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Abstract

Bone Fracture Detection
using Ac.tive Contour Model
with Prior Shape
© Yun Jia 2006
Master of Applied Science
Department of Electrical and Computer Engineering

Ryerson University

In this research, an image segmentation method based on active contouring model was
studied, which incorporates the prior shape into the active contour evolving process as
the global constraint. The active contour model is implemented based on the level set
method. The prior shape regulates the behavior of the active contour and keeps it from
leaking out of the weak edges. The goal of this research is to determine the
displacement and alignment between two fractured pieces of a bone which is encased
in the cast material by segmenting them out and calculating their axes difference. The
noise introduced by the cast material makes this task difficult. Morphological
operations of dilation and erosion are deployed in this research as the noise reduction
and edge detection tool. Experiment results are obtained successfully by applying this

method upon the X-ray images of patients’ fractured arm.
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Chapter 1

Introduction

e Aim of the study

This research project focuses on the study of applying an active contour model
segmentation method to X-ray images of fractured bones encased in cast material.
Segmenting fractured bones and the alignment calculation of bone fractures on X-ray
images using a computer will help radiologists in their diagnoses. This process will
- reduce the amount of time required in assessing the success of a fracturé treatment.
The aim of this research is to develop a computer aided diagnostic tool for analyzing
bone fractures and determining their alignment. The key part of designing this tool is
to develop a method to effectively segment the bone fractures from the X-ray image.

Therefore, the first step of this project is to study image segmentation methods.

Image segmentation is an important task in the field of image processing and
computer vision. Image segmentation is a technique that divides the image into
several regions according to their homogeneities, such as pixel grayscale/color values.
It has been an active area of research for many years, but there is still no generic

solution for segmentation due to the diversity of the image processing applications.

The difficult part of this segmentation task is to overcome the noisy background

caused by the overlaying cast. The X-ray images with cast material, especially in the



areas around metaphysic, are extremely blurry and have very low contrast.
Metaphysic and the background can barely be separated by traditional segmentation
techniques in medical images; the inconsistent intensity pattern that changes from one

X-ray to the next causes difficulties and failures in the current segmentation processes.

e Active contour models

Active contour models [1] [2] have been widely applied in image segmentation
applications over the past decades. Their robustness against the noise and the
irregularities of the segmenting object, plus the incorporation of priori knowledge of
objects of interest, make the active contour models an attractive approach for image
segmentation applications. The active contour models can also be called deformable
models because the active contour deforms itself towards the object of interests
during the image segmentation process. There are two major branches of deformable
models, the parametric one (Snakes) and the geometric one (Level set methods). The
main difference between these two models is their different representations of the
active contours. Parametric models are explicit, while the geometric models are

defined implicitly as a property of a higher level function.

In this research study, a level set based active contour model is used in the
segmentation process. An initial level set contour is placed inside the object of
interest and develops itself towards the boundary of that object. A priori shape model
of the object of interest is introduced into the evolving process in order to regulate the

behavior of the evolving curve. Along with the curve evolving, the priori shape model



adjusts itself to match the boundary of the object of interest. The final result from the
matching process is then passed to the alignment calculation process of the fractures,

where the axes of the fractures are drawn and their angle displacement is calculated.

e Organization of the thesis

The rest of this thesis is organized as follows.

In Chapter 2 a brief introduction is given to Medical Imaging and the different
modalities widely used, followed by some example images. The remaining part of
this chapter details the traditional image segmentation techniques, botil boundary
based and region based, and then explains segmentation methods using deformable
-models.

Chapter 3 discusses the methods used in this research study. First the edge detection
techniques are examined here. Several edge detection methods are implemented
comparably in this research in order to obtain better edge maps. By examining
morphological operations, the morphological gradients can highlight the sharp gray-
level transitions (edges) in the input image and depend less on edge directionality,
thus it is the right choice for edge detection rather than the tradition methods in this
research. The proposed segmentation method using level set methods based
deformable models is detailed here. Mutual Information is also covered by this
chapter. Finally shape moments that are used to calculate the priori shape model and

the evolving curve center location and orientation are detailed here.



Chapter 4 examines the experimental simulation system and lists the experimental
results.
Chapter 5 concludes the thesis with the post-experiment discussions and the possible

research extensions.



- Chapter 2

Medical Imaging and Image Segmentation

2.1 Introduction

Image segmentation [3] [4] is a fundamental task of the modern Medical Imaging
field. More and more, physicians rely on segmentation results to overcome the
difficulties of attempting to obtain accurate information from the blurry medical
images and to determine the treatment process of their patients. Medical image
segmentation is used to classify different anatomy features (such as bones, muscles,
and soft tissues) and to extract a predefined region of interest from a single or set of
medical images. Many researches [5-9] have been done on medical image
segmentation during the past decades, yet there are no general segmentation methods
that can be applied to every kind of medical image. This is because the segmentation
methods applied upon medical images vary widely according to specific requirements
for specific applications and various modalities. For example, sggmenting a bone
fracture has different requirements from segmenting the soft tissue of a liver. In
addition, medical image noise and patients’ movement also increase the segmentation
difficulties and degrade the performance of a segmentation algorithm. Specialized
segmentation algorithms to specific applications can often achieve better performance
by taking into account prior knowledge. This research project is a classic example of

the medical image segmentation.

5 PROPERTY OF
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2.2 Medical Imaging

Medical Imaging [10] plays a key role in the today’s clinical analysis. Medical
imaging helps the physicians and the radiologists to diagnose and cure the diseases -
more efficiently and accurately. With the assistance of computers, the inside of the
patients can be examined on site or be taken as medical images. The images can be
used for later diagnosis. Medical images have many modalities according to different
image acquiring methods, such as X-rays, Ultra Sound, Computer Tomography (CT),
Magnetic Resonance (MR), and Positron Emission Tomography (PET), or Single
Photon Emiss-ion Computed Tomography (SPECT).

The example X-rays/Ultrasound/CT/MR/PET images are shown in the figure below.

Figl X-rays, Ultrasound, CT, MR and PET images



2.3 Image Segmentation

Image segmentation implements one of the general tasks of computer vision. Image
segmentation partitions an image into constituent numbers of non-overlapping
regions with respect to their homogeneous characteristics such e;s intensity or texture
background. Mathematical representation of image segmentation can be described as

follows.
K .
I1=US,, §;nS;=¢,fori#j
k=1

Here I represent the input image, S, represents the segmented region.

Numerous methods [4] [11] have been developed during the past decades, among
those most can be grouped into two basic categories: boundary based approaches,

region based approaches.

2.3.1 Boundary Based approaches

The boundaries are defined as separation indicators (luminance transitions) between
regions inside an image, or edges. In the real world, mammals use the edge
information to perceive or recognize objects with special meanings; in the computer
world, accurate edge information can be used as input for higher level processes of an
image processing application, such as image segmentation and pattern recognition.
There are two key components of the boundary based segmentation methods: edge

detection and edge linking.



Edge detection

| Edge detection [12] refers to the process of identifying and locating the sharp

discontinuities or abrupt intensity level changes in an image. In computer vision it is

traditionally implemented by the convolving the input image with some form of linear

filters, which usually approximates a first or second derivative operator. First

derivative and second derivative methods are two major categories of edge detection.

The first derivative edge detectors try to find local maxima in the gradient of an

image. Gradient is the gray level change with directions; it can be computed in

af af

two directions, horizontal and vertical. It can be expressed by Vf —[

its magnitude of ( o 12 ) +( o 2 ) and direction of tan™! (=— o f
. dy ax

Robert kernels (see Table 1) approximate the first derivatives with respect to the
two diagonal directions. But in practice Robert kernels are to small to reliably find

edges especially with the presence of noise.

Another approach Prewitt kernels (see Table 1) are based on the idea of the
central difference, but it is also sensitive to noise. By taking the average in both x

and y directions, noise reductions is achieved to some degree.

As with the Prewitt kernels, the Sobel kernels (see Table 1) rely on the central

differences, but it gives more weight to the central pixels when doing the



averaging. The Sobel kernels can also be thought of as 3x3 approximations to

first-derivative-of-Gaussian kernels.

Row Gradient Column Gradient
Pixel i 1 r T
Difference 000 0 1 0
0 -11 0 -10
_0 0 0_ _0 0 0_
Separated 0 0 O] 0 1 O]
pixel
difference -1 01 0 0 O
_0 0 0_ _0 -1 O_
Prewitt -1 01 1 1 1
l -1 01 -1- 0 0 O
3 3
-1 01 -1-1 -1
Roberts 00 1 1 0 0
0 -10 0 -10
0 0 O 0 0 O
Sobel | -1 01 1 2 1
—[-2 0 2 l 0 0 O
4 4
-1 01 -1 -1 -1
Frei-Chen -1 o1 1 J_z- 1
1 J_ 1
-2 0 2 0 0 O
2442
2+42|_1 g 2| _J2 -1

Table 1 some popular gradient operators in 3x3 mask

e The basic idea of the second derivative edge detection [13] is to find places where
the second derivative is zero, because the local maximum of the first derivative

(edges) is equivalent to the zero in second derivative.



The Laplacian is a 2-D isotropic measure of the 2nd spatial derivative of an image.

It highlights regions of rapid intensity change and is therefore often used for edge

2 2
detection. The second derivative is defined as V2 f = aa—{+ —g—-jzi
x Yy

In discrete form,

9% f
el =f(x+Ly)+f(x=1Ly)-2f(x,Y)
9 f
% =fLy+D+ f(xy-1)-2f(xy)

VIf=[f(x+Ly)+ fx=Ly)+ f(xy+D+ f(xy-D1-4f(x,y)

The following are two commonly used Laplacian kernels.

0 1 0 -1 -1 -1
1 -4 1 -1 8 -1

0 1 0 -1 -1 -1
Kernel (1) Kernel (2)

Fig2 Two commonly used Laplacian kernels

Although the above Laplacian kernels are able to find edges, but they are noise
sensitive. The way the Laplacian operators are often used is to combine the use of
a Gaussian smoothing operator by convolving them to form a single edge-finding

operator. This is called Laplacian of Gaussian (LoG).

2y g2 ey
LoG(x,y) =- 14[1—" P4 ]e 207
o
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ojo|s |j2|2]2|98)|0]0O
0|2|8 |&6|&6|6]|]98|2]|0
3 |9|6 |89 |0|8 | 6|8 |83
2 |6 |9 |-92]-23]-12] 3 | 6|2
2 |6 |0 |-29]|-40|-28) 0 (5 | 2
2 | 6|9 |-12|-29]|-12) 9 | 6 | 2
9 |3|6 |9 |03 )63}
0o|2]|8 |6|6|6§]|8|2]0
ojo|8(|2]|]2)2|8|0|0O

Fig3 Discrete LoG kernel (O = 1.4)

Edge linking -

Edge linking is the second step of a boundary based image segmentation process; it
groups the detected boundary elements to form lines or edges. Edge linking methods
try to ensure that all the true edges obtained from the edge detection step have no
breaks. However, because of the presence of noise, fragmented edge elements cannot

be avoided during the edge detection process.

One way to minimize the break edges and link them all together is to analyze the
properties (such as the spatial location, gradient direction and gradient magnitude) of
“a potential edge point and its surrounding area. If the properties are the same as other
edge points, then these points can be linked to form an edge and remove the breaks.

This method can be referred to as the local linking method.
Another way of edge linking is the global method, such as Hough Transform (HT)

[14]. HT transforms the edge elements into a parameter space (Hough space), which

is a joint histogram of the parameters of the model of line or curve being detected.

11



The peaks in this histogram then indicate the presence and location of the lines or

curves being detected. For example, consider an edge point (x;, y;) obtained from the
previous edge detection step, any iine passing tMough this point can be expressed as,
y;=ax;+b
This can be rewritten as
b=-ax; +y;,,
or x;cosf@+y;sinf@=p.
Here p is the distance of the line from the origin and @is the angle between this line

and x-axis. The diagram below shows the basic idea of Hough Transform.

Y >]
\ 1 Originsl!

coordinste
piana

p 2 Hough pisne

3
e .
1
\ -

b 4
Fig4 Hough Transform: Original coordinate plane and Hough plane

2.3.2 Region Based approaches

Unlike the boundary based approaches, region based segmentation methods attempt
to group regions according to common image properties such as intensity values,
region texture, or patterns. The following describes some commonly used region

based segmentation methods.

12



Thresholding
The thresholding technique makes decisions based on local pixel information, uses an
estimated or experimental value, threshold, to group image pixels into different
regions and can be very efficient when object intensity levels are totally different
from the background. For an example, an 8 bit gray image has 256 intensity levels
from O to 255, if an object inside the image has intensity levels of all its pixels
between 80 and 200, and background has its intensity levels below 50, then it is easy
to segment this object out from the image by setting the threshold value between 50
and 80. The basic concept of thresholding technique can be described as follows.
IfI(x,y)2t,1(x,y)=object =1,
Else I(x, y) = background =0

Where I (x, y) represents the intensity level of the image pixel at position of (x,y), ¢

represents the threshold value.

One of the simplest thresholding techniques is the histogram thresholding method, in
which the threshold is chosen from the image histogram. Image histogram describes
the occurring frequencies of the image intensity levels; the histogram peaks are the
number of pixels that have the same intensity level. Normally most of the pixels
inside an object have similar intensity levels. The number of pixels with similar
intensities can be indicated as peaks in the image histogram, which means the object
can be represented in the image histogram by the peaks. Thresholding the peaks is in

fact segmenting the image object.

13



Global High

Local High
Local Low

Threshold

Pixel Numbers

255

Intensity Levels

Fig5 Histogram Thresholding

Segmenting objects by histogram thresholding is a simple and easy solvable problem
when there are no overlapped objects to be segmented. However when objects
overlapping in the histogram domain, the histogram peaks are contributed by pixels
from both overlapped image objects, and because histogram is ‘global’ and contains
no positional information, it is difficult to separate these overlapped objects. An
extension of Histogram Thresholding is the Local Thresholding. This method
analyzes the local area around the global peaks, while the peaks in the local area
could be considered as different objects. As shown in Fig2 above, the Global High
value was found by global thresholding; all the peaks above the Threshold will be
considered as one object; by doing local thrgsholding the Local High and the Local

Low are analyzed and are identified as different objects.

Region Growing
Region Growing extracts regions from an image based on predefined criteria such as

intensity information and edges. The basic idea of a simple region growing method is

14



to manually select a seed point and all the pixels connected to the seed are extracted if
they have the same intensity value as the initial seed point. The connected pixels then
are considered as seeds for next step of region growing. The major drawbacks of this
method are the manual interaction of obtaining the seed points and its sensitivity to
noise. As noise affects the intensity values of neighbor pixels around the seed point,
those neighbor pixels would not be connected when the region grows and a hole will

be formed in that region.
P(R,) =True:if | S (Prcighvor) = J (Pseea) kT
Here f(p,.,)is the intensity level of the seed pixel and f(p,,;.u,,)is the intensity

level of the neighbor pixel. When the absolute difference between the two intensity
levels is less than a small value T, the neighbor pixel can be connected and included

in the region R;, P(R;) means Pixel of Region. The figure below describes the basic

idea of the seeded region growing method.

] e Seed Pixel

4 Direction of Growth

11 B GrownPixels

« Pixels Being
11 Conswered

(b) Growing Process After a Few erations

Fig6 Region Growing

15



K-Means Clustering

Unlike the region growing method, the K-Means Clustering method [15] is an

iterative process; it groups image pixels with similar properties, such as intensity

values into segments or regions. The K-Means Clustering method takes the following

steps.

e At the beginning, random pixels are selected from the image as the centroids for
different image clusters. The centroid of a cluster is defined as the average

intensity value of the cluster pixels.
1 N
C.=— ;
T 21 f(p)

Where C. is the cluster centroid, f(p,)is the intensity value of the cluster pixel p; .

e Each pixel is examined during the iterative process and is assigned to the cluster
with the closest centroid matching its intensity value.

e After all pixels are group into different clusters, the centroids of clusters are
recalculated, then the second step and this step are repeated until one of the
clusters remains unchanged, which means no more pixels are grouped into or out

from this cluster.

Because the K-Means Clustering method needs to start by providing an initial value
of K, the concern of how to obtain a good initial value of K arises. However, this is
also the key to success for this method. The optimal K value can be obtained from
comparing the resulté of using different K values according to [16]. Noticing that

intensity is not the only choice when grouping pixels into clusters, other criteria such

16



as position and orientation can also be used. Different criteria can be combined in the

K-Means Clustering method to achieve better performance.

There are many region-growing techniques and their mathematical definitions can be

found in the literature.

Deformable models

Deformable models [17] are physics-based models that deform under the laws of
Newton mechanics, in particular, by the theory of elasticity expressed in the Lagrange
- dynamics. Deformable models provide a robust foundation for the representation,
segmentation, and manipulation of complex objects in an image. Late developments
in segmentation prefer using deformable models due to some outstanding properties
of these models. By specifying the constraints in the model, deformable model can
overcome some limitations of the traditional segmentation methods. For example,
segmentations using boundary based approach tend to fail when the brightness
between the object and background are weakly defined in the image. Region growing
algorithmé for segmentation might cause either over or under segment when the
region within the same object are poorly presented by the image. Deformable models

can also adapt to the object’s shape, size, and color in the segmentation process.

Deformable models can be broadly classified into two competing categories:
parametric deformable models (snakes) and geometric deformable models (level set

methods).
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Parametric deformable models or snakes [18] consist of an elastic curve (or
surface) which can dynamically conform to object shapes in response to internal
fofces (elastic forces) and external forces (image and constraint forces). It is more
intuitive than the implicit models. Its mathematical formulation makes it easier to
integrate image data, an initial estimated, desired contour properties and
knowledge-based constraints, in a single extraction process.

Geometric deformable models [19] consist basically of embedding the contour as
the zero level set of a higher dimensional function and to solve the corresponding
equation of motion. Such methodologies are iaest suited for the recovery of
objects with complex shapes and unknown topologies. However, due to the higher
dimensional formulation, implicit models are not as convenient as the parametric

ones, for shape analysis and visualization, or for user interaction.

Snakes

The most known parametric deformable model is the active contour model, or snake

[18], was first introduced by Kass et al., as a powerful tool for image segmentation

and has been successfully applied in a variety of computer vision and image

processing problems [20-26]. The basic idea of snake models is that an initial elastic

curve deforms itself towards the object of interest according to the internal and

external forces. The external force is responsible for the deformation and the internal

force is responsible for the curve smoothness.

The main advantage of snake models is that it can overcome several photometric

abnormalities such as contour gaps by integrating the initial contour estimation and
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desired contour properties into the segmentation process. The snake seeks energy

minima which stops the curve deformation.

It is parametrically defined as v(s) = (x(s), y(s)), where x(s), y(s) are x, y co-ordinates

along the contour and s is from (0, 1). The energy functional to be minimized is:

E:nake = J:E.make (V(S))ds = J:[Eintemal (V(S)) + Eextemal (V(S))]ds
The internal energy can be written as:

v

dv 2
E. =a(s)|—| +
int ernal (S)l dS l ﬂ(s)l dsz

Where a(s), B(s) specify the elasticity and stiffness of the snake.

The external energy functionE, ,, is derived from the image so that it takes on its

externa

smaller value at the features of interest, such as boundaries.

However, the original snake suffers from the strong sensitivity to the initial contour
position and can not deal with topological changes. Some modified snake models can
overcome these kinds of problems. For example, T-Snake [27] embeds the snake
model in the framework of a simple decomposition of the image domain. It uses
region-based statistics to weigh an inflation force; Dual Active Contour Model [28]
makes use of two contours to avoid the local minima. The inner one e#pands from the
inside of the target and the other contracts towards the target from outside. The two
contours are inter-linked to provide a balanced technique with an ability to reject

weak local energy minima.
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Level Set Methods

Geometric deformable models [19] implemented using level set methods have several

advantages over parametric models due to their intrinsic behavior, parameterization

independence and ease of implementation.

e Independent from parameterization of the evolving curve. The level set model is
parameterized only when the level set function evolution is complete. It means
that the evolving contour gets parameterized when it stops evolving. While the
parametric model has to adjust itself during the process, such as adding or
removing nodes from the curve and adjusting the spaces between nodes.

e Accuracy of computation. Because of the discrete nature of the parametric model,
the calculations, such as curvature and normal vectors remain rough or inaccurate.
From the level set function, these drawbacks can be improved.

e Level set contours can avoid the topological obstacles of the snakes; the contours

can be merged or split to adapt to the topology changes.

The level set approacl; was introduced in 1988 by S.Osher and J.A. Sethian [1]. Level
sets are designed to handle problems in which the evolving interfaces can develop
shafp corners and cusps, change topology and become very complex. It provides a
mathematical formulation for tracking the motion of a curve which can be recast as
front propagation problems. The deformation of the level set method depends on the
evolving process of the initial curve; while the evolving process depends on the
evolving speed of the front, and the speed again relies on the external force applied to

the evolving curve. Most of the challenges in level set approach result from the need
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to construct an adequate model for the speed function. The classical level set speed
function models rely on the edge gradient information to stop the curve evolving;

these models can detect objects with edges defined by gradient.

Level set method offers a powerful approach to image segmentation since it can
handle any of the cavities, concavities, splitting and merging. It has been applied in a
variety of fields including the medical image segmentation and has achieved much
success. In [29] an efficient adaptive multigrid level set method for front propagation
purposing in 3D medical image processing and segmentation was proposed and it
successfully solved the problem of segmentation with non sharp boundaries. [30]
proposed an alterative. image segmentation method which combines the
morphological watershed transform and level set methods. A new segmentation
method was proposed in [31] in order to segment a moving object against a still
background, which relies on the level set method to handle topological changes while

providing closed boundaries.

The shape provides important knéwledge about the segmenting object and it can be
incorporated into the segmenting process. Several methods of incorporating prior
shape information into the boundary determination of level set have been developed.
Staib and Duncan [32] introduced a parametric point model based on an elliptic
Fourier decomposition of the landmark points. The parameters of their curve are
calculated to optimize the match between the segmenting curve and the gradient of
the image. Wang and Staib [33] applied a statistical point model for the segmenting

curve by using principal component analysis to the covariance matrices that capture
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the statistical variations of the landmark points. Leventon et al. [34] incorporated
shape information as a prior model to restrict the flow of the geodesic active contour.
Their shape model is derived by performing principle component analysis on a
collection of signed distance maps of the training shape. The curve evolves according
to two competing forces: the gradient force and the force exerted by the estimated
shape where the parameters of the shape are calculated based on the image gradient
and the current position of the curve. Chen [35] proposed a model that uses the
geodesic contour model and an “average shape” as the prior shape which defines a
term in the evolving function of the model. This approach showed potential for image

segmentation incorporating a shape that can be collected before hand.

In this research project, a prior shape is incorporated into the active contour model as
the global constraint to do the bone fracture detection. Bone fractures are common
occurrence, manual inspection of bone fractures is tedious and time consuming and
their presence can often be missed during X-ray diagnosis. Several methods have
been developed for bone fracture detection during past decades. Tian et al. [36]
developed a method to detect bone fractures by computing the angle between the
neck axis and shaft axis, the bone fracture detection makes uses of Canny edge
detection technique with Hough transform linking method and snake model to extract
the femur boundary and to form a continuous contour of the femur respectively. This
method could fail in cases that the snake points are not accurately located at bone
boundaries. M. Donnelley and G. Knowles [37], introduced a method detecting

fractures in long bones takes three steps: first, extracting bone edges using a
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morphological scale space approach to smooth the image and preserve the important
boundary information; the second step is the edge lines approximation using Hough
Transformation; the last step is to do the gradient analysis for determination of the
presence of fractures. It allows the abnormal regions including the fractures to be
highlighted and detected. This method is based on the accuracy of the edge detection
to calculate the composite gradient measure, if some edges are missing or very weak,
the false positive results will be produced. Furthermore, the fractures parallel to the

bone edge are not detected as well as those perpendicular ones.

The ACM with prior shape method studied in this research is based on level set active
contour model, which detects the bone fractures by using an active contour deforming
itself to find the bone boundary; a prior shape incorporated in the process regulates
the behavior of the active contour from evolving out of weak edges. The active
contour propagates with a velocity function defined based on the image gradients and
the prior shape information. The propagation stops when the active contour arrives at
high gradients or closely matches the prior shape. It segmented out the fractured bone

pieces and then calculated their axes in order to display their alignment.
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Chapter 3

Methods

In this chapter, the methods used to segment the fractured bone in this thesis project

are introduced sequentially from the mathematical point of view.

3.1 Edge Detection

Several edge detection techniques are implemented comparably in this thesis project

in order to obtain an optimal edge map from the original image.

3.1.1 Robert Edge Detector

Robert edge detector is one of the simplest 2D spatial gr_adient edge detectors; it
highlights the high frequency componenfs which often correspond to edges. Robert
edge detector consists of 2 convolution kernels (2x2) with directions of one

orthogonal to the other (see figure below).

1 0 0 1

0 -1 -1 0

Gx Gy
Fig7 Robert Cross Convolution kernels

The kernels Gx and Gy are designed to respond to edges at diagonal directions

(£45°).
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When convolving them with an input image, the gradient of a corresponding point

(x,y) is given by
|G |=/Gx* + Gy’
or its approximation |G H Gx|+|Gy]|-

The angle of orientation is given by

@ = arctan(Gy/Gx) -3z /4
The reason of subtracting the angle by 135 degrees is that the kernels are convolved

in the diagonal directions, not in the x and y directions.

The gradient magnitude can be approximated by combining the two kernels into one,

which gives the approximaté magnitude|G|=| P, - P, |+| P, - B |.

R | B

B | A

Fig8 Approximation kernel of Robert Edge Detector

The Robert edge detector is very computation efficient, because there are only 4
pixels are involved in the calculation to determine the output pixel value; on the other
hand, it is sensitive to noise due to its small size and it can only perform well when

the edges are very sharp.
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3.1.2 Sobel Edge Detector
Sobel edge detector consists of a pair of 3x3 convolution kernels. Similar with Robert
kernels, the two kernels are orthdgonal to each other; unlike the Robert kernels, it

performs convolution in the direction of x and y.

-1 0 1 1 2 1

2 0 2 0 0 0

-1 0 1 -1 -2 -1
Gx Gy

Fig9 Sobel Edge Detector kernels

The gradient is calculated by
G =G +Gy?
or |G|=|Gx|+|éy|.
The angle of orientation is given by
6 = arctan(Gy/ Gx)
The gradient magnitude can be approximated by convolving the kernel below with an

input image.

R | P | AR
F, Py F
P, | R |FK

Figl10 Approximation kernel of Sobel Edge Detector

The approximated magnitude is given by
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|G |= (P, +2P, + B,)— (P, + 2P, + B)) | +| (P, + 2P, + P,) — (P, + 2P, +P)|
Compared with the Robert edge detectors, the Sobel is slower in computation, but it is

less sensitive to noise because of its bigger kernel size.

The following are some visual results for the edge detectors and their comparison:

(€)) (b) : (©)
Figl1 Robert/Sobel Edge Detector results (1)
(a) Original Fractured arm X-ray picture without cast material applied
(b) Robert edge detector result
(c) Sobel edge detector result

(@) (b)
Fig12 Robert/Sobel Edge Detector results (2)
(a) Original Fractured arm X-ray picture with cast material applied
(b) Robert edge detector result
(c) Sobel edge detector result

When cast material is applied to the X-ray images, the edge detection results are poor

due to the noise introduced by cast material and gradient edge detectors are sensitive

27



to noise. Therefore before edge detection the input image is always processed by a
noise reduction process; the noise reduction is achieved by using Gaussian Noise
Filter (GNF) in this thesis- project. The following pictures show the results of

Gaussian + edge detectors.

(b) ‘
Figl3 GNF + Robert, GNF + Sobel results

(a) Fractured arm X-ray picture with cast material applied

(b) Gaussian Noise Filter + Robert edge detector result

(c) Gaussian Noise Filter + Sobel edge detector result

The Gaussian noise filter used here has the kernel as below.

" Figl4 Gaussian Noise Filter Kernel (0 =1.4)
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3.1.3 Canny Edge Detector

Canny’s edge detector [38] improved the edge detection algorithms described above.

The canny edge detection algorithm consists of the following steps.

Noise reduction. Filtering out noise is the most first step that many image
processing applications always take, and so is canny edge detector. By applying
Gaussian filter using standard convolution methods, the Gaussian filter kernel is
sliding over the image. The larger the width of the Gaussian mask, the lower is

the detector’s sensitivity to noise.

g(m,n) = f(m,n)*G,(m,n)

Where, G, = —2'1\/—————23?(1) [‘ L"% ]
, o

The filter kernel used is the one shown in Fig15.

Edge strength calculation by gradient edge operator. This step performs a 2-D
spatial gradient measurement on the image (the Sobel operator is used in this
research project). Once done, the edge strength (approximated gradient magnitude)
of each point can be found. The Sobel operators are one pair of 3x3 convblution

masks and are applied upon x and y directions respectively.

-1 0 1 1 2 1

-2 0 2 0 0 0

-1 0 1 -1 -2 ] -1
Gx Gy

The gradient magnitude or edge strength is calculated by |G| = |Gx| + |Gy.
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Edge direction. The edge direction is calculated by the inverse tangent of the
gradient sum along the directions y and x. Due to the possible zero value of x
direction gradient, the error will occur. To avoid this, when x direction gradient is
zero we assign the edge direction to be 0 or 90 degrees according to the value of
the y direction gradient. If Gy is 0, edge direction is 0 degree, otherwise it is 90
degrees.

Edge_direction_theta = inverse_tangent (sumGy/sumGx)
Edge direction trace. This step performs an operation relating the calculated edge
direction with the pixels inside the image, which means we group the edges into
four directions: horizontal (yellow, O to 22.5 & 157.5 to 180 degrees), positive
diagonal (green, 22.5 to 67.5 degrees), vertical (blue, 67.5 to 112;5 degrees) and
negative diagonal (red, 112.5 to 157.5 degrees). See Figl9 below.
Non-maximum suppression. The non-maximum suppression is used to trace along
the edge in the edge direction and suppress any pixel value that is not considered
to be an edge. |
Dashed edge repair. The dashed edge could occur because the edge pixels
gradients are below and above one threshold. Thus when threshold applies, some
points value are set to zero. To avoid this, Canny adopted the two-threshold (low
and high) method. If the magnitude is below the first threshold, it is set to zero; if
it is above the high threshold, it is made an edge; and if the magnitude is between
the 2 thresholds, it is' set to zero unless there is a path from this pixel to a pixel

with a gradient above the high threshold.
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90°

Figl15 Canny Edge Direction Trace

The figure below shows the steps taken for a Canny edge detection process.

4 Input
- Image

=

Gaussian

 Filter

=

Sobel
_Detector .

=N

Edge

Orientatior :'>

Threshold

:D

Output
Image

The following are some visual results from Canny Edge Detector.

Fig16 Canny Edge Detection Steps

(a) Orignal

(a) Original

(b) Canny Edge Map

Figl7 Canny Edge Detector results
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3.1.4 Laplacian Edge Detection

The Laplacian is a 2-D isotropic measure of the 2nd spatial derivative of an image.
The Laplacian of an image highlights regions of rapid intensity change and is
therefore often used for edge detection. The second order derivative of an image is

defined as,

2 af o’ f
Vf'a2 oy®

This formulation consists of two different derivatives, which represent x direction and

y direction respectively, the discrete form can be expressed as below.

9’ f

Fye =f(x+Ly)+f(x=Ly)=-2f(x,y)

9’f .
ayz =f(x,}"*'l)"'f(X,y—l)—Zf(x,y)

Vf=[f(x+Ly)+ f(x=Ly)+ f(xy+D+ f(x,y=D]-4f(x,y)

It also can be expressed as Kernel (1),

0 1 0 -1 -1 -1

1 -4 1 -1 8 -1

0 1 0 -1 | -1 -1
Kernel (1) | Kernel (2)

Fig18 Two commonly used Laplacian kernels

Another slightly different version from Kernel (1) incorporates two diagonal terms,

which introduces Kernel (2).
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The core of Lapiacian edge detection is the Laplacian of Gaussian (LoG), since the
Laplacian edge detector alone is sensitive to noise. Traditionally, a Gaussian
smoothing filter is applied before Laplacian in order to achieve the noise reduction.
The drawback is that two convolution steps need to be performed separately, it is
computation consuming. Because of the associative property of the convolution
process, the two convolution steps can be combined together, thus a kernel of LoG

can be formed as below.

2 2 Ky
LoG(x,y) =— 14{1—)‘ +y] N
o

202 |€ *

V2GRN =VGR®I

Where V? represents the Laplacian operation, and G represents the Gaussian
smoothing operation, I is the input image. The discrete approximation of LoG kernel

can be found in Fig3.
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The figure below shows the visual results of the LoG edge detector.

Fig19 Laplacian of Gaussian results
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3.2 Morphological Operations

3.2.1 Set Theory

Mathematical Morphology [3] is based on Set Theory;‘ it offers a unified and
powerful approach to numerous image processing problems. Sets in mathematical

morphology represent objects in an image. The basic set theory operations can be

represented by the Figures below.

A NOT(A)
NOT
- ©
B (4) AND (B)

AND

(A) OR (B)

NOT-
AND

=

i
02

Fig20 Basic Set Theory Operations

Fundamentally morphological image processing is very like spatial filtering and the
structuring element is moved across every pixel in the original image to give a pixel
in a new processed image. A structuring element is a matrix consisting of only 0’s

and 1’s that can have any shape and size.
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3.2.2 Mathematical Morphological Operations
The value of this new pixel depends on the operation performed. There are 4 basic
morphology operations: Dilation, Erosion, Opening and Closing, and their definitions
are described below.
@ Dilation:
Dilation of image f by structuring element s is given by
f@s=(z|(), N flc /)
The structuring element s is positioned with its origin at (x, y) and the new
dilation image is determined by: Translating the origin of the reflection of the
structuring element by point z inside the original image f, the translated result then
intersects with the original image f, the point z is in the dilation image if it
satisfies that the intersection result is totally included inside the original image f.
® Erosion:
Erosion of image f by structuring element s is given by
fOs=1zl(s), € X)
The structuring element s is positioned with its origin at (x, y) and the new erosion
image is determined by: Translating the origin of the structuring element along
the point z inside the original image f. The point z is in the erosion image if it

satisfies that the translated result in included by the original image f.

® Opening
The opening of image f by structuring element s, denoted by f © s which is simply

an erosion followed by a dilation.

fos=(fOs)ds
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1

A ACB A*B=(AGB)®B
Original shape After erosion After dilation
(opening)

Fig21 Opening Operations
® C(Closing
The closing of image f by structuring element s, denoted by f* s which is simply a

dilation followed by an erosion.

fes=(Ds)Os

A-B=(AOB)OB

A A®B
Original shape After dilation After erosion
(closing)
Fig22 Closing Operations

The TopHat Transform is an eXtensi_on of morphology operations, which is defined as

the differencc; between the original image and the closing/opening image. Thus there

are two versions of TopHat Transforms.

® TopHat(A,B)=A—(A°B), the difference between the original image and
opening image

® TopHat(A,B)=(AeB)—A, the difference between the closing image and

original image
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The purpose of morphological processing is primarily to remove imperfections added
during segmentation. The morphological operations are used in this thesis project as

low level image processing techniques of noise removal and edge detection.

3.2.3 Morphological Operation Visual Results

The following are some visual results of the Morphological operations.

v

Original X-ray

L.

Dilation (structure element 5x5) Dilation (structure element 7x7)
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Dilation (structure elemem9x9; Dilation (structure element 1 1x1 1 ‘
Fig23 Dilation results (structuring elements size of 5x5, 7x7, 9x9, 11x11)

The above figures show the results of dilation operation with different sizes of
structuring elements. The following figures show the results of erosion operation with

different sizes of structuring elements.

Erosion (structure element 5x5) Erosion (structure element 7x7)
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Erosion (structure element 9x>9{) Erosion (structure element 1 Ix1 1)
Fig24 Erosion results (structuring elements size of 5x5, 7x7, 9x9, 11x11)

The results of opening, closing operations and TopHat operations are shown below.

(a) Opening Results (b) Closing Results
Fig25 Opening and Closing Results

(a) TopHatl 4 _ (4. ) (b)TopHat2 (4 « B) - A
Fig26 TopHatl and TopHat2 Results
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The following results are obtained from subtracting the dilation image with the

€rosion image.

Fig27 Morphological Operation Results
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3.3 Mutuai Information

Mutual information [39] concerns about the measurement of the information carried
by a variety of media, such as telegraphs, voice, and images. It is derived from
Information Theory. The study of Entropy, a literature term for measure of
information, originates from the communication theory, which cares about the
broadcast of a message from a sender to a receiver. Hartley [40] first defined a
measure of information of a message in 1928 by representing a message by a string of

symbols; each symbol has different possibilities of occurring in the message.

Let M be a message, n represents the number of symbols in the M, and s represents
different possibilities for each one of n symbols, thus there are s" different possible
messages. The key problem is to seek a measure H as for the information the message
contains. Hartley first gave H the definition as,

H =nlogs =logs"

Shannon introduced an adapted information measure; it overcame the drawback of
Hartley information measure, which considered the occurrences of symbols in a
message equally. By Shannon’s information measure, the weighted symbols are
measured by their occurrences in a message, or their probabilities. The Shannon’s

entropy [41] definition is given below,

1
H=3p, log—- = =2 pilogp,
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The p; represents the probability of occurrence for the event i. The higher the value of

H, the more the uncertainty, and more information the message contains.

In the information theory, the Mutual Information (MI) [42] [43] of two random
variables is a quantity that measures the mutual dependence of the two variables. MI
measures the information about X that is shared by Y. In image processing field, MI
tells the amount of uncertainty about image X minus the uncertainty about X when Y
is known (vice versa). In mathematics, there are 4 MI definitions shown as below.

I(X,Y) = H(X)- H(X|Y)

I(X,Y) = H(Y)- H(Y|X)

IX,Y)=H(X)+ HY)-H(XY)

p(x,y)

I(X,Y)= I
( );yp(xy) o o)

The second definition points out that maximization of the MI are equivalent to
minimize the joint entropy. And the third definition describes a measure of the
Kullback-Leibler distance between the joint distribution of the images’ gray values

p(xy) and the joint distribution in case of independence of the two images, p(x)p(y).

The MI has the following properties.
® J(X,Y)=1I(Y,X), symmetric property.
® /(X,X)=H(X), the information image X contains about itself is equal to the

information (entropy) of image X.
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® [(X,Y)<=H(X),I(X,Y)<=H(Y), the information the images contain about
each other will never greater than the information in the images themselves.
® [(X,Y)>=0

® J/(X,Y)=0,if and only if X and Y are independent.

The MI is used in image registration as a criterion that states the images are
geometrically aligned by the transformationT , for which 7(X,Y)is maximal. It is
assumed that the amount of information that X contains about Y is the maximal in the
registered position. In this research project, the MI between the priori shape model
and the evolving curve was calculated as an attempt of measuring their shape

similarity.

44



3.4 Deformable Models

3.4.1 Snakes (Parametric deformable models)

Snakes, or active contour models, first introduced by Kass et al in 1988, can be
viewed as Lagrangian geometric formulations wherein the boundary of the model is
represented in a parametric form. The deformation energy function is minimized with
‘internal’ and ‘external’ energies along its boundary. The geometric information is
considered to be internal energy and image gradients are external energy. The snakes

act like elastic bodies that stabilize when the energy function is minimized.

The snake is parametrically defined as v(s) = (x(s), y(s)), where x(s), y(s) are x, y co-

ordinates along the contour and s is from [0, 1].

The energy functional to be minimized is:
Ere = [ Epte ()5 = [[E ot (V) + E g (V(5))1ds

The internal energy can be written as:

dv 2 d 2V 2
E, =a(s)|—| +0() | —
int ernal ( )l dSI ﬁ( )l dS2 |
Where a(s), 5(s) specify the elasticity and stiffness of the snake. The internal energy

provides the snake a smoothness determination and makes the snake tend to be more
continuous and smooth. On the contrary, the external energy drags and attracts the

snake towards a priori known object shape and close to the object boundary.

45



3.4.2 Level set methods (Geometric deformable models)
Theory
The main idea of the level set method describes a closed curve I' in the image plane
as the zero level set of a higher dimensional function @(x,?) in R°, the value of ¢ at
some point x is defined by

#(x,t=0)=1d .
Here d is the distance from x to the zero level set curveI”, and the sign is chosen
depending on whether the point x lies inside or outside the curve. I"is propagating in
the plane in a direction normal to itself with speed F. The closed curveI can be
expressed by the zero level set of the level set function

I'(¢) ={xe R* | §(x,t) = 0}.
It gives the position of the front at any time .

The evolving process of @#(x,t) can be modeled as:
¢ .
35 +F||Vg|=0 with ¢(x,t=0)

The figure below shows the level set function transformation in 2D and 3D.

Curva Inicial

I=

Fig28 Transformation of front motion in 2D and 3D
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Signed distance function and Narrow Band
Consider an image plane Q, the zero level set curve I" divides it into two sub domains
(as shown in the figure below): interior and exterior. The level set function is

initialized as the signed distance function:

d(x,T)
P(x)=
-d((x,T")
When x belongs to the interior domain, the sign of the distance function is positive;

while x belongs to the exterior domain, the sign is negative; the distance is zero when

x is on the boundary.

$<0

Interior

¢ >0 Exterior

Fig29 Zero level set curve I and image plane

Narrow band Level set method stems from observing that only the values of the level
set function near its zero level set are essential. Thus only the values at the grid points
in a narrow band around the zero level set have to be calculated. As the zero level set

moves, the signed distance function in the narrow band must be maintained.
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Re-initialization

The initial level set function is defined as a distance function and during the evolving
process the level set function could be changed into a non-distance function. This
requires that we need to‘ preserve the level set function as a distance function while
the front curve evolves. Re-initialization of distance function provides a method of
preserving the level set function as distance function. The idea behind the re-
initializing distance function is simple by stopping a level set calculation at some
point in time and rebuilding a level set function corresponding to the signed distance
function. Several methods have been developed to accomplish this re-initialization.
Choop’s method [44] reattached level sets to a bounding wire frame and simply
recomputed the signed distance function at each grid point in a narrow band and find
the distance to the front. Sussman, Smereka and Osher [45] developed a different
technique for the distance function re-initialization without explicitly finding the zero
level set. But it is relatively crudeness because of the sign checking for the distance
function of this iterative re-initialization method. Another method introduced by
Sethian [46] is to avoid the re-initialization as much as possible and use extension
velocities for replacement, but the construction process of the extension velocities is

kind of time-consuming.

Segmentation with priori shape model
Shape is a powerful property to distinguish an object from its surroundings in an
image. It is commonly used to complete the information provided by local properties

of an image. In medical imaging, geometric shape models provide extrinsic
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information about objects and are often incorporated explicitly, especially for the

segmentations where prior shape information can be collected.

3.5 Shape Moments

The priori shape model needs to adjust itself to match the object of interest because
the initial position of the priori shape model is often far from the matching position.
Rotation and Translation are applied to the priori shape model after each evolving
step. By rotation, the priori shape model makes use of the axis angle difference
between the evolving curve and itself; by translation, the distance between their
centroids is used. All the axis angles and centroids calculations are based on the shape
moments [47], which obtain the shape center location and the orientation from object

boundary information.

Important information about a shape such as its size, center location and orientation
are all moment based attributes. For example, the size of a shape is the (0,0)th order
moment of the shape. The (p,q)th moment of continuous 2D function f{x,y) and

discrete 2D array p(i,j) are defined as below.

myy = [ [ x"y"f(x,y)dxdy
M N
m,, =2 i"j*p(, )

i=1 j=1
Traditional shape moments calculation is using the occupancy array of a shape, every
single pixel in the array is used. The calculation is not efficient especially when the
occupancy array of an object is big. The method introduced here makes use of the

shape boundary information to do the shape moments calculation. Shape corner
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points are used to form numbers of triangles, the moments of these triangles are
computed first, and then the moments of the shape are derived from the triangles’

moments.

Y Axis

X-Axis
Fig30 Shape corner points formed triangles

For a triangle T with corner points of (0,0), (x,, y,) and (x,,y,), the corner points form
three  triangles, and their (p,g)th moment are represented by

My 1My 2> M, sTESpECtively. The triangle T°s (p,g)th can be calculated by

Mpqr = Mgy TMpyy =My

Because the priori shape model and the evolving curve are represented by their
boundary points, these points can form numbers of triangles; the priori shape model
and the evolving curve’s moments can be derived from the moments of these

triangles.
n
My, s = meyri - sign(i)
=

Where the sign(i) is the sign associated with triangle 7, and has the value of 1

X; Xin1

when tan™ (LJ >tan™ [h) , otherwise -1.
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The shape center or the center of gravity (c,, c,) of a shape S can then be derived by

My s T Mgy

When the origin of the coordinate system is moved to the center of the shape, we can

obtain the central moments of the shape 4, ., s, and the shape orientation 6;can be

derived from it.

Hipps = J‘J‘(x‘cx)p(}’—c,‘)qf(& y)dxdy

2 2
m, m
_ 7hoL877"02,8 — 0L.§ — 10.5
Hys = sHops = sHys =
00,5 My s My s
1. o 24
6, =—tan ppe— R

2 Hys —Hors
Other shape attributes such as spread, elongation can also be derived from the shape

moments.
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Chapter 4

- Experiment Results

In this chapter, results for the experiments are provided for the proposed segmentation
method [48], which incorporates the priori shape model into the segmenting process

using the level set active contour model. The experiments were conducted upon the X-ray

images of the patients’ fractured arm.

4.1 Simulation System Architecture

A simulation system is designed and developed using Microsoft visual C++. The

architecture is shown below.

Input Images

)

Image Loading

—

Image
Preprocessing

Jb

Output Result

=

Alignment
Detection

e

Level Set
Evolving
Process

l

Image Priori
Shape Model
Extraction

There are two types of input images, the non-cast X-ray image and the cast X-ray image.
The non-cast X-ray image is taken before applying the cast material on the patients’
fractured arms and the cast X-ray image is taken with cast material applied. Image
Loading reads in the two types of input images separately and passed them to Image
Preprocessing. Image Preprocessing handles noise reduction and edge detection for the

input images. Priori shape model extraction operation is carried out on the preprocessed
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image results of the non-cast X-ray images because the bone boundary is much clearer
than the one from the cast X-ray image’s edge map. The extracted priori shape model is
then inputted to the Level Set Evolving Process which starts the segmentation process by
evolving an initial curve inside the fractured bone pieces. After that, the axes of the
fractured bone pieces are drawn on the screen and their angle difference can be calculated
for alignment diagnosis. The output results are then used by the radiologists to determine

the displacement and the miss-alignment between the fractured bone pieces.

Noise reduction operation is first applied to the patient’s fractured bone X-ray images.
This is done by using morphological operation of Erosion with the structuring element

size of 5x5 and its shape of square. An illustration is shown as below.

n:.
uju

Fig32 Erosion and Dilation

Erosion removes noise by specifying its structuring element size larger than the noise

shape size.

E=X6S ={z|(S), c X}
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Here X represents the input X-ray image, and S represents the structuring element of the
_ erosion operation. The origin of the structuring element S is translated by the point z and
makes sure the structuring element S is contained inside X. The result image E consists of

all the point z.

Fig33 B=D-E

After the erosion operation, an easy way of obtaining the edge map B is to subtract the

dilation result D of the original X by the erosion result image E (see Fig32).

D=X8S = (2| [(S), N X] < X)
The dilation result D is obtained by translating the origin of the reflection of the
structuring element S by the point z to make sure the original X is included.
The above figure shows two edge maps for the cast X-ray image and the non-cast X-ray

image respectively.
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4.2 Priori Shape Model Extraction

The edge map for the non-cast X-ray image is passed to Priori Shape Model Extraction
process to extract the priori shape model; the edge map for the cast X-ray image is passed

to Level Set Evolving Process for segmentation.

A level set initial curve is manually placed inside the fractured bone piece, and it evolves
towards the boundary of the fractured bone piece automatically. The evolving process is

shown in Fig34 (see Figure below).

Fig 34 Priori shape model extraction

The curve evolution function is as below,

aC
———VC div(g(I
| VC|div(g( )IVCI

—g(I)IVCIdW(g(I) )+Vg(1) vc

=g(D|VC|k+Vg)-VC
The energy function is given by,
E(C)=C(q) [¢(VI(C(@)D|C () ]dg

By minimizing the energy E(C), the curve C will be stabilized on the boundaries of

objects in the image. The image gradient is often given by
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g(vr)
The final blue curve is the extracted priori shape model and is saved to a .txt file. The
extracted priori shape model is then loaded and passed to the Level Set Evolving Process

together with the previously obtained edge map for the cast X-ray image (see figure

below).

Fig35 Priori shape model loading

The right figure above shows the initial curve is placed inside the fractured bone piece
and the priori shape then adjusts its centroid to the position where the initial curve is

placed.

4.3 Level set evolving process with priori shape model

The initial curve evolves based on the level set evolution function that a priori shape
model is embedded. The energy minimization function with priori shape model is

changed as,

C@) ftsq VIC@ID+5d*RC@)+ D} C @) dg
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Here A > 0 is a constant, and d is the distance from a point (x,y) to the priori shape model .
The minimization problem now can be solved by finding steady state solutions to the

following system:

oC

5‘ =-=vn, C(OaQ) = Co(q)’

a '
a_‘t‘=-/1jdVd-Rc|C (9) | dg, u(0) = 1,

20 dR -

> " —xlﬂ_[dVd : (d_BC) | C ()| dq,6(0) = 6,,
oC :

== —ﬂIdVd- | C (9)|dg,T(0)=T,,

v=Vg n+gk+As(dVd)- (Rn) + Ad*k

Here #n is the outward unit normal to C, and % is the curvature of the curve C.

After each evolving step, the priori shape model adjusts itself by means of rotation and
translation. In rotation, the priori shape model rotates the angle equal to the angle
difference between the axes of the evolving curve and priori shape model. In translation,
the priori shape model adjusts its centroid to the position where the evolving curve’s
centroid is. Both the angles of their axes and their centroids are calculated based on the

shape moment methods which are described below.

LetC,(x,, y,) represent the centroid of the evolving curve E andC, (x,,, y,, ) represent the

centroid of the priori shape model M.

C.(x,y): x=—"—, y =—=—
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The my, ; , my, ; and my, . represent the (0,0), (0,1) and (1,0) moment of shape E (the

evolving curve). The my, ,, ,m,, ,, andm,, ,, represent the (0,0), (0,1) and (1,0) moment of

m m
.o _Mhom _ Moy pm
Cm(xm ’ ym) . 'xm - ’ ym -

Moo p Moo,m

shape M (the priori shape model).

The axis of shape S is calculated based on the central moment /£, ., ; of the shape. This

can be done by moving the origin of the coordinate system to the center of the shape.

Let &, and 6,, represent the shape orientations of the evolving curve and the priori shape

model respectively.

They are given by,

Here u,,  , l5, r and u, , represent the (1,1), (2,0) and (0,2) central moments of the

evolving curve E; i, , Uy, and U, ,, tepresent the (1,1), (2,0) and (0,2) central

2 2
_ mOl,E’nOZ.E _ ’nm.s - nlm.f
Hoe = sHo g = sHype =
My £ My, g My g
1 a0 2
6, =—tan” ———=——
2 Hwr Mok
2 2
_ mOl,M’"OZ,M _ ’nm..u _ "ll().M
Hym = sHom = sMaom =
00,M Moy a1 Moo a1
2u
- 11.M
6, =—tan” —————

2 Hyony — Hoom

moments of the priori shape model M.
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Let M, represent the rotated and translated priori shape model. The rotation and

translation process can be expressed as below,

M, =MRs+T
cos & -—sind
=1 . o ,0=0, -6
sin & cosé

T=[xd yd]’ xd ='xm _xe’yd = ym —ye
Here s is the scaling factor for the priori shape model. For a point (x,y) on the priori shape

model M, the point (x*, y*) on the M ,,, can be expressed by,

_(x—x,)cos8+(y— y,)sin@
s k]
_—(x—x,)sin@+(y—y,)cosd

x*

y*

)
The scale factor s is chosen based on min-distance between the priori shape model and
the evolving curve. For two curves, priori shape model M and the evolving curve E, the
min-distance algorithm is described as below.
for each point p on E,
calculate the distance between it and the centroid and sum them together,
for each point p on M,
calculate the distance between it and the centroid and sum them together,
calculate the difference between the two sums
for a range of model scaling factor s, scale the model and recalculate the distance
between E and the scaled M . if at one scale position, the recalculated distance is

the minimum, then record the position and adjust M to the new fit.

(Note: The main source codes for the evolving, translation, rotation and scaling are listed in Appendix A-D.)
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Fig36 shows an example of the curve evolving process.

Fig 36 Curve evolving

After each evolving process, the priori shape model adjusts itself with the evolving curve.
In the next iteration, the evolving process will reference the newly adjusted priori shape
model. The same process goes through for another fractured bone piece.

The figures below show the two matching results and the final result.

Fig37 Matching results
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More experimental results are shown below. The blue curve represents the initial position

of the priori shape model; the yellow curve represents the matched result.

Case #1

(a) Original X-ray (b) Final Matching Result

Case #2

(a) Original X-ray (b) Final Matching Result
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Case #3

Case #4

(a) Original X-ray

(b) Final Matching Result

(a) Original X-ray

(b) Final Matching Result
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Case #5

Case #6

(a) Original X-ray

(b) Final Matching Result

(a) Original X-ray

(b) Final Matching Result
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Case #7

(a) Original X-ray (b) Final Matching Result

Case #8

(a) Original X-ray (b) Final Matching Result
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Case #9

(a) Original X-ray

(b) Final Matching Result

Case #10

(a) Original X-ray

(b) Final Matching Result

Fig38 Other matching results

65




Chapter 5

‘Conclusion and Future Work

5.1 Conclusion

In the research, an image segmentation method based on active contouring model was
studied, which incorporated the priori shape model as the global constraint to regulate the
evolving process of the active contour. The goal was to segment out the fractured bone
pieces from the noisy background of the cast X-ray images and to calculate the
misalignment of the fractured bone pieces. The active contouring model is implemented
based on the level set method, in which the contour is propagated by evolving a time-
dependent embedding function according to an appropriate partial differential equation.
The curve evolves along the normal n with a speed F and stops evolving when a big
gradient boundary is encountered. The difficulties of how to overcome the noise
introduced by the cast material and how to prevent the active contour growing out of the
area defined by the faint edges, have been solved. Morphological operations of erosion
and dilation suppressed the noise by choosing the structuring element size (5x5) larger
than the noise shape size. The operations also preserved the edge information very well.
An edge map was obtained by subtracting the dilation result with the erosion result of the
X-ray image which is better than using traditional edge detection techniques. Embedded
into the evolving process, the priori shape model provided a global constraint to the
evolving curve and kept it from leaking out of the weak edges due to the important shape

information provided.
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The overall performance of the segmentation method was satisfactory (as shown by the
results in Chapter 4). However, there were non-perfect segmentation results produced by
the method and they can be attributed to two reasons. The first reason is that the edge is
really weak, e.g., two bones are overlapped. In this case, the area of the sharp intensity’s
discontinuity is large and the boundary is difficult to separate. The second reason is that
only the global constraint (priori shape model) is not sufficient to guarantee the perfect

segmentation result, more constraints need to be considered in above case.

5.2 Future Work

As was discussed above, the segmentation method needs to incorporate more information
as constraints to the evolving process in order to perform better. For example, a possible
constraint could be the intensity distributions inside the priori shape model. Another

future extension is the automatic placement of the initial curve.
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Appendices

Appendix A:

Curve Evolving Source Code

void CLoadMedBoneImgView::MS_evolving(int i) {
CPixelCurve tempAcurve;
CPixelCurve tempBcurve;
CPixelCurve tempCcurve;
CPixelCurve temp;

CPixelCurve tCurve;

int total, totalc;

CPoint p;

float CurvecentroidX, CurvecentroidY;
int ii, sumX = 0, sumY = 0;

total = m_currentCurve.curve.GetSize();
for (ii = 0; ii < total; ii++) {
sumX += m_currentCurve.curve[ii] .x;
sumY += m_currentCurve.curve[ii].y;

CurvecentroidX = (float)sumX / (float)total;
CurvecentroidY = (float)sumY / (float)total;
tempCcurve.Copy (cCurve) ;

totalc = cCurve.GetSize();
cCurve.RemoveAll() ;

for (ii = 0; ii < totalc; ii++) {
p.x = tempCcurve[ii] .x - (int) (CurvecentroidX-m_modelP.centroidX) ;
p.y = tempCcurveliil.y - (int) (CurvecentroidY-m_modelP.centroidy) ;
temp.Add(p) ;

}

cCurve.Copy (temp) ; // (tempCcurve) ;

m_modelP.curve.RemoveAll () ;

m_modelP.curve.Copy (temp) ; // (tempCcurve) ;

tempCcurve .RemoveAll () ;

for (ii = 0; ii < total; ii++) {
p.x = aCurvelii] .x;
p.y = aCurveliil.y;
tempAcurve.Add (p) ;
}
total = tempAcurve.GetSize();
tempAcurve.Copy(m_currentCurve.curve);
for (int k = 1; k <= i; k++) {
clear_MaskImg() ;
tempBcurve.Copy (traceBorder (tempAcurve, 1));
// New Code Add here...
int tv = 3;
set_maskImage_to_T(temchurve,tv);
CempCcurve.RemoveAll();
tempCcurve.Copy(traceBorder(temchurve, 1)) ;
tv ++;
set_maskImage_to_T(tempCCurve,tv);
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tempBcurve.RemoveAll () ;
tempBcurve.Copy (traceBorder (tempCcurve, 1)) ;

tCurve.RemoveAll() ;
tCurve. Copy (
Evolve_to_ModelShape (tempAcurve)) ;

clear MaskImg();
tempBcurve.RemoveAll() ;
tempBcurve.Copy (traceBorder (tCurve, 1));
// minpath algorithm start here...
tv = 1;
set_maskImage_to_T (tempBcurve,tv);
tempCcurve.RemoveAll () ;
tempCcurve.Copy (traceBorder (tempBcurve, 1)) ;
tempBcurve.RemoveAll () ;
tv ++;
set_maskImage_to_T (tempCcurve,tv) ;
tempBcurve.Copy (traceBorder (tempCcurve, 1)) ;

// make the mask on the mask image...
tCurve.RemoveAll () ;
tCurve.Copy (minPathLine()) ;

// curve post process start here...
tempBcurve.RemoveAll () ;

tempBcurve.Copy (traceBorder (tCurve, 1));
tv = 250;

clear_MaskImg() ;

set_maskImage_to_T (tempBcurve,tv);
tempAcurve.RemoveAll () ;

tempAcurve. Copy (processResultCurve (tCurve)) ;
tCurve.RemoveAll () ;
tCurve.Copy (tempAcurve) ;

aCurve.RemoveAll () ;
aCurve.Copy (cCurve) ;
cCurve.RemoveAll () ;
cCurve.Copy (tCurve) ;

m_currentCurve.curve.RemoveAll () ;
m_currentCurve.curve.Copy (tCurve) ;
GetDocument () ->UpdateAllViews (0, 0, NULL);
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Appendix B:

Model Translation Source Code

void CLoadMedBoneImgView: :Model_Translation (void)
{
int i,totalm,totalc;
CPoint p;
CPixelCurve tempCurveM, tempCurveC;
tempCurveM.Copy (m_modelP.curve) ;
tempCurveC.Copy (m_currentCurve.curve) ;
totalm = tempCurveM.GetSize() ;
totalc = tempCurveC.GetSize() ;
CPixelCurve tempCurve;

double sumXm = 0,sumYm = 0, sumXc = 0, sumYc = O;
float dx,dy;

dx = m_modelP.centroidX - m_currentCurve.centroidX;
dy = m_modelP.centroidY - m_currentCurve.centroidY¥;

m_modelP.centroidX = m_currentCurve.centroidX;
m_modelP.centroidY = m_currentCurve.centroidy;

for (i = 0; i < totalm;i++){
p = m_modelP.curveli];
p.x -=(long) dx;
p.Y -=(long) dy;
tempCurve .Add (p) ;
}
m_modelP.curve.RemoveAll () ;
m_modelP.curve.Copy (tempCurve) ;
cCurve.RemoveAll () ;
cCurve.Copy (m_modelP.curve) ;
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Appendix C:

Model Rotation Source Code

void CLoadMedBonelImgView::Model Rotation_OnTheta(double theta)

{

int i;

double x,y;

CPoint

pi

CPixelCurve tempCurve;

double stheta, ctheta, temptheta;
double dx,dy;

int total;

total
stheta
ctheta

for (i

}

m_modelP.curve.GetSize();
temptheta =

10*theta;

= sin(temptheta) ;

n

0;
p=

Treg
1

temp

cos (temptheta) ;

i < total; i++)({
m_modelP.curvel[il;

(p.x - m_currentCurve.centroidX) ;

(p.y - m_currentCurve.centroidy) ;

(dx*ctheta - dy*stheta) + m_currentCurve.centroidX;
(dx*stheta + dy*ctheta) + m_currentCurve.centroidy;
= (long)x;
= (long)y;
Curve.Add (p) ;

m_modelP.curve.RemoveAll() ;
m_modelP.curve.Copy (tempCurve) ;
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Appendix D:

Model Scaling Source Code

double CLoadMedBoneImgView::Model_Scaling(double dAmin)
{

int i, totalm, totalc, total;

CPixelCurve tempCurve,tempCurveM, tempCurveC,tempMin;

double i_minSx,i_minSy, d,dmin,iSx,isy;

double ic,im;

double icR[360];

CPoint p, pl;

double x1, y1, x, y, dx, dy, ddc, ddm;

double cx, cy, mx, my;

double sumD;

tempCurveM.Copy (m_modelP.curve) ;
totalm = tempCurveM.GetSize();
tempCurveC.Copy (m_currentCurve.curve) ;
totalc = tempCurveC.GetSize();

i_minSx = 1.0;
i_minSy = 1.0;
ic = (double)totalc/360.0;

im (double) totalm/360.0;
total = 360;

cx = (double)m_currentCurve.centroidX;
cy = (double)m_currentCurve.centroidY¥;
mx = m_modelP.centroidX;

my = m_modelP.centroidY;

sumD = 0;

for (i = 0; i < 360; i++){
//for curve...
pl = tempCurveC[((int) (i*ic))%totalc];

x = (double)pl.x;
y = (double)pl.y;
dx = x - CcX;
dy =y - cyi

ddc = sqgrt(dx*dx + dy*dy);

icR[i] = ddc;

// for model...

pl = tempCurveM[((int) (i*im))%totalm];
x = (double)pl.x;

y = (double)pl.y;

dx = x - mx;

dy =y - my;

ddm = sqrt(dx*dx + dy*dy);

sumD += fabs(ddm - ddc);

}

dmin = sumD;

for (iSy = 0.98;iSy < 1.08;iSy += 0.002){
for (iSx = 0.98;iSx < 1.08;iSx += 0.002) {
// £ind minSum on scales...
sumD = 0;
for (i = 0; i < total; i++){
p = tempCurveM[((int) (i*im))%totalm];
x1 = (double)p.X;
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yl = (double)p.y;

X = iSx*x1;
y = iSy*yl;
dx = x - (double)mx;
dy = y - (double)my;

ddm = sqgrt (dx*dx + dy*dy);
sumD += fabs(ddm - icR[i]);

}

d = sumD;

if (d < dmin) {
dmin = 4d;
i_minSx = iSx;
i_minSy = iSy;

}

}

// change the scale to the new fit...
if ((i_minSx != 1) || (i_minSy != 1))({
for (i = 0; i < totalm; i++){
p = tempCurveM[il];
x1 (double)p.x;
vl (double)p.y;
x = (x1*i_minSx);
y = (y1*i_minSy);
p.-x = (int)x;
p-y = (int)y;
tempCurve .Add (p) ;

}

// find the centroid aFTER THE scales adjusted...
finding_newModel_ centroid(tempCurve) ;
int t_diffx, t_diffy;

t_diffx = (int) (m_m_centroidX - mx);
t_diffy (int) (m_m_centroidY - my);
tempCurveM.RemoveAll () ;

totalm = tempCurve.GetSize();

for (i = 0; i < totalm; i++){
tempCurve [i] ;

(double) (p.x + t_diffx);
(double) (p.y + t_diffy);
.x = (int)x;

.y = (int)y;
empCurveM.Add (p) ;

P
x
Y

p

p

t
}

// translate the scale adjusted model to the original

// finding the dmin from the tempCurve...
d = 0;

for (i = 0; i < total; i++){
p = tempCurveM[((int) (i*im)) %totalm];
pl = tempCurveC([((int) (i*ic))%totalc];

x = (double)p.x;
y = (double)p.y;
dx = x - (double)pl.x;
dy = y - (double)pl.y:;
d += sqgrt(dx*dx + dy*dy);
}
if (d < damin) { //update the model energy...

centroid. ..
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m_modelP.curve.RemoveAll () ;

m_modelP.curve.Copy (tempCurveM) ;
dmin = d;
return(dmin) ;

}

return (dAmin);
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