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AbstractAbstractAbstractAbstract

The previous research on adaptive neuro-fuzzy inferential sensor (ANFIS) presented an

approach to estimate the average indoor temperature and proposed a new method to

measure process variables which are impossible to measure directly by using physical

sensors in buildings. To achieve high energy efficiency in heating systems, an accurate

and robust prediction model is essential. This thesis aims to improve the conventional

ANFIS indoor temperature estimator and look for an optimal control of space heating

systems. A physical-rule based ANFIS prediction model is proposed. The differences

between this physical-rule based ANFIS prediction model and the conventional ANFIS

prediction model are presented and analyzed. Three performance measures (RMSE, RMS,

and R2) are used in evaluating the proposed prediction model. The improvement in

accuracy and robustness of the physical-rule ANFIS model is presented compared with

the conventional ANFIS model. In this thesis, the proposed model is used for designing

an adaptive set-point heat exchanger control scheme to improve energy efficiency and

indoor comfort. Finally, the good performance of this control scheme is also

demonstrated.
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ChapterChapterChapterChapter 1111

GeneralGeneralGeneralGeneral IntroductionIntroductionIntroductionIntroduction

1.11.11.11.1 IntroductionIntroductionIntroductionIntroduction

In the past decades, the issue of accumulation of the greenhouse gases (GHG) in the

atmosphere has been to the most emergent problem to be addressed. The United Nations

Environment Programme and the World Metrological Organization in 1988 formed the

Intergovernmental Panel on Climate Change (IPCC) tasked with providing the most up-

to-date assessment of human effects on climate and human health. The IPCC fourth

assessment report notes that the continued accumulation of GHGs in the atmosphere is in

fact leading to noticeable climate change. The linear warming trend over the 50 years

from 1956 to 2005 is nearly twice that for the 100 years from 1906 to 2005 [1].

Carbon dioxide is the most important anthropogenic GHG. In the building sector, carbon

dioxide emissions are approximately 60% of all GHG emissions. Global increase in

carbon dioxide concentration is due primarily to fossil fuel use. Considering the energy

usage in buildings, opportunities to reduce GHG emissions appear to be most significant

for space heating, air conditioning, lighting, and water heating [2]. Heating system

consume a substantial proportion of the total energy used for buildings operations. With

growing environmental and energy consciousness, consuming energy more efficiently is

a priority. As in Canada approximately one third of its energy use is due to the operation

of buildings, any improvement in building energy usage will contribute to the global

energy conservation effort.

On the other hand, as well as reducing environmental pollution and save energy, the
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thermal comfort of indoor environment is also an essential element. American Society of

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) define thermal

comfort for one person, as that condition of the mind which expresses satisfaction with

the thermal environment. The indoor comfort and energy efficiency depends on a lot of

factors, such as the thermal performance of the building envelope, the energy efficiency

of the heating and distribution systems, the performance of control systems. Despite the

enormous effort made over the last decades to improve the energy efficiency of these

heating systems, a huge potential for further energy saving still persists.

At present, in terms of reducing environmental pollution and saving energy, district

heating systems are widely considered as an efficient mode for space heating. At

individual buildings, appropriate operation of the heat exchangers is essential for

harnessing the benefits made possible by district heating systems. District heating

systems are always attractive for areas with high population densities, but the complexity

of the heat load requirement causes the district heating system can only fulfill the average

heat load in occupants' thermal space. The traditional method is to predict the heat load

and set a constant temperature set-point of supplying hot water to heating terminal in

duration. However, outdoor environment always change which cause the corresponding

heat loads for buildings also change. If changes are obvious, the constant set-point will

not satisfy energy saving and thermal comfort in the setting duration. Inferential sensor

models were proposed to estimate the representative air temperature in the whole

building. Based on the output of the estimator, the blower speed and the combustion level

can be controlled, giving an efficient operation of the heat exchanger.

Since the inferential sensing technology was originally developed, process parameters

which are difficult to measure were allowed to be inferred from an easily made

measurement [3, 4]. In recent years, fuzzy logic [5] and neural networks have been

proposed as alternatives to traditional statistical ones in building technology, aimed to
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improve indoor comfort and energy conservation. Some researchers investigated the

benefit of incorporating the inferential sensing technique with conventional building

control schemes [6] and [7]. In Fig. 1, an estimated average air temperature based closed

loop boiler control scheme was also proposed [8]; as in the absence of an economic and

technically reliable method for estimating the overall average air temperature in the built

environment, the boiler is normally controlled to maintain the supply water temperature.

ANFIS model is developed to build an air temperature estimator for the inferential

control schemes [8].

Researchers extensively applied fuzzy logic to study the improvement of the performance

in reducing energy consumption in built environment [9 - 13], while neural networks are

also used to improve the performance of the built environment [14,15] and estimate the

operative temperature in a building [16]. Based on Liao’s work, Jassar et al [8] designed

an ANFIS based inferential sensor model, which estimates the average air temperature in

buildings that are heated by a hydraulic heating system. Jassar’s adaptive neuro-fuzzy

based inferential sensor model is used in indoor temperature estimation and has a low

root mean square error (RMSE); nevertheless, since the limitation caused by some rules in

the network structure, the good performance of estimation largely depends on the quality

of the training data. Thus, it is necessary to improve the robustness and sensitivity of the

existing estimation model.
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Fig.Fig.Fig.Fig. 1111:::: Block Diagram Representation of Closed Loop Boiler Control Scheme [8]

This thesis is concerned with the analysis of current recurrent hybrid neuro-fuzzy based

modeling environment and training algorithm for design and development of physical-

rule based inferential space heating control models.

In the previous research, due to technical and/or economic difficulties, many process

variables are difficult or impossible to measure directly using physical sensors. Soft

sensors which are a common name for software where several measurements are

processed together are designed to compute the values of such variables based on an

inferential model of the targeted system and the measuring cost of the values of the

relevant variables is lower. There is a method that measures the average air temperature

representative of the temperature in all zones, allows for optimal control of the furnaces

in the residential heating system, saving energy and improving indoor environmental

quality. However, the performance of indoor temperature estimation largely depends on

the quality of the input data, due to the limited rules in the network structure. To solve

this problem, this thesis presents a physical-rule based adaptive neuro-fuzzy inferential

sensor (ANFIS) model that is supported by an enhanced structure compared with

conventional ANFIS models [8]. The advantages of physical-rule based ANFIS model

used to estimate the variables of a dynamic system are analyzed. Some primary tasks in
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analysis include: structure identification sensitivity, parameter adjustment improvement

and their corresponding mathematical analysis. Experimental data obtained from space

heating systems is used to validate the model and the training method. Sensitivity and

robustness studies have been carried out to investigate the performance of physical-rule

based model by using three performance measures (RMSE, RMS, and R2). To identify the

proposed model have good estimation performance in different regions and climates, the

data from the projects which are in Italy and Canada will be used in testing.

The application of the proposed model in industry is also significant. In district heating

systems, the proposed model can be used in heat exchanger control. The simulation work

is conducted and its improvement in energy efficiency and indoor comfort are also

presented and analysed in this thesis.

1.1.1.1.2222 ObjectiveObjectiveObjectiveObjective ofofofof thethethethe StudyStudyStudyStudy

The objectives of this research are:

� To investigate the defect and limitation of previous conventional ANFIS based

indoor temperature estimation model with regard to robustness and sensitivity.

Determine the potential for improving estimation through using physical rules.

Evaluate and analyse the performance of the prediction model.

� To design and develop an inferential control scheme based on the proposed physical-

rule based ANFIS model to improve the thermal comfort and energy efficiency of the

building. Make the proposed control scheme work for fulfilling the indoor average

air temperature in a comfortable range by operating the valve on the heating

equipment (heat exchanger).

� To simulate the heat exchanger control and compare the performance of the proposed

control scheme with the conventional control scheme in both energy efficiency and
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comfort ratio.

1.1.1.1.3333 OverviewOverviewOverviewOverview ofofofof thethethethe ProposedProposedProposedProposedWorkWorkWorkWork

To design a reliable inferential sensor, the fundamental importance is to build a dynamic

model of the system to be controlled that is simple and robust. The methods used for

simplified dynamic model can be categorized into two groups: simplified physical model

and black-box model based on advanced mathematical algorithms [17]. This thesis

designs an innovative algorithm that is suitable for the development of a robust black-box

model. The approach is especially useful for large complex and vague systems, which

cannot be defined or represented efficiently by simple methods. Thus, the approach is

ideally suitable for investigating the complex control problems of building heating

systems.

1.1.1.1.3333.1.1.1.1 ExperimentalExperimentalExperimentalExperimental DataDataDataData

For training and validation of the inferential model, it is extremely important to collect

experimental data under actual building conditions. The experimental data is obtained

from hot-water heating system monitored under different research projects [18]. The hot-

water system data is collected in a laboratory heating system and includes indoor air

temperature, exterior temperature, energy used by the heating system, and solar radiation.

1.1.1.1.3333.2.2.2.2 PerformancePerformancePerformancePerformance ofofofof thethethethe InferentialInferentialInferentialInferential ModelModelModelModel

Three performance measures are used in evaluating the proposed prediction model; Root

Mean Square Error (RMSE) which measures the mean deviation (error) of the predicted

values to the measured indoor temperature values. The Maximum Relative Error (MRE)

which is a measure for the largest error (or the farthest point) as well as goodness of fit

(R2). R2 generally takes values between 0 and 1. As R2 reaches 1, the regression points



7

tend to align more accurately along the model curve. The regional independency of the

proposed model will also be identified in this thesis.

An experimental study is conducted to analyze the impact of data quality on the

estimation ability of inferential model. The errors in the training data as well as in the

testing data reduce the predictive accuracy of the model.

Sensitivity analysis aims at validating the selection of training data. ANFIS is sensitive to

the selection of training data. Training data sets collected under different conditions are

used to check the effect on the predictive accuracy of the models.

1.1.1.1.3333.3.3.3.3 SimulationSimulationSimulationSimulation StudyStudyStudyStudy

At present, in terms of reducing environmental pollution and saving energy, hydraulic

district heating systems are widely considered as an efficient mode for space conditioning.

An adaptive set-point heat exchanger control scheme is proposed in district heating

system [9]. In Fig.1, the estimated temperature which is predicted by the conventional

ANFIS model provides a closed-loop heat exchanger control scheme; in the absence of

an economic and technically reliable method for measuring the overall comfort level in

the built environment, the heat exchanger is normally controlled to maintain the supply

water temperature to follow the adaptive set-point temperature of supplied hot water

which depends on the indoor temperature [9].

The physical-rule based ANFIS model is used in the development of an inferential

control scheme for optimizing the control of the heat exchanger. In the conventional heat

exchanger, the heat from the heat source is transferred to the water in secondary loops

(Fig. 2) and the required flow rate of hot water from the heat source depends on required

heating load, water temperature, and heat transfer rate. This conventional heating control

process and proposed adaptive set-point control scheme are simulated in this study and
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the performances of them are analyzed for a simulated typical residential building. The

performance of proposed adaptive set-point control scheme is compared with

conventional control methods to check their potential for improving thermal comfort and

energy efficiency.

Fig.Fig.Fig.Fig. 2222:::: Shell-and-Tube Heat Exchanger [21]

1.1.1.1.4444 OutlineOutlineOutlineOutline ofofofof thethethethe ThesisThesisThesisThesis

This thesis begins with a statement of the objectives of the study, a review of the

background, and the methodology employed. The background part presented the

necessity and objective of this study. The methodology has been described to explain how

these objectives can be achieved.

The remainder of this thesis consists of the following chapters:

Chapter 2 introduces the principles of neuro-fuzzy soft computing.

Chapter 3 demonstrates the conventional ANFIS based prediction model and its

disadvantage.

Chapter 4 presents the development of physical-rule based ANFIS model in estimating

average indoor air temperature.
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Chapter 5 analyses the improvement in the physical-rule based ANFIS model compared

with conventional ANFIS model.

Chapter 6 presents a review of the current heat exchanger control and analyses the scope

of implementation of the proposed physical-rule based ANFIS model in adaptive set-

point control scheme. Then, the improvement in energy efficiency and thermal comfort

are demonstrated.

Chapter 7 draws conclusions and makes suggestions for future work.
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ChapterChapterChapterChapter 2222

Neuro-FuzzyNeuro-FuzzyNeuro-FuzzyNeuro-Fuzzy InferenceInferenceInferenceInference TechnologyTechnologyTechnologyTechnology
ANFIS as a new technique has been used in conventional ANFIS based indoor

temperature estimation [8]. In this study, before to improve the limitation of conventional

ANFIS model, a review of the relevant principles is necessary to do.

2.12.12.12.1 Neuro-FuzzyNeuro-FuzzyNeuro-FuzzyNeuro-Fuzzy OverviewOverviewOverviewOverview

Over the last few decades, the areas of fuzzy logic and neural network have been

significantly developed [22]. Fuzzy logic and neural networks are complimentary tools in

designing modern control systems. Complex real-world problems need the system to be

intelligent to combine knowledge, techniques, and methodologies from various sources.

The intelligent systems are supposed to behave like human when possessing expertise

within a specific domain, adapting themselves and learning to do better in changing

environments, and even explain how they make decisions or take actions. In confronting

real-world computing problems, having several computing techniques cooperate instead

of processing individually shows obvious advantages, constructed complementary hybrid

intelligent systems. The mystery of designing intelligent systems is neuro-fuzzy

computing: neural networks that recognized patterns and adapt themselves to cope with

changing environments; fuzzy inference systems that incorporate human knowledge and

perform deductive judging and decision making. The integration of these two

complementary approaches, together with certain derivative-free optimization techniques,

results in a novel discipline called neuro-fuzzy and soft computing.
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2.22.22.22.2 NeuralNeuralNeuralNeural NetworkNetworkNetworkNetwork

Since Rosenblatt [23] first applied single-layer perceptrons to pattern classification

learning in the late 1950s, artificial neural network (ANN), usually called neural network

(NN), as a mathematical model or computational model that is inspired by the structure

and/or functional aspects of biological neural networks has been studied for more than

five decades. The recent resurgence of interest in the field of NNs has been inspired by

new developments in NN learning algorithms [25-27], analog VLSI (very large scale

integrated) circuits, and parallel processing techniques [28].

The neural network has a standard structure; every neural network is composed of a set of

highly interconnected nodes in different layers. Each node collects the inputs from its

input connections, performs a set of predefined mathematical operations and produces a

single output. Inside each node, there is an integration action which serves to combine

information or activation from external environment or other nodes into a net input. At

the same time, the node produces an output as a function of its net input through an

activation function. Each node has associated weights that determine the exact or the

incoming input on the activation of the node. The weights may be positive, or negative.

Finally, through a learning procedure, the information can be stored in these weights in a

distributed manner.

Neural networks, with their remarkable ability to derive meaning from complicated or

imprecise data, can be used to extract patterns and detect trends that are too complex to

be noticed by either human or other computer techniques. A trained neural network can

be thought of as an “expert” in the category of information it has been given to analyze.

This expert can then be used to provide projections given new situations of interest and

answer “what if” questions.

To use neural networks, there are some advantages [29]:
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1. Adaptive learning: An ability to learn how to do tasks based on the data given for

training or initial experience.

2. Self-Organization: An ANN can create its own organization or representation of the

information it receives during learning time.

3. Real Time Operation: ANN computations may be carried out in parallel, and special

hardware devices are being designed and manufactured which take advantage of this

capability.

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a network

leads to the corresponding degradation of performance. However, some network

capabilities may be retained even with major network damage.

A robust approach to approximating analytical functions is provided by neural networks

with these advantages. Therefore, they can be considered as simplified mathematical

models of brain like systems operating as parallel distributed computing networks. Neural

networks are one of the most effective learning approaches for certain types of problems,

such as learning and generalizing to interpret sensory data. Thus, neural networks are

well-suited to problems where nonlinear mapping must be acquired from data, and where

a near-optimal solution is required in a short time.

2.32.32.32.3 FuzzyFuzzyFuzzyFuzzy SystemsSystemsSystemsSystems andandandand FuzzyFuzzyFuzzyFuzzy InferenceInferenceInferenceInference SystemSystemSystemSystem

A fuzzy logic system (FLS) is a convenient way of mapping inputs space to outputs space.

The mapping is achieved by transforming the input information from numerical domain

(crisp domain) to linguistic domain (fuzzy domain). The transformed information is then

processed using the fuzzy rules incorporated in the rule-base to yield a fuzzy output

which, in turn, has to be transformed again into the numerical domain [30 - 32].
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Fuzzy logic starts with a builds on a set of user-supplied human language rules. The

fuzzy systems convert these rules to their mathematical equivalents. The rule consists of

two parts: an antecedent (premise) and a consequent. They are English-like sentences in

the form of IF-THEN. The IF-part (antecedent) includes the condition for firing a rule,

and the THEN-part (consequent) includes the action. A typical fuzzy rule has an

expression of the form:

IF x1 is A1AND x2 is A2 THEN y is B

Where A1, A2, and B are linguistic values defined by fuzzy sets on certain universe of

discourse. A fuzzy model consisting of this form of fuzzy rules is generally called

Mamdani fuzzy model, if B is a fuzzy singleton [33]. The other form of IF-THEN rules,

proposed by Takagi and Sugeno [34, 35], has only fuzzy set defined in the premise part;

the consequent part is described by a non-fuzzy equation of the input variables,

IF x1 is A1AND x2 is A2 THEN y is f(x1, x2)

A fuzzy model consisting of these types of rules is called a TSK fuzzy model.

This simplifies the job of the system designer and the computer, and results in much more

accurate representations of the way systems behave in the real world. Additional benefits

of fuzzy logic include its simplicity and its flexibility. Fuzzy logic can handle problems

with imprecise and incomplete data, and it can model nonlinear functions of arbitrary

complexity [36].

Fuzzy logic models, called fuzzy inference systems, consist of a number of conditional

“IF-THEN” rules. For the designer who understands the system, these rules are easy to

write, and as many rules as necessary can be supplied to describe the system adequately.

The basic structure of a fuzzy inference system is shown in Fig.3, which consists of the

following subsystems:



14

A fuzzifier which maps from an observed input space to labels of fuzzy sets in a specified

universe of discourse,

A rule base containing a set of fuzzy IF-THEN rules,

A database which defines the MFs used in fuzzy rules,

An inference engine which performs the reasoning procedure upon the rules and the

given conditions to derive reasoning conclusions,

A defuzzifier which maps the fuzzy inference results back to crisp outputs.

Fig.Fig.Fig.Fig. 3333:::: Structure of Fuzzy Inference System (FIS) [37]

In general, the steps of fuzzy inference are summarized as follows:

Fuzzification: compare the input variables with the MF on the premise part to compute

the membership values of each linguistic variable.
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Application of T-norm: this operator performs algebraic product or min on the

membership values of the premise part to get firing strength or weight for each rule.

Generation of the consequent parts: it can be fuzzy or crisp.

Defuzzification: aggregate the qualified consequents to derive a crisp output.

2.42.42.42.4 AdaptiveAdaptiveAdaptiveAdaptive Neuro-FuzzyNeuro-FuzzyNeuro-FuzzyNeuro-Fuzzy InferenceInferenceInferenceInference SystemsSystemsSystemsSystems

The development of intelligent systems have benefited from hybridization technology of

neuro-fuzzy systems through several approaches such as ANFIS, Neuro-Fuzzy Control

(NEFCON), Evolving Fuzzy Neural Network (EFuNN), the evolutionary design of

neuro-fuzzy systems and many others [38 - 45]. Among the methods mentioned, ANFIS

is the one that fully optimizes the complementary strength of ANN and FIS. The training

speed of ANFIS is higher compared to others, the learning algorithm is the most effective,

and the structure is simple [46]. Based on these properties, ANFIS is recognized as one of

the best in function approximation among other neuro-fuzzy models [47]. Also it is faster

in convergence when compared to the other neuro-fuzzy models [48]; and provides better

results when applied without any pre-training [49].

ANFIS is a multi-player adaptive network-based fuzzy inference system. It consists of a

total of five layers to implement different node functions to learn and tune the parameters

in a FIS structure using a hybrid learning mode. Here to describe the architecture of

ANFIS, the fuzzy inference system under consideration has two inputs (x, y) and one

output, z. For a first-order Sugeno fuzzy model [50-52], a common rule set with two

fuzzy IF-THEN rules is the following:

Rule 1: If x is A1 and y is B1, then f1= p1x + q1y + r1,

Rule 2: If x is A2 and y is B2, then f2= p2x + q2y + r2.
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Fig.4 (a) illustrates the reasoning mechanism for this Sugeno model; F.4 (b) shows the

corresponding equivalent ANFIS architecture. Nodes of the same layer have similar

functions, as described next. The output of the ith node is denoted in layer l as Ol,i .)

Layer 1: Every node i in this layer is an adaptive node with a node function

O1,i =uAi(x) for i = 1, 2 or

O1,i=uBi-2(y) for i = 3, 4 (2.1)

where Ol,i is the membership grade of a fuzzy set A ( = A1, A2, B1 or B2) and it specifies

the degree to which the given input x (or y) satisfies the quantifier A. In other words, x

(or y) is the input of node i and Ai (or Bi-2) is the linguistic label (such as “bad” or “good”)

associated with this node. Here the membership function for A can be any appropriate

parameterized membership function, such as generalized bell function:

ib

i

i

A

a
cx

x 2

1

1)(
−

+

=µ (2.2)

where {ai, bi, ci} is the parameter set. The Bell-shaped function varies as the values of

these parameters change, thus exhibiting various forms of membership function for fuzzy

set A. Parameters in this layer are referred to as premise parameters.

Layer 2: Every node in this layer is a fixed node labeled II, the output is the product of all

the incoming signals:

)()(,2 yxwO BiAiii µµ== , i = 1, 2 (2.3)

Each node output represents the firing strength of a rule. In general, any other T-norm

operators that performs fuzzy AND can be used as the node function in this layer.
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Layer 3: Every node in this layer is a fixed node labeled N. The ith node calculates the

ratio of the ith rule’s firing strength to the summation of all rules’ firing strength:

21
,3 ww

wwO i
ii +
== , i = 1, 2 (2.4)

For convenience, outputs of this layer are called normalized firing strengths.

Layer 4: Every node i in this layer is an adaptive node with a node function

)(,4 iiiiiii ryqxpwfwO ++== , (2.5)

where iw is a normalized firing strength from layer 3 and {pi, qi, ri} is the parameter set

of this node. Parameters in this layer are referred to as consequent parameters.

Layer 5: The single node in this layer is a fixed node labeled ∑, which computes the

overall output as the summation of all incoming signals:

Overall output = ∑ ∑
∑==

i i

i ii
iii w

fw
fwO ,5 (2.6)
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Fig.Fig.Fig.Fig.4444:::: (a) First-Order Surgeon Fuzzy Model; (b) Corresponding Architecture for A Two-

Rule Fuzzy [20].

Therefore, an adaptive network has been constructed which is functionally equivalent to a

Sugeno fuzzy model. As long as each node and each layer perform meaningful and

modular functionalities, the assignment of node functions and the network configuration

are arbitrary

2.52.52.52.5 Neuro-FuzzyNeuro-FuzzyNeuro-FuzzyNeuro-Fuzzy ModelingModelingModelingModeling

A fuzzy system can be seen as a layered structure (network) at the computational level,

similar to artificial neural network of the RBF-type [53]. Gradient-descent training

algorithms known from the area of neural networks can be employed in order to optimize

parameters in a fuzzy system. Hence, this approach is usually referred to as neuro-fuzzy

modeling [53, 38].
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2.5.12.5.12.5.12.5.1 Neuro-FuzzyNeuro-FuzzyNeuro-FuzzyNeuro-Fuzzy SystemSystemSystemSystem IdentificationIdentificationIdentificationIdentification

System identification is a process of developing or improving a mathematical

representation of a physical system using a combination of prior knowledge and

empirical data. Conventionally, system identification heavily relies on prior knowledge

such that mechanistic model can be established to satisfactorily describe the system. So

that empirical data is used to adapt and validate these identified models. In general, there

are three basic classes of such model synthesis [54]:

White box identification: The entire mechanistic model is constructed from prior

knowledge and physical rules. The observed system is only used for adaptation and

validation. It is not used during the model construction. However, complete system

knowledge is rarely available; therefore in most cases, some aspects of system behavior

cannot be explained by the identified model.

Grey box identification: A partial model is established from prior knowledge and physical

rules. Usually, such knowledge is used to satisfy the functional form of the model, while

the empirical data is used to infer specific system parameters.

Black box identification: No physical knowledge is available for construction of the

model. This kind of identification can be viewed as function approximation or surface

fitting. In this case, there exist infinitely many candidate functions to fit the observed data

that can be chosen.

System identification involves two steps [55]: structure identification and parameter

identification. Structure identification can further be divided into two different types of

task, (1) input variable selection and (2) determination of functional expression.
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2.5.22.5.22.5.22.5.2 StructureStructureStructureStructure IdentificationIdentificationIdentificationIdentification

Structure identification of an unknown system is to solve two problems: selecting a set of

input variables and establishing an input-output relation. In phase I of the structure

identification, the most relevant input variables for the system needs to be discovered.

Appropriate input variables to the system are assumed to be known in some identification

works. However, in many real-world applications, this is not the case. While linear

functions have a unique representation, there are two parts of an IF-THEN rule: the

premise part and the consequent part. So the rules have two structures in principle. It is

clear that the number of rules corresponds to the number of subspaces. This partition of

input space is the premise structure in a fuzzy model. So how the input space should be

partitioned is determined by phase II of structure identification.

Among all the aforementioned tasks to be done in identification the most important task

is to identify an optimal set of variables. This is because variable selection is the

preliminary step before operating regression or any other identification tasks. Enough

variables are needed to explain system behaviors. However, too many variables will

artificially increase the complexity of the identified model. In this case, the over-complex

model will usually over fit the data and will have less generalization capability. A

variable selection technique typically consists of the following elements: A feature

evaluation criterion for comparing subsets of variables, a search procedure for searching

the set of possible variable combination, and a stop criterion as significance threshold for

determining the evaluation criterion or the final feature space dimension.

Several evaluation criteria based on either statistics or heuristics, have been proposed for

measuring the importance of a variable subset, depending on the task and the model to be

used. Some selection methods only consider the data for computing the relevant variables;

others take into consideration the model to be used for the medullization task.
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Construction of a fuzzy rule base can be viewed as partitioning the multidimensional

input space and extracting IF-THEN rules from the sampled data. There are some

commonly used partitioning methods, such as fuzzy grid partition and fuzzy k-d tree

partitioning.

2.5.32.5.32.5.32.5.3 ParameterParameterParameterParameter IdentificationIdentificationIdentificationIdentification

Parameters are the coefficients in a system functional model in conventional system

identification. The parameters also include those in the MFs in a fuzzy model. Many

existing fuzzy identification schemes perform those two identification tasks separately in

the literature. However, structure identification and parameter identification cannot be

solved separately.

Most existing neuro-fuzzy systems are rule based systems which consist of the Mamdani

model for the TSK model. This type of neuro-fuzzy model has the following form,

Ri => IF x1 is A1,iAND…AND xp is Ap,i THEN y = fi(x1, …,xp), i = i, …,M

And fi(x1, …,xp) is given by

Mamdani Type:

fi = ci, where ci is a constant consequent.

TSK Type:

∑
=

=
p

j
jjii xaf

1
, (2.7)

The total output of the model is computed by the center of area (COA) defuzzification

method,
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where wi denotes the firing strength of the ith rule defined by

∑ =

= M

i i

i
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ww
1

(2.9)

In the least squares method, the output of a model y is given by the parameterized

expression.

)(..........)()( 2211 xfxfxfy nnθθθ +++= (2.10)

where x = [x1, …, xn] is input vector for the model, f1, …, fn are known functions of x, and

1θ , … nθ are unknown parameters to be optimized. Usually a training data set of data

pairs (xi, yi), i = 1, …, m is taken to identify these unknown parameters iθ ; substituting

each data pair in Eq. (2.11) a set of linear equations is obtained, which can be written as

yA =θ

in matrix form, where A is a nm× matrix.
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where θ is an 1×n unknown parameter vector
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And y is an 1×m output vector
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Since generally m>n, instead of exact solution of (2.10) an error vector e is introduced to

account for the modeling error as

yeA =+θ (2.14)

and searched for θθ ˆ= which minimizes the sum of squared errors.

eeayE T
m

i

T
ii =−=∑

=

2

1

)()(θ (2.15)

where )(θE is called the overall error objective function. The squared error in (2.11) is

minimized when θθ ˆ= , called least squares estimator (LSE) that satisfies the normal

equation

yAAA TT =θ̂
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If AAT is a non singular, θ̂ is unique and is given by

yAAA TT 1)(ˆ −=θ (2.16)

Two kinds of parameters usually exist in a neuro-fuzzy model: the parameters in the

consequent parts and the parameters in the antecedent parts. According to Eq. (2.14), the

consequent parameters are simply θ , and the antecedent parameters are generally those

used to define the MFs. The gradient descent methods are generally slow and likely to be

trapped in local minima, though one can apply the gradient methods such as

backpropagation (BP) to identify both the antecedent and the consequent parameters. The

consequent parameters can be identified by the well known least squares (LS) methods.

The BP algorithm can be used to update the antecedent parameters after the consequent

parameters have been identified. This observation leads to a hybrid learning algorithm

that combines the neural learning rules and the least squares estimators for faster

parameter identification. Each epoch is composed of a forward phase and a backward

phase in the hybrid learning scheme, as shown in Fig. 5. In the forward phase, an input

vector and compute the corresponding row vectors in matrices A and Y is presented. This

process is repeated until all the input vectors have been presented. In the backward phase,

first the least-squares formula in Eq.(2.16) is used to compute θ̂ . After θ̂ is identified, the

error signal for each training data entry is calculated. Then the error signals can be back

propagated from the output end toward the input end, so as to update the premise

parameters. This is a batch learning scheme since the parameters are updated after all the

training data have been presented. The θ found by LS estimation is guaranteed to be

globally optimal for the given premise parameters at any training epoch. Therefore this

hybrid learning algorithm can reduce the dimension of each of the search space in the BP

algorithm, as well we a substantially reduce the time needed for convergence.
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Fig.Fig.Fig.Fig. 5:5:5:5: Hybrid learning Algorithm

2.5.42.5.42.5.42.5.4 PhysicalPhysicalPhysicalPhysical RulesRulesRulesRules ofofofof HeatHeatHeatHeat TransferTransferTransferTransfer inininin BuildingBuildingBuildingBuildingssss

Fig. 6 illustrates the heat transfer process in the building with the external wall which is

divided into two layers. Heat transfer from the hot water to the radiator shell (Tm(i))

through convection (Qin) and then to the air through convection and to the inner layer of

the envelope through radiation. Infiltration through openings and heat conduction through
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light-weighted constructions in the envelope (such as windows; the thermal inertia is

ignored) depend on the outdoor temperature (TO). Solar radiation (Qsol) is another heat

source to consider in heat transfer processes. Since the law of conservation of energy, the

total indoor energy which can be represented by indoor temperature is equal to the

amount of heat supplied to the indoor environment, minus the amount of heat transferred

from indoor to outdoor. In this study, “positive energy” is defined to represent the heat

supplied to the indoor environment which includes solar radiation and the energy from

the heating element. At the same time, the corresponding “negative energy” which

represents the heat transferred from indoor to outdoor depends on the temperature

difference between indoor air temperature and the external temperature.

Fig.Fig.Fig.Fig. 6:6:6:6: Heat Transfer within One of Zones in A Multi-Zone Heating System [51]

2.62.62.62.6 Neuro-FuzzyNeuro-FuzzyNeuro-FuzzyNeuro-Fuzzy ControlControlControlControl

Application of fuzzy inference systems to automatic control was first reported in
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Mamdani’s paper [33] in 1975. Based on Zadeh’s proposition [39], a fuzzy logic

controller (FLC) was used to emulate a human operator’s control of a steam engine and

boiler combination. Fuzzy logic control [56 - 59] has gradually been recognized as the

most significant and fruitful application for fuzzy logic and fuzzy set theory since then. In

the past few years, advances in microprocessors and hardware technologies have created

an even more diversified application domain for fuzzy logic controller, which ranges

from consumer electronics to the automobile industry. Indeed, FLCs provide a feasible

alternative for complex and/or ill-defined systems that are not easily subjected to

conventional automatic control methods. Because FLCs can capture the approximate,

qualitative aspects of human reasoning and decision-making processes. However, without

adaptive capability, the performance of FLCs relies exclusively on two factors: the

availability of human experts, and the knowledge acquisition techniques to convert

human expertise into appropriate fuzzy IF-THEN rules and membership functions. These

two factors substantially restrict the application domain of FLCs.

On the other hand, investigation into using neural networks in automatic control systems

did not receive much attention until the backpropagation learning rule was reformulated

by Rumelhart et al. [60] in 1986. Since then, research of neural control has evolved

quickly and a number of neural controller design methods have been proposed in the

literature [61 - 63].

Jang [38] explains in detail that supervised learning neural networks and fuzzy inference

systems are special instances of adaptive networks, which in certain ways are the most

general form of modeling and computing-structure construction. Consequently, a neural

control design approach can usually be carried over directly of the design of fuzzy

controllers, unless the design method depends directly on the specific architecture of the

neural network used. This portability endows us with a number of design methods for

fuzzy controllers which can easily take advantages of a priori human information and
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expertise in the form of fuzzy IF-THEN rules. The resulting methodologies often referred

to as neuro-fuzzy control.

Generally speaking, these methodologies can be classified into two categories. The first

category is made up of design methods obtained directly from neural control literature

directly, such as expert (mimicking) control, inverse learning, specialized learning,

backpropagation through time, and real-time recurrent learning. The second category

contains design methods that are not directly or necessarily related to neural-like learning.

Some of the design methods in the second category take advantage of conventional

control techniques such as gain scheduling, feedback linearization, adaptive control, and

sliding mode control; others apply derivative-free optimization techniques or

reinforcement types of learning.
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ChapterChapterChapterChapter 3333

ConventionalConventionalConventionalConventionalANFISANFISANFISANFIS BasedBasedBasedBased PredictionPredictionPredictionPrediction
MMMModelodelodelodel
Neuro-Fuzzy modeling is used to develop the average air temperature estimator. For

hybrid neuro-fuzzy modeling the major steps are: (1) input and output variables

determination, (2) experimental data monitoring, (3) fuzzy partitioning of the I/O space,

(4) shapes and initial parameters for the membership functions, (5) short-term training

data selection, (6) parameters and algorithm for the training process, and (7) validation of

the model for long term testing data. In this chapter, a conventional ANFIS prediction

model based indoor temperature estimator is demonstrated and the limitation is also

presented.

3333....1111 ConventionalConventionalConventionalConventionalANFISANFISANFISANFIS ModelModelModelModel

An ANFIS based model for predicting the average indoor air temperature is developed by

Jassar and Liao [1] as shown in Fig. 7. The overall average air temperature (Tavg) in the

building is estimated based upon external temperature (TO), solar radiation (Qsol) and the

energy consumption (Qin).
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Fig.Fig.Fig.Fig.7:7:7:7: Inferential Model Showing Input and Output Variables

Considering the sensitivity of the input and the fuzzy rules, two Functions of

Memberships (FMs) in every individual variable are used which represent “High” and

“Low” respectively. If more FMs are defined, it will be more complex when we are

defining the fuzzy rules. For example, if we define 3 FMs which are “High”, “Middle”,

and “Low” for every input variable, there will be 27 fuzzy rules instead of 8 fuzzy rule

when two FMs are defined for every input variable. It is obvious that the more FMs for

every input, the more complex and vague in defining fuzzy rules. In this thesis, the types

of MFs are also defined to the simpled MFs which are triangle-shape functions to raise

the calculation speed in parameter tuning.

The structure of the conventional ANFIS model based estimator is demonstrated in Fig. 8.

Based on Jassar’s model [1], a back forward of delayed average air temperature is also

considered as an input signal in the structure for improving estimation. There are five

layers of this conventional ANFIS structure. O1,i is the output of the ith node of the layer l.

Every node i in layer 1 is an adaptive node with a node function

O1,i = uAi(x 1) for i=1,2

O1,i = uBi-2(x2) for i=3,4

O1,i = uCi-4(x3) for i=5,6



31

O1,i = uDi-6(x4) for i=7,8 (3.1)

where x1(or x2 or x3 or x4) is the input to node i and A i (or Bi-2 or Ci-4 or Di-6) is a

linguistic label (such as “high” or “low”) associated with this node. Here A, B, C, or D is

set into triangular membership function:
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(3.2)

The parameters {ai, bi, ci} (with ai<bi<ci) determine the x coordinates of the three corners

of the underlying triangular MF. As the values of these parameters change, the triangular-

shaped function varies accordingly, thus exhibiting various forms of membership

function for fuzzy sets.

In layer 2, there are 16 nodes and the output of every node is the product of all the

incoming signals. Each node output represents the firing strength (wi) of a rule, additional

the degree to which the antecedent part of a fuzzy rule is satisfied.

In layer 3, the ith node calculates the ratio of the ith rule’s firing strength to the

summation of all the rules’ firing strengths:

∑
==
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j

i
ii w

wwO ,3 , i = 1 - 8, j = 1- 16 (3.3)

In layer 4, every node i in this layer is an adaptive node with a mode function

)( 4321,4 iiiiiiiii rxdxcxbxawfwO ++++== (3.4)

where iw is a normalized firing strength from layer 3 and {ai, bi, ci, di} is the consequent

parameter set of this node

In layer 5, the single node computes the overall output as the summation of all incoming
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signals:

Overall output = ∑ ∑
∑==

i i i

i ii
ii

w
fw

fwO 1,5 i = 1 - 8 (3.5)

Fig.Fig.Fig.Fig. 8:8:8:8: Conventional ANFIS Model Structure

From the ANFIS architecture show in Fig 4, we observe that when the values of the

premise parameters are fixed, the overall output can be expressed as a linear combination

of the consequent parameters. In Fig 8, Tavg, the output of layer 5, can be rewritten as
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where i = 1 to 8, which is linear in the consequent parameters ai, bi, ci, and di. In this case,

the hybrid learning algorithm can be applied directly. More specifically, in the forward

pass of the hybrid learning algorithm, node outputs go forward until layer 4 and the

consequent parameters are identified by the least-squares method. In the backward pass,

the error signals propagate backward and the premise parameters are updated by gradient

descent.

3333....2222 LimitationLimitationLimitationLimitation ofofofof ConventionalConventionalConventionalConventionalANFISANFISANFISANFIS ModelModelModelModel

The conventional ANFIS estimator presented a good performance in estimating indoor

temperature [10], but it depends on the quality of the input data group. For example, in

Fig.9, 3000 data pairs in February 2001 in EU CRAFT project [16] were used to train a

conventional ANFIS model, then 7900 data pairs in the same month were used to test

conventional ANFIS estimator. Big gaps between measured data and estimated data can

be observed in Fig. 10. The gaps are caused by the input which are out of the range of

training data around time point 4000 in the graph of Qsol and between the time point 2400

and 3800 in the graph of TO in Fig. 9.

The performance of the conventional ANFIS estimator could be influenced if the input

variables are out of the range of input variables for training. Thus, the limitation of

conventional ANFIS model is in robustness. The reasons which can cause this limitation

in robustness are complex; they might be information lost in activating the linguistic rules

or insensitive input-output data pairs for training or others. There is one reason for this
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limitation lies in consequent parameters identifying; the optimization of consequent

parameters depends on the size of unknown parameter vector θ in Eq. (2.12). The larger

the vector's size is, the more complex calculation work is needed. Therefore, with the

same training data, the smaller size parameter vector will be calculated accurately and

easily.

Fig.Fig.Fig.Fig. 9:9:9:9: Experimental Measured Data in February 2001

Fig.Fig.Fig.Fig. 10:10:10:10: Comparison of Experimental Output and Conventional ANFI Output in
February 2001
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ChapterChapterChapterChapter 4444

DevelopmentDevelopmentDevelopmentDevelopment ofofofof Physical-Physical-Physical-Physical-RRRRuleuleuleule BBBBasedasedasedased
ANFISANFISANFISANFIS PredictionPredictionPredictionPrediction ModelModelModelModel
Considering the disadvantages and limitations of the conventional ANFIS model, a

thermodynamics principles based ANFIS structure is proposed. The aim is to increase the

accuracy of parameters by changing the size of the vector parameters and designing a

physical-rule integrated structure of ANFIS. The detailed design of the structure and the

testing experiments will be presented in this chapter.

4.14.14.14.1 Physical-RulePhysical-RulePhysical-RulePhysical-Rule BasedBasedBasedBasedANFISANFISANFISANFIS SSSStructuretructuretructuretructure DesignDesignDesignDesign

Heat is defined in physics as the transfer of thermal energy across a well-defined

boundary around a thermodynamic system. It is a characteristic of a process and is not

statically contained in matter. In engineering contexts, however, the term heat transfer

has acquired a specific usage, despite its literal redundancy of the characterization of

transfer. In these contexts, heat is taken as synonymous to thermal energy. This usage has

its origin in the historical interpretation of heat as a fluid (caloric) that can be transferred

by various mechanism [46], such as conduction, convection, and radiation. When we are

talking about the indoor air temperature, it depends on the indoor thermal energy which

equals to the sum of the positive energy charging indoor thermal energy and negative

energy which is the energy transfer from indoor to outdoor.

Thus, if we consider these physical rules when we design our ANFIS network structure,

we find that the overall output should be dependent on the negative energy and positive

energy. Based on the definition, the negative and positive energy can be decided by wind,
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humidity, energy consumption, and so on. However, in this study, only TO, Tavg, Qin and

Qsol are considered for research. The negative energy is decided by TO and Tavg, at the

same time, the positive energy is determined by Qin and Qsol. Since each input variable is

characterized by two MFs, the total number of antecedent parameters is 8. The model

contains four rules of first-order surgeon type for either “Positive Energy” or “Negative

Energy”.

Fig.Fig.Fig.Fig.11111:1:1:1: Physical-Rule Based ANFIS Structure
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The physical-rule based ANFIS network structure is separated into two neural rules

which are “Energy In” and “Energy Out”. The inputs Qin and Qsol are used to decide the

“positive energy”. Also, the inputs TO and Tavg’ are grouped into “Negative Energy”.

There are four rules in every neural rule and the outputs of every rule are summarized.

Tavg’ is the delayed indoor temperature which is related with the current difference

between indoor and outdoor environment. Therefore, we design the network structure in

Fig.11.

4.24.24.24.2 DetailedDetailedDetailedDetailed DesignDesignDesignDesign inininin EveryEveryEveryEvery LayerLayerLayerLayer

The first layer of physical-rule based ANFIS structure will be designed in the same way

as conventional ANFIS structure in Chapter 3. They have the same adaptive node

functions:

O’1,i = uA i(x 1) for i = 1,2

O’1,i = uBi-2(x2) for i = 3,4

O’1,i = uCi-4(x3) for i = 5,6

O’1,i = uDi-6(x4) for i = 7,8 (4.1)

To compare the performance of different structures, A, B, C, or D is also set into

triangular membership function in Eq. (3.2). In Fig.11, the upper four nodes and lower

four nodes have already separated into two groups which are “Positive energy” and

“Negative energy” in layer 1.

In layer 2, there are 8 nodes and every four nodes are in the same group. The output of

every node is the product of the corresponding incoming signals i. The connections

between the nodes in layer 1 and layer 2 represent the designed fuzzy rules between Qin

and Qsol and the output represents the firing strength (wi) of a rule. For example, node 1 in
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layer 2 represents a status when both Qin and Qsol are “high” and the output to which the

degree of the antecedent part for this fuzzy rule is satisfied is sent to the next layer for

calculation. However, comparing to the conventional ANFIS structure, the outputs are

only sent to the nodes inside their group as input signals in layer 3.

In layer 3, the ratio of the ith rule’s firing strength to the sum of all rules’ firing strengths

in the group of “Positive Energy” or “Negative Energy” can be presented by
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In layer 4, every node i in this layer is an adaptive node with a mode function

)'''('''' 12111,4 iiiiiii rxbxawfwO ++== i = 1 - 4

or

)'''('''' 24232,4 iiiiiii rxbxawfwO ++== i = 5 - 8 (4.3)

where iw' is a normalized firing strength from layer 3 and {a'i, b'i, c'i, d'i} is the

consequent parameter set of this node

In layer 5, the single node computes the overall output as the summation of all incoming

signals:

Overall output = ∑ ∑
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From the ANFIS architecture in Fig 4, we observe that when the values of the premise

parameters are fixed, the overall output can be expressed as a linear combination of the

consequent parameters. In symbols, the output f in Fig 10 can be rewritten as
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(4.5)

where i = 1 to 4, which is linear in the consequent parameters a'i, b'i, c'i, d'i, r1i', and r2i'.

In this case, the hybrid learning algorithm and least-squares method will be applied to

identify the consequent parameters in layer 4 which uses the same method as

conventional ANFIS model.

The main difference between proposed physical-rule based ANFIS structure and

conventional based ANFIS structure is in layer 1, 2, 3 and 4. Physical-rule based ANFIS

structure simplifies the structure of the conventional ANFIS through dividing the

structure into two parts, which represent "positive energy" and "negative energy"

respectively, thus making the structure have physical sense. In layer 5, the output is the

average indoor temperature determined by the summation of "positive energy" and

"negative energy" in physical sense, which is the summation of the two groups of outputs

in layer 4.

4.4.4.4.3333 CommissioningCommissioningCommissioningCommissioning thethethethe MMMModeodeodeodellll

The proposed physical-rule based ANFIS model is trained by the hybrid learning

algorithm [64]. The suitable values for the parameters are determined in this phase.

The training data are from a laboratory heating system which was monitored in the EU
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CRAFT project [18]. The laboratory located in Milan, Italy is a three story building with

one zone at each floor. Multiple sensors were used to monitor the air temperature in each

zone and their algebraic average was treated as the representative measurement of the

room temperature in that zone. Since each zone has the same floor area, the building air

temperature is represented by the algebraic average of the air in all three zones. 3000

pairs of the experimental data in January 2001 are used as training data. Based on the

analysis method in [8], the training process parameters selected are: SS = 0.01, SSINC =

1.1, SSDEC = 0.9, number of training data pairs = 3000. Fig. 12 shows the training errors

for training process in different models. The physical-rule based ANFIS model has lower

training error than the conventional ANFIS model.

Fig.Fig.Fig.Fig. 11112:2:2:2: Training Errors Obtained by the Physical-Rule Based ANFIS Model and
Conventional ANFIS Model

To make the comparison result reasonable, the comparison between proposed physical-

rule based ANFIS model and conventional ANFIS model need have the same premise.

Table 1 presents the architectures and training parameters for both conventional ANFIS



41

model and proposed physical-rule based ANFIS model. Both of these two models have

same size of training data, same type and number of member functions, same training

algorithm and same number of epochs.

TableTableTableTable 1:1:1:1: Model Architecture and Training Parameters

Parameters Conventional ANFIS

model

Physical-Rule Based

ANFIS model

Number of layers 5 5

Number of inputs 4 4

Size of training data 43000× 43000×

Type of MF Triangle Triangle

Number of MFs 2 2

Number of fuzzy rules 16 8

Training Algorithm Hybrid Learning

Algorithm

Hybrid Learning

Algorithm

Number of epochs 150 150
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ChapterChapterChapterChapter 5555

TestingTestingTestingTesting andandandand DiscussionDiscussionDiscussionDiscussion
In this chapter, the proposed physical-rule based ANFIS model will be evaluated with

accuracy and robustness compared with conventional ANFIS model in air temperature

estimation. The proposed model will be also evaluated by the testing data from different

projects in different countries. The testing results are presented and the improvement in

proposed physical-rule based ANFIS model is analyzed.

5555....1111 TestingTestingTestingTesting thethethethe Physical-RulePhysical-RulePhysical-RulePhysical-Rule BasedBasedBasedBased ModelModelModelModel

The experimental data are obtained from two types of heating systems, monitored under

different research projects. The experimental data of the laboratory heating system was

also from the EU CRAFT project [18]. The data are collected for the months of January,

February, March, April, November and December of the year 2000 and January and

February of the year 2001.

A gas meter was used to monitor the energy consumption e, where

e = [e(1) e(2) . . . e(Ne)] (5.1)

and e (i) [i=1…...Ne] is the total gas consumption recorded at the ith time step. Ne is the

total number of samples.

Therefore, the input Qin is given by

Qin(j) = (e(j+1) – e(j))/ τ∆ (5.2)

where τ∆ is the sample interval. First, an order filter is used to convert Qin(j) obtained
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from equation (4.2) into a continuous signal.

Qin(j) = α Qin(j-1) + (1-α )Qin(j) (5.3)

where α is determined by the heating equipment parameters.

The other two inputs, TO and Qsol, were monitored regularly by a metrological station

next to the laboratory.

The other group of experimental data was obtained for a residential building located in

Markham, Ontario, Canada. The building is a single detached house with three level,

including basement, ground floor and second floor. Each level is divided into zones.

Multiple sensors are used to monitor the air temperature in each zone and their algebraic

average was treated as the representative measurement of the room temperature. It is

assumed that each zone has the same floor area; the building air temperature, Tavg, is

represented by the algebraic average of the air temperature in all zones in all the three

level. The sampling interval is 5 minutes. The time for ON and OFF states of the furnace

is recorded. This data is a discrete signal. First, an order filter is used to convert this

discrete signal into a continuous signal. This continuous signal is multiplied by the

furnace capacity to compute the actual energy consumed by the furnace system, Qin [17].

The exterior temperature is measured with two sensors. TO is represented by the algebraic

average of the two exterior temperature measurements. The third input, Qsol, was

monitored by the metrological station, in the University of Toronto, in Mississauga,

Ontario, Canada. This weather station is operated by the department of geography. CNR1

net radiometer is used for the measurement of net radiation at the earth’s surface [19].

The experiment is conducted from December 2007 to April 2009.

The testing will focus on two parts. The first part is designed to test the improvement of

accuracy and robustness in the physical-rule based ANFIS model. We are going to use
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less data in a certain range of distribution for training and more data in a wider range of

distribution for testing in the same month. Then the groups of data in other months will

be tested with the three performance measures. The experimental data in Canada is also

used to test the physical-rule based ANFIS model.

5.5.5.5.2222 AccuracyAccuracyAccuracyAccuracy ImprovementImprovementImprovementImprovement bybybyby Physical-RulePhysical-RulePhysical-RulePhysical-Rule BasedBasedBasedBased ANFISANFISANFISANFIS

ModelModelModelModel

The physical-rule based ANFIS structure shown in Fig. 11 is simpler than conventional

ANFIS structure in Fig. 8. It has 8 nodes in layer 2 and has less connection between layer

1 and layer 2 and between layer 2 and layer 3. In physical-rule based model, the nodes

are divided into two parts, so that the output of layer 3 depends on ∑
j

jw' which depends

on four variables rather than eight variables in the conventional structure.

The overall output in Eq. (4.5) is linear in the consequent parameters a'i, b'i, c'i, d'i, r'1i

and r'2i, where w'1i and w'2i represent the relational normalized firing strength in the

positive energy group and the negative energy group respectively. Since in the forward

pass of the hybrid learning algorithm, node outputs go forward until layer 4 and the

consequent parameters are identified by the least-squares method [18], The unknown

parameter vector θ is a 124× matrix. However, in conventional model, θ is a 140×

matrix. In the same condition and with the same number of training data pairs, in

physical-rule based structure, there are 24 parameters need to be identified compared

with 40 parameters in conventional structure. Therefore, physical-rule based structure

will have more optimal parameters if the same data is used for training these two

networks, in additional, the physical-rule based model will have better performance in

indoor temperature prediction. In Fig. 13, this has been identified by using 4900 pairs of

data in January 2001 from EU CRAFT project [18] as testing data when 3000 pairs of the

experimental data in January 2001 from the same project was used for training (Table 2).
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TableTableTableTable 2:2:2:2: Training and Checking Data Set for Accuracy

Three performance measures which are mentioned in chapter 1 are used in evaluating the

performance of proposed model and conventional model. They are given mathematically

as follows [19, 20]:

(5.3)

(5.4)

(5.5)

where m is the length of measured data matrix, yi is the measured indoor temperature,

ŷ is the predicted indoor temperature, y is the measured indoor temperature array, and

y is the mean of the measured indoor temperature.

Table 3 gives an evidence of good estimation performance of proposed physical-rule

based ANFIS model compared with conventional ANFIS model.

TableTableTableTable 3:3:3:3: RMES, MRE, and R2 in Different Models (1)

Data length ANFIS model Physical-rule based ANFIS model
Jan. 2001 Jan. 2001

Training points
Testing points
Total points

3000
4900
7900

3000
4900
7900

RMES MRE R2

Physical-rule Based ANFIS model 0.0850 0.0517 0.9679
Conventional ANFIS model 0.2402 0.7071 0.9679
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5.5.5.5.3333 RobustnessRobustnessRobustnessRobustness

Besides accuracy, robustness as another essential feature in estimation models is

discussed in this section. The process of pursuing a robust estimating model is the

process of looking for optimal parameters of the network. Thus, the representative data

need to be used in training data. However, in reality the representative training data may

be hard to collect, due to the limitation in time, space, technique, and so on. In this case,

the limitation discussed in section 3.2 limits the robustness of conventional ANFIS

models in estimating.

The reason of gaps between estimated indoor temperature and measured indoor

temperature is that the estimated network parameters only satisfy the data pairs inside the

range of training data distribution, but does not have a good performance outside the

range of training data distribution. Physical-rule based ANFIS model resolve this problem

by changing the network structure of the conventional ANFIS model. Fig. 14 shows a

good performance in temperature estimating compared with Fig.10.

In conventional ANFIS model, there are 16 rules. For example, a rule can be generated as

follow:

IF TO is “high”, Qsol is “high” and Qin is “high”, THEN Tavg is “low”.

However, when TO, Qsol, Qin are "high" the Tavg would not be "low" in logic, some other

elements, such as humidity or ventilation, may causes Tavg "low". Therefore, if this rule is

used to train the network, the network will not represent a correct relationship between

the collected inputs and the output, and then the robustness of the estimator will be

influenced.

In the physical-rule based ANFIS model, the structure is separated into two parts and the
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relevant inputs are combined under considering physical rules. In this case, the defined

fuzzy rules will be more sensitive and the estimated parameters and weights will be more

general in a wider range, due to the amount of inputs in every rule is reduced and the rule

will be more general.

For example, in physical-rule base ANFIS model, there is a rule:

Rule 1: IF Qsol is "high" and Qin is "high", THEN Tavg = a1'x1 + b1'x2 + r11',

where a1', b1' , and r11' are the consequent parameters in Rule 1.

This rule only has two inputs compared with rules in conventional ANFIS model and it is

more general because it can replace two rules as follow in conventional ANFIS model:

Rule 2: IF Qsol is "high" and Qin is "high" and TO is “high” and Tavg is "high" THEN Tavg

= a1x1 + b1x2 + c1x3 + d1x4 + r1

Rule 3: IF Qsol is "high" and Qin is "high" and TO is “low” and Tavg is "high" THEN Tavg =

a2x1 + b2x2 + c2x3 + d2x4 + r2

Consequent parameters a1, b1, c1, d1, r1 or a2, b2, c2, d2, r2 make Rule 2 and Rule 3 more

specific than the consequent parameters in Rule 1. In Rule 2 and Rule 3, there are two

more inputs which are x3 and x4 compared Rule 1. When Qsol and Qin are "high", Rule 1

represent all the situations not regarding inputs TO and Tavg, however, Rule 2 and Rule 3

represent a more specific situations which consider the inputs TO and Tavg . Therefore,

Rule 1 can be used in more situations and its corresponding consequent parameters are

more robust. Although the training data is in a limited range of distribution, the trained

network also can be used with the data pairs outside the training data range, due to the

robust consequent parameters. In Table 4, the robustness is also measured and physical-

rule based ANFIS model also have a better performance than conventional ANFIS model

in estimation. Thus, the physical-rule based model resolved the problem of robustness in
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conventional ANFIS model.

Fig.Fig.Fig.Fig. 11114:4:4:4: Comparison of Experimental Output and Physical-Rule Based ANFI Output in
February 2001

TableTableTableTable 4:4:4:4: RMES, MRE, and R2 in Different Models (2)

TableTableTableTable 5:5:5:5: Training and Checking Data Set for Robustness

To test the robustness of the physical-rule based model, more testing data has been used

in this thesis. The comparison conducted between physical-rule based ANFIS and

conventional ANFIS is based on training the prediction model with data from the same

RMES MRE R2

Physical-Rule Based ANFIS model 0.0850 0.0517 0.9679

Conventional ANFIS model 0.2402 0.7071 0.9679

Training
Points

Testing Points

Jan. 2001 Feb. 2001 Jan. 2000 Feb. 2000 Mar. 2000 Apr. 2000 Dec. 2000
Data length 7900 7900 7900 7900 7900 7900 7900
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building and during the same time period. For fair comparison, physical-rule based

ANFIS design parameters are optimized in terms of number of training epochs the same

as conventional ANFIS system. This approach is employed to test the robustness of the

models. Six different sections of the experimental data (Table 5) obtained from the

laboratory heating system were selected as different test data sets. The performance

measures RMSE, MRE, and R2 are calculated and tabulated in Table 6 - 8. In Table 6,

physical-rule based model has lower Root Mean Square Error than conventional ANFIS

model, it means the physical-rule based ANFIS model has smaller average error in

predicted values than conventional ANFIS model. Table 7 present that the largest error in

the physical-rule based ANFIS prediction is still smaller than conventional model. It also

show that the values of the physical-rule based ANFIS model's goodness of fit are more

close to 1 compared with conventional ANFIS model in the most cases, which means the

predicted indoor temperature tend to align more accurately along the model curve than

the predict value from the conventional model. Therefore, the results show that the

physical-rule based ANFIS model improved the robustness of conventional model.

TableTableTableTable 6:6:6:6: RMSE in Different Models

TableTableTableTable 7:7:7:7: MMMMRE in Different Models

TableTableTableTable 8:8:8:8: R2 in Different Models

RMSE (C) 2000-01 2000-02 2000-03 2000-04 2000-12 2001-02
Conventional ANFIS model 0.5542 0.23188 0.7092 0.5671 0.5308 0.1229
Physical-rule based ANFIS model 0.0454 0.0305 0.0594 0.0454 0.0456 0.0224

MRE (C) 2000-01 2000-02 2000-03 2000-04 2000-12 2001-02
Conventional ANFIS model 1.1720 1.0492 2.4143 1.7921 1.4698 2.6145
Physical-rule based ANFIS model 0.4880 0.0917 0.5742 0.4881 0.4336 0.1153

R2 (C) 2000-01 2000-02 2000-03 2000-04 2000-12 2001-02
Conventional ANFIS model 1.8505 0.9956 1.1231 1.4301 1.6243 3.6165
Physical-rule based ANFIS model 0.9839 0.9662 0.9910 0.9839 0.9515 0.9723
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5.5.5.5.4444 RegionalRegionalRegionalRegional FeatureFeatureFeatureFeature

From the previous experiments, good performance of physical-rule based ANFIS model

in accuracy and robustness were demonstrated. Since both of the training data and the

testing data are from the same project in Milan, Italy, it is insufficient to prove that the

model is generally applicable in other places with good performance in accuracy and

robustness. In this section, the other data from Canada is used to evaluate the physical-

rule based ANFIS model.

A group of data in Canada from October 2008 to April 2009 is used in identification of

good performance in accuracy and robustness. 1000 pairs of data were used in network

training and the other 1000 pairs of data were used in checking. The estimation

performance can be seen in Fig. 15. From Table 9 it can be seen that the physical-rule

based ANFIS still has a very good performance in different region and different time

periods. Thus, the performance of the proposed physical-rule based model is not limited

to region and time.

TableTableTableTable 9:9:9:9: RMES, MRE, and R2 in Different Models (3)

RMES MRE R2

Physical-Rule based ANFIS model 0.0045 0.0219 0.9426

Conventional ANFIS model 0.0187 0.663 0.9064
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ChapterChapterChapterChapter 6666

AAAApplicationpplicationpplicationpplication ofofofof PPPPhysical-hysical-hysical-hysical-RRRRuleuleuleule BBBBasedasedasedased
ANFISANFISANFISANFIS SensorSensorSensorSensor
ANFIS based control, being a relatively new control technology, employs a prediction

model. The absence of practical methods for estimating average air temperature in a built

environment is filled by an inferential sensor model, based on ANFIS model, in the

conventional heating system controlled by open-loop control technology.

6.16.16.16.1 ConventionalConventionalConventionalConventional HeatHeatHeatHeat ExchangerExchangerExchangerExchanger ControlControlControlControl

The constant set-point controller is used in conventional heat exchanger control; the

supply water temperature set-point is fixed at a constant level specified during

commissioning. This is one of the most commonly used heat exchanger controller

because of its simplicity. However, it cannot be satisfied by using the constant set-point

controller while an adaptive heating load is needed in practice for keeping indoor

temperature to comfortable thermal level.

The adaptive set-point controller controls the heating load to the heat exchanger through

controlling the valve. The required flow rate of hot water from the heat source depends

on required heating load, water temperature in secondary loop, and heating transfer rate

(Fig. 2).

(6.1)

where φ is the heat transfer rate of the heat provide unit, m and Ts are the water flow rate
and temperature at hot-fluid outlet, M and Tss are the hot water flow rate and temperature
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at hot-fluid inlet, and Tsr and Tr are the water temperatures at hot fluid inlet and cold-fluid
inlet.

Two parameters are used to define the performance of the heating systems: overall

performance of the heating system and a measure of the thermal comfort in the zone [19].

A comfort range is defined as Φref = [Tmin, Tmax]. The total energy consumption (E) in

secondary loop is normalized to the total energy supplied to heat exchanger when the set-

point is constant.

100%* / oe E E= (6.2)

A measure of the overall performance of the heating system is given by

(1 )
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+
(6.3)

where wγ is a weighting constant, which determines the importance of thermal comfort in

assessing the overall performance. It should be noted that the larger the value of overall

performance, the higher is the overall performance of the heating system [20].

6.26.26.26.2AdaptiveAdaptiveAdaptiveAdaptive Set-PointSet-PointSet-PointSet-Point HeatHeatHeatHeat ExchangerExchangerExchangerExchanger ControlControlControlControl

The supply water temperature set-point in secondary loop is varied in inverse proportion

to a moving average of the external environment in a certain time interval. However, the

adaptive set-point cannot be varied frequently, due to the profile of the control system.

The temperature set-point changing time point is determined by estimating the time when

instantaneous indoor air temperature equals the average indoor temperature in one day.

The performance of this proposed control scheme strongly depends on the accuracy and

robustness of temperature prediction. The energy cost depends on the accuracy of indoor

temperature prediction and also the robustness will impact control signals to the valve.

Any mistake in distributed heating system may cause energy waste and/or discomfort due

to overheating or underheating. Thus, a robust indoor temperature predictor will provide

more accurate and stable control signals and avoid overshot signals to the set-point



53

control scheme in distributed heating system.

To look for a suitable set-point of supplied water temperature in every interval in the test

period, indoor temperature comfort is considered first, and then, energy efficiency. Liao’s

simplified physical model [17] and the proposed physical-rule based ANFIS model is

used in calculating optimal required energy. This optimal set-point needed to satisfy the

system has the lowest energy cost when the indoor temperature is in the comfortable

range during a certain period. The optimal required heating load is

(6.4)

S.T.

where Qd is the demand heating load, Ta is the indoor air temperature. Since the indoor

temperature can be predicted by proposed physical-rule base ANFIS estimator, the

required heating load can be calculated. Thus, the temperature set-point can be calculated

by

(6.5)

Therefore, the set-point of supplied water temperature

(6.6)

Then, a physical-rule based ANFIS heat exchanger control scheme (illustrated in Fig 15),

which is based on physical-rule based ANFIS estimator, is proposed and its control

process is simulated. The experimental data used to estimate set-point temperature is
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obtained from the laboratory heating system monitored in [18].

In the proposed control scheme, the temperature estimator predicts the optimal set-point

temperature of the hot water in the secondary loop and the time when optimal set-point is

changed. The thermal comfortable range in test period is between 18 C° and 21 C° in the

simulation and indoor air temperature is estimated by using physical-rule based adaptive

neuro-fuzzy based inferential sensor model. In Fig. 16, the supplied hot water

temperature in the secondary loop is also sensed and the corresponding control signals

are generated in heat exchanger operation module, which includes a PID controller, then

the signals are sent to the heat exchanger. In this case, the supplied hot water temperature

can follow the set-point temperature by controlling the flow rate of the hot water from

combined heat and power.
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Fig.Fig.Fig.Fig. 11116:6:6:6: Adaptive Set-Point Heat Exchanger Control Scheme

In this scheme, the set-point changes twice a day at the 7.58th hour and the 18.67th hour

when the indoor air temperature equals to average air temperature of the day. Fig. 17

shows a good performance of adaptive set-point in controlling indoor air temperature in

thermal comfortable range. Comparing to constant set-point control heating, the indoor

air temperature controlled by adaptive set-points satisfy the desired comfortable

temperature range which is between 18 C° and 21 C° .
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Fig.Fig.Fig.Fig. 11117:7:7:7: Thermal Comfort Performances of Two Types of Control

Fig.Fig.Fig.Fig. 11118:8:8:8: Impacts of Heat Exchanger Control

The proposed adaptive set-point heat exchanger control scheme has a very good

performance in maximizing the energy efficiency whilst providing sufficient thermal
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comfort. Also, Liao’s simplified physical model for estimation of air temperature is based

on the same variables. Therefore, the estimated average air temperature by proposed

model can deduce the optimal set-point of supplied hot water temperature in the

secondary loop. Although the heating source of the proposed scheme in this thesis is a

heat exchanger not a boiler, they are both hot-water space heating systems.

The level of thermal comfort is given by the ratio of the time duration, when thermal

comfort (
iTφ ) is non-zero, to the time period (t1-t0) over which the comfort is to be

assessed [7]:

)11(%100 1

001
∫ ⋅⋅

−
−⋅=

t

t Ti dt
tt i

φγ (6.7)

The overall comfort ratio is the value of γi when t1 - t0 cover the entire heating period.

Fig. 18 shows the adaptive set-point temperature control fulfill the indoor thermal

comfort requirement. At the same time, the energy efficiency is also higher than constant

set-point control. The performance of constant set-point controller is far below that of the

adaptive set-point controller, the reasons for the poor performance are as follows:

Once commissioned the set-point is fixed for the entire test period.

• If too high a value of the set-point is selected, more energy will be consumed and

the room temperature is more frequently above the upper level of the desired

range, resulting in lower overall performance

• If too low a value for the set-point is selected, the benefit of lower energy

consumption is at the cost of significant discomfort because the room temperature

is more frequently below the lower level of the desired range. Consequently the

overall performance remains low.
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ChapterChapterChapterChapter 7777

ConclusionConclusionConclusionConclusion andandandand FFFFutureutureutureutureWWWWorkorkorkork

7.17.17.17.1 ConclusionConclusionConclusionConclusion ofofofof thethethethe ThesisThesisThesisThesis WorkWorkWorkWork

This research investigated the design and development of a physical-rule based ANFIS

model for prediction and explored its application in building automation. The advantages

of the physical-rule based ANFIS in inferential control demonstrate that it can improve

the control of the heat exchanger in buildings, reduce energy consumption and improving

the indoor environment quality.

The following conclusions can be drawn based on the research results presented in this

thesis:

In this study, the physical-rule based ANFIS model is proposed and its performance is

compared to conventional ANFIS model in indoor temperature estimating. The proposed

physical-rule ANFIS model can be trained with a small amount of training data and

perform estimation better than conventional ANFIS model.

The physical-rule based ANFIS model was theoretically analyzed in structure

identification and learning algorithms. From the theoretical respect, the size of

parameters vector is reduced in physical-rule based ANFIS model, so that with the same

amount training data, the parameters in the network are more optimal, additionally, both

accuracy and robustness in indoor temperature estimation are improved.

Previous experimental data studies are analyzed to identify the theoretical analysis. After

testing the experimental data, accuracy and robustness studies have been carried out to

investigate the issue of the physical-rule based model performance by using three
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performance measures (RMSE, RMS, and R2). The values of the three performance

measures show the physical-rule based ANFIS model performs better than conventional

ANFIS model in all the experimental tests during different testing periods and regions.

The theoretical analysis of the improvements in accuracy and robustness in physical-rule

based ANFIS model is identified by these experiments.

The physical-rule based ANFIS model was proposed for use in controlling heat

exchangers in district heating systems. An adaptive set-point heat exchanger control

scheme was proposed. Simulation work was conducted and the set-point heat exchanger

control scheme which used the physical-rule based ANFIS model for estimating indoor

temperature had a better performance in keeping a comfortable thermal level and energy

efficiency compared with conventional constant set-point control.

7.27.27.27.2 FutureFutureFutureFutureWorkWorkWorkWork

A number of future research directions naturally grow out of the work reported in this

thesis.

Prototyping: The proposed inferential sensor and inferential control schemes is simulated

on the computer by a certain parameters. However, in practical control systems, there will

be many uncertain elements may influent the control performance. Thus, the developed

control technology should be implemented in hardware prototypes for test in laboratory

and collecting the relevant data to improve our proposed control scheme.

Applicability of the proposed model in other areas: since designing the neuro-fuzzy

networks by physical rules can improve the sensitivity and the robustness of conventional

ANFIS estimation model, the proposed model will be extended to different areas

including building automation, intelligent automobile control, and even in finance or

economics. For example, the structure of the network of the ANFIS model used in
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finance can be designed by using some economic rules to reduce the influence from other

elements.
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AppendixAppendixAppendixAppendix BBBB

NomenclatureNomenclatureNomenclatureNomenclature

yi the measured indoor temperature in layer i

ŷ the predicted indoor temperature

y the measured indoor temperature array

y the mean of the measured indoor temperature

the heating transfer rate of the heat exchanger

the water flow rate at hot-fluid inlet

Ts the temperature at hot-fluid outlet

the hot water flow rate at hot-fluid inlet

Tss the temperature at hot-fluid inlet

Tsr the water temperatures at hot-fluid inlet

Tr the water temperatures at cold-fluid inlet

Φref the indoor comfort range

Tmin, the minimum temperature of indoor comfort range

Tmax the maximum temperature of indoor comfort range
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E the total energy consumption in secondary loop

Eo the normalized to the total energy supplied to heat exchanger

γξd the measure of the overall performance in the heating system

Wγ the weighting constant

A1, A2, B the linguistic values defined by fuzzy sets on certain universe of

discourse

Ol,i the output of the ith node in lay l in conventional ANFIS model

O'l,i the output of the ith node in lay l in physical-rule based ANFIS

model

a, b, c the parameters of triangular-shaped function

Aµ the membership function

Jn the known functions of x

nθ the parameter to be optimized

)(θE the overall error objective function

Tm(i) the heat transfer from the hot water to the radiator shell

Tavg the estimated average air temperature in the building

Tavg' the delayed average air temperature as model input in buildings

x the input to hybrid neuro-fuzzy model

y the output of hybrid neuro-fuzzy model
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iω the firing strength of degree of certainty of ith rule

iω the normalized firing strength of ith rule

ai, bi, ci, di, ri the consequent parameter set of the node in conventional ANFIS

model

a'i, b'i, c'i, d'i, r'1i, r'2i the consequent parameter set of the node in physical-rule based

ANFIS model

e the gas meter was used to monitor the energy consumption

e (i) the total gas consumption recorded at the ith time step

Ne the total number of samples.

τ∆ the sample interval

TO the exterior temperature

Qsol the solar radiation

Qin the energy consumption by the heating plant

fi, f'i the output function of node i in different models

Qd the demand heating load

Ta the indoor air temperature

γi overall comfort ratio
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