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Abstract

A New Approach to Nonparametric Spectral Density Estimation
© Sudeshna Pal, 2007

Master of Applied Science (MASc)
Department of Electrical and Computer Engineering
Ryerson University

A novel approach to nonparametric spectral density estimation has been proposed. The
approach is based on a new cvaluation criterion called autocorrelation mean square crror
(AMSE) for power spectral density (PSD) estimates of available finite length data. Mini-
mization of this critcrion not only provides the optimum segmentation for cxisting PSDE
approaches, but also provides a new optimum windowing within the segments that can be
combined additionally to the existing methods of nonparametric PSDE. Furthermore, the
problem of frequency resolution in existing PSDE methods for noisy signals has been ana-
lyzed. In the existing approaches, the additive noisc and the finitencss of data which are
the causes of the original loss of the frequency resolution are not treated separately. The
suggested new approach to spectrum estimation takes advantage of these two different causes
of the problem and tackles the problem of resolution in two steps. First, the method op-
timally reduces noise interference with the signal via minimum noiseless description length
(MNDL). The new power spectrum estimation MNDL-Periodogram of the denoised signal
is then computed via conventional indirect periodogram to improve frequency resolution.

iv



Acknowledgments

FIRST OF ALL, I AM VERY MUCH THANKFUL TO MY parents FOR BEING THE BIGGEST
REASON OF ALL MY ACCOMPLISHMENTS TO THIS DAY. THEY HAVE NOT ONLY SUPPORTED
ME FINANCIALLY BUT ALSO PROVIDED ME WITH MUCH MORAL SUPPORT TO ALLOW ME
TO GET THROUGH THIS STAGE OF MY LIFE WITH LEAST TROUBLE AS POSSIBLE. THANK
You!

THANK YOU, Kaberi, MY DEAR SISTER WHO HAS ALWAYS BELIEVED IN ME MORE THAN
I DO AND ALWAYS PULLED ME RIGHT UP WHEN THINGS WERE TOO OVERWHELMING OR
STRESS DRAINED ME DOWN. THANK YOU FOR ALWAYS BEING THERE FOR ME.

I CANNOT EXPRESS MY APPRECIATION ENOUGH TO MY BEST FRIEND Leo, WHO HAS
BEEN THERE FOR ME SINCE MY UNDERGRADUATES. THANK YOU FOR MAKING THE
TRANSITION EASIER FOR ME AND ALWAYS READY TO LEND ME A HELPING HAND OR A
SHOULDER TO LEAN ON DURING TOUGH TIMES. WITH MUCH CONFIDENCE I CAN NOW
SAY THAT I AM A STRONGER PERSON THANKS TO YOU. I HAVE LEARNT SO MANY VALU-
ABLE THINGS FROM YOU THROUGHOUT THE COURSE OF MY STUDIES - YOUR FRIENDSHIP
IS A PRICELESS TREASURE.

IT WOULD HAVE BEEN QUITE IMPOSSIBLE TO GO THROUGH MY MASTERS IF Suman-
deep HASN’T BEEN THERE FOR ME AT EVERY STEP OF MY WAY. FROM THE VERY FIRST
DAY TILL THE LAST - I CANNOT THANK YOU ENOUGH FOR YOUR GENEROUS HELP AND
DELIGHTFUL COMPANY.

I WOULD ALSO LIKE TO ACKNOWLEDGE AND THANK Sina FOR HIS UPLIFTING CONVER-
SATIONS AND CONSOLATIONS. THANK YOU, Mohammad Reza FOR YOUR WARM SUPPORT
SINCE THE FIRST DAY. ALSO, THANK YOU Omid, Alon, Raymond, Huma, Sarah, Azadeh,
Sanjay, Matija, Matt AND ENG325 - MANY CHERISHED MEMORIES RESIDE WITH YOU.

MANY THANKS TO THE Department of Electrical and Computer Engineering; ESPE-
CIALLY TO THE Committee Members FOR THEIR PRECIOUS TIME, VALUABLE REVIEWS
AND SUGGESTIONS.

ALSO, SINCERE THANKS TO THE FACULTY SUPERVISOR, Dr. Beheshti, FOR HER GUID-
ANCE AND ADVISE THROUGHOUT THE COURSE OF MY MASTERS.



Contents

1 Introduction 1
2 Background 4
2.1 Random ProCesSSES . . v v v v v v o v v e e e e e e e e e e e e e 4
52 0 = 3 T 6

212 Variance . . . . . . . v v o i e e e e e e e 6

2.1.3 ConSiStenCy. . « v v v v vt e e e e e e e e e 7

2.2 Nonparametric PSDE: The Periodogram and its Variance Estimation . . . . 7
2.3 Nonparametric Methods for PSDE: Modifications to the Periodogram . . .. 10

2.3.1 TheBartlett Method . . . . . . .« v o i i i i i it it e 10
2.3.2 The Welch Method . . . . . .. . 0 i i i i i ittt e e i e e 11
2.3.3 The Blackman-Tukey Method . . . . . ... ... ... ... ..... 11
2.4 Parametric Methodsfor PSDE . . . . . . . . . . . . . o 00ttt 12
2.5 Review Conclusion . . . . . . v i i i it e e e e e e e e e e e e 12

3 A New PSDE Approach: Optimum Windowing Autocorrelation Estimates 14

3.1 Imtroduction . . . . . v v i i i i i e e e e e e e e e e e 14
3.2 Problem Statement . . . . . ... L. e e e 15
3.2.1 Existing Non-parametric PSDE Approaches . .. ... ... ... .. 15
3.2.2 Evaluation of the Existing Methods . . . . ... ... ... ...... 16

3.3 NewPSDE Approach . . . . . . . . . .. i ittt 17
3.3.1 New Evaluation criterion . . . . . . ... ... ... ... .. ... 17
3.3.2 Optimum Windowing . . . . . . . . . ... v i i i v 17
3.3.3 Estimationof AMSE . . ... ... ... .. ... oo, 19

3.4 Simulation Results and Discussion . . . . . .. .. ... .. .. ... ..., 21
3.4.1 Optimum Windowing for a Given Segmentation . . .. ... ... .. 21
3.4.2 Optimum Windowing and Optimum Segmentation . ... .. .. .. 23

3.5 Review Conclusion . . . . . . . . . i i i it ittt e e e e 24
4 Frequency Resolution in PSDE Approaches 26
4.1 Introduction . . . . . . . . . i i i e e e e e e e e e e e e e 26
4.2 Problem Statement . . . . . .. . L e e e e e e e e 28
4.2.1 Review of Existing PSDE Methods . . . . ... ... ... .. .... 29

vi



4.3 A New PSDE Approach: MNDL-Periodogram . . . .. ... . . .. ....

4.3.1 Spectrum Denoising . .« « - - s e e e e e e e
4.3.2 PSDE of Denoised Spectrum . . . . . . . .. o oL L.,
4.4 Simulation Results . . . .. .. ..o v i
4.4.1 Optimum Spectrum Denoising . . . . . . . .. ... ... ...

4.4.2 PSDE comparison: MNDL-Periodogram vs. existing methods
45 Review Conclusion . . . . . . . v v v v v v v vt e

5 Conclusions

5.1 Summary . . . ... e e e e e e e e e e
5.2 Future Rescarch . . . . . . . . .« i v i e

A Appendix A

A.1 Biased and Unbiased Variance Estimation . . . . . .. ... ... ......

Bibliography

vii



List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9
4.10
4.11

4.12

Random Process X « v v v v v v o v v e e e e e e e e e e e e e 15
Autocorrelation Estimation 7% windowed by 2m +1of 77, . . . ... .. .. 18
AM] o oo 19
EM] o 19
AMSE(dashed) and AMSE (solid) for 100 and 20 segments of available data

z; as a function of m where 2m — 1 is window’s length . . . ... ... ... 21

Optimum Hamming windowing of Welch method with 9 secgments and 50%
overlap. Upper curve is the AMSE using z2 and lower curve using AMSE of z;. 22
Welch with 50% overlap for z; (left) and z3 (right) : displaying Segments:

9(solid), 19(dot-dashed), 39 (dotted) and 199(dashed) . .. . . . . . ... ... 23
Autocorrelation of random process X, (solid line), Bartlett method with 20
segments (dashed line) and Bartlett optimum windowing m* =26. . . . . . . 24
PSD of random process X, (dashed line), Bartlett and Bartlett optimum
windowing PSD ecstimates using 3. .+« . . . oo oo 25
Noisy Y;(e?“°™) and Noiscless Y;(e/*™) PSD for ya[n] . . . . ... ... ... 27
Noisy signal . . . . . . . . . o i e 28
True ASE (solid) and ASE (dashed) for difference noise variances. . . . . . . 33
Noisy Y;(e?") and Noiseless Y3 (e/") PSD for yy[n] . . ... ........ 34
SMSE with optimum m* = 61 for sorted noise (solid line) and m* = 437 for
unsorted noise (dashed line). . . . . ... ... o oo oo 35
Denoised spectrum YMVPL with optimumm =18. . ... ... ....... 36
Denoised spectrum YMVPL with optimum m =61, . . . ... ... ... .. 36
PSDE of y; via MNDL-Periodogram (PMNPL) against PSD of noiseless signal
(Pa(F)) o o o o e e 37
PSDE of y; via Bartlett (PF) and MNDL-Periodogram (PM~PL) against PSD
of noiseless signal (P!) . . v v it e 38
PSDE of y; via Welch (P}¥) and MNDL-Periodogram (PMNDL) against PSD
of noiseless signal (P!) . . . . v 38
PSDE of y; via Blackman-Tuckey (PET) and MNDL-Periodogram (PMNPL)
against PSD of noiscless signal (P7) . . . . . o oo i i 39
PSDE of y, via MNDL-Periodogram(P§#/VPL) against PSD of noiseless signal
(PIY oo 40



4.13 Bartlett spectrum with zoomed in two closely spaced spectra . . . . . .. .. 41

4.14 Welch spectrum with zoomed in two closcly spaced spectra . . . . . ... .. 41
4.15 Blackman-Tukey spectrum with zoomed in two closely spaced spectra . . . . 42
4.16 Comparison with all existing methods . . . . . . . ... ... ... ...... 43

ix



List of Tables

3.1 (S, L): Number of segments and length of segments. AMSE[L]: MSE of
the Bartlett or Welch approach alone. AMSE[m*]: MSE of the optimally
windowed PSDE approach. . . . . . . .« . o o v o o



Chapter 1

Introduction

One of the most important application arcas of digital signal processing is the power spectral
dcnsity estimation (PSDE) of finite length data. Power spectral analysis is a signal processing
method that characterizes the autocorrclation and frequency information of a measured
signal [1].

The power spectrum represents information contained within the signal, which may be
important to modeling and analyzing the phenomena which generated the signal. As such,
this information has many useful purposes in enginecring and related fields [3].

Spectral analysis applications cover a wide range of problems; one of the most important
areas includes speech analysis. Speech analysis is performed for a varicty of reasons, includ-
ing phonetics research, understanding the speech production process, and speech modeling.
Thus, it serves many applications in speech recognition and speech coding. Some problems
of interest in speech analysis involve the construction of time series, spectral models and the
detection of changes in the speech spectrum [9, 15].

Spectrum estimation also plays an important role in signal detection and tracking. In
many applications, much interest lics in narrow-band signal detection which may be recorded
in very noisy environment. Therecfore, signal detection and frequency estimation become
non-trivial problems that require robust, high-resolution spectrum estimation techniques [2].

Other applications of spectrum estimation include harmonic analysis and prediction,

time-series extrapolation and interpolation, spectral smoothing, bandwidth compression,



beam-forming and direction finding (2, 9, 10].

Power spectrum estimation is statistically based and covers a variety of digital signal
processing concepts, some of which are briefly summarized in chapter 2.

A signal encountered in practice is usually a sampled version of the original signal, hence
its spectrum is most often a discrete function of frequency calculated via Discrete Fourier
Transform (DFT) or Fast Fourier Transform (FFT). Among other factors, the resolution
and accuracy of this discrete spectrum depends on the amount of data included in the DFT.
Because the amount of data is ultimately finite, it is impossible to calculate the exact spectral
representation of the signal and therefore it must be estimated. The finite length of a signal
can introduce statistical uncertainty if the signal has been truncated and is not known for
all time [3]. These uncertainties will be briefly introduced in the next chapter.

There are two methods available for the power spectral estimation of noisy signals: non-
parametric and parametric power spectrum estimation methods. The non-parametric ap-
proaches or classical methods make no assumption on the structure of the signal. The well
known periodogram is the fundamental method of this type which was first introduced by
Schuster in 1898 citeproakis. However, due to the limited ability of the periodogram to pro-
duce an accurate estimate of the power spectrum, a number of modifications to the method
have been proposed to improve its statistical properties. These methods were developed by
Bartlett (1948), Blackman-Tukey (1958) and Welch (1967) [1, 2, 5]. These methods are aver-
aging, modified versions of the periodogram as well as windowed autocorrelation estimates.
On the other hand, paramectric power spectral estimation uses finite number of parameters
to model the spectral density of signals. The main focus of this thesis research is on the
classical methods and some common existing approaches to parametric and nonparametric
PSDE.

The main motivation of this research is the essential need to compare the nonparametric
PSDE approaches not only by their asymptotic properties, but also by their properties based
on the observed finite length data.

This report briefly introduces some of the statistical digital signal processing concepts



3
which are important to the computation of power spectrum estimation. Qverview and limi-

tations of the existing nonparametric PSDE methods are provided and some of the common
parametric PSDE methods arc introduced. Chapter 3 presents a new approach to PSDE via
optimally windowing autocorrelation estimates of existing PSDE methods. The problem of
frequency resolution is considered in Chapter 4 and a new approach to signal denoising prior
to computation of PSDE is offered. Chapter 5 provides further insight into the application

areas of PSDE and suggests some future rescarch.



Chapter 2

Background

This chapter reviews general background information on spectrum analysis methods, focusing

particularly on those areas pertaining to non-parametric methods.

2.1 Random Processes

Generally, signals and their associated spectra are usually categorized as random signals,
due to the fact that either analytical models may not be available to determine the signal’s
structure or the underlying phenomena may be too complex. Most of the concepts and prac-
tice in spectrum analysis originated from a statistical analysis of random signals. Random

signals are best represented in the correlation domain and spectral domain.

A random process is an cnsemble collection of random signals. These random signals in
the time domain arc cxpressed in terms of statistical properties such as mean and variance
which can be used to describe the probability density function (PDF) for the underlying ran-
dom process. Because the entire set of random functions which could define a random signal
is not usually available as this would require analysis of its joint probability distribution, the
goal is to find the second order statistics of the random signal. Furthermore, these statis-

tical propertics cannot be computed exactly, but are rather estimated from finite length data.

In many applications, the statistical averages arc determined by using time averages from
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a single realization of the random process. If the entire signal is not available, then estimates

of the true values, such as the mean and variance, are made using the available portion of
the random signal. Corrclation and spectral domain analysis of random signals are likewise
based on the estimation of the true correlation function and spectrum of the random process.
Spectral estimates are realized either from the magnitude of Fourier transforms applied to
the finite length time signal or to the correlation function estimate.

Assuming that a stationary random sequence, z[n] of finite length, where —N < n < N
and N is the length of the signal, is gencrated from a random process X. Therefore, its

mean for all n is computed as

. 1 Y
mapy) = Blofnl] = Jim 55— 30 o) (2.1)

Since (2.1) is a precise representation of the mean value in the limit as N approaches infinity

then
1 N-1
n=0
may be regarded as a fairly accurate estimate of m, for sufficiently large N [11].
Similarly, for this stationary random process, where its statistical propertics do not vary
with time, the autocorrelation is the expected value of the product of the randofn signal

realization with a time-shifted version of itself, such that
Rez[n,n+ 1] = R [l] = E[X[n]X[n + ] (2.3)

and its power spectrum density estimation (PSDE) is simply the Fourier transform of the

autocorrelation

Poa(f) = /I=:° Raall)le™dl. (2.4)

However, for a majority of cases, sufficient information will not be available to build
a complete function of the random signals for the above analysis. If this is the case, the

known information about the function can be trcated as a finite discrete signal in order to
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estimate the autocorrelation. Representation of the discrete-time autocorrelation and PSD

function for finite length real signals introduces the first problem of nonparametric PSDE
which is explained further in Section 2.2. A few common properties used to characterize the

estimator are defined below which include bias, variance and consistency. These properties

are important to describe the periodogram in Section 2.2.

Assuming that autocorrelation function rN [l] estimate is generated from finite length

data z[—N], ..., z[N] where —N < n < N, the following properties are defined:

2.1.1 Bias

The difference between the mean or expected value E[FN] of an estimate 7Y and its true

value 7%, is called the bias.
By =1l — E[f}] (2.5)

Thus, if the mean of an estimate is equal to the true value, it is considered to be unbiased and
having a bias value equal to zero. At any particular value of frequency, bias error describes
how much the mean value of the spectral estimate differs from the true spectrum of the
signal because of finite resolution in the dimensions of magnitude and frequency. The bias
error is significantly influenced by truncation in the time domain, which results in reduced

resolution in frequency and reduced accuracy in magnitude [3].

2.1.2 Variance

The variance of an estimator effectively measures the width of the probability density and

is defined as
varzy, = B|(7Y, — B[#))?] (2.6)

A good estimator should have a small variance in addition to having a small bias suggesting

that the probability density function is concentrated about its mean value.



2.1.3 Consistency

If the bias error and variance both approach zcro as the limit approaches infinity, or the

number of observations become large, the estimator is said to be consistent. Thus,

Jim vargy, =0 (2.7)
and,
pm By, =0. (2.8)

This implies that the estimator converges in probability to the true value of the quantity

being estimated as N becomes infinite [4].

2.2 Nonparametric PSDE: The Periodogram and its
Variance Estimation

As mentioned carlier, non-parametric methods make no assumption on the structure of
the signal. These methods arc generally based on the mathematically equivalent paths
of estimating spectra by cither the indirect or the direct methods. The indirect method
computes the spectral estimate by applying the Fourier Transform (F.T.) to the estimate of
the autocorrelation function of the input signal, i.e. from the time domain signal, the method
obtains the correlation domain signal and then transforms it into the spectral domain. In the
direct method, the F.T. is applied to the time signal and the spectral estimate is computed
by multiplication of the Fourier transform with its own complex conjugate, i.e. from time
domain transform into the Fourier domain which is the spectral domain.

Going back to (2.3), since signals of finite duration are only available, the following biased

autocorrelation function and its corresponding power spectrum are:
1 N-l-1

rf;[l] =N_1 Zo z*[n]zn + 1] (2.9)
and,
I=N-1
PR(f)= > rhlle (2.10)

l=—N+1



When computing the statistical characteristics of the above, the following is observed:

The expected value E[rE[l]] = Rezl] which is the true autocorrelation derived in (2.3).

‘Therefore, r£.[l] is an unbiased estimate of Ra[l]. Also, since
. P’ _
1\}1_{1100 Var[rza:[l]] - 0) (2.11)

rf,':[l] is a consistent estimate of Ryz[l]. But for large [ the variance of the above time-average
autocorrelation function becomes very large, therefore a modified autocorrelation function

is computed as follows:

1 N-l-1
mll=5 X o lnlsln+1) (212)

and the corresponding power spectrum is the Fourier transform of the above such that

I=N-1

PE(f) = X rillle (2.13)
l==N+1
= J—tf-]]::z:f::rs[n]e‘jz"f"l2 (2.14)
= SIX(P | (215)
But it is noted that,
!
B = (- KRl (2.16)
however,
Jim B[r[l]] = Re(l] (2.17)

Therefore £, [l] is asymptotically unbiased and since
A}i_r‘noo var[rzz[l]] = 0, (2.18)

T2z|l] is a consistent estimate of Ry[l].



So, now a windowed autocorrelation function results
- m !
Relll=(1-5) R[] (2.19)

The mean of the estimated spectrum is

E[PL() = iﬁwllle’jz"’ (2.20)
e
= /_1/2 Pro()Wp(f — a)da (2.21)

which illustrates that the mean of the estimated spectrum is the convolution of the true

power density spectrum Py (f) with the Fourier transform Wp(f) of the Bartlett window.

However, we observe that the estimated spectrum is asymptotically unbiased, such that

lim_E] Z P e~ Y = ijme-f-’“f' (2.22)
—N+1 —o0
= Pu(f) (2.23)

But the variance of the estimate P2 (f) does not decay to zero as N — oo since,

hm var[ P ()] = PL(f) (2.24)

and therefore the periodogram is not a consistent cstimate of the true power density spec-
trum. In conclusion, the estimated autocorrelation r£ [I] is a consistent estimate of the true
autocorrelation function R,.[l]. However, its Fourier Transform PZ (f), the periodogram, is
not a consistent estimate of the true power density spectrum. We observed that PZ(f) is
an asymptotically unbiased estimate of P.z(f), but for a finite duration sequence, the mean
value of PP (f) contains a bias, which is evident as a distortion of the true power density
spectrum. Thus the estimated spectrum suffers from the smoothing effects and the leakage

embodied in the Bartlett window [1].



2.3 Nonparametric Methods for PSDE: Modiﬁcationls0
to the Periodogram

Since the periodogram is not a consistent estimate of the true power density spectrum, several

modifications to the periodogram have been proposed to improve its statistical properties

due to its limited ability to produce an accurate estimate of the power spectrum. There are

three well known methods available for the non-parametric approach for power spectrum

estimation. All of these estimation techniques described in the following subsections reduce
the variance of the periodogram’s spectral estimate at the expense of decreasing the frequency

resolution.

2.3.1 The Bartlett Method

The Bartlett method, also known as the averaging Periodogram, reduces the variance in
the periodogram by subdividing the N-point sequence into K non-overlapping segments of

length M. For each resulting K data segments z;[n] of length M, where
zifn] =zn+iM], ¢ =0,1,.,K-1, n=0,1,..,M 1 (2.25)
the periodogram is computed such that,

. 1 M-1
PR(f) = 37| X wilnle* " (2.26)
n=0

Finally, the Bartlett power spectrum estimate is obtained by averaging the periodograms

+ for the K segments

pB 1&g

The effect of reducing the length of the data from N to M = N/K results in a window
whose spectral width has been increased by a factor of K. Consequently, although variance

is reduced, the frequency resolution has been reduced by a factor of K [1].



2.3.2 The Welch Method H

Similar to the Bartlett method, the Welch method, also known as the averaging modified
periodograms, allows data segmentation with overlap. For an allowance of 50% overlap, then

2% K = L segments arc obtained. The data segments of length M are represented such that
:L',[n] = .'E[TL - 'I:D] 1= 0, 1, very M-1n= 0) 1’ veey L- 1, (2.28)

where, if D = M/2 for the 50% overlap between successive data segments, then L = 2K
segments are obtained. Furthermore, another modification made by Welch is to window the

data segments prior to computing the periodogram such that

~ 1 M _ ) .
BO(f) = —| ¥ winlwple™ ™ i =0,1,..,L-1, (2.29)
MU' =,
where U is a normalization factor for the power in the window function, selected as
1 M=l
= — w-Im|.
U=1 P [m] (2.30)
Finally, the Welch power spectrum estimate is the average of these modified periodograms,
1 L-1 _ ;
PL(f) =7 2 P2 (2.31)
=0

2.3.3 The Blackman-Tukey Method

In this method, the sample autocorrelation is windowed first, and the Fourier transform is
applied to yield the power spectrum estimate. The effect of windowing the autocorrelation
is to smooth the periodogram estimate, therefore decreasing the variance in the estimate at
the expense of reducing the resolution. The following computation shows the aforementioned
effects:

The Blackman-Tukey estimate is

PE() = A:% rellulle (2.52)

where the window function w|l] has length 2M — 1 and is zero for |[| > M. Again, the effect
of windowing the autocorrelation is to smooth the periodogram estimate, thus decrcasing

the variance in the estimate at the expense of reducing the resolution.



2.4 Parametric Methods for PSDE 12

Parametric methods, unlike non-parametric, require some a priori information on how data
is generated for extrapolation. This modeling approach eliminates the need for window func-
tions and therefore avoids the problem of leakage and provides better frequency resolution
than nonparametric methods. The two most common methods for parametric power spec-
trum estimation include the Yule-Walker method and Burg method for the Auto Regressive

(AR) on model parameters [1]. Further explanation on these methods are not included since

the problem in this rescarch only deals with nonparametric approach.

2.5 Review Conclusion

As introduced in the previous section, existing PSDE approaches are only concerned with
the periodbgrams inconsistent estimate of the power spectrum and hence offer different kinds
of averaging and modifications to reduce the variance of the estimate. However, the main
motivation of this work is the essential need for comparison of the nonparametric PSDE
approaches not only by their asymptotic properties such as consistency, but also by their
properties based on the observed finite length data. For example, it is known that the Welch
approach is preferred over the Periodogram approach for its asymptotic properties. However,
it is not known that for which data segmentation the performance using Welch method is
optimum.

Furthermore, the problem of frequency resolution in non-parametric PSDE for noisy
signals is considered. As seen previously, the finite length of data as well as the additive noise,
both contribute to a decrcased frequency resolution. The existing PSDE approaches offer
different forms of averaging and windowing on the available data only to improve statistical
properties of the estimates, however, at the expense of reducing frequency resolution. In these
approaches, the additive noise and the finiteness of data which are the causes of the original
loss of the frequency resolution are not treated separately. In chapter 4, it is illustrated that

treating both noise corruption as well as the observed finite length data, improves frequency



resolution of PSDE.

13



Chapter 3

A New PSDE Approach: Optimum
Windowing Autocorrelation Estimates

3.1 Introduction

From Chapter 2, it is observed that all existing nonparametric PSDE approaches arc eval-
uated based on their asymptotic properties such as variance and consistency. However, it
is also important to classify these methods by their properties based on the observed finite
length data [10]. For example, it is known that the Welch approach is preferred over the
periodogram approach for its asymptotic properties, i.c., variance of cstimated spectrum
reduces to zero as number of segments approaches infinity. However, it is not known for
which data segmentation the performance of Welch method reaches optimum performance.
This evokes the main motivation for the essential need of a new comparison criterion of the
nonparametric PSDE methods. In this chapter we suggest using the autocorrelation mean
square error (AMSE), which is the same as the PSD mean square error (PSD-MSE), as the
comparison criterion. A novel method for estimating the desired criterion is provided by
using the available observed data. The calculation approach follows the same fundamentals
that are used for signal denoising in [7, 22] and for optimum order selection in parametric
PSDE in [8, 21]. The introduction of this criterion also cnables us to show that the averag-
ing PSDE methods arc improved through windowing where the optimum window length is

obtained by minimizing the AMSE [14, 16].

14



3.2 Problem Statement 1o

Consider a wide-sense stationary (WSS) random process X which has the following structure

W h X

Figure 3.1: Random Process X

X=h+W (3.1)

where W is a unit variance, white Gaussian process N(0,1) and A is an LTI filter with real
coefficients ( *’ denotes the convolution operator).

The truc autocorrelation R, [l] and power density spectrum Pr.(f) of this random process

are
R [l] = i hin]h[n + 1]; (3.2)
P(f) = i Rzz[l]e—j%ﬂ (3.3)
l==00

The new PSDE problem is to find the best estimate of the autocorrelation and PSD of X
by using an available finite length sample of X of length N, z[0], z[1],-- -, z[N].

3.2.1 Existing Non-parametric PSDE Approaches

We alrcady know that the well known nonparametric approaches include periodogram, mod-
ificd periodogram, Bartlett, Welch, and Blackman-Tukey methods [1]. In these approaches
the PSD is the Fourier Transform of windowed or segmented versions of their autocorrela-

tion estimates. The autocorrelation estimate is obtained by summing the averages of the
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deterministic autocorrelation of windowed versions of the observed sequence. For example,

in periodogram the window co-efficients are all cqual to one, where no averaging is involved,
and thus the autocorrelation cstimate is the following biased estimate

1 N-l-1

] = v z*[njzln +1,0<I< N (3.4)
l=N—n1=0 i |
PL(f) = %:1 ro,[lJe~7 (35)
-N+

(f) is the PSD cstimate. On the other hand, in the Welch method the data is

where PE,

divided into overlapping scgments and the autocorrclation estimate is the average of the
autocorrelations of those windowed segments. Details for choosing the biased periodogram

estimate over the unbiased case are explained in Appendix A.

3.2.2 Evaluation of the Existing Methods

As mentioned earlier, the performance of the existing PSDE approaches is evaluated by the
asymptotic behavior of the method’s statistical propertics such as variance and consistency.

Important estimation errors in time and frequency domain are defined as

exll] = 75.[l] — Realll, (3.6)
eP:ta:(f) = Pa’:’:c(f) - P:c:v(f) (37)

It is observed that as the length of the data grows (i.e. as data length — o0), the bias
and variance of the estimation error approaches zero. As such, consistency is proven. For
example, the periodogram is asymptotically unbiased, i.e., limy—c E(ezz[!]) = 0. However,
with this approach its crror variance does not go to zero even as the length of data grows. On
the other hand, methods such as Welch or Blackman-Tukey arc not asymptotically unbiased.
However, the error variance of these approaches goes to zero as the data length grows. This

property of the latter approaches makes them much better PSDE method candidates than

the periodogram approach in applications.
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3.3 New PSDE Approach
The objective of the new PSDE approach is to estimate an optimum windowed version of
existing averaging PSD estimate such as Welch, and Bartlett methods. However, to find
the optimum window length, it is necessary to first introduce a new evaluation criterion for

comparison of the PSDE methods.

3.3.1 New Evaluation criterion

The asymptotic behavior of estimation errors in (3.6, 3.7) have been studied extensively.
However, no method is available to compare the methods for the available finite data non-
asymptotically. For example, the choice of optimum segmentation in Bartlett and Welch
methods is not available and we are not able to compare the performance of these methods
for a given segmentation. To answer these questions, evaluate and compare PSDE methods,
it is suggested to use a comparison criterion in the form of the mean-square of the estimation

error denoted by autocorrelation mean square crror (AMSE)
ElleL,I? = ElleP5[e]| | (3.8)
where
ek, = [eza[~L + 1], +, €zz[0], " -, €aa[L — 1]] (3.9)

and ePL is the MSE of the FFT of eX,. The cquality of AMSE and PSD-MSE domain
holds true due to Parseval’s Theorem. Note that the error, e, is generated by segmented

available data of length L where 0 < L < N with N being the total length of the data.

3.3.2 Optimum Windowing

In order to find the optimum window length L*, the goal is to find an estimate of the
introduced evaluation criterion in (3.8) for cach window length. We divide the observed
data to S segments of length L. The estimate of Ry[l] in (3.2) for the i** scgment is denoted
by 7L [1, ).
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The evaluation criterion’s estimate is provided with a new adaptive method based on the

observed finte data. That is,
B

L[] = { ern] if —m <n < m, (3.10)

e :
1 0 otherwise.

Now consider a window of length 2m — 1 which is multiplied by autocorrelation estimate of

observed data of length L. The goal is to find the optimum m for 1 < m < L. In this case,

L~

S

o | e

-m m
2m + 1
D=

v
L

Figure 3.2: Autocorrelation Estimation 7L, windowed by 2m + 1 of 77

the desired evaluation criterion, AMSE in (3.8), for each windowed autocorrelation estimate

AMSE[m] = E(||R%, — #™||?) = e[m] + A[m)] (3.11)

where 77, is the m-windowed autocorrelation estimate and

em] = 3 E(e.[n)), (3.12)
|n|=0
L-1

Alm] = Z ”Rrr[n]“2 (3.13)
|n|=m

We observe the following trends,
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Alm] £[m)

Figure 3.3: A[m] Figure 3.4: £[m]

Here we note that, as m grows, the €2, [n] dependent part of AMSE also grows, while A[m]
decreases. This behavior always leads to an optimum m for which the AMSE is minimized.
Note that this desired criterion is not available in application. However, using the observed

data, the available autocorrelation error (AAE):

AAE[m] = E(|

L-1
e — Taall®) = D2 E(lIFz:[n]I1%) (3.14)

|n|=m
is available. Here, a novel approach to estimate the desired criterion AMSE[m/| by using this

available information is presented. Using (3.6), for an unbiased estimator, (E[eZ [l]] = 0),

the AAE[m| in (3.14) is

AAE[m] = &'[m] + A[m] (3.15)
where
ém= Y E(e[n)). . (3.16)
[n|=m

In the following section, an estimate of the €2 dependant parts in (3.12) and (3.16) are
shown and can be provided based on the observed data. Therefore, an estimate of unavailable

A[m] can calculated from (3.15) and substituted in (3.11).

3.3.3 Estimation of AMSE

Using the segmented data, the estimate of expected value and variance of 7%, are

Pl = =

Ul

i'fﬁz[l,i], (3.17)



&7%:1[1] = —Z”Tm[l i — ru[l]llz

1_1

and an estimate of AAE in (3.14) is
AT 1 S N . ~m a2
AAE[m] = 2> lIfzl i) - 7z (Ll
i=1

The estimate of the €2, dependent parts of AMSE and AAE in (3.15,3.11) are

L-1
eiml= > 32.[n], e2lm Z 5%,.[n)
|n|=m |n|=0

Finally, the estimates of A[m] and AMSE[m)] are

Am] = AAE[m) - exlm),

AMSE[m] Alm] + €2[m]

20
(3.18)

(3.19)

(3.20)

(3.21)
(3.22)

The optimum window length is obtained by minimizing the estimate of the desired criterion

m’ = arg min AMBSE[m)

(3.23)

Optimizing the desired criterion not only provides the optimum window length, but can

also provide the optimum segmentation. This will be evident in the simulation result section.
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3.4 Simulation Results and Discussion

To demonstrate the the effectiveness of the new approach, two sets of data, each of length
10,000 are used. The data is generated with (3.1). The first data set, z;, is generated with
a one-pole filter ~; and the second data set, x5 is generated with FIR Hamming filter hs, of

length 40:

hiln] = 0.75 " Duy[n] (3.24)

ho[n] = Hamming filter of length 40 (3.25)
where u[n] is the unit step function.

3.4.1 Optimum Windowing for a Given Segmentation

Figure 3.5 shows both AMSE and AMSE using Bartlett Windowing PSDE approach. The
estimates are with 100 and 20 non-overlapping segments of xo with length 100 and 500

respectively.

100

w
‘g AMSE = 1776
< m*=17
S
]
[}
g . AMSE = 1684
7 \ =17, 20 segments
S \
§103_ i s S0t il 5 Yige wThs g - 4o G S 6% o b -
c AMSE=549.7 ssessenseesagmlesss W s asse s Feasalss
-% m* = 26 : v
§ \\ ...... ./,.'
g . RO 4 S B
< F

N it sal AMSE = 380.7

< m'=26

0 20 40 60 80 100

Figure 3.5: AMSE(dashed) and AMSE (solid) for 100 and 20 segments of available data z as a
function of m where 2m — 1 is window’s length
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As the figure shows, the AMSE estimate in (3.22) is a successful estimate of AMSE

in (3.11) which is the unknown desired criterion. More importantly, the optimum window
length obtained by AMGSE is the same as the optimum m for the true AMSE. Note that
while the optimum m for 20 segments is m* = 26, the Bartlett method with no windowing
is the same as Bartlett windowing when the window length is the segment’s length, i.e.,

mPB = L = 100. Figure 3.6 shows the results of Welch windowing.

10°
BRI oSN o A
102 AMSE = 387.7 _|
h < m" = 2000
{::::AMSE=74.56: é.""IZZIIIZIIIZIE
o' - m*=30 ’ o
w
(2]
=
<
10°
-1l o~ .
108 AMSE = 0.075
m*=13
1072k i
0 500

Figure 3.6: Optimum Hamming windowing of Welch method with 9 segments and 50% overlap.
Upper curve is the AMSE using z2 and lower curve using AMSE of z;.

In this case, the AMSE estimate is minimized for m* = 13 and m* = 30 for z; and
z, respectively. The figure shows the importance of windowing by providing the AMSE for
different values of m. For example, the Welch method with no extra windowing, is equivalent
to the choice of a window with m" = 2000 which results in a very high AMSE of 387.7 for
Zo. On the other hand, the minimum value of AMSE at m* = 30 is 74.56. A window of
length 2m* — 1 is applied to taper the r, before obtaining its PSD estimate. This provides a
better autocorrelation and PSD estimate than Welch method alone with its original window

length (2(2000) — 1).
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3.4.2 Optimum Windowing and Optimum Segmentation

Figure 3.7 illustrates AMSE using hamming windowing and Welch approach for segments

of “different length” with 50% overlap.

B —y"]
—— 1,100
o
- - 199,100

I 0 2 ¥ 4 » ©H N 0 0 0 0 2 % 40 SN €0 N 0 0 W
m m

Figure 3.7: Welch with 50% overlap for x; (left) and 2 (right) : displaying Segments: 9(solid),
19(dot-dashed), 39 (dotted) and 199(dashed)

As the figure shows, by minimizing the AMSE estimate, the optimum segmentation for x; is
19 with m* = 11 and the optimum segmentation for x, is 9 with m* = 30. Table 3.1 below

illustrates all the results with the optimum segmentation.

Methods (S,L) AMSE[L] | m* AMSE[m*]
Bartlott(z7) | (20, 500) 2754 | 12 0.2563
Welch(z,) | (19, 1250)  0.4879 | 11 _ 0.0698
Bartlett(zs) | (20, 500) 2832 | 26 549.7
Welch(zs) | (0, 2000)  387.7 | 30  74.56

Table 3.1: (S, L): Number of segments and length of segments. AMSE[L]: MSE of the Bartlett
or Welch approach alone. AMSE[m*]: MSE of the optimally windowed PSDE approach.

As it can be observed from the table, it is illustrated that optimum windowing method
outperform the Bartlett and Welch approaches alone. Figure 3.8 shows the autocorrelation

estimate of x5 with the optimum Bartlett windowing.
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Figure 3.8: Autocorrelation of random process X (solid line), Bartlett method with 20 segments
(dashed line) and Bartlett optimum windowing m* = 26.

From the above figure, it can be observed that only peak information around the centre is
retained by the window while the rest of the tail of the autocorrelation estimate is truncated.
Figure 3.9 shows the PSD estimate of x, with Bartlett windowing.

Note that the AMSEs in Table 3.1 are also equivalent PSD-MSE. Therefore, the MSE in
the PSD of results in Figure 3.9 is the same as what the table displays. Therefore, in both
Figure 3.8 and Figure 3.9, the AMSE and PSD-MSE of Bartlett method is 2832 where the
PSD-MSE of the optimally windowed Bartlett is only 549.7!

3.5 Review Conclusion

In this chapter, a new evaluation criterion is introduced for non-parametric PSDE methods,
other than the existing asymptotic criteria. The AMSE criterion is not only based on finite
observation, but can also evaluate the consistency of the method as the data grows in size.

The criterion guarantees minimizing the AMSE and PSD-MSE simultaneously. The new
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Figure 3.9: PSD of random process X, (dashed line), Bartlett and Bartlett optimum windowing
PSD estimates using .

PSDE approach based on this criterion provides not only the optimum windowing of the
autocorrelation estimate, but also the optimum data segmentation for the averaging PSDE
methods. For any averaging PSD approach such as the Welch or Bartlett methods, the
new method performs better since the averaging PSD method is a special case of windowing
with a maximum window length. The significance of the new PSDE approach is in the
consistency of its evaluation criterion, the AMSE, and the use of the available finite length

data to estimate the criterion.



Chapter 4

Frequency Resolution in PSDE
Approaches

4.1 Introduction

Spectrum estimation plays an important role in signal detection and tracking. For example,
sonar arrays are placed on an ocean floor to listen for narrow-band acoustic signals that are
generated by the rotating machinery or propellers of a ship. Once a narrow-band signal is
detected, the problem of interest is to estimate its center frequency in order to determine the
ships direction or velocity [2]. Hence, in many applications such as these, much interest lies
in narrow-band signal detection where the signal may have been recorded in very noisy envi-
ronment. Therefore, signal detection and frequency estimation become non-trivial problems
that require robust, high-resolution spectrum estimation techniques [2]. In this chapter, the
PSDE problem for noisy signals is considered and a different approach to this problem is
discussed [13].

Figure 4.1 illustrates the spectrum of an available noiseless sinusoid superimposed on the
synthesized noisy signal. The frequency resolution of closely spaced spectra in the figure is
affected by the noise and therefore imposes a need to overcome this disturbance.

From Chapter 2 it is known that in application, finite-length data is always dealt with
and this already constitutes in a decreased frequency resolution of any signal of this prop-

erty. Further windowing of the signal-data, as done by the existing modified versions of

26
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Figure 4.1: Noisy Y;(e/“°") and Noiseless Y] (e/“°™) PSD for y; [n]

the periodogram (Bartlett, Welch and Blackman-Tukey) for improved spectrum estimation,
consequently result in further deteriorated frequency resolution of the signal. The additive
noise embedded in noisy signals is not considered distinctly in the existing PSDE methods
which impacts frequency resolution of these noisy signals as well.

The classical methods introduced in Section 2.3 emphasize on obtaining a consistent
estimate of the power spectrum through some averaging or smoothing operations performed
directly on the periodogram or on the autocorrelation of the noisy data. Although the
variance of the modified periodogram estimates is decreased, the effects of these operations
are performed at the expense of reducing the frequency resolution. In section 4.2.1 these
effects on frequency resolution for the existing nonparametric methods will be explored in
greater detail.

Since frequency resolution of noisy signals is the main focus of this chapter, the problem
of PSDE becomes two-fold. First, it is necessary to denoise the signal from its interfering
background. Secondly, it is required to compute its power spectrum estimation, such that

frequency resolution is not decreased due to further windowing of data as is the case in
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existing methods. The proposed method chooses a new spectrum from the noisy spectrum

via the minimum noisecless description length (MNDL) and fixed thresholding, similar to [7].
In scction 4.3, a detailed calculation approach which follows the same fundamentals used for
signal denoising in [7] and for optimum order selection in [8] will be provided. The denoised
spectrum is then used to find the new PSDE of the signal via MNDL-Periodogram.

We further support our finding by illustrating frequency resolution reduction in classical
averaging or modified periodograms for estimating power spectrum density. It will be ob-
served that the novel approach for power spectrum estimation proposed maintains frequency

resolution close to the original spectrum, which is also demonstrated in the simulation result

section.

4.2 Problem Statement

In noisy signals, the additive noise, as well as the broadening of the spectrum being estimated
due to windowing, are particularly a problem when it is desired to resolve signals with closely

spaced frequency components.

Consider a noisy signal of the following form

]

jll = "yl

Figure 4.2: Noisy signal

yln] = gn] + win] (4.1)

for an available finite N length sample of Y, g[1], g[2],- -, §[N], where w[n] is white Gaussian

noise with variance o2, (N(0,1)). It should be noted that #(n) is the noiseless data.
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The noisy spectrum Y (f) is obtained via FFT such that

1 N —j2nfn |
¥ > ylnle (4.2)
n=0

where Y (f) is the Fourier Transform of noisy signal y[n].

Y(e) =

Here, the new PSDE problem is to first find the best denoised spectrum of Y (f) and to
use it to estimate PSD of the denoised signal such that frequency resolution is not affected

by any additional windowing or modifications.

4.2.1 Review of Existing PSDE Methods

This section briefly summarizes the existing modifications to the periodogram, pertaining
to the broblem of frequency resolution, which have been proposed to improve only the sta-
tistical properties of the spectrum estimate. The effects of these modifications on frequency
resolution of spectra are explained as follows: The Bartlett method, also known as aver-
aging periodogram, allows data to be subdivided into smaller segments prior to computing
the periodogram. The cffect of reducing the length of data into shorter segments results in
a window whose spectral width has been increased by a certain factor. Consequently, the
frequency resolution is reduced by the same factor. Similarly, the Welch method, known as
modified periodogram, allows data scgments to not only overlap but also applies a window
for variance reduction. Resolution in this case is not only window dependent, but also suffers
from the same effects as the Bartlett method due to data segmentation. In the Blackman-
Tukey method, the autocorrelation estimate is windowed first, prior to spectrum estimation
computation. The effect of windowing the autocorrelation is to smooth the periodogram
estimate and thus decreasing the variance in the estimate as a result. However, this is done
at the expense of reducing the resolution since a smaller number of estimates are used to

form the estimate of the power spectrum [1].

It is realized that the periodogram is only modified to improve its statistical properties

at the cost of deteriorating frequency resolution, and therefore propose the new method in
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the following section to overcome the problem of noise and windowing data via optimally

denoising the signal first to improve the spectrums frequency resolution.

4.3 A New PSDE Approach: MNDL-Periodogram
In this approach, a new PSD estimate is obtained in the following two steps:

4.3.1 Spectrum Denoising

The considered noisy signal is first optimally denoised prior to its PSD computation. Con-
sider the noisy signal y[n] in (4.1). To cvaluate the noisy spectrum, the FFT error for each

n-point is an important unavailable factor, that is:
e[e?won] = Y (e?o™) — Y (edwem) (4.3)

where Y (e7+°™) is the noiscless spectrum and w, = Ni_& After obtaining the N-point FFT of

the signal, the absolute value of this FFT coefficients are sorted and thus the sorted versions
are denoted Y*[n] and its associated denoised coefficients by ¥*[n].

The tail of the sorted spectrum is more affected by the noise than the FFT points with the
highest absolute values. Therefore, for the denoising step, the goal is to choose the optimum
number of these sorted noisy spectrum. For each valuem, 0 <m < N the chosen noiseless

FFT is

Yén] f0<n<m,

Ynln] = { 0 otherwise. (4.4)

that represents the choice of the first m estimates and sets the rest of the FFT values to

ZCro.

Now, the new error criterion becomes:
emY[n] = Y*[n] — Yn[n]. (4.5)

Note that 7 in this error criterion and n in (4.3) possibly represent two different frequencies.

The goal here is to obtain the optimum value of m which results in the minimum spectrum
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mean-square estimation error (SMSE). This criterion’s estimate is provided with a new

adaptive method based .on the observed noisy spectrum such that

SMSE[m] = E(||Y°[n] - Ya[n]|*) (4.6)
m-1
= Z{)E(Ileml’[nlllz) + Alm] (4.7)
where
N-1 _ '
Alm] = X IY°[]l (4.8)

n=m
SMSE is similar to the MNDL criterion ihtroduced in [7] where the objective is to minimize
the error or noise between noisy and noiscless data or spectrum in this case. Note that as
m grows, the e,Y[n] dependent part of SMSE grows, while A[m] decreases. This always
leads to an optimum m for which the SMSE is minimized. This desired criterion is not
available; however, from the observed data, an estimate of the following available spectrum
crror (ASE) is available:

ASE([m] = Z E(IY*[n] = Yaln]l[?). (4.9)

n=0
Here, we present a novel approach which uses the available spectrum error to provide an
estimate of the desired criterion SMSE[m].

Using (4.6) for an unbiased estimator (E[emY'[n]] = 0), then ASE[m] in (4.9) becomes

N-1
ASE[m] = 3 ElllenY ]| + Alm] (4.10)

n=m
It will now be shown that an estimate of the e,,Y[n]?> dependent parts in (4.8) and (4.10)
can be provided, based of the observed data. Therefore, an estimate of unavailable A[m)]

can be calculated from (4.8) and substituted back in (4.6).

The estimate of the e,,Y [n]? dependent parts of SMSE and ASE in (4.8, 4.10) are calculated

as

€1u[m] = Z(N In))o2, eum]= Z |n|o2 (4.11)

[n]=m |n|=0
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Furthermore, variance of the additive noise w[n] is also calculated and sorted in descend-

ing order, keeping large noise variance at the front and low variance towards the tail such
that:
13 )
o2, fn] = 5 S (lhwiln] = il 7 (412)
i=1
where S is the number of additive noise samples and @;[n] represents the mean of that it*

noise sample. Sorted estimates of the dependent parts in (4.11) now become

1 N m
eml = Y o5 €2lm] = D nlok, (4.13)
N [n|=m |n|=0
Finally, the estimates of A[m] and SMSE[m] are
Alm] = ASE[m]— e1z[m], (4.14)
SMSE[m] = Alm]+ ey[m] (4.15)

where z = u for unsorted estimates and x = s for the sorted estimates.

The optimum window length for obtaining an acceptable noiseless spectrum in this case is
m® = argmin SMSE[m)| (4.16)

Minimization of the estimated desired criterion above provides optimum denoising of noisy

signal for this case.

Unknown Noise Variance

So far, the estimation calculation is conside;red for a noisy signal of known variance. However,
in application, this information is not available. It is observed that the estimates of ASE
and A for different noise variance which is illustrated in Figure 4.3 below

It is observed that by increasing the noise variance over 1.5, this allows the estimate to

become negative, thereby setting a threshold for the unknown noise variance.



33

Available Spectrum Error (ASE)
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Figure 4.3: True ASE (solid) and ASE (dashed) for difference noise variances.

4.3.2 PSDE of Denoised Spectrum

The PSD estimate of the denoised spectrum is obtained via the conventional indirect peri-
odogram. That is, the denoised time-domain signal y™~P%[n] is obtained via m-point IFF'T
of the denoised spectrum, Y MNPL(eiwo) by choosing m* frequency components. Computa-

tion of the new MNDL-Periodogram (PMNPL(eive)) is as follows:

N-1
MNDL( jwe) _ MNDL[, 1,—jwo
P (e7e) = >y [mle (4.17)
m=—(N-1)
where 7MNPL{y) is the autocorrelation of denoised time-domain signal y* PN [n].

4.4 Simulation Results

For the results, two sets of noisy sinusoidal signals of length N = 1024 are generated with

(4.1) as follows:

yi[n] = bsin[0.47n] + wn] (4.18)

yo[n] = BHsin[0.4mn| + 5sin[0.417n] + w(n] (4.19)
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where w|n] is the added white Gaussian noise with unit variance (o2 = 1).

For both the y; [n] and y,[n] noisy signals above, the noisy spectrum, (Y;(e?“e™) and Y (e/“°™)),
and corresponding noiseless spectrum, (Y;(e/“e") and Y,(e/“°")) are obtained. Note that here
the noiseless spectrums, which are obtained by simply taking the spectrum of pure sinusoids,
is computed only as a comparison criterion to verify against the estimated noiseless spectrums
in the simulations. Figure 4.4 shows the power spectrum for y; [n] noisy signal Y;(e?**") and

its corresponding noiseless spectrum Y; (e7<°™).

10°*

Noisy Spectrum

~ — — Noiseless Spectrum |

Spectrum Density (SD)

0 200 400 600 800 1000

Figure 4.4: Noisy Y;(e/“") and Noiseless Y;(e/“™) PSD for y,[n]

4.4.1 Optimum Spectrum Denoising

In Figure 4.5the estimated SMSE criterion for y;[n] is shown. Also, it is observed that the
optimum minimum occurs at m* = 61 for sorted noise variance and m* = 437 for unsorted
noise, while the desired SMSE in (4.6) selects m* at 18.

Similarly, for y,[n] the optimum minimum occurs at m* = 105 for sorted noise variance

while the desired SMSE in 4.6 selects m* at 26. However, in Figure 4.6 and 4.7 it is noted that
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Figure 4.5: SMSE with optimum m* = 61 for sorted noise (solid line) and m* = 437 for unsorted
noise (dashed line).

the denoised power spectrum Y,MNPL(eiwon) with m* = 18 and Y,MNPL(eiwon) with m* = 61
are successful estimated denoised spectrums with respect to the pure Y;(e’*e™) noiseless
spectrum, which is not obtained in the existing spectral estimation methods. As will be
observed in following figures, the denoising of the spectrum, prior to spectral estimation,
greatly enhances the frequency resolution.

The thresholding in the above figures is compared with the well-known hard thresholding
approach, Donoho and Johnstone thresholding of o,,/2log N = 2373 [18, 19] and MDL
thresholding of 0,,\/Iog N = 1678 [20]. However, these thresholds are much worse than the
estimated threshold obtained by SMSE as they pick up most of the noise. Therefore, the

optimum m from (4.16) provides the best denoised spectrum.
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Figure 4.6: Denoised spectrum YMVPL with optimum m = 18.
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Figure 4.7: Denoised spectrum with optimum m = 61.
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4.4.2 PSDE comparison: MNDL-Periodogram vs. existing meth-
ods

After the denoised frequency spectrum, YMVPL(ei™) is obtained via the minimum m*
of SMSE [m], its power spectrum, PMNPE(e/“o") is computed by applying indirect peri-
odogram method. That is, the yMN DL (giwen) gpectrum is first converted into time-domain
signal. Then its autocorrelation is computed and Fourier Transform is found according to
(4.17). Figure 4.8 illustrates the newly obtained PMNDL (gjwer) against the noiseless PSD

Pgl(ejwon).

~ — Noiseless Spectrum | .. .
MNDL-Periodogram| i

Power Spectrum Density Estimation (PSDE)

0 200 400 600 800 1000

Figure 4.8: PSDE of y; via MNDL-Periodogram (P} VPL) against PSD of noiseless signal (P, ()

Comparison of the new MNDL-Periodogram against existing modified periodogram, al-
ready mentioned in Chapter 2 will be demonstrated.
It is observed that the Bartlett spectrum in Figure 4.9 is very noisy and relative to MNDL-
Periodogram’s spectrum, it is farther away from the desired P} (e7+™) noiseless power spec-
trum.
The Welch spectrum in Figure 4.10 is even further away from the desired PP (e7@o™) noiseless

power spectrum. However its noise level is better than the Bartlett spectrum and therefore
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Figure 4.9: PSDE of y; via Bartlett (PP) and MNDL-Periodogram (P{MNPE) against PSD of
noiseless signal (P{")
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Figure 4.10: PSDE of y; via Welch (P}") and MNDL-Periodogram (PMNPL) against PSD of
noiseless signal (P/")
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may provide better frequency resolution.
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Figure 4.11: PSDE of y; via Blackman-Tuckey (PPT) and MNDL-Periodogram (PMNDL) against
PSD of noiseless signal (P{")

It can clearly be seen that the power spectrum of Bartlett, Welch, and Blackman-Tukey
are definitely broadened/ corrupted in comparison to MNDL-Periodogram. This is due to
the existing noise and the windowing of the data or autocorrelation function of the noisy
signal as already mentioned in Section 2. However, the spectrum of MNDL-Periodogram has
no modified effects and therefore has similar frequency resolution with respect to noiseless
spectrum.

The improvement of frequency resolution over the existing methods is further demon-
strated by computing the aforementioned PSDE of y,, which has two closely spaced spectra
in the signal.

Figure 4.12 illustrates the PSDE of y, performed on y; in the previous figure. The two
closely spaced spectra are encircled and zoomed-in versions of the two peaks are shown in

figures below.Further examination of the two closely spaced spectra in the following zoomed
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Figure 4.12: PSDE of ys via MNDL-Periodogram (PN PL) against PSD of noiseless signal (P.zgz)

in figures display the Bartlett, Welch and Blackman-Tukey methods, each against MNDL-
Periodogram and available noiseless PSD.
In Figure 4.13 the distance between the peak and the dip is very well distinguished in the
MNDL-Periodogram spectrum where-as the same resolution is not obtained with the Bartlett
approach.
Furthermore, the Welch method in Figure 4.14 displays even worse results where the fre-
quency resolution is completely lost due to same data segmentation as in Bartlett and in
addition to a hamming windowing of the segments.
Although the Blackman-Tukey method in Figure 4.15 obtains closer resolution as MNDL-
Periodogram, however its dip between the two closely spaced spectra is not as distinct as
the latter.

We observe that the separation of the two spectra are best distinguished in MNDL-
Periodogram estimation with a longer dip and closer to the expected noiseless power spec-
trum than the existing PSDE shown by Bartlett, Welch, and Blackman-Tukey. Clearly this

novel approach can be used for better signal detection and spectrum estimation, especially
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Figure 4.13: Bartlett spectrum with zoomed in two closely spaced spectra
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Figure 4.14: Welch spectrum with zoomed in two closely spaced spectra
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~ — — Blackman-Tuckey
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Figure 4.15: Blackman-Tukey spectrum with zoomed in two closely spaced spectra

in noisy environments.

4.5 Review Conclusion

In this chapter, the imposed problem of all existing modifications on the periodogram that
have been proposed in order to improve only the statistical properties of the spectrum es-
timate at the cost of frequency resolution were acknowledged. The PSDE problem with
presence of additive noise was also addressed. In this case, windowing the available data in
the existing nonparametric methods clearly demonstrates the decreased resolution in PSD
estimates of noisy signals. This decrease, which is due to both the finiteness of the data
and the presence of the additive noise, is improved by the MNDL-Periodogram. The ap-
proach first denoises the data and then estimates the PSD. In the first step, minimizing the
estimated spectrum mean square error (SMSE) provides the best denoised spectrum in com-
parison to other thresholding criteria. Next, a simple periodogram approach is used for PSD

estimation. This novel approach maintains frequency resolution close to the original noiseless
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Figure 4.16: Comparison with all existing methods

spectrum as no additional windowing of signal is applied and, as a result, outperforms the

existing approaches.



Chapter 5

Conclusions

5.1 Summary

Analysis of the existing nonparametric PSDE approaches suggest that the comparison of per-
formance of these methods is only based on the asymptotic behavior of the obtained spectral
estimates. Furthermore, there is no defined procedure to obtain the optimum number of
segmentation for the averaging PSDE methods. Morcover, the existing spectrum estimation
for noisy signal do not account for the loss of frequency resolution of the estimate which is
caused by the averaging and windowing effects during the estimation process.

In this work we have provided a new approach to PSD estimation. A new cvaluation
criterion for non-parametric PSDE is estimated based on the available observed data. The
criterion guarantees minimizing the autocorrelation MSE and PSD-MSE simultancously.
The new PSDE approach based on this criterion not only provides the optimum windowing
of the autocorrelation estimate, but also the optimum segmentation for the averaging PSDE
methods. For any of the averaging PSD approaches such as the Welch or Bartlett methods,
the new method is observed to perform better since the existing averaging PSD methods are
a special casc of windowing with a maximum window length versus the optimum window
length obtained via AMSE criterion.

The problem of frequency resolution reduction in the existing PSDE approaches for noisy
signals is imposed by the modifications on the periodogram which have been proposed to

improve the statistical properties of the spectrum estimate. For example, windowing the
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available data as done in the existing nonparametric methods clearly demonstrates the de-

creased resolution in PSD estimates of noisy signals. This decrease is not only due to the
finiteness of the data but also because of the presence of additive noise. Therefore, the new
approach minimizes the loss via MNDL-Periodogram. This approach first denoises the noisy
data and then estimates the PSD. In the first step, the estimated spectrum mean square
error (SMSE) is minimized and provides the best denoised spectrum in comparison to other
thresholding criteria. Next, a simple periodogram approach is used for PSD estimation.
This novel approach maintains frequency resdlution close to the original noiseless spectrum
as no additional windowing of signal is applied and, as a result, outperforms the existing

approaches.

5.2 Future Research

For the existing averaging PSDE mecthods such as the Bartlett and Welch methods, the
number of data segmentation has been optimized in order to obtain good estimates of the
power spectrum. However, for the Blackman-Tukey method, which applies a window to its
autocorrelation estimate prior to obtaining the PSD estimate, a definite or optimum size of
that window is still not definite and can be the subject of future research. This optimum
window size will aid to ideally smooth the periodogram estimate and thus, decrecase the
variance of the estimate. Furthermore, although illustratively where the improvement in
frequency resolution of PSD estimates via the new approach MNDL-Periodogram has been
shown, there have been no closed-form expressions of the resolution provided which would

help better comprehend and compare the performance of the new and existing PSDE methods

with each other.



Appendix A

Appendix A

A.1 Biased and Unbiased Variance Estimation

The standard normal distribution is defined as having a mean of zcro and standard deviation
cqual to one. Over many trials, it is observed that the mean of a random normal deviates
indeed from the expected mean of zero. The standard deviations of the random normal also

deviates from the expected standard deviation of one.

However, as the sample size becomes very small, the standard deviations of the random
normal deviates are consistently less than one, cven though their means correctly approxi-
mated the expected mean of zero. The true variance, also known as the biased variance, is

defined as
ot = ;ll- > a? (A1)

A question naturally arises whether some index other than the true variance could ap-
proximate the expected value better. Since the expected standard deviation is consistently
underestimated only for the small values, a prime candidate for a new (unbiased) variance

index is defined as

1
n—1

> a? (A.2)

since division by a smaller value makes the value of the fraction larger. A minute decrement

2 _
o, =

of the n by the —1 seemed logical, since for large n, division by n or by n — 1 makes for a
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small, negligible increase of the value of the fraction. However, for the small n, the increase

of the value of a fraction with n decremented by 1, can be large.

By changing the definition of the variance in such a way that the sum of the deviation scores
is divided by n — 1, the standard deviations of the random normal deviates start to approx-
imate the expected values of one even for the small sample sizes. This new index is called

the unbiased variance [?].

For example, the distribution of variances of n samples from a normal distribution has a
" chi-square” distribution with n-1 degrees of freedom. Thus, in order to have a measure of
variance that converges precisely on o2 for a normal distribution, we have to-divide by n — 1

instead of n. In other words, we have to use the unbiased estimate given by equation A.2 [?]
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