
SYNTHESIS OF CLASSICAL AND NON-CLASSICAL

CMOS TRANSISTOR FAULT MODELS MAPPED TO

GATE-LEVEL FOR RECONFIGURABLE

HARDWARE-BASED FAULT INJECTION

By
R aha Abedi

Bachelor o f Electrical Engineering

A m ir Kabir U niversity o f Technology

Tehran, Iran, 2002

A thesis

presented to Ryerson University

in partial fulfillm ent o f the

requirem ents for the degree o f

M aster o f A pplied Science

in the program o f

Electrical and Com puter Engineering

Toronto, Ontario, Canada, 2005

© R aha A bedi 2005

PROPERTY OF
RVERSON im W igfiY UBR

UMI N um ber: E C 5 2 9 9 8

All rights re se rv e d

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a com plete m anuscript

and there are missing pages, th ese will be noted. Also, if unauthorized

copyright material had to be rem oved, a note will indicate the deletion.

UMI
UMI Microform EC52998

Copyright 2008 by ProQ uest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United S ta tes Code.

ProQ uest LLC
789 E ast Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

Title of Thesis: SYNTHESIS OF CLASSICAL AND NON-CLASSICAL

CMOS TRANSISTOR FAULT MODELS MAPPED TO

GATE-LEVEL FOR RECONFIGURABLE

HARDWARE-BASED FAULT INJECTION

Raha Abedi, Master of Applied Science, 2005

Thesis Directed By: Dr. Reza Sedaghat,

Electrical and Computer Engineering Department

One of the main goals of fault injection techniques is to evaluate the fault tolerance of a

design. To have greater confidence in the fault tolerance of a system, an accurate fault model

is essential. While more accurate than gate level, transistor level fault models cannot be

synthesized into FPGA chips. Thus, transistor level faults must be mapped to the gate level to

obtain both accuracy and synthesizability.

Re-synthesizing a large system for fault injection is not cost effective when the number

of faults and system complexity are high. Therefore, the system must be divided into

partitions to reduce the re-synthesis time as faults are injected only into a portion of the

system. However, the module-based partial reconfiguration complexity rises with an increase

in the total number o f partitions in the system. An unbalanced partitioning methodology is

introduced to reduce the total number o f partitions in a system while the size of the partitions

where faults are to be injected remains small enough to achieve an acceptable re-synthesis

time.

IV

Acknowledgment

I w ould like to thank Dr. Sedaghat and OPR-AL lab for their contribution and support.

I w ould like to express m y gratitude to m y parents who have always immensely

encouraged and inspired me. They are m y great teachers in life.

I am grateful to m y husband who guided and helped m e all the way. W ithout his support

this w ork w ould have not been accomplished.

Table of Contents

ABSTRACT.. iii

Table of Contents ..vi

List of Tables..viii

List of Figures.. x

Nomenclature...xii

Chapter 1 Introduction..1

1.1 Accurate Fault M odel...2
1.2 FPGA-based Fault Injection.. 3
1.3 Summary of Contributions... 4
1.4 Thesis Outline... 4

Chapter 2 Fault Modeling.. 6

2.1 Logical Fault Model.. 6
2.2 Logical Fault Types.. 7

2.2.1 Classical Faults.. 7
2.2.2 Non-classical Faults...8

2.3 Transistor level fault model... 9

Chapter 3 Transistor Level to Gate Level Comprehensive Fault Model Mapping..................11

3.1 CMOS Physical Failures and defects...11

3.2 Transistor to Gate Level Fault Mapping...12
3.2.1 Transistor Level Representation o f Primitive Gate Circuits.....................................13

3.3 NORn Complete Fault List Pattern... 14
3.3.1 Input / Output Stuck-at Faults...15
3.3.2 Short Faults...16
3.3.3 Open Faults:... 22

3.4 NANDn Complete Fault List Pattern.. 25
3.5 Inverter Complete Fault List..28
3.6 D-Latch Complete Fault L ist...29

3.6.1 Input / Output Stuck-at Faults.. 30
3.6.2 Short Faults.. 32
3.6.3 Open Faults.. 34

3.7 D Flip-Flop Complete Fault List..35
3.7.1 Input / Output Stuck-at Faults.. 36
3.7.2 Short Faults.. 37

VI

3.7.3 Open F au lts ... 40

Chapter 4 User-Defined VHDL Library o f Transistor Level Faults...41

4.1 VHDL Presentation o f Faulty G ates ...41
4.2 Creating Faulty VHDL Com ponents A utom atically .. 44
4.3 D esigning a User-defined L ib ra ry .. 47

4.3.1 Existing Libraries...47
4.3.2 Library m anagem ent... 47
4.3.3 Aliasing the faulty com ponents to W ORK lib ra ry ...48

Chapter 5 Fault Injection into Circuit VHDL D escrip tion ... 50

5.1 Behavioural Feature o f Hardware Languages.. 51
5.2 Structural Feature o f Hardware L an g u ag es ..51
5.3 Fault Injection in VHDL D escrip tion ...53

Chapter 6 Binary Tree-based Partitioning M ethodology... 56

6.1 Balanced Versus U nbalanced Partitioning...56
6.2 Binary Tree A pproach... 60

6.2.1 Analyzing M erge and Sort A lg o rith m ... 61
6.3 Generating VHDL Full Binary T ree ... 64

Chapter 7 Autom ating the Synthesis Procedure o f M odule-Based Dynam ic Partial

Reconfiguration...67

7.1 Partial R econfiguration...68
7.2 M odular D es ig n ..69

7.2.1 M odular Design Entry and Synthesis P h a se .. 70
7.2.2 M odular Design Im plem entation P hase ...71

7.3 A utom ating the Synthesis Procedure o f M odule-based Fault Injection M ethod 73
7.4 Experim ental R esu lts .. 80

Chapter 8 C onclusion...87

8.1 Research C ontribu tion .. 87
8.2 Future W o rk ...88

A ppendices... 89

A ppendix A: ORn Complete Fault List P a ttern .. 89
A ppendix B: A N D n Fault P attern ... 92
A ppendix C: Buffer Fault l i s t ...95

vu

List of Tables

Table 1 ; A Short between PMOS Drain and Power

Table 2: Short between Two Inputs

Table 3; Short between One Input and One PMOS Drain

Table 4: When A is connected to A (7 < k< n-1 and Ki^ i)

Table 5: When Di (1 < / < n-1) is shorted to Dn

Table 6; h? Open

Table 7; liN Open

Table 8; NANDn Input/Output Stuck-at-faults

Table 9: NANDn Short Faults

Table 10: NANDn Open Faults Categories

Table 11: NANDn Open Faults

Table 12: Inverter Input / Output Stuck-at Faults

Table 13: Inverter Short Faults

Table 14: Inverter Open Faults

Table 15: D-Latch Input / Output Stuck-at Faults

Table 16: Short between Each Node and VCC or the Ground in D-latch

Table 17: D-Latch Short Faults between Two Nodes

Table IS: D-Latch Open Faults

Table 19: Fault Free D Flip-Flop

Table 20: D Flip-Flop Input / Output Stuck-at Faults

Table 21 : D Flip-Flop Short Faults

Table 22: D Flip-Flop Open Faults

Table 23: Total Number of Faults for Each Gate

Table 24: Total Number o f Subroutines

Table 25: S38417 Partition Size

Table 26: ORn Input/Output Stuck-at-faults

Table 27: ORn Short Faults

Vlll

Table 28: ORn Open Faults Categories

Table 29: ORn Open Faults

Table 30: ANDn Input/O utput Stuck-at-faults

Table 31 : A N Dn Short Faults

Table 32: A N D n Open Faults Categories

Table 33: A N D n Open Faults

Table 34: Buffer Input/Output Stuck-at-faults

Table 35: Buffer Shore Faults

Table 36: Buffer Open Faults

IX

List of Figures

Figure 1: DRAM Cell

Figure 2: 2-input NOR (gate-level)

Figure 3: 2-input NOR (transistor-level)

Figure 4; I2 Stuck-at-0 Fault of 3-input NOR

Figure 5: A Short between Z)/and Ground

Figure 6: NORn Transistor Level

Figure 7: Faulty N0R3 Transistor Level

Figure 8: NANDn Transistor Level

Figure 9: CMOS Inverter

Figure 10: T-gate

Figure 11 : CMOS D-Latch

Figure 12; D Flip-Flop

Figure 13: NOR2_Short_Fault Synthesizable VHDL code

Figure 14: NOR2_open_fault synthesizable VHDL code

Figure 15: Perl Program Section for NORn Input stuck-at-1 Fault

Figure 16: ClV.vhd

Figure 17: C17.prj

Figure 18: Half-adder Behavioural Model

Figure 19: Half-adder Structural Model

Figure 20: Faulty AND2 Instantiation

Figure 21: Balanced Partitioning

Figure 22: Balanced Partitioning Graph

Figure 23: Unbalanced Partitioning

Figure 24: Unbalanced Partitioning Graph

Figure 25: Full Binary Tree (Depth level = 4)

Figure 26: The Construction of a Recursion Tree for the Recurrence T(n) = 2T(n/2) + cn

Figure 27: The Flow of Binary Tree Based Partitioning and Modification of the VHDL Code

for Fault Injection

X

Figure 28; M odular Design Entry and Synthesis Flow

Figure 29: Circuit Nam e Assignment

Figure 30: S1238 Step 2

Figure 31: Verifying the Entered Branch Length

Figure 32: V erifying the Entered Branch Characters

Figure 33: M aking a Partition D irectory inside the Circuit D irectory

Figure 34: Copy a Partition VHDL Code to Its D irectory

Figure 35: A n Example o f Fault List for 8123 8

Figure 36: 81238 Circuit D irectory

Figure 37: 81238_Partition LLLL X 8T Script File

Figure 38: 81238_Partition_LLLL D irectory Files

Figure 39: Executing the Script File (xst.scr)

Figure 40: Size o f Circuits

Figure 41: Full Binary Tree Depth Level o f Circuits

Figure 42: Re-synthesis Tim e o f the Faulty Partition

Figure 43: Benchmarks Synthesis Time

Figure 44: 838417 Partition synthesis tim e

Figure 45: Partition Selection o f a Full B inary Tree (Depth level = 9)

Figure 46: Unbalanced V ersus Balanced Partitioning

Figure 47: ORn Transistor Level

Figure 48: A N D n Transistor Level

Figure 49: Buffer Transistor Level

XI

Nomenclature

c Constant

C Clock

Di Drain of the i* CMOS transistor

G Ground

Gt Total number of gates

i, j, k, n Integers

li i*'’ input of a gate

lip Input of the î '’ PMOS transistor

liN Input of the i“' NMOS transistor

nC Not Clock

N Total number of partitions

?i i*'’ partition

Pf Partition with injected faults

Qi i**’ CMOS transistor

Q" State ofQ at timet-1

Si Source of the i*'’ CMOS transistor

S-on S tuck-on

S(?i) Size of the i* partition

Tj T-gate number i

V Logic value

X unknown

Z high impedance

© XOR

V i For all values o f i

<0 11> Zero or One

Y Cost function

XU

Chapter 1

Introduction

As systems becom e m ore complex it becom es increasingly difficult to provide

com prehensive fault testing to determ ine the validity o f a system. Hence, faults can rem ain in

a system and m anifest themselves as errors. Furthermore, faults m ay be introduced into a

hardware system from external sources such as electrom agnetic interference. N ot only can

com ponents w ithin a system fail, no transistor will function forever. These faults can

ultim ately cause a system to fail. The ability o f a system to function in the presence o f faults,

i.e. to becom e fault tolerant, is a rapidly growing area o f research. A fault tolerant system has

the ability to respond gracefully to an unexpected hardware or software failure. The need

for fault tolerant systems is driven by various factors such as extremely high reliability and

availability needs, reduced life-cycle costs, and long-life requirements.

M ost real-tim e systems must function w ith very high availability even under hardware

fault conditions. To design a fault tolerant system m any fault injection techniques to evaluate

the dependability o f the system have been proposed. In all o f these techniques single or

m ultiple faults are intentionally inserted into the system to study the behaviour o f the system

in the presence o f faults.

Physical failures or defects in a circuit may cause faulty circuit behaviour and thus reduce

the fault tolerance rate o f the system. To evaluate the fault tolerance o f a system, an accurate

fault m odel is required. Next, an approach to inject each fault into the system is essential and

finally, an adequate test pattern to determ ine i f the fault has changed the behaviour o f the

circuit. We will focus mainly on defining an accurate fault model and a method of injecting

faults into a system.

1.1 Accurate Fault Model

More accurate fault models are usually defined below the gate level. The major

disadvantage of using a transistor level (low level) fault model is the performanee

degradation of fault simulation, fault emulation and test pattern generation [3]. Therefore,

there is a critical need to map the transistor level fault model onto the gate level without any

performance degradation, while at the same time obtaining an accurate fault model.

For many years the only practical approach has been based on the stuck-at fault model.

However, problems arise in CMOS LSI and VLSI circuits. The stuck at fault model is not

sufficient for systems that require high reliability or high availability such as pacemakers,

ABS (anti-lock braking systems) in automobiles, or air traffic control. There are other types

of physieal failures and defects, i.e. short or open faults that disturb system performance.

There are many studies which model physical failure and defect in CMOS circuits. In

[32, 33, and 34], the main focus is on modeling short faults between a gate and a source of

one CMOS transistor in a circuit. A methodology to obtain a minimal set of faults is

proposed in [35]. This methodology is based upon theoretical basis allowing the

determination of the equivalence and dominance of non-classical CMOS faults, hi [5, 36]

short, open and stuck-at faults are presented for CMOS circuits based on simulation results

and thoroughly cover open and stuck-at faults. However, the fault model they present only

considers short faults for one transistor in the circuit at a time, such as a short between a gate

and a drain o f the same transistor. However, in [3] all the possible short faults are taken into

account in the fault model, including connecting two nodes from different CMOS transistors.

In this research, all shorts that could possibly occur among transistors (e.g. a short

between the gate of one transistor and the drain of another transistor) in the circuit in

addition to all possible stuck-at and open faults are considered. By applying a complete

version of accurate fault models [3, 5] to each gate to generate a complete fault list, it is

revealed that the fault list for each type of primitive gate follows a specific pattern regardless

of its number of inputs. The number of gate inputs can be used to calculate the total number

o f possible faults at the transistor level using general formulas presented in this research.

1.2 FPGA-based Fault Injection

A fter generating a fault model, software sim ulation and hardware em ulation are the main

techniques that researchers follow to inject faults into a system. Fault sim ulation provides a

high degree o f controllability [37, 38] and design m istakes in the fault-tolerant system can be

detected and corrected at a very early stage in the design process [38]. However, the main

drawback related to fault simulation is that it is tim e-consum ing when m any faults have to be

injected in a com plex circuit [39, 16]. For fault em ulation a prototype o f the system is

needed. A n advantage o f prototyping is the possibility to perform “in-system ” emulation

before any manufacturing. Reconfigurable devices such as FPGAs are appropriate to

im plem ent and test the prototype. To cope w ith the tim e limitation imposed by simulations, it

has been proposed to take advantage o f hardware prototyping using FPGA-based hardware

em ulators [40]. Another advantage o f em ulation is to allow the designer to study the actual

behaviour o f the system in the application environment, taking into account real-time

interactions o f various hardware and software com ponents [15].

FPG A -based fault injection has been an area o f increased research. For example, [41, 42]

discuss injecting faults through fault injectors for stuck-at faults and [43] applying a FPGA-

based fault injection m ethod through fault injection chain hardware. A nother method is to

inject faults by using scan-chain hardw are for injecting bit-flip faults into flip-flop o f the

target system [44, 39, and 26]. In [21, 45, and 46] FPGA-based em ulators have been used to

only inject stuck-at faults for test pattern generation purposes without evaluating the fault-

tolerance o f the system. Using run-tim e reconfiguration (RTR) for fault injection is another

approach proposed by [47] to save tim e by reconfiguring only a few resources o f the device.

How ever, because this approach m odifies bitstream s it is not capable o f accessing the drain

o f specific CM OS transistor in the circuit to m ake it an open node or to short it to the others

nodes o f the circuit. This is due to the fact that bitstram s represent the Look Up Table (LUT)

values o f the circuit and not the gate level description. During the synthesis some gates may

be m apped into other gates due to optimization. Therefore, there is no possibility to access

the transistor level description o f those gates to inject faults. The FPG A -based fault injection

into switch-level o f a m odel w hich is in abstraction level between gate level and transistor

level is discussed in [48].

When an emulator is used, the initial VHDL description must be synthesizable. It is

apparent that a transistor level fault model cannot be synthesized into FPGA chips.

Therefore, the fault model mapping from transistor level to gate level has a critical role in our

study for injecting transistor level faults into the FPGA.

In this work, first the transistor fault model is mapped to gate level fault model. Next, a

method is described to inject this fault model into the FPGA by considering the advantages

of module-based dynamic partial reconfiguration.

1.3 Summary of Contributions

This thesis contributes to the following areas:

• Generating a complete fault list of primary gates (NOR, NAND, OR, AND,

Inverter, Buffer, D-Latch, D Flip-Flop).

• Presenting a fault pattern for each type of gate regardless of its number of inputs.

• Extracting a general formula for each type of gate to calculate the total number of

faults according to the gate number of inputs.

• Generating automatically a faulty component library that represents the transistor

level faults at a gate level description.

• Presenting a methodology to partition a high level (e.g. VHDL) description of a

circuit to reduce the synthesis time as well as module-based circuit design

complexity.

• Generating faulty VHDL partitions exhaustively and providing a data base.

• Automate the synthesis process of faulty and fault free partitions based on a

desired fault list and modular design regulations.

1.4 Thesis Outline

The necessity of fault modeling as well as different fault classifications are discussed in

Chapter 2. Chapter 3 presents a complete transistor to gate level fault mapping of primary

gates and their related fault pattern as well as general formulas to calculate the total number

o f faults. Generating and automating a user-defined library based on the fault patterns from

Chapter 3, is described in Chapter 4. In Chapter 5 the behavioural and structural VHDL

description features are discussed and an appropriate approach to inject faults in the VHDL

description o f a circuit is introduced. A m ethodology o f partitioning a system to reduce the

synthesis tim e and system module-based com plexity is discussed in Chapter 6. The

autom ation o f synthesis procedure based on m odular design param eters and experimental

results are presented in Chapter 7. Chapter 8 is dedicated to conclusions and intended future

works.

Chapter 2

Fault Modeling

An instance of an incorrect operation of the system being tested is referred to as an

observed error. Causes of observed errors may be design errors, fabrication errors,

fabrication defects, or physical failures. Design errors can be detected and corrected at an

early stage of the design process by simulating the design. Fabrication defects are not directly

attributable to human error; rather, they result from an imperfect manufacturing process.

Physical failures occur during the lifetime of a system due to component wear-out and/or

environmental factors.

In general. Physical faults do not allow a direct mathematical treatment of testing and

diagnosis. The solution is to deal with logical faults, which are a convenient representation of

the effect o f physical faults on the operation of the system. The basic assumptions regarding

the nature of logical faults are referred to as a fault model [1].

2.1 Logical Fault Model

Logical faults represent the effect of physical faults on the behaviour of the modeled

system. Given a logical fault and model of a system, we should be able in principle to

determine the logic function of the system in the presence of the fault. Thus, fault modeling

is closely related to the type of modeling used for the system.

The advantages of modeling physical faults as logical faults can be described as follows

[1]:

• The problem of fault analysis becomes a logical rather than a physical problem.

• The com plexity is greatly reduced since m any different physical faults may be

m odeled by the same logical fault.

• Some logical fault models are technology-independent in the sense that the same

fault m odel is applicable to m any technologies.

• Tests derived for logical faults m ay be used for physical faults whose effect on

circuit behaviour is not com pletely understood or is too complex to be analyzed.

A logical fault m odel can be defined in different levels o f circuit descriptions. Transistor,

gate, and RTL level o f circuit descriptions, each have their own logical fault models. As

m entioned, these fault m odels are related to the type o f modeling used for the circuit.

2.2 Logical Fault Types

Faults can be categorized into two m ajor groups o f classical and non-classical faults.

2.2.1 C lassical F au lts

The classical faults can be categorized as follows [1 ,2]:

• Single (line) stuck-at fault: The given line has a constant value (0/1)

independent o f the other signal values in the circuit. In m any technologies,

a short between ground or power and a signal line can make the signal

rem ain at a fixed voltage level. The corresponding logical faults consist o f

the signal being stuck at a fixed logic value v (v = 0/1), and is denoted by

stuck-at-v.

• M ultiple stuck fault: Several signal stuck-at faults occur simultaneously.

For a circuit with k lines, i.e., k input signals and input/output elements,

there are 2k single stuck faults, and 3^-1 multiple stuck faults. For a large

com binational circuit w ith m ultiple outputs, almost all m ultiple faults can

be covered by test patterns derived for single faults.

• Bridging fault: Two or m ore normally distinct points (lines) are shorted

together. A short between two signal lines usually creates a new logic

function. The logical fault representing such a short is referred to as a

bridging fault. Input bridging can form a wired logic or voting model.

Input-to-output bridging can introduce feedback or cause oscillation or

latching.

2.2.2 Non-classical Faults

In general, non-classical faults are categorized as follows [2, 3]:

• Pattern-sensitive fault: The presence of a faulty signal depends on signal

values o f nearby points (most common in DRAMs).

0 0 0

0 d b

0 a 0

a = b = 0 d = 0
a = b = l d = 1

Figure 1: DRAM Cell

Coupling fault: Pattern sensitivity between a pair of cells.

Crosspoint fault: A PLA (Programmable Logic A rray inheren tly has a

device (diode or transistor) at every crosspoint in the (AND and OR)

arrays, even if not used. The connection of each diode is programmed to

realize the desired logic. A crosspoint fault can be caused by an extra or

missing device.

Transistor stuck-open fault: Transistor (switch) is always off, not

controllable by gate input. This fault can turn the circuit into a sequential

one. This type of fault is more difficult to test and needs a sequence of at

least 2 tests to detect a single fault. Transistor stuck-open fault is unique to

CMOS circuits.

Transistor stuck-on fault: Transistor (switch) is always on, not controllable

by gate input. This kind of fault can be caused by a permanently

conducting transistor and also occurs in CMOS circuits.

(Line) break (stuck-open) fault: An open wire.

' PLA is an array o f gates having interconnections that can be programmed to perform a specific logical
function.

• (Line stuck) short fault: A short is formed by connecting points not

intended to be connected.

• D elay fault: Propagation (transition) delays along a path (gate) that fall

outside the desired limits are referred to as either path delay faults or gate

delay faults.

• Function conversion fault: Defects inside a CMOS gate may result in an

incorrect function o f the gate. If there is a short between input and output

o f an inverter the gate is no longer inverting. Furthermore, conversion o f

an AND into a NAND, OR into N O R etc. is possible.

• Conditional fault: A conditional fault is defined as a fault which can only

be detected i f one or more conditions are satisfied. Each condition consists

o f a fixed logical value (0 or 1) at a specified mode. This kind o f fault is

defined for CMOS and it is sim ilar to pattern-sensitive fault o f DRAMs.

Stuck-open and stuck-on faults are transistor level faults; stuck-at, bridging, delay

faults are gate level faults; pattem -sensitivity, crosspoint faults are function level

faults.

M ost o f the non-classical faults can be m apped onto classical stuck-at faults [4],

bridging faults and transition faults. The transition fault is based on the assum ption

that a transition at a gate never occurs in a combinational circuit. In a sequential

circuit, transition does not occur within a clock cycle.

2.3 Transistor level fault model

L et’s see how a transistor fault can affect the behaviour o f the circuit. In the presence o f

transistor faults or an interconnection wiring faults circuit will not function correctly. M any

things can go wrong, leading to a variety o f faults. A transistor switch can break so that it is

either perm anently closed or open. A wire in the circuit can be shorted to VCC or to ground,

or it can sim ply be broken. There can be an unwanted connection between two wires. A logic

gate m ay generate a w rong output signal because o f a fault in the circuitry that implements

the gate. CM OS logic circuits present some special problems in terms o f faulty behaviour.

The transistors m ay fail in a perm anently open or shorted (closed) state. M any such failures

m anifest them selves as stuck-at faults. However, some produce entirely different behaviour.

9

For example, transistors that fail in the shorted state may cause a continuous flow of current

from VCC to ground, which can create an intermediate output voltage that may not be

determined as either logie 0 or 1. Transistors failing in the open state may lead to conditions

where the output capacitor retains its charge level because the switch that is supposed to

discharge it is broken. The effect is that a combinational CMOS circuit starts behaving as a

sequential circuit [7].

As CMOS has emerged as an important technology for VLSI, testing of large CMOS

networks has become a crucial issue. The classical stuck-at fault model assumptions are not

sufficient for modeling certain faults that are specific to a CMOS-based VLSI technology.

This applies particularly when systems with a high reliability or high availability such as

space applications are considered. Depending on the teclinology, typical physical defects as

such as CMOS stuck-open faults may not be covered by a stuck test set. Therefore, new fault

models have been introduced at different description levels to increase the accuracy of fault

modeling.

Transistor level fault model is more accurate than gate level fault model. However, its

fault simulation, fault emulation, and test pattern generation are degraded in comparison to

the gate level.

In order to maintain the efficiency resulting from gate level modeling while the accuracy

of the fault model is increased, transistor to gate level fault mapping is required. Next chapter

is directed towards a mapping of classical and non-classical transistor level faults to the gate

level.

10

Chapter 3

Transistor Level to Gate Level Comprehensive Fault

Model Mapping

In order to have greater confidence in the fault tolerance o f a system m ore accurate fault

m odels are needed. A n accurate fault model cannot be attained unless all faults in the

transistor level (low level) are considered thoroughly. However, these transistor-level faults

m ust be m apped onto gate level (higher level) so that the efficiency o f fault simulation, fault

em ulation and test pattern generation on the gate level is not sacrificed. This chapter

considers single physical failures for static CMOS prim itive gates and shows their effects in

the output behaviour in terms o f gate level faults. W e have found a specific fault pattern for

each type o f gate regardless o f its num ber o f inputs is proposed. All kinds o f faults from

stuck-at to short and open faults have been considered in these patterns. A general form ula to

calculate the total num ber o f faults for each type o f gate is extracted from these patterns.

3.1 CMOS Physical Failures and defects

Failures in CMOS circuits can be classified into shorts, opens, and circuit degradation.

Shorts are due to oxide breakdown and metal bridging, and are caused by static discharge and

tim e-dependent defects, while m etallization problems caused by electro-m igration or electro

m echanical corrosion can produce shorts and opens. Degradations include threshold voltage

shifts caused by ionic contamination, surface-charge spreading, and the trapping o f hot

11

electrons in the gate oxide. However, these degradations, if permanent, will consequently be

translated into classical type of faults at the input(s) and/or output(s) [5].

It should be noted that 75 percent of the cases are shorts and opens, while the rest could

be considered unobservable or insignificant [6]. Hence, physical faults of CMOS cells have

been divided into two groups, namely shorts and opens. For example, for any two-input

CMOS gate, the following faults are considered:

1) Short Faults:

• Short between gate and source in both p-channels;

• Short between gate and drain in both p-chaimels;

• Short between source and drain in both p-channels;

• Short between gate and source in both n-channels;

• Short between gate and drain in both n-channels;

• Short between source and drain in both n-channels.

2) Open (Floating) Faults:

• Open gate in both p-channels and n-channels;

• Open source in both p-charmels and n-channels;

• Open drain in both p-charmels and n-channels.

3) Input / Output Stuck-at Faults:

• Input #1 stuck-at-0 or 1;

• Input #2 stuck-at-0 or 1 ;

• Output stuck-at-0 or 1.

However, it should be noted that some faults are redundant, which consequently reduces

the number o f faults.

3.2 Transistor to Gate Level Fault Mapping

The complexity of integrated circuits requires that a practical approach to fault

simulation, fault emulation, and test pattern generation be based on a higher level o f circuit

description. The adequate fault model depends on the desired accuracy for modeling the

actual defects and the complexity of the circuit description. For years the only practical

approach has been based on the classical stuck-at fault model and a gate level description of

12

the circuit. The m ain reason is that fault sim ulators and fault em ulators can handle the gate

level descriptions efficiently and in a tim ely manner. However, the conventional stuck-at

fault assum ptions are not sufficient for m odeling certain faults that are specific to som e VLSI

technology, especially, w hen certain physical failures such as shorts between two nodes or

open nodes occur in CM OS technology [3].

The general idea o f transistor to gate level fault mapping is to com bine the accuracy o f

m odeling faults at the transistor level with the efficiency o f fault sim ulation, em ulation, and

test pattern generation based on gate level description o f the circuit. The starting point in this

research is to consider all the faults that can possibly occur in a transistor level description o f

the standard cell library [3]. The m ain focus o f this study will be on static CM O S library.

In this study N A N D , N O R, AND, OR, Inverter, Buffer, D-lateh and D flip-flop cells are

considered. For each cell the effeet o f each transistor level fault on the gate level fault m odel

is determ ined using the results given in [3, 5]. By applying an accurate fault m odels to each

gate (cell) to generate a com plete fault list in this work, we have found that the fault list for

each type o f prim itive gate follows a specific pattern regardless o f the num ber o f inputs. The

num ber o f gate inputs can be used to calculate the total num ber o f possible faults at the

transistor level using general form ulas which will be described later.

3.2.1 Transistor Level R epresentation o f Prim itive Gate Circuits

The accuracy such as internal nodes values cannot be reached by ju s t considering

a circuit at the gate level. Figure 2 shows a gate level N O R circuit. A t the gate level,

faults can only be injected or diagnosed on input and output pins. There is no way to

access the gate internally to inject m ore faults, nor to observe its fault tolerance or

diagnose the fault after its detection. Therefore, we m ust use the transistor level o f

prim itive gates in order to cover m ore faults and obtain a m ore accurate fault m odel.

F igure 3 shows the 2 -input N O R (NOR2) transistor level circuit.

o

Figure 2: 2-input NOR (gate-level)

13

Injecting a fault in a CMOS gate may result in different output values according

to different input combinations. The relationship between inputs and the faulty output

shows the faulty function of the CMOS gate. For example, if 7/ is shorted to Di the

output o f N 0R 2 gate in Figure 3 will be:

0 =
h f 72 = 0

else

The relationship between inputs and the faulty output will be thoroughly

discussed in following sections for all possible faults in the CMOS gates.

Q s l 2 N Û 4

Figure 3: 2-input NOR (transistor-level)

These relations between inputs and output follow a specific pattern regardless of

gate input numbers for each gate. We will discuss and explain an example o f this

pattern for a NOR gate with n inputs in the next section.

3.3 NORn Complete Fault List Pattern

Figure 6 shows a CMOS NOR gate with n inputs, n is an integer where {n > 2). 7,

symbolizes one of the NOR î*’ input where (l< i < n).

14

liN and Ijp are the inputs o f NM OS and PM OS transistors respectively. They are both

connected to For stuck-at-faults and short faults / , , Ijp and 7,^ function as the same node.

Thus, they ’will be generally labeled as /,. However, in the open fault case, they act as

separate nodes.

The three groups o f faults (stuck-at, short, and open) and their effects on the output o f

N O R n are represented as follows w ith respect to the above assumptions:

3.3.1 Input / O utput Stuck-at Faults

N O R n is faulty i f either 7, or O is stuck-at-0 or 1. W hen 7, is stuck-at-1 it turns its

N M O S on thus, the output is connected to ground and results in low output (O = “0”).

In contrast, w hen 7, is stuck-at-0 it turns its PM OS on and NM OS off. Therefore, the

faulty N O R n gate still acts as a N O R gate but w ithout 7, input. The output is the result

o f N O R (Ii, h li-i, li+n---. In)- Figure 4 illustrates I 2 stuck-at-0 faults. In this case

Q 2 is switched on and Q5 is switched off. Therefore, the output is the result o f N O R

w ith only tw o inputs o f 7/ and I3 (N O R (Ii,l3)).

I f (ji — 2) and one o f the two inputs is stuck-at-0 then the output w ill be the N O R

o f the rem aining non-faulty input w hich acts as an inverter. W hen the output is stuck-

at-0 or 1, it w ill no longer be dependent on inputs.

The total num ber o f input/output stuck-at faults for N O R n gate is (2n+2).

vcc

I' - 4 ^ ^

12 ----

1 3--- c|[c

D,

Q2

Ü2

Q3

Da

— i [~Q< 12— | [~ q 5 13— i r ^

Figure 4 : 12 Stuck-at-0 Fault o f 3-input NOR

15

3.3.2 Short Faults

The many types o f short faults that may occur in a NORn circuit are categorized

as follows:

1) Short between a PMOS drain and ground or power:

As far as output stuck-at-0 and stuck-at-1 are concerned, there is no need to

analyze the Z)„ connection to ground and power due to the similarities in results. For

any i (1 < i < n-1), Di can be shorted to ground or power thus, the total number o f

faults for this category will be 2 (n-1).

If Di is shorted to ground, noted as (D, G), the output O will always be low.

When the circuit is fault free by applying low inputs the output is connected to VCC

through conducting PMOS transistors. Given the presence of a short fault between Z>,

and ground, the output will be connected to ground through the PMOS transistors

located below the node £), and the short between Z), and ground. This will result in a

low value for the output o f this faulty circuit. For the rest of the input combinations,

where at least one input with a high value exists, i.e. at least one NMOS transistor is

conducting; the output is forced to low again. Figure 5 illustrates Dj G fault in

N 0R3 gate. When I2 and I3 are low Q2 and Q3 are switched on and the output is

connected to ground through Q2 , Qs, and Di.

VCC

Di

12 c|[Q2

13 —c|[Q3

Ü2

Ü 3

Figure 5: A Short between D/ and Ground

16

I f Dj is connected to VCC, (D, VCC), the circuit will behave differently w ith

regard to its inputs. W hen all inputs are low (Ij=0, 1<J< n) the output will be high.

A s soon as one o f the inputs, connected to the PM OS transistor located above Di, goes

high it sw itches one N M O S transistor on and the related PM OS transistor off. In this

case, a path is established betw een ground and VCC, through Z),, output and NM OS

transistor. This condition takes the output to an uncertain value betw een 0 volt and

VCC. The output is called stuck-on in this situation [5]. For the rest o f the input

com binations the output will be low while Z), is shorted to VCC. A ll the conditions are

sum m arized in Table 1.

In fact Table 1 shows the output pattern w ith regard to input conditions w hen any

drain o f the n-input N O R gate is shorted to V C C . In Table 1, Ij = 0 V 1< j< n

indicates all inputs from Z/ to Z„ are low. In this case the output is high. Ij = 0 (V i+ l<

j< n) denotes all inputs o f PM OS transistors below the shorted drain (Z),) are low and

(I l II h ||... || li) =1 indieates at least one o f the PM OS transistor inputs above the

shorted drain is high. In this case the output has an unknow n value betw een 0 and

V CC volt (stuck-on).

VCC

Dn+1

Sn+1 Sn+i

Figure 6: NORn Transistor Level

17

Shoi I f lults Input conditions

l i= 0 V l < i < n (means all inputs from 7/ to 1„ are low) 1

lj= 0 (V i + l < j < n)
Di <--> VCC & S-on (Stuck-on)

(I. II b II...11 0 = 1
For all other input combinations 0

Table 1: A Short between PMOS Drain and Power

2) Short between two inputs: (/; h where l < k < n and k i)

Assume /, is shorted to /*. The output is unknown when these two inputs have

opposite values while the rest of the inputs are low. The circuit output can have a high

or low value depending on the input combinations. The faulty output pattern for this

kind of fault is shown in Table 2.

In Table 2, Ij = 0 V (1< j< n and j ^ i, j k) denotes all inputs except /, and 4 are

low and h © Ik =1 indicates /, and 1̂ have different values. In this case the output is

unknown.

The total number of short faults that connect two inputs undesirably can be

computed from equation (3.3.2.1).

{n - l) + (« -2) + ... + (K - (« - l)) = ^ (n - y) (3.3.2.1)
y=!

g h o r t faults Input conditions Faulty output (O)

li < r ^ Ik
(l < k < n and k 7 i)

l i= 0 V 1<1 < n 1
l j= 0 V (l < j < n a n d j 7 i , j y k)
&

li © lk=l
X

For all other input combinations 0

Table 2: Short between Two Inputs

3) Short between one input and one PMOS drain: (7, ^ - ^ D k where 1 < k< n)

The total number o f faults in this category is n^. There are two cases for

determining the output value given this type of fault. The first case occurs when l\ is

18

shorted to a drain o f any PM OS transistor located below it (7, <--> Dk w here i< k< n

). The second case considered is w hen /, is shorted to the drain o f one o f the PM OS

transistors above it (7, Dk where l< k < i- 1).

In the first case the output is equal to 7, i f all the PM OS inputs located below the

Dk are low. Thus, the output is connected to 7, through conducting PMOS transistors

and the short betw een 7, and D k . But even i f one o f the inputs, located below D k , has a

h igh value it turns its related PM OS transistor o ff and NM OS transistor on. Therefore,

the output w ill be low [3]. I f 7, is shorted to D„ the output equals 7, for any inputs

com bination. These are show n in Table 3.

In Table 3, Ij = <0| 1> V 1< j< k points out that PM OS transistor inputs above

Dk can be either high or low and Ij = 0 V k + l< j< n indicates all PM OS transistor

inputs below Dk are low. In this case the output has the exact value o f 7,.

In the second case, the output remains low for all input com binations [Ij. I f all

inputs located below Dk including 7, are low the output, which is connected to 7;

through eonducting PM OS transistors and the short betw een Dk and 7„ will be low. If

one o f these inputs has a high value the path between the output and 7, is

disconnected; the output will be connected to the ground through conducting NM OS

transistors.

S h o r t fa u lts In p u t c o n d it io n s ; F a u lty o u tp u t (O)

li Dk
(i < k < n - I)

Dk is located b e lo w
th e Ij.

l j = < 0 | 1> V] < j < k
&
h = 0 V k + l < j< n

li

F or all other input com b in ation s 0

li D„
(l < i < n) For all input com b in ation s li

li > Dk
(1 < k < i - l)
Dk is loca ted ab ove
the Ij.

For all input com b in ation s 0

Table 3: Short between One Input and One PMOS Drain

19

4) Short between two PMOS drains: (D, ^ - ^ D k where {l<k<n and i))

Another type of short faults occurs when Dj is shorted to another drain. There

will be a difference in the output results if Z), is shorted to D„, considered the same as

the output, or if it is shorted to one of the other PMOS drains.

- If Di is connected to Dk (Z< k< n-1 and Ki^ i):

The output is stuck-on if all inputs, except the inputs between two shorted

drains, are low. If at least one input of any transistor between the two shorted drains

is high, the related NMOS transistor is turned on and a conducting path between VCC

and ground appears. Figure 7 illustrates the short fault between Dj and D2 for N0R3.

By applying (010) as an input vector, Qi, Q3 and Q5 turn on and VCC is connected to

the ground through Qi, D 1D2 , Qs and Q5.

The output will be high if all inputs are low and will be low for all other input

combinations. The output faulty pattern for short between two drains is shown in

Table 4.

In Table 4, Ij = 0 (V 1< j< i and m< j< n (i+l< m <n-l)) denotes all PMOS

transistor inputs except those between A and Dk are low and (F+i || h+ 2 ||...|| Im)=1

shows at least one of the inputs of PMOS transistors between D, and A is high. In this

case the output has an unknown value between 0 and VCC volt (stuck-on).

i^ fbrt faults Input conditions Faulty output (O)

Di Dk
(l < k < n - l ,
1< i < n - l
and k # i)

Ij= 0 V l < J < n 1

I j = 0 (V l < j < i a n d m < j < n (i + l < m < n - l))
&
(li+l II Ii+2 •■■1 0 = 1

S-on (Stuck-on)

For all other input combinations 0

Table 4: When D, is connected to A (1< k< n-1 and i)

- If Di (1 < i< n-I) is shorted to D„ the output will correspond to Table 5.

In this case, the reason behind a stuck-on faulty output is similar to the

explanation of stuck-on for Table 4.

20

Figure 7 illustrates this situation for NOR3 w hen Di is connected to D 3 (n = i) . I f

a (010) input vector is applied, a conducting path from VCC to ground will go through

Qi, D 1D 3 and Qs w hereas w hen a (001) input vector is applied, the conducting path

w ill go through Qi, D 1D 3 and Qs. Thus, the output is stuck-on if the input o f at least

one transistor betw een tw o shorted drains is high.

The total num ber o f faults that short two drains can be com puted from equation

(3.3.2.2).

w—1
(n - 1)+ (n - 2) 4-... + (» - (» - 1)) = (3.3.2.2)

7=1

ÎSM Ë È faults Input conditions f a u l t y d o tp tif (<))'

D i D „
(1 < i < n - l)

l j = 0 V 1< i < n 1

I j = 0 (V l < j < i)
&
(f+ l 11 Ii+2 In)=1

S -on (S tu ck -on)

For all other input com b in ation s 0

Table 5; W hen A (7 < f < n-1) is sh o rted to D„

5) Short betw een one input and the output (/, where(7 < i< n))

This fault was discussed in 3), where inputs are shorted to D „ .

A ll five types o f short faults have been covered in detail. The total num ber o f

short faults from the first to the last category is:

n - I

2 ^ (« — y) - l - + 2« — 2 (3.3.2.3)
7 = 1

2 1

vcc

Û4 I2 — 1 [^ 13-

Figure 7; Faulty NOR3 Transistor Level

3.3.3 Open Faults:

Open faults occur after breaking at least one connection (channel) in the circuit.

The souree of the open state is a logic fault, which prevents the channel from

conducting [5]. Under these circumstances every node in the circuit must be

considered separately, since each node contributes to a different output result in the

fault analysis. For instance, in the case of NORn, /„ and /,/> as well as D„,

D„+i....D2n and O are all separate nodes.

Different types of open faults that can occur in the circuit are classified as

follows:

1) liP (1 < i< n): Open

When liP is open the logical fault type, which represents the Ijp open physical

failure, is equivalent to VCC stuck open. This results in /,p stuck- at - la n d /,-at= /, [5].

When liP is stuck-at-1 the output will be in a tri-state if all inputs are low. In this case

all PMOS transistors except the one with /,p input, which is stuck-at-1, are turned on

and all NMOS transistors are off due to the low input values. The output has neither a

path to VCC nor to ground. This is shown in Table 6.

The total number of faults for Cp open fault is equal to n.

22

O pen faults Input conditions Faulty output (O #
liP ;O pen
(1 < i < n)

li = 0 V l < j < n Z
For all other input com b in ation s 0

T ab le 6: Ijp O pen

2) liM (1 < i <n): Open

The logical fault type o f open fault is identical to /, open fault w hich is sim ilar

to the situation where is stuck-at-0 and Ijp = [5]. In the /,at stuck-at-0 condition,

the output is high im pedance i f all N O Rn inputs except /, are low. In this case, all

PM O S transistors conduct except that w ith input /,. A lthough /, is high, its N M OS

transistor (Qn + i) is o ff since 7,a? is stuck-at-0. Therefore, the output is neither

connected to VCC nor ground. However, if /, and the other inputs have low values the

N O R n output will be connected to the VCC and will go high. This is shown in Table

7.

The total num ber o f faults for 7/# open fault is equal to n.

O pen faults Input conditions Faulty output (O)-!

liN :O pen
(1 < i < n)

Ij = 0 V 1< j < n 1
Ij = 0 (V 1< j < n and j 9̂ 1)
&
Ij=I

Z

F or all other input com b in ation s 0

T ab le 7: I în O pen

3) It {1 < i < n): Open

li open fault acts sim ilar to w hen Cm is stuck-at-0 and Cp = /, [5]. The N O R n

output results for /, open fault is the same as Cm open fault. The total num ber o f faults

in th is case is also n.

4) Di\ Open

A represents a drain belonging to NM OS or PM OS transistors. W hen (1 < i < n \

A is a PM OS drain. The logical fault type A open fault is VCC stuck open, w hich can

be replaced by Cp stuck-at-1, Cn = h fault model. Therefore, the output w ill be the

23

same as /,/> open fault. A is a NMOS drain if {n+1 < i < 2n) and the output result will

be the same as an 7,7 ̂open fault.

The total number of faults in this category is 2n.

5) Si: Open

If (/ = 7) the result of Si open will be the same as 7, ̂open fault and if {n+1 < i<

2n) then 5, open fault behaves like an 7,Ar open fault [5]. The PMOS sources, other

than S], have not been considered since they are the same node as other PMOS drains

which have been taken into account in the previous category.

The total number of faults is 2n+l for source open faults.

6) 0\ Open

A stuck open fault causes the output to be connected neither to power nor to

ground. Therefore, the output is in a tri-state {O = Z). The number of faults in this

category is 7.

All open faults of the NORn gate have been analyzed and the total number o f

open faults from all six categories is 6n+2.

The general formula for the total number of faults for NORn is concluded by

adding the total number of faults from all groups of faults (stuck-at, short, and open):

n -\

2^^{n —j^+ n^+ 10n + 7. (3.3.3.1)
y=i

The patterns and formulas for the total number o f faults for other primary gates

can be calculated in the same manner. The final results for NAND, Inverter, D-latch,

and D flip-flop gates are presented in the following sections. Fault list patterns for

AND and OR gates can be concluded from NOR, NAND, and Inverter. The D flip-

flop fault list can be concluded from the D-latch fault list.

24

3.4 NANDn Complete Fault List Pattern

Figure 7 presents a N A N D n gate. The output pattern in the presence o f faults is presented

in three groups o f faults in Table 8 for I/O stuck-at -fau lts , Table 9 for short faults and Table

10 and Table 11 for open faults.

VCC

lip liP

Dn + 1

l lN

Szn

'HfQîn
Dn + i Dzn 0

Di

41̂ 01
Si

3 i - 1I bi-1
liN i p Q i

— I
Sn-1

InN ---- Qn

S„

Figure 8: N A N D n Transistor Level

Input/output stuck-at^fauIts Faulty output (O)

Ij: stuck-at-0 1
stuck-at- 1 N A N D (I| , I2 ..., In)

O: stuck-at-0 (for any input com b in ation s) 0
O: s tu ck -a t-1 (for any input com b in ation s) 1

Table 8: N A N D n Input/O utput Stuck-at-faults

The m any types o f short faults that m ay occur in a N A N D n circuit are categorized as

follow:

1) Short betw een a N M O S source and ground or pow er

25

2) Short between two inputs

3) Short between one input and one NMOS source

4) Short between two NMOS sources

5) Short between one NMOS source and the output

6) Short between one input and the output

Short faults Input conditions ’ Faulty output (O)

Si <—> G (ground)
(1 < i < n - l)

I i=l V 1< j< n 0

Ij=l (V l < j < i)
&
(Ij+, & Ii+2& ...& In)= 0

S-On

For all other input combinations 1
S i< -^ V C C
(1 < i < n - l)

For any input combination 1

Ij <-A Ik
(l < k <n and k / i)

Ij=l V l < j < n 0

l j=l (V l < j < n a n d j ^ i j 9̂ k)
&

li © I k = l

X

For all other input combinations 1
l i^ ^ S k
(i < k < n - l)

For any input combination 1

I j^ ^ S k
(1 < k < i - l)
(1 < i < n)

Ij=l V l < j < k
&
l j = < 0 | l > V k + l < j<n

li

For all other input combinations 1

Sk
(l < k < n-1
1< i < n-1
and k f i):

I | =l V l < j < n 0

lj= 1 (V 1< j < i and m< j< n (i+ l< m < n -l))
&
(Ii+1& Ii+2&-. -&Im) = 0

S-on

For all other input combinations 1

S i(- - » 0
(1 < i < n - l)

li = l V l < j < n 0

Ij = 1 V (i + l < j < n)
&
(I1& I 2 & . . . & l i) = 0

S-on

For all other input combinations 1

I i < - A O
(1 < i < n)

For any input combination li

Table 9: NANDn Short Faults

26

M any open faults turn out to have a sim ilar logical fault type. Table 10 puts these faults

into logical fault categories and Table 11 shows the output result for each category.

O p e n fa u lts L o g ic a l f a ^ ï ï y p ë i
liP : op en (1 < i < n)

lip: stuck-at-1
Si: o p en (n+1 < i < 2 n)
Dj: op en (n +1 < i < 2 n)
li : op en (1 < i < n)
liN : op en (1 < i < n)

I,n: stuck-at-0Si: op en (I < i < n)
Dj: op en (i = 1)
O: open Z

Table 10: NANDn Open Faults Categories

L ogical fau lt type o f open faults Input conditions Faulty output (O)

lip: stuck-at-1

I j = l V 1< j< n 0

I j =l (V l< j< n and j i)
&
Ij = 0

Z

For all other input com b in ation s 1

I,N: stu ck -at-0 I j = l V l <j <n z
For all other input com b in ation s 1

Z (O:op en) For any input com b in ation z

Table 11: NANDn Open Faults

The general form ula for the total num ber o f faults for N A N D n is:

n - \ n -]

'^ { n —j) + ' ^ { n - k) + + 11« + 1
y=i

(3.4.1)
k=2

The fault list patterns o f O R and AND gates w ith n inputs can easily be concluded from

N O R n and N A N D n. The com plete tables o f patterns for these gates are presented in the

appendices.

Inverter, D -Latch, and D Flip-Flop have a specific num ber o f inputs. Therefore, it is not

appropriate to say they are follow ing a specific fault list pattern due to their num ber o f

inputs. Each has only one com plete fault list which will be presented in Sections 3.6 and 3.7.

27

3.5 Inverter Complete Fault List

The most important CMOS gate is the CMOS inverter. It consists o f only two transistors,

a pair o f one N-type and one P-type transistor.

Figure 9 shows an inverter gate. The output pattern in the presence of faults is presented

in three groups of faults in Table 12 for input / output stuck-at faults. Table 13 for short faults

and Table 14 for open faults. The total number of faults for the inverter is: 13

vcc

Figure 9: CMOS Inverter

Itipiit/output stuck-at fault ' Faulty output (O #
I: stuck-at-0 1
I: stuck-at-1 0

0 : stuck-at-0 0
O: stuck-at-1 1

Table 12: Inverter Input / Output Stuck-at Faults

Bihort faults Faulty output (O)
I

Table 13: Inverter Short Faults

28

Open faults Input conditions Faulty output (O)
O : o p e n For any I Z
Ip: op en

1 = 1 0
1 = 0 z

1̂ : open
1 = 0 1
1 = 1 z

I; op en N /A z
S ,: op en

1 = 1 0
1 = 0 z

S 2: op en
1 = 0 1
1 = 1 z

D i: op en
1 = 1 0
1 = 0 z

D 2: open
1 = 0 1
1 = 1 z

T able 14; Inverter Open Faults

3.6 D-Latch Complete Fault List

In CM OS technology, T-gates allow efficient realizations o f several im portant logical

functions [9]. Such a circuit consisting o f one N-type and one P-type transistor connected in

parallel and controlled by inverted gate voltages is show n in Figure 10. This circuit is defined

as a transm ission gate (T-gate) circuit. If the gate voltage o f the N-type transistor is 'GND'

and the P-type transistor has a gate voltage o f 'V C C , both transistors are non-conducting. O n

the other hand, i f the gate voltage o f the N -type transistor is 'V C C and the gate voltage o f the

P-type transistor is 'GND', both transistors are conducting. I f the source voltage is near VCC,

there is a voltage drop across the N -type transistor but (almost) no voltage drop across the P-

type transistor. I f the source voltage is near GND, the N -type transistor has (almost) no

voltage drop. D ue to the sym m etry o f standard M OS transistors, there is no reason to

differentiate betw een source and drain in a T-gate. The contacts are therefore usually referred

to as 'L' (left) and 'R' (right).

F igure 11 illustrates a D -latch by using only 8 transistors (2 inverters and 2 T-gates) for

cases w here both the clock (C) and the inverted clock (nC) signals are available. I f the

inverted clock is not available, an additional inverter is required to provide the control signal

for the tw o T-gates [9].

29

A standard D-latch can be built from four 2-input NAND gates [8]. Thus, 16 transistors

are needed for one D-latch. However, in this study we consider the D-latch circuit in Figure

11 in order to reduce the number of transistors leading to a lower number of possible faults.

The case o f a faulty inverter has been discussed in previous sections. Here, we assume that:

1. Both the clock and the inverted clock signal are available.

2. All signals are propagated up to the edge of the D-latch cell correctly.

The similar approach to NOR gate is applied to the D-latch to obtain its faulty output in

the presence of a single fault. Later, the results from a D-latch fault list can be used to

determine the fault list of a D flip-flop.

nC

R

Figure 10: T-gate

3.6.1 Input / Output Stuck-at Faults

D, C (Clock), nC (inverted clock), and Q represent the input/output nodes o f the

D-latch in Figure 11. These nodes can be stuck-at-1 or stuck-at-0 leading to a faulty

output. The results are shown in Table 15.

Q' represents the previous state of output Q. When D is a stuck-at-fault, the

output remains in its previous state as long as the clock is low. The output shows a

faulty value for D when the clock goes high. When C and Q are stuck-at-faults the

result o f the faulty output can be easily computed. For example, when C is stuck-at-0

the feedback T-gate (T2) is always conducting so the output remains in its previous

state if nC is high. When nC is low and C is stuck-at-0 Ti gate also conducts,

30

therefore the output has the value o f D. W hen C is stuck-at-1 7y is always conducting

and the value o f D goes directly to the output.

T2 conducts while nC is stuck-at-1. The output rem ains in its previous state i f C

is low . Once C becomes high, the T / gate eonducts and the value o f D goes to the Q.

I f n C is stuck-at-0 gate Tj conducts and the output has the value o f D.

nC

JL
A2

c

À

v c c
nC

Aip

Ai

S i

A in] 82

F2

VCC

Bp
Q1 |— C

Di B

Ü2

Q2
Bn

S 3

Q3

Ds

□ 4

Q4

S 4

Q

Figure 11: CM OS D Latch

#S tu c k a t fa u lt In p u t c o n d it io n s F a u i m m m w #

D: stuck-at-1 C = 0 Q (p rev iou s sta te)
C = I 1

D : stuck-at-0
c = o Q
C = 1 0

C: stuck-at-1 N /A D

C: stuck-at-0
n C = 1 0
nC = 0 D

Q: stuck-at-1 For any D and C 1
Q: stuck-at-0 For any D and C 0

nC: stuck-at-1
C = 1 D
C = 0 O'

nC: stuck-at-0
C = 1 D
c = o

Table 15: D-Latch Input / Output Stuck-at Faults

31

3.6.2 Short Faults

A short fault can occur at the connection of two nodes in a D-latch circuit. In this

category of faults A, A/, A 2, A/p m à Ain are considered one node and are referred to

as A because their behaviour is identical in the presence of short faults. Also, B, Bp,

Bn, DI and D2 are collectively referred to B and finally Fj, F2 and Q are named Q. By

these assumptions there are 6 nodes in the D-latch transistor-level circuit (A C, nC,

Q, A, B). Short faults can be categorized in two groups for the D-latch.

1) Short between each node and VCC or ground

The shorts between D, C, nC or Q and VCC or shorts between D, C, nC or Q and

ground have not been considered here because their stuck-at-1 and stuck-at-0 have

the same effect and they have already been discussed in Section 3.6.1. The results

from connecting A and B to VCC or ground are presented in Table 16.

A and B have direct control over Q without depending on C or D. Therefore,

when they are shorted to VCC or ground they change their output value

independently.

1 S hort faults In pu t con d itions F aulty output fO)
A e A V C C For any C and D

1 ^ G For any C and D 0
B VCC For any C and D 0

1 B G For any C and D 1 1

Table 16: Short between Each Node and VCC or the Ground in D-latch

2) Short between two nodes

There are six nodes in the D-latch circuit D, C, nC, Q, A, B. If these nodes are

connected to each other incorrectly, a faulty output will result. Table 17 shows the

results that can be attained from a D-latch truth table.

A short between D and nC leads to different output states depending on their

value. If D and nC are both low D is passed to the Q through Tj gate. If these two

signals are both high T2 gate conducts and Q remains in its previous state. When D

and nC have opposite values, the value o f the short outcome is unknovm. Therefore,

the output is in an unknown state.

32

A short betw een D and A, B, o r Q passes the value o f D to these nodes

asynchronously.

W hen C is connected to nC, one o f the transistors o f the T / and T2 gates conducts

and the output has the value o f the D constantly. A short between C and Q forces the

output to C value. A connection betw een C and A results in ^ = C for any value o f D.

WTien C is shorted to B, the output is NOT(C) due to an inverter betw een nodes B and

g .

A ny short betw een nC and Q, A, and B forces the value o f nC to one o f these

nodes. W hen node A and B are shorted together one o f the inverters is bypassed and

the output Q is always inverted com pared to a fault free D-latch. The same situation

occurs w hen B is shorted to Q. W hen A is shorted to Q the output behaviour is the

sam e as a fault free circuit.

1 Short faults Input conditions Faulty outhtit (O ii

D C
D = C = 0 , (Z) and C are lo w) Q-
D = C = 1 , (D and C are h igh) D
D = NOT(C) , (D and C h ave op p osite va lu es) X

1 D ^ ^ nC
D = nC = 0 , (£) and nC are both low) D

. D = nC =1 , (D and nC are b oth h igh) Q-
D = NOT (n C) , (D and nC h a v e o p p o site va lu es) X

D <r-^ 0 For any C and Q' D
D A For any C and Q' D
D B For any C and Q NOT (D)
C 4--^ nC For any C , D and Q D

c Q For any D and Q C

C A F or any D C

C B For any D and Q' NOT (C) = nC

n C ^ —¥ Q F or any C , D and Q nC
n C ^ > A For any C , D and Q nC
nC B For any C , D and Q' NOT(nC) = C

A B
C = 1 NOT (D)
C = 0 NOT (Q-)

A Q C = 1 D
C = 0 0

B < r ^ Q
C - 1 NOT (D)
C = 0 NOT (Q-)

Table 17: D-Latch Short Faults between Two Nodes

33

3.6.3 Open Faults

The open fault D causes a tri-state for the output when C is high and the gate Tj

is closed. When C is low the gate T2 is switched on and causes the output to keep its

previous state. Open faults C and nC do not affect the output behaviour since one T-

gate is conducting at a time.

p e n faults Input conditions Faulty output (0)

D :op en
C = 1 Z
c = o Q-

C :open
nC = 0 D
nC = 1 Q-

nC :open
C = 0 Q-
C = 1 D

A; open
C = 1 Z
C - 0 Q-

A,: open For any D, C and Q' z

A 2: open
C = 1 D
C = 0 Z

A,p:open
(C = D = l) | | (C = 0 & Q - = 1)
(C and D both high or C low and (Thigh)

1

(C = I & D = 0) | | (C = O ' = 0) z

AiNiopen (C = D = 1) | | (C = 0 & 0 ' = 1) z
(C = l & D = 0) | | (C = Q - = 0) 0

B : open For any D, C and f f z

Bp: open (C = D = 1)1| (C = 0 & O ' = 1) z
(C = l & D = 0) | l (C = O ' = 0) 0

B n: open
(C = D = l) | l (C = 0 & O ' = I) 1
(C = l & D = 0)|1 (C = Q- = 0) z

F|: open For any D, C and Q' z

F2: open
C = 1 D
C = 0 Z

Q: open For any D, C and Q' Z
S]: open Like A,p: open
D j: open Like A,p: open
S;: open Like A in: open
D;: open Like A |n : open
S3: open Like Bp: open
D 3: open Like Bp: open
S4: open Like B n; open
D 4: open Like B n-' open

Table 18: D-Latch Open Faults

34

O pen fault A has the same effect as open fault D. O pen faults A], B and F/

produce a tri-state output. W hen A 2 or F 2 is opened the output has the value o f D

w hen gate Ty is switched on. The output goes to a tri-state w hen gate Ti is o ff because

the feedback circuit is disconnected. Once A ip is opened the output is high if the input

o f the first inverter (transistors Qj and Q 2) is high. W hile the input o f the first inverter

is low the output goes to a tri-state due to disconnection o f Qj PM OS transistor. The

sam e approach is used w hen ^ /v is opened. In this case Q2 is disconnected and the

low input value o f the first inverter results in a low output. A high input value forced

the output to a tri-state. The same conclusions can be drawn for open faults Bp and

Bm- The total num ber o f faults for the D -latch is 49.

3.7 D Flip-Flop Complete Fault List

A n edge sensitive D flip-flop can be made from two D-latches in m aster and slave m ode

[7]. A lthough som e VLSI libraries indicate alternative configurations, the case study

discussed here considers only this configuration. The same fault analysis can be extended to

a custom D flip-flop library. The fault list for a D flip-flop can be easily concluded from a D-

latch fault list. Figure 12 shows a D flip-flop circuit. In this figure the inverters are shown

w ith gate form ats. The faults related to the inverters have been discussed in the D-latch and

inverter sections. Therefore, in this section we assum e that all o f the inverter gates are fault

free. A ll the faults related to a circuit’s nodes are taken into account in this section.

To consider the edge sensitivity o f a D flip-flop, we divide the circuit into two level

sensitive D -latches. In the presence o f one fault, the output B o f first D-latch (D L l) is first

com puted and then the second D-latch (DL2) output Q is studied. Table 19 illustrates the

result o f the fault free D flip-flop for Figure 12. This approach shows that the D flip-flop

fault list can be determ ined by following the D -latch fault list pattern.

Input conditions F au lt Free Qj Fault Free B
C = 1 O' { previous state) NOT (D)
c = o NOT (B) B‘ (previous state)

Table 19: Fault Free D Flip-Flop

35

DLl DL2

Figure 12: D Flip-Flop

nQ

3.7.1 Input / Output Stuck-at Faults

D, C, nC, Q and nQ are the inputs and outputs of D flip-flop. Table 20 shows the

output results in the presence of a single stuck at fault.

S tu ck-at-fau lt In pu t conditions F au lty B F aulty output (0)

D; stuck-at-1
C = 1 0 Q-
c = o B ‘ NOT(B)

D: stuck-at-0
C = 1 1 Q-
c = o B ‘ NOT(B)

C; stuck-at-1
nC = 0

N O T(D) Q-
nC = 1 NOT(B)

C; stuck-at-0
nC = 0 N O T(D)

NO T(B)
nC = 1 B"

Q: stuck-at-1
C = 1 N O T(D)
C = 0 B" 1

Q; stuck-at-0
C = 1 N O T(D) 0
C = 0 B" 0

nQ; stuck-at-1
C = 1 N O T(D) Q
C = 0 B' NOT(B)

nQ: stuck-at-0
C = 1 N O T(D) Q-
G = 0 B- NOT(B)

nC: stuck-at-1
C = 1 D

NO T(B)
C = 0 B

nC: stuck-at-0
C = 1

N O T(D) Q
C = 0 N O T(B)

Table 20: D Flip-Flop Input / Output Stuck-at Faults

36

3.7.2 Short Faults

To exam ine short faults for a D flip-flop, some nodes are considered as one node

due to their similar behaviour in the presence o f a short fault. Therefore, A, Aj, and A 2

are addressed as A, B, Bj, and B 2 are addressed as B. F represents F, Fj and F 2 . H

represents H, Hj, and H 2 and finally K, K j, and K 2 are addressed as K in short faults

study. Table 21 shows all the possible short faults in a D Flip-Flop.

1 Short faults Input conditions F aulty B Faulty output (0)

A V C C
C = 1

0 Q
c = o I

A <—> G
C = 1

I Q-
c = o 0

E V C C
C = 1 N O T (D) Q
C = 0 0 1

E G C = 1 N O T (D) Q
c = o 1 0

B V C C
C = 1

1 Q
c = o 0

B <—^ G
C = 1

0 Q-
c = o 1

F V C C
C = 1 N O T (D)

0
c = o B

F G
C = 1 N O T (D)

1
c = o B'

H <—> V C C
C = 1 N O T (D)

1
c = o B '

H G
C = 1 N O T (D)

0
c = o B ‘

K V C C
C = 1 N O T (D)

0
c = o B'

K G
C = 1 N O T (D) 1
c = o B

D C
D = C = 0 B' N O T (B)
D = C = 1 D Q
D = N O T (C) X X

D ^ ^ nC
D = nC = 0 D Q
D = nC = 1 B ‘ N O T {B)
D = N O T (n C) X X

D Q
C = 1 N O T (D)

D
C = 0 B

D nQ
C = 1 N O T (D) Q
c = o B N O T (B)

D ^ ^ A
C = I N O T (D) Q-
c = o D

D E
C = 1 N O T (D) Q
c = o D

D B C = 1 D Q

37

c = o NO T(D)

D 4 --» F
C = 1 N O T(D) NO T(D)
c = o B

D H
C = 1 NO T{D) D
c = o B

D K
C = 1 NO T(D) N O T(D)
c = o B

C <r-^ nC For any C, nC N O T(D) N O T(B)

C < - - > Q
C = 1 NO T(D)

C
C = 0 B"

C nQ
C = 1 N O T(D) q
C = 0 B' NOT (B)

C < - - > A
C = 1 NOT(C) Q'
C = 0 c

C < r ^ E C = 1 N O T(D) q-
C = 0 1 0

C < --> B
C = 1 C q-
C = 0 1

C < r-^ F
C = 1 N O T(D)

nC
C = 0 B

C < - ^ H
C = 1 N O T(D)

C
c = o B

C < - - > K
C = 1 N O T(D)

nC
c = o B'

nC ^ > Q
C = 1 N O T(D)

nC
c = o B"

nC <--> nQ
C = 1 NO T(D) q
c = o B NOT (B)

nC A
C = 1

NOT(nC) = C Q-
c = o NO T (B)

nC f —̂ E
C = 1 N O T(D) q-
c = o 0

nC 4—^ B
C = 1

nC q
c = o 0

nC <--> F
C = 1 N O T(D)

c
c = o B"

nC <--> H
C = 1 NO T(D)

nC
c = o B'

nC <--> K
C = 1 N O T(D)

C
c = o B"

Q f - ^ n Q
C = 1 NO T(D) Y 1
c = o B

A 1

A
C = 1 N O T(D) D
c = o B" NOT (B)
C = 1 N O T(D) D
c = o B' NOT (B)

q e ^ B
C = 1 N O T(D)

B 1
C - 0 B"

q e ^ F
C = 1 N O T(D)

B
c = o B

q e -) H
C = 1 N O T(D) q
c = o B ’ NOT (B)

38

Q K C = 1 N O T (D) N O T (Q -)
c = o B' B

nQ A
C = 1 N O T (D) Q
c = o B' N O T (B)

nQ <—> E C = 1 N O T (D) Q
c = o B N O T (B)

nQ <—> B
c - 1 N O T (D) Q-
c = o B N O T (B)

nQ > F
C = 1 N O T (D) Q-
C - 0 B N O T (B)

nQ <—> H
C = 1 N O T (D) Q
c = o B N O T (B)

nQ <—> K
C = 1 N O T (D) Q-
c = o B N O T (B)

A E
C = 1 N O T (D) Q-
c = o B N O T (B)

A B
C = 1 D Q-
c = o N O T (B ') N O T (B)

A F
C = 1 N O T (D) N O T (D)
c = o B ‘ X

A H
C = 1 N O T (D) D
c = o B' N O T (B)

A K
C = 1 N O T (D) N O T (D)
c = o B' X

E B
C = 1 N O T (D) Q-
c = o N O T (B ') B

E F
C = 1 N O T (D) D
c = o B' X

E
C = 1 N O T (D)

N O T (B)c = o B'

E < - - > K
C = 1 N O T (D) D
c = o B' X

B ^ - > F C = 1 N O T (D) N O T (B)c = o B'

B 4 - ^ H
C = 1 N O T (D)

Bc = o B"

B < - ^ K
C = 1 N O T (D) N O T (B)c = o B"

F H
C = 1 N O T (D) N O T (Q -)

c = o B" B

1 F K
C = 1 N O T (D) Q-
c = o B N O T (B)

1 H
C = 1 N O T (D) N O T (Q -)

c = o B B

Table 21: D Flip-Flop Short Faults

39

3.7.3 Open Faults

Oiîefltànlts Input conditions Faulty B
D : open For any C z z
C : open

n C = 1 B‘ NOT(B)
nC = 0 NOT(D) Q-

nC : open
C= 1 NOT(D) Q-
C = 0 B NOT(B)

Q ; open For any C Z Z

nQ ; open
C = 1 NOT(D) Q-
C = 0 B' NOT(B)

A; open
C = 1 Z Q-
c = o B' NOT(B)

I A l: open For any C Z Z

1 A2: open
C = 1 NOT(D) O'
c = o Z NOT(B)

1 E: open C = 1 NOT(D) Q-
c = o Z NOT(B)

1 B: open For any C Z Z
I B l: open For any C z Z

B 2:op en
C = 1 NOT(D) O'
C = 0 Z NOT(B)

1 F: open
C = 1 NOT(D)
c = o B'

z

1 FI: open
C = 1 NOT(D)
c = o B

Z 1

1 F2; open
C = 1 NOT(D) z
c = o B" NOT(B)

H: open
C = 1 NOT(D)
c = o B

Z

H I: open
C = 1 NOT(D) Q-
c = o B" NOT(B)

H2: open
C = 1 NOT(D) I
c = o B ‘

Z 1

K :open
C = 1 NOT(D) Z
c = o B NOT(B)

K l.’open
C = 1 NOT(D)
c = o B

Z

K2: open
C = 1 NOT(D)
c = o B"

Table 22: D Flip-Flop Open Faults

The total number of faults for the D Flip-Flop is 98.

40

Chapter 4

User-Defined VHDL Library of Transistor Level

Faults

In a structural level o f abstraction a system closely corresponds to the actual hardware

and thus can easily be understood and used by a hardware designer. To describe a system at

the structural level, the com ponents o f that system are listed and the interconnections

betw een them are specified. A term often used to describe this form o f description is netlist.

V H D L provides language constructs for concurrent instantiation o f com ponents, the

prim ary constructs for structural specification o f hardware [10].

A com plete transistor m apping to a gate level fault list o f each prim ary gate was

presented in the previous chapter. In the presence o f a fault from a gate fault list, the changes

in gate function lead to a different output. A ll possible gate functions in the presence o f faults

are discussed in C hapter 3. These functions can be presented in VHDL form at describing the

behaviour o f the faulty gates in a synthesizable hardware language.

4.1 VHDL Presentation o f Faulty Gates

Each gate has a specific num ber o f faults which can be calculated from the general

form ula obtained for each type o f gate in Chapter 3. Table 23 shows the results w hen 2 < n <

5. The upper bound for the num ber o f inputs is five due to the fact that the selected

benchm arks used in our case study were restricted to a m axim um o f five inputs.

41

Gate Name Total number of faults

N 0 R 2 28

N 0R 3 47

N 0 R 4 70

N 0 R 5 97

N A N D 2 28

N A ND 3 47

N A N D 4 70

N A N D 5 97

A N D 2 41

AN D3 62

A N D 4 87

AN D5 116

OR2 39

OR3 60

OR4 85

OR5 114

Inverter 13

Buffer 24

D-latch 49

D Flip-Flop 98

Total = 1272

Table 23: Total Number of Faults for Each Gate

The total number of necessary VHDL codes to represent each fault in a gate can be

extracted from Table 23. For example, to represent all possible faults in a N 0R 2 gate, 28

VHDL codes are needed. For instance, a short fault between Di and /; makes the N 0R 2 gate

(Figure 3) behaves differently. The difference of behaviour between a faulty NOR and a fault

free NOR gate can be observed at the output. Thus, the output will be:

42

a i::;
This output can be presented by a synthesizable VHDL code shown in Figure 13:

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY N0R2_short_fault is
port (II, 12 : IN STD_LOGIC;

O : OUT STD_LOGIC);
END NOR2_short_fault;

ARCHITECTURE faulty_inoclule of N0R2_short_fault IS
SIGNAL A: STD_LOGIC;

BEGIN
— II is shorted to 01
A <= 12;
O <= II WHEN A = 'O' ELSE 'O';

END faulty module;

F ig u re 13: N O R 2 _ S h o rt_ F au lt S ynthesizable V H D L code

T he open node, Ijp^ can be an exam ple o f an open fault. In this case the behaviour o f the

faulty output w ill be:

This faulty output is presented by the synthesizable V H D L code in F igure 14.

LIBRARY ieee;
USE ieee.std_logic_1164,all;

ENTITY N0R2_open_fault is
p o r t (II, 12 : IN STD_LOGIC;

0 : OUT STD_LOGIC);
END N0R2_open_fault;

43

ARCHITECTURE faulty_module of N0R2_open_fault IS
SIGNAL A: STD_LOGIC;

BEGIN
-- IIP is open
A <= Il or 12;
0 <= '0' WHEN A = '1' ELSE 'Z ';
END faulty module;

Figure 14: NOR2 open fault synthesizable VHDL code

The above codes can be considered as components in a circuit specified by structural

(gate level) VHDL code. The next section discusses how to automatically create faulty

VHDL components.

4.2 Creating Faulty VHDL Components Automatically

As shown in Table 23, 1272 VHDL codes will be needed to create all faulty components

of primitive gates. It is neither cost-efficient nor error-free to write a large number of VHDL

modules manually especially when modifications may be required. Therefore, the process of

creating faulty VHDL modules must be automated. For this purpose we will use Perl as our

scripting language. In the Perl automated program, the patterns of each gate obtained from

the tables in Chapter 3 are used and the proper VHDL components are generated. In general,

the program runs as follows:

Step 1: Write a FOR loop for changing the number of input, n, from 2 to 5 for a specific

type of gate.

Step 2: Define an array, called @fault_number*. Each member of this array shows the

total number of faults for each group of faults which belongs to one of the rows of fault

pattern tables defined in Chapter 3. For example, the total number of input stuck-at-1 in

NORn is n. Therefore, its related member of the array, $fault_number[i]^, has the value of n.

' An array is defined by @ character in Perl language.
 ̂A scalar is defined by $ character in Perl language.

44

Step 3: W rite a general subroutine, called subroutine entityvhdl, to create a VHDL file in

a desired directory. In this subroutine the entity part o f the VHDL code is written w ith regard

to the value o f n.

Step 4: W rite specific subroutines w hich will represent each row o f fault patterns in the

tables. For exam ple, the subroutine o f input stuck-at-1 in NORn assigns a low value to the

output. These subroutines create the architectural body o f VHDL m odule based on their

related fault patterns.

Table 24 shows the total num ber o f Step 4 subroutines for each type o f gate.

Step 5: W rite a FO R loop for each row o f tables. Num ber o f iteration o f the loop depends

on the value o f $fault_num ber[i] firom Step 2. In this loop, subroutine entityvhdl and one o f

the subroutines o f Step 4 are called and the related VHDL com ponent is created.

Figure 15 shows a section o f the program for input stuck-at-1 in NORn.

for($n=2;$n<6;$n++) FOR loop of step 1
{
$fault_number[0]= $n; # step 2

for($m=l;$m<=$fault_number[0];$m++)

input stuck-at-1
{

&entityvhdl($n,$m); # calling step 3 subroutine

&inputstucklfault ; # calling step 4 subroutine
for input stuck-at-1

}
}

#
Subroutines
#

sub entityvhdl
{
$underline="_F";
$component_name="NOR$n$underline$m";
$file_name= "NOR$n$underline$m.vhd";

$ first part_VHDL_body=" LIBRARY ieee;\n

* Comments are specified with # in Perl

45

' ' USE ieee.std_logic_1164.all;\n\n
ENTITY $component_name is\n port(";

open (FILE, ">$file_name");
print FILE "$first_part_VHDL_body\n";
@inputs= sinputgenerator($n);

print FILE "0inputs : IN STD_LOGIC;\n
0 : OUT STD_LOGIC);\n
END $component_name; \n
ARCHITECTURE faulty of $component_name IS\n

}
#

sub inputgenerator # defining inputs for
{ # entityvhdl subroutine
my @INPUT;
my $x;
for ($x=l; $x<=($n-l); $x++)
{
$INPUT[$x]="I$x, ";

}
$INPUT[$n]= "I$n ";
return @INPUT;

}
#

sub inputstucklfault # step 4 subroutine
{
print FILE "BEGIN \n

— one input is stuck-at-l\n
0 <= '0';\n

END faulty; ";
}

Figure 15: Perl Program Section for NORn Input stuck-at-1 Fault

46

Gate Type
Total num ber o f

Step 4 subroutines

N O R 12

N A N D 14

O R 18

AND 21

D -Latch 41

D Flip-Flop 76

Inverter 8

Buffer 14

Table 24: Total Num ber of Subroutines

4.3 Designing a User-defined Library

Logic fam ilies or group o f components can be categorized according to their physical

characteristic, price, com plexity, usage, or other properties. The VHDL language supports

the use o f design libraries for categorizing com ponent or utilities. In general, libraries are

used for design organization. Specific applications o f libraries include sharing com ponents

betw een designers, grouping com ponents o f standard logic families, and categorizing special

purpose utilities such as subprogram s or types.

4.3.1 E xisting Libraries

Predefined libraries in VHDL are the STD and the W ORK libraries. The STD

library contains all the standard types and utilities and is visible to all designs. The

W O R K library is sim ply a name that refers to the current w orking library. W hen a

V H D L environm ent is created for a user, the keyword W O RK refers to the root

library o f the user. As new libraries are created, the user can designate a new default

library by equating one o f the libraries to the W ORK library [10].

4.3.2 L ibrary m anagem ent

Library m anagem ent tasks, such as the creation or deletion o f a library or aliasing

it to W O RK , are not part o f the VHDL language. These tasks are done outside o f

47

VHDL and depend on the specific tool which, in this research, is the Xilinx ISE CAD

tool. The use of a library, however, is supported by VHDL. The LIBRARY keyword

followed by the name of a library makes it visible to a design. The following

statement is assumed by all designs:

LIBRARY WORK;

4.3.3 Aliasing the faulty components to WORK library

The faulty VHDL components, created automatically with respect to each gate

type pattern, can be added to the WORK library so that it is visible to all circuit

VHDL codes. The components can be added to the WORK library manually by using

GUI format of Xilinx ISE tool or by using ISE command line. The number o f VHDL

components is 1272. Adding all components to WORK library is inefficient. Only

necessary components must be eonsidered. Therefore, based on the cireuit

specification, only some components are added to WORK library. This job can be

done automatically by knowing the component list of each circuit and ISE command

line in Perl language.

For example, we considered the benchmark C l7, a combinatorial circuit. Then

we injected a fault to the code by replacing the NAND2 module by a faulty module

called NAND2_F1 shown in Figure 16. There are only two gates used in this code

therefore, only NAND2.vhd and NAND2_Fl.vhd are added to the WORK library. To

automate this process, Perl program gets two lists: the component list of a specific

circuit and the user fault list. By using these two lists, it opens a new file, called

project files {.prj), and assoeiates all fault free eomponents of the component list and

faulty components of the user fault list to WORK library. When the ISE synthesizer

tool (XST) is synthesizing the circuit VHDL code it will look at all components listed

in the project file and then synthesize them. Figure 17 shows the project file related to

the fault injected benchmark C l7.

48

library IEEE;
use IEEE.std_logic_1164-all;
entity cl7 is

p o r t (PIl, PI2, PI3, PI4, PI5 : in std_logic;
POl, P02 : out std_logic);

end cl7;
architecture STRUCTURE of cl7 is

signal GIO, Gil, G16, G19 : std_logic;
begin
G10_NAND2:NAND2 port m a p (E1=>PI1,E2=>PI3,A=>G10);
// fault is injected in G11_NAND2 gate
G11_1SIAND2 :NAND2_F1 port map (E1=>PI3, E2=>PI 4 , A=> Gil);
G16_NAND2:NAND2 port m a p (E1=>PI2,E2=>G11,A=> G16)
G19_NAND2:NAND2 port m a p (E1=>G11,E2=>PI5,A=> G19)
G22_NAND2:NAND2 port m a p {E1=>G10,E2=>Gl6,A=> POl)
G23_NAND2:NAND2 port map(E1=>G16,E2=>G19, A=> P02)

end STRUCTURE;

Figure 16: C l 7.vhd

vhdl work ../faultycomponent/NAND2.vhd
vhdl work ../faultycomponent/NAND2_Fl.vhd
vhdl work cl7.vhd

Figure 17: C17.prj

Once the related VHDL components are added to WORK library, the user-defined faulty

component library w ill be ready for use. In the next chapter we will discuss how to use the

faulty components in the VHDL codes o f circuits as w ell as the method o f injecting faults.

49

Chapter 5

Fault Injection into Circuit VHDL Description

A circuit can be modeled in several manners according to the desired abstraction level

(e.g. architectural, logic, geometric), to the wanted view (e.g. behavioural, structural,

physical) and to the modeling method being used (e.g. language, diagram, mathematical

model).

In recent years, there has been a trend towards using hardware description languages

(HDLs) for circuit specification. The conciseness of HDL models has made them preferable

to the corresponding flow, state and logic diagram, even though some diagram models are

more powerful in visualizing the circuits’ functions. Circuit specifications shall not be

described in terms of diagrams, because the information that most of them convey can be

expressed in equivalent form by HDL models [11].

VHDL is the VHSIC, i.e. Very High Speed Integrated Circuit, hardware description

language. It can describe the behaviour and structure of electronic systems, but is particularly

suited as a language to describe the structure and behaviour of digital electronic hardware

designs, such as ASICs and FPGAs as well as conventional digital circuits [49].

This chapter will discuss behavioural and structural features of HDL models. It will also

present different approaches of fault injection into both behavioural and structural HDL

models based on their features. In this research we are using a structural VHDL description

of a circuit for injecting faults. One reason is that the structural features of VHDL descriptio"

50

are com patib le w ith our user-defined library introduced in C hapter 4. Section 5.3 w ill discuss

our fault injection approach in m ore detail.

5.1 Behavioural Feature of Hardware Languages

The behavioural description deals w ith the system as i f it were a kind o f “black box” w ith

its inputs and outputs, w ith no regard to its structure. The goal is to ignore the redundant

details and to concentrate on the necessary function specifications.

B ehavioural m odeling for circuits is considered in increasing levels o f com plexity.

Com binational logic circuits can be described by a set o f ports (input / output) and a set o f

equations that relate variables to logic expressions. The declarative paradigm applies best to

com binational circuits, w hich are by definition m em ory-less. Indeed, they can be seen as an

interconnection (i.e. a structure) o f operators, each operator evaluating a logic function.

These m odels d iffer from structural m odels in that there is not a one-to-one correspondence

betw een expressions and logic gates, as a single gate may not exist for some expressions for

im plem entation [11]. F igure 18 shows the half-adder circuit in the V H D L language, using its

behavioural m odeling capability.

Architecture BEHAVIOUR of HALF_ADDER is
Process

Begin
Carry <- (a and b) ;
Sum <= (a xor b) ;

End process;
End BEHAVIOUR;

Figure 18: H alf-adder Behavioural M odel

5.2 Structural Feature o f Hardware Languages

The structural descrip tion defines the way that the system is to be built up. T he focus is

on the blocks and how they interact w ith each other to form a system s structure. The

subsystem s, w hich are to provide its functional execution, are defined som ew here else.

51

Structural languages models describe an interconnection of components. Hence, their

expressive power is similar to that of circuit schematics, even though specific language

constructs can provide more powerful abstractions. Hierarchy is often used to make the

description modular and compact. The basic features of structural languages place them close

to the declarative class, even though some structural languages also have procedural features.

Variables in the language correspond to ports of components [11]. Figure 19 shows the half

adder circuit in the VHDL language, using its structural modeling capability.

Architecture STRUCTURE of HALF_ADDER is

component AND2
Port (x, y: in bit; o: out bit);

End component;

component X0R2
Port (x, y : in bit; o: out bit);

End component;

Begin
Gl: AND2 port map (a, b, carry);
G2: X0R2 port map (a, b, sum) ;

End STRUCTURE;

Figure 19: Half-adder Structural Model

The model contains two declarations of other models, AND2 and X0R2, as well as two

instantiations of the models, called Gl and G2. Additional information on the components

AND2 and X0R2 is provided elsewhere.

In this research the structural VHDL model of some combinational and structural

benchmark circuits are used. A fault can easily be injected into the VHDL description of the

circuit by just replacing one fault free component with a faulty one. All the fault free and

faulty components are declared in a user-defined library which is added to WORK library of

52

the V H D L codes as explained in Chapter 4. A s an exam ple, the G l instantiation in Figure 19

can be replaced by the following;

G l : AND2_F1 port map (a, b, carry);

Figure 20: Faulty A ND 2 Instantiation

The nex t section describes the m ethod o f injecting faults into V H D L description o f a

circu it and a solution w ill be proposed to lim it the synthesis tim e and com plexity along the

way.

5.3 Fault Injection in VHDL Description

D ue to the evolution o f technology, the probability o f faults occurring in the field o f

in tegrated circuits is noticeably increasing. Single Event Effects (SEEs) such as Single Event

U psets (SEU s) or Single Event Latchup, w hich are noticeable sources o f failures in space

applications, w ill becom e obvious sources o f collapses even at the sea level, for the next

generation o f technology. The interest in integrated on-line fault detection m echanism s

and/or fau lt tolerance is therefore rapidly increasing for circuits designed in deep sub-m icron

technologies. Therefore, there is an urgent need to evaluate circuit fault tolerance. A key

issue in designing fault tolerant digital systems is the validation o f the design w ith respect to

the dependability requirem ents.

The final assessm ent o f the circuit including system dependability and reliability is

classically executed after m anufacturing o f the circuits using fault injection on a system

prototype. I f the prelim inary analysis carried out during the circuit design was not com plete,

unacceptable behaviour can be identified only at that stage. The re-work o f the circuit im plies

then very h igh costs and a lot o f wasted tim e. It becom es therefore crucial, especially with

the advent o f system s-on-chip, to perform a thorough analysis o f the failure m odes o f the

circuit as early in the design process as possible and at least before any m anufacturing.

C lassical injection techniques (e.g. pin-level fault injection, m em ory corruption, heavy-ion

injection, pow er supply disturbances, laser fault injection or software fault injection) all

apply on a fabricated circuit and cannot be used in this context [12]. By contrast, som e

53

studies have proven that performing fault injection in high-level models of the circuit can be

a practical approach to an early analysis of faulty behaviours [13,14].

More recently, several researchers proposed the application of fault injection early in the

design process. The main approach consists in injecting the faults in high level descriptions

(most often, VHDL models) of the circuit or system. Delong et al. [18] described, for

example, the injection of faults in behavioural VHDL descriptions of microprocessor-based

systems. The approach uses instruction-level models o f the processors. During simulation

stuck-at faults are injected in the memory or in the processor registers, through a fault

injection controller that is a module added to the initial description of the system. The

injection process relies on specific data types and on the bus resolution functions; such an

approach is therefore difficult to generalize for architectures that do not use tri-state buses.

Another approach presented in [19], and then [13] or [20], is more general and considers

the injection of different types of faults in the VHDL model of a circuit at several abstraction

levels and using various techniques based on the modification of the initial VHDL

description or on the use of simulation primitives. As mentioned in [16], the main drawback

related to the use of simulation is the huge amount of time required to run the experiments

when many faults have to be injected in a complex circuit.

In-system emulation using hardware prototyping on FPGA-based logic emulation

systems has also been proposed to consider the effects of the circuit environment in the

application [15]. Another advantage expected from such emulation is to noticeably reduce

the time needed for the fault injection experiments when compared to simulations [16].

Therefore, based on the discussion above and in Section 5.2, we have considered in this work

fault injection into structural models written in VHDL, and FPGA-based hardware

prototyping for early failure mode analysis of a complex digital circuit.

When an FPGA-based emulator is used, the initial VHDL description must be

synthesizable. In some cases, the approaches developed for fault grading using emulators

(e.g. [21, 22]) may be used to inject faults. However, such approaches are classically limited

to permanent stuck-at fault injection. Several specific approaches have therefore been

recently considered [23-28]. In most cases, modifications are introduced in the circuit

description.

54

In the structural fault injection technique, a fault m odel was provided by replacing one

m odule w ith another. The replacem ent m odule is a predefined or user-defined m odule. Thus,

this fau lt m odel is general enough to cover many other fault m odels w hich affect the

functionality o f m odules. I f the replaced m odule is also synthesizable m odel synthesizability

is no t affeeted [17].

In this w ork the m odules for replacem ent are generated by m apping transistor level faults

into gate level form at. In other w ords, the replacem ent modules are defined at the gate level

user-defined library w ith a synthesizable VHDL form at as show n in C hapter 4. The fault

in jection technique is based on replacing the fault free module in the initial system VHDL

description w ith a faulty m odule from the user-defined library. Exam ples o f this replacem ent

are show n in Figure 16 and Figure 20.

A lthough the transistor level faults are injected in the initial structural V H D L description

o f the system by using faulty m odules, the synthesis tim e is high for m odifying large circuits.

To alleviate th is problem , a large circuit m ust be divided into small partitions. Then one

partition is considered at a tim e w here faults are injected. Therefore, synthesis and

im plem entation tim e is reduced because all partitions are synthesized and im plem ented only

once, w hereas the partition w ith injected faults is re-synthesized and re-im plem ented as many

tim es as there are faults. It should also be noted that the bitstream s o f the fault free partitions

are generated and dow nloaded into FPG A only once. The bitstream o f the faulty partition

m ust be generated and dow nloaded into FPGA several tim es depending on the num ber o f

faults to be injected into the FPGA.

In the nex t chapter w e w ill introduce our m ethod o f partitioning w hich leads to a

reduction in design synthesis tim e and com plexity.

55

Chapter 6

Binary Tree-based Partitioning Methodology

Partitioning is a common method for reducing the design complexity of a system. As

system complexity increases, the timing problem plays an important role in the whole design

process. The goal of partitioning is to divide a complex system into small subsystems subject

to balance constraints while minimizing interconnections among subsystems. Partitioning

optimizations are critical to the synthesis of large-scale VLSI systems.

In this chapter the advantage of using unbalanced partitioning over balanced partitioning

will be discussed. Then, the methodology to apply a full binary tree to perform an

unbalanced partitioning of a circuit VHDL description will be described.

6.1 Balanced Versus Unbalanced Partitioning

A system has a balanced partitioning if all partitions are of nearly equal size, whereas

unbalanced partitioning can be defined as a system with different sized partitions.

The primary focus of this research is to reduce the synthesis time while injecting

different types of faults into FPGAs. To reach this goal the system is divided into small

partitions where faults are injected in the desired locations. Thus, fault free partitions are

synthesized once while the faulty partition is re-synthesized after modifying its structural

VHDL description to inject different faults. Thus, if the faulty partition size is reduced the

total synthesis time for injecting faults into that partition is also reduced.

If, in a balanced partition circuit, N is the total number of partitions and Gt is the total

number of gates in the circuit, the size of each partition S(Pi) is;

56

S(PO = Gt / N W h e re N > 1 and l < i < N (6.1)

G is constant for a specific circuit. Therefore, to reduce the size o f partitions the total

num ber o f partitions N m ust be increased. Figure 21 shows a balanced partitioned circuit

w ith 5 partitions w here faults are injected into P4. Figure 22 shows the graph related to this

type o f partitioning. In this case;

S(Pi) = S(P2) = S(P3) = S(P4) = S(Ps) = G t /5 (6.2)

In th is research w e also focus on m odule-based partial reconfiguration o f FPG A s. Partial

reconfiguration involves defining a distinct portion o f an FPGA design to be reconfigured

w hile the rest o f the device rem ains in active operation. These portions are referred as

reconfigurable m odules. The partial reconfiguration flow utilizes a m odified form o f the

m odular design process [29]. W e w ill expand m ore on this subject in the next chapter. In this

w ork, the reconfigurable m odule is the partition w here faults are to be injected. The low er the

num ber o f m odules, the better the m odule-based partial reconfiguration perform ance w ill be.

The reason is that the com plexity o f the design process will increase due to follow ing factors:

com plexity o f defining bus m acros', having m ore constraints (local and global clock routing),

d ifficult routing caused by the fixed location o f bus m acros, and wasting device resources

w hen sizes o f m odules are small. These factors are further explained in Section 7 .1.

P I P2 P3 P4

. . ■■

P5

Figure 21: Balanced Partitioning

Clearly, w hen using the balanced partitioning m ethod there is a conflict between reducing

synthesis tim e and reducing the num ber o f partitions. The suggested m ethod to solve this

' B u s m a cro s are u se d as f ix e d data paths for sign a l ex ch a n g e b etw een a recon figu rab le m o d u le and other
m o d u les .

57

problem is to divide the system into an unbalanced subsystem by applying full binary tree

methodology which uses the iterative genetic algorithm with minimum ratio cut. This

algorithm will be discussed in Section 6.3.

Subsystems

System

P5P4

Figure 22: Balanced Partitioning Graph

Figure 23 shows an unbalanced partitioning for the total number of 5 partitions. First, the

circuit is divided into two equal partitions. One of these two partitions is called Pj. The other

part is again divided into two equal partitions. This recursive process continues until 5

partitions are obtained. Figure 24 illustrates the graph format of this type of partitioning.

Assume faults are injected into P4 . By applying this method the size of P4 is

considerably smaller than Pj, P2 , and P3 . Therefore, the synthesis time is lower than when all

partitions are of equal size. Pi, P2, P3, and P5 are synthesized once and P4 is re-synthesized

each time after modifying the P4 structural VHDL code.

Figure 24 is a part of a full binary tree graph where each node is half the size of its parent

node. The complete form of a binary tree graph with depth level of 4 is shown in Figure 25.

Faults can be injected into any of the 4‘'’ level partitions. Once one partition in the 4^ level is

selected for fault injection, partitions from the higher levels are selected respectively in order

to constitute an unbalanced partitioning in the system. To improve the module-based partial

reconfiguration performance, fewer partitions are needed. There is no need for the partitioned

system to contain all the 16 small partitions from the 4‘'’ level when faults are to be injected

into only one partition. If we assume partition “LLLR” in Figure 25 is a selected partition in

the 4̂ '’ level for injecting the faults, the other partitions would be “LLLL”, “LLR”, “LR”, and

“R” (shown as gray circles in Figure 25) to create an unbalanced partitioning. In this

approach nodes in the binary tree are selected vertically instead of horizontally.

58

Figure 23; U nbalanced Partitioning

S y stem

PI

P2

P3

P5 P4

Figure 24: U nbalanced Partitioning Graph

The relation between the sizes o f partitions in Figure 25 when faults are injected into

“LLLR” is;

S(R) - 2S(LR) = 4S(LLR) = 8S(LLLL)

S(LLLL) = S(LLLR) (6.3)

If N is the total number o f partitions in an unbalanced partitioning method and G t is the

total number o f gates in the circuit the size o f the smallest partition S(P) is:

(6.4)

59

By comparing (6.1) and (6.4), it can be proven that the size of the smallest partition in the

unbalanced partition is smaller than the size of the balanced partition. Consequently the

synthesis time is less in unbalanced partitioned systems.

System

LL LR

LLR
LLL

LLLL LLLR LLRL LLRR

Level 0

Level 1

Level 2

Level 3

Level 4

Figure 25: Full Binary Tree (Depth level = 4)

6.2 Binary Tree Approach

Binary trees are defined recursively. A binary tree is a structure defined on a finite set of

nodes that either

• contains no nodes, or

• is composed of three disjoint sets of nodes; a root node, a binary tree called its

left subtree, and a binary tree called its right subtree.

The binary tree that contains no node is called the empty tree or null tree, sometimes

denoted NIL. If the left subtree is nonempty, its root is called the left child of the root of the

entire tree. Likewise, the root of a non-null right subtree is the right child of the root o f the

entire tree. If a subtree is the null tree NIL, we say that the child is absent or missing.

If a node in a binary tree has just one child the position of the child- whether it is the left

child or the right child- matters.

60

In a tree that results is a full binary tree, each node is either a leaf or has exactly a degree

o f 2. There are no degree-1 nodes. Consequently, the order o f the children o f a node

preserves the position inform ation [31].

In th is research the full binary tree is generated based on the m erge sort algorithm

features. In o ther w ords every child in the tree has the h a lf size o f its parent and each child

has the sam e size as other children in the sam e level o f depth. The features o f the m erge sort

algorithm and its w orst-case running tim e are discussed in subsection 6.2.1.

6.2.1 A nalyzing M erge and Sort A lgorithm

M any useful algorithm s are recursive in structure. To solve a given problem , they

call them selves recursively one or m ore tim es to deal w ith closely related

subproblem s. These algorithm s typically follow a divide-and-conquer approach. They

break the problem into several subproblem s that are sim ilar to the original problem

bu t sm aller in size, solve the subproblem s recursively, and then com bine these

solutions to create a solution to the original problem.

T he divide-and-conquer paradigm involves three steps at each level o f the

recursion:

• D ivide the problem into a num ber o f subproblem s.

• Conquer the subproblem s by solving them recursively. I f the subproblem

sizes are sm all enough, how ever, ju s t solve the subproblem in a

straightforw ard manner.

• Com bine the solution to the subproblem s into the solution for the original

problem.

The m erge sort algorithm closely follows the divide-and-conquer paradigm .

Intuitively , it operates as follows.

• Divide: Divide the w-element sequence to be sorted into two

subsequences o f n/ 2 elem ents each.

• Conquer: Sort the two subsequences recursively using m erge sort.

• Com bine: M erge the tw o sorted subsequences to produce the sorted

answer.

61 RYERS0K IJ0PAW

When an algorithm contains a recursive call to itself, its running time can often

be described by a recurrence equation or recurrence, which describes the overall

running time of a problem of size n in terms of the running time on smaller inputs.

We can then use mathematical tools to solve the recurrence and provide limits on the

performance of the algorithm.

We reason out as follow to set up the recurrence for the worse-case running time

of merge sort on n numbers, T(n) . Merge sort on just one element takes constant

time. When we have n> 1 elements, we break down the running time as follows.

• Divide: The divide step computes the middle of the subarray, which takes

constant time c.

• Conquer: We recursively solve two subproblems, each of size n/2, which

contributes 2T(n/2) to the running time.

• Combine: The merge procedure on an «-element subarray takes time cn.

Therefore the recurrence for the worst-case running time T(n) of merge sort is:

T{n) = \ ^ ̂ (6.5)
\2T{n l2) + cn i f n > \

Figure 26 shows how we can solve the recurrence (6.7). For convenience to

simplify matters, we assume that n is an exact power of 2. Part (a) of Figure 26 shows

T(n), which in part (b) has been expanded into an equivalent tree representing the

recurrence. The cn term is the root (the cost at the top level of recursion), and the two

subtrees of the root are the two smaller recurrences T(n/2). Part (c) shows this process

carried one step further by expanding T(n/2). The cost for each of the two subnodes at

the second level of recursion is cn/2. We continue expanding each node in the tree by

breaking it into its constituent parts as determined by the recurrence, until the problem

size is reduced to 1, each with a cost of a. Part (d) shows the resulting tree.

Next, we add the costs across each level of the tree. The top level has total cost

cn. In general the level i below the top has 2 ' nodes, each contributing a cost o f c(n/2'

), so that the zth level below the top has total cost 2' c(n/2 ‘) = cn.

62

T(n) en on

T(n/2) T(n/2) cn/2

(a)

T(n/4) T(n/4) T(n/4) T(n/4)

(b) (c)

Ign

on -► on

cn/2 cn/2 cn

cn/4 cn/4 cn/4 cn/4 cn

c c c c c c c c _____^ cn

n

(d)

Figure 26: The Construction of a Recursion Tree for the Recurrence T(n) = 2T(n/2) + cn

63

The total number of levels of the “recursion tree” in Figure 26 \slgn + 1 where

Ign stands for log2n. To compute the total cost represented by the recurrence (6.5), we

simply add up the costs of all the levels. There are Ign +1 levels, each costing cn, for

a total cost of cn (Ign + 1) — cnlgn + cn. Ignoring the low-order term and the constant

c gives the desired result of 0(n* Ign) [31]. Therefore, the complexity of generating a

full binary tree based on the merge sort algorithm is 0 (n*lg n).

6.3 Generating VHDL Full Binary Tree

We note that unbalanced partitions are extracted from a full binary tree. Each parent in

the tree has two equally sized children. In other words, we generate a full binary tree based

on the balanced partitioning method. In this research, we are using the genetic algorithm to

divide each VHDL code of the parent node into two equally sized VHDL codes.

The initial VHDL code is divided into two balanced partitions, “L'.vhd” and “R^.vhd” to

create a binary tree. Each of these two VHDL codes is again divided into two balanced

partitions which result in “LL.vhd”, “LR.vhd”, “RL.vhd”, and “RR.vhd”. This process

continues until the proper depth level is reached.

The depth level of the binary tree depends on the size of the partition and the limit for the

cutset size between this partition and the others. The proper partition size, which depends on

the application, results in an acceptable synthesis time. The cutset size limit depends on the

type of FPGAs since the reconfigurable module (the faulty partition) in the module-based

partial reconfiguration communicates with other fixed modules by using a special bus macro.

Bus macros are used as fixed data paths for signals going between a reconfigurable module

and another module. Each bus macro provides 4 bits of inter-module communication signals.

As many bus macros as needed must be instantiated to match the number of bits traversing

the boundaries of the reconfigurable module [29]. However, there is an upper boundary limit

for the number of bus macros in each type of FPGA. This boundary limits the cutset size of

the partition circuit. If the cutset size of the reconfigurable module is more than the

maximum number of bus macros of the specific device, the tree must go through deeper

levels. For example, the maximum number of bus macros for XC2V1000 is 160 signals.

' L stands for left child
 ̂R stands for right child

64

A s previously m entioned, the G enetic algorithm is used in this w ork in an attem pt to

d ivide a V H D L code into tw o balanced partitions. The evolutionary com putational approach

(som etim es called a genetic algorithm) represents the circuit as a chromosome. In a

chrom osom e, each node is given a fixed index in an integer array; and the value at each index

determ ines w hich partition a node belongs to. For example, i f we w ished to place each circuit

node in either Partition 0 or Partition 1, then the entire circuit configuration could be

represented as a string o f ones and zeros called chromosomes.

A unique chrom osom e exists for every possible circuit configuration in the solution

space. E ach chrom osom e has a weight that is determ ined by the size o f the cutset and how

balanced the circuit is. The best solution will have the lowest weight. In a circuit w ith 10

m illion nodes, the size o f the solution space would be chrom osom es. U nfortunately,

finding the best solution to such a problem w ould take years even by using the fastest

com puters o f today. For this reason we do not concern ourselves w ith trying to find the best

solutions, bu t rather a good solution that is considered acceptable.

In order to solve the problem , an iterative approach is used. A series o f techniques called

genetic m utation and genetic crossover are applied to the chrom osom es for each iteration,

resulting in new offspring chrom osom es. The best chrom osom es are repeatedly m ated and

evolved until a solution w ith acceptable param eters is declared the winner. One o f the

param eters in this w ork is to approach to the m inim um ratio cut. M inim um ratio cut seeks the

partition such that (cost (A,B) / |A |.|B|) is m inim ized w here A and B are two disjoint

partitions [30]. The (cost (A,B) / |A |.|B |) is m inim ized w hen A and B have an equal size. The

w inner w ill determ ine w hat the final circuit configuration will look like, including in w hich

partition each node will be contained.

T he partitioning program is im plem ented by getting a VHDL file which describes the

structural configuration o f the circuit. This configuration is converted into a directed

hypergraph, and from there into a cliromosome. A fter the w inning chrom osom e is

determ ined, it is used to construct a V H D L representation o f the resulting partitioned circuit.

The structural V H D L codes based on full binary tree are generated and saved once for

each circuit and the result can be used several tim es based on the unbalanced partition

selections. F igure 27 shows the flow o f the partitioning structural V H D L code.

65

Structural VH DL code

Converted back into
structural VH DL codes

Binary tree partitioning
using Genetic algorithm

Converted into directed
hypergraph representation

Faults are injected in the
VH DL codes o f last

branches (exhaustively)

Figure 27: The Flow of Binary Tree Based Partitioning and Modification of the VHDL
Code for Fault Injection

After generating the full binary tree of partitioned structural VHDL codes, the structural

VHDL codes of the last branches must be modified for faults injection based on the transistor

to gate level library modules. The process of modifying the VHDL code to inject faults is

done exhaustively, i.e. all possible faults in the library that can occur on each partition are

injected into their respective VHDL codes one at a time (single fault) and then faulty VHDL

codes are saved in a database. Based on the partition selection and the user fault list, relative

faulty and fault free structural VHDL codes from the database can be synthesized and

injected into the FPGA. The fault list might include either all possible faults that can occur in

a selected partition from the last branches or specific faults.

The next chapter will describe how to use the VHDL code database to automate the

synthesis procedure according to the partition selection and the user fault list.

6 6

Chapter 7

Automating the Synthesis Procedure of Module-

Based Dynamic Partial Reconfiguration

FPG A s are extensively employed today for rapid system prototyping and in countless

finished products. The m ain feature o f FPGAs is their ability to change the system ’s

hardw are structure in the field, a process known as reconfiguration. Device reconfiguration

enables the increm ental development o f systems, the correction o f design errors after

im plem entation, real tim e fault injections, and the addition o f new hardware functions.

System s built w ith FPGAs can be reconfigured either statically or dynamically. A static

reconfigurable system m ust be completely reconfigured each time any change o f the

hardware is required. In this case, system execution stops during reconfiguration. A dynamic

reconfigurable system (DRS) allows parts o f the system, referred to as reconfigurable

m odules, be m odified, while the rest o f the system continues to operate [50]. In this research

the intent is to apply dynam ic partial reconfiguration for fault injection into a portion o f a

circuit. Therefore, certain portions o f the device can be reconfigured while the rest o f the

deviee rem ains operational. These portions are referred to as reconfigurable modules.

Styles and features o f partial reconfiguration will be discussed as well as the method o f

applying m odule-based partial reconfiguration for fault injection into FPGA. In addition, a

presentation o f the autom ated process o f synthesizing system VHDL codes for the partial

reconfiguration o f FPGAs w ill follow.

67

7.1 Partial Reconfiguration

By definition partial reconfiguration or local run-time reconfiguration is a form of

reconfiguration which allows that only a portion of a system (e.g. DR FPGA device) to be

reconfigured. A partial reconfiguration can be non-disruptive, i.e. the portions of the system,

which are not being reconfigured remain fully operational during the entire reconfiguration

cycle or disruptive, i.e. partial reconfiguration affects other portions of the system - typically

need for a clock hold. Non-disruptive partial reconfiguration is often shorted to partial

reconfiguration, as this form is more practical and common in today's DR FPGAs [51].

One of the features of partially reconfigured FPGAs is that the size o f the bitstream is

proportional to the size of the reconfigured resources. Thus, as the size of the bitstream

decreases, the speed of the reconfiguration increases. This feature further clarifies why, in

Chapter 6, we have concentrated on the unbalanced partitioning methodology to reduce the

size o f the fault injected partition as much as possible. This partition has to be reconfigured

each time after injecting a new fault. Therefore, its size has an important impact on the speed

of fault injection.

There are two main styles of partial reconfiguration; module-based and difference-based.

The difference-based method of partial reconfiguration is accomplished by making a small

change to a design, and then generating a bitstream based only on the differences between the

two designs. This method is undesirable for injecting faults into a large circuit because after a

small change in the initial structural VHDL code the whole circuit has to be re-synthesized,

which is time-consuming. The module-based method is based on dividing a design into

modules and reconfiguring only a few modules while the rest o f the design remains in active

operation.

The height of an FPGA is predefined. In this method, the reconfigurable module height is

always the full height of the device and its width ranges from a minimum of four slices to a

maximum of the full-device width [29]. Thus, if a partition of a circuit assigned to a

reconfigurable module does not fill the entire module predefined space the device resources

will be wasted. Dividing the system into small partitions can also be a waste of resources.

6 8

To help m inim izing problems related to design complexity, the number o f modules

should be m inim ized, so that less bus macros are defined, leading to a more optimized

routing. The reason is that as the location o f the bus macros are fixed, if a signal traversing

the reconfigurable module to the other modules is not near the location o f the bus macros the

com plexity o f routing will increase.

This m ethod is well-matched to our work because only the partition where faults are

injected is reconfigured. It has to be mentioned that due to unbalanced partitioning the

m odule sizes are not equal. This means there will not be many small partitions, and thus we

will avoid w asting the device resources. M odule-based partial reconfiguration flow is based

on the m odular design methodology. Consequently, in order to clarify the module-based

partial reconfiguration this methodology will be studied.

7.2 M odular Design

M odular design provides a divide-and-conquer implementation approach to m ulti-million

gate FPG A designs available. Partitioning a design into smaller functional modules reduces

the com plexities o f design, implementation and verification. These smaller modules can then

be brought through the design flow independently. Once completed, a m odule’s

im plem entation is preserved, guaranteeing the timing in the finished device. In other words,

the basic idea underlying modular design is to organize a complex system (such as a large

program or an electronic circuit) as a set o f distinct components that can be developed

independently and then plugged together.

M odular design requires up-front planning to ensure that the design is partitioned

properly. It also requires ensuring that partitions work together during the final assembly

phase.

This breakthrough technology is employed in this research to utilize partitioned VHDL

codes from the database in Chapter 6 as a design entry, synthesize them and generate proper

bitstream s for injection into the FPGA.

The M odular D esign flow consists o f the following phases:

69

7.2.1 Modular Design Entry and Synthesis Phase

In this phase the module designs using HDL are created and synthesized

individually. In this research the VHDL code of each module can be obtained from

the full binary tree database explained in Chapter 6. Then the related VHDL code

from the database must be synthesized. During synthesis, behavioural information in

the HDL file is translated into a structural netlist and the design is optimized for a

Xilinx device.

A state of the art synthesis engine is required to produce highly optimized results

with a fast compilation and quick turnaround time. To meet this requirement, the

synthesis engine needs to be tightly integrated with the physical implementation tool

and have the ability to proactively meet the design timing requirements by driving the

placement within the physical device. In addition, cross probing between the physical

design report and the HDL design code will further enhance the turnaround time [52].

Our experimental device in this project is Xilinx Virtexll (XC2V1000).

To synthesize the VHDL codes we can use either Xilinx-supported third-party

tools, which produce a design file in third-party netlist formats, the Xilinx synthesis

tool, or Xilinx Synthesis Technology (XST) that produces a netlist in NGC format. In

this work the XST synthesis engine is chosen. The reason is that XST progresses in

each release, improving clock frequencies and decreasing area, as well as reducing

run time and memory utilization. XST has been tuned to Virtex architectures,

inferring many of the architecture's specific primitives. Users have extensive control

over inference capabilities and optimization techniques via global options and local

attributes. Xilinx estimates the current language support covers at least 95% of the

constructs supported by other synthesis tools. Many of the unsupported constructs are

infrequently used and/or have simple work-arounds. Also, many of these constructs

are not handled consistently by each synthesis tool. One tool may accept a construct

in one way, another in a different way, and a third may flag a parsing error. In some

situations, XST is actually more precise than other tools, requiring exact, complete

descriptions when others allow incomplete or vague code. These are very common

issues when moving code from one synthesis tool to another [53].

70

For our purpose, XST reads the entry file in VHDL format and creates an NGC

file. N G C file is a netlist that contains both logical design date and constraints and

can be read directly by NGDBuild. Figure 28 illustrates modular design entry and

synthesis flow.

VHDL
Synthesis
Libraries

NGC
(XST netlist)

Circuits
VHDL

Database

Synthesis (XST)

Figure 28: M odular Design Entry and Synthesis Flow

7.2.2 M odular Design Implementation Phase

M odular design implementation includes the three phases described below. After

the final phase is complete, the implemented design can be used to generate a

bitstream [54].

1. Initial budgeting phase: In this phase, the top level logic for the design is

positioned. Properly positioning the logic in this phase is critical.

Repositioning top-level logic later in the design process requires rerunning

each phase o f the M odular design flow, in a time consuming process. The

objectives o f the initial budgeting phase are to position global logic, size

and position each module on the target chip, position the input and output

ports for each module, and budget initial timing constraints.

71

The first step in this phase is to run NGDBuild in initial budgeting mode.

NGDBuild generates an NGD file with all o f the instantiated modules

represented as unexpanded blocks. This NGD file cannot be mapped but

can be used with the Constraints Editor, PACE or Floorplanner. The

Constraints Editor is employed to assign timing constraints to the top-level

design. PACE can position the I/O ports for the design on the targeted

device. Floorplanner can be used to assign pin location constraints for the

design.

2. Active module implementation phase; In this phase NGDBuild has to be

run for each module. NGDBuild reads a netlist file in NGC format and

creates a NGD file that contains both a logical description of the design

reduced to Xilinx Native Generic Database (NGD) primitives and a

description of the original hierarchy expressed in the input netlist. After

generating a NGD file, it can be mapped, placed and routed. When a

module is fully placed and routed and meets the desired timing constraints,

it is published back for inclusion in the final design

3. Final Assembly phase: In this phase, the modules are assembled into one

design by running NGDBuild in final assembly mode. NGDBuild creates

a fully expanded design file that can be used for mapping, placing, and

routing.

After the design is completely routed, it is necessary to configure the device so

that it can execute the desired function. This is done using files generated by BitGen,

the Xilinx bitstream generation program. BitGen takes a fully routed file as input and

produces a configuration bitstream, a binary file with a .bit extension. The BIT file

contains all of the configuration information that defines the internal logic and

interconnections o f the FPGA, plus device-specific information from other files

associated with the target device. The binary data in the BIT file is then downloaded

into the FPGAs memory cells, or used to create a PROM file.

72

7.3 Automating the Synthesis Procedure of Module-based Fault Injection

Method

A s introduced in previous chapters, in order to inject faults into FPGAs, the initial circuit

V H D L description m ust be divided into unbalanced partitions with respect to the full binary

tree features.

A ll fault free and faulty VHDL partitions o f a circuit are generated and saved in a

database. Each V HD L partition can be considered as a module entry to our modular design.

It m ust be noted that in modular design, each module has its own directory. Synthesis o f

each m odule entry has to take place in its module directory. Therefore, there will be as many

m odule directories as there are partitions. For example, if one circuit is divided into five

partitions, five directories will be generated. The VHDL code o f each partition will be copied

from the database to its respective directory.

W e have used Perl scripts, developed in Unix OS, to automate the process o f generating

directories, getting the appropriate VHDL entries from the database and applying XST on

them. In this work the automation o f the synthesis procedure o f m odular design is

im plem ented. In general, the Perl automated program has the following steps:

S tep 1: A t the command line, get a circuit name from the user w hich is assigned to

$circuit_nam e variable. Figure 29 shows this part o f the Perl program.

print "Enter a circuit name for injecting faults :\n
#assign entered circuit name to circuit_name variable.
$circuit_name = <STDIN>;

Figure 29: Circuit Name Assignment

S tep 2; Com pare $circuit_name variable with all circuit names whose VHDL code

already exist in the database. I f the entered circuit name does not exist in the database the

error m essage is printed and the user has to enter another circuit nam e supported by the

73

database. Circuits supported in this work are nine combinational and sequential benchmarks

with difterent sizes and characteristics. These nine benchmarks are:

CV7, ^27, C2670. ^j37g, C 7 % ^^73207, ancf^28^77.

Should the entered circuit name be among our nine benchmark circuits, the depth level of

the full binary tree of the circuit will be printed on the screen and the user will be asked to

choose a partition for fault injection. The selected partition is then assigned to

$entered_branch variable.

For example, assume the entered circuit name is S1238. The depth level of this circuit is

equal to four. Figure 30 shows Step 2 of the Perl program for S1238.

if($circuit_name eq $sl238)
{

print "This circuit depth level is four. \n";
print "Please enter one of the tree branches

where you want to inject faults.\n
Example: LLLR \n

$entered_branch = <STDIN>;
$depth_level =4;

}

Figure 30: S1238 Step 2

Step 3: As mentioned before, the depth level o f each circuit depends on the circuit size

and bus macro limitation of the FPGA device. The proper depth level for each circuit was

determined during the database generation. In this step the $entered_branch variable is

verified and expected to match the circuit depth level. Note that $entered_branch represents

one o f the lowest level branches of the full binary tree.

For instance, an error message is printed for SI 23 8 with depth level o f four, if the entered

branch for injecting faults is “LLR” or “LLLLR”. The reason is that “LLR” is one of the last

branches o f the full binary tree with depth level o f three and “LLLLR” is one of the last

74

branches o f the full binary tree w ith depth level o f five. Therefore, for S I238 the length o f

the entered branch is exactly four. Figure 31 shows this part o f the program for S1238.

while (length^ $entered_branch != $depth_level)
{

print "What you have entered doesn't
match the circuit depth level.\n";

print "The circuit depth level is ($depth_le v e 1) .

Please enter again: \n ";
$entered_branch = <STDIN>;

}

Figure 31: Verifying the Entered Branch Length

Step 4: In this step the $entered branch is compared to our branch names convention

(the length o f $entered_branch was verified in Step 3). Each branch in the full binary tree can

be addressed by some “L ” and “R ” strings depending on its location. However, i f the

specified branch has characters other than “L” or “R” an error massage will be printed.

Figure 32 shows this kind o f verification.

@branch= split^(//,$entered_branch);
$len= length $entered_branch;
for loop executed till final entered b r a n c h is v a l i d ,

f or($x=0; $x<$len; $x+ +)

{

$path= $branch[$ x] ;
if (($path ne "L")&& ($path ne "R"))

{

print " this is not a valid branch.\n";

 ̂ L ength is a fu n ction o f Perl language. It sim p ly returns the num ber o f characters in a string variable.
 ̂ S p lits up a string and p la ces it into an array.

75

print " yor branch name has to contain only
'L' or 'R' characters. Please enter again: \n";

$entered_branch= <STDIN>;
0branch= split(//,$entered_branch);
$x=(-l); # makes the for loop start form the

beginning to verify the new entered branch
}

Figure 32: Verifying the Entered Branch Characters

Step 5: Make a directory for the specified circuit.

Step 6: Extract other partition names (fault free partitions) by using $enterd_branch

variable, (entered branch variable represents a partition where faults are injected. Other

partition names have to be extracted from the entered branch so that an unbalanced partition

in the system is created. These partition names are assigned to @partition_names array. For

example, if the entered partition for S I238 is “LLLR” the other partition names to create an

unbalanced partitioning will be; “LLLL”, “LLR”, “LR”, and “R”. Figure 25 shows how this

selection is determined.

Step 7: Make a sub-directory inside the circuit directory (created in Step 5) for each

member o f @partition_names array.

system ("mkdir -p $circuit_name/$directory_name");

Figure 33: Making a Partition Directory inside the Circuit Directory

Step 8: Copy the related VHDL code of each partition from the database to the partition

sub-directory.

system ("cp
/opt/research/fault_injection/per1/VHDLcodes/$circuit name/$di
rectory_name.vhd^

Database location o f the partition V H D L code

76

/opt/research/f ault_inj ect ion/peri/ $circuit_naitie/$directory na
me/$directory_name,vhd") ;

Figure 34: Copy a Partition VHDL Code to Its Directory

Step 9: M ake sub-directories for a faulty partition according to the user fault list and

copy the related V H DL code inside each sub-directory (Step 7 and 8 are based on the fault

free partition directories). The fault list o f the user is read and different sub-directories are

generated for the faulty partition based on the number o f faults. For example. Figure 35

illustrates a fault list for partition “LLLR” o f S I238. The list contains five different faults to

be injected into the “LLLR” partition. Therefore, five sub-directories with different names

have to be generated. In a module-based partial reconfiguration one of these faulty sub

directories are used at a tim e along with all other fault free sub-directories.

0R2_87\ 0R2^ FIO^, F25
AND3_22,AND3, F15, F32

I_2 02,INV,F4

Figure 35: An Example o f Fault List for S1238

In this exam ple the total number o f sub-directories in S I238 circuit directory is nine.

Four sub-directories are for fault free partitions (“LLLL”, “LLR”, “LR”, and “R”) and five

sub-directories for five existing faults in the fault list. The S I238 directory is shown in Figure

36.

. . / S 1 2 3 8 /

S1238_Partition_LLLL/
S1238_Partition_LLR/
S1238_Partition_LR/
S1238 Partition R/

* Instantiation o f th e O R 2 ga te in the S 1238_Partition_L L L R .vhd.
 ̂G ate typ e .
 ̂ W anted fau lt for in jection

77

S1238_OR2_87_F10/
S1238_0R2_87_F25/
S 12 3 8_AND3_2 2 _ F 1 5 /

S1238_AND3_22_F32/
S1238_I_202_F4/

Figure 36: S1238 Circuit Directory

Step 10: Create a project file (.prj) inside each faulty and fault free sub-directories. This

project file contains a list of all components used inside a particular partition. By running

XST for system synthesis, the project file will be used for adding the entire listed

components in the project file to WORK library. This issue is discussed in Section 4.3.3.

Step 11: To synthesize each sub-directory’s VHDL code, XST can be run either in

command line mode or from the Process window in Project Navigator. Due to the automated

synthesis procedure, the command line mode is chosen here. To make the process completely

automatic we create a script file (.scr) inside each sub-directory to store all required

commands. The commands are extracted from the XST user guide [55] based on our

requirements.

For example, the script file for partition “LLLL” in S I238 is shown in Figure 37.

run

-ifn* sl238_PARTITION_LLLL.prj

-ifint^ mixed

-ofh^ sl238_PARTITION_LLLL.ngc

-ofmt" NGC

-p^ xc2vl000-fg456-4

Input/Project file name
Input project format. X ilinx suggests using m ixed format whether it is a real m ixed language project or not.
Output file name
Output file format
Target technology

78

-top ' s 1238_PA RTITI0N_LLLL

-iobuf ̂ No

Figure 37: S1238 Partition_LLLL XST Script File

All the required files for synthesizing the circuit are now available in each partition sub

directory. Figure 38 shows all available files inside S1238_Partition_LLLL sub-directory

after running the Perl program. The Perl Program organizes and creates the necessary files

inside each directory in the above steps.

../S1238/S1238_Partition_LLLL/
S1238_Partition_LLLL.vhd
S1238_Partition_LLLL.prj
xst.scr

Figure 38: S1238 Partition LLLL Directory Files

The X ST has to be executed in each sub-directory to synthesize the design. Using a batch

file w e obtain the xst. scr file as an input from each sub-directory o f the specified circuit.

Then a N G C file {.ngc) and a synthesis report in ‘‘‘'.log” format is generated. The executed

com m and is the following;

XST -ifn xst.scr -ofn Synthesis_report.log

Figure 39: Executing the Script File (xst.scr)

W e note that at this stage all the faulty and fault free VHDL codes have been synthesized

successfully. The N G C files can be used to generate bitstreams in the second phase o f

m odular design. The synthesis report shows all details and considerations during the

' Top level block name
 ̂Add I/O buffers

79

synthesis process. It also shows the CPU time for synthesizing each partition. The

experimental results o f nine benchmark synthesis procedures are presented in the next

section.

7.4 Experimental Results

In order to observe the synthesis results o f classical and non-classical transistor fault

models mapped to gate level for FPGA fault injection, nine combinational and sequential

benchmark circuits with different sizes and characteristics have been selected. As mentioned

previously, these circuits are: C17, S27, S298, S1238, C2670, S5378, C7552, S I3207, and

S3 8417. Figure 40 illustrates the total number o f gates for each circuit.

24000 H
22000
20000

8 18000
« 16000
“ 14000
2 12000
5 10000
E 8000
Z 6000

4000
2000

0
13 133

a No. gates

23815

11547

Figure 40: Size of Circuits

The unbalanced partitioning approach based on full binary tree characteristic is applied to

these circuits. To determine the full binary tree depth level for each circuit, two factors are

taken into account: the size of the last branches and the number o f inter-module connection

signals. In this experiment, our target device is the Xilinx Virtexll (XC2V1000) FPGA. With

this FPGA, the maximum number of signals that can traverse from the reconfigurable

80

partition to the rest o f the circuit is 160 signals. The depth level o f each circuit full binary

tree is shown in Figure 41.

Circuits C l 7 and S27 circuits are too small (less than 15 gates) and therefore do not

require partitioning. Thus, their full binary tree depth level is zero, i.e. their respective full

binary tree consists only o f one node. A lthough S298 is not a big circuit either, the number o f

inter-m odule signals exceeds 160 signals for depth levels less than two. For other circuits we

first decided to have the size o f last branches partitions less than 200 gates to have a small

and acceptable re-synthesis tim e and then verified that the inter-module signals are less than

160 as discussed in Chapter 6. In most cases the number o f signals going from the

reconfigurable module to the rest o f the circuit exceeds the limitation. Hence we increase the

depth level to satisfy all constraints.

10
9
8
7

5 6
_©

■B 5
Q .a> 4

O 3
2
1
0

a Depth level

Figure 41: Full Binary Tree Depth Level o f Circuits

A fter finalizing the depth level o f each circuit full binary tree, the VHDL database for

each binary tree is generated and saved. For fault injection, one partition {Pj) from the last

branches o f each circuit’s full binary tree is selected and its faulty VHDL codes are fetched

from the database according to a provided fault list. The results o f re-synthesis tim e o f the

81

selected partition where faults are injected into the FPGA for each circuit are monitored (see

Figure 42). It has to be mentioned that all timings in this research are calculated based on the

CPU time. We found that the re-synthesis time is constant for all circuits. The reason is that

sizes of last branches of full binary tree partitions in all the circuits are almost the same based

on their decided depth level. For example, last branches full binary tree partition size for

S38417 is 46 gates with the depth level o f 9. This size is equal to 45 gates for S I3207 with

depth level of 8. It can be concluded that the depth level of the full binary tree with respect

to its limitations can be determined based on the desired re-synthesis time.

couo
*2.
o
.Et-
«
w<D
£c>»
«?o
q:

Re-synthesis time of Pf

0 -
C17 827 8298 81238 C2670 S5378 C7552 813207 838417

Re-synthesis time of Pf 4.58 4.56 4.76 4.74 4.78 4.69 4.76 4.71 4.86

Figure 42: Re-synthesis Time of the Faulty Partition

To configure the FPGA all partitions must be synthesized. Figure 43 shows the added

synthesis time of all partitions in each circuit. It can be seen that the synthesis time increases

linearly as a function of circuit size, whereas by applying the unbalanced partitioning

approach the whole circuit is not re-synthesized when faults are injected only to one portion.

For instance, by adding the synthesis times of all partitions in S I3207, we have found that

synthesizing the whole circuit takes 165.85 seconds. However reconfiguring the device for

injecting faults requires only 4.7 seconds re-synthesis time.

82

i
Î2.
0>
E
F
(0

'8

>.to

9 0 0

800

700

600

500

400

300

200

100

0
0 5000 3000010000 15000 2500020000

Size of Circuit

F ig u re 43: B enchm arks Synthesis Tim e

Figure 44 shows the synthesis tim e o f each partition in circuit S3 8417 as a function o f

partition size. Assum e faults are going to be injected in to the “LLLLLLLLR” partition o f a

full binary tree w ith depth level o f nine. Therefore, to establish an unbalanced partitioning,

specific branches o f the full binary tree m ust be selected. This selection is shown in Figure

45. Table 25 gives the approximate size o f each partition.

83

Synthesis time

600

500

400

300

200

100

10000 12000 140002000 4000 6000 8000

Size of Partition

Figure 44: S38417 Partition synthesis time

LLLLiLLLLL

LR

LLR

LLLR

LLLLR

LLLLLR

LLLLLLR

LLLLLLLR

LLLLLLLLR

R

Figure 45: Partition Selection of a Full Binary Tree (Depth level = 9)

84

Partition Name Number of Gates
R 11908

LR 5954

LLR 2977

LLLR 1488

LLLLR 744

LLLLLR 372

LLLLLLR 186

LLLLLLLR 93

LLLLLLLLR 46

LLLLLLLLL 46

Table 25: S38417 Partition Size

I f w e w anted to obtain the same re-synthesis time through balanced partitioning

partitions w ould be required, whereas, for unbalanced partitioning only {depth level — 1)

partitions w ould be necessary. The total number o f partitions for the balanced and

unbalanced partitioning is shown in Figure 46.

600 1

g 500 -
o

i 400 -

<Da
E
3z 200 -

I 100 -

5000 10000 15000 20000 250000

-No. balanced
• No. Unbalanced

Size of Circuit

Figure 46: Unbalanced Versus Balanced Partitioning

85

It can be seen that the complexity o f modular design increases when a balanced

partitioning is applied as discussed in Chapter 6.

The minimum cost function (y) of unbalanced partitioning approach depends on the

size o f the partition S(P^, and the total number o f partitions {N). The minimum cost function

can be summarized in (7.1) where K is a constant.

(7.1)

The synthesis analysis o f classical and non-classical transistor fault models is done in a

timely manner by using the proposed partitioning approach.

8 6

Chapter 8

Conclusion

In recent years, there has been a growing interest in techniques for validating the fault

tolerance properties o f safety and mission critical systems and for an evaluation o f their

reliability. Fault injection is a validation technique o f fault tolerance systems, in which the

observation o f the system behaviour in the presence o f faults is explicitly forced by the

introduction o f faults.

W ith the advent o f system-on-chip, it is crucial to perform a thorough analysis o f the

failure m odes o f the circuit before manufacturing. To inject faults into a system an accurate

fault m odel, a proper approach for injecting faults, and adequate test patterns to observe the

system behaviour is required.

8.1 Research Contribution

The transistor fault model is more accurate than the gate level fault model. Hence, to

obtain an accurate fault model our intent was to use the transistor level fault model. The

transistor level fault model however cannot be synthesized in FPGA chips. Therefore, we

have opted for the solution where all classical and non-classical faults o f static CMOS cells

are m apped to gate level. A specific fault pattern for each primitive gate was determined

during the m apping. To access these m apped faults a user-defined library was defined and

used in structural VHDL code. By replacing a fault free component with a faulty one from

the user-defined library in a structural VHDL code, faults were injected into the system

VHDL code.

87

To reduce the re-synthesis time after injecting each fault, an unbalanced partitioning

approach based on the full binary tree was introduced in this research. In this approach the

re-synthesis time is reduced because the size of the partition where faults are injected is

reduced by the partitioning. However, other fault free partitions have larger sizes since they

do not need to be re-synthesized after each fault injection. In this case, the total number of

partitions in a system is much less than balanced partitioning method. Therefore, the

complexity of module-based partial reconfiguration is reduced.

Module-based partial reconfiguration was applied in the process of fault injeetion into

FPGAs. We have also automated the generation of all required files prior to synthesis as well

as the synthesis procedure itself.

Although the VHDL code database, wherein faulty and fault free VHDL partition codes

reside, takes a large memory space, the experimental results have shown that unbalanced

partitioning approach saves time and FPGA resources in module-based partial

reconfiguration. We have shown that the re-synthesis time can be kept quasi constant in all

circuits o f different sizes if the sizes of the partitions where faults are injected {Pj) are the

same. Whereas, the synthesis time of the whole circuit grows linearly as the size o f the circuit

is increased. We have compared the unbalanced and balanced partitioning approaches and

shown that the former leads to a more cost-efficient fault injection method.

8.2 Future Work

More research is needed to include dynamic CMOS faults in the user-defined library. To

reduce the memory space taken by the database, partitioned VHDL codes will have to be

generated based on the selection o f binary tree branches. Also, the implementation phase of

the module-based partial reconfiguration and downloading bitstreams into FPGA will have to

be automated. The actual behaviour of faulty circuits can be studied in the application

environment by applying adequate test vectors.

88

Appendices

Appendix A: ORn Complete Fault List Pattern

• Input/O utput Stuck-at Faults

Input/oiitput stuck-at-faults Faulty Ôûtput fO y
li : stuck-at-0 O R (lu 12 ••*» li-U In)
li : stu ck -a t-1 1
O : stuck-at-0 (for any input com b ination s) 0
O : stuck-at- 1 (for any input com b ination s) 1

Table 26: ORn Input/Output Stuck-at-faults

vcc

Di-1

VCC

O'p

'n+1
O’n

Qn-ti ••• InNQn+1 I IN ------

Sn +i

Figure 47: ORn Transistor Level

89

• Short Faults

Short faults Inputs conditions Faulty output (0)
0 (D„) > G (ground) For any input combinations 1

0 ’ (D „) ^ ^ VCC For any input combinations 0

D j G (1 < i < n - l) For any input combinations 1

D , < r^ VCC
(1 < i < n - l)

lj= 0 V l < j < n
(means all inputs from Ii to I„ are low)

0

Ij = 0 (V i + l < j <n)
&
1, 111 2 I I . . . I I I i -1

Stuck-On

For the rest o f input combinations 1

Ij Ik where
l< k < n and k 7 ^ i

l i=0 V 1<) <n 0

lj=0 (V l< k <n and j 7 ^ i, j T^k)
&

li © Ik=l

X

For the rest o f input combinations 1

li > Dk
(i < k < n - l)
(l < i < n - l)

l j = < 0 | l > V l < j < k ,
l i=0 V k + l < j < n

!Ii

For the rest o f input combinations 1
li ^ Dn
(l < i < n) For all input combinations NOT(Ii)

li 4 - ^ D k (1 < k < i - l) For any input combinations 1

D i ^ ^ Dk
(l < k < n - l andk^fi):

l i=0 V l< i<n 0

I j = 0 (V l< j< i and m <j <n (i+ l<m<n- l))
&
Il l | l 2 l l - . | | I i = l

Stuck-On

For the rest o f input combinations 1

D i ^ ^ D„(0 ’)
(1 < i < n - l)

F,=0 V l<i<n 0

Ij = 0 (V l < j < i)
&
b + l I I Ii+2 I I - - - I I l n = l

Stuck-On

For the rest o f input combinations 1

li 0
(1 < i < n)

For all input combinations li

0
(1 < i < n - l)

(I j = 0 (V i + l < k ^) & (I . | | l 2 l | . . . | | I i = l))
I I

(lj=0 V l< i<n)
Stuck-On

For the rest o f input combinations 1
0 '(D .)< -^ 0

N /A N O R (I,, I2 ■■■, In)

Table 27: ORn Short Faults

90

Open Faults

O p en fa u lts ■ L o g ica l f a u l # # #
liP : open (1 < i < n)

lip: stuck-at-1Si: op en (1 = 1)
Di: open (1 < i < n)
liN : op en (1 < i < n)

liN: stuck-at-0
li : open (1 < 1 < n)
Si: op en (n+1 < i < 2n)
Di: op en (n+1 < i < 2n)
O ’p: open

O ’p: stuck-at- 1Si: o p e n (i = 2 n + l)
Di: o p e n (i = 2 n + l)
O ’n : open

O ’n: stuck-at-0Si: op en (i = 2 n + 2)
Di: open (i = 2n + 2)
0 ’:open Z
O : o p e n Z

T able 28: O R n O pen Faults C ategories

L ogical fault type o f open faults Inputs conditions Faulty oufbut (O)

lip: stu ck -a t-1 l j =0 (V 1< J <n) Z
For all other input com bination 1

liN: stuck-at-0

l j =0 V 1< i <n 0

Ij = 0 (V 1< k <n and)
&
I i =l

z

For the rest o f input com binations 1

O ’p: stu ck -a t-1
l i = 0 (V 1< j <n) 0

For the rest o f input com binations z

O ’n -' stuck-at-0
h = 0 (V 1< i <n) z
For the rest o f input com binations 1

Z For any input com binations z

T able 29: O R n O pen Faults

The general form ula for total num ber o f faults for ORn is:

n-\
2 ^ (n - J) + n^ +12n + l l

y=i

(A T)

91

Appendix B: ANDn Fault Pattern

• Input/Output Stuck-at Faults

Input/output stuck-at-faults F aulty output (O)
Ij : stuck-at-0 0
Ij ; stuck-at-1 A N D (Ii, li-i, In)
0 ; stuck-at-0 (for any input combinations) 0
0 : stuck-at-1 (for any input combinations) 1

Table 30: ANDn Input/Output Stuck-at-faults

V C C vcc

Si- 1

liN ------- Qi

Sn-i-i
m+ !n+ :

Dn+1 Dn+i

C b n + 2

+ 2

InN HE?
Sn-1

Figure 48: ANDn Transistor Level

92

• Short Faults

S h o r t fa u lts F a u lty
O ’ < - -> G For any input com binations 1
O ’ V C C For any input com binations 0

I j= l V l < j <n I

Sj <—> G
(1 < i < n - l)

Ij = 1 (V l < j <i)
&

(li+l & Ii+2&...&In=0)
Stuck-O n

For the rest o f input com binations 0
Si V C C (1 < i < n - l) For any input com binations 0

I j= l V 1< j <n 1

li <—> Ik w here
1< k < n and k 4̂ i

I j= l (V l < k < n a n d j ^ i , j v ^ k)
&

h © Ik=l
X

For the rest o f input com binations 0
li ^ Sk (i < k < n - l) For any input com binations 0

li Sk
(1 < k < i - l)

I j = l V l < j < k ,
l j = < 0 | l > V k + 1 < j <n

N O T (l i)

For all other input com binations 0
Ii = l V l < j <n I

Si Sk
(l< k < n - l and k ^ i):

Ij= 1 (V l < j < i and m < j <n (i + l < m < n - l))
&

(Ij+i & Ii+2&.. .&Im“ 0)
Stuck-O n

For the rest o f input com binations 0

Ii = l V l< j< n 1

S i < e - » O ’
(1 < i < n-1)

Ij = 1 V (i + l < j <n)
&

(Il & I2 & . ..&Ii = 0)
Stuck-O n

For the rest o f input com binations 0

Ij ^ ^ O
(1 < i < n)

For all input com binations li

li O ’
(1 < i < n)

For all input com binations
N O T (l i)

Si ^—> O
(I j - 1 (V l < j < i) & (l i + , & I i + 2& - - - & I n = 0))

Stuck-O n

(1 < i < n - l) (I i= I V I< i <n)
F or the rest o f input com binations 0

O ’ O For any input com binations N A N D (I | , I2 In)

T a b le 31: A N D n S h ort F au lts

93

Open Faults

Open faults Logical fault type
liP ; open (1 < i < n)

lip: stuck-at-1li : open (1 < i < n)
S{: open (n+1 < i < 2n)
D{: open (n+1 < i < 2 n)
liN : open (1 < i < n)

liN: stuck-at-0Si: open (1 < i < n)
Di: open (i = 1)
O ’p: open

O ’p: stuck-at- 1S|: open (i = 2 n + l)
Di: open (i =2 n+l)
O ’n: open

O ’n : stuck-at-0Sj: open (i =2n+2)
Dj: open (i =2n+2)
0 ’:open Z
0 : open Z

Table 32: ANDn Open Faults Categories

Logical fault type of open faults Inputs conditions Faulty output (O)

lip: stuck-at-1

lj=l V l < j <n 1

Ij=l (V l < j < n and j? î)
&
li= 0

Z

For the rest o f input combinations 0

liN: stuck-at-0 lj=l V l < j <n z
For the rest o f input combinations 0

O ’p: stuck-at-1 f = l (V l< j <n) z
For the rest o f input combinations 0

O’n: stuck-at-0 1|=1 (V l< j <n) 1
For the rest o f input combinations z

Z For any input combinations z

Table 33: ANDn Open Faults

The general formula for total number of faults for ANDn is:

j) + ' ^ (n - k) + n^ +13n + 10
y=i fc=2

(B.l)

94

Appendix C: Buffer Fault list

• Input/Output Stuck-at Faults

Thput/output stuck-at faults Faulty output (0)
I: stuck-at-0 0
I : stuck-at-1 1
0 : stuck-at-0 0
O: stuck-at-1 1

Table 34: Buffer Input/Output Stuck-at-faults

Short Faults

Short faults Faulty output
0 '< r ^ I NOT(I)
O X -A O NOT(I)

v c c 0
0 G 1
O I

Table 35: Buffer Shore Faults

VCC vcc

O’p

O’n

Figure 49: Buffer Transistor Level

95

Open Faults

O pen faults Input conditions Fau lty output
I: open N/A Z

Ip: open
1 = 0 Z
1= 1 1

In; open
1 = 0 n 0
1=1 z

D,: open
1 = 0 z
1=1 1

Dj! open
1 = 0 0
1=1 z

D3; open
1 = 0 0
1= 1 z

D4; open
1 = 0 z
1 = 1 1

S].- open 1 = 0 z
1 = 1 1

S2: open
1 = 0 0
1= 1 z

S3: open 1 = 0 0
1=1 z

S4: open 1 = 0 z
1 = 1 1

O ’: open For any I z
O’p: open 1 = 0 0

1=1 z
O ’n: open

1 = 0 z
1=1 1

0 : open For any I z

Table 36: Buffer Open Faults

The total number of faults for buffer is: 24

96

Bibliography

[1] M .A bram ovici, M.A. Brener, A.D. Friedman, Digital System Testing And Testable

Design, Revised Edition, IEEE Press, 1990.

[2] C.W . Wu, Lab for Reliable Computing (LaRC), EE, NTHU,

(http://larc.ee.nthu.edu.tw /~cww/n/625/6250/02.pdf), 2002.

[3] J. A lt, U. M ahlstedt, Sim ulation o f Non-classical Faults on the Gate Level — Fault

M odeling, 11* VLSI Test Symposium, April 1993, pp. 351-354.

[4] R.D. Eldred, Test Routines Based on Symbolic Logical Statements, Journal ACM , V ol.6,

N o .l , 1959, pp.33-36.

[5] S.A. Arian, D.P. Agrawal, Physical Failure and Fault Model o f CMOS Circuits, IEEE

Transactions on Circuit and Systems, Vol. CAS-34, No. 3, March 1987, pp. 269-279.

[6] J. Galaiy, Y. Crouzet, M. Vergniault, Pphysical Versus Logical Fault Models MGS LSI

circuits: Im pact on their Testability, IEEE Transactions on computers. Vol. C-26, June 1980,

pp. 527-531.

[7] S.D. Brown, Z.G. Vranesic, Fundamentals o f Digital Logic with VHDL Design,

M cG raw -H ill, 2000.

[8] J.F. W akerly, Digital Design Principles & Practices, Third Edition, Prentice Hall, 2002.

[9] http://tech-www.informatik.uni-hamburg.de/applets/cmos/cmosdemo.html

[10] Z. N abavi, VHDL Analysis and M odeling o f Digital Systems, Second Edition, McGraw-

Hill, 1998.

97

http://larc.ee.nthu.edu.tw/~cww/n/625/6250/02.pdf
http://tech-www.informatik.uni-hamburg.de/applets/cmos/cmosdemo.html

[11] G.D. Micheli, Synthesis and Optimization o f Digital Circuits, McGraw-Hill, 1994.

[12] R. Leveugle, Fault Injection in VHDL Descriptions and Emulation, Proceedings o f the

IEEE International Symposium on Defect and Fault Tolerance, Oct. 2000, pp. 414-419.

[13] S. Svensson, J. Karlsson, Dependability Evaluation of the THOR Microprocessor Using

Simulation-Based Fault Injection, Technical report NO. 295, Chalmers University of

Technology, Department o f Computer Engineering, Sweden, 1997.

[14] E. Jenn et al. Fault Injection into VHDL models; the MEFISTO tool, FTCS, 1994,

pp.66-75.

[15] E.Bohl, W. Harter, M.Trunzer, Real Time Effect Testing of Processor Faults, 5th IEEE

International On-Line Testing Workshop, July 1999, pp. 39-43.

[16] R.Leveugle, Towards Modeling for Dependability of Complex Integrated Circuits, IEEE

International On-Line Testing Workshop, Rhdes, Greece, July 1999, pp. 194-198.

[17] H.R. Zarandi, S.G. Miremadi, A. Ejlali, Dependability Analysis Using a Fault Injection

Tool Based on Synthesizability o f HDL Models, Proceedings of the 18th IEEE International

Symposium Defect and Fault Tolerance in VLSI System, pp. 485-492, 2003.

[18] T.A. Delong, B.W. Johnson, J.A. Profeta III, A Fault Injection Technique for VHDL

Behavioral-Level Models, IEEE Design and Test of Computers, Vol. 13, Winter 1996, pp.

24-33.

[19] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, J.Karlsson, Fault Injection into VHDL Models:

The MEFISTO Tool, 24* Symposium on Fault-Tolerant Computing (FTCS), 1994, pp. 66-

75.

98

[20] J.Boue, P. Petillon, Y. Crouzet, MEFISTO-L: A VHDL-Based Fault Injection Tool for

the Experim ental Assessment o f Fault Tolerance, 28̂ *’ Symposium on Fault-Tolerant

Com puting (FTCS), 1998, pp. 168-173.

[21] K.T. Cheng, S.Y. Huang, W.J. Dai, Fault Emulation: A New Methodology for Fault

Grading, IEEE Transactions on Computer-Aided Design, Vol. 18, No. 10, 1999, pp. 1487-

1495.

[22] R.W . W ider, Z, Zhang, R.D. McLeod, Emulating Static Faults Using a Xilinx Based

Em ulator, IEEE Symposium on FPGAs for Custom Computing Machines, February 1995,

pp. 110-115.

[23] L. Antoni, R. Leveugle, B. Feher, Using Run-Time Reconfiguration for Fault Injection

in H ardw are Prototypes, IEEE International Symposium on Defect and Fault Tolerance in

V LSI System s, Yamanashi, Japan, October 2000, IEEE Computer Society Press, 2000,

pp.405-413.

[24] L. A ntoni, R. Leveugle, B. Feher, Using Run-Time Reconfiguration for Fault Injection

in H ardw are Prototypes, the 17*'’ IEEE International Symposium on Defect and Fault

Tolerance in VLSI Systems, Vancouver, Canada, 2002, IEEE Computer Society Press, 2002,

pp. 242-249.

[25] P. Civera, L.M acchiarulo, M. Rebaudengo, M. Sonza Reorda, M. Violante, Exploiting

FPG A for Accelerating Fault Injection Experiments, 7*'’ IEEE International On-Line Testing

W orkshop, Taorm ina, Italy, July 2001, pp.9-13.

[26] P. Civera, L.M acchiarulo, M. Rebaudengo, M. Sonza Reorda, M. Violante, Exploiting

FPG A -Based Techniques for Fault Injection Campaigns on VLSI Circuits, IEEE

International Symposium on Defect and Fault Tolerance in VLSI Systems, San Francisco,

California, USA, October 2001, IEEE Computer Society Press, 2001, pp. 250-258.

99

[27] P. Civera, L.Macchiarulo, M. Rebaudengo, M. Sonza Reorda, M. Violante, FPGA-

Based Fault Injection for Microprocessor Systems, Asian Test Symposium, November 2001,

pp.304-309.

[28] R. Leveugle, A Low-Cost Hardware Approach to Dependability Validation of IPs, IEEE

International Symposium on Defect and Fault Tolerance in VLSI Systems, San Francisco,

California, USA, October 2001, IEEE Computer Society Press, 2001, pp. 242-249.

[29] Two Flow for Partial Reconfiguration: Module Based or Difference based. Application

Note: Virtex, Virtex-E, Virtex-II, Virtex-II Pro Families, XAPP290 (v l.l), Xilinx, 2003.

[30] S.M. Sait, H. Youssef, VLSI Physical Design Automation Theory and Practice, World

Scientific, 1999.

[31] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithm, Second

Edition, Me Grow Hill, 2002.

[32] M.E. Zaghloul, D. Gobovic, Fault Modeling for Physical Failure for CMOS Circuits,

IEEE International Symposium on Circuits and Systems, ISCAS’88, June 1988, pp. 677-680.

[33] P. Dahlgren, P. Liden, A Fault Model for Switch-Level Simulation of Gate-to-Drain

Shorts, 14̂ '’ Proceedings of VLSI Test Symposium, 1996, pp.414-421.

[34] M.E. Zaghloul, D. Gobovic, Fault Modeling of Physical Failure in CMOS VLSI

Circuits, IEEE Transactions on Circuits and Systems, Vol. 37, No. 12, December 1990, pp.

1528-1543.

[35] M.L. Flottes, C. Landrault, S. Pravossoudovitch, Fault Modeling and Fault Equivalence

in CMOS technology, Proceedings of the European Design Automation Conference, ED AC,

March 1990, pp. 407-412.

100

[36] D.P. M ilovanovic, V.B. Litovski, Fault Models o f CMOS Circuits, M icroelectronics

Reliability Journal, Vol. 34, No. 5, 1994, pp. 883-896.

[37] V .Sieh, O. Tschache, F. Balbach, VERIFY; Evaluation o f Reliability Using VFIDL-

M odels w ith Embedded Fault Description, Proceedings o f 27 "̂' International Symposium on

Fault-Tolerant Computing, 1997, pp. 32-36.

[38] P. Folkesson, S. Svensson, J. Karlsson, A Comparison o f Simulation Based and Scan

chain Im plem ented Fault Injection, Proceedings o f 28* International Symposium on Fault-

Tolerant Com puting, 1998, pp.284-293.

[39] P.Civera, L.M acchiarulo, M. Rebaudengo, M .Sonza Reorda, M.Violante, Exploiting

C ircuit Em ulation for Fast Hardness Evaluation, IEEE Transaction Nuclear Science 48, 2001,

pp .2210-2216.

[40] R. Leveugle, Behavior M odeling o f Faulty Complex VLSIs: Why and How?, Baltic

Electronics Conf. Tallinn, E s to n ia ,, October 1998, pp. 191-194.

[41] R .sedaghat-M am an, Fault Emulation with Optimized Assignment o f Circuit Nodes to

Fault Injectors, Proceedings o f the 1998 IEEE International Symposium on Circuit and

Systems, ISC A S '98, 1998, pp.135-138.

[42] R. Sedaghat-M am an, E. Barke, A N ew Approach to Fault Emulation, Proceedings o f 8*

IEEE International W orkshop on Rapid System Prototyping, June 1997, pp. 173-179.

[43] J.H. Hong, S.A. Hwang, C.W Wu, An FPGA-Based Hardware Emulator for Fast Fault

Em ulation, IEEE 39* M idw est Symposium on Circuit and Systems, Vol. 1, August 1997,

pp.345-348.

101

[44] T J. Chakraborty, C.H. chiang, A Novel Fault Injection Method for System Verification

Based on FPGA Boundary Scan Architecture, Proceedings of International Test Conference,

2002, pp.923-929.

[45] S.A. Hwang, J.H. Hong, C.W. Wu, Sequential Circuit Fault Simulation Using Logic

Emulation, IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 17, 1998, pp. 724-736.

[46] R. Sedaghat-Maman, E. Barke, Real Time Fault Injection Using Logic Emulators,

Proceedings Asia and South Pacific Design Automation Conference, 1998, pp.475-479.

[47] L.Antoni, R.Leveugle, B.Feher, Using Run-time Reconfiguration for Fault Injection

Applications, IEEE Transactions on Instrumentation and Measurement, Vol. 52, No. 5,

October 2003, pp. 1468-1472.

[48] A. Ejlali, S.G. Miremadi, FPGA-Based Fault Injection into Switch Level Models,

Elsevier Microprocessors and Microsystems journal, 2004, pp.317-327.

[49] www.eg3.com/eCLIPS/desc/soc_vhdl_blank.html

[50] F. Moraes, N. Calazans, L. Mbller, E. Briao, E. Carvalho, Chapter 1: Dynamic and

Partial Reconfiguration in FPGA SoCs: Requirements Tool and a Case Study, Pontificia

Universidade Catôlica do Rio Grande do Sul (PUCRS), Brazil.

[51] http://dec.bournemouth.ac.uk/drhw_lib/terminology.html

[52] W W W .Xilinx.com/products/design_resources/design_tool/grouping/synthesis.htm

(Xilinx: Synthesis)

[53] www.xilinx.com/xlnx (Techtips: xilinx synthesis technology)

102

http://www.eg3.com/eCLIPS/desc/soc_vhdl_blank.html
http://dec.bournemouth.ac.uk/drhw_lib/terminology.html
http://WWW.Xilinx.com/products/design_resources/design_tool/grouping/synthesis.htm
http://www.xilinx.com/xlnx

[54] X ilinx Developm ent System Reference Guide,

(http://toolbox.xilinx.eom /docsan/xilinx6/books/data/docs/dev/dev0001_Lhtm l)

[55] X ilinx X ST U ser Guide,

http://toolbox.xilinx.eom /docsan/xilinx6/books/data/docs/xst/xst0001_l.htm l

Publications:

1. R. A bedi, R. Sedaghat, Transistor-level to Gate-level Comprehensive Fault Synthesis

for «-Input Prim itive Gates, Accepted w ith Revision by Microelectronics Reliability

Journal, ELSEVIER.

2. R. Abedi, R. Sedaghat, Synthesis o f Transistor Level Fault Emulation, Submitted to

M icroelectronics Journal, ELSEVIER.

3. R. Abedi, R. Sedaghat, Classical and Non-classical Transistor Level Fault Injection

into FPGA, Submitted to W SEAS Journal.

4. R. A bedi, R. Sedaghat, Synthesis o f Exhaustive CMOS Transistor Fault Model at

Gate Level for «-Input Primitive Gates, Submitted to ASP-DAC Conference.

103

http://toolbox.xilinx.eom/docsan/xilinx6/books/data/docs/dev/dev0001_Lhtml
http://toolbox.xilinx.eom/docsan/xilinx6/books/data/docs/xst/xst0001_l.html

