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Abstract

Aircraft conceptual design traditionally utilizes simplified analysis methods and empirical
equations to establish the basic layout of new aircraft. Applying optimization methods to
aircraft conceptual design may yield solutions that are found to violate constraints when
more sophisticated analysis methods are introduced. The designer’s confidence that pro-
posed conceptual designs will meet their performance targets is limited when conventional
optimization approaches are utilized. Therefore, there is a need for an optimization ap-
proach that takes into account the uncertainties that arise when traditional analysis meth-
ods are used in aircraft conceptual design optimization. This research introduces a new
aircraft conceptual design optimization approach that utilizes the concept of Reliability
Based Design Optimization (RBDO). RyeMDO, a framework for multi-objective, multi-
disciplinary RBDO was developed for this purpose. The performance and effectiveness
of the RBDO-MDO approaches implemented in RyeMDO were evaluated to identify the
most promising approaches for aircraft conceptual design optimization. Additionally, an
approach for quantifying the errors introduced by approximate analysis methods was de-
veloped. The approach leverages available historical data to quantify the uncertainties in-
troduced by approximate analysis methods in two engineering case studies: the conceptual
design optimization of an aircraft wing box structure and the conceptual design optimiza-
tion of a commercial aircraft. The case studies were solved with several of the most promis-
ing RBDO-MDO integrated approaches. The proposed approach yields more conservative
solutions and estimates the risk associated with each solution, enabling designers to reduce
the likelihood that conceptual aircraft designs will fail to meet objectives later in the design
process.
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Chapter 1

Introduction

The aviation industry, whether military, civil, or general, is highly competitive. Customers

drive demand for aircraft to be as inexpensive as possible to purchase and operate while

remaining safe, reliable, and efficient. Additionally, the regulations for safety, particularly

in commercial aviation, are comprehensive and demanding. Improvements in environmen-

tal performance and fuel efficiency is increasingly driving design [1]. Modern aircraft are

extremely complex systems, strongly influenced by structural analysis, aerodynamic analy-

sis, propulsion systems, avionics, and other disciplines [2]. The design of new commercial

aircraft constitutes a massive investment over long development periods. Reducing the de-

velopment time and cost by modernizing the design process is crucial in aircraft design

[3]. Simulation tools such as the Finite Element Method (FEM) and Computational Fluid

Dynamics (CFD) have been extensively studied and applied in aircraft design, particularly

in the preliminary and detail design phases [4, 5, 6, 7]. However, conceptual design still

widely relies on engineering knowledge, historical data, and low fidelity analysis methods.

Design optimization methodology has been widely applied to all phases of aircraft design,

but the results from optimization processes are only as good as the contributing analysis
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methods they are based upon. Discretization, simplified analysis, and statistical or empiri-

cal methods introduce errors that propagate through the design optimization process. This

can lead to problems when the design is subjected to better analysis or physical testing. It

may be found that designs optimized with simplified analysis methods fail to meet perfor-

mance targets later in the design process, where high fidelity analysis is employed [8]. It is

important, therefore, to manage error early in the design process to decrease the likelihood

of redesign while minimizing the necessary compromises to the efficiency and competi-

tiveness of the design. Commercial aircraft designers typically leverage past experience

and the large quantities of widely available data covering the dimensions, specifications,

and performance of existing commercial aircraft designs [9, 10, 11, 12].

Multi-disciplinary Design Optimization (MDO) has provided methodology that can en-

hance the speed of the aircraft conceptual design process, rapidly identifying the optimum

design based on the simplified analysis methods typically used at the conceptual level of

design [13, 14, 15, 16, 17]. However, MDO is deterministic, and does not take into account

uncertainties that can arise from various sources including approximate analysis methods.

Reliability Based Design Optimization (RBDO) is a framework for considering probabilis-

tic variables and parameters and provides an approach to account for sources of uncer-

tainty in design optimization [18]. The main goals of this research were to identify robust

and efficient RBDO methods for multi-disciplinary design and to develop an optimization

framework for aircraft conceptual design that accounts for the uncertainties that inevitably

arise when approximate analysis methods are implemented in aircraft conceptual design by

using historical data.
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1.1 Aircraft Conceptual Design

Conceptual design refers to the first phase in the design process. Figure 1.1.1 outlines the 3

phases of engineering design [11]. Conceptual design begins after establishing the design

requirements. In commercial aviation, these design requirements are developed by carrying

out market research and checking competing aircraft to determine the size and performance

targets a new aircraft should meet to be competitive and profitable.

Conceptual Design
- what requirements drive the design?
- what should it look like?  Weight? Cost?
- what tradeoffs should be considered?
- what technologies should be used?
- viable and saleable plane?

Preliminary Design
- freeze the configuration
- surface definition
- develop test database
- design major items
- develop cost estimates

Detail Design
- design actual pieces to be built
- design tool and fabrication processes
- test major items
- finalize weight/performance estimates

Requirements

Fabrication

Figure 1.1.1: Design Process (Raymer, 1999)

Given a set of design requirements, the designers begin to develop the basic layout of

the new aircraft, perhaps considering several alternative concepts. Designers determine

whether the design requirements are reasonable - whether it is even possible to develop an

aircraft that is capable of meeting the requirements. If so, the designers proceed to estimate

3



the wing size, thrust requirements, fuel capacity, and other critical attributes of the aircraft.

Typically, this is done with the aid of empirical equations and low fidelity analysis meth-

ods since large design changes are often frequent in conceptual design. Consequentially,

the development effort and computational time required to develop physical simulations

becomes unreasonable at the conceptual design phase.

Conceptual design is an iterative process where concepts are continuously refined and up-

dated as new and more refined analysis is employed. This can be a lengthy process that

requires the close collaboration of designers from several disciplines to establish an opti-

mum trade off. For example, a design optimized strictly from an aerodynamics standpoint

may lead to a highly sub-optimal design when structural analysis is carried out. Analysis

disciplines are usually co-dependent, meaning an optimum aircraft will be a design with

the right compromises between competing disciplines. This has led to the implementation

of MDO to enhance speed and accuracy of aircraft conceptual design.

1.2 Uncertainty

Mathematical modeling of physical systems and engineering analysis methods is rarely de-

terministic. Aside from examples such as simple Newtonian dynamics which, under the

right conditions, are considered exact for any practical purpose; numerical methods for

calculating the response of physical systems contain sources of uncertainty. Additionally,

physical systems are often affected by apparently random factors such as environmental

conditions and human behavior. Sources of uncertainty usually fall into two distinct cate-

gories: aleatory uncertainty and epistemic uncertainty [19, 20].
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1.2.1 Aleatory Uncertainty

Aleatory uncertainty refers to irreducible and unpredictable variability about the behavior

of a studied system [21]. This can include physical uncertainties such as the yield strength

of imperfect materials, variability in the environmental loads a structure is expected to en-

counter, manufacturing flaws, and others [22]. Aleatory uncertainty essentially refers to all

sources of uncertainty that exhibit apparent randomness and are therefore often described

by probability distribution functions using gathered data.

Consider the design of an aircraft intended to fly a certain distance using minimum fuel.

Typically, simulations for calculating the performance of aircraft considered in concep-

tual design assumes standard atmosphere properties using models such as the International

Standard Atmosphere (ISA). However, in reality, the aircraft may encounter different at-

mospheric densities, temperatures, and wind conditions on any given day. This introduces

uncertainty in the range estimates calculated with ISA properties. Since the designers have

no control over the environment, the error cannot be reduced. However, the likelihood of

encountering certain atmospheric conditions can be quantified using probability theory, in-

terval analysis, or other methods by consulting experts or from a database of observations.

Other commonly considered examples of Aleatory Uncertainty include flaws in structural

members and manufacturing tolerance, leading to uncertainties in material strength [23].

1.2.2 Epistemic Uncertainty

Epistemic uncertainty is introduced when analysis methods are used that do not perfectly

correspond to the physical phenomenon they are meant to describe [21, 24, 25]. Physical

simulations of complex systems usually require the linearization of the governing equa-

tions. Some terms are neglected and small, high order terms are ignored to simplify the
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analysis. Additionally, translating equations into a computational simulation package in-

troduces further approximations by implementing discretization and time stepping. Some

other sources include round-off errors and the convergence tolerance of numerical meth-

ods. Epistemic uncertainty is reducible since neglected terms can be restored and time

steps, grid spacing, and convergence tolerances can be reduced. Epistemic uncertainty can

be assessed by introducing error terms that can be described probabilistically, by fuzzy

set theory and other methods by testing the analysis methods against historical data, by

comparison with higher fidelity methods, or by physical testing [25, 26].

1.3 Motivation

Aircraft conceptual design requires the simultaneous consideration of aerodynamics, struc-

tures, aircraft performance, flight dynamics, and many other discipline analyses. The con-

ceptual design phase is aimed at establishing basic aircraft sizing, layout, and power re-

quirements over a large design space. Solving conceptual design optimization problems

using high fidelity approaches requires many evaluations of computationally expensive al-

gorithms and the automated reconfiguration of the analysis models as the design changes

throughout the optimization. Typically, the optimization is carried out on surrogate models

such as response surface or Kriging models that are generated from a sample of results

obtained from high fidelity analysis runs [27, 28, 29]. When high fidelity analysis is in-

corporated early in the design process, some minimum of preliminary low fidelity analysis

has to be performed to narrow the scope of the optimization problem. For this reason,

traditional conceptual analysis approaches are still widely used as the starting point for de-

signing new aircraft. These methods rely heavily on empirical equations based on historical

data. Statistical methods are employed for sizing engines, estimating parasite drag, and for
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predicting the final structural weight of the conceptual design. The implementation of these

approximate analysis methods introduces uncertainty. Designs optimized using traditional

analysis may fail to meet performance objectives in later stages of design, where high fi-

delity analysis methods are introduced. This can lead to costly and time consuming design

revisions. Therefore, a method is needed for quantifying the expected error associated with

empirical analysis in aircraft conceptual design optimization to yield designs that can be

carried forward in the design process with increased confidence.

Aircraft design under uncertainty has been the subject of some recent study. Ahn et al.

(2006) introduced a BLISS based RBDO framework using a simplified supersonic trans-

port conceptual design problem [30, 31]. The study assumed normal distributions with

coefficients of variation of 0.3 (the ratio of the mean to standard deviation) on each of

the 10 design variables considered such as wing area, span, and others describing aircraft

geometry. No attempt was made to quantify the actual error distributions related to the

analysis methods, design variables or the accuracy of the implemented analysis methods.

Smith et al. (2003) solved a spacecraft conceptual optimization problem using RBDO to

consider uncertain design variables to reflect the possibility of minor design changes later

in the design process [32]. Probabilistic error terms were added to the responses of the

aerodynamics and structural analysis output with assumed values of 10%. The optimiza-

tion problems were solved with several MDO architectures and FORM based reliability

analysis methods. The aforementioned studies consider uncertainties in the design vari-

ables or parameters such as atmospheric conditions or material properties. However, the

need to characterize and consider the uncertainties associated with approximate analysis

methods in aircraft conceptual design has not been addressed. Furthermore, no study is

currently available that provides information regarding the speed, efficiency, reliability,

and accuracy of integrated RBDO and MDO strategies.
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This research proposes a new approach for commercial aircraft conceptual design optimiza-

tion by improving the designer’s confidence in the availability of viable results when ap-

proximate analysis methods are used. RyeMDO, a software package consisting of modules

for reliability assessment, optimization approaches, and MDO methods was developed.

Several methods for integrating RBDO and MDO strategies were compared by solving

analytical and truss optimization case studies using RyeMDO. The speed, accuracy, and

reliability of each approach were benchmarked. The most promising methods for aircraft

conceptual design optimization were identified. The error associated with uncertain anal-

ysis were handled by introducing error parameters in the optimization formulation of two

engineering case studies: a wing box conceptual optimization case study and an aircraft

conceptual design optimization case study. The characteristics of the errors were evalu-

ated by comparing the results of the approximate analysis methods with a database of high

fidelity results for the wing box optimization case study and a specification database of cur-

rently available aircraft designs for the aircraft conceptual design optimization case. The

results indicate that when traditional deterministic optimization methods are used, designs

are located at or near at least one constraint boundary, and may be prone to failure when

validated by physical testing or when high fidelity analysis is used later in the design pro-

cess. Implementing RBDO produced more conservative designs, moving designs away

from active constraint boundaries. The designers may rely on the optimum solutions with

increased confidence relative to deterministic approaches when uncertain analysis methods

are used.
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1.4 Outline of the Dissertation

Chapter 2 reviews design optimization and uncertainty analysis methods. Section 2.1 re-

views single and multi-discipline deterministic design optimization. Section 2.2 describes

some alternative methods for quantifying uncertainty and the methods used to assess uncer-

tainty within design optimization frameworks. Section 2.3 describes some of the alternative

methods for reliability based design optimization. Different strategies for reliability assess-

ment are reviewed as well as the common integration strategies for incorporating reliability

analysis in design optimizations. Chapter 3 describes the development of RyeMDO and its

usage. Additionally, the implemented algorithms were validated and benchmarked. The ef-

ficiency and reliability of each approach were evaluated using two optimization problems:

an analytical problem and a truss optimization problem for both single-discipline and multi-

discipline optimizations. Chapter 4 implements the most promising methods by solving a

practical, multi-discipline engineering case study: an aircraft wing box optimization using

an approximate analysis method in the form of a surrogate model. Chapter 5 presents an

approach for the design optimization of a commercial aircraft conceptual design that ac-

counts for the uncertainties introduced by traditional conceptual design methodology. This

is followed by some conclusions and an overview of future research in Chapter 6.
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Chapter 2

Methodology

This chapter reviews the concept of design optimization and the strategies for handling

sources of uncertainty in design optimization. Section 2.1 reviews the concept of MDO.

Section 2.2 reviews methods for modeling uncertainty in design optimization. Section 2.3

reviews the concept and methodologies of RBDO.

2.1 Design Optimization

Design optimization refers to computational methods used to search for designs that are

as efficient and effective as possible. The mathematical statement of design optimization

problems takes the form of an objective function that calculates a value that represents the

critical measure of design performance or merit. The optimum design is the design that

is found to have a minimum merit function while satisfying all constraints. Constraints

are formulated as statements of equality or inequality that must be satisfied to keep the

design feasible. Additionally, search boundaries are usually specified. A typical design

optimization problem statement is given in equation 2.1.1 where the goal of the optimizer
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is to search for the deterministic design variable vector d that minimizes the merit or ob-

jective function, f , while satisfying any constraint equality or inequality functions, gi. The

objective function, f , is a function of the deterministic design variable vector, d, the output

of any contributing analysis tools, y, and constant parameters, p.

min f (d, p,y(d, p)) (2.1.1)

s.t. gi (d, p,y(d, p))≤ 0 where i = 1, ...,Ncons

dl ≤ d ≤ du

There are many well known optimization algorithms currently available. The algorithms

implemented in this research are briefly reviewed as follows. Both deterministic and

stochastic algorithms were implemented including the well-known Sequential Quadratic

Programming (SQP) algorithm and a multi-objective Genetic Algorithm (GA). SQP im-

plements gradient information about a starting point to determine the direction of steepest

slope [33, 34]. Local quadratic approximation functions for the objective and constraint

functions are developed and solved in a sequence of 1 dimensional optimizations similar to

the classic Newton’s Method. The process repeats recursively until the optimality criteria

are satisfied. The gradients of the objective and constraint functions are typically calcu-

lated using finite-differencing if they cannot be defined analytically. As a consequence,

SQP requires the objective and constraint functions to be sufficiently smooth for accurate

calculation of the gradient information. Gradient based methods find the nearest local max-

imum or minimum of an optimization problem. There is no guarantee that better solutions

are not to be found elsewhere in the solution space [35]. SQP is one of the most success-

ful and widely implemented algorithms for solving optimization problems with non-linear

constraints [33]. GAs are stochastic methods that mimic the concept of natural selection on

a population of randomly generated designs [36, 37]. There are many variations in the de-
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sign of GAs, but most implement the same concepts: a mutation component that randomly

alters design variables in the population and a crossover component that combines the better

designs to produce offspring. The designer defines a fitness function that gives advantage

to designs that are feasible and exhibit good objective function performance. The GA im-

plements a selection scheme that ranks the designs and assigns crossover probabilities pro-

portionally to the fitness of the individuals in the population, producing a new generation of

designs. GAs generally require more function evaluations than gradient based approaches,

but are capable of handling non-smooth objective and constraint functions more effectively.

Since GAs are population based, it is possible to simultaneously consider more than one

objective function. Multi-objective optimization with gradient algorithms requires solving

multiple full optimizations. The GA implemented in this research is described in Langer

[38, 39, 40].

Multi-objective optimization simultaneously optimizes two or more conflicting objective

functions. Unlike single-objective optimization, a set of results are obtained rather than a

single solution. The results form a trade-off curve between each objective. Each solution

on the curve is referred to as a Pareto-optimal solution. A Pareto-optimal solutions are

defined as solutions where improvements in one objective function are only possible by

regressions in at least one other objective function.

2.1.1 Multi-Disciplinary Design Optimization

MDO can be defined as “a methodology for the design of systems in which strong inter-

action between disciplines motivates designers to simultaneously manipulate variables in

several disciplines [16].” Independent optimizations of individual disciplines considering

local goals does not guarantee an optimum overall design, which requires the consideration

of the synergy between each contributing analysis method [41]. Modern engineering opti-
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mization has reached a level of complexity that nearly always requires a strategy to handle

many coupled disciplines [16, 42, 43]. Inter-disciplinary coupling occurs when the out-

put of one analysis package is required as input for another independent analysis package.

This creates a more complex computational problem than single-discipline optimization.

Aerospace conceptual design presents a classic example of a coupled system. Figure 2.1.1,

adapted from Kodiyalam et al. shows the interaction between disciplines for a hypothetical

aircraft conceptual design process [41]. System design variables are shared by all disci-

plines and denoted by Z. Local variables, X, are specific to individual disciplines and Y

denotes the information pathway from one discipline to another. The aerodynamics solver

supplies the drag properties that the performance analysis needs in order to run. In turn, the

performance analysis supplies the Mach number that the aerodynamics discipline needs to

compute the aircraft drag. Similar couplings are indicated between the other disciplines as

well.

1-Aerodynamics

2-Performance 3-Structures

Z – wing sweep 
angle, aspect ratio

Y2,3-structural weight

Y3,2-take-off gross wt

X2-cruise altitude
X3-material thickness

X1-wing thicknessZ

Z Z

Figure 2.1.1: Coupled System Example (Kodiyalam, 2001)

There are many strategies for handling the optimization of coupled systems. MDO algo-
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rithms manage the design variables and constraints of each discipline while ensuring that

the local design variables and discipline outputs held by each discipline are compatible

at the solution point. The earliest and most commonly applied approach is the Multi-

Discipline Feasible (MDF) method. MDF was a term introduced by Cramer et al. (1994)

for methods that implement a system analysis to solve for compatible coupling conditions

whenever any design variables are adjusted [41, 44]. A system analysis, referred to as

Multi-Discipline Analysis or MDA, refers to an iterative process that solves for compatible

coupling variables given an initial starting estimate. The algorithm block diagram is shown

in Figure 2.1.2 where the global variables (variables required for evaluating the objective

function or shared between the disciplines) are denoted by z, the local variables (variables

that only influence one discipline) are denoted by x, and the coupling variables are denoted

by y.

The MDF has the simplest formulation for solving 

ry 

design analysis (MDA) with an optimizer (Fig. 1) to find the 

optimal global z and local variables x, for a given objective 

function and constraints. It reaches a multidisciplinary feasible 

state for an entire set of disciplines. In a MDA disciplinary 

Seidel 

iteration between various disciplinary analyses, based on the 

 and estimated coupling 

( )( )f z y x y z x i j n j i

Optimizer

Discipline 1

Discipline 2

Discipline 3

z, x

f(z,y(z,y,x))

 g(z,y(z,y,x))

Multidisciplinary Design Analysis

Figure 2.1.2: MDF Method (Perez, 2004)
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The MDA loop must run every time the design variables are adjusted, including for the

calculation of gradients by finite differencing in gradient-based optimizers such as SQP

[41, 44, 45]. Consequentially, the MDA loop must be solved with sufficient precision

for the accurate calculation of gradients. This considerably increases the computational

effort relative to single discipline optimization, and therefore led to more advanced methods

of handling the coupling between discipline analysis including the Individual Discipline

Feasible (IDF) method.

The IDF method eliminates the MDA loop and the drawbacks associated with that approach

by augmenting the system design variables with coupling variable estimates. Auxiliary

constraints are introduced to force the discrepancy between the discipline analysis outputs

and the estimated coupling variable values to vanish by the end of the optimization. Unlike

the MDF method, designs that emerge at each iteration of the optimizer may not be feasible

until the optimization has converged. In other words, the coupling variables used in one

discipline may not match those of another discipline until convergence. The algorithm

block diagram is shown in Figure 2.1.3 where y′ is the estimated coupling variable vector

and y is the calculated coupling variable vector.

Studies on both analytical problems and engineering problems consistently find that, with

some exceptions, IDF is significantly more computationally efficient than MDF methods

[43, 46, 45, 47, 48]. These exceptions include problems that have a very large number of

coupling variables. This has the effect of greatly increasing the dimensionality of the sys-

tem optimization and requires the introduction of many auxiliary compatibility constraints,

which can lead to instability.

Both the MDF and IDF methods are considered Single Level methods - methods that imple-

ment only one system optimizer. A second class of MDO methods include inner optimiza-

tion loops under a global or co-ordination optimization. Multi-level methods such as Col-

16



e IDF method provides an approach to avoid a 

complete MDA optimization. The method decouples the 

disciplinary analyses but keeps a unified optimization

(Fig. 2). It allows the optimizer to drive the individual 

 a multidisciplinary feasibility and optimality, 

by imposing feasibility constraints with extra coupling 

 The 

local disciplines can be feasible but the complete system 

imization process 

( )( )f z y x y z x i j n j i

( )

s t J z z y y x y z i j n j i

Discipline 1 Discipline 2 Discipline 3

Optimizer

z, y’, xSystems Evaluation

f(z,y(z,y’,x))

g(z,y(z,y’,x))

y’ - y

J(z,z*,y’,y*(x*,y’,z*))

Figure 2.1.3: IDF Method (Perez, 2004)

laborative Optimization (CO), Concurrent Subspace Optimization (CSSO), and Bi-Level

Integrated System Synthesis (BLISS) were developed to improve the efficiency of MDO

optimizations for systems with a low coupling bandwidth, or rather, systems that have few

shared design and coupling variables and many local design variables [16]. These systems

can be broken down into optimization sub-problems whereby each discipline analysis (in-

cluding discipline-specific constraints) interacts with its own local optimizer, leaving the

system optimizer to co-ordinate inter-discipline compatibility and any shared or coupling

variables.

The CSSO method, proposed by Sobieszczanski-sobieski (1988) was among the first multi-

level MDO architectures to emerge [49, 50, 51, 52]. CSSO mimics design strategies in

which analysis groups are responsible for optimizing local components and compromises

between different disciplines are made by a coordinator, as shown in Figure 2.1.4 [41, 46].

In CSSO, the analysis at local discipline levels approximates the response of the system and

the other disciplines using approximations derived from the global sensitivity equations,
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which are updated at every cycle.

The Concurrent Subspace Optimization Method 

based strategy allowing 

concurrent optimization (Fig. 4). It takes advantage of the 

local disciplinary states 

help to understand the influences of local disciplinary 

variables on system level constraints and objective 

h 

disciplinary optimization to simulate other discipline state 

variables responses. Similarly, the system level optimization 

uses the approximation models to replace the required 

disciplinary analysis. Then the disciplinary level models are 

( )( )f z y x y z y i j n j i
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. . , 0

System Analysis

Model Update

System

Approximation 1

System

Approximation 2

System

Approximation 3

Optimizer Optimizer Optimizer

System

Analysis 1

System

Analysis 2

System

Analysis 3

Model Update

System

Approximation
System Optimizer

Figure 2.1.4: CSSO Method (Perez, 2004)

Introduced by Braun (1995), the CO method proposed an alternative bi-level approach [53,

54, 55]. CO decomposes the problem into one local optimization for each discipline under

a global optimizer that co-ordinates discipline target values. The global optimizer handles

only shared and coupling variables, leaving local discipline variables and constraints to be

handled by the corresponding local optimizer. The local optimizers minimize discrepancies

between the local values of the shared variables and the coupling variables to the global

values. The CO algorithm block diagram is shown in Figure 2.1.5 [46].

The BLISS method, proposed by Sobieszczanski-Sobieski is an MDO approach that im-
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Collaborative Optimization (CO) introduces a 

level optimization 

A system level optimization is 

responsible for providing target values for global design 

. A local disciplinary 

level optimization assures that the discrepancies between 

ibility) 

by enforcing compatibility constraints. It is modelled to 

minimize the interdisciplinary discrepancies while 
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z, y’
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x x x

Figure 2.1.5: CO Method (Perez, 2004)

plements the global sensitivity equations to approximate the coupling effects of the local

discipline optimizations on the system objective function [56]. Like CO, BLISS is a bi-level

method with system and local optimizers. However, in BLISS, local optimizers only adjust

local variables, leaving global variables constant and the system optimizer only adjusts sys-

tem variables. The algorithm block diagram is shown in Figure 2.1.6 [46]. Improvements

to the BLISS method were introduced which implement response surface approximation

models to provide better estimates of discipline responses [31].

Evaluations of the performance, implementation, and robustness of multi-level MDO ap-

proaches suggest that there is a substantial increase in both computational cost and imple-

mentation effort associated with multi-level approaches [43, 46, 47, 48, 57] . However,

multi-level approaches are by their nature, conducive to parallelization, where complete

subsystem optimizers can be developed by different design teams. They may run on differ-

ent hardware and can implement different optimizers that are particularly suitable for the
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(BLISS) method (Fig. 5) is a decomposition extension of 
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Figure 2.1.6: BLISS Method

characteristics of the local objective functions and constraints. The general properties of

the MDO schemes are outlined in Table 2.1.

Aircraft design depends on the synthesis of many disciplines and has been widely stud-

ied in MDO literature. A complete MDO formulation would include disciplines such as

structures, aerodynamics, performance, avionics, stability, cost, manufacturability, and so

on. For practical reasons, the list is nearly always reduced when solving aerospace prob-

lems. The development of the multi-level MDO schemes including Collaborative Opti-

mization (CO) and Bi-Level Integrated System Synthesis (BLISS) repeatedly implemented

aerospace conceptual design problems as test subjects for the proposed algorithms [54, 58].

20



Table 2.1: MDO Method Summary

Method Advantages Disadvantages

MDF -Reduced problem dimensions
-Performance advantage for problems having many 
coupling variables

-Simple problem formulation

-MDA required
-Convergence of MDA loop must be very precise

IDF -No inner loops
-Performance advantages for problems having 
moderate numbers of coupling variables

-Increased optimization problem dimensions
-Introduction of equality compatibility constraints

CO -Facilitates distributed computing
-Enables independent optimization of disciplines
-Emulates human organizational structures
-Efficient for problems having very large numbers of 
local discipline variables

-Performance and convergence poor for problems 
having high coupling bandwidth

-Introduction of equality compatibility constraints

CSSO -Facilitates distributed computing
-Efficient when analytical gradients are available

-MDA required
-Computationally expensive calculation of sensitivity 
information required

-Complex problem formulation
-Reduced accuracy

BLISS -Enables independent optimization of disciplines
-Facilitates distributed computing
-Usually more computationally efficient than  other 
multi-level methods such as CO or CSSO

-Computationally expensive calculation of sensitivity 
information required

-Complex problem formulation

MDO has enabled designers to consider new discipline analyses in aircraft conceptual de-

sign. Antoine et al. (2005) introduced an environmental performance discipline for com-

mercial aircraft conceptual design [1]. A flight control augmentation analysis was imple-

mented in Perez et al. to improve the aerodynamic efficiency of commercial aircraft [59].

Aronstein [14] considered sonic boom analysis and Willcox [60] implemented a cost analy-

sis discipline. Section 2.2 outlines different approaches for quantifying uncertainty and the

concepts behind design optimization strategies that consider the influence of uncertainty in

either the design variables, parameters, or in the contributing analysis methods.

2.2 Uncertainty Modeling Methods

Computational design optimization has enabled designers to explore the solution space of

engineering problems with great accuracy and efficiency when compared with traditional
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conceptual design. Design optimization methods are capable of a level of precision that

enables them to precisely locate the optimum solution for a given set of design equations.

A consequence of this level of precision is that the optimum solution points are almost

invariably found to lie directly on one or more of the constraint boundaries [61]. Any

deviation in the designer’s assumptions (i.e. the material strength or the manufacturing

precision of a structural member) or approximate analysis methods may result in the fail-

ure of the optimized design when it is fabricated and tested or subjected to higher fidelity

analysis. Any design variable, parameter, or any output from analysis codes in a given op-

timization problem can be considered as uncertain quantities provided that the uncertainty

can be mathematically represented. Many methods currently exist for quantifying the be-

havior of aleatory and epistemic uncertainty. The methods most often applied in design

optimization are Interval Analysis, Fuzzy Numbers, and Probability Theory. The choice of

method is driven by the quantity of information available to the designer about the source

of uncertainty. In general, sources of uncertainty where there is insufficient data to esti-

mate a probability density function (PDF) accurately, interval analysis or fuzzy numbers

are preferred [62, 63, 64, 65].

2.2.1 Probabilistic Methods

Sources of uncertainty can be modeled using probability theory provided there is sufficient

data to determine a probability distribution shape and parameters. A suitable PDF must be

identified for each source of aleatory or epistemic uncertainty. This can be accomplished

only if there is sufficient statistical data available. Otherwise, the designer must assume a

particular PDF, perhaps based on the designer’s experience, or implement one of the other

strategies. In design optimization, failure of the system is characterized by constraint func-

tions, otherwise known as limit state functions. These functions are defined as inequality
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conditions. If they are functions of any uncertain input, including uncertain variables or

parameters, the output of the constraint function will also be uncertain. A probabilistic

version of the optimization problem statement is shown in equation 2.2.1, where the design

variables, x, and the parameters, p, are assumed to be uncertain and randomly distributed

according to corresponding PDFs. The objective function is evaluated at the mean values

of the uncertain terms. The constraint functions become probabilistic, where a target max-

imum probability of failure, Pf , is enforced. Recall that g ≤ 0 was defined as feasible and

g > 0 as infeasible.

min f (x̄, p̄,y(x̄, p̄)) (2.2.1)

where i = 1, ...,Ncons (2.2.2)

s.t. P [gi (x, p,y(x, p))> 0]≤ Pf

xl ≤ x≤ xu

Every uncertain variable and parameter may have distinct PDF functions. Therefore, the

probability of failure of a limit state (constraint) is calculated by integrating a joint proba-

bility density function over the constraint boundary, g. The joint PDF is given in equation

2.2.3 where fX1...XN is the joint PDF of a set, X , of n random variables and x represents a

given realization of X . Exact solution of equation 2.2.3 is rarely possible [66]. Approxi-

mate methods are typically used. These methods are either simulation based or analytical

simplifications.

P(g > 0) = Pf =

ˆ

g>0

fX1...Xn (x1...xn)dx1...dxn (2.2.3)
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2.2.1.1 Simulation Methods

Simulation approaches usually implement a Monte-Carlo Simulation (MCS) scheme [67,

68, 69, 70]. MCS reliability analysis works by evaluating constraint functions with many

randomly sampled design variable vectors according to the specified PDF functions for

each variable. The probability of failure is approximated by the ratio of trials where g(x),

is infeasible to the total number of trials, as shown in Figure 2.2.1.

0≤g 0>g

( )xg

Infeasible
feasible

Figure 2.2.1: Monte-Carlo Simulation Approach

MCS based approaches are accurate for large sample sizes, and are usually designed to run

recursively until the relative error is below a specified tolerance. However, when enforcing

very small failure probabilities, the sample size must be very large to achieve any accuracy.

Evaluating small failure probabilities therefore requires very large numbers of constraint

function evaluations. Sample sizes are usually limited to prevent unacceptable computa-

tion times particularly when the constraint functions implement costly physics simulations.

As a consequence, the predicted failure probabilities can exhibit some scatter. This is

problematic when MCS is used in optimization problems using gradient-based optimizers,

which rely on finite-differencing to evaluate constraint function gradients [71, 72]. How-

ever, simulation methods are still widely used for evaluating constraint functions that are
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highly non-linear with respect to the uncertain variables and parameters [73, 74, 75]. The

computational cost can be mitigated by replacing the constraints with approximation mod-

els such as Response Surface Approximations (RSA) or Kriging models. The surrogates

rather than the system equations are sampled to evaluate the failure probability [76, 77, 78].

RSA models are multi-dimensional regression curves. The curve is a best fit model gener-

ated from a collection of data points, and may not pass through all or any of the original

points. Kriging models function like multi-dimensional splines - the model passes through

every data point used to generate the curve. MCS methods have the additional advantage

that all of the input constraint functions may be evaluated simultaneously. This is not the

case for analytical approaches, which must evaluate each constraint function individually

at different variable states.

2.2.1.2 Analytical Methods

Analytical methods solve the joint PDF by making local approximations to the constraint

function boundary. The First Order Reliability Method (FORM) implements a linear ap-

proximation of the constraint function in standard space. This has been shown to be a good

approximation for small failure probabilities [79]. Standard space is defined as normally

distributed with a mean of µ = 0, and a standard deviation of σ = 1. It should be noted

that the random variables do not necessarily have to be normally distributed if an equation

exists for transforming the random variable into standard space. This is accomplished by

using Rosenblatt transformations, U = T (X ,θ), where θ represents the distribution param-

eters (i.e. µ,σ for normal distributions) of X [77, 80]. The Rosenblatt transformation for a

normally distributed random variable set is X = µ +σU . The FORM method is illustrated

in Figure 2.2.2 for a problem having two random variables [81].

The reliability index, given by β , is the number of standard deviations from the mean of the
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Figure 2.2.2: First Order Reliability Method

closest approach of the constraint function in standard space. The point of closest approach

is referred to as the Most Probable Point (MPP). The reliability index, β , can therefore

be defined as β = ‖U∗‖ when g(U∗) is a minimum. This is usually found by minimizing

g(U) s.t. ‖U‖ = βgoal where βgoal is the target reliability index defined by the designer,

corresponding to the maximum allowable failure probability. Methods for solving FORM

are outlined in Section 2.3. Other analytical methods include higher order approximations

of the constraint function, such as the Second Order Reliability Method (SORM). These

methods are more costly to solve, but are more accurate for constraint functions that are

highly non-linear [18]. Probabilistic methods for modeling uncertainty can only be applied

when there is sufficient data available for each source of uncertainty to identify the shape

and parameters of a PDF function. When there is insufficient data, a common practice for

probabilistic modeling is to assume a uniform distribution between the highest and lowest

observed values of a random uncertain variable [82, 83]. However, there are several non-

probabilistic methods specifically developed for dealing with sources of uncertainty when
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knowledge or data is sparse. Several of these methods are briefly reviewed in Section 2.2.2.

2.2.2 Non-Probabilistic Methods

Non-probabilistic methods are used to model uncertainty when there is insufficient data

to develop a good estimate of the PDF shape or parameters. Several of the most common

methods are Interval and Fuzzy Modeling, Evidence Theory, and Convex Modeling. Moller

et al. reviews the theories of interval analysis, fuzzy modeling, and evidence theory in [84].

Convex modeling method are reviewed in Ben-Haim et al. [85].

Interval modeling is a widely used non-probabilistic method for representing uncertainty

[86, 87, 88]. It is based on the following idea. If a number X is not known precisely but

is known to lie between two hard boundaries [A,B], any mathematical processes that are

applied to X can be applied to the interval [A,B] to find an output interval that contains

the solution. Interval analysis does not provide any indication of where the solution is

likely to lie within the boundaries, only providing the boundaries themselves. The input

intervals are typically estimated using expert knowledge. Experts give the best and worst

case scenario for a particular uncertain variable or parameter [84]. Fuzzy numbers extend

the concept of interval analysis by the addition of a membership function that describes the

degree of membership an observation has within the interval, as shown in Figure 2.2.3. A

triangular membership function is shown. However, any membership function shape can

be used. However, some solution strategies such as FORM can only be implemented on

convex membership functions [89, 90]. Interval analysis can be considered as a special

case of fuzzy modeling, where the membership function to an interval is binary, where

0 is non-membership, and 1 is complete membership. Several methods are available for

handling interval and fuzzy uncertainty, including FORM, which can be extended to handle

constraint functions with fuzzy numbers. The determination of an appropriate membership

27



function is usually accomplished by consulting experts rather than statistical analysis. Both

subjective knowledge and objective data can be used [91, 92, 93]. Fuzzy modeling is

therefore referred to as possibilistic rather than probabilistic.

1
Interval set

fuzzy set

0

Figure 2.2.3: Interval and Fuzzy Models

2.2.3 Uncertainty in Design Optimization

Design optimization under uncertainty extends traditional design optimization methods by

integrating uncertainty modeling to predict the influence of uncertain variables or parame-

ters on a solution, yielding more conservative designs that account for the input uncertainty.

Three disciplines have emerged for handling design with uncertainty: Reliability Based

Design Optimization (RBDO), Possibility Based Design Optimization (PBDO) [94], and

Reliability Based Robust Design Optimization (RBRDO) [95, 96]. Both RBDO and PBDO

are optimization strategies that enforce a desired likelihood that constraints will be satis-

fied when the design is fabricated and tested or subjected to more reliable analysis methods.

RBDO achieves this by modeling each source of error with PDF functions and determining

their influence on the optimization constraints. RBDO determines an optimum design that

complies with all constraints to a desired level of probability, yielding more conservative
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designs than deterministic optimization. RBDO is used when there is sufficient statisti-

cal data to make good estimates of the probability distributions for each input source of

uncertainty. PBDO was developed for problems containing sources of uncertainty where

insufficient knowledge or data exists to build accurate probability distribution models. Er-

rors are estimated by establishing an interval of highest and lowest expected errors. The

errors are then represented by the interval or by fuzzy membership functions. Optimization

results are also expressed as intervals or fuzzy numbers. In general, PBDO methods pro-

duce more conservative optimization results than RBDO. However, problems with limited

data can still be solved with RBDO by assuming a uniform probability distribution over an

interval, producing more conservative designs [97]. RBRDO is concerned with minimiz-

ing the expected variance in the output of an optimization process. Section 2.3 introduces

the RBDO methodology including methods for reliability assessment and some alternative

approaches for integrating reliability assessment in design optimization.

2.2.4 Reliability Based Robust Design Optimization

Robust design is an optimization approach aimed at minimizing the sensitivity of the so-

lution to variations in the input uncertain variables and parameters [98, 99]. The location

of the true optimum design can be located in a region where small variations in the uncer-

tain parameter lead to very large variation in the objective or constraint function output, as

shown in Figure 2.2.4.

When applied to the objective function, the method is referred to as Robust Design Op-

timization (RDO). The designs are usually constrained such that the output variance of

the objective function is below a specified limit. The constraint functions are specified

such that the boundaries of the output variance of each constraint lie within feasible de-

sign space. When the constraint function variance is considered, the method is referred
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to as Reliability Based Robust Design Optimization (RBRDO). Both probability theory,

interval analysis, and fuzzy sets are applicable to robust design. The input variance can be

represented by fuzzy numbers, intervals, or a PDF function. Robust design optimization

algorithms are based on running a series of experiments with variations in the uncertain

parameters [95]. Robust design optimization approaches are described comprehensively in

[100]. Probabilistic methods are not required in robust design methods.

2.2.5 Reliability and Possibility Based Design Optimization

RBDO is concerned with determining optimum designs that have constraint failure prob-

abilities lower than a specified limit. PBDO searches for designs where the vertices of
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a fuzzy set lie within feasible design space, as shown in Figure 2.2.5. The symbol β is

the number of standard deviations in a normal distribution PDF corresponding to the de-

sired failure probability limit. The width of an interval function is denoted by α . RBDO

defines uncertain variables and parameters probabilistically while PBDO defines uncertain-

ties using fuzzy sets. Several solution strategies exist for solving PBDO problems includ-

ing the vertex method. The vertex method involves solving full optimizations for every

combination of upper and lower boundaries corresponding to the uncertain parameters and

variables. This can become very computationally expensive for problems having large

numbers of uncertain variables [101]. More recently, FORM based solution strategies have

been implemented in PBDO problems [90]. Unlike probabilistic uncertainty, FORM can

be solved exactly for many types of convex membership functions. Methods for solving

RBDO problems are reviewed in greater detail in Chapter 2.3.
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Figure 2.2.5: Reliability Based Design Optimization

It should be noted that the term reliability in the context of RBDO refers to the probability

that a design lies in feasible space in optimization problems that have uncertain variables

or parameters. Reliable solutions are solutions that are unlikely to violate any constraint. It

does not refer to the expected quality, time-before-failure, fault tolerance, or other measures
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typically associated with the term reliability in other disciplines.

2.3 Reliability-Based Design Optimization

RBDO is an optimization strategy for finding reliable designs for problems that depend on

uncertain design variables or parameters. Optimization solutions are considered reliable if

there is a low probability that any of the specified optimization constraints are violated. The

violation of any of the constraints in an optimization problem statement constitutes a failure

[102]. RBDO has recently generated much interest in MDO research. It is widely viewed as

a better way to deal with uncertainties in design than applying safety factors to deterministic

solutions [103]. RBDO allows the influence of uncertain terms to propagate through the

design optimization process, driving design changes that only affect the constraints that

approach their respective boundaries.

RBDO has been applied to a wide variety of engineering problems that encounter uncer-

tainties in material properties, manufacturing tolerances, weather conditions, and others.

Thyanedar et al. proposed RBDO as a method for accounting for material defects and

manufacturing tolerances in structural design [104]. Youn et al. studied vehicle crash-

worthiness under an uncertain impact location on a vehicle frame constructed with struc-

tural members having uncertain dimensions due to the variability in manufacturing [61].

Deb et al. solved the same crash-worthiness problem using evolutionary algorithms in

order to enable handling multiple objective functions including a reliability objective.

2.3.1 Reliability Assessment Strategies

The most widely implemented approaches for reliability assessment are derived from FORM.

All uncertain design variables and parameters are translated into normal distribution space.
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The minimum distance between the current design point and a given constraint boundary

is calculated in normal space. The point along the constraint boundary at the location of

closest approach is referred to as the Most Probable Point (MPP). The distance between the

design point and the MPP is defined as the reliability level, β . The reliability level equates

to the number of standard deviations from the mean value that the current design point lies

from a constraint boundary in normal space. There are several numerical approaches for

calculating the location of the MPP and the corresponding β value. The two most com-

mon methods include the Reliability Index Approach (RIA) and the Performance Measure

Approach (PMA).

2.3.1.1 The Reliability Index Approach

RIA is a direct method for calculating β [105]. The uncertain variables and parameters

are transformed into standard normal space. Uncertain parameters are probabilistic values

that are not changed by the optimizer. For example, the transformation equation for a

normal distribution is the U = x− µ

σ
where U is the design and uncertain variable vector in

normal space and µand σ are the mean values and standard deviations of the variables or

parameters respectively. The reliability index, β , is calculated by solving the optimization

problem shown in equation 2.3.1, which calculates the distance between the current design

point and the closest approach of a given constraint function. The constraint number is

denoted by i.

Minimize ‖U‖

Subject to Gi (U) = 0 (2.3.1)
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Solving 2.3.1 calculates the co-ordinates of the MPP in normal space. The distance from

the MPP to the design point is the reliability level, βi, and is calculated by equation 2.3.2.

The process is illustrated in Figure 2.3.1, where G is a constraint function evaluated at

normalized variable vector U [106].

βi ≈ ‖UGi=0‖ (2.3.2)
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Figure 2.3.1: RIA Approach (Deb, 2007)

In an optimization scheme, βi is calculated for each constraint function. The constraints are

re-formulated to constrain each βi to exceed the target reliability level. RIA has been shown

to exhibit poor convergence for some problems since enforcing equality constraints on non-

linear or coarse constraint functions causes convergence problems for many optimization

algorithms [107]. Despite this drawback, the RIA method has the advantage that the reli-

ability level for each constraint can be calculated directly, unlike the PMA method, where

a desired reliability level must be implicitly enforced for each constraint. A direct calcu-

lation of β is particularly useful for when solving for a range of solutions (a Pareto front)
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showing the trade-off between the reliability level β and some objective function. Deb et

al. demonstrated this approach on an analytical problem and a vehicle crash-worthiness

problem using evolutionary algorithms [106].

2.3.1.2 The Performance Measure Approach

The PMA method, introduced by Tu et al., essentially solves the inverse of the RIA opti-

mization [107]. As shown in Figure 2.3.2, the constraint level, Gi (U) is minimized subject

to a constraint that forces the distance in normal space to the MPP to become equal to the

desired reliability level β , resulting in the depth into feasible design space that must be en-

forced [108]. This is an improvement over the RIA method because non-linear constraint

functions become a minimization problem, not an equality constraint as in the RIA method,

resulting in an approach that is generally more robust and efficient for most applications

[68, 109].
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Figure 2.3.2: PMA Approach (Deb, 2007)

For aircraft conceptual design, many non-linear constraint functions are enforced. These

include desired performance characteristics, stability, and others. The RIA method requires
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enforcing each constraint in turn to an equality condition. This leads to poor convergence

characteristics in gradient-based optimizers, making the PMA method a more suitable ap-

proach for such problems since each constraint function is minimized in the RBDO problem

objective function, not constrained to an equality condition.

Minimize Gi (U)

Subject to ‖U‖= βt (2.3.3)

2.3.2 Reliability Based Optimization Integration Strategies

A reliability based optimization framework integrates an optimizer that adjusts the design

variables (both deterministic and uncertain) with a method for performing reliability anal-

ysis. There are three general approaches for accomplishing this. They are referred to as

double-loop, sequential, and single-loop and are described as follows.

2.3.2.1 Double Loop Method

The Double Loop approach is the traditional method for integrating reliability analysis with

optimization frameworks. Double loop RBDO strategies consist of an outer optimization

loop that adjusts the mean values of the design variables. The objective function is eval-

uated at the mean values of the uncertain variables and parameters. Each optimization

constraint is evaluated by carrying out either a PMA or RIA based reliability analysis every

time the design variables are changed. The optimization can be constrained to reach a de-

sired reliability level using RIA or constrained to be feasible at a specified reliability level

using PMA. The block diagram for the double loop method is shown in Figure 2.3.3 [110].

Double loop methods are computationally expensive and can exhibit convergence prob-
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lems for the following reasons. The convergence of the inner optimization loop may not

be sufficiently precise for the outer loop optimizer to calculate accurate gradients [111].

Double loop methods require a full reliability analysis to be solved for every probabilistic

constraint whenever the design variables are altered. This includes the small steps used

for calculating gradients by finite-differencing when gradient based optimizers are used.

This greatly increases the computational expense for problems that have a large number

of probabilistic constraints. These drawbacks have led to the development of strategies

that decouple the optimization loops into more efficient arrangements. Other alternative

methods eliminate the inner reliability assessment loop by implementing gradient-based

37



approximations to estimate the FORM solution at each iteration.

2.3.2.2 Sequential Method

Sequential RBDO was first proposed by Wu et al. [112, 113]. The approach was dubbed

“Safety Factor Based” RBDO. Du et al. extended the concept with Sequential Optimiza-

tion and Reliability Assessment (SORA), which introduced some optimizations to enhance

the convergence rate [111]. Sequential RBDO schemes address the convergence problems

and the computational cost associated with double loop methods by decoupling the reli-

ability analysis optimization loops from the main problem. This is accomplished by an

arrangement where a full deterministic optimization problem is solved in sequence with

the reliability assessments as shown in Figure 2.3.4 [111]. The deterministic optimization

provides an initial estimate of a reliable solution. This is followed by a reliability analy-

sis optimization loop (usually PMA) for every constraint. The MPP associated with each

constraint is determined. The differences between the mean values obtained by the deter-

ministic optimization and the design variables at the MPP are calculated and stored in the

shift vector, s. A new deterministic optimization problem is solved with modified constraint

boundaries where each constraint is evaluated at a position x+ s. Note that each constraint

is evaluated at a different shift vector for a given set of design variables. The algorithm

continues to alternate deterministic optimization with reliability analysis until consistency.

This method has been shown to be significantly more efficient than double loop approaches

[72, 111, 112]. Additionally, since the reliability analysis occurs in sequence with the sys-

tem optimization rather than in a nested loop, the system optimization is less sensitive to

imprecise convergence of the reliability analyses.
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2.3.2.3 Single Loop Method

Single loop methods eliminate the need for nested loops or sequential optimizations by

implementing gradient-based approximations of the MPP for each probabilistic constraint.

The approximation is updated at every iteration of the optimizer. Chen et al. introduced

the Single Loop Single Variable (SLSV) method, an early example of the single loop ap-

proach [114]. Other single loop algorithms have been proposed by Kuchel et al. and others

that bring the normal distribution variates as additional design variables [115]. However,
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Liang et al. reported that these methods require computationally expensive second order

derivatives, and proposed an enhanced SLSV method, outlined in Figure 2.3.5, requiring

no additional design variables or second order derivatives [116].

The method operates by solving a deterministic objective function subject to constraints

calculated at shifted uncertain variable levels, which are updated at every iteration in gra-

dient based optimizers. The computational effort required is similar to deterministic opti-

mization for some problems. However, like the sequential and single loop methods, each

constraint must be evaluated at different design variable states. For problems such as the op-

timization of a finite-element structure, the objective (minimizing mass, for example) and

constraints (stresses) may be evaluated with one execution of the finite-element method.

For a reliability-based optimization, the FEM model must be updated and executed inde-

pendently for the objective function and all of the constraints individually, greatly increas-

ing the number of function evaluations relative to deterministic optimization.

Several currently available design tools incorporate RBDO methods for considering un-

certainty in design. DAKOTA is a design optimization tool developed by Sandia Na-

tional Labs [117]. DAKOTA provides a number of optimization algorithms and tools

for surrogate modeling. Recently, RBDO methods were incorporated including the RIA,

PMA, and single loop approaches, simulation based methods, and second order methods

[109, 117, 118, 119]. DAKOTA emphasizes parallel computing and surrogate modeling

to facilitate high fidelity optimization. It does not appear to contain native algorithms for

solving multi-discipline RBDO problems. ProFES is a tool for integrating the uncertainty

analysis capabilities of DAKOTA with FEM solvers. Wu et al. solved a single-discipline

high fidelity wing box structural optimization with the ProFES package in [120]. The

RBDO algorithms developed in this research emphasize multi-discipline design optimiza-

tion incorporating RBDO. Both single and multi-objective optimization approaches were
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considered for solving practical aerospace design problems.

2.4 Summary

This chapter outlines the methodology used for modeling sources of uncertainty and de-

scribes several approaches for integrating uncertainty analysis in design optimization. Prob-

abilistic approaches are nearly always used when sufficient statistical information is avail-

able to determine a good estimate of the PDF for each source of uncertainty. For sources of

uncertainty where there is insufficient data to determine a PDF function accurately, interval

and fuzzy analysis can be implemented. The boundaries and types of membership func-

tions are developed by experts using both subjective knowledge as well as objective data.

Optimization strategies that consider the influence of input uncertainty were reviewed. Ro-

bust design searches for designs that exhibit low sensitivity to variances in the uncertain

variables and parameters. RBRDO finds optimum designs where the output variances of

constraint functions lie completely within feasible design space. Both PBDO and RBDO

are methods for finding reliable designs by evaluating the likelihood of constraint failure.

In PBDO, the uncertain variables are defined using fuzzy sets or intervals. RBDO methods

define uncertain variables probabilistically.

Commercial aircraft design traditionally implements statistical analysis methods in the con-

ceptual design phase. Historical data concerning aircraft specifications is generally plenti-

ful. Consequentially, the uncertainties that arise from using low fidelity physics and statisti-

cal methods in aircraft conceptual design can be represented probabilistically by comparing

predicted performance characteristics with published data. Therefore, RBDO is a suitable

approach for handling uncertain contributing analysis methods in aircraft conceptual de-

sign.
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Chapter 3

RyeMDO: A Multi-Discipline,

Multi-Objective RBDO Package

This chapter describes the development and validation of RyeMDO, a software package for

multi-objective, multi-disciplinary reliability based design optimization. The development

of RyeMDO began with the deterministic optimization of a simplified Unmanned Aerial

Vehicle (UAV) conceptual design optimization case study [121, 122]. This work was later

extended to multi-objective conceptual design of light jet aircraft using a GA optimizer

[123]. The results were promising, but the highly simplified conceptual design equations

had limitations, and the analysis of constraints such as dynamic stability, handling qualities,

and control surface sizing could not be introduced without increasing the sophistication of

the implemented analysis methods. Better performance simulation modules were devel-

oped and a vortex lattice method was implemented, enabling the consideration of dynamic

stability constraints and control surface sizing. However, the new analysis packages intro-

duced coupling between the disciplines, requiring the implementation of MDO method-

ology. A multi-discipline commercial aircraft conceptual design case study was solved
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[124, 125]. The work was again extended to consider multiple objectives using GA with

some enhancements for the purpose [40]. Again, the results were promising, but despite the

enhancements, the utilized aircraft conceptual design methods still relied on some statisti-

cal equations and other simplified analysis methods. This limits the confidence designers

may place in any of the results obtained from the optimizer. RyeMDO was developed to

address this by introducing reliability analysis as a means of accounting for the uncertain-

ties introduced by the approximate analysis methods commonly used in aircraft conceptual

design. A method was developed whereby analysis methods are benchmarked and com-

pared to historical data to establish their accuracy. This information is carried forward into

the optimization process. The resulting designs would therefore be more conservative than

those computed by deterministic optimization. However, the designer may have increased

confidence that the performance predictions of the new conceptual design are more reliable.

RyeMDO is a modular package that enables the integration of several different RBDO

strategies with several alternative MDO frameworks depending on what is most suitable for

a given problem. Each module is generalized to work with most optimization algorithms.

It is suitable for general purposes and is not limited to aircraft conceptual design problems.

Figure 3.0.1 lists the main RyeMDO modules. RyeMDO was programmed in MATLAB, a

programming language for mathematical computation [126].

RyeMDO contains six alternative modules for reliability assessment. The FORM based

methods implemented include both PMA and RIA methods. Modified variants of the PMA

and RIA methods were developed for MDO strategies such as the IDF method that require

auxiliary coupling variables and constraints. The PMA and RIA optimization problems are

solved via MATLAB’s SQP algorithms. Two modules for MCS based reliability assess-

ment were developed. The first evaluates the system equations and is useful for problems

that consist of only fast-solving analysis methods. The second MCS based method imple-
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Figure 3.0.1: RyeMDO Modules

that consist of only fast-solving analysis methods. The second MCS based method imple-

ments self-updating surrogate models that mathematically represent the constraints with

respect to the uncertain variables and parameters locally around the current design point.

The models are calculated by sampling a user specified number of points and are updated

whenever the design variables change significantly. The method is suitable for problems

where the analysis methods are too computationally expensive for MCS to be practical

but too noisy or discontinuous for gradient based optimizers to be effective. Both MCS

methods utilize a multi-objective GA optimizer.

Modules for the double loop, single loop, and sequential optimization strategies were de-

veloped. The double loop and sequential approaches can implement either the PMA or RIA

reliability assessment methods. The single loop approach implements a gradient based ap-

proximation of the PMA method. Modules for solving multi-disciplinary problems were

developed using the MDF, IDF, and CO methods. The modules can be combined with

either the single loop, double loop, or sequential strategies using PMA or RIA. Many dif-

ferent combinations of reliability assessment methods, optimization strategies, and MDO

algorithms are possible. RyeMDO was designed to handle uncertainty in design variables,

constant parameters, and the output of contributing analysis methods. Many well-known
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ments self-updating surrogate models that mathematically represent the constraints with

respect to the uncertain variables and parameters locally around the current design point.

The models are calculated by sampling a user specified number of points and are updated

whenever the design variables change significantly. The method is suitable for problems

where the analysis methods are too computationally expensive for MCS to be practical

but too noisy or discontinuous for gradient based optimizers to be effective. Both MCS

methods utilize a multi-objective GA optimizer.

Modules for the double loop, single loop, and sequential optimization strategies were de-

veloped. The double loop and sequential approaches can implement either the PMA or RIA

reliability assessment methods. The single loop approach implements a gradient based ap-

proximation of the PMA method. Modules for solving multi-disciplinary problems were

developed using the MDF, IDF, and CO methods. The modules can be combined with

either the single loop, double loop, or sequential strategies using PMA or RIA. Many dif-
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ferent combinations of reliability assessment methods, optimization strategies, and MDO

algorithms are possible. RyeMDO was designed to handle uncertainty in design variables,

constant parameters, and the output of contributing analysis methods. Many well-known

PDF functions are supported. Both gradient based and stochastic optimization methods can

be selected.

RyeMDO is invoked by an input script that defines the parameters of the problem to be

solved. First, the user must define the objective functions, constraint functions, and the dis-

cipline analysis functions. Each function must accept a vector of design variables (uncer-

tain and deterministic), coupling variables, uncertain parameters, and any required output

from the discipline analysis methods. Following the function definitions, the PDF functions

for each uncertain variable and parameter must be defined. For problems with uncertain

analysis methods, a database must be provided. The data must describe how the true sys-

tem behaves with respect to the design variables. It may be derived from the results of

physical testing, historical data, or from more exact analysis methods. RyeMDO uses the

provided analysis methods to predict the database entries. The user must examine the his-

togram of the discrepancies between the data and predictions and select a PDF function that

approximates the histogram best. Following this, the reliability assessment method must

be selected. The MCS based methods implement a GA optimizer. If any of the FORM

based approaches are selected, the user must select the optimization strategy - double loop,

single loop, or sequential. These methods may be combined with the MDF, IDF, or CO

methods for multi-discipline problems. The PMA or RIA methods implement MATLAB’s

SQP optimizer. The user may select either a GA optimizer or SQP for the outer optimiza-

tion loops. The optimization can then be carried out with a user defined reliability level

target. Alternatively, the reliability level can be introduced as a second objective function

and solved by multi-objective optimization methods. This enables the user to determine
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any trends in the optimum design as the reliability level is increased. Figure 3.0.2 outlines

the procedure.

Start

Define objective 
function

Database
[design variables][known data]

Define constraint 
function(s)

Define uncertain 
variables/params

Examine histogram,
Select PDF function

obtain predictions

Select MDO Module
[MDF][IDF][CO]

Select Reliability 
Assessment Method

[RIA][PMA][MCS]

Select RBDO Approach
[DL][SEQ][SL]

Known PDF

Obtain PDF
From Database

Optimize
MDF/GA method

MCS

Select optimizer
[GA][SQP]

Define discipline 
analysis functions

Solution

Figure 3.0.2: RyeMDO - Solution Procedure

Section 3.1 describes solution strategies for reliability based MDO problems using RyeMDO.

In Section 3.2, several well-known optimization problems are solved to validate the soft-

ware and to compare the performance of many of the solution methods that can be created
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by different combinations of the RyeMDO modules.

3.1 Reliability-Based Multi-disciplinary Design Optimiza-

tion Strategies

MDO can be simply defined as the optimization of systems that require the simultane-

ous solution of several contributing disciplines. RyeMDO provides modules for several

MDO algorithms including MDF, IDF, and CO. Each method can incorporate several of

the RBDO integration strategies discussed in Section 2.3.2. The following sections review

each MDO approach and describe how the several reliability assessment strategies can be

integrated.

The integration of RBDO methods with MDO problems has been the subject of some recent

research [32, 61, 127, 128]. However, a study of the relative performance characteristics

associated with integrated RBDO-MDO methods is not currently available. Section 3.2

addresses the need to establish the most promising approaches. The accuracy, reliability,

and efficiency of each approach were assessed and compared. The results of the study are

carried forward to the solution of engineering case studies in Chapters 4 and 5.

3.1.1 MDF Method

The MDF architecture is a single level MDO approach where every candidate design gener-

ated by the optimizer is feasible. In other words, any shared design variables and coupling

variables are consistent in every discipline. This is accomplished by the introduction of a

MDA loop. The MDA loop begins at a given design variable state assigned by the optimizer

using an initial guess of the coupling variable vector, denoted by y. Each discipline is run in
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turn to obtain updated coupling variable quantities from the discipline analysis output. The

loop repeats until the coupling variable vector reaches consistency. An MDA loop must

be carried out whenever the design variables are altered. Most other MDO methods only

guarantee feasible designs at the final optimum point and require the introduction of cou-

pling variables to the system optimizer, significantly increasing the dimensionality of the

optimization problem while possibly reducing the number of required function evaluations

[43, 46, 48]. The MDA loop can implement substitution methods similar to Gauss-Siedel,

the Newton–Raphson method, or other numerical approaches depending on what is most

suitable for the governing equations of each discipline. The optimization problem formu-

lation for a deterministic MDF based approach is given in equation 3.1.1 where the shared

design variables and local design variables are denoted by z and x respectively. The cou-

pling variables, denoted by y, are solved by carrying out an MDA loop every time the

system and local variables are adjusted.

min
z,x

f [z,y(x,y,z) ,x] i, j = 1, ...,n (3.1.1)

s.t.g [z,y(x,y,z) ,x]≤ 0

A reliability based MDF formulation can be stated as shown in equation 3.1.2 where P is the

probability of feasibility for each problem constraint and p represents uncertain parameters

(parameters that are probabilistic but have fixed mean values that remain unaltered by the

system optimizer).

min
z,x

f [z,y(x,y,z) , x̄, p]] (3.1.2)

s.t.P(g [z,y(x,y,z) ,x, p]≤ 0)≥ Pgoal
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The MDA loop serves as an interface between the optimizer and the problem disciplines.

The optimizer manipulates the shared variables, z, and each of the discipline’s local vari-

ables, x. The coupling variables are solved internally by the MDA loop and do not appear

in the system optimizer. Any single discipline RBDO approach can therefore be applied.

It should be noted that an MDA analysis may require many function evaluations and is

performed whenever the design variables (deterministic or probabilistic) are updated. This

applies to both the system optimization problem and each reliability assessment. As a con-

sequence, the computational effort required for solving a multi-discipline RBDO problem

is much greater than that of single discipline optimization. RyeMDO’s MDF block can be

integrated with any of the single discipline RBDO solver blocks directly, since all coupling

variables are handled internally, and are not visible to the system optimizer.

3.1.2 IDF Method

The IDF method was developed to eliminate the need for the computationally costly MDA

loop by removing the requirement of feasibility for every design evaluated by the opti-

mizer. Design feasibility, or rather the consistency of the coupling and shared variables

between disciplines, is only guaranteed at the final optimum point. This is accomplished

by introducing the coupling variables as additional design variables in the system optimizer

to serve as preliminary estimates. New auxiliary constraints are introduced that force the

discrepancy between the discipline responses and the estimated values to vanish at the op-

timum point. The algorithm block diagram is shown in 2.1.3. The deterministic problem

formulation for the IDF method is given in equation 3.1.3. The coupling variables, y, are

evaluated by solving each discipline using the estimates of the coupling variable states, y′,
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established by the system optimizer.

min
z,x

f
[
z,y

(
x,y′,z

)
,x
]

i, j = 1, ...,n (3.1.3)

s.t.g
[
z,y

(
x,y′,z

)
,x
]
≤ 0

y′− y
(
x,y′,z

)
= 0

Performance comparisons of MDO methods consistently report IDF as being both highly

efficient and stable for small and medium scale problems [43, 46, 48]. However, con-

vergence issues have been reported for problems having a very large number of coupling

variables and/or local design variables due to the increase in dimensionality of the system

optimizer and the addition of the equality compatibility constraints [43]. The coupling

variables are also introduced to the system optimization variables for IDF-based RBDO

algorithms with corresponding auxiliary constraints. However, the same must be done for

every reliability analysis, as shown in equation 3.1.4 for PMA based reliability analysis.

min Gi (U)

s.t. ‖U‖= βt (3.1.4)

becomes

min Gi
(
U,y′

)
s.t. ‖U‖= βt

y′− y
(
x,y′,z

)
Incorporating the revised reliability analysis loop, IDF formulations are possible using both

double loop and sequential RBDO strategies. RyeMDO contains IDF modules for both

the double-loop and sequential RBDO strategies. The user may select an IDF-based outer
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optimization loop and an IDF-based implementation of the RIA or PMA reliability analysis

methods. Alternatively, the user may opt to use an IDF based outer loop with an MDF

based reliability assessment loop. This hybrid arrangement can be advantageous when the

number of coupling variables is large compared to the number of uncertain variables and

parameters.

3.1.3 CO Method

The CO method is a multi-level MDO strategy. Each discipline is managed by an indepen-

dent local optimizer. For a given discipline, the local optimizer minimizes the discrepancies

between any local coupling and shared variables with those established by the system opti-

mizer. The discipline constraints are also enforced. The system-level optimizer minimizes

the main objective as a function of only shared design variables and coupling variable

estimates as shown in Figure 2.1.5. Local variables only appear in the discipline-level

optimizations. For this reason, the dimensionality of the system optimization problem is

substantially reduced for problems that have large numbers of local design variables. Each

discipline optimizer or RBDO integration strategy can be specifically chosen according to

what works best on the governing equations of each discipline. If the system optimizer is

gradient-based, the local optimization problems must be sensitive to small changes to the

design variables. This requires consistent and precise convergence of each local optimiza-

tion. Otherwise, the determination of gradients by finite-differencing becomes impossible.

Since most RBDO methods require additional inner-loops or sequential optimizations, the

degree of precision required by a gradient based system optimizer can be difficult to attain.

Performance comparisons consistently show CO to be at a disadvantage with problems

that do not have large numbers of local variables [43, 46, 48] since variables shared by

two or more disciplines must be solved at every discipline level, greatly increasing the
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dimensionality of the sub-problems [16]. However, CO has been shown to be competi-

tive or advantageous for problems that have large numbers of local variables [129]. The

deterministic problem formulation for the system optimization and local optimizations are

shown in equations 3.1.7 and 3.1.8 where the index i denotes the discipline number, A is the

auxiliary compatibility constraint function, and the subscript SL denotes the system level

variable values.

min
zSL,ySL

f (zSL,ySL) (3.1.5)

s.t.Ai (zSL,z∗i ,ySL,y∗i ) = 0

where

Ai = ∑(zSL− zi)
2 +∑(ySL− yi)

2

min
z,y,x

Ai [zSL,zi,ySL,yi (xi,ySL,zi)] (3.1.6)

s.t.gi [zi,xi,yi (xi,ySL,zi)]≤ 0

The integration of RBDO strategies with CO is relatively straightforward. Since the prob-

lem objective functions are always evaluated at the mean value of uncertain variables and

parameters, the system level objective function remains the same for reliability-based op-

timization as for deterministic optimization. Since compatibility between disciplines is

enforced by the objective function of each local optimization, auxiliary constraints do not

appear in the local optimization problem statements. Therefore, there is no need to modify

the reliability analysis with coupling variables and compatibility constraints. The system

optimization is given in equation 3.1.7. The RBDO formulation of a given local optimiza-
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tion is given in equation 3.1.8.

min
zSL,ySL

f (zSL,ySL, p) (3.1.7)

s.t.Ai (zSL,z∗i ,ySL,y∗i , p̄) = 0

where

Ai = ∑(zSL− zi)
2 +∑(ySL− yi)

2

min
z,y,x

Ai [zSL, z̄i,yi (x̄i, ȳSL, z̄i) , p̄] (3.1.8)

s.t.P(gi [zi,xi,yi (xi,ySL,zi) , p]≤ 0)≥ Pgoal

The system level problem is the same as a deterministic CO formulation where the un-

certain variables and parameters are evaluated at their mean values. Any of the single-

discipline RBDO implemented in RyeMDO can be used to solve the discipline level opti-

mizations with no modification. Different RBDO strategies can be used for each discipline

if necessary. RyeMDO’s CO block enables the user to select distinct RBDO strategies for

every discipline considered. The system level optimization may be solved using SQP or

genetic algorithms.

3.2 Validation and Benchmarking

This section describes the validation of the RyeMDO modules on several test problems.

RyeMDO supports several reliability assessment methods, optimization strategies, and

MDO algorithms. The modules can be combined in many ways, resulting in a wide va-

riety of possible RBDO-MDO strategies. In addition to validating each approach, it is
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important to identify which RBDO-MDO strategies are the most promising approaches for

solving engineering problems such as aircraft conceptual design optimization. Well-known

analytical RBDO test problems were solved to validate the performance and accuracy of

each RyeMDO module. The analytical test problems are smooth and can be quickly and

accurately solved. Truss optimization problems were developed and solved to evaluate

each approach when the objective and constraint functions are not as smooth or accurate as

the analytical problems. The following sections describe the validation and benchmarking

of the single-discipline RBDO approaches and the integration of RBDO approaches with

several MDO methods.

3.2.1 Single Discipline Analytical Optimization

The following mathematical example given in equation 3.2.1 is a common test problem in

RBDO literature [130].

min f = x̄1 + x̄2 (3.2.1)

st. P
[
G j (x)≥ 0

]
≥ Pgoal, j, j = 1,2,3

G1 (x) = x2
1x2/20−1

G2 (x) = (x1 + x2−5)2 /30+(x1− x2−12)2 /120−1

G3 (x) = 80/
(
x2

1 +8x2 +5
)
−1

x1 ∼ N (x1,0.3) , x2 ∼ N (x2,0.3)

It is a non-linear, single discipline RBDO problem with two uncertain variables. The prob-

lem was solved with the double loop method using both RIA and PMA, the sequential

method with PMA, and the single-loop method. The problem was solved at β values

of 1 to 5. These results are shown in Figure 3.2.1, and clearly shows how the solutions
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are pushed from the constraint boundaries G1, G2, and G3 as the reliability level β is in-

creased, yielding more conservative solutions. The algorithm performance was compared

at β = 3 for all three approaches. The results are shown in Table 3.1. The results compare

the relative performance and accuracy of each method. The double loop and sequential

methods all yield nearly identical solutions. However, the PMA based approaches clearly

solve the optimization problem more efficiently. The Sequential/PMA method required

significantly fewer function evaluations than the double loop approaches. The single loop

approach required significantly fewer function evaluations to solve the mathematical prob-

lem. However, the results tend toward less agreement with the PMA and RIA solutions

as the reliability level increases. Both the RIA and PMA methods converge to the exact

FORM solution without additional approximations while the single loop method solves an

approximate solution to FORM, causing a loss in accuracy.
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Figure 3.2.1: Single Discipline Example
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Table 3.1: Algorithm Performance Comparison

3σ Solution fmin x1 x2 nevals

Deterministic 5.1769 3.1134 2.0636 16
RIA/Double Loop 6.7257 3.4391 3.2866 1530
PMA/Double Loop 6.7043 3.4506 3.2537 1004
PMA/Sequential 6.7043 3.4506 3.2537 651
Single Loop 6.6198 3.4413 3.1785 16

The stability, speed, and accuracy of each algorithm were evaluated by running the opti-

mization problem over a grid of 100 starting points between [0,0] and [10,10]. The results

of this evaluation are shown in Table 3.6. A failed run was defined as an optimization

that failed to converge to within 10% of the true exact FORM solution of 6.7043. Clearly,

the RIA/Double Loop method was the least reliable of the methods tested, with 71 out of

100 runs failed and an average error of 6.11% for the converged solutions. The method

was especially problematic when dealing with infeasible starting points. The PMA/Double

Loop method was found to be reliable, with no failed runs. It required substantially fewer

function evaluations and lower solution times than the RIA/Double Loop method. The

PMA/Sequential method was also reliable, with only 5 of 100 runs failing to converge. The

average and median relative error was found to be the lowest of the methods tested. The

Single Loop method exhibited by far the fastest solution times and did not fail to converge

regardless of the starting point. However, the solutions were found to lie some distance

from the exact FORM solution. Figure 3.2.1 indicates that this discrepancy worsens with

increasing reliability levels for the analytical problem.

Analytical problems are useful for establishing some general performance comparisons.

However, they are usually smooth functions that can be solved directly with great accuracy.

For practical problems, the level of precision is necessarily reduced since the objective and

constraint functions are likely to consist of analysis methods that use discretization or nu-
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Table 3.2: Algorithm Stability Comparison

method number of average median average average
failed runs % error % error time (s) evals

RIA/Double Loop 71 6.11 0.319 4.1316 13276
PMA/Double Loop 0 3.77 2.97E-5 2.7277 3862
PMA/Sequential 5 2.54E-5 2.54E-5 0.5805 1648
Single Loop 0 1.93 1.25 0.3343 145

merical solutions. Increasing the level of precision for such methods increases the compu-

tational effort required to obtain a solution. An 18 bar truss optimization problem is given

in equation 3.2.2. The FEM based stress constraints are less smooth than the analytical

example, better approximating the characteristics of practical engineering problems.

3.2.2 Single Discipline Truss Optimization

An 18 bar truss example, adapted from a deterministic problem proposed in [131], was

solved to assess the stability and performance of the RBDO approaches on a problem with

less desirable properties than the preceding analytical example. The problem objective

function was set to minimize the mass of the truss structure while keeping the maximum

tensile or compressive stresses in every member below the ultimate stress limit or buckling

stress limit. For different designs, the critical truss element will move about the structure,

resulting in a somewhat rough constraint function compared to the analytical example. The

initial truss structure is shown in Figure 3.2.2, where the x and y axis units are in inches.

The truss was optimized considering uncertain loading and uncertain material strength.

The problem formulation is given by equation 3.2.2. The design variables were defined as
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Figure 3.2.2: 18 Bar Truss

4 element area variables and 8 variables defining the co-ordinates of the lower nodes.

min mass = f (x) (3.2.2)

st.P [σt ≤ σmax]≥ Pgoal

P [σc ≤ σb]≥ Pgoal

F ∼ N (5000,500) lb

σmax ∼ N (20000,2000) psi

σb =
−KiEiAi

L2
i

(3.2.3)

The variable definitions are shown in Table 3.3 where x denotes the design variable vector,

A represents the element areas, and X and Y are the co-ordinates of the lower truss nodes.

Two constraints were considered: tensile stress and buckling stress. The ultimate stress,

σmax, was assumed to be normally distributed (N). A random, normally distributed uniform

force was applied to nodes 1, 2, 4, 6, and 8. The buckling stress, σb, was defined by the

Euler buckling equation, given by equation 3.2.3. The elastic modulus, E, was assumed to

be 1.0E +7 psi. The buckling coefficient, K was assumed to be 4.0. The element length is
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denoted by L. The material density was assumed to be 0.1 lb/in3. The required probability

of feasibility, Pgoal was defined as the probability corresponding to a reliability index of 6,

or a failure probability of approximately 6.1×10−9.

Table 3.3: 18 Bar Truss Design Variables

variable definition
x1 A1,A4,A8,A12,A16
x2 A2,A6,A10,A14,A18
x3 A3,A7,A11,A15
x4 A5,A9,A13,A17
x5 X3
x6 Y3
x7 X5
x8 Y5
x9 X7
x10 Y7
x11 X9
x12 Y9

Figure 3.2.3 shows the deterministic result and the reliable result obtained with the se-

quential approach. The other methods produced designs with very similar geometry and

therefore are not shown. The performance of each RBDO approach is shown in Table 3.4.

Table 3.4: Algorithm Performance Comparison

6σ Solution mass (kg) nevals

Deterministic 1074 6920
RIA/Double Loop fails to converge
PMA/Double Loop 2892 54171
PMA/Sequential 2779 31948
Single Loop 3166 11360

Referring to Table 3.4, the single loop method once again provided the most computation-

ally efficient approach. Of the exact FORM based methods, the sequential approach was

again the most efficient. Obtaining converged solutions for both the RIA and PMA based
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(a) Deterministic Solution
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(b) Reliable Solution at 6σ

Figure 3.2.3: 18 Bar Truss Solution

double loop approaches was problematic. A solution was not obtained with the RIA/double

loop approach. This appeared largely due to inconsistent convergence of the inner reliabil-

ity assessment loop. Recall that double loop approaches are sensitive to the precision of the

inner reliability assessment loops, which must be solved for every constraint evaluation.

Optimization algorithms that utilize finite-differencing to obtain the constraint gradients

will not function correctly when the inner reliability analysis loop cannot be solved with

sufficient precision and sensitivity to small design variable steps. Although a solution for

the PMA/double loop method was eventually obtained, the convergence of this approach

was somewhat inconsistent. The convergence tolerance of the outer optimization loop had

to be relaxed, and the starting vector carefully chosen for the algorithm to converge. The
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sequential approach was reliable, converging successfully with any attempted starting vec-

tor. Since the reliability assessment is solved sequentially with the optimization of the

main problem, the precision of the reliability assessment does not affect the calculation of

gradients by the system optimizer. This characteristic explains the good convergence char-

acteristics of the sequential approach. The single loop approach consistently arrived at a

solution. However, like the previous example, the solution of the single loop approach was

found to deviate from the other solutions, consistently returning a larger optimum mass

than the PMA based methods.

3.2.3 Multi-Discipline Analytical Optimization

A multi-discipline analytical problem from Ahn et al., given in equation 3.2.4, was used to

validate the accuracy and relative efficiency of each RBDO-MDO approach implemented in

RyeMDO. The uncertain variables x1 and x2 were assumed to have a coefficient of variation

(COV) of 0.04 with mean values assigned by the optimizer. The COV is defined as the ratio

of the standard deviation, σ , to the mean value µ , of a random variable.

min f =−(x̄1−6)3 + y2
1− exp

(
−y1

y2

)
(3.2.4)

y1 = x2
1 + y2/2

g1 =−y2 + exp(y1/y2 +2.2x1)

y2 = x1 + x2 +(3x1x2)/y1

g2 = y2− y1− (x1 +1)2− (x2−4)3

The problem was solved for 8 different RBDO-MDO strategies at a reliability level of

3σ . The optimum points calculated by each approach as well as the number of function

evaluations for each discipline are shown in Table 3.5. The starting vector was x0 = [4,4]
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and the algorithm convergence tolerance was 10−5.

Table 3.5: Algorithm Performance Comparison

3σ Solution fmin x1 x2 nevals
Dis 1 Dis 2

MDF/Deterministic 115.7971 1.6478 3.004 68 68
MDF/DBL/PMA 119.6556 1.5975 2.8056 16474 16474
MDF/SLP 119.9417 1.6559 2.9129 1495 1495
MDF/SEQ/PMA 119.6832 1.6208 2.8434 7413 7413
IDF/SEQ/PMA 119.4876 1.6290 2.8328 1228 1228
IDF/DBL/PMA 119.4464 1.6005 2.7869 23765 23765
CO/SEQ/PMA 119.1466 1.5930 2.7471 38958 34781
CO/DBL/PMA 119.1579 1.6000 2.7584 333623 201204
CO/SLP 119.0822 1.6300 2.7951 56338 186732

Table 3.5 indicates that the most efficient method for solving the analytical problem was

achieved by the IDF method with a sequential RBDO strategy. Also very efficient was the

MDF method with a single-loop RBDO strategy. The CO based strategies did not perform

well. The starting vector for the CO based double loop approach had to be very carefully

chosen to obtain a converged solution, and nearly always failed to converge. However, it

should be noted that the analytical optimization is a small scale problem and is not one

where the advantages of the CO method described in Section 3.2 would be apparent.

The stability of each RBDO approach was assessed by solving the optimization from a

grid of 100 evenly spaced points. The CO/DBL/PMA approach was omitted since only

one converged solution was able to be obtained. The starting points ranged from [0,0]

to [5,5]. Since the RBDO/MDO solution strategies involve solving multiple nested loops

within the optimization, more scatter in the calculated optimum point was observed than

the previous deterministic optimization examples. The box-plot in Figure 3.2.4 shows the

scatter in the predicted optimum point of each algorithm based on optimization runs with

a target reliability index of 3σ and a function and constraint tolerance of 10−5. The me-
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Figure 3.2.4: Solution Distribution Box Plot

dian observed values are indicated by the horizontal line. The box indicates the size of

the upper and lower quartile of the solutions for each method. Outliers are indicated by

the ‘+’ symbol. The exact solution to the FORM for 3σ is 119.68. The MDF/DBL/PMA,

MDF/SEQ/PMA, and the SEQ/IDF/PMA methods were observed to be very accurate with

relatively few outliers in the predicted optimum point. The single-loop based methods pro-

duced some scatter and a distinct bias from the exact solution. This is consistent with the

results obtained from the single-loop example in Section 3.2.1. This scatter clearly led to

convergence problems for the single-loop approach in a CO framework. Both CO-based

algorithms incurred a number of failed runs, as shown in Table 3.6. The sequential IDF

method exhibited a clear superiority in efficiency and accuracy for the analytical optimiza-

tion. The MDF-based methods were stable and relatively accurate, but required an order of

magnitude more function evaluations than the IDF based methods to solve. The CO based

methods produced the most scatter in the location of the optimum point.

64



Table 3.6: Algorithm Stability Comparison

method number of avg function evals
failed runs discipline 1 discipline 2

MDF/DBL/PMA 0 16998 16998
MDF/SLP 1 10128 10128
MDF/SEQ/PMA 0 7440 7440
IDF/SEQ/PMA 0 1229 1229
IDF/DBL/PMA 2 8489 8489
CO/SEQ/PMA 16 57105 135190
CO/SLP 10 7427 16005

3.2.4 Multi-Discipline Truss Example Optimization

A multi-disciplinary truss optimization problem was developed to test the RBDO-MDO

strategies on a less well-behaved problem than the analytical example. Additionally, the

problem was designed to be a better test-bed for the CO based RBDO solver. The truss

structure consists of two sub-structures: a span and a support. The two sub-structures can

be considered as distinct disciplines coupled by the reaction force and displacement at the

location of the interface between the support and the span. The full structure and the two

sub-structures are shown in Figure 3.2.5.

The design variable and coupling variable assignments are shown in Table 3.7. The two

sub-structures can be considered independently. They can be isolated into separate dis-

ciplines with no shared variables. The FEM analysis output - the reaction force and dis-

placement at the interface node - for each structure is required by the other to solve. This

required the introduction of two coupling variables - the reaction force and vertical dis-

placement at the interface node. The problem formulations for the MDF and IDF methods

are straightforward. The design variables are all solved simultaneously with one system

optimizer. The IDF method introduces the displacement and reaction force variables into

the system optimizer. The CO formulation isolates all the variables pertaining to each

sub-structure into their respective disciplines. There are no shared design variables, so the
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Figure 3.2.5: Decoupled Structure

system optimization is a function of only the reaction force and displacement. The individ-

ual disciplines are responsible to provide an optimum structure for the target displacement

and reaction force set by the system optimizer. The CO formulation is shown in equation

3.2.5, where m∗1,2 represents the optimum mass values returned by the local discipline opti-

mization problems. The variables U and R represent the displacement and reaction force at

the interface node respectively. The ultimate stress is denoted by σmax, which was assumed
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to be uncertain with a mean value of 20000 psi and a standard deviation of 2000 psi.

min f
Usys,Rsys

= m∗1 (Usys,Rsys, σ̄max)+m∗2 (Usys,Rsys, σ̄max) (3.2.5)

s.t. ∑
i=1,2

(Usys−Ui)
2 +(Rsys−Ri)

2 = 0

Ai=1,2 = min (Usys−Ui (xi,σmax))
2 +(Rsys−Ri (xi,σmax))

2

s.t. gi = P(σ ≤ σmax)≥ Pgoal

σmax ∼ N (20000,2000) psi (3.2.6)

Table 3.7: MDO Truss Design Variables

variable definition
var discipline 1 var discipline 2
x1 A1,A2,A3,A4,A5 x1 A1,A2,A3,A4
x2 A6,A7,A8,A9 x2 A5,A6,A7
x3 A10,A11,A12,A13,A14,A15 x3 X2,X4
x4 X2,X5 x4 Y2,Y4
x5 Y2,Y5 coupling
x6 X3,X4 Y1 R
x7 Y3,Y4 Y2 U
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Figure 3.2.6: Optimized Truss

The results are shown in Table 3.8. The deterministic solution has a mass of under 400
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lb. Considering the uncertainty at a reliability level of 6σ increases the optimum mass to

approximately 1000 lb for all methods considered. As before, the IDF methods were found

to be more efficient than the MDF-based approaches, with the sequential IDF method hav-

ing the fewest function evaluations for discipline 1. However, the CO/Sequential method

required significantly fewer function evaluations in the second discipline, and was the most

efficient approach for the MDO truss example. However, multiple starting points had to be

attempted before the solution was in agreement with the other methods, and the compati-

bility constraints had to be relaxed to obtain a solution at all.

Table 3.8: MDO Truss Example Solution

6σ Solution mass nevals
Dis 1 Dis 2

Deterministic 369.2 7204 7204
MDF/SEQ/PMA 950.6 366266 366266
MDF/SLP 1007.1 62392 62392
MDF/DBL/PMA 994.1 92448 92448
IDF/DBL/PMA 987.6 45117 45117
IDF/SEQ/PMA 954.2 32151 32151
CO/SEQ/PMA 996.7 36786 15301

3.3 Summary

The development of RyeMDO, an optimization package for multi-objective, multi-disciplinary

RBDO, was described. Several modules for reliability assessment, RBDO, and MDO were

developed. The algorithms were validated by solving several well-known analytical RBDO

test problems and truss optimization problems for several combinations of reliability as-

sessments, optimization strategies, and MDO methods.

The performance characteristics of FORM-based reliability assessment methods were com-
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pared using both an analytical problem and an 18 bar truss optimization problem. It was

found that the single loop approach was significantly more efficient than the exact ap-

proaches, but diverged slightly in accuracy with increasing reliability levels. Of the FORM

based methods, the sequential approach was observed to be the most efficient for both prob-

lems studied, and was found to reliably converge to the solution from almost any attempted

starting vector.

The sequential and double loop approaches were found to exhibit the best accuracy in the

analytical problems, where the true exact solutions were known. The sequential meth-

ods performed better than the double loop approach in both the MDF, IDF, and CO MDO

frameworks. The single-loop/MDF method was found to be efficient, but exhibited bias in

both the single discipline examples and the multi-discipline examples. Additionally, when

tested from many starting vectors, the solutions obtained with the single-loop/MDF and

the single-loop/CO methods were found to be prone to scatter due to the premature conver-

gence of some of the runs. It was found that difficulties arise when gradient based optimiz-

ers are used with the CO architecture. Since the reliability analysis requires the numerical

solution of an inner optimization loop for every constraint, numerical errors can build up.

This is problematic when a gradient based system optimizer attempts to compute accurate

gradients by the finite-differencing of the target values for the local discipline optimiza-

tions. The IDF/Sequential approach using PMA based reliability assessment was found to

be consistently efficient and accurate. Chapter 4 utilizes several of the RBDO-MDO meth-

ods available in RyeMDO to solve a practical engineering problem: the conceptual design

optimization of an aircraft wing box structure with an uncertain contributing analysis.

69



70



Chapter 4

Aircraft Wing Box Conceptual Design

Considering Model Uncertainty

This chapter studies the conceptual design optimization of an aircraft wing box structure.

It was developed as a proof-of-concept case study of the database-driven approach for

quantifying probabilistic error terms resulting from uncertain analysis methods. In the

case study, a surrogate model was developed from a sample of FEM analyses and was

considered as an uncertain analysis method. The surrogate model served as a method for

estimating the maximum stress in the wing box. A database containing finite element

solutions for many designs was created and used to assess the relative error between the

surrogate model and the FEM solver. The advantage of such a case study is the ability to

back check any optimized solution attained using the low fidelity model with high fidelity

analysis. This ability is not available for the aircraft conceptual design case study, which

relies on a historical database of currently available aircraft designs. The case study serves

as a proof of concept for the proposed methodology, which is carried forward in an aircraft

conceptual design optimization case study in chapter 5.

71



Practical engineering problems are often characterized by computationally costly simu-

lation or high fidelity analysis methods such as CFD or FEM. The design optimization

of such systems can be very computationally expensive since many function evaluations

may be required to obtain a converged solution. Additionally, non-smooth objective or

constraint functions may hamper the convergence of gradient based optimization methods.

Surrogate modeling is a procedure for reducing computational cost in optimization by rep-

resenting the high fidelity analysis methods mathematically. The high fidelity methods are

sampled across a predetermined set of design variables. The surrogate models utilize the

sample data to mathematically represent the design space. Optimization solutions can be

rapidly obtained. For these reasons, surrogate models are widely implemented in design

optimization [132]. However, surrogate models only approximate the true system equa-

tions, and therefore introduce uncertainty. The optimum designs obtained using surrogate

models may be found to be infeasible when the design is subjected to high fidelity analysis

methods. RBDO can be used to manage the uncertainties introduced by surrogate mod-

els in order to increase the confidence a designer may place in an optimization solution

obtained using surrogate models.

A parametrized finite-element model of a generic light business jet wing box was developed

and is shown in Figure 4.0.1. The aircraft concept considered was similar in size and

performance to currently available light jets such as the Cessna Mustang or the Diamond

Jet. Following common practice in aircraft conceptual design, a target aircraft mass and a

wing group weight budget was assigned. The performance targets of the conceptual wing

design were selected to match values typical to small light jet aircraft. The target gross

aircraft mass was assumed to be 5200 kg with a wing-stored fuel capacity of 1200 kg. The

wing weight budget was assumed to be 440 kg for the load bearing structure. The maximum

von Mises stress was constrained to be below 360 MPa, corresponding to the yield strength

72



of aluminum 7075 with a safety margin of 1.5 as required by airworthiness standards. The

optimization objective was to maximize the wing lift-to-drag ratio at a cruise speed of 400

kts and an altitude of 10670 m (35000 ft). The body contribution to the lift-to-drag ratio was

neglected. The FEM analysis was replaced by a Kriging surrogate model. Kriging models

have been shown to provide good approximations of non-linear functions relative to other

approaches [28, 133, 134]. Each FEM based function evaluation required approximately

60 seconds on a desktop computer. Evaluating the surrogate model required much less than

one second. An uncertain error term was introduced to account for discrepancies between

the stress estimated using the approximation model and the stress calculated by FEM.

Figure 4.0.1: Wing Box FEM Model

4.1 Problem Description

The problem was formulated as a multi-discipline optimization with two contributing anal-

ysis methods: a vortex-lattice aerodynamics solver and a structures solver consisting of a

Kriging approximation model. The approximation model was generated using a database

of finite-element solutions sampled evenly across the design space. This model was con-
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sidered as an uncertain contributing analysis by obtaining the probability distribution of the

model error between FEM runs and the surrogate model.

The FEM model consists of 29 member attributes representing the thicknesses of the pri-

mary structural members - 19 ribs, the front and rear spar, 6 stringers, and the upper and

lower skin. The dimensionality was reduced by linking the attributes to 7 design variables

as shown in Table 4.1 and Figure 4.1.1. Two variables were introduced to alter the over-

all wing geometry: span and wing reference area, making a total of 9 design variables.

The sweep angle, taper ratio, and airfoil shape were held constant. Considering all 29 at-

tributes additional wing shape variables would potentially yield better designs. However,

the accuracy of the surrogate models with 31 dimensions was found to be extremely low.
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Figure 4.1.1: Structural Discipline Variables

4.2 Surrogate Model

Kriging models are widely used as surrogates for computationally expensive analysis meth-

ods in design optimization [135, 136]. Unlike response surface models, Kriging models

always pass through the supplied design points. A database of finite element analysis so-

lutions was sampled across 200 evenly distributed design points to build a second order

Kriging surrogate model, which was considered as an uncertain analysis method. Increas-

ing the database beyond 200 did not appreciably improve the accuracy of the approxima-
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tion model. An error term, defined in equation 4.2.1, was introduced, representing the

ratio of the model predicted maximum von-Mises stress to the stress calculated by a Finite

Element Method (FEM) based analysis using ANSYS, a well known commercial finite el-

ement solver. The error term is denoted by εσ and the model predicted stress and FEM

stress values are denoted by σp and σFEM respectively.

εσ = σp/σFEM (4.2.1)

4.3 Model Error

The Kriging model was considered as a ‘black box’ analysis module. The error associated

with the model was represented probabilistically. The PDF was estimated by sampling the

approximation model and the FEM model with 200 random, uniformly distributed design

variable vectors. This data is shown in Table A.3 in the appendix. The ratio of the max-

imum stress predicted by the model and that obtained by the FEM analysis for each of

the 200 random designs was stored. A histogram of the obtained error ratios was found

to approximate a normal distribution curve with a mean value of 1. Increasing the sample

size beyond 200 did not significantly change either the distribution shape, the mean, or the

standard deviation. The histogram of the error ratio term and the estimated PDF is shown

in Figure 4.3.1.

4.4 Solution Strategy

The wing box was optimized with RyeMDO using both the MDF and CO modules and

the double loop, sequential, and single loop modules. The problem formulation using the
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Figure 4.3.1: Kriging Model Error Distribution: µ = 1.0039,σ = 0.0736

MDF based methods is shown in equation 4.4.1 where L/D is the wing lift-to-drag ratio,

and b and S denote the wing span and wing reference area respectively. Structural thickness

values are denoted by t. The constraints are given in Table 4.2.

max
L
D

= f (b,S, t1...7) (4.4.1)

P(σ ≤ σmax)≥ Pgoal

M ≤Mgoal

Va ≤Va,max

The objective function was defined to maximize the wing L/D. The constraints were as

follows: the mass M, and the approach speed Va, must be less than the limits and the prob-

ability that the stress σ , is less than the limit stress is greater than the target probability.
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Note that every function and constraint evaluation is an MDA loop to ensure compatibility

between the disciplines. The solution strategy for the CO architecture is shown in Figure

4.4.1. The problem is divided into aerodynamics and structures sub-problems. The aero-

dynamics sub-problem is a function of only the wing span and wing area design variables

since the thickness values of the structural members are not required for the aerodynamics

discipline to evaluate. The structures discipline depends on both the member thicknesses

and the overall wing shape, and is therefore a function of all of the 9 design variables con-

sidered. The system level problem was defined as a function of the two common variables

- wing span and area. Auxiliary constraints Aaero and Astruct force consistency between

the disciplines. Any single-discipline deterministic or RBDO approach can be used for the

local optimizations.
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Figure 4.4.1: Collaborative Optimization with RBDO
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4.5 Results

The optimization was solved for reliability levels of 0 to 6, corresponding to failure proba-

bilities of 50% to approximately 10−7%, using each RBDO-MDO approach. Figure 4.5.1

shows the influence of increasing target reliability indices on the location of the optimum.

The predicted values of the maximum stress at the optimum point for each target reliability

level lie on the stress constraint boundary when β is zero. When β increases, the wing

shape and material thicknesses are altered, as shown in Table 4.3, such that the predicted

stress moves farther into feasible design space. The predicted optimum points were evalu-

ated using FEM analysis to check for possible discrepancies between the stress predictions

and the actual stress. The FEM derived stress values are larger than the predicted stress,

indicating that the structure designed using the low-fidelity approach fails when subjected

to better analysis. For reliability indices larger than β = 1.2 (88%), the design is feasible.

Using the standard 3σ or 6σ reliability levels yields conservative designs that fall well

within the feasible region when subjected to the high fidelity analysis.

Figure 4.5.2 shows the influence of the reliability index on the shape of the wing. The

wing shape becomes more conservative as the reliability index increases. The deterministic

optimum wing shape has the largest aspect ratio (a measure of the slenderness of the wing).

Wings having larger aspect ratios generally exhibit lower induced drag. However, a slender

wing requires increased structural member thicknesses to maintain strength. Increases to

the reliability level increases the margin by which the designs must exceed the specified

stress constraint while remaining under the mass budget. The reliable wing designs trade

aerodynamic efficiency for structural efficiency by reducing the slenderness of the wing

while remaining at or below the prescribed weight budget. Table 4.3 indicates that increases

to the reliability index has a slight influence on the thicknesses of structural members and

a major influence on the wing planform shape.
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Figure 4.5.1: Wing Box RBDO Results

4.6 Algorithm Performance Comparison

Each RBDO-MDO architecture considered in the case study was run with a reliability level

of 6 to compare the relative performance of each approach. As shown in Table 4.4, the sin-

gle loop methods have significant performance advantages, but predict optimum L/D ratios

that are slight outliers from the methods that use exact solutions to FORM. The CO based

approaches require many structural function evaluations but relatively few aerodynamics

evaluations due to the reduced dimensionality of the 2-variable aerodynamics sub problem.

As a consequence, despite requiring many evaluations of the structures discipline, the solu-

tion times for the CO methods were found to be competitive since evaluating the structures
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approximation model is extremely fast compared to calls to the aerodynamics solver.

4.7 Summary

The wing box of a generic light jet similar to the Cessna Mustang was optimized using

RyeMDO while considering the model uncertainty introduced by a surrogate model. The

error distributions were evaluated by uniformly sampling the Kriging models and compar-

ing the predicted maximum stress with FEM solutions. The solution indicates that under

traditional optimization, the structure optimized with an approximation model violates the

stress constraint when subjected to high fidelity analysis. However, it was shown that

RBDO with a sufficiently low failure probability protects the low fidelity solution from

producing infeasible designs. Additionally, the performance of each RBDO-MDO archi-

tecture was evaluated and compared. The single loop approaches were the most efficient

for both the MDF and CO methods. However, the solutions deviated slightly from the

methods that employ exact solutions to FORM, indicating a slight loss in accuracy. The

CO based method with sequential RBDO significantly reduced the number of aerodynamic

discipline evaluations by restricting local structural variables to the local structural opti-

mization problem. Since the model evaluations are very fast relative to the aerodynamics

solver, the CO/Sequential method exhibited solution times that were competitive with the

other approaches despite the large number of structural discipline evaluations. This indi-

cates that the CO method can be advantageous if costly analyses can be isolated into a

sub-problem with low dimensionality. However, for problems having few local variables

and high dimensionality in all sub-problems, CO is unlikely to provide any advantages, and

is likely to be outperformed by the single-level MDO approaches. The wing box example

indicates how uncertainties associated with approximate contributing analyses in the form
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of surrogate models can be managed using RyeMDO. Chapter 5 shows how the errors asso-

ciated with traditional low fidelity aircraft conceptual design methodology can be managed

using RyeMDO.
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Table 4.1: Member Attribute List

Member Variable Limit (mm)
Number lower upper

1 rib 1
2 rib 2
3 rib 3
4 rib 4
5 rib 5
6 rib 6
7 rib 7
8 rib 8
9 rib 9

10 rib 10 1 2 5
11 rib 11
12 rib 12
13 rib 13
14 rib 14
15 rib 15
16 rib 16
17 rib 17
18 rib 18
19 rib 19
20 front spar 2 10 30
21 rear spar 3 10 30
22 upper stringer 1
23 upper stringer 2 4 2 10
24 upper stringer 3
25 lower stringer 1
26 lower stringer 2 5 2 10
27 lower stringer 3
28 upper skin 6 15 30
29 lower skin 7 15 30

Table 4.2: Constraints

constraint symbol value
maximum stress σ 360 Mpa
mass M 440 kg
approach speed Va 120 kts
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Table 4.3: Design Variable Values - MDF/Sequential Method

β A1 A2 A3 A4 A5 A6 A7 b S L
D

- mm mm mm mm mm mm mm m m2 -

0 2.30 18.1 15.2 4.71 6.02 18.4 14.9 10.3 10.6 31.9
1 2.30 17.9 15.2 4.68 5.92 18.5 15.0 10.0 10.6 31.1
2 2.30 17.9 15.5 4.66 5.91 18.5 15.2 9.83 10.5 30.9
3 2.30 17.9 15.7 4.57 5.81 18.5 15.5 9.64 10.4 30.3
4 2.30 17.8 15.8 4.56 5.80 18.6 15.5 9.48 10.4 29.7
5 2.30 17.8 16.1 4.47 5.71 18.8 16.0 9.30 10.2 29.1
6 2.30 17.8 16.5 4.45 5.70 18.8 16.2 9.16 10.1 28.5

Table 4.4: RBDO-MDO Performance Comparison

function calls objective
Aero Struct L/D

MDF/Sequential 96 96 28.50
MDF/Double Loop 105 105 28.49
MDF/Single Loop 37 37 28.22
CO/Sequential 42 2362 28.61
CO/Double Loop 87 4931 28.60
CO/Single Loop 44 985 28.07
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Chapter 5

Aircraft Conceptual Design Considering

Uncertain Contributing Analysis

Methods

This chapter proposes a novel approach for improving aircraft conceptual design optimiza-

tion. Multi-disciplinary RBDO algorithms were implemented to manage the errors asso-

ciated with the traditional low fidelity analysis used in aircraft conceptual design. Prob-

abilistic models of the errors associated with each implementation of empirical equations

were developed by comparing the analysis output with historical data derived from a speci-

fication database of currently available aircraft designs. These error terms were introduced

into the optimization problem, allowing the errors to propagate their influence on each con-

straint. The approach allows designers to constrain the failure risks associated with the

approximate analysis methods to an allowable level. This reduces the likelihood that a

conceptual design optimized with low fidelity analysis methods will fail to meet the de-

sign goals when subjected to more detailed analysis later in the design process, which can
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lead to time consuming and costly design revisions. RBDO targets only active constraints,

adjusting designs away from active constraint boundaries within the optimization scheme.

Designs are therefore only just as conservative as they need to be to reach a specified failure

probability.

The approach developed in this research uses non-empirical analysis where possible. Low

fidelity equations are used where the available non-empirical analysis methods are too com-

putationally expensive to implement at the conceptual design level. The errors introduced

by the low fidelity equations were quantified using information derived from an aircraft

specification database. The database compiled for this research is shown in Table A.1. The

database contains the published dimensions and performance of some currently available

twin-engine commercial passenger aircraft. Each design in the database was modeled and

subjected to the discipline analysis packages (aerodynamics, structures, and performance)

to calculate predicted performance and mass characteristics for each design. The errors

between the predicted characteristics and the performance indicated in the aircraft database

were considered as uncertain parameters in the optimization scheme.

Enhanced RBDO algorithms are proposed for determining the influence of increasing the

target reliability index on the optimized aircraft designs. The reliability index was intro-

duced as a second objective function, and the optimization was solved with several of the

most promising RBDO methods using RyeMDO.

5.1 Problem Description

The conceptual design of a regional commercial aircraft similar to the Airbus A320-200

and the Boeing 737-800 was considered. The basic design goals, shown in Table 5.1, were

set to equal or exceed that of the 737-800 for comparison.
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Table 5.1: Design Goals

goal name target value
passengers (economy/business) Npax = 160/16
payload mass Mpl = 21300 kg
range (200 km reserve) R ≥ 5670 km
cruise mach Mcr = 0.80
cruise altitude hcr = 10671 m
takeoff distance Sto ≤ 2400 m
approach speed Va ≤ 140 kts

An algorithm was developed that establishes the basic layout of the design given the spec-

ified design goals and the current design variables to develop a model that describes the

aircraft geometry with sufficient detail for the various analysis methods to run. The analy-

sis methods were structured into three discipline groups: weight and balance, performance,

and aerodynamics and stability. RBDO was implemented to manage the errors introduced

by the empirical methods that were implemented in each contributing discipline. The prob-

ability distributions of these errors were estimated by using the developed analysis methods

to predict published aircraft specification data. The discrepancies between the predicted

characteristics and the published characteristics were used to estimate the error probability

functions for each error source considered. Four sources of error were considered, cover-

ing all of the implemented empirical analysis methods including the aircraft empty weight

estimation, rubber engine sizing for thrust and fuel consumption characteristics, and the

drag modeling.

The geometry of the wings, fuselage, and empennage, the sea level thrust, and the fuel

capacity were defined by a set of 14 design variables. In addition, the coupling of the

discipline analysis methods introduced 10 coupling variables. The design and coupling

variables are shown in Table 5.2. Section 5.2 describes the algorithm that builds a complete

aircraft model given the specified goals and a design variable vector.
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5.2 Automated Aircraft Configuration

The design and coupling variables are not sufficient to fully describe an aircraft model.

Many unknowns remain that are required for the discipline analysis methods to function.

An algorithm was developed that determines the unknown terms using a set of configura-

tion rules and geometry. The rules include empirical equations for the sizing and position-

ing of the landing gear, fuel tanks, and other subsystems. Additional rules were derived

from airworthiness requirements and were used to size the fuselage and position the aisles,

seats, and exits while maintaining or exceeding airworthiness standards for headroom, aisle

width, and exit proximity. This ensures that when the optimizer adjusts the fuselage shape,

a feasible fuselage layout is established. The regulations relevant for the sizing of the fuse-

lage are provided in Table B.1 in the appendix. This enables the automatic development

of 3d conceptual models that describe the overall geometry of the aircraft with sufficient

detail for the discipline analysis packages to run. An example of the algorithm output is

shown in Figure 5.2.1, including the cross section of the fuselage.

Figure 5.2.1: Aircraft Layout Example
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5.3 Contributing Analysis Methods

The analysis methods were grouped into 3 disciplines: Aerodynamics and Stability, Weight

and Balance, and Performance. The methods implemented in each discipline, the local

constraints, and the coupling variables are described in the following sections.

5.3.1 Aerodynamics and Stability

The aerodynamics discipline computes the lift and drag characteristics of the aircraft. It

consists of two main components: a non-planar vortex lattice aerodynamics solver with a

compressibility correction and a component build-up method for determining the parasite

drag based on methods from [11] and [137]. The vortex lattice method is a classical com-

putational method for computing flow properties and aerodynamic forces, and is described

in [138]. The Athena Vortex Lattice program, a well-known vortex lattice solver, was used

[139]. The method is much faster in both model development and solution time than Com-

putational Fluid Dynamics (CFD) and provides a sufficient degree of accuracy and flexibil-

ity for the conceptual design phase. The aerodynamics discipline solves for induced drag,

parasite drag, lift and drag coefficients, aerodynamic center, and stability derivatives as a

function of aircraft geometry, the responses from the performance and weight disciplines,

and the specified performance targets. Static and dynamic stability constraints are enforced.

The effectiveness of the control surfaces at cruise and climbout conditions are evaluated to

ensure adequate pitch authority in slow flight and yaw authority in single-engine flight. The

Aerodynamics and Stability discipline is dependent on the system variables, the output of

the other disciplines and the design requirements. The coupling requirements of the aero-

dynamics discipline, the local constraints, and the output coupling variables are shown in

Figure 5.3.1. The aerodynamics local constraints are shown in Table 5.3.
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Figure 5.3.1: Aerodynamics and Stability Coupling

Both static and dynamic stability constraints are enforced. Longitudinal stability is con-

strained to a static margin of 5%. Yaw static stability is enforced at a full thrust climb

scenario with a failed engine. The constraint ensures that the rudder and vertical tail have

adequate authority. Dynamic stability analysis is carried out by solving for the roots of

the solution of the linearized equations of motion. The dynamic stability eigenvalues were

obtained from the vortex lattice aerodynamics solver. To avoid introducing a very large

number of aerodynamics constraints and the corresponding increase in computational cost

associated with RBDO procedures, dynamic stability was handled in a single constraint.

The constraint was formulated by obtaining the largest real part of the obtained eigenval-

ues and constraining it to be less than zero, ensuring decaying oscillatory or damped motion

for every mode.

5.3.1.1 Sources of Uncertainty

The uncertainty due to the approximate methods used in the aerodynamics and stability

discipline are somewhat difficult to quantify. The availability of aerodynamics data such

as lift-to-drag ratios, induced drag constants, and parasite drag constants for cruise condi-

tions is very limited and virtually non-existent off-cruise configurations. However, since
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the majority of a typical commercial aircraft route is spent in a cruise configuration, the

consideration of uncertainty was limited to the cruise phase. The lift and drag characteris-

tics of commercial aircraft are not widely published. However, typical cruise thrust settings

are available for some aircraft - reported at specified altitudes and Mach numbers. These

quantities were obtained for several Boeing airliners from the airport planning manuals

available from the manufacturer’s internet address [140]. With the required cruise thrust,

Treq,db, known for several aircraft at specific altitudes and speeds, predictions were made

by modeling the aircraft and running the aerodynamics discipline to calculate the predicted

required thrust, denoted by Treq,p, for the given cruise speed and altitude. The number of

data available for comparison was limited to 7 samples - too few to develop an accurate

PDF function. Therefore, the error term was assumed to be uniformly distributed between

the highest and lowest observed error. The error term was defined as the ratio of predicted

required thrust to the observed thrust from the database. The required thrust output from

the aerodynamics discipline was then scaled by this ratio to correct for the error as shown

in equation 5.3.1. The error term was considered to be a uniformly distributed random

parameter.

εTreq = Treq,p/Treq,db

Treq = Treq,p/εTreq (5.3.1)

Considering the error in the predicted thrust requirements in the cruise configuration en-

ables the management of the errors in both the predicted parasite drag and induced drag

models implemented in the aerodynamics discipline. The error contributions in non-cruise

conditions was neglected.
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5.3.2 Weight and Balance

The aircraft structural weight is estimated by using a statistical group weights method.

Both the weight and center of gravity of each major aircraft component are calculated by

statistical relationships to establish an estimate of the overall empty weight of the aircraft.

These methods are described in many aircraft conceptual design publications [11, 12, 141].

The dependencies of the weight and balance discipline is shown in Figure 5.3.2. In general,

the statistical equations are functions of the geometry and performance requirements of the

aircraft, including payload capacity, cruise speed, and altitude. The empty and gross mass,

the center of gravity, and the moments of inertia of the aircraft are calculated.

Design Requirements

System Variables

Performance Coupling

none

Aerodynamics Coupling

none

Weight and 

Balance

Weight and Balance Coupling

Weight and Balance Constraints

none
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Figure 5.3.2: Weight and Balance Coupling

5.3.2.1 Sources of Uncertainty

The designs from the compiled aircraft database were modeled and the predicted empty

mass of each design was compared with the observed value from the database. The his-

togram of the errors indicates that the empty mass error term can be approximated by a

normal distribution curve with a mean of 1 and a standard deviation of 0.0636. The mass

error term was defined as shown in equation 5.3.2. Empty mass calculations carried out in
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the optimization were scaled by the error term to account for the uncertainty in the predic-

tion of the aircraft empty mass.

εMe = Me,p/Me,db

Me = Me,p/εMe (5.3.2)
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Figure 5.3.3: Mass Error Distribution Estimates

5.3.3 Performance

Performance estimation is carried out by a configurable set of two dimensional flight sim-

ulation components that include takeoff performance, climb, cruise, descent, and landing

under normal flight conditions over the intended route of the new aircraft design. The al-

gorithm calculates the net force acting on the aircraft by finding the drag forces, lift forces,
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and available thrust forces over a numerical simulation. Simulation of contingency flight

situations is also carried out to determine reserve fuel requirements for a 200 km diversion

scenario. Climb performance requirements under engine failure circumstances were also

considered. The flight simulation route profiles under normal conditions and contingency

conditions are shown in Figure 5.3.4. A turbofan performance module was developed. It

implements a rubber engine sizing technique that uses statistical equations to estimate the

mass, cruise thrust, and cruise fuel consumption of hypothetical engines meeting the thrust

requirements of the conceptual design. Off-cruise thrust and fuel consumption is estimated

by interpolating and scaling engine thrust tables for several engines to predict the available

thrust at any altitude and Mach number.

Figure 5.3.4: Flight Profile

The coupling dependencies of the performance discipline are shown in Figure 5.3.5. The

performance constraints were set to maintain or exceed the performance characteristics of

the Boeing 737-800. In addition, the single engine climb performance was constrained to

comply with airworthiness standards. The Mach number perpendicular to the flight sur-

faces was constrained to remain below 0.70 to maintain flow conditions within the range

of validity for the vortex lattice solver and the compressibility correction equation. Higher

cruise Mach numbers are possible by increasing the sweep angle of the wings to main-

tain a perpendicular Mach number below the limit. A summary of the local performance
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constraints, designed to enforce the performance characteristics of the Boeing 737-800, is

given in Table 5.4.
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Figure 5.3.5: Performance Coupling

5.3.3.1 Sources of Uncertainty

There are several sources of uncertainty present in the performance analysis methods. The

simulation is dependent on the size of the time step and the relative error tolerances. How-

ever, this source of error was assumed to be small relative to the errors introduced by the

statistical equations utilized to estimate the engine performance characteristics. Uncertain-

ties in the aerodynamics and mass properties certainly influence the performance discipline

as well, but these are accounted for in their respective disciplines. Inter-discipline coupling

ensures that the influence of errors handled in one discipline spreads to the others. The

sources of error considered in the performance discipline were therefore related to statis-

tics based rubber engine sizing methodology.

The engine selection is driven by the Tsl design variable. All of the other performance

characteristics of the engine are calculated using the statistical relationships for the cruise

performance characteristics, and by interpolating engine performance charts for perfor-

mance in off-design conditions. The error considered was restricted to cruise conditions,
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where ample data is available to accurately predict the error PDFs. Statistical relation-

ships for predicting engine performance are widely available in conceptual design literature

[11, 12, 142]. The implemented approach is based on the equations proposed by Svobota

supplemented by additional engine data acquired from more recent design specifications.

This data is given in Table A.2 in the appendix. As before, the performance predicted by

the algorithm was compared with a database of published specifications. Error ratios were

defined to scale the predicted available cruise thrust, Tavail,p, and predicted cruise fuel con-

sumption, SFCp, to account for the uncertainties introduced by the statistical predictions.

εTavail = Tavail,p/Tavail,db

Tavail = Tavail,p � εTavail (5.3.3)

εSFC = SFCp/SFCdb (5.3.4)

SFC = SFCp/εSFC

The frequencies of the error ratio between the predicted and observed values were plotted

in a histogram. Figure 5.3.6 indicates that the error ratios arising from thrust and fuel con-

sumption predictions can be represented by normal distribution functions with mean values

of 1 and standard deviations of 0.0836 and 0.0780 respectively. The error associated with

off-cruise thrust and fuel prediction was not considered. However, since the majority of

the aircraft route with respect to time, distance, and fuel burn, is spent in cruise configura-

tion, it can be expected that the errors associated with the off-design engine performance

predictions would be small by comparison.
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Figure 5.3.6: Propulsion Error Distribution Estimates

5.4 Solution Strategy

The aircraft conceptual design optimization was carried out using two completely distinct

methods for comparison. The first implements the RyeMDO IDF/Sequential/PMA mod-

ules with a SQP optimizer. The second method implements a multi-objective GA with

the MCS reliability assessment module using approximation models. Multi-level methods

such as CO or BLISS were not considered for the aircraft conceptual design case study.

The optimization is less suitable for multi-level methods because there are very few local

design variables and many coupling variables. Solutions were obtained with a 4-core Intel

i7 desktop computer. Solutions were obtained over a range of reliability indices to show

the progression from a deterministic solution to solutions with reducing error tolerances.

The methods are described in Sections 5.4.1 and 5.4.2.
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5.4.1 Method 1: IDF/Sequential/PMA

The first method implemented RyeMDO to solve the aircraft conceptual design problem us-

ing the IDF/Sequential/PMA blocks as described in Chapter 3.1 with some enhancements

to accommodate the specific properties of the problem. The algorithm was shown to be

reliable and less sensitive to coarse objective and constraint functions than the double loop

approaches. Additionally, it was found to be less sensitive to the selection of a starting vec-

tor than the single loop approach, and more efficient than all but the single loop approach

on the test problems studied. The sequential method has some additional advantages when

solving for multiple reliability levels. Since the sequential method solves a sequence of full

deterministic optimizations followed by reliability assessments until convergence, the so-

lutions progressively pass through lower reliability indices until they reach the target level.

By enforcing first a low reliability index followed by progressively larger reliability indices,

it is possible to extract intermediate solutions to plot the progressive relationship between

the optimum design and the selected target reliability index without greatly increasing the

number of function evaluations. In this manner, a multi-objective optimization was solved.

The objective functions were defined as minimizing the fuel consumption for the specified

flight profile while maximizing the reliability index of the designs.

The MDF method was implemented for the reliability assessment sub-problems rather than

IDF. For problems having large numbers of coupling variables and small numbers of un-

certain variables or parameters, the dimensionality of the reliability sub-problem is greatly

increased when the IDF method is used. For example, the aircraft conceptual design prob-

lem formulation has 10 coupling variables and 4 uncertain parameters. Therefore, the PMA

reliability assessment must solve an optimization with 14 dimensions for every constraint.

Additionally, the auxiliary equality constraints required to enforce coupling variable con-

sistency have to be considered. This creates an optimization problem of significant com-
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plexity that must be solved for every constraint for each iteration of the sequential method.

Implementing the MDF method for the reliability assessments reduces the dimensionality

of the PMA optimization problem to just the 4 uncertain parameters and does not include

any auxiliary constraints. It was found that the PMA reliability assessments converged

faster and with greater reliability using this approach. The IDF method was retained as the

system optimization strategy. Recall that for sequential RBDO, the system problem must

solve each constraint independently based on different shifted uncertain parameters. In an

MDF based scheme, the system problem requires separate MDA runs for the objective and

each constraint, introducing great computational expense, leading to the selection of an

IDF-based scheme for the main optimization loop. The procedure is outlined as follows.

1. Determine analysis error distributions

(a) Model each entry in the aircraft specification database

(b) Predict performance

(c) Calculate ratio of predicted performance vs. published specifications for each

uncertain analysis method considered

(d) Generate histogram and apply a best fit PDF curve for each source of uncer-

tainty considered

2. Select starting vector and a list of reliability indices to be enforced.

3. Run IDF based deterministic optimization.

4. Run MDF based PMA reliability assessment at the current reliability index, shift

variables according to the sequential approach.

5. Check for convergence with current reliability goal.
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(a) yes, update starting vector with the current optimum point, select next reliability

goal, return to 3.

(b) no, return to 3.

6. Advance to next target reliability level

(a) retain solution as new starting vector

(b) return to 3

The block diagram is shown in Figure 5.4.1. The method was run deterministically and

for probabilities of 0.7, 0.8, 0.9, 0.95, and 0.99 and compared with a second, independent

approach, outlined in Section 5.4.2.
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Figure 5.4.1: Block Diagram - Method 1
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5.4.2 Method 2: MCS/GA

The second solution strategy implemented a multi-objective GA with the RyeMDO MCS

block using approximation models. The approach introduces the reliability index, β , as a

second objective function. The problem formulation is shown in equation 5.4.1 where M f

is the fuel mass and β is the reliability index.

min
[
M f ,−β

]
= f (x, P̄) (5.4.1)

s.t.P(gi (x,P)≤ 0)≥ β

The MDF method was used rather than IDF or CO, which are far less suitable for solving

the MCS/GA based approach for the following reasons. Firstly, GAs are, in general, not

very efficient for solving problems having equality constraints [143]. Both the IDF and

CO strategies require introducing auxiliary equality constraints to enforce inter-discipline

compatibility. Secondly, the MCS based approach involves building accurate RSA models

with respect to the uncertain variables and parameters at every design point. In an IDF

approach, the dimensionality of the RSA models would have to include the coupling vari-

ables, and would therefore be compromised in accuracy and require large sample sizes to

calculate. By only considering feasible points using MDA loops, the dimensionality of the

RSA models under an MDF optimizer is reduced to 4 - the number of uncertain parame-

ters considered in the aircraft conceptual design case study. The accuracy of the surrogate

models is maintained by recalculating a local DOE surrounding every new design point to

generate new models as the Pareto front shifts. However some minimal additional uncer-

tainty is introduced by carrying out the reliability assessment on surrogate models [144].

This is mitigated by carrying out a reliability assessment on the system equations for each

solution on the output Pareto front. If any discrepancy is discovered, the location of each
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solution is shifted to the corrected reliability index. The outline of the approach is described

as follows.

1. Determine error PDF functions as with Method 1

2. Obtain a design variable vector z̄ from the GA population (mean value).

3. Run a MDA to obtain a feasible coupling variable vector y.

4. Evaluate the design to determine the fuel consumption objective, M f , at the current

location.

5. Evaluate the constraints at the current location.

(a) If any constraint fails, the design is infeasible. Assign a penalty to β and return

to 1.

(b) If all constraints pass, proceed to 5.

6. Build a DOE around the current design point.

(a) Calculate a grid of evenly spaced uncertain variable and parameter vectors in

normal space, keeping deterministic quantities fixed.

(b) Check if the constraints at any of the grid points have already been evaluated.

(c) Evaluate each constraint at every grid point in the DOE not previously calcu-

lated.

7. Calculate RSA approximation models for every constraint.

8. Sample every constraint RSA model with N uncertain variable and parameter vec-

tors randomly generated w.r.t corresponding PDF functions where N is a very large

number.
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9. Count the number of passes, Npass, and failures N f ail .

(a) If any constraint fails, count as a design failure.

(b) If all constraints pass, count as a design pass.

10. Calculate Pf ail =
N f ail

N

11. Calculate β

12. Return to 1 until specified number of generations have elapsed.

13. Run a deterministic reliability analysis to verify the estimated reliability indices for

each solution on the Pareto front

The procedure does not yield a single point solution at a given reliability index. Rather,

it produces a Pareto front. A Pareto front refers to a range of designs, each having a dif-

ferent trade-off between the objective function performance (fuel mass) and the reliability

index. The MCS based approach has several additional advantages with respect to the

FORM based reliability assessment approaches. When using FORM, the computational

effort required by the MDF method can be prohibitive. Since each constraint is evaluated

with a different set of uncertain variables and parameters, MDAs must be performed once

to evaluate the objective function, and once to evaluate every constraint individually every

time the design variables are changed. Each MDA was found to require 5 or 6 calls to each

discipline on average for the aircraft conceptual design problem. Consequentially, opti-

mization problems having many uncertain constraint functions suffer in performance. This

is not the case for MCS based methods, where only one MDA loop needs to run to find

feasible coupling variables. The objective and all constraint functions are all evaluated at

this point. However, the MCS method requires a very large number of constraint function

evaluations to accurately estimate the probability of failure. This is mitigated by carrying
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out the MCS on surrogate models rather than the constraint functions themselves. Since

the aircraft conceptual design problem has 4 uncertain parameters, sample sizes of 25 or so

were found to be sufficient to obtain accurate RSA surrogate models. The surrogate models

were randomly sampled with a large sample of uncertain parameter vectors (106 was used).

A block diagram describing the method is shown in Figure 5.4.2. Section 5.5 outlines the

results and compares the solutions from both approaches.

were randomly sampled with a large sample of uncertain parameter vectors (106 was used).

A block diagram describing the method is shown in figure 5.4.2. Section 5.5 outlines the

results and compares the solutions from both approaches.
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Figure 5.4.2: Block Diagram - Method 2

5.5 Results

The IDF/Sequential method was run for probabilities of 0.7, 0.8, 0.9, 0.95, and 0.99 corre-

sponding to reliability indices of 0.52, 0.84, 1.28, 1.64, and 2.32 respectively, minimizing

the fuel capacity required for a 5670 km route with a reserve fuel capacity sufficient for

a 200 km diversion. The standard deviations of the considered error uncertain parame-

ters rendered it impractical to consider larger reliability indices, since convergence was

no longer possible. These results were compared with the Pareto-front obtained by the

GA/MCS procedure. Figure 5.5.1 compares the two results to the fuel capacity of the Boe-

ing 737-800, also obtained for a maximum payload cruise of 5670 km and a 200 km con-
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5.5 Results

The IDF/Sequential method was run for probabilities of 0.7, 0.8, 0.9, 0.95, and 0.99 corre-

sponding to reliability indices of 0.52, 0.84, 1.28, 1.64, and 2.32 respectively, minimizing
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the fuel capacity required for a 5670 km route with a reserve fuel capacity sufficient for

a 200 km diversion. The standard deviations of the considered error uncertain parame-

ters rendered it impractical to consider larger reliability indices, since convergence was

no longer possible. These results were compared with the Pareto-front obtained by the

GA/MCS procedure. Figure 5.5.1 compares the two results to the fuel capacity of the Boe-

ing 737-800, also obtained for a maximum payload cruise of 5670 km and a 200 km con-

tingency reserve. Both results exhibited reasonable agreement between the FORM based

approach and the MCS based approach. An additional source of discrepancy between the

two methods may be the use of a GA optimizer for the MCS based approach. GAs are

global optimization techniques and are therefore less prone to premature convergence -

finding a local rather than global optimum point.

Figure 5.5.1: Fuel vs. Reliability Index

The deterministic solution predicts that an optimized aircraft can improve on the fuel con-

sumption of the Boeing by 7.7%. However, the uncertainties in the analysis methods used

to obtain the result introduced uncertainty that renders the prediction of the deterministic
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design unreliable, since the design lies very close or directly on several of the probabilistic

constraint boundaries, as shown in Figure 5.5.2, where the straight dashed lines represent

the design goals for field length, approach speed, and range. Consequentially, errors present

in the analysis methods are likely to cause the deterministic design to violate one or more

of the constraint boundaries if the design was subjected to more detailed analysis methods.

However, increasing the reliability level pushes each constraint farther into feasible design

space, resulting in a conceptual design requiring more fuel than the deterministic design,

while increasing the likelihood that the design will be feasible when subjected to better

analysis. At a probability of 80% (β = 0.84), the predicted optimum design has a fuel

capacity roughly equivalent to the Boeing 737-800.
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Figure 5.5.2: Uncertain Constraints vs. Reliability Index

The results can be interpreted as follows. Given the uncertainties in the analysis ap-

proaches, to ensure that the range of the aircraft can reach the design goal of 5670 km,
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the conceptual design range target must be increased to 6000 km for P=0.70, to 6200 km

for P=0.80, and all the way to 7000 km for P=0.99, thereby producing a more conservative

design. As the reliability level continues to increase to 99%, the changes to the design

necessary to accommodate the changing constraint boundaries, become more pronounced.

Figure 5.5.3 shows the influence of increasing the reliability level on the geometry, mass,

sea level thrust, and drag properties of the aircraft. The wing area, empty mass, gross mass,

fuel mass, and sea level required thrust all increase. This yields a more conservative design

than the deterministic solution but improves the chances that the design will be found to

be viable when subjected to better analysis. Note that the probability values given only in-

dicate the likelihood that that the uncertainties considered will not cause failure, assuming

the obtained probability distributions and the FORM approximations are accurate. Figure

5.5.4 compares the geometry of the deterministic design and several reliable designs to the

Boeing 737-800. The Figure indicates that considering uncertainties in conceptual design

significantly impacts the size and shape of the optimum aircraft wing design. Increases in

both span and area impact the probabilistic constraints governing takeoff, required thrust at

cruise, ceiling, and approach speed.

5.6 Summary

An aircraft conceptual design optimization problem was developed to demonstrate how

RBDO can be used to manage errors that arise from using traditional low fidelity conceptual

analysis methods. The uncertainties considered included analysis methods that depend

on statistical or simplified analytical equations to solve, including drag, weight, engine

cruise thrust, and engine cruise fuel consumption. Error terms were defined as the ratio of

predicted performance to observed performance, taken from aircraft and engine databases.
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Figure 5.5.3: Aircraft Specifications vs. Reliability Index

A commercial aircraft conceptual design problem was developed and solved using RyeMDO.

The performance targets and the passenger capacity was defined to match the Boeing 737-

800 for comparison purposes. The deterministic result indicated that an improvement over

the 737 was possible, but the design was found to lie on or near several constraint bound-

aries, making the design vulnerable to the uncertain methods used to develop it, where any

deviation from the mean error values would likely result in design failure when subjected

to better analysis later in the design process. By implementing RBDO, it was shown that

enforcing target reliability indices can push the optimum design deeper into the feasible re-

gion of the design space, resulting in designs that are more likely to meet the performance

goals when subjected to better analysis.

It should be noted that, as with the wing box example outlined in Chapter 4, optimum

designs were much more frequently observed to be optimistic - over-predicting the per-

formance of the design. Since the PDF functions were normal distributions, it might be

expected that the predictions would be equally likely to under-estimate or over-estimate
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Figure 5.5.4: Results Compared With the Boeing 737-800

performance. This was almost never the case in the problems studied in this research. This

is due to the fact that the optimization methods used search for the best possible objective

function performance given the provided analysis methods. The optimizer will therefore

move into design space that has advantage to the objective function whether the design is

truly better than the adjacent designs or the design falls within a region where the analy-

sis methods over-predict the performance of the design. The optimizer sees no distinction.

This renders it more likely for a solution to lie in a region where performance characteristics

are over-predicted. This would consistently yield designs that are optimistic, and promise

performance characteristics that are not likely to be achieved when the design is subjected

to better analysis methods. Consequentially, it is important to implement procedures such

as RBDO to manage uncertain analysis methods in order to find the best possible designs

that lie no closer to the constraint boundaries than the acceptable reliability index defined

by the designer.
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Table 5.2: Design and Coupling Variable List
design description unit limits
variable lower upper
ARw wing aspect ratio - 5 10
Sw wing area m2 100 300
λw wing taper ratio - .1 .9
Γw wing dihedral deg 0 5
Λw wing sweep deg 0 45
ARh horizontal tail aspect ratio - 5 10
Sh horizontal tail area m2 20 90
λh horizontal tail taper ratio - .1 .9
ARv vertical tail aspect ratio - 2 10
Sv vertical tail area m2 20 90
λv vertical tail taper - 0.1 0.9
M f fuel mass kg 10000 35000
Tsl engine sea level thrust N 80000 160000
n f use fuselage configuration index* - 1 7
coupling description unit limits
variable lower upper
Me empty mass kg 10000 80000
Mg gross mass kg 20000 12000
xcg center of gravity location m 0 40
Vs stall speed m/s 20 120
CL,max maximum lift coefficient - 1 3
CD,0 drag coefficient - 0.001 0.1
k induced drag constant - 0.001 0.1
Ix moment of inertia about x kg �m2 105 108

Iy moment of inertia about y kg �m2 105 108

Iz moment of inertia about z kg �m2 105 108

* refers to an allowed arrangement of seats eg. 2+2, 2+3, 3+3, 2+4+2, etc.

Table 5.3: Aerodynamics and Stability Local Constraints

constraint description value
kn static margin ≥ 0.05
δr,trim rudder trim angle ≤ δr,max
δe,trim elevator trim angle, 1 engine inoperative ≤ δe,max
λreal motion equation eigenvalues < 0
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Table 5.4: Performance Local Constraints

constraint description value
hmax service ceiling ≥ 12200 m
Tavail,cr available thrust at cruise ≥ Treq,cr
STO takeoff distance ≤ 2400 m
Mperp Mach number perpendicular to flight surfaces ≤ 0.70
Va approach speed ≤ 145 kts
θclm single engine climb gradient ≥ 2.5%
R aircraft maximum range with reserves ≥ 5670 km
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Chapter 6

Conclusion

The motivation of this research was to develop a framework for aircraft conceptual design

that accounts for the uncertainties introduced by low fidelity conceptual analysis methods

by utilizing historical aircraft data. A multi-objective, multi-discipline reliability-based op-

timization tool called RyeMDO was developed. Several multi-disciplinary RBDO strate-

gies were implemented with different combinations of MDO and reliability assessment

approaches. The performance and reliability of each method were assessed by solving well

known analytical optimization problems and truss optimization problems. The efficiency

and the reliability of each approach was assessed by solving the optimization examples

repeatedly at different starting vectors. It was found that for the problems considered, an

IDF method with a sequential RBDO strategy exhibited the best combination of efficiency

and reliability. The single-loop/MDF method was found to be efficient, but exhibited a loss

in accuracy relative to the exact FORM based methods. Additionally, it was found that the

single loop approach was somewhat sensitive to the location of the starting vector, and the

solutions exhibited some scatter. The CO based approaches frequently failed to converge.

A method for assessing the uncertainties introduced by low fidelity analysis methods was
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introduced. The method uses historical data to estimate the statistical distributions of error

between known data and the predictions of uncertain analysis methods. Two case studies

were considered: the conceptual design optimization of the wing box of a light jet.

The first case study considered a multi-objective wing box optimization consisting of an

aerodynamics discipline using a vortex-lattice solver and a FEM based structural analysis

solver. The FEM analysis was replaced by a Kriging surrogate model, which was consid-

ered to be an uncertain analysis method. The surrogate model was sampled and compared

to a database of FEM results to obtain an estimate of the error PDF. The RBDO was carried

out using several different RBDO/MDO approaches for comparison. It was found that the

deterministic optimization based on the Kriging model was optimistic. The predicted opti-

mum design was subjected to FEM analysis and shown to fail, having a higher maximum

stress than the specified limit. Implementing RBDO pushed the deterministic design deeper

into feasible design space. It was found that enforcing reliability levels over approximately

1 pushed the predicted optimum solution into feasible design space when evaluated by the

FEM analysis.

The wing box problem uncovered another observation: the deterministic solutions pre-

dicted using the Kriging model were consistently found to be optimistic - predicting solu-

tion locations that were found to be infeasible when tested against the FEM analysis. This

was consistently observed regardless of starting location. It might be expected that since

the mean errors introduced by the surrogate model were nearly zero, that solutions would

be equally likely to fall in feasible design space or infeasible design space. However, since

optimizers seek the best possible solution regardless of the limitations of the implemented

analysis approaches, it was observed that the solutions were more likely to be optimistic.

It is therefore very important to consider the uncertainties introduced by approximate anal-

ysis methods in order to protect the design from failure when subjected to better analysis
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methods.

The second case study considered the conceptual design of a regional aircraft with three

contributing analysis methods: aerodynamics and stability, performance, and weight and

balance. Each contributing analysis package was based partly on the statistically derived

empirical equations commonly used in conceptual design. These equations were consid-

ered as uncertain analysis methods. Error terms were introduced and modeled probabilis-

tically. This was accomplished by modeling many currently available aircraft designs and

predicting the performance characteristics using the low fidelity methods. The predicted

performance characteristics were compared with published data to develop PDF functions

that model each source of error. It was found that the performance characteristics predicted

by the deterministic optimum were considerably better than the reference 737-800 aircraft.

However, increasing the reliability level yielded more conservative designs, enhancing the

likelihood that the design would comply with all performance targets when subjected to

better analysis approaches.

6.1 Future Work

Enhancements to this work may include a much more comprehensive consideration aircraft

certification requirements, which could be modeled as probabilistic constraints. Better esti-

mates of the characteristics of each source of uncertainty could be obtained by implement-

ing a much larger aircraft specification database. Additionally, implementing high fidelity

analysis as a tool for generating data points for assessing the model error associated with

the low fidelity equations would enable aircraft conceptual optimization for unconventional

designs that are not strictly similar to existing aircraft. Farther enhancements may include

the following:
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Sensitivity Analysis Implementing sensitivity analysis on the uncertain errors introduced

by approximate analysis methods would enable designers to determine where devel-

opment and computational should be focused. Reducing the variance of the uncertain

error terms may be possible by improving the implemented analysis methods. Deter-

mining where improvements would have the most benefit using sensitivity analysis

could indicate where additional development and computation time would be best

applied.

Certification Aircraft certification requirements include many performance boundaries

that new aircraft must be shown to meet or exceed. Handling these constraints in

a more comprehensive manner using RBDO could enhance the likelihood that an op-

timized conceptual design would meet these requirements when subjected to better

analysis later in the design process.

High Fidelity Analysis Estimating the error PDFs associated with uncertain analysis meth-

ods is limited by the availability of applicable data. A more comprehensive assess-

ment of error may be possible by modeling and comparing the implemented analysis

methods with high fidelity analysis results - particularly for component weights and

parasite drag prediction.

Data Mining The current research is limited to conventional mid-sized commercial air-

craft. As a consequence, the aircraft and engines in the compiled databases were

chosen to bracket the intended size and performance of the aircraft designs studied.

A more generalized approach may implement a database containing many types of

aircraft. In such a case, data mining algorithms may be used to isolate the most

relevant aircraft specifications. This would ensure that the predicted performance

quantities are not compared with aircraft that are too dissimilar in design and mis-

sion.
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Certifiability The certification requirements of commercial aircraft contain many perfor-

mance attributes that an aircraft must be shown to comply with. Many of these

attributes could be quantified and enforced using probabilistic constraints. Using

RBDO may improve the likelihood that a conceptual design will comply with certi-

fication requirements later in the design process.
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Table A.1: Aircraft Specification Database
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Table A.2: Engine Performance Database

Number Number
1 6672 9144 0.70 2669 0.456 0.750 38 133447 10668 0.80 25586 0.369
2 8452 11000 0.70 2251 0.475 0.758 39 146791 10671 0.80 25466 0.370
3 13545 12195 0.80 2860 0.560 0.540 40 151240 10668 0.80 31582 0.361
4 14710 6000 0.48 4341 0.570 0.795 41 156911 11000 0.80 34322 0.359
5 16458 12192 0.80 3634 0.447 0.835 42 166363 10668 0.80 37601 0.355
6 20017 12192 0.80 4386 0.443 0.771 43 170144 10671 0.85 28913 0.330
7 21129 12192 0.80 4680 0.442 0.756 44 170589 10668 0.85 28913 0.330
8 21129 12192 0.80 4951 0.442 0.675 45 177929 10668 0.85 40568 0.348
9 22241 12192 0.80 4982 0.441 0.679 46 186323 11000 0.80 37263 0.286
10 23424 12195 0.80 4951 0.390 0.680 47 191718 10671 0.80 37788 0.610
11 24198 12192 0.80 4693 0.503 0.830 48 191718 10668 0.80 38700 0.345
12 25355 12192 0.80 5872 0.394 0.679 49 193942 10668 0.85 45372 0.344
13 25466 12192 0.80 6512 0.372 0.640 50 222411 10668 0.85 46604 0.344
14 26325 12195 0.80 5827 0.370 0.650 51 222411 10668 0.85 48930 0.333
15 30203 7620 0.70 10008 0.408 0.721 52 229795 11000 0.75 47667 0.360
16 31004 7622 0.70 10008 0.410 0.720 53 233532 10668 0.80 41813 0.311
17 44037 7622 0.74 16592 0.560 0.800 54 233532 10668 0.85 48041 0.390
18 50011 7620 0.75 13238 0.374 0.680 55 233532 10671 0.80 53379 0.320
19 61608 10671 0.80 11343 0.430 0.690 56 235756 10668 0.85 53156 0.329
20 63743 8001 0.75 15689 0.360 0.650 57 249100 10668 0.85 54491 0.324
21 65834 12497 0.80 10231 0.405 0.630 58 254260 10668 0.80 50398 0.316
22 66034 10671 0.80 15480 0.390 0.640 59 257543 10668 0.80 53565 0.329
23 68503 10671 0.80 13122 0.450 0.690 60 257997 10671 0.80 57026 0.320
24 80415 11000 0.75 15297 0.396 0.610 61 266893 10671 0.80 49131 0.350
25 88444 10671 0.80 19483 0.370 0.620 62 267294 10668 0.85 50398 0.322
26 90223 11000 0.80 19319 0.390 0.630 63 269562 10671 0.85 52547 0.560
27 97861 10668 0.76 16014 0.386 0.610 64 269562 10668 0.85 52547 0.318
28 97861 10668 0.85 22103 0.386 0.657 65 272676 10671 0.80 50443 0.340
29 97861 10668 0.85 22419 0.386 0.655 66 300255 10668 0.82 51155 0.308
30 97861 10671 0.80 23064 0.340 0.570 67 334284 10668 0.82 51155 0.298
31 107869 11000 0.80 26970 0.490 0.700 68 346516 10668 0.83 57827 0.295
32 111206 10671 0.80 22552 0.350 0.580 69 376320 10668 0.80 62119 0.286
33 111206 10671 0.80 25680 0.360 0.570 70 394477 10668 0.85 107131 0.274
34 117433 10668 0.80 24376 0.376 0.644 71 401230 10668 0.80 81847 0.280

Tsl hcr Mcr Tcr SFCto SFCcr Tsl hcr Mcr Tcr SFCto
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Table A.3: Wing Box Database

X1 X2 X3 X4 X5 X6 X7 X8 X9 FEM Kriging Ratio

0.0040 0.0161 0.0215 0.0038 0.0082 0.0166 0.0239 10.8710 8.1060 0.6908 0.7187 1.0404

0.0034 0.0225 0.0185 0.0041 0.0051 0.0256 0.0269 7.5370 8.4530 0.1603 0.1652 1.0305

0.0024 0.0209 0.0234 0.0040 0.0082 0.0208 0.0209 8.2970 6.4690 0.3751 0.3885 1.0356

0.0041 0.0193 0.0179 0.0049 0.0063 0.0214 0.0258 8.9510 7.4480 0.3746 0.4101 1.0949

0.0031 0.0240 0.0172 0.0043 0.0052 0.0245 0.0250 11.0200 9.9730 0.3875 0.3385 0.8736

0.0036 0.0260 0.0227 0.0041 0.0080 0.0269 0.0184 9.1260 8.2810 0.3665 0.3378 0.9216

0.0024 0.0255 0.0145 0.0049 0.0070 0.0188 0.0192 7.8370 7.2560 0.3242 0.3370 1.0395

0.0028 0.0232 0.0151 0.0047 0.0070 0.0161 0.0265 8.5610 9.2880 0.3133 0.2841 0.9069

0.0030 0.0166 0.0162 0.0042 0.0075 0.0146 0.0171 7.0460 7.1140 0.3230 0.2923 0.9048

0.0029 0.0202 0.0252 0.0040 0.0058 0.0146 0.0246 12.9450 8.2070 1.2342 1.3083 1.0600

0.0037 0.0231 0.0257 0.0048 0.0060 0.0151 0.0268 11.7000 8.4380 0.8565 0.8088 0.9443

0.0025 0.0260 0.0218 0.0042 0.0076 0.0164 0.0159 10.5500 10.0300 0.4928 0.4921 0.9986

0.0025 0.0186 0.0262 0.0036 0.0080 0.0270 0.0205 11.5160 6.1230 1.0681 1.1999 1.1234

0.0039 0.0251 0.0158 0.0054 0.0058 0.0188 0.0270 12.2450 6.3900 1.3626 1.6094 1.1811

0.0028 0.0165 0.0184 0.0061 0.0074 0.0189 0.0268 8.9430 9.6300 0.2819 0.3187 1.1306

0.0039 0.0244 0.0234 0.0055 0.0091 0.0225 0.0174 7.8610 6.7060 0.3820 0.3940 1.0315

0.0040 0.0202 0.0174 0.0035 0.0052 0.0254 0.0154 10.4530 10.5730 0.4341 0.3938 0.9072

0.0041 0.0164 0.0198 0.0047 0.0050 0.0259 0.0271 8.9420 6.2960 0.5226 0.4478 0.8568

0.0035 0.0243 0.0162 0.0059 0.0074 0.0215 0.0260 7.3770 6.5150 0.2849 0.2913 1.0226

0.0043 0.0212 0.0260 0.0049 0.0074 0.0193 0.0184 8.1220 7.3890 0.3218 0.2947 0.9158

0.0038 0.0151 0.0178 0.0039 0.0080 0.0156 0.0168 12.1140 7.9300 1.0816 1.0744 0.9933

0.0031 0.0190 0.0219 0.0051 0.0068 0.0255 0.0200 9.9210 8.8490 0.3725 0.3913 1.0505

0.0029 0.0257 0.0242 0.0036 0.0063 0.0182 0.0195 7.9360 9.4190 0.2225 0.2100 0.9439

0.0033 0.0229 0.0249 0.0045 0.0083 0.0265 0.0233 10.6200 9.8990 0.3009 0.3020 1.0037

0.0025 0.0242 0.0248 0.0038 0.0081 0.0192 0.0171 12.0120 7.9180 0.9047 0.9441 1.0435

0.0027 0.0247 0.0157 0.0045 0.0052 0.0160 0.0266 7.6780 10.6070 0.1993 0.1913 0.9600

0.0031 0.0232 0.0236 0.0051 0.0058 0.0252 0.0222 8.2850 8.2380 0.2192 0.1987 0.9067

0.0033 0.0255 0.0190 0.0046 0.0069 0.0222 0.0153 7.6950 10.1440 0.2302 0.2319 1.0074

0.0038 0.0228 0.0208 0.0055 0.0060 0.0163 0.0190 10.5540 9.7280 0.4921 0.4372 0.8884

0.0025 0.0186 0.0262 0.0036 0.0080 0.0270 0.0205 11.5160 6.1230 1.0681 0.9804 0.9179

0.0041 0.0173 0.0161 0.0046 0.0075 0.0187 0.0276 9.2010 9.5160 0.3006 0.3248 1.0806

0.0028 0.0190 0.0243 0.0059 0.0061 0.0242 0.0268 12.5090 10.6320 0.4794 0.5129 1.0699

0.0031 0.0255 0.0151 0.0037 0.0088 0.0165 0.0185 11.1030 8.7570 0.6808 0.6990 1.0267

0.0039 0.0237 0.0171 0.0049 0.0089 0.0186 0.0158 7.0330 8.0650 0.2549 0.2340 0.9179

0.0027 0.0193 0.0173 0.0039 0.0076 0.0254 0.0159 10.3860 6.4770 0.9085 0.8811 0.9698

0.0040 0.0174 0.0219 0.0045 0.0076 0.0177 0.0198 10.0400 9.1690 0.4183 0.4219 1.0086

0.0031 0.0207 0.0250 0.0033 0.0065 0.0153 0.0213 12.2180 7.9540 1.0734 1.0908 1.0162

0.0033 0.0214 0.0148 0.0043 0.0056 0.0221 0.0239 7.6240 5.9500 0.4014 0.3768 0.9387

0.0024 0.0187 0.0165 0.0054 0.0053 0.0178 0.0163 7.9890 7.5220 0.3559 0.4227 1.1878

0.0032 0.0230 0.0201 0.0038 0.0070 0.0193 0.0249 12.0690 7.6650 0.8315 0.8446 1.0157
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Table A.4: Wing Box Database (cont)

0.0040 0.0165 0.0209 0.0059 0.0089 0.0202 0.0264 11.0010 9.3680 0.5030 0.4193 0.8336

0.0038 0.0258 0.0149 0.0039 0.0079 0.0251 0.0189 9.9640 10.9810 0.2906 0.2916 1.0036

0.0039 0.0173 0.0229 0.0058 0.0071 0.0205 0.0203 11.2790 9.0830 0.5558 0.5176 0.9312

0.0038 0.0255 0.0229 0.0041 0.0059 0.0209 0.0267 7.7630 7.3330 0.2508 0.2521 1.0051

0.0025 0.0206 0.0153 0.0048 0.0064 0.0226 0.0184 9.6380 6.7570 0.6575 1.1141 1.6945

0.0030 0.0168 0.0190 0.0044 0.0064 0.0248 0.0203 9.4990 9.7090 0.3154 0.3145 0.9972

0.0040 0.0220 0.0187 0.0037 0.0083 0.0191 0.0268 8.3430 9.7150 0.2097 0.2211 1.0542

0.0027 0.0249 0.0256 0.0059 0.0081 0.0255 0.0191 9.2350 6.9350 0.4767 0.4589 0.9626

0.0039 0.0218 0.0184 0.0039 0.0088 0.0167 0.0165 12.8470 7.3790 1.3146 1.2773 0.9716

0.0033 0.0196 0.0262 0.0060 0.0068 0.0258 0.0271 12.6660 9.5020 0.5740 0.6205 1.0810

0.0034 0.0258 0.0177 0.0053 0.0052 0.0242 0.0228 11.9890 10.6150 0.4434 0.3427 0.7728

0.0037 0.0226 0.0214 0.0058 0.0078 0.0253 0.0160 7.0600 8.5490 0.2187 0.2217 1.0136

0.0035 0.0236 0.0169 0.0054 0.0069 0.0170 0.0226 10.5870 7.6350 0.6968 0.6608 0.9484

0.0027 0.0260 0.0154 0.0044 0.0084 0.0160 0.0220 7.9900 9.6220 0.2627 0.2395 0.9117

0.0034 0.0175 0.0237 0.0039 0.0057 0.0149 0.0213 11.9290 6.1260 1.6058 1.5074 0.9387

0.0037 0.0210 0.0170 0.0054 0.0089 0.0217 0.0182 8.8240 7.2210 0.4248 0.4374 1.0296

0.0028 0.0234 0.0187 0.0060 0.0071 0.0193 0.0209 8.9450 10.0110 0.2441 0.2304 0.9437

0.0026 0.0208 0.0213 0.0060 0.0083 0.0214 0.0270 7.0750 8.5630 0.1472 0.1530 1.0395

0.0026 0.0163 0.0184 0.0060 0.0068 0.0221 0.0213 10.0660 8.4640 0.4749 0.4683 0.9862

0.0039 0.0184 0.0234 0.0052 0.0064 0.0224 0.0189 7.0490 8.0770 0.1860 0.1808 0.9718

0.0032 0.0213 0.0195 0.0057 0.0078 0.0208 0.0154 7.3440 6.7570 0.3728 0.3422 0.9180

0.0026 0.0154 0.0260 0.0043 0.0060 0.0234 0.0164 8.6570 6.3260 0.5810 0.4934 0.8493

0.0032 0.0244 0.0199 0.0053 0.0052 0.0217 0.0185 12.6040 5.9760 1.5341 1.3325 0.8686

0.0031 0.0264 0.0156 0.0033 0.0054 0.0231 0.0176 11.8380 9.2220 0.6665 0.6395 0.9595

0.0042 0.0266 0.0262 0.0053 0.0087 0.0243 0.0176 12.7750 7.5270 1.0903 0.9611 0.8815

0.0030 0.0178 0.0145 0.0055 0.0066 0.0260 0.0233 7.0130 7.1680 0.2211 0.2159 0.9764

0.0033 0.0196 0.0262 0.0060 0.0068 0.0258 0.0271 12.6660 9.5020 0.5740 0.5692 0.9916

0.0028 0.0179 0.0249 0.0039 0.0090 0.0222 0.0214 9.1280 9.3720 0.2818 0.2865 1.0168

0.0035 0.0153 0.0264 0.0038 0.0051 0.0149 0.0240 7.9020 6.1210 0.5056 0.4542 0.8983

0.0042 0.0209 0.0174 0.0046 0.0067 0.0220 0.0187 12.3690 8.3120 0.8371 0.7420 0.8864

0.0031 0.0234 0.0227 0.0040 0.0082 0.0174 0.0248 10.9270 8.6850 0.5838 0.5943 1.0179

0.0035 0.0268 0.0153 0.0042 0.0052 0.0161 0.0161 9.2620 7.5220 0.5781 0.5593 0.9674

0.0026 0.0250 0.0155 0.0036 0.0084 0.0197 0.0254 11.9060 9.1450 0.6657 0.6610 0.9930

0.0032 0.0168 0.0226 0.0042 0.0071 0.0158 0.0154 9.5960 6.7230 0.7314 0.6779 0.9269

0.0036 0.0172 0.0179 0.0048 0.0075 0.0154 0.0263 9.7250 6.6190 0.7612 0.7546 0.9913

0.0038 0.0168 0.0235 0.0054 0.0062 0.0238 0.0267 9.0440 10.5060 0.2293 0.2451 1.0690

0.0035 0.0236 0.0183 0.0055 0.0078 0.0173 0.0273 8.7560 10.8600 0.2321 0.2321 1.0000

0.0032 0.0157 0.0153 0.0052 0.0051 0.0237 0.0164 11.3540 9.2670 0.6335 0.6580 1.0386

0.0040 0.0247 0.0248 0.0048 0.0069 0.0229 0.0265 10.4480 10.8670 0.2478 0.2543 1.0264

0.0024 0.0248 0.0173 0.0044 0.0061 0.0210 0.0174 10.4240 6.4840 0.8613 0.7789 0.9043

0.0039 0.0184 0.0234 0.0052 0.0064 0.0224 0.0189 7.0490 8.0770 0.1860 0.1765 0.9488
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Table A.5: Wing Box Database (cont)

0.0033 0.0209 0.0202 0.0056 0.0049 0.0152 0.0154 12.6870 9.8660 0.8578 0.8966 1.0452

0.0041 0.0239 0.0255 0.0036 0.0064 0.0260 0.0157 11.2540 9.7480 0.5843 0.6366 1.0895

0.0031 0.0174 0.0246 0.0050 0.0066 0.0175 0.0216 10.4770 7.6100 0.6441 0.6983 1.0841

0.0038 0.0175 0.0145 0.0038 0.0066 0.0236 0.0161 7.4720 10.6450 0.1705 0.1942 1.1392

0.0035 0.0242 0.0161 0.0056 0.0057 0.0237 0.0228 11.6230 10.6100 0.4364 0.4667 1.0694

0.0027 0.0153 0.0146 0.0051 0.0056 0.0194 0.0249 8.8680 6.9960 0.5105 0.5261 1.0305

0.0027 0.0186 0.0209 0.0039 0.0060 0.0149 0.0234 8.4710 10.2110 0.2775 0.2814 1.0139

0.0025 0.0251 0.0213 0.0033 0.0082 0.0234 0.0229 7.4740 7.6670 0.1858 0.2326 1.2520

0.0034 0.0170 0.0226 0.0046 0.0091 0.0254 0.0155 11.6940 7.4270 0.9928 0.8812 0.8876

0.0023 0.0172 0.0182 0.0043 0.0052 0.0169 0.0158 8.8220 7.3750 0.4900 0.4274 0.8723

0.0043 0.0165 0.0180 0.0045 0.0051 0.0181 0.0155 12.2860 5.9670 1.7619 1.9245 1.0923

0.0040 0.0223 0.0163 0.0041 0.0086 0.0198 0.0200 11.4880 10.8710 0.4288 0.4333 1.0104

0.0028 0.0198 0.0205 0.0046 0.0070 0.0171 0.0182 8.4560 6.3050 0.5261 0.5383 1.0231

0.0023 0.0268 0.0166 0.0038 0.0060 0.0198 0.0205 9.3410 8.5670 0.3561 0.4921 1.3819

0.0031 0.0264 0.0156 0.0033 0.0054 0.0231 0.0176 11.8380 9.2220 0.6665 0.7188 1.0784

0.0041 0.0208 0.0170 0.0042 0.0084 0.0244 0.0171 7.7780 9.5900 0.2080 0.2189 1.0522

0.0027 0.0270 0.0221 0.0053 0.0083 0.0238 0.0161 8.4780 7.3580 0.4445 0.4602 1.0354

0.0033 0.0196 0.0262 0.0060 0.0068 0.0258 0.0271 12.6660 9.5020 0.5740 0.6425 1.1194

0.0030 0.0161 0.0188 0.0061 0.0062 0.0208 0.0248 10.8720 6.0430 1.0626 1.0106 0.9511

0.0041 0.0184 0.0246 0.0041 0.0052 0.0192 0.0216 8.2420 9.5430 0.2122 0.2218 1.0454

0.0035 0.0215 0.0246 0.0042 0.0071 0.0231 0.0225 9.2570 8.1160 0.3186 0.3644 1.1438

0.0041 0.0202 0.0167 0.0058 0.0090 0.0222 0.0205 7.5480 6.7330 0.2907 0.2932 1.0087

0.0035 0.0260 0.0213 0.0038 0.0084 0.0204 0.0220 12.8900 8.6620 0.7716 0.6941 0.8996

0.0028 0.0190 0.0216 0.0041 0.0071 0.0208 0.0166 10.9320 7.1920 0.8404 0.8959 1.0660

0.0037 0.0237 0.0169 0.0040 0.0081 0.0242 0.0202 10.1930 6.0020 0.8452 1.1179 1.3226

0.0040 0.0239 0.0235 0.0050 0.0088 0.0210 0.0181 11.2430 8.3710 0.6384 0.5622 0.8807

0.0036 0.0191 0.0202 0.0040 0.0086 0.0219 0.0232 8.4490 8.4240 0.2630 0.2540 0.9657

0.0028 0.0184 0.0213 0.0048 0.0056 0.0258 0.0230 11.3790 7.1550 0.7775 0.7585 0.9756

0.0031 0.0232 0.0236 0.0051 0.0058 0.0252 0.0222 8.2850 8.2380 0.2192 0.2219 1.0122

0.0029 0.0210 0.0227 0.0051 0.0076 0.0198 0.0197 7.1140 10.8450 0.1167 0.1047 0.8974

0.0027 0.0228 0.0159 0.0044 0.0085 0.0222 0.0233 10.7080 10.0390 0.3906 0.3577 0.9158

0.0034 0.0208 0.0198 0.0047 0.0067 0.0240 0.0156 11.8410 9.2310 0.7370 0.6491 0.8807

0.0035 0.0207 0.0186 0.0042 0.0084 0.0193 0.0199 10.8080 7.3390 0.6842 0.7042 1.0293

0.0038 0.0235 0.0180 0.0055 0.0074 0.0174 0.0236 11.6490 10.8370 0.4833 0.4822 0.9978

0.0027 0.0189 0.0266 0.0061 0.0056 0.0149 0.0204 9.7840 10.2280 0.3961 0.3983 1.0056

0.0024 0.0256 0.0250 0.0053 0.0081 0.0197 0.0265 9.8030 6.7300 0.5705 0.5989 1.0497

0.0027 0.0156 0.0225 0.0043 0.0066 0.0243 0.0194 8.7740 10.5190 0.2410 0.2433 1.0096

0.0031 0.0264 0.0208 0.0042 0.0065 0.0166 0.0254 8.6850 9.8070 0.2903 0.2680 0.9233

0.0039 0.0257 0.0244 0.0042 0.0089 0.0234 0.0179 12.0700 10.9330 0.4977 0.4102 0.8241

0.0038 0.0190 0.0154 0.0053 0.0053 0.0195 0.0214 7.8780 8.8490 0.2169 0.2130 0.9822

0.0038 0.0233 0.0156 0.0044 0.0061 0.0218 0.0177 10.8930 5.9470 1.1764 1.4104 1.1989
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Table A.6: Wing Box Database (cont)

0.0025 0.0156 0.0221 0.0045 0.0053 0.0169 0.0163 11.9140 5.9840 1.6117 1.5590 0.9673

0.0036 0.0153 0.0222 0.0058 0.0073 0.0194 0.0205 9.5920 8.1390 0.4860 0.5079 1.0451

0.0040 0.0178 0.0234 0.0046 0.0058 0.0158 0.0215 12.1360 8.1260 0.9596 0.9062 0.9443

0.0036 0.0148 0.0245 0.0049 0.0086 0.0181 0.0267 12.3360 8.1950 0.9779 0.9734 0.9954

0.0031 0.0193 0.0264 0.0037 0.0056 0.0231 0.0157 8.1410 10.8630 0.2094 0.2194 1.0476

0.0034 0.0225 0.0150 0.0041 0.0058 0.0250 0.0177 7.5350 9.2790 0.1998 0.1805 0.9034

0.0035 0.0150 0.0199 0.0046 0.0079 0.0194 0.0173 8.0270 10.0120 0.2285 0.2184 0.9560

0.0032 0.0150 0.0238 0.0061 0.0082 0.0153 0.0266 12.3220 9.5420 0.7759 0.7605 0.9801

0.0023 0.0214 0.0188 0.0055 0.0085 0.0147 0.0267 8.0290 7.8330 0.3848 0.4262 1.1075

0.0034 0.0215 0.0189 0.0038 0.0089 0.0179 0.0249 10.6440 7.8860 0.6175 0.5903 0.9560

0.0034 0.0175 0.0190 0.0034 0.0059 0.0229 0.0268 11.7370 6.6660 1.0008 0.9781 0.9773

0.0038 0.0190 0.0154 0.0053 0.0053 0.0195 0.0214 7.8780 8.8490 0.2169 0.2222 1.0243

0.0033 0.0215 0.0237 0.0033 0.0074 0.0255 0.0196 11.1990 8.6100 0.5295 0.5655 1.0679

0.0040 0.0202 0.0174 0.0035 0.0052 0.0254 0.0154 10.4530 10.5730 0.4341 0.4514 1.0399

0.0032 0.0236 0.0258 0.0051 0.0083 0.0205 0.0222 7.5490 7.9760 0.2063 0.2213 1.0727

0.0034 0.0190 0.0184 0.0040 0.0078 0.0175 0.0241 7.3550 7.6210 0.2468 0.2628 1.0649

0.0025 0.0188 0.0168 0.0049 0.0062 0.0196 0.0155 12.7540 9.3130 0.9094 0.9080 0.9985

0.0040 0.0261 0.0174 0.0039 0.0081 0.0248 0.0202 7.2240 10.2510 0.1325 0.1554 1.1729

0.0042 0.0262 0.0215 0.0041 0.0071 0.0160 0.0185 12.0440 8.6140 0.8831 0.7547 0.8546

0.0038 0.0216 0.0178 0.0052 0.0089 0.0158 0.0220 9.6940 10.2540 0.3736 0.3597 0.9629

0.0029 0.0236 0.0244 0.0043 0.0051 0.0236 0.0165 10.7100 7.4780 0.7570 0.6824 0.9015

0.0030 0.0221 0.0268 0.0045 0.0077 0.0229 0.0270 11.2290 10.5030 0.3295 0.3951 1.1991

0.0028 0.0237 0.0223 0.0054 0.0082 0.0263 0.0241 11.1060 8.9920 0.3962 0.4250 1.0727

0.0032 0.0160 0.0261 0.0048 0.0053 0.0260 0.0265 9.8110 10.9640 0.2633 0.2772 1.0528

0.0040 0.0166 0.0156 0.0039 0.0091 0.0179 0.0202 9.9100 10.2550 0.3504 0.3502 0.9993

0.0025 0.0165 0.0227 0.0034 0.0086 0.0205 0.0207 12.8810 10.9760 0.5997 0.5376 0.8964

143



144



Appendix B

Aviation Regulations

The aviation regulations were accessed from the Federal Aviation Administration (FAA)

database [145].

Table B.1: Regulations for Fuselage Sizing

Sec. 25.815

Part 25 AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES

Subpart D--Design and Construction Emergency Provisions

Sec. 25.815

Width of aisle.

The passenger aisle width at any point between seats must equal or exceed the values in the following
table:

Passenger seating capacity Minimum passenger aisle width (inches)

Less than 25 inches
from floor

25 inches and more
from floor

10 or less-------------------------------------------- 112 15

11 through 19--------------------------------------- 12 20

20 or more------------------------------------------
-

15 20

1
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Table B.2: Regulations for Fuselage Sizing (continued)

Sec. 25.813

Part 25 AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES

Subpart D--Design and Construction Emergency Provisions

Sec. 25.813

Emergency exit access.

Each required emergency exit must be accessible to the passengers and located where it will afford an
effective means of evacuation. Emergency exit distribution must be as uniform as practical, taking
passenger distribution into account; however, the size and location of exits on both sides of the cabin
need not be symmetrical. If only one floor level exit per side is prescribed, and the airplane does not
have a tailcone or ventral emergency exit, the floor level exit must be in the rearward part of the
passenger compartment, unless another location affords a more effective means of passenger
evacuation. Where more than one floor level exit per side is prescribed, at least one floor level exit per
side must be located near each end of the cabin, except that this provision does not apply to
combination cargo/passenger configurations. In addition--
(a) There must be a passageway leading from the nearest main aisle to each Type A, Type B, Type C,
Type I, or Type II emergency exit and between individual passenger areas. Each passageway leading
to a Type A or Type B exit must be unobstructed and at least 36 inches wide. Passageways between
individual passenger areas and those leading to Type I, Type II, or Type C emergency exits must be
unobstructed and at least 20 inches wide. Unless there are two or more main aisles, each Type A or B
exit must be located so that there is passenger flow along the main aisle to that exit from both the
forward and aft directions. If two or more main aisles are provided, there must be unobstructed cross-
aisles at least 20 inches wide between main aisles. There must be--
(1) A cross-aisle which leads directly to each passageway between the nearest main aisle and a Type
A or B exit; and
(2) A cross-aisle which leads to the immediate vicinity of each passageway between the nearest main
aisle and a Type I, Type II, or Type III exit; except that when two Type III exits are located within
three passenger rows of each other, a single cross-aisle may be used if it leads to the vicinity between
the passageways from the nearest main aisle to each exit.
(b) Adequate space to allow crewmember(s) to assist in the evacuation of passengers must be provided
as follows:
(1) Each assist space must be a rectangle on the floor, of sufficient size to enable a crewmember,
standing erect, to effectively assist evacuees. The assist space must not reduce the unobstructed width
of the passageway below that required for the exit.
(2) For each Type A or B exit, assist space must be provided at each side of the exit regardless of
whether an assist means is required by Sec. 25.810(a). 
(3) For each Type C, I or II exit installed in an airplane with seating for more than 80 passengers, an
assist space must be provided at one side of the passageway regardless of whether an assist means is
required by Sec. 25.810(a). 
(4) For each Type C, I or II exit, an assist space must be provided at one side of the passageway if an
assist means is required by Sec. 25.810(a). 
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Table B.3: Regulations for Fuselage Sizing (continued)

(5) For any tailcone exit that qualifies for 25 additional passenger seats under the provisions of [Sec.
25.807(g)(9)(ii)], an assist space must be provided, if an assist means is required by Sec. 25.810(a). 
(6) There must be a handle, or handles, at each assist space, located to enable the crewmember to
steady himself or herself: 
(i) While manually activating the assist means (where applicable) and, 
(ii) While assisting passengers during an evacuation. 
(c) The following must be provided for each Type III or Type IV exit--
(1) There must be access from the nearest aisle to each exit. In addition, for each Type III exit in an
airplane that has a passenger seating configuration of 60 or more--
(i) Except as provided in paragraph (c)(1)(ii), the access must be provided by an unobstructed
passageway that is at least 10 inches in width for interior arrangements in which the adjacent seat rows
on the exit side of the aisle contain no more than two seats, or 20 inches in width for interior
arrangements in which those rows contain three seats. The width of the passageway must be measured
with adjacent seats adjusted to their most adverse position. The centerline of the required passageway
width must not be displaced more than 5 inches horizontally from that of the exit.
(ii) In lieu of one 10- or 20-inch passageway, there may be two passageways, between seat rows only,
that must be at least 6 inches in width and lead to an unobstructed space adjacent to each exit.
(Adjacent exits must not share a common passageway.) The width of the passageways must be
measured with adjacent seats adjusted to their most adverse position. The unobstructed space adjacent
to the exit must extend vertically from the floor to the ceiling (or bottom of sidewall stowage bins),
inboard from the exit for a distance not less than the width of the narrowest passenger seat installed on
the airplane, and from the forward edge of the forward passageway to the aft edge of the aft
passageway. The exit opening must be totally within the fore and aft bounds of the unobstructed space.
(2) In addition to the access--
(i) For airplanes that have a passenger seating configuration of 20 or more, the projected opening of
the exit provided must not be obstructed and there must be no interference in opening the exit by seats,
berths, or other protrusions (including any seatback in the most adverse position) for a distance from
that exit not less than the width of the narrowest passenger seat installed on the airplane.
(ii) For airplanes that have a passenger seating configuration of 19 or fewer, there may be minor
obstructions in this region, if there are compensating factors to maintain the effectiveness of the exit.
(3) For each Type III exit, regardless of the passenger capacity of the airplane in which it is installed,
there must be placards that--
(i) Are readable by all persons seated adjacent to and facing a passageway to the exit;
(ii) Accurately state or illustrate the proper method of opening the exit, including the use of handholds;
and
(iii) If the exit is a removable hatch, state the weight of the hatch and indicate an appropriate location
to place the hatch after removal.
(d) If it is necessary to pass through a passageway between passenger compartments to reach any
required emergency exit from any seat in the passenger cabin, the passageway must be unobstructed.
However, curtains may be used if they allow free entry through the passageway.
(e) No door may be installed between any passenger seat that is occupiable for takeoff and landing
and any passenger emergency exit, such that the door crosses any egress path (including aisles,
crossaisles and passageways). 
(f) If it is necessary to pass through a doorway separating any crewmember seat (except those seats on
the flightdeck), occupiable for takeoff and landing, from any emergency exit, the door must have a
means to latch it in the open position. The latching means must be able to withstand the loads imposed
upon it when the door is subjected to the ultimate inertia forces, relative to the surrounding structure,
listed in Sec. 25.561(b). 
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