic Code
#!/usr/bin/env python

import sys

import time

from os import popen

from scapy.all import sendp, IP, UDP, Ether, TCP

from random import randrange

def sourceIPgen():

 #this function generates random IP addresses

 # these values are not valid for first octet of IP address

 not_valid = [10,127,254,255,1,2,169,172,192]

 first = randrange(1,256)

 while first in not_valid:

 first = randrange(1,256)

 print first

 ip =

".".join([str(first),str(randrange(1,256)),str(randrange(1,256)),

str(randrange(1,256))])

 print ip

 return ip

 #send the generated IPs

def main():

 #getting the ip address to send attack packets

 print "here"

 dstIP = sys.argv[1:]

 print dstIP

 src_port = 80

 dst_port = 1

 # open interface eth0 to send packets

 interface = popen('ifconfig | awk \'/eth0/ {print

$1}\'').read()

 print (repr(interface))

 for i in xrange(0,2000):

 # form the packet

 packets =

Ether()/IP(dst=dstIP,src=sourceIPgen())/UDP(dport=dst_port,sport=

src_port)

 print(repr(packets))

 # send packet with the defined interval (seconds)

 sendp(packets, iface=interface.rstrip(), inter=0.08)

96

 #main

if __name__=="__main__":

 main()

97

Mutiple Victim Attack Traffic Code

#!/usr/bin/env python

import sys

import time

from os import popen

from scapy.all import sendp, IP, UDP, Ether, TCP

from random import randrange

def sourceIPgen():

 #this function generates random IP addresses

 # these values are not valid for first octet of IP address

 not_valid = [10,127,254,255,1,2,169,172,192]

 first = randrange(1,256)

 while first in not_valid:

 first = randrange(1,256)

 print first

 ip =

".".join([str(first),str(randrange(1,256)),str(randrange(1,256)),

str(randrange(1,256))])

 print ip

 return ip

 #send the generated IPs

def main():

 #getting the ip address to send attack packets

 print "here"

 dstIP1 = sys.argv[1:]

 dstIP2 = sys.argv[1:]

 dstIP3 = sys.argv[1:]

 dstIP4 = sys.argv[1:]

 #print dstIP

 src_port = 80

 dst_port = 1

 # open interface eth0 to send packets

 interface = popen('ifconfig | awk \'/eth0/ {print

$1}\'').read()

 print (repr(interface))

 for i in xrange(0,2000):

 # form the packet

 packets =

Ether()/IP(dst=dstIP1,src=sourceIPgen())/UDP(dport=dst_port,sport

=src_port)

 print(repr(packets))

98

 packets =

Ether()/IP(dst=dstIP2,src=sourceIPgen())/UDP(dport=dst_port,sport

=src_port)

 print(repr(packets))

 packets =

Ether()/IP(dst=dstIP3,src=sourceIPgen())/UDP(dport=dst_port,sport

=src_port)

 print(repr(packets))

 packets =

Ether()/IP(dst=dstIP4,src=sourceIPgen())/UDP(dport=dst_port,sport

=src_port)

 print(repr(packets))

 # send packet with the defined interval (seconds)

 sendp(packets, iface=interface.rstrip(), inter=0.03)

 #main

if __name__=="__main__":

 main()

99

Single Victim Attack Result Page

TOTAL

Total Reports 198 198 117 117 162 162 162 162 639

FN 2 1 6 2 11

FP 1 2 0 0 3

Percentage 1.010101 0.505051 0.854701 1.709402 3.703704 0 1.234568 0

Total Reports 153 153 162 162 162 162 153 153 630

FN 6 4 4 3 17

FP 7 6 4 2 19

Percentage 3.921569 4.575163 2.469136 3.703704 2.469136 2.469136 1.960784 1.30719

Total Reports 279 279 171 171 180 180 171 171 801

FN 18 2 10 3 33

FP 0 0 0 0 0

Percentage 6.451613 0 1.169591 0 5.555556 0 1.754386 0

Total Reports 162 162 153 153 162 162 162 162 639

FN 5 0 1 1 7

FP 3 0 1 1 5

Percentage 3.08642 1.851852 0 0 0.617284 0.617284 0.617284 0.617284

Total Reports 153 153 153 153 153 153 153 153 612

FN 2 0 2 1 5

FP 0 0 0 0 0

Percentage 1.30719 0 0 0 1.30719 0 0.653595 0

Total Reports 162 162 153 153 153 153 153 153 621

FN 7 3 1 2 13

FP 0 3 1 1 5

Percentage 4.320988 0 1.960784 1.960784 0.653595 0.653595 1.30719 0.653595

Total Reports 180 180 153 153 144 144 153 153 630

FN 3 1 3 2 9

FP 0 0 0 0 0

Percentage 1.666667 0 0.653595 0 2.083333 0 1.30719 0

Total Reports 153 153 135 135 153 153 153 153 594

FN 3 1 2 2 8

FP 0 0 0 0 0

Percentage 1.960784 0 0.740741 0 1.30719 0 1.30719 0

Total Reports 135 135 144 144 153 153 162 162 594

FN 3 0 1 1 5

FP 0 0 0 0 0

Percentage 2.222222 0 0 0 0.653595 0 0.617284 0

Total Reports 153 153 153 153 153 153 153 153 612

FN 0 1 0 1 2

FP 0 1 0 0 1

Percentage 0 0 0.653595 0.653595 0 0 0.653595 0

Total Reports 153 153 162 162 153 153 153 153 621

FN 0 1 2 2 5

FP 0 1 0 0 1

Percentage 0 0 0.617284 0.617284 1.30719 0 1.30719 0

Total Reports 153 153 162 162 162 162 153 153 630

FN 0 0 3 1 4

FP 0 0 0 2 2

Percentage 0 0 0 0 1.851852 0 0.653595 1.30719

Total Reports 108 108 162 162 180 180 171 171 621

FN 2 3 1 5 11

FP 0 2 12 1 15

Percentage 1.851852 0 1.851852 1.234568 0.555556 6.666667 2.923977 0.584795

Total Reports 126 126 180 180 180 180 171 171 657

FN 0 2 1 1 4

FP 0 4 5 5 14

Percentage 0 0 1.111111 2.222222 0.555556 2.777778 0.584795 2.923977

Total Reports 135 135 153 153 144 144 162 162 594

FN 1 1 1 3 6

FP 0 3 0 2 5

Percentage 0.740741 0 0.653595 1.960784 0.694444 0 1.851852 1.234568

Total Reports 144 144 162 162 153 153 171 171 630

FN 0 1 6 1 8

FP 0 0 0 0 0

Percentage 0 0 0.617284 0 3.921569 0 0.584795 0

Total Reports 153 153 144 144 153 153 153 153 603

FN 0 1 3 2 6

FP 0 1 0 0 1

Percentage 0 0 0.694444 0.694444 1.960784 0 1.30719 0

Total Reports 144 144 144 144 153 153 162 162 603

FN 2 3 0 0 5

FP 0 0 2 0 2

Percentage 1.388889 0 2.083333 0 0 1.30719 0 0

Total Reports 126 126 153 153 153 153 144 144 576

FN 1 2 1 2 6

FP 0 0 0 0 0

Percentage 0.793651 0 1.30719 0 0.653595 0 1.388889 0

Total Reports 99 99 153 153 162 162 162 162 576

FN 0 0 2 2 4

FP 0 0 2 1 3

Percentage 0 0 0 0 1.234568 1.234568 1.234568 0.617284

log_fi20

%13 Attack Traffic %28 Attack Traffic

log_fi1

log_fi2

log_fi3

log_fi4

log_fi5

log_fi6

log_fi7

log_fi8

log_fi13

log_fi14

log_fi15

log_fi16

log_fi9

%45 Attack Traffic %63 Attack Traffic

log_fi17

log_fi18

log_fi19

log_fi10

log_fi11

log_fi12

100

Multiple Victims Attack Result Page

TOTAL

Total Reports 198 198 279 279 261 261 738

FN 0 1 6 7

FP 0 2 0 2

Percentage 0 0 0.358423 0.716846 2.298851 0

Total Reports 288 288 270 270 243 243 801

FN 0 1 9 10

FP 3 0 1 4

Percentage 0 1.041667 0.37037 0 3.703704 0.411523

Total Reports 270 270 324 324 216 216 810

FN 0 1 0 1

FP 4 0 0 0

Percentage 0 1.481481 0.308642 0 0 0

Total Reports 144 144 162 162 162 162 468

FN 0 1 3 4

FP 0 6 0 6

Percentage 0 0 0.617284 3.703704 1.851852 0

Total Reports 162 162 144 144 171 171 477

FN 0 1 2 3

FP 0 0 2 0

Percentage 0 0 0.694444 0 1.169591 1.169591

Total Reports 108 108 162 162 117 117 387

FN 0 1 4 5

FP 1 2 0 0

Percentage 0 0.925926 0.617284 1.234568 3.418803 0

Total Reports 126 126 225 225 189 189 540

FN 0 0 0 0

FP 1 0 0 0

Percentage 0 0.793651 0 0 0 0

Total Reports 153 153 117 117 189 189 459

FN 0 0 0 0

FP 0 0 1 0

Percentage 0 0 0 0 0 0.529101

Total Reports 171 171 126 126 135 135 432

FN 0 0 1 1

FP 0 0 1 0

Percentage 0 0 0 0 0.740741 0.740741

Total Reports 126 126 207 207 180 180 513

FN 0 1 0 1

FP 1 1 3 0

Percentage 0 0.793651 0.483092 0.483092 0 1.666667

26% Attack Traffic 42.5% Attack Traffic 54% Attack Traffic

log2_fi1

log2_fi2

log2_fi9

log2_fi10

log2_fi3

log2_fi4

log2_fi5

log2_fi6

log2_fi7

log2_fi8

101

Bibliography
[1] A. Gerrity and F. Hu, Network Innovation through OpenFlow and SDN:

Principles and Design (SDN/OpenFlow:Concepts and Applications), Taylor and

Francis Group, 2014.

[2] R. Kl¨oti, "OpenFlow: A security analysis," in 21st IEEE International Conference

on Network Protocols (ICNP), 2013.

[3] M. S. Malik, M. Montanari, J. H. Huh, R. B. Bobba and R. H. Campbell, "Towards

SDN Enabled Network Control Delegation in Clouds," IEEE, 2013.

[4] Sezer, Sakir; Scott-Hayward, Sandra; Chouhan, Pushpinder Kaur; Fraser,

Barbara; Lake, David; Finnegan, Jim; Viljoen, Niel; Miller, Marc; Rao, Navneet;,

"Are we Ready for SDN? Implementation Challenges for Software-Defined

Networks," IEEE Communication Magazine, pp. 36-43, July 2013.

[5] N. Feamsterr, J. Rexford and E. Zegura, The Road to SDN, USA: acmqueue, 2013.

[6] K. Vikramjeet, Aanalysis of OpenFlow Protocol in Local Area Networks - Master

of Science Thesis, Tampere , Finland: Tampere University of Technology, 2013.

[7] Sandra Scott-Hayward , Gemma O'Callaghan , Sakir Sezer, "SDN Security: A

Survey," in IEEE SDN for Future Networks and Services (SDN4FNS), Trento ,

Italy, 2013.

[8] "openflow-spec-v1.3.0," Open Networking Foundation, 2012.

[9] S. Sezer, S. Scott-Hayward and P. K. Chouhan, "Are We Ready for SDN?

Implementation Challenges for Software-Defined Networks," IEEE

Communication Magazine, pp. 36-43, July 2013.

[10] M. Vahlenkamp, "Design and Implementation of a Software-Defined Approach

to Information-Centric Networking," Hamburg University of Applied Science,

Germany, 2013.

[11] L. R. Prete, C. M. Schweitzer, A. A. Shinoda and R. L. Santos de Oliveira,

"Simulation in an SDN network scenario using the POX Controller," IEEE, 2014.

[12] M. B. C. Dillon, "OpenFlow DDoS Mitigation," Amsterdam, 2014.

[13] J. Naous, D. Erickson, G. Convington, G. Apenzeller and N. McKeown,

"Implementing an OpenFlow Switch on the NetFPGA Platform," in ACM/IEEE

102

Symposium on Architecture for Networking and Communications Systems, San

Jose, CA, USA, 2008.

[14] "OpenFlow V1.0," OpenFlow, 2009.

[15] S. Lim, J. Ha, Y. Kim and S. Yang, "ASDN-Oriented DDOS Blocking Scheme for

Botnet-Based Attacks," IEEE, pp. 63-68, 2014.

[16] "Production Quality, Multilayer Open Virtual Switch," 2014. [Online]. Available:

http://openvswitch.org/. [Accessed 22 June 2015].

[17] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka and T. Turletti, "A

Survey of Software-Defined Networking: Past, Present, and Future of

Programmable Networks," IEEE Communications Surveys & Tutorials, vol. 16,

no. 3, pp. 1617-1634, 2014.

[18] L. R. Prete, C. M. Schweitzer, A. A. Shinoda and R. L. Santos de Oliveira,

"Simulation in an SDN network scenario using the POX Controller," IEEE, 2014.

[19] C. Douligeris and A. Mitrokotsa, "DDOS attacks and defense mechanisms:

classification and state-of-the-art," Computer Networks 44, pp. 643-666, 2004.

[20] L. Garber, "Denial-of-service attacks rip the Internet," IEEE Computer Society,

vol. 33, no. 04, pp. 12-17, 2000.

[21] U. Tariq, M. Hong and K.-S. Lhee, "A Comprehensive Categorization of DDoS

Attack and DDoS Defense Techniques," in Advanced Data Mining and

Applications, Springer Berlin Heidelberg, 2006, pp. 1025-1036 .

[22] W. M. Eddy, "Defenses Against TCP SYN Flooding Attacks," The Internet Protocol

Journal , vol. 9, no. 4, 2006.

[23] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu and M. Tyson, "FRESCO:

Modular Composable Security Services for Software-Defined Networks," ISOC

Network and Distributed System Security Symposium, 2013.

[24] T. Xing, D. Huang, L. Xu, C.-J. Chung and P. Khatkar, "SnortFlow:A OpenFlow-

based Intrusion Prevention System in Cloud Environment," IEEE, pp. 89-92,

2013.

[25] D. Kreutz, F. M. V. Ramos and P. Verissimo, "Towards Secure and Dependable

103

Software-Defined Networks," LaSIGE/FCUL, University of Lisbon, Lisbon,

Portugal, 2008.

[26] R. Braga and E. Mota, "Lightweight DDOS Flooding Attack Detection using

NOX/OpenFlow," in 2010 IEEE 35th Conference on Local Computer Networks

(LCN), Denver, CO, 2010.

[27] T. Yuzawa, "OpenFlow 1.0 Actual Use-Case: RTBH of DDoS Traffic While

Keeping the Target Online," April 20113. [Online]. Available:

http://packetpushers.net/openflow-1-0-actual-use-case-rtbh-of-ddos-traffic-

while-keeping-the-target-online/. [Accessed 22 June 2015].

[28] C. Y. Hunag, T. MinChi, C. YaoTing, C. YuChieh and C. YanRen, "A Novel Design

for Future On-DemandService and Security," IEEE, pp. 385-388, 2010.

[29] S. A. Mehdi, J. Khalid and S. A. Khayam, Revisiting Traffic Anomaly Detection

Using Software Defined Networking, Springer Berlin Heidelberg, 2011.

[30] S. M. Mousavi, Early Detection of DDOS Attacks in Software Defined Networks

Controller, Ottawa, Canada: Carleton University, 2014.

[31] L. Li, J. Zhou and N. Xiao, "DDOS Attack Detection Algorithm Based on Entropy

Computing," ICICS 2007, pp. 452-466, 2007.

[32] T. Nakashima, S. T. and S. Oshima, "Early DoS/DDoS Detection Method using

Short-term Statistics," in 2010 International Conference on Complex, Intelligent

and Software Intensive Systems (CISIS), Krakow , 2010.

[33] P. Biondi, "Scapy," 2003. [Online]. Available:

http://www.secdev.org/conf/scapy_lsm2003.pdf.

[34] M. Team, "Mininet," Octopress , 2015. [Online]. Available: http://mininet.org/.

[Accessed 07 July 2015].

[35] secdev.org, "Scapy," [Online]. Available:

http://www.secdev.org/projects/scapy/. [Accessed 22 June 2015].

[36] D. Erickson, "The beacon openflow controller," in Proceedings of the second

ACM SIGCOMM workshop on Hot topics in software defined networking , New

York, USA, 2013.

104

[37] L. Foundation, "OpenDayLight," 2015. [Online]. Available:

http://www.opendaylight.org/. [Accessed 22 June 2015].

[38] nox, "NOXRepo.org," [Online]. Available: http://www.noxrepo.org/site/about/.

[Accessed 22 June 2015].

