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Abstract

In this thesis, we propose and implement a newagmbr for building an online self-adjusting
model for prediction of v-i characteristic of a nindriate time series obtained from an
operational electrical arc furnace. The proposethaumlogy is based on the Kalman filtering
method, and is used for prediction of the arc foenaoltage using the past history of the
current and voltage. The main advantage of theqs®g approach over similar earlier related
work is the ability to adapt during the operatidntiee furnace. In this study, three different
hybrid models have been developed based on thededeé<alman filtering technique and one
of the following methodologies: (i) a linear autegressive model; (i) fuzzy logic, (iii)
wavelet analysis. The results compare well wittséhof earlier work and clearly indicate that
the augmentation of the above mentioned approaghts the extended Kalman filter

improves the prediction accuracy.
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1. INTRODUCTION

1.1. Electrical Arc Furnace

An Electrical Arc Furnace (EAF) is a highly effiakemelting apparatus which uses electrical
arc to melt down the charged material. The EAF& generally used for production of steel
from steel scrapfl]. The first stage of process, known as chargiage, begins with loading
of the furnace with steel scraps. Then the sectagkgmelting stage) starts with lowering of
the graphite electrodes into the scraps. Duringghase an intermediate voltage is supplied to
the electrodes, and consequently the electrica sittke between electrodes and the scrap
which helps them to bore into the charge. To assesprocess the scraps are layered and the
heavy ones are placed at the bottom of the chi@igaVhen the electrodes are sufficiently
penetrated the high voltage is used to produce &ng. The heat and radiation of the arcs
melt the scrap and a pool of molten steel formthatbottom of the furnade]. The process
continues by three other stages, refining, de-ataggnd tapping, which are briefly explained

in the following.

The next stage is known as the refining stagehigdtage, oxygen is blown to the flat bath of
molten charge at the hearth of the furnace. Thiexndf oxygen helps the removal of the
unwanted impurities in the molten steel. The oxygeidizes the impurities (e.g., phosphorus,

sulfur, aluminum, silicon, manganese and carbon{l, @onsequently they leave the molten



steel either in form of escaping gases or floastag which forms on the top of the molten

steel.

On the next stage, the floating slag is removedhffarnace. This process should be done
when the bath temperature is still comparatively & some impurities will revert back to the
molten steel in higher temperatures. The procepsri®rmed by opening of the slag door and

tilting the furnace to allow the slag flow out.

Finally, at the last stage by adding bulk additadloys and some de-oxidizers, steel with
desired grade and temperature is achieved. Apthirg the steel is ready to be removed from
furnace for further processing. At the end the laje gets open and the furnace content is

poured into the ladle and transferred to downstreperations.

1.2. Problem with EAF

The main problem with EAFs is their chaotic- i characteristics. In the beginning of the
melting stage, the arcs are unstable and erraticehthe current and voltage characteristics
are extremely nonlinear and unsteady (see Fifjti[1][3]. As the temperature goes up and
the atmosphere of the furnaces heats up the cuarshtvoltage characteristics become to
some extent stable; however because of the nat@ledarical arc and smelting process these
characteristics remain chaotic and nonlin@j3]. Moreover high power consumption of the
EAF causes significant power quality (PQ) distudsmnn form of unwanted harmonics

injection and voltage fluctuations on the powemmek [3]. The voltage flickering problem



specially happens when the furnace rating (its pas@sumption) becomes comparable to
the Short Circuit Capacity of the netwofd]. These disturbances must be controlled
otherwise they can have very undesirable impacth@mpower network in a form of failure or
damage to other electrical power consumers on #teank [4]. To avoid this problem
regulatory bodies placed some regulations in efeaud these regulations must be 3¢t For
solving the aforementioned problem and satisfylayregulations some remedial approaches

must be taken.
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Figure 1-1: Measured Voltage and Current during penetratio [3]



A typical mitigating remedy is the installation af reactive power compensatf®]. The
compensator tries to dynamically compensate thetiveapower of the EAF, thus increasing
the PQ[3]. Due to the nonlinear and chaotic charactessof the EAF, it is extremely
difficult to develop mathematical model to succabgfrepresent them; however for PQ
studies and subsequent design of compensation edevits necessary to have such a

model[1][3].

1.3.  Objective

The objective of this thesis is to develop thre#edent models for predication of EAF
characteristics. The reason for development of sunfodel is that it has practical use in PQ
studies. These types of models will be used byttat engineers for development of reactive
power compensators to increase PQ of the poweronketvd Number of different techniques
have been proposed to characterize EAFs. They wzadly be categorized to data driven
methods (DDM) and explicit mathematical methodsm8aexample of these methods are
Artificial Neural Networks (ANN), rule based fuzzipgic [1], Adaptive Neuro Fuzzy
Interface System (ANFIS)L], Radial Basis Function Neural Networks (RBFNM), hybrid
neuro-wavelet approacf8] and explicit mathematical model$][6]. In this study the
Extended Kalman Filter (EKF) will be used for dey@hent of a model for prediction of
EAF's arc voltage. By using EKF method the devetbpeodel will have the capability to

adjust itself online, hence it can refine itselhtouously.



1.4. Context

As mentioned in previous section, the main objectw thesis is the development of three
different online and self-adjusting forecasting misd These models will be used for
prediction of the voltage value of an ElectricakcAfrance (EAF). These models will utilize
present value of the current and previous valueth®fvoltage to do their predictions. The

motivation behind this work can be expressed fram different angles.

Firstly, development of a forecasting model is @essity for design and development of
reactive power compensators. As it has been destii sectionl.2, EAFs are extremely
chaotic and nonlinear. These properties of EAFkaalise voltage fluctuations on power grid
which can be very harmful for other power consumdise job of the reactive power
compensator is to regulate these fluctuations dmdinate them as much as possible.

Therefore from industrial point of view developmehthese models are very useful.

Secondly, we know that the chaotic and nonlinedrab®ur of EAFs are not fixed. That
means the nonlinear and chaotic characteristidsAdis will change over different stages of
their operation[2][3]. Moreover, these characteristics are also und#uence of other

operating conditions of furnaces (e.g. wear of Qi@pelectrodes or consistency of the
charged materials, etc.). All of these situatioresspnt us with one important problem; that is
any dataset collected from an EAF is just repredamt of a specific working condition. That
means any model developed from this dataset coulyg loe useful for the corresponding
working condition, and probably would not do welbrfother working conditions.

Development of an online self-adjusting model chmiaates this problem. An online self-



adjusting model will perpetually correct and adagelf to the new conditions; therefore the

aforementioned problem will be solved effectively.

For development of such a model, Extended KalmberKEKF) technique has been selected.
Kalman filtering has very successful history inusttial applications (See sectidrb). EKF
offers several benefits, however the most importen&t for us in this application is the online

self-adjusting capability of the EKF.

The data set which has been used in this worklisated for a typical industrial electrical arc
furnace utilized in steel production. Since the sisdwe will develop in this study are self-
adjusting, the selection of a specific part of datais not very important. During their
operation, these models can adapt themselves to wevking conditions. For our
experiments, one part of dataset with 5000 santpdssbeen selected randomly for training

and test phases. The details of our experimentbednund in Chaptes.

1.5.  Preliminary introduction to Kalman Filter and its a pplications

In 1960, Dr. Rudolf Emil Kalman, a Hungarian-bormérican electrical engineer, published
his influential papef9] on the subject of linear filtering. By his pap®r. Kalman made a
significant contribution to the system estimatiamd ahe control theory. In his paper he
proposed a sequential solution to the time vanyfiltgring problem by eliminating the
stationary requirement of the Weiner filter. Intfacs pivotal idea was to apply the notion of

state variables to the Wiener Fil{g]. By adding the assumption of finite dimensidpahe



was able to derive Wiener Filter with much simpteathematical complexity as it become

accessible even to most undergraduate students.
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Figure 1-2: Typical application of Kalman Filter [8]

The Kalman Filter is one of the most influentias@bveries in signal processing and control
theory in twentieth century7]. Theoretically Kalman filter, also known as LQEinear
Quadratic Estimator), is a state estimator fordmeéynamic systems which are perturbed by
white noisé [8]. Kalman Filter provides optimal system estimatithrough a recursive
process by extracting the signal from its noiselm&m Filter has vast application in

engineering especially in the control of complexayic systems such as space crafts,

! In signal processing a random signal with consRawer Spectral Density (PSD) is known as whitseoi



aircrafts, ships or continuous manufacturing preesf/]. In many of these cases it is not
possible to measure all variables of the systemshmve might want to control; in these
situations the Kalman Filter helps us to infer nmgsinformation from indirect and noisy
measurements. Kalman Filter can also be used, thssistudy, to predict likely future state of
a dynamic system such as the trajectory of celdstidies, economical prices and indexes, or

even course of water during flood seafdn

Figurel-2 illustrates typical application of Kalman Filt& dynamic system is driven by a set
of inputs and/or control inputs. The external ottpuithe system is observed by measuring
devices which have some uncertainty by their natlitee job of the Kalman Filter is to
estimate the state of the system given the input$fals and the observed uncertain state. To
explain it in simple terms, the Kalman Filter trieseliminate uncertainty of the output of the
system as much as possible. Generally any systaahwhn be fitted into this scheme can be

modeled by Kalman Filter if some certain mathenahgicoperties are met.

From historical point of view, an early applicatiaof Kalman filter was in trajectory
estimation and navigation control systejmi§10]. During early 60s NASA was involved with
the Apollo project, and Ames Research Center of NA#&s wrestling with trajectory and
navigation problem. Since Ames engineers and relSees were already heavily involved
with the field and contemplated about a filteripppeoach to their problem, Dr. Kalman found
them to be very receptive to his work. From theyecbllaboration of Schmidt and Kalman,
the concept of linear perturbation of a non-linegstem applied to the Kalman Filter and
Extended Kalman Filter (EKF) was developed. Froerdhby influence of Schmidt Kalman

Filter became an important part of the Apollo guicka system[7]. The Kalman filter



effectively solved the data fusion problem betwearboard sensor data and radar data. Soon
other researchers and engineers followed the leddre Kalman Filter become an integral

part of almost any onboard trajectory estimatiod mavigation control systenig][10].

The Kalman Filter has variety of applications iffetient fields. One of the application of the
Kalman Filter in the computer vision is the “visuahcking” [11]. Since this particular
application is quite interesting and also very itnta, we will discuss it here briefly to convey

a preliminary understanding of the Kalman filtepahilities and utilizations.

New Pe sition

Current position

Searching :

area o

Figure 1-3: New position is searched within the searchingrea[11]

Visual tracking is the process of determining theation of a specific object over time in the
sequence of imagd41]. The object can be anything, a car in a vidaptured by a traffic

camera or a head in a video streaming by web-cdm.pfocess begins with the selection of



some specific features within the target objecy.(eorners, specific patterns, etc.). The
relative position of these features gives us thentation and the positon of the target. Now in
the next image the orientation and the positiotheftarget must be recalculated. Ideally the
tracking algorithm must be able to find the positiaf the target anywhere within the new
image. Nevertheless this approach is not pracsoate it is computationally expensive
especially in the cases of real-time applicatidfm. solving this problem the searching area

should be limited (see Figufie3).

New P ys1tion

Current position

Figure 1-4: Target outside of searching are§l1]

Clearly adaptation of the “searching area” approzai help us reduce the complexity of the
tracking problem, but on the other hand it will sauanother problem. If the speed of the

target is too high or the frame rate is too lovtha searching area is too small, the target can
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be well outside of the area (see Figard). For resolving the issue we have to prediet th
probable location of the target, and set the ceotethe searching area in that location.
Normally the previously obtained location is used duessing the new “would-be” location,
but since the tracking algorithms are not pefféw previous location itself is not accurate. In
other words what we are trying to do here is tredjotion of the new location based on an
inaccurate previous one, and that is the task wtiiehKalman Filter has been designed to
accomplish. The Kalman Filter is developed to hartdese types of uncertainties and give us
better predictions/estimations. Some other apptinat of Kalman Filter in the computer
vision are also worth mentioning. Among them we a@me de-nosind14], depth

measurement stabilizati¢h5], cluster trackingl6] and sensor and optical data fusjb].

Kalman Filter has also been used as a trainingighgo[12][13]. In a higher view training is
nothing more than an estimation of the free pararsetf a model by an estimator. Kalman
Filter can be utilized for this purpose. For instarthe Kalman Filter has been used for
training of the Neural Networkid 8]. The most well-known training algorithm of tineural
Networks is the back-propagation algorithm (BPAheTBPA uses first-order stochastic
gradient decent method to adjust the free parasefethe neural network; however in some
situations it can be very slow. Several attemptehseen made to address this problem such
as classical nonlinear programmif§], or adaptation of Hessian matfik9]. The Extended
Kalman Filter (EKF) as full second order gradiemiceint method has also been used for

speeding up the BPAL8]. By using EKF, more information is extractedrh the surface of

2 Some phenomena such as occlusions, changes imgjgind shadows can affect the appearance ofitigett
hence causing difficulty in tracking.
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the error function hence the training becomes naffieient and fastef12][19]. Another
example of utilization of the Kalman Filter in tn&g algorithms can be found in Fuzzy Logic
Interface (FIS)12]. In his work, Dan Simon used the Extended Kaint-ilter algorithm to

train a fuzzy system. His objective was to modekfuestimator for motor current windings.

Today the Kalman filter has numerous applicatiamdifferent scientific and engineering
fields. Some applications which have been discudsecst were trajectory estimation,
navigation, vehicle control (especially aircraft darspacecraft) and visual tracking.
Furthermore, we briefly discussed the applicatibthe Kalman Filter as a derivative based
method in the training algorithms. Here in this dstuwe will try to use it as a
training/adjusting tool for development of a moét&l prediction of future value of a typical

EAF time-series.

1.6. Contribution

The main contribution of this study is the devel@minof an online self-adjusting predictive
model. Models which have been previously develdpeather researchers do not have this
capacity. The working conditions of an EAF can vdepending on the operation stage, wear
of graphite electrodes, consistency of chargedpsonatals, charge level, etc. All of these
varying properties will cause difficulty in obtang a universal training set. Any training
dataset would eventually be representative of sohtbese conditions and cannot cover all

working conditions. Consequently the output of medé&ained by specific training set, is

12



unknown if the conditions differ for training sen this thesis we propose a self-adjusting

predictive model based on Kalman Filtering to nateythis problem.

1.7. Thesis overview

This thesis is organized in six chapters. In clrapiee, we talked about Electrical Arc
Furnaces, and we give a brief introduction aboetdperation of the furnace. We also provide

a preliminary introduction to Kalman Filtering aitsl applications in this chapter.

In the second chapter we will discuss about Kalfiieering and derivation of Kalman Filter.

If readers are familiar with the Kalman Filteririgey can skip this chapter.

In the third chapter we will discuss about the pras works on EAF modeling. The previous
models have been categorized into two broad grotipdite and black box models each with

corresponding subcategories.

In the fourth chapter, we will discuss about ourthmédology and how the Kalman Filtering
can be utilized for the problem in hand. In thimgter three models are proposed, and the

interworking of these models are depicted and exgth

In the fifth chapter, the experimental resultshef implemented models will be discussed with

graphs and tables.

Finally in the last chapter, chapter six, the casidn will be drawn. At the end some possible

avenues for future works of this kind will be dissad.
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2. KALMAN FILTER

2.1.

Estimation theory and Kalman Filter

The Kalman Filter belongs to the class of matherahtechniques best known as estimation

methods. The development of the mathematical casaefpthe estimation theory goes well

back to ancient time. Figurz1 shows the last 500 years of its development. E¥gedrich

Gauss (1777-1855) is the one who is generally mdzed for the discovery of the first

method for extracting an optimal estimation fromsgadata[7]. The inevitability of noise in

measured data was well-known since the time ofl€&alGalilei (1564-1642), but it was

Gauss who first formally proposed a mathematicathio to deal with them. Today this

method is commonly known as least square methaglABpendix A). In fact this method is a

special case of the Kalman Fil{e2].

1500 1600 1700 1800 1900 2000
I L AL B I e  m w a a
Cardano Iegendre
Galileo __ Gauss
Fermat Maxwell
Pascal Markov
Tuygcns Cholesky
Newton __Wiener
Bernoulli Kolmogorov
Bayes Kalman
Laplace Bierman
[EE TN N S AN SR AR AR JJLIJQLLLJIJJIJ‘JJJJ WY T e [ T W
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Figure 2-1: Historical progress of estimation theory[7]
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The development of the Kalman Filter is the logmadgression from least square method and
other underlying foundations (See Fig2e2). Kalman Filter works as an estimator for
stochastic dynamic systems. A Dynamic system isia Variant systems which its properties
can change over time (Sé@pendix B). Stochastic systems are another grdugystems in
which we have some random properties. These ranmoperties have impact on behaviour
of the system (Seg&ppendix C). Kalman Filter essentially provides athematical technique
to estimate stochastic dynamic systems througlolagpilistic approach (Basic background of

probability theory is provided iAppendix D).

Kalman
filtering

Least
mean
squares

Stochastic
systems

Least Probability Dynamic
squares theory systems

[ I 1 | 1

Figure 2-2: Mathematical foundation of the Kalman Filter [7]

The term “filter” in Kalman Filter name, refers tloe intended capacity of Kalman Filter for

elimination of the noise from real signal which s to estimate. Indeed in the case of linear

Kalman Filtering, this is done optimally in matheioal sense. Nevertheless the “filtering”

term does not do justice to the capability of Katnkalter, and in fact what the Kalman Filter
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does is well beyond that scope. Kalman Filter aflsudes the solution of an “inversion

problem” and we briefly explain what we mean byttha

Inverse or inversion problems are a class of madiieal problems in which the observed
data are used to extract some information abotmyaigal systenj21]. In almost all cases the
observed data does not give us a determined systece an objective function needs to be
defined to solve the problem. The objective funttie used for estimation of the system
parameters. The inverse problem has various apiplsain many branches of science and
engineering including, but not limited to machiearning, computer vision, natural language
processing statistics, statistical inference, ggsjais, medical imaging, remote sensing, ocean
acoustic tomography, non-destructive testing, asimoy and physic§21]. In the case of the
Kalman Filter, it essentially inverts and estimaties functional relationship of independent

variables of the system (system'’s state variabié$) observed/measured variables.

2.2.  Kalman filtering

The general form of stochastic dynamic systemsbeapresented as following (SAppendix

C)

Xpe1 = feGoo U, wy) k=0 (2.1)

Zy = hy (g, Uy, Vi) (2.2)
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The equation4.1) is known as the system equation. The outpuhisfequation provides us
with the state of the system in next time step. Dleer equation, 22), is known as
measurement equation. This equation gives us andacp value (measured value gf)
which depends on the same input vectors as thaieqya.1). The only difference here is that
the random vectow, is replace withv,, however both of these vector represent errohén t
system, while the first on represent error in th&tem equation, and the next one error in the

measurement equation.

In a high overview, what we are trying to do withlfan Filtering is that we use the system
equation to predict the value of the state vectpr,. Then in the next step, we

measure/observe the value zf,; from the system. This value will be used in Kalman
filtering algorithm to correct our predictiorn,(,,), and achieve better value closer to real
value of the state vector. Now that the concepghefKalman Filter is clear, we continue to

formulate the Kalman filtering problem.

Assuming thatf,(...) andhg(...) are linear, we can rewrite equatichl) and 2.2) in the

linear form respectively

Xk+1 — Akxk + Bkuk + GWk k=0 (23)

Vi = CrXy + vy (2.4)

where

x(k) € R™is the system state vector,
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Apxy + Bruy + Gwy is the linear form of system equatigf (...)),

u(k) € R™ is the deterministic input or control vector,

w(k) € R™ is the vector conveying the system error,

y(k) € R" is known as observation vector,

Crxy + vy Is the linear form of measurement function,

and finally, v(k) € R" is the vector which constitutes the error assediatith

measurement.

{w,} and{v,} are assumed to be sequence of white, zero mearssi@a noise hence the

expected value of, andv, are
E[wi] = E[v] =0 (2.5)

the joint covariance matrix of, andv, is considered to be known
Wy r .m_ [@ O ]
E[(0) wi )= [ ¥ R 2.6)
the initial statex, is Gaussian random vector with expected/mean \&lue

E[x] = %o (2.7)

and the covariance matrix,
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E[(xo — Xo)(xo — JzO)T] =X (2.8)

¥, Is the initial covariance matrix of the state weat, in the beginning of the algorithm (time
step0). This matrix must be set by try and error apphotdwough judgment of an expert,
therefore we assume it to be known. Now havingitipait/control sefuy, u4, ..., u,_1} and
the measurement sgt,, ..., y,} the goal is to obtain the best estimatex(t). By taking a
Bayesian approach the filter tries to calculate atimal value of the system’s state
recursively. The term optimal conveys that mininiiza of state estimation error. It is done
by propagating the conditional probability denditymction of the desired quantities (state
estimates), given the known information coming fromeasurement and input. Hence the
filter evaluates and propagates the following cbadal PDF for increasing values bf(The

concept of conditional probability has been exmdimAppendix D)

p(xkl)/II - Vi Uo, '"luk—l) (29)

For given time instance @&f consider that the sequence of previous inputstadequence of

previous measurements are denoted by

U(I)(_l = {uO, Uq, ...,uk_l} (210)

Y = (v Y2 0 i} (2.11)

then the entire filtering process can be descrif@{R7] as the following evolutionary

process,

* Given: x,
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]

System apply, (caused by the uncertainty of the system),
We applyu, (as input or control signals),
The system moves to statg

We make a measurement,

» Question: Which is the best estimate of? Answer: Is Obtained fronp (x, |Y, UY),

o

o

o

o

System applyv,,
We applyu;,
The system moves to statg

We make a measuremen,

« Question: Which is the best estimate of? Answer: Is Obtained fronp(x,|Y?Z, U}),

(@)

(@)

o

o

System applyw,,
We applyu,,
The system moves to statg

We make a measuremeny,

e Question: Which is the best estimate of,? Answer: Is Obtained from

p(xklylkr U(I)(—l y

o

(@)

(@)

System applwy,
We applyuy,
The system moves to statg, ;,

We make a measurement, ;,

For the system represented by equatiéi8)(and 2.4), the Kalman Filter will estimate the

state vector with minimum mean-square error. Indetén the system and measurement
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noises are white and Gaussian andahés Gaussian vector then the conditional probabilit
density function (x, |Y{, U¥~1) are Gaussian for arly and consequently we can express it

as the followind8]
p(x|YL, US™T) ~ WV (R (kK), P(k[k)) (2.12)

wherex(k|k) andP(k|k)3 represent first and second moment of the proltistribution

respectivel§y
2(klk) = E[x(k)|v{, UE] (2.13)
P(klk) = E[(x(k) — 2(k|k)) (x(k) — 2 (k)T |V, Us "] (2.14)

In fact with the Kalman Filter instead of propaggtithe entire conditional PDF we only

propagate the mean and the covariance matrix ofligtabution (Figure2-3). Therefore the

dynamic of the Kalman Filter is the general transfation from p(xk|Y1k, U(’)“l) to

p(xk+1|Y1k+1, U(I)()

p(xe |V, UE) — — = — 5 p(ogaa [YFHH, UE) (2.15)

% The meaning of the conditional terra|k” is that given timek we have estimate value #fandP at the timek
according to the formula. As we go ahead in thidise, we will see at some point we need to estntia¢ value
of x andP one time step ahead. We express it as followifig+ 1|k) andP (k + 1|k). That means that at given
time k we have the estimate valueioandP for timek + 1.

* The first and second moments are mean and coearimatrix of the conditional PDF respectively. THg|k)
is also known as error covariance matrix.
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where both probability distributions are Gaussiad the input and the measurement vectors

are available at timk andk + 1.

Original Filter Kalman Filter

p(xo) p(xo)

plxy Y ,UQ ) E(x, v} 00 )=z2Q1)1) P(1]1)

plx, Y2 U ) E(x, |Y2 U} )= 2212 P(2|2)

T b i L E(xp—q|VELUF ) = 2(k—1k—1) P(k—1]k—1)
p(x, |¥* ,UF? E(x, Yk ,U0FY)=2 |k ) Pk |k )
P(XrsaEFLUE ) E(xisa|ViHLUF ) = 2k +1k+1)  P(k+1]k+1)

Figure 2-3: Propagation of conditional PDF in KF[8]

The transition depicted in equatio.15) is a two-step transition rather than one .step

Therefore instead of jumping from the evaluationp‘ﬁick|Y1",U(§“1) to the evaluation of
p(xi1 VI, UE), we first evaluatep(xy,1|V¥, UY) and from there we will evaluate

p(xk+1|Y1k+1, U(IJ()
p(x |YFUEY) — — — =5 p(xpsq |YF L UE) (2.16)

p(xk+1|Y1k, U(’)c ) - P(xk+1|Y1k+1’ U(l)() (2.17)
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These two transitions2(16) and 2.17), are known as the prediction and the filgupdate

cycles respectively (Figura-4).

Yfﬂ = {Yf'}’kn}

Us ={Us"u}

Y]’,‘ = {yll"'ﬂyk }

UE™ = {ug, s ey}

p(oe|v%, UEY) p (41| Y, UG)

p(xk+1| YI{: Ul(;)

Prediction Y = O, o ¥} Update/filtering
cycle cycle

Us ={Us™" )

Figure 2-4: Two cycles of the Kalman Filter dynamicg8]

It should be noted that in the first cycle the eation of p(x,.,|Yf, U§) is done at time
instantk + 1, however the estimation af(k + 1) is “before” the observation of(k + 1).
That is why we call this cycle the “prediction ogtl In the next cycle we are still at time
instantk + 1, however the predicted value ofk + 1) is updated dfter” the observation of
y(k + 1) hence this cycle is called the “updatef/filteringle”. By looking at Figur&-5 one
can understand how the recursive application ofptieeliction and the update/filtering cycles

works.
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Figure 2-5: Consecutive cycles of KF dynamick8]

2.2.1. Kalman Filter derivation

Derivation of the Kalman Filter formulation is stggat forward. Our goal is to calculate
£(k + 1|k + 1) estimation. As explained(x, |Y{, U§™?) andp (x4 |YF, UE) can be given

as the following
p (x|, US™) ~ M (R (k) P(K|K)) (2.18)
p(xisa|YE US) ~ N (R + 11k, P(k + 1K) (2.19)

where



2(k|k) = E[x(k)|Y¥, UK1] (2.20)
2(k + 1|k) = E[x(k + 1)|Y¥, UK] (2.21)
and
P(klk) = E[(xx — 2(k|K) (x — 2(kIk))" VX, UK (2.22)
P(k + 11k) = E[(xgs1 — £(k + 11K)) (e — 2(k + 1]k))" [¥X, U] (2.23)

Assuming thatt(k|k) andP(k|k) are known at this stage, first we evalup(ek+1|Y1", U(’)‘).
For doing so,x(k + 1|k) and P(k + 1|k) should be calculated. Now by substitution of

equation 2.3) in @.21) and knowing that[w, |Y{, U] = 0 we have
E[xy 41|V, UE] = AGE [ |YE, UE] + BRE[w |V, UK] + GE[w, |V, UE]  (2.24)
2(k + 1|k) = A,z (k|k) + By, (2.25)
By defining the prediction error as
X(k+1lk) 2x(k+1) —x(k + 1k) (2.26)
and also the filtering error as

x(klk) 2 x(k) — 2(k|k) (2.27)
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and working with these equations we eventually have
P(k + 1lk) = A P(k|k)AL + G,Q,GT (2.28)
With the same method we can show that the evaluafip (y,.|Y, U¥) leads to
E[x1 3" (k + 11k)] = P(k + 1]k)Ciyq (2.29)
and finally using equatior2(29) the evaluation Qf(x,|Y**1, UY) yields
Rer1)k+1) = Xges1i) + Kaern Ve = Coer X110 (2.30)
Pes1ik+1) = Prrr1ik) — K+ 1) Cres1 P+ (2.31)

whereK (k + 1) is called “Kalman Gain” and defined as

-1
Kik+1) = P(k+1|k)C;?+1[Ck+1P(k+1|k)C;f+1 + R] (2.32)

2.2.2. Kalman Filter algorithm

The Kalman Filter algorithm is quite simple and dam followed from previous section
nevertheless we reiterate it here again to magkearer. Assuming that a linear time-varying

system is governed by the following two equations,

® The detailed steps can be found on various refese(e.g. [8])
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Xp41 = Arxp + Bruy + Gwy, k>0 (2.33)
Vi = Cpxy + v (2.34)
the algorithm goes as following,
Step O (Initial condition)

At step 0 we collect the necessary information frpravious step which are the posterior

estimate and error covariance matfixk|k) andP (k|k) respectively.

Step 1 (Prediction)
Xier1jk = AxXrpe + Brug (2.35)
Pei1jk = AxPricAk + GrQx Gy, (2.36)

Note that at the very first step we consider thatgrior estimate and error covariance matrix

are
2(0]-1) = %, (2.37)
P(0]-1) = %, (2.38)

hence we don’t need any information from none-agitiast stepX(_;—;) and P(_q|—1)). Xo

andX, are average and covariance matrices of statervecotime ste@ respectively, and

they are set by try and error approach throughrexpewledge.
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Step 2 (Filtering)

-1
Kiy1 = Pk+1|ksz+1[Ck+1Pk+1|ksz+1 + R] (2.39)
Rkr1ik+1 = Xigae + Kiew1 [Ver1 — Cor1Xis1k] (2.40)
Presajirr = [ — Ky 1 Crer11Praii (2.41)

where thel is identity matrix. For the next iteration of thégorithm we taket; .+, and

Py y1)k+1 @SXy . andPy . respectively and will repeat the process again.

2.3.  Extended Kalman filtering

In section2.2 we discussed about the Kalman Filter in theedrof linear dynamic systems
governed by linear stochastic difference equatidblusy the question is what we should do if
the system is not linear. Similar to a Tylor serigbat can be done here is the linearization of
the estimation around the current estimate usingabalerivative of nonlinear process and
measurement functions. We consider a nonlinear rdimaystem without external input as

below
Xer1 = fre(xp) + wy (2.42)
Vi = hie(xg) + vy (2.43)

where
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X €R"

Yk ER"

v, ERT

wy, ER™
fie(xp): R™ > R™
hy(x): R* > R

(2.44)

{w,} and{v,} are white Gaussian, independent and random precessneasurement noises

with zero means and covariance matrices
E[vivi] = Ry, E[wiwi] = Qy (2.45)
and finallyx, is the initial state of the system as a Gaussiadom vector
Xo ~ N (%o, Z0) (2.46)

Similar to linear Kalman Filtery, andX, are average and covariance matrices of statervecto
x at time step0 respectively, and they are set by try and err@ragch through expert

knowledge. As the derivation of the EKF is lengtigy do not discuss it here for further study

one can refer t{B], or for more generalized form {a8].

2.3.1. Extended Kalman Filter algorithm

The algorithm of the EKF is very similar to the lékgorithm,
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Step O (Initial condition)

At step 0 we collect the necessary information frpravious step which are the posterior
estimatex(k|k) and matrixP(k|k). It should be noted that in the EKKk|k) is no longer

representative of the error covariance.

Step 1 (Prediction)
J?k+1|k = fk(fkuc) (2.47)
Pes1jk = FiPepcFi + Qx (2.48)
whereF), is Jacobean matrix ¢ (.) atxy, and denoted by
F, = ka|a?k|k (2.49)

The Jacobian matrix is the matrix of first partarivatives of a vector-valued function. What
the Jacobian matrix does here is the linearizatibthe process function arourig},. The

Jacobean matrix is defined as the following,
For a vector-valued functidfi(x),
F(x):R" > R™ (2.50)

The Jacobian matrix is
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[0 9h]

dF  [0F oF] |9 ax”l
== a—xl E = a}m a}m (2.51)
Step 2 (Filtering)
For filtering step first we calculate the Kalmani®as defined below
Kisy1 = Pk+1|kH17<1+1[Hk+1Pk+1|kH1€+1 + Rk+1]_1 (2'52)
whereH, ., is Jacobean matrix df, (.) at®;., and denoted by
Hir1 = VRieralzypy (2.53)
the next step is the calculation of the posterstingate
Xier1jk+1 = Tr1je T Kir1[Ver1 = Rierr Rer 110 (2.54)
andPy 1 x+1 Matrix
Pk+1|k+1 =[I- Kk+1Hk+1]Pk+1|k (2.55)

wherel is the identity matrix.

For the next iteration of the algorithm we takg qjx+1 and Pgyq41 @S i @Nd Py

respectively and repeat the process again.
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3. ELECTRICAL ARC FURNACE MODELING

3.1. On Mathematical modeling of physical phenomena

Mathematical modeling of a system is descriptiorth&# system by mathematical language
and concepts. The origin of word “Modeling” comesni Latin world “modellus” describing

a typical human behaviour of copying with rea[@@]. The history of the modeling goes back
to the ancient civilizations of the Middle East a@Gdeek. Perhaps the first recognizable
models were “numbers” and development of abilityctmnt and record on primitive media
(e.g. bones or cave’s walls). From there humaraty ¢dome a long way in development of its

ability to make better understanding of the worydhiathematical modeling.

Models can be classified in many different categguepending on how they are analyzed.
Some examples of these categorizations are “limganonlinear”, “continuous vs. discrete”,
“static vs. dynamic”, “deterministic vs. stochasti€implicit vs. explicit”, “deductive vs.
inductive”, “white box vs. black box”, etc. Most ¢liese categorization schemes are self-

explanatory, however we discuss the last three lvezéy.

Explicit or implicit modeling is often referred taumerical solution schemes that are
implemented in modeling. In the explicit methods #tate of a system at a later timg, ;)

is calculated from the state of the system at thieeat time £, ) through an explicit equation,
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x(k + Ak) = F(x(k)) (3.2)

while in implicit method the solution is obtainewiin an equation involving both current and

later state of the system,
G(x(k + Ak),x(k)) =0 (3.2)

The main difference of the explicit and implicit theds is the stability of the solution with
regard to the size of the time stéyk). The implicit method tends to be unstable ondage
steps while the implicit method provides stablaugsoh using an iterative numerical method.

Selection between these two approaches is bastt grature of the problem on hai3d].

A deductive model is developed based on the thednje an inductive model arises from
empirical information and generalization from thdmpractice no model is purely deductive
or inductive but resides somewhere in between. &lbesns are mostly used for the models

developed for the human science applications gegology, management and, e{8}].

Finally the last pair reflects a generalized categdion of the mathematical modeling which

arises from the way the model is seen. A black isex model that the user or the developer
does not have any knowledge of its internal workitigerefore it is merely seen as an input to
output model. Here the most immediate questior thd internal working of the model is

completely unknown how the model is developedrat filace. The answer to this question is
the architecture of the model is partly or compiletanown; however the parameters of the
model are unknown initially and will be learneddhgh a learning process. Considering a

model with numerous parameters it would appardrglyery difficult to infer any meaningful
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relation between parameters and the outputs theréfi@ internal working of the model is
assumed to be unknown. On the other hand in theevelox modeling a priori information on
the system is available, and this knowledge is diseéstablishment of relationship between
inputs and outputs. The developed models are tirbesed on these relationships therefore
models are transparent, and their internal workirggfully understood. It is quite clear that in
the real world applications no model is absolutelhyjte or black, thus the practical models are

somewhere between the two ends of the spectrum.

3.2.  Electrical Arc Furnace Modeling

In this section we use the general “white box” &hthck box” categories to classify the
previous works on the EAF modeling. Neverthelesshobuld be mentioned again that no
model is fully white or black, but at least by thistegorization one can see how the

researchers try to approach the problem.

3.2.1. White box models of EAFs

A Large number of models can be considered as Wbitemodels. In fact there are numerous
papers in which the authors try to adapt an expiiemework for modeling of the dynamic
behaviour of the EAFs. There are a variety of tepes which can be implemented as an
explicit framework for EAF modeling. Most of theseodels take some oversimplifying

assumptions. Nevertheless some of these methodswaegved in this section.
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Differential equations based on Kirchoff's Curentdw

In their work[32], Benoit Boulet et al. pursue an analytical @agh to model the dynamic of
EAFs. For the purpose of an efficient power cotitigla good dynamic model must be
developed. As first step, Benoit Boulet et al.ip#itl the Kirchoff's Curent Law (KCL) to
relate currents and voltages. With some assumptian$e resistance of circuit components,
they developed the current equations of the eldegoUsing these equations, they developed
an open-loop system by Simulink/ MATLAB softwareitwestigate different cases of several
electrode positions. Finally by adding a feedbaokpl and models of other dynamic
components (electrode’s hydraulic actuators, valeés) a closed-loop dynamic system for

controlling the power is developed by them.

Chaos theory and differential equations

Chaos theory is the study of the behavior of dyrcaihsystems that exhibit high sensitivity to
initial conditions[33]. Chaos theory has numerous applications ifetft scientific fields
such as fluids mechanics, economics, biology, aoohputer science. Chaos theory in

conjugation with different methods can provide oeeble framework for EAF modeling.

In [34], Hariyanto et al. investigate an analyticapagach to characterize voltage and current
of EAFs. At first step the dynamic component of EAFobtained by solving the energy
equation of EAF. On the next step using “Chua’sd@ieeCircuit” the chaotic behaviour of the

EAF is modeled. Using Simulink/MATLAB software thiesearchers combine the dynamic
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and the chaotic components, and obtain a pre-phaseel. Finally at the last step the pre-
phased model is connected to each phase of thel&#&Fmodel, and then the developed
model is used to simulate EAF for the refining staghe results of study show that the
generated voltage and current successfully reseratileal EAF especially in harmonic

content.

Ozgun and Abur's work [35] is predecessor of thevpus work [34]. They also use chaos
theory for EAF modeling. From historical point aew, we have two general approaches to
the problem of arc furnace modeling: stochastic emabtic. The main advantage of chaotic
approach is that models developed by this methodl empture changes in thé—v
characteristics as the operating conditions chalmgeontrast, stochastic approaches or some
other empirical relations are not normally ablel¢othat. [35] Ozgun et al. start with modeling
of EAF’s dynamic behaviour based on Collantes-Belland T. Gomez work [36] using
energy equations. The second step is similar tayhlaio et al. work [34] as the low-
frequency chaotic signal generated by the simuiatdb Chua’s circuit is combined with
dynamic model obtained from previous step. The ndlififerences of these two studies are
that Hariyanto et al. work [34] is extended toethmphased EAF while Ozgun and Abur ‘s
work is limited to one phase. The simulation reswdhow that the voltage and current

resemble actual EAF.
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Probability theory

Another well-known approach for dynamic modelingabfaotic and non-linear systems is
probabilistic approach. Within chaos and nonlingathere is hidden order which can be
investigated with probabilistic methods. EAF modglican also be tackled with this view

point.

Using probability techniques, Petersen ef3f] provide two models to study the flickering
phenomena of EAFs. In the first model, “Arc-Voltalyeodel”, the fluctuation of the arc
voltage is assumed to be Gaussian approximateby pfimary source of this fluctuation is the
variation of the arc length caused by arc movermaedtsudden collapse of metal scarps. The
inherent response-time limitation of the electratisplacement control system is another
contributor. By using mean voltage and variancedfare arc voltage the authors propose a
model to simulate the arc voltage. In the secondehdArc-resistance model”, the authors
try to model the arc resistance by statistical progs as well. Although true distribution of
the furnace resistance is more concentrated arowgah value than what is expected for
normal distribution, an assumption of Gaussiarrithstion provides an acceptable model. In
their conclusions, authors acknowledge that thanghkels provide accurate results, they are
only simulated for one case study. For that reasiom,models should be investigated on

several other furnace installations to establisbrdidence level of developed models.
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Hidden Markov theory

Hidden Markov Models (HMMs) are another statistisaheme to model stochastic dynamic
system. They originally have been developed foespeaecognition, and became extremely

popular[38].

In their work [39] Esfahani and Vahidi use hidden Markov modeM#l) to approach EAF
problem. At first authors analyze the propertieshaf arc. Based on observed characteristics
they argue that current properties of the arc deémanits current and previous states. Hence,
by sampling from the voltage and the current ohetual arc, the hidden Markov theory can
be adopted. For this purpose the are i characteristic is divided into four regions. Then,
different operating points are created in the a&aia regions. Using the actual measured
current and voltage of an electric arc in severatkimg cycles, the statistical probability of
the operating point is obtained under hidden Martwory. According the authors the main
advantages of this model are its non-approximaéiod accuracy in modeling which stems
from the fact that the model is developed by expental samples and applied HMM rather
than specific mathematical equations. For thataealse developed model cannot completely

be considered as white model.

At the end it should be mentioned that that whid& odels do not generally offer accurate
dynamic models for EAFs. Even for some models #@iedom states of the arc is non-
existence. That is primarily due to the fact thaisinof these models use a specific set of

mathematical equations to characterize the behadicelectric arc. Hence, the exhibited
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behaviour of the models is limited to that specifiamework, and consequently the true

randomness of the electric arc is not correctly ehedl

3.2.2. Black box models of EAFs

Black box modeling is useful when “a priori” knowlige is not available or the underlying
process is so complex that it cannot be describ&dany conventional mathematical model
accurately. In these cases the primary goal isdithvailable data to a model regardless of its
detailed mathematical structure. In general theehasuld have some free parameters that
must be adjusted by several training cycles. Thlsese is very much sensible for EAF
modelling as EAFs are chaotic and highly nonlinegrnature. Many frameworks can be
adopted to model an EAF in this context. Here wé# discuss some with one or two

examples.

Fuzzy Interface System approach

Fuzzy Interface System (FIS) is a reasoning systémeh is used for decision making and

mathematical modeling. Compared to the classiagiclthis system accommodates partial
true/false values, and for that reason these sgséemquite versatile. The main advantage of
FIS over other modeling systems is its capabihtytilization of qualitative “if-then” rules to

express nonlinear input/output relationships.
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Sadeghian and Lavers use FIS approach to modeABnirEtheir work[40]. Within this study
two models have been developed. The first modes tto solve the problem with classical
fuzzy logic method, and the second model uses a#afitizzy logic method. Here we will
discuss the first approach and the other will lseused later. In general for classical fuzzy
logic, rule development is a try and error procd$se existence of expert knowledge is also
very helpful as it narrows the search space; Nbetss with large number of inputs and
chaotic/nonlinear behaviour of EAF the try and eapproach, even with expert knowledge,
would not be feasible. To solve this problem thdhars use a straightforward fuzzy

partitioning method.

At first, the input/output space is identified. Thie input and output spaces are divided to
arbitrary number of clusters with Gaussian membprélinctions. At the next step, each
training data point is used to associate the impugters to the output clusters in fuzzy rule
format. In general with this method, a large numbkdata points tend to produce a large
number of rules, however a trimming algorithm cam utilized to trim and resolve the
redundant/conflicting rules. With the larger traigiset, this technique does not necessarily

provide better result yet the training would bedasince it is done in one pass.

Adaptive Neuro Fuzzy approach

Adaptive neuro-fuzzy networks are hybrid of claakitizzy rule based systems and neural
networks. They encode the reasoning style of ftgmgems into a neural network structure;

hence the models developed by this method canabeett by proper training algorithm (e.g.
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BP algorithm) based on training/verification sétstheir paper$l][40] Sadeghian and Lavers
use adaptive neuro-fuzzy interface system (ANFtBS)nibdel an EAF. The ANFIS adopts
Gaussian membership functions for the input setsat functions for the rule outputs, and

Sugeno's inference for aggregation of the ruleutstp

At first step, authors use subtractive clusterilggpathm to extract fuzzy rules from training
data set. The main advantages of clustering algost are fuzzy rule reduction and
association of good initial value to the model pagters. Then a hybrid algorithm consisting
of the gradient descent and the least-squaresastisideployed to tune up these parameters.
Each iteration of this algorithm has a forward pasd a backward pass. In the forward pass,
while the antecedent parameters are fixed, usirg lihear least-square estimate the
consequent parameters are optimized. In the backpass, the consequent parameters are
considered to be fixed, and the output error iklggopagated through the network. Then by

using BP concept, the antecedent parameters wilpdated.

The results of Sadeghian and Lavers’ study show ANEIS provides accurate result with
fast training. Their ANFIS moddll] offers a better model than their classical futagic

model[40].

Neural network approach

The idea of artificial neural networks (ANNSs) issked on simplified biological neural

networks. The success of biological neural netwerg. animal brains) in nature has been an
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inspiring force for researchers to advance thisl fieroughout decades of research. ANNs are
utilized when the problem on hand cannot be easilgterialized with conventional
mathematical models. As all other statistical/ad@pimodels ANNs have to go through an
training process which can be supervised or unsigezt depending on the type of network
and the methodology used for training. With thissbmtroduction it is quite natural to see
ANNs as a good candidate for EAF modeling since &Adfe chaotic and untamed
mathematically. Several studies are conducted A Eodeling with different variations of

ANNS.

In their work [41], Chang and Chen propose an ANN model for EAHse classical

multilayered perceptrons, also known as backprapagaretworks (BPNs), are the most
popular artificial networks. They are very effeetivn handling nonlinear problems, and
providing results with high prediction. Normally ebe networks are trained with the
backpropagation algorithm; however this algorithes two undesirable drawbacks namely
slow convergence and convergence to local minim®ferror surface instead of the global
minimum[42]. The radial basis function neural networks FRBN) are an alternative to BPNs
with simpler structure. As RBFNNSs are very suitatde function learning and modeling the
authors use them to model EAFs. Generally BPN aBENRN both assume that there is a
stationary relationship between input and outpuinggquently they cannot provide good
model for the systems which their state are changimaotically[40] (such as EAFs). To

solve this problem authors combine RBFNN with Igokable (LUT) method. In fact LUT

provides a framework for the network to memorize ttiynamic characteristic of EAF
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waveform. Simulation shows that their method cacuestely model thé — v characteristic

for assessment of waveform distortions, flickers] eeactive power consumptions.

Some other techniques can also be combined with $ANAdr instance Mishrat al. [43]use
the combination of S-transforms and probabilisecnal network (PNN) to do power quality
disturbances characterization and detectio44h Santoso et al. propose the combination of
Wavelet analysis and ANN for disturbance detectinrgeneral these hybridizations are done
by feature extraction. In these models insteadeeding raw input vectors to the neural
networks the input vectors are pre-processed by anthese methods, and some feature
vectors will be extracted. On the next step, featgctors alone or combined with original

inputs are feed to the networks.
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4. PROPOSED METHODOLOGY

4.1. Reasons for Using Kalman Filter

Kalman Filter is a well-known tool for estimatiomda prediction of dynamic systems since
1960s. There are substantial studies regarding wm#&nh Filter and time series
analysis[45][47][46][47][48]. Kalman filter provides an online algorithmathconstantly
updates itself to produce new estimate based ocesgptate modelgi6] . It can effectively
handle the missing data which is quite common al epplications as we[l#6]. Extended
Kalman Filter, as a full second order gradient deceethod, has faster convergence rate than
the first order gradient decent algorithm sinceatmally converges with fewer iterations. All

of these properties make Kalman Filter to be a gmoatlidate for EAF modeling.

4.2. Data acquisition

In this study, the data that we are using for miodeis collected from a typical EAF. The
dataset has two variables, current and voltaghegtectrical arc; therefore it is considered as
a multivariate time-series. The sampling rate ahdecquisition (the Nyquist frequency) is
1920 Hz. No information is available about the sdurcers or the techniques involved in data
collection hence the uncertainty level is unknoiNavertheless it should be mentioned that as
the data is not synthetic, with no doubt we do heamae level of uncertainty in our data. The

source of uncertainty for these types of measuré&nare normally bonded to transducers
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properties (accuracy, response time, etc.) as aglmeasurement techniques (e.g. direct

measurement, indirect measurement, etc.). In thdy/sve treat the dataset as it is.

4.3. Preprocessing of data

The data set might or might not be preprocessegpbrBtessing depends on the structure of
the model and modeling technique. After selectibrihe model and its structure, the free
parameter of the model will be adjusted and updbhteBxtended Kalman Filter (EKF). Here
we will discuss three models. Pre-preprocessinth@fdata (if needed) will be discussed for

each model individually in sectigh5.

4.4.  Training/adjustment of the model by Kalman filter

The objective of the model is to predict the présatue of the arc voltage based on previous
values of the current and the voltage. We alsoidensghat the present value of the current,
corresponding to the unknown arc voltage, is knollrat means at timetheV; is unknown,
while the known variables ar&_;,V;_,,... and I, I;_4,1;_5,... . This can be seen in
Figure 4-1. In this figure known data are color-coded ineb The model’s job is mapping
from known data to the unknown valué ), This mapping can be described as a following

functionh(.),
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h: R"> R

V; = h(Input vector, Parameter vector)

4.1)

The input vector is the information obtained fromepous values of the voltage and the

current (which also includes the present valuehefdurrent as mentioned earlier). The input

vector can simply be raw values of tHeand!, or depending on the model’s structure some

extracted features can also be included. Nevegbaldl extracted features are also derived

from previous values o¥/ and I. The parameter vector is the collection of adpgsti

parameters of the model. These parameters areaghfgt Kalman filter in each time step

hence the model is trained online.

I O O O
1111 =)=

Figure 4-1: The objective of the model is to predicV,

Now by representing the parameter vector (statdove@nd input vector a¥X; and U,

respectively the following is the general form loé tmodel,

Ve = h(U, X¢)
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In his work[12], Dan Simon used the Extended Kalman Filteloalgm to train a fuzzy
system. His objective was to model fuzzy estim&omotor current windings. In this work
we use the same concept with some adjustments domagodate our problem. We will

describe the mathematical formulation of our metimoithe following.

Equation §4.2) provides an estimate for present value ofvibleage. By assuming that this
equation provides the answer with some error, #mred value d;) can be written as the

following,

dt = h(Ut, Xt) + vt (4.3)

In above equation the desired value is actuallytéinget value, and the model must converge
to this value in each step. Now by assuming thie stactor is mapped bf(.) with Gaussian

errorw, we would have,

Xe = f(Xem1) + Wiq (4.4)

In fact equation4.4) is the system equation ard3) is the measurement equation in Kalman

filter terminology. To summarize, different ternmsthese two equations are,

X; € R" is the system state vectdf; (= [x,,, Xn_1, Xn—2, -, X1]),

f(X.) is the system equation; mapping from present s&ttor to the next one.

U; € R™ is the input vector,

w; € R" is the vector conveying the system error,
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d; is the target value of the voltage,

h(U,, X;) is model mapping and provides the prediction efuibltage valuelf,),

and finallyv, is the error related to the model.

Sincef (X;) is unknown we simply consider it as identity maygptherefore our equations are

reduced to,

Xt == Xt—l + Wt—l (4.5)

dt = h(Ut, Xt) + vt (4.6)

Assuming that the initial state of modelXg and sequences,} and{w,} are Gaussian and

independent from each other with,

E[X,] = X, (4.7)

E[(Xo— X)X, — X)T] = P, (4.8)
E[w,] = E[v,] = 0 (4.9)
5[() o )= [T g (.10

where, the),; andR; are joint covariance matrix of, andv; respectively.

With aforementioned assumptions and assuming lieatdnlinearities of4(.6) are sufficiently

smooth so that the EKF algorithm can be appliedteBgrring to the sectioR.3.1 we have,
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Step 1 (Prediction)
Xt|t—1 = )?t—1|t—1 (4.11)
Pjt—1 = FPe_q)e—1FT + Q; (4.12)

Since we assumed that tii¢.) is identify function, its Jacobean matrix is eqt@lidentity

matrix,
F=Vflg, yp =1 (4.13)
hence the equatiod (12) is reduced to,

Pt|t—1 = Pt—1|t—1 + Q¢-1 (4.14)

Step 2 (Filtering)
First we calculate the Kalman Gain,
Ke = Pyes HY [HePye—s HT + R, (4.15)
whereH; is Jacobean matrix &f(.) around)?m_1 and denoted by,
He =Vh|g,,_, (4.16)

The next step is the calculation of the postersbineate,
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Xt|t = Xt|t—1 + K¢ [d: — ht()?ﬂt—l)] (4.17)

And finally the last step of the Kalman algorithsnthe update of covariance matrix for next

iteration of the algorithm.
Pt|t =[1- Kth]Pt|t—1 (4.18)

The results of equationd.(7) and 4.18) give us the estimate and covariance matrithe
next iteration of EKF algorithm. The equatiahX7) provides the updated state vector for the
calculation of the output (predicted voltage throggjuation4.2) ) on the next iteration of the

algorithm. Figuret-2 shows the flow chart of algorithm.

In the beginning, we start with initialization @f,, Ry, P, and X,. Q, and R, are the
covariance matrices of, andv, respectively. As mentioned earliev,, andv, are artificial
noises that have been added to the process. Talees/can be defined as fixed or variable
during the process, nevertheless they control agewee speed and accuracy of the training.
Selection of proper value faw, and v, is subjected to try and error method, is also
initialized by try and error method as improperues may prevent convergence of the
algorithm. Finally sinceP and Q are closely related, as suggested by equada), we

initialized them to be equal 1@, for the first iteration.
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Model’s
output

Input Values for
each iteration

Target value for
each iteration

EKF Algorithm

Computation

Output .

Figure 4-2: Flow chart of algorithm. The model is updatechy EKF

Moving down in the flow chart, the next step is ttadculation of the model's output by

equation 4.2). The rest of the flow chart is simply EKF aigfam in which the new estimate
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of state vectorX;) and the new error covariaffceatrix (P¢c) are computed for the next

iteration.

4.5.  Building the mapping function h

As it has been discussed earlier our model is sgmmted by Functioh described in equation

(4.2). In this section we will discuss three differapproaches to define this function.
4.5.1. Linear Auto-regression model

The linear model is the simplest model we can dmrsiln this model we assume that the
present value of the arc voltage can be predicasédbon linear summation of previous values

of the voltage and also present and pervious vaitite current,

N M
Ve = Z aVe_; + Biltr1-i +y (4.19)
=1

i=1 i

where,

a;, B; andy are the parameters of the model, and form the staitor,

Xt = [al, ...,aN,ﬁl, ...,ﬁM,]/]t (420)

®ln reality P, does not represent error covariance matrix ascemsonly be true whefi(.) andh(.) are linear.
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This vector is learned and adjusted in each tinep sis it has been discussed in

sectiond .4.

N is the number of previous values of voltage,

M is the number of present and previous values wéntl

For implementation of the algorithm MATLAB platforhras been utilized.

4.5.2. Fuzzy — Kalman model

In this section we combine our previous linear eageessive model with fuzzy subtractive
clustering algorithm. The subtractive clusteringyomithm is a modified version of the
Mountain Method51]. In the beginning, the algorithm assumes edata point is a cluster
center, and calculates its likelihood based onddesity of the surrounding data points. Then
the algorithm selects the data point with the haglpetential and removes all data points in its
vicinity according to a predetermined radius. Tiiscess is iterated until all data points are

within the vicinity of at least one cluster.

In this work we use the subtractive clustering dathmn which has been provided by
MATLAB. The “subclust” function of MATLAB receives a training data setdacomputes
the number of the clusters based on radius ofenfte[52]. The eventual output of algorithm
is a series of Gaussian membership functions foh eduster and each dimension of data

point. For instance if the dimension of our datanfsowas three, and the algorithm provided
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us with two clusters; then we would have two séthi@e membership functions. By utilizing
a fuzzy inference engine (most commonly Sugenorémiee system) the degree of

membership for each cluster can be calculated.

Membership Cluster 1

functions
N M
Vi1 = Z i Ve + Z Bialg+1-i + 71
i i=1

i=1

Degree of — VAau
MemberShip % ¢ -

Output
value

Membership Cluster 2
functions

N M
Via = Z apVe-i + Z Bizley1-i T 72

i=1 i=1

Degree of
Membership

Figure 4-3: Fuzzy - Kalman model (Functionh(.))

For building the fuzzy model, we start with the sabtive clustering algorithm on our

training dataset. After obtaining a number of @ust(), we assume that each cluster has its
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own linear equation4(19) to predict the present value of the voltagee final output of the
model is the linear summation of each equation’spuiu weighted by corresponding
membership degree of the cluster. Figds8 shows the process for the fuzzy model. In this
model the free parameters &g, ..., ay1, B11s - By, Yale » [@12, o) A2y Bizs oo Buzs V2lt

voe v [@1cy o Qnes Bic - Buc » Yele- Consequently the system state vector is the ggtiom

all these vectors,

Xe = [ay1, s A1 Brts s Br1 s Vs oo Qacr oons One » Picr - Buc » Yelt (4.21)

Here the Kalman Filter will adjust and update thestor at each time step.

4.5.3. Wavelet - Kalman model

Discrete Wavelet Analysis (DWA) is a branch of sibanalysis which is commonly known
as Multi Resolution Analysis (MRA). Methodologicallvavelet analysis is similar to Fourier
analysis as both methods break down a signal imtcomponents for further analysis. Fourier
analysis does this job by decomposing a signal sdgnes of sine waves with different
frequencies while the wavelet analysis does it bgothposing the signal into its wavelets
through scaling and shifting of tienother wavelet”. However there are some fundamental
differences between Fourier and wavelet analysssit Aan be seen in Figude4 sine waves,

in Fourier analysis, are smooth and of infinitegénwhile, on the other hand, wavelets are
temporally localized and irregular in shape. Thesmerties make wavelet to be an efficient

tool for analysis of non-stationary sign{is].
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sine wave db2 Wavelet

Figure 4-4: Sine wave (left), Daubechies db2 (right)

The DWT of a signal is calculated by passing ibtlgh a tree of low and high pass filters.
The high pass filter provides us with the detagféoients while the low pass filter gives us
the approximation coefficients of the sigiad]. Since the signal loses half of its frequency
by the filtering process, according to the Nyquistorem, half of the samples are discarded.
The algorithm is perpetually repeated on approxmnatoefficients, and consequently new
details of lower resolution are obtained. Figdr® depicts the output of multiresolution

analysis up to level three.

In our third model the wavelet analysis is useg@r@processing tool for our raw data. For this
purpose the previous values of the voltage andentirare individually subjected to DWT
algorithm to calculate approximation and detailfioents to a desired level. Then the result,
accompanying with some or all of the raw data @gdt and current without any

preprocessing) forms our input vector.
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Figure 4-5: Filter bank representation of the DWT

The input vector is defined as following,
Ut = [AI ) D,{,...,L' AV' 5{...,L' Vt—l,...,t— nr It t—m] (422)

yreny

where,
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Al . Approximation coefficients of vectdy _,, at levelL.

5{,_.,L - Detail coefficients of vecta _, from levell to levelL.
A} : Approximation coefficients of vectdf_; _ at levelL.

EK...,L : Detail coefficients of vectdr,_; _ from levell to levelL.

Vi_1..t—n - Desired number of samples from the original agét input vector

(Vt—l,...,t—N)'

I; . t—m : Desired number of samples from the original entrinput vector

(It,...e-m)-
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Figure 4-6: Wavelet model (Functionh(.))

Now at the next step our input vector is usedlinear regression function,

K

V; = Z au; +y (4.23)

i=1

whereK is the number of elements in input vecthr(See Figuret-6). Thea; andy are the

free parameters of the model which form the systeate vector,
Xe = lag, ., ag, v]e (4.24)

This vector is updated and adjusted by Kalman mRifteough each time step.
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4.6. Computational complexity of the proposed algorithm

In general Kalman Filter is computationally expeesiSince the core of the proposed
algorithm is based on Extended Kalman Filter, @arning algorithm is also computationally
expensive. A quick review of the algorithm (depicia Figure4-2) indicates that the main

burden of computation lies on the step where tHena Gain is calculated,
-1
K: = Pt|t—1HtT[HtPt|t—1HtT + Rt] (4.25)

Inversing matrix HtPt|t_1HtT+Rt by Gaussian Elimination method leads &(n3)
complexity. In general complexity of matrix invessi is betweenO(n3) to 0(n?37)
depending on property of the matrix and the implete& algorithm[57]. Generally
algorithms with equal or larger than quadratic tién?), do not scale well. Therefore we
should be careful not to develop a mapping functoth too many free parameters for

adjustment, for the proposed algorithm would besioov.
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5. DISCUSSIONS OF RESULTS

5.1. Result of Linear Auto-regression model

Our first model is the Linear Auto-regression modd it has been described in sectibhb.1

the free parameters of the following equatiap f3;, y) are adjusted by Kalman Filter,

N M
Ve = Z aVe_; + Biltr1-i +y (5.1)
=1

i=1 i

N and M represent the number of previous values of theenotrand voltage used in the
mapping function. We consider them to be equalinmodel therefore when we state tivat

is two, it means that two previous value of thetagé and one previous value of the current
(in addition to its present value) is fed to thgoaithm in each time step. It should also be
noted that the present value of the current is kntavour model hence we only need to go

one step back for the current.

On the next ste@,, R,, P, andX, must be initialized for the algorithn@, andR, are the

covariance matrices of, andv, respectively, and calculated as following,
Qo = (WD)l xq (5.2)

Ry = U({v})212xN+1 (5.3)
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The selection of proper value for standard devwabd{w} and{v} is subjected to try and

error. After some tries, we decided to set theig@qual to

c({w} =a({v}) =01 (5.4)
TheX, is also subjected to try and error and we set et

Xo = 0.001 X Iyyni1 (5.5)

wherel is the identity matrix, and X N + 1 represents the number of free parameters in the

model.

After initialization, the model is fed with 600 sphas of the time series repeatedly for 150
times. This helps the free parameters to setttbdiv stable values therefore this phase can be
seen as training/adjustment phase. The selectiowmber of samples (600) and number of
epochs (150) is done by the observation of ther éirotuation and the level of generalization
of the model. In this study we check two error ek None Dimensional Error Index
(NDEI) and Root Mean Square Error (RMSE). The fisshormalized dimensionless error
index and the second is the standard deviatioheotlifferences between predicted values and

observed values. The NDEI and RMSE are calculayddllowing formulas respectively

RSME

\/% X ZZ=1(dt - E(dt))z

NDEI =

(5.6)
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Z=1(Vt - dt)z (57)

RMSE =
T

whered; is the desired (target) value of the voltage Ad;) represents the average of the

desired valued/; represents model’'s output, and findllyepresents the number of samples.

Table 5-1: Result of first experiment - Linear Aub-regression model

Training/Adjustment Test with EKF ON Test with EKF Off
NDEI RMSE (V) NDEI RMSE (V) NDEI RMSE (V)

N

1 | 0.1616 39.7911 0.2060 50.6568 0.6988 94.4757
2 | 0.1310 32.2646 0.1356 33.4040 0.3350 82.5498
4

8

0.0597 14.7226 0.0661 16.2804 0.0597 14.7130
0.0494 12.2315 0.0530 13.0603 0.0692 17.0308
16 | 0.0412 10.1656 0.0457 11.2648 0.0825 20.3180
32 | 0.0321 7.9226 0.0351 8.6477 0.0871 21.4609
64 | 0.0320 7.8854 0.0364 8.9768 0.1376 33.8931

Note: N represents the number of previous values of the current and voltage
used in the mapping function h(.), hence the size of input vector is 2 X N.
The number of adjusting free parameteris2 X N + 1.

On the next phase, the adjusted model is presevithca new set of data with size of 4400
samples to see how it performs. Consequently thés@ can be called the test phase of our
experiment. We do this in two ways. First we distdbKF part of the algorithm meaning that
the free parameters of the model do not updateaoh gme step. Contrarily in second try we
make sure that the EKF part of the algorithm i stigaged and the free parameters are
constantly adjusted in each time step. We alsoatete process for different size of input
vector (V:1,2,4,8,16,32 and 64) to study the effect of number of previous valoéghe

current and voltage on the prediction. The resfilstody can be seen in Tabtel and
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Figure 5-1. Figure5-2, Figure5-3 and Figure5-4 shows outputs of model against target
values. The model’s output is color coded in biukile the target value is presented with red
colored line. The None Dimensional Error Index (NPE presented in these figures with
black colored line. As it can be seen, for windagveize ofN = 32 (Figure5-2) the red line
can hardly be seen which means the model has gedicpon. The situation is not as good as
Figure5-2 for Figure5-3 and Figurés-4, as they have higher level of errdNDEI = 0.053
andNDEI = 0.135 respectively. The reason for this phenomenonasatimdowing size for
Figure5-3 and Figuré-4 areN = 8 andN = 2 respectively which is smaller thah= 32

of Figure5-2. In general the output Figusel shows that increase in windowing size will lead

to lower level of error, however this effect is tloat much, if we go higher thanh = 32.

By reviewing Table5-1 and Figureb-1, it is clear that the output of model is muatér
when the EKF is engaged. That means that the deselonodel cannot be used in “train and
use” scheme. In fact the EKF part of algorithm malstays be engaged to perpetually adjust

the parameters.
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Figure 5-1: Error Vs. numbers of previous values used in odeling - Linear Auto-regression model
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Figure 5-2: Linear auto regression model — N: 32 — NDEI: 035
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Figure 5-3: Linear auto regression model — N: 8 — NDEI: 053
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Figure 5-4: Linear auto regression model — N: 2 — NDEI: .35
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5.2.  Result of Fuzzy - Kalman model

As it has been discussed in sectbb.2, our second model is developed by combinatfon

the Fuzzy model and Kalman filtering. After ser@stry and error, it has been decided to
perform fuzzy clustering on the latest value of Wiotage and current available in each time
step. In has been observed that using more travahges of current and voltage does not

provide any meaningful differences in the results.

We start with dividing our dataset into two pa#s. the first model, 600 samples of the time
series are selected for training/adjusted phasetandest (4400 samples) will be used in the
testing phase. At first the samples are fed toraabve fuzzy clustering algorithm to obtain
clusters and their membership functions. The restilfuzzy clustering algorithm is four
clusters. Consequently for each attribute of thistelrs (latest value of current and voltage) we
have four Gaussian membership functions. UsingdmifBroduct Implication, membership

degree of each cluster at each time step is cédclfeom following equation,

¢ uste (” i ster N) uster x uster (5 8)

pEtusterN s the degree of membership feliusterN (N: 1, 2, 3 or 4).

ClusterN
%4

U is Gaussian membership function for latest aviglatalue of voltage.

Meaning that for time step the V,_, is used for calculation of the membership
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function’s value while the spread and center of fmership function are

calculated by fuzzy clustering algorithm.

uétusterN is Gaussian membership function for latest avilatalue of current.
Meaning that for time step the I; is used for calculation of the membership
function’s value. As ofuGst™  the spread and center of the membership

function is also provided by fuzzy clustering algaom.

As depicted in Figurd-3 each one of the four clusters has its own finegression functions.
Nevertheless the final output is calculated by shenmation of weighted output of each
function based on the membership degree of cormespg cluster. During the
training/adjustment phase the free parameters edetfour equations are adjusted by EKF
algorithm. Now if we consider that we use ftlidatest values of voltage and current, then we

have to adjust x (2 x N + 1) or8 x N + 4 free parameters for the whole model.

The initialization ofQ,, R,, P, andX, is done similar to the first model. Now we aresait to
start training/adjustment phase. 600 samples ofl#it@set are fed to the model for 150 times.
This helps the free parameters of the model sittlbeir stable values. Then the developed
model will be exposed to the rest of dataset (42H¥iples) to check its performance. This is
done in two times. First we disengage the EKF phdigorithm, and in the second try we let
the EKF part of algorithm to stay engaged durirgtdst phase. This will help us to study the

role of EKF on testing phase as well. The perforceaof the model is monitored with two

68



error indexes which has been introduce in sedidn The results of experiment are given in

Table5-2 and Figur&-5 to Figures-9.

Studying Figure5-6 to Figure5-9 reveals the same finding similar to our presionodel
(linear auto-regression model). Increase in winagwsize will give us better error rate,
however the improvement quickly becomes insignifitcance N, the windowing size,

increases. This trend can be seen in Figdbeclearly.

A quick review on Tablé-2 and Figures-5 indicates that similar to our first experiment
(linear auto-regression model), the accuracy oftleelel heavily depends on the engagement
of the EKF algorithm during the test phase. A cresamination of Tabl®-2 and Table-1
reveals that the error rate of Fuzzy-Kalman modweks slightly more than linear auto-

regression models.

Table 5-2: Result of second experiment, Fuzzy - Kkaan model

Training/Adjustment Test with EKF ON Test with EKF Off
NDEI RMSE (V) NDEI RMSE (V) NDEI RMSE (V)

N

1 | 0.1412 34.7833 0.1927 47.4730 0.2936 72.3382
2 | 0.1282 31.5884 0.1345 33.1531 0.3181 78.3888
4

8

0.0578 14.2530 0.0635 15.6544 0.0769 18.9357
0.0474 11.7272 0.0511 12.5961 0.0836 20.5798
16 | 0.0406 10.0086 0.0457 11.2645 0.0986 24.2955
32 | 0.0358 8.8446 0.0393 9.6831 0.1181 29.0893

Note: N represents the number of previous values of the current and voltage
used in the mapping function h(.) hence the size of input vectoris 2 X N. As
we have four clusters in our Fuzzy — Kalman model the size of the free
parameter vectoris 8 X N + 4.
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Figure 5-5: Error Vs. numbers of previous values used in mdeling, Fuzzy - Kalman model

The main rationale behind incorporating fuzzy logith Kalman filtering was to provide a
decision making capability for the model. Howeweptir surprise, it did not improve model’'s
error rate. In fact, it caused slight increasehm érror. In addition, Fuzzy-Kalman model has
more free parameters comparing to our first modal« 4 to 2N + 1, since fuzzy clustering
divides dataset to four clust¢rd hat must theoretically help Fuzzy-Kalman madehave better
prediction which did not happen here. In fact, hgvimore free parameters means more

computation, and consequently this leads to lovifesiency of the model from computational

point of view.
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Figure 5-6: Fuzzy — Kalman model, N: 32, NDEI: 0.0393

Fuzzy-Kalman model (N = 16)
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Figure 5-7: Fuzzy — Kalman model, N: 16, NDEI: 0.0457
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Arc Voltage (V)

Arc Voltage (V)

Fuzzy-Kalman model (N = 2)
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Figure 5-8: Fuzzy — Kalman model, N: 2, NDEI: 0.1345

Fuzzy- Kalman model (N=1)
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Figure 5-9: Fuzzy — Kalman model, N: 1, NDEI: 0.1927
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5.3. Result of Wavelet—Kalman model

In the third experiment we use DWT for preprocegsin the data. The initialization of the
Qo, Ry, P, and X, is done in a similar manner to our previous madatgain we spilt the
dataset into two parts. The first part has 600 $asnand will be used for training/adjustment
phase. The rest of dataset (4400 samples) willsked tor the test phase. Preprocessing of the
data is quite straight forward (see Figdr®). Voltage and current vectors are individually
decomposed by DWT algorithm to desired level. Taiedt values of the voltag®,) and
current (;_;) alongside of the two decomposed vectors are cenatdd and fed to the EKF
algorithm to adjust model's free parameters. Aft#50 times of iteration on the
training/adjustment dataset, the value of free ipatars settles to their stable values and the

model is ready for performance test.

The performance test is also done in a similarifastio our previous models. We first
disengage the EKF algorithm to see how model perdowithout online adjustment of
Kalman algorithm. Then in the second run the EKFemgaged and continuously adjusts

model’s free parameters online.

The process of training/adjustment and performaese has been done several times with
decomposition levels of 1, 2 and 3. Since the mimmmumber of samples required for level 3
decomposition is equal to 8, the smallest windovgizg of 8 is selected for these models. In

general, minimum number of samples for decompasiBeel ofn is equal t@2™.
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The results of our third experiment can be seefable 5-3, Table5-4 and Tables-5.
Table 5-3 provides us with error rates of decompositievel of 1 for different windowing
size (Starting fronN = 8 up toN = 64), while Table5-4 and Tablé-5 provide the same
information about decomposition level @f and 3 respectively. By reviewing these three
tables, one can infer that there is no signifiaargrovement in error rate when we increase
the decomposition level. For instance, by compating None Dimensional Error Index
(NDEI) for N = 64, we virtually observe the same error rate for Efigaged test phase. The
error rate of decomposition level 1 is 0.0335 wheleel 2 and 3 provide 0.0334. Moreover, a
quick glance on Figurb-13, Figure5-13 and Figur®-15 show us that the output of models,

with windowing size 082, for all decomposition level is identical.

Table 5-3: Result of third experiment — Wavelet-Kéman - decomposition level : 1

Wavelet-Kalman - decomposition level : 1 - Haar wavelet
Training/Adjustment Test with EKF ON Test with EKF Off
NDEI RMSE (V) NDEI RMSE (V) NDEI RMSE (V)
8 | 0.0492 12.1645 0.0528 13.0070 0.0661 16.2792
16 | 0.0414 10.2061 0.0460 11.3439 0.0843 20.7725
32 | 0.0316 7.7917 0.0349 8.5871 0.0915 22.5429
64 | 0.0283 6.9779 0.0335 8.2424 0.0651 16.0371

Note: N represents the number of previous values of the current and voltage
used in the mapping function h(.). Since the latest values of voltage and
current is also concatenated to the decomposed vectors the number of
model’s free parameteris 2 X N + 3.
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Table 5-4: Result of third experiment — Wavelet-Kéman - decomposition level : 2

Wavelet-Kalman - decomposition level : 2 - Haar wavelet
Training/Adjustment Test with EKF ON Test with EKF Off
N NDEI RMSE (V) NDEI RMSE (V) NDEI RMSE (V)
8 | 0.0492 12.1647 0.0528 13.0073 0.0661 16.2803
16 | 0.0414 10.2068 0.0460 11.3450 0.0843 20.7749
32 | 0.0316 7.7908 0.0349 8.5869 0.0915 22.5433
64 | 0.0283 6.9763 0.0334 8.2402 0.0651 16.0282

Note: N represents the number of previous values of the current and voltage
used in the mapping function h(.). Since the latest values of voltage and
current is also concatenated to the decomposed vectors the number of
model’s free parameteris 2 X N + 3.

Table 5-5: Result of third experiment — Wavelet-Kéman - decomposition level : 3

Wavelet-Kalman - decomposition level : 3 - Haar wavelet
Training/Adjustment Test with EKF ON Test with EKF Off
N | NDEI RMSE (V) NDEI RMSE (V) NDEI RMSE (V)
8 | 0.0492 12.1645 0.0528 13.0071 0.0661 16.2797
16 | 0.0414 10.2077 0.0461 11.3461 0.0843 20.7763
32 | 0.0316 7.7914 0.0349 8.5871 0.0915 22.5478
64 | 0.0283 6.9742 0.0334 8.2382 0.0651 16.0258

Note: N represents the number of previous values of the current and voltage
used in the mapping function h(.). Since the latest values of voltage and
current is also concatenated to the decomposed vectors the number of
model’s free parameteris 2 X N + 3.

Studying Figure5-10, Figure5-11 and Figures-12 show that similar to our two previous
experiments (linear auto-regression and Fuzzy-Kalmadels), the Wavelet-Kalman models
need to have EKF algorithm engaged during theghase. The comparison between these

three experimental models (linear auto-regresskugzy-Kalman and Wavelet-Kalman)
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reveals that the Wavelet models have slightly beitecome than linear regressive models.
That is not very surprizing since the decomposettore of current and voltage contains
coefficients reflecting both low and high frequessti Low frequency coefficients
(approximations coef.) present information abow ¢fhobal trend of the signal, while high
frequency coefficients of different decompositi@vels (detail coef.) provide more transient

oriented information. We believe that is the maason for better performance of Wavelet-

Kalman models.

Wavelet-Kalman model, decompositionlevel: 1
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Figure 5-10: Error vs. number of previous samples used imodeling — Wavelet-Kalman model — decomposition leV:

1

76



Wavelet-Kalman model, decomposition level: 2
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Wavelet-Kalman model, decomposition level: 3
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Figure 5-13: Wavelet—Kalman model, N: 32, Dec. level:1, NB): 0.0349
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Figure 5-14: Wavelet—Kalman model, N: 32, Dec. level:2, NB): 0.0349
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Figure 5-15: Wavelet—-Kalman model, N: 32, Dec. level:3, NB: 0.0349
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6. CONCLUSIONS AND FUTURE WORKS

6.1. Summary and Conclusions

In this work, we tried to approach the arc furnpoediction problem using Kalman Filtering.
Other attempts have also been made to generat®edargodel for this purpose, and some
provided very good results (eJd0]). However, all of these attempts might be coonpised

by one fundamental problem. When we are usingiaitigaset to train a model, we limit the
model to the conditions which exist within that.ddbrmally real world processes are very
complicated. Hence, obtaining a training set thaila effectively encompass all possible
working conditions is a hard or even an impossiagk. In the case of electrical furnace, there
are numerous conditions that could change from timéime. For instance, the graphite
electrodes are constantly eroded during operatfothe furnace or the consistency of the
metal scraps differs from one charge to anothdrofAlthese varying conditions have impacts
on the transfer function that we want to model. €&muently, when a model is trained by a
training set, it would only respond best to comuatis resemble to that set, and its response to
other working conditions would be unknown. Using amline self-adjusting model can

eliminate this problem, and that is what we triedhis work.

In this study we used Kalman Filter algorithm toselep a number of online self-adjusting

forecasting models. In the conducted experiments,developed three models based on
Kalman Filtering. The first model was a linear atgégressive model based of EKF algorithm.
The best results by this model was achieved, whenwindowing size ofV = 32 was

selected. The error rate of this model v@a®#351 with aforementioned windowing size. In
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second experiment we tried to incorporate Fuzziclagd Kalman Filter to improve the error
rate. However, to our surprise there was no impremd in the output of Fuzzy-Kalman
model. The best error rate was achieved with windgwize ofN = 32, and it wa9.0393.
This shows that the error performance of this maglédss than linear auto-regression model.
Finally, in the third attempt, we tried to combitie Wavelet analysis with Kalman Filtering.
This approach proved to be relatively successhu, the developed model gave us relatively
better results. A Wavelet-Kalman model with decosifpon level 1 and the windowing size
of N = 64, provided the best error performance. In factjave us 0.0334 as the error rate.

The cross examination these three models are givéable6-1.

Table 6-1: Comparing three developed models

Error rate Error rate | Improvement

(NDEI) (RMS) to Model 1
Model 1 | Linear AR-
N =32 Kalman 0.0351 8.6477 V N/A
Model 2 Fuzzy- .
N=32 Kalman 0.0333 9.6831V -11.97 %
Model 3 | Wavelet- Suisea 8 2382 \ 470%

N =64 Kalman

Developed models can also be analyzed from spaarp@ance point of view as well. Linear
AR-Kalman model (linear auto regression model) doatsneed any pre-processing, hence it
provides the fastest performance among our mo@elghe other hand, Fuzzy-Kalman model
has more free parameters for adjustment. The nuwibigee parameters for Fuzzy-Kalman

model is proportional to the number of clustersdusemodeling. For instance, if we use four
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clusters, then the number of free parameter is tiows of the Linear AR-Kalman with same
windowing size. Finally, Wavelet-Kalman model ist momputationally expensive as Fuzzy-
Kalman models. That is true because Harr waveledrdposition can be done in linear time,
O(n) [58]. From Sectiom.6, we know that the complexity of our algorithen Something
between cubic and quadratic depending on implertientaf the EKF algorithm. It is quite
clear that the linear complexity of Harr waveletol@position does not add any burden to the
complexity of the whole algorithm. Consequentlye 8peed performance of the Linear AR-
Kalman and the Wavelet-Kalman models are very aimithen they have same windowing

size.

6.2. Possible future works

Generally the proposed model can be improved by nvathods. First we can use more
intelligent functions as a measurement function.thrs thesis we tried three different
functions. Perhaps some types of neural network®nflinear regression function could also
be incorporated with Kalman Filtering. Another adpaf the model which can be improved is
the prediction step of EKF algorithm. In this wavke assumed that the predicted values of the

state variables are equal to its previous values,
)?t|t—1 = Xt—1|t—1 (6.1)
Now instead of using this passive approach we migwe a more educated guess. One

example of such approach can be borrowed from hetsvork learning algorithms. The
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momentum techniqub5] provides higher convergence rate for neurélvoek learning, and
probably the concept can be adapted here. It shalsll be noted that this technique is
originally designed for first order gradient dedcalgorithm, and it proved to be very useful
in deep learning56]. Nevertheless the usefulness of some variatiothis method for the
EKF algorithm, which is a second order algorithimd be thoroughly examined. Finally it
is worth mentioning that Kalman Filtering is gerilgraomputationally expensive. That is true
especially when we are dealing with state spadegbfer dimensions. The main reason behind
this is the calculation of an inverse matrix durthg KF algorithm. The size of this square
matrix is equal to the size of state vector; tham@fany improvement which requires more

state variables is not quite the right directiorficiow.
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APPENDICES

Appendix A: Least square method

Least square method is used for estimation of wvknealues in an overdetermined system.
Gauss had discovered if a system of equation genrin the matrix form then the problem

can be solved by finding an estimate for unknowmagdes,

hi1 hiz o ham][* Z
h21 hll th x:Z — Z.Z (Al)
h’TLl hnz e hnm xm Zm
or in the compact form,
Hx =z (A.2)

The estimate value of is denoted by, and can be calculated by minimizing the estimate

error. The estimate error is defined as Euclidiacter norm,

£2(%) = |HX — z|? (A.3)

m n 2
i=11]j=1

To calculate the estimate value the derivativeqofation A.4) must be equal to zero,
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agz m n
k =1 =

The last term of equation can be expressed asioitp
n
Z hl]f] —Z; = {Hf - Z}i (A6)
j=1

hence the equatio\(5) can be written as,
2HT[HX —z] = 2HTHX — 2H"z =0 (A.7)
or,
HTHZ = 2H"z (A.8)

the equation A.8) is known as “Normal Equation”. Finally whenetmormal equation is

solved forx we have,
2= (HTH) 'H"z (A.9)
The key term in the equatioA.Q) is HTH. This term is known as “Gramian Matrix”,
G=H"H (A.10)

The G resolves how the equatioA.Q) behaves. If the Gramian Matrix is non-singuliee.,
invertible) thenk can be determined. On the other hand if the Gramiatrix is singular (i.e.,

non-invertible) then the column vectors Hf are linearly dependent therefofe cannot
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uniquely be determined. In this case we say théesyss underdetermined. The equation
(A.9) gives an approximate solution when no exatitem exists (overdetermined system),
and when the exact solution does exist (determsiystem) it will provide us with the “exact”

solution. The least square method is an optimahasbr when the system is overdetermined.
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Appendix B: Dynamic Systems

A system is an assembly of interrelated or inteedeent entities which can be seen as an
integrated wholg7]. If some properties of a system change oveetithen the system is time
variant therefore called a “Dynamic System”. Esisdigt anything which evolves through
time can be considered as a dynamic system. Dynaysiems can broadly be categorized

into linear and nonlinear.

Dynamic systems are usually described [7] by dféial equations. The following
differential equation describes a dynamic systeth wmne-varying dynamic characteristics in

general form,

d(x(1))
(o)

= f(t,x(8), u(t)) (B.1)

x(t) andu(t) are vectors, and they are considered as statblesiand input variables of the
system respectively. The notion of “state varialik’'quite important since these variables
dictate how the system will react at a given tinheng with the corresponding input. The

concept becomes clearer if we write the equatibf)(in its extended format,

d(;fzg)) = fi(t,20(6), 2 (E), o, X (8), Wr (0), Uz (E), e, 1y ()

d 2

(;C(t()t)) = fo(t, %1 (), %2 (£), e, %3 (), wy (), Uz (0, oo, ur (1)) (B.2)
d(;czg)) = (£, %10, 25(), o) X (), U (6), Up (0, oo, 1y (£))
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As in can be seen variables... x,, are all dependent, meaning that for finding thaiues,
the given differential equation system must be eb\Here the only independent variable is

the time ¢).

In the equation B.1) the state variablese((... x,,) and the input variablesu{ ... u,) are
collected in two vectors. The first onB.8) is the state vector and the second &é)(is the

input vector.

x(t) = [x1, %, %3, e, X )T (B.3)

u(t) = [ug,uy, us, oo, uy]” (B.4)

The n value of state vector can change independentlgngt time; hence the degree of

freedom of the system is equahto

The equation B.1) is an instance of a continuous time systenveribeless in the most
engineering applications we are dealing with thecidite time. In this case the equivalent

equation is written in the recursive format,

X(ts1) = f (e X (th), u(tie) (B.5)

given the time step is fixed (= kAt). We simply can rewrite it in the compact subdcrip

format as well,

X1 = f (Err Xir Uge) (B.6)

wherex; andu, are the state and the input vectors at the tjnrespectively.
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In some cases what we want from a dynamic systetheistate itself, however in greater
majority of cases the state variables are useeétt@ gariable or variables which are the actual
properties of interest. These variables are considas the “outputs” of the dynamic system.

To make it clear we provide a simple example.

Consider a simple harmonic system. This dynamitegysan fully be described by the speed
and the position of the mass as the system vasaffeure B-1). Now if someone is

interested on the energy of the system, then teesyvariables (speed and position) can be
used to calculate it. The energy of a simple haimsystem is equal to the summation of the

kinetic energy of the mass and the potential enefglge spring,

1 1
E=U+K=§kx2+§mV2 (B.7)

therefore for a simple harmonic system energyfisation of state variables,

E(t) = h(x., V) (B.8)

|—’ X

F(t)

Figure B-1: Simple harmonic system
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In general the outputs of a dynamic system depentth®@ state variables and the inputs of the
system as well. Consequently the general form efdynamic system outputs can be written

as the following,

z = h(t,x(t),u(t)) (B.9)

wherez is the output vector of the dynamic system.

Input vector Dynamic system QOutput vector

/gl
' State vector:

llz—-

7]

X = [Xl‘xz,xz, e ,Xn]

u 3
System’s equations: .
X = Fx+ Cu
z = Hx + Du

Uy ———e — ]

Figure B-2: Dynamic system block diagrani7]

Equation B.1) and B.9) are in general form. The linear form of thesgiations can be

written respectively as following,
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d(x(1))
(o)

= F(O)x(t) + C(O)u(t) (B.10)

z(t) = H{®)x(t) + D(O)u(t) (B.11)

where theF (t), C(t), H(t) andD(t) are time varying matrices. The matiiXt) is called
“Dynamic Matrix”, and its elements are known as fynic Coefficients”. Similarly the
matrix C(t) is called “Coupling Matrix” and its elements aresb known as “Coupling
Coefficients”. For formulation of Kalman Filter goslem the discrete form of the equations

(B.10) and B.11) are used.
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Appendix C: Stochastic systems and Random Processes

If the dynamic system is relatively non-complex amith small number of components the
system equations can be expressed explicitly. s tase, if the dynamic system is
deterministic and it can be approximated to a lifeam, then the prediction of the future
state of the system is not mathematically a diffitask. Unfortunately in practice, what we
are dealing with is a complex system possibly waitlarge number of components. Normally
these systems are highly nonlinear in most casethi$ situation, it is quite clear that the
deterministic approach will not work, and we hawedlink about a new approach. This new
approach is “statistical’. In a nutshell by usirgtsstical approach, the underlying dynamics
of the system is treated as a random process andrigining the statistical and deterministic

mathematical models, we will end up with “stochastistems’7].

The following equation provides us a determinishodel for the discrete process under

investigation,

X(tk+1) = f (e X (ti), u(tie) (C.1)

The obvious implication of this equation is thag thutcome of the equation at arbitrary time
step ¢ + 1) only depends on the initial value of the statdaldes at first time step and the
input vectors between first step and the step tdra@st g + 1). This can be shown by

recursive calculation ofy, ;,
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Xk+1 = f (E Xk, U)

X = f (k-1 Xk—1,Ug—1)
Xk—1 = [ (tk—2) Xk—2, Ug—2) (C.2)
x; = f(to, X0, Up)

or,

X1 = FFF S G f(x0s Lo Ug), e )y ez Uk—2)) Eim1) Ug—1)) Lo U) (C.3)

Noticeably all intermediate values af are eliminated, hence the output of this recursive
function only depends on the initial state veatgand known input vector§u,, uq, u, ...,
ui}). Clearly this model is not realistic as the re@lrld systems with known inputs are not
solely dependent on initial stafi5]. It is quite well known that some level of @ntainty is

always present in any natural or engineering pcéhis uncertainty can stem from the
imperfection in design of an engineering processamplexity of the natural process under
investigation; as all involved factors cannot baesidered due to the enormous complexity. In

this situation the corrective approach is to addtlaer input vector whose values are not

known to the dynamic system equation,

Xk+1 = f (tko Xio Ug, Wi) (C.4)

By addingw,, the future state of the system is no longer bondsdto the initial state. The
equation C.4) can also be expressed slightly differentlyyéf consider that each time step has

its own function, and consequently the time vagah]) can be taken out,

X1 = [ (Xpe, Uy W) (C.5)
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Although w,, is assumed to be unknown but its statistical ptogse are considered to be
known. In fact the sequencgv,, w;, w,,.., w,} is a stochastic process with known
probability law, which means the joint probabiliystribution of the random vectow, is

known for eachk.

The same notion can also be applied to the secprsyatem equatiorB(9), hence it can be

written as following,

Z = hy (X, Uy, Vi) (C.6)

where the sequence éb,, v,, vy, ..., v} IS also a stochastic process which the joint

probability distribution of its elements are known.
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Appendix D: Random variables and probability

A random variable is basically a function which m&mm its domain to real valued numbers.
For instance the random varial{¢t) can maps time to position meaning that at anyrgive
time t the X(t) gives us the “expected” position. The term “expdttemphasized on the
randomness of the value. This indicates we dontwkrwhat the position is before its
occurrence. Instead of the exact value of the fanctve have some probabilistic information

about its value.

D.1 Probability

The probability of an evet is defined as the likeliness of the occurrencthat event in the

sample space,

Possible outcomes favoring event A
P(A) = . (D.1)
Total number of possible outcomes

If two events are mutually exclusive then the ptolity of an outcome favoring eithet or B

is,

P(AorB) = P(AUB) = P(A) + P(B) (D.2)

The joint probability of two independent evemisand B is the likeliness of an outcome

favoring both4 and B,
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P(Aand B) = P(AN B) = P(A)P(B) (D.3)

Finally, the conditional probability of given B is defined as the outcome of evengiven

the occurrence of eveBtwith P(B) > 0,

paam) =25 0.4)

D.2 Cumulative Density Function

The cumulative distribution function (CDF) is dedth as the probability of a real valued

random variable (e.g{(t)) to be found to acquire a value less or equal $pexific number

(€.9.x),

Fy(x) = p(~,1] (D.5)

D.3 Probability Density Function

The derivative of the equatio® ) is more common and known as the Probabilitpditg

Function (PDF). The PDF is none negative function,

d
fx(x) = aFX(x) (D.6)

The PDF is used for calculation of the probabitityer any intervala, b],
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b
P,[a b] = j f () dx (D.7)
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