
 

 

EXTENDED KALMAN FILTER APPROACH TO 

ELECTRIC ARC FURNACE  

FORECASTING 

 

by 

Ali Hosseingholizadeh 

Bachelor of Science in Mechanical Engineering, Azad University, 

 Science & Research Campus, Tehran - Iran, 2002 

 

 

A thesis 

presented to Ryerson University 

In partial fulfillment of the 

requirements for the degree of 

Master of Science 

In the program of 

Computer Science 

 

 

Toronto, Ontario, Canada, 2015 

© Ali Hosseingholizadeh 2015 

 



 ii 

Author’s Declaration 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

I authorize Ryerson University to lend this thesis to other institutions or individuals for the 

purpose of scholarly research. 

I further authorize Ryerson University to reproduce this thesis by photocopying or by other 

means, in total or in part, at the request of other institutions or individuals for the purpose of 

scholarly research. 

I understand that my thesis may be made electronically available to the public. 

  



 iii 

 

EXTENDED KALMAN FILTER APPROACH TO 

ELECTRIC ARC FURNACE FORECASTING 

 

 

Ali Hosseingholizadeh 

M. Sc. in Computer Science, 2015 

Ryerson University, Toronto, Canada 

 

 

Abstract 

In this thesis, we propose and implement a new approach for building an online self-adjusting 

model for prediction of v-i characteristic of a multivariate time series obtained from an 

operational electrical arc furnace. The proposed methodology is based on the Kalman filtering 

method, and is used for prediction of the arc furnace voltage using the past history of the 

current and voltage. The main advantage of the proposed approach over similar earlier related 

work is the ability to adapt during the operation of the furnace. In this study, three different 

hybrid models have been developed based on the extended Kalman filtering technique and one 

of the following methodologies: (i) a linear auto regressive model; (ii) fuzzy logic, (iii) 

wavelet analysis. The results compare well with those of earlier work and clearly indicate that 

the augmentation of the above mentioned approaches with the extended Kalman filter 

improves the prediction accuracy.  
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1. INTRODUCTION 

 

1.1. Electrical Arc Furnace 

An Electrical Arc Furnace (EAF) is a highly efficient melting apparatus which uses electrical 

arc to melt down the charged material. The EAF’s are generally used for production of steel 

from steel scraps  [1]. The first stage of process, known as charging stage, begins with loading 

of the furnace with steel scraps. Then the second stage (melting stage) starts with lowering of 

the graphite electrodes into the scraps. During this phase an intermediate voltage is supplied to 

the electrodes, and consequently the electrical arcs strike between electrodes and the scrap 

which helps them to bore into the charge. To assist the process the scraps are layered and the 

heavy ones are placed at the bottom of the charge  [2]. When the electrodes are sufficiently 

penetrated the high voltage is used to produce long arcs. The heat and radiation of the arcs 

melt the scrap and a pool of molten steel forms at the bottom of the furnace  [2]. The process 

continues by three other stages, refining, de-slagging and tapping, which are briefly explained 

in the following. 

The next stage is known as the refining stage. In this stage, oxygen is blown to the flat bath of 

molten charge at the hearth of the furnace. The influx of oxygen helps the removal of the 

unwanted impurities in the molten steel. The oxygen oxidizes the impurities (e.g., phosphorus, 

sulfur, aluminum, silicon, manganese and carbon), and consequently they leave the molten 
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steel either in form of escaping gases or floating slag which forms on the top of the molten 

steel. 

On the next stage, the floating slag is removed from furnace. This process should be done 

when the bath temperature is still comparatively low as some impurities will revert back to the 

molten steel in higher temperatures. The process is performed by opening of the slag door and 

tilting the furnace to allow the slag flow out. 

Finally, at the last stage by adding bulk addition alloys and some de-oxidizers, steel with 

desired grade and temperature is achieved. At this point the steel is ready to be removed from 

furnace for further processing. At the end the tap-hole gets open and the furnace content is 

poured into the ladle and transferred to downstream operations. 

 

1.2. Problem with EAF 

The main problem with EAFs is their chaotic � − 	 characteristics. In the beginning of the 

melting stage, the arcs are unstable and erratic hence the current and voltage characteristics 

are extremely nonlinear and unsteady (see Figure  1-1)  [1] [3]. As the temperature goes up and 

the atmosphere of the furnaces heats up the current and voltage characteristics become to 

some extent stable; however because of the nature of electrical arc and smelting process these 

characteristics remain chaotic and nonlinear  [2] [3]. Moreover high power consumption of the 

EAF causes significant power quality (PQ) disturbance in form of unwanted harmonics 

injection and voltage fluctuations on the power network  [3]. The voltage flickering problem 
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specially happens when the furnace rating (its power consumption) becomes comparable to 

the Short Circuit Capacity of the network  [4]. These disturbances must be controlled 

otherwise they can have very undesirable impacts on the power network in a form of failure or 

damage to other electrical power consumers on the network  [4]. To avoid this problem 

regulatory bodies placed some regulations in effect, and these regulations must be met  [3]. For 

solving the aforementioned problem and satisfying the regulations some remedial approaches 

must be taken. 

 

  

Figure  1-1: Measured Voltage and Current during penetration  [3] 
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A typical mitigating remedy is the installation of a reactive power compensator  [3]. The 

compensator tries to dynamically compensate the reactive power of the EAF, thus increasing 

the PQ  [3]. Due to the nonlinear and chaotic characteristics of the EAF, it is extremely 

difficult to develop mathematical model to successfully represent them; however for PQ 

studies and subsequent design of compensation device it is necessary to have such a 

model  [1] [3]. 

 

1.3. Objective 

The objective of this thesis is to develop three different models for predication of EAF 

characteristics. The reason for development of such a model is that it has practical use in PQ 

studies. These types of models will be used by electrical engineers for development of reactive 

power compensators to increase PQ of the power network. A Number of different techniques 

have been proposed to characterize EAFs. They can broadly be categorized to data driven 

methods (DDM) and explicit mathematical methods. Some example of these methods are 

Artificial Neural Networks (ANN), rule based fuzzy logic  [1], Adaptive Neuro Fuzzy 

Interface System (ANFIS)  [1], Radial Basis Function Neural Networks (RBFNN)  [4], hybrid 

neuro-wavelet approach  [3] and explicit mathematical models  [5] [6]. In this study the 

Extended Kalman Filter (EKF) will be used for development of a model for prediction of 

EAF’s arc voltage. By using EKF method the developed model will have the capability to 

adjust itself online, hence it can refine itself continuously. 
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1.4. Context 

As mentioned in previous section, the main objective of thesis is the development of three 

different online and self-adjusting forecasting models. These models will be used for 

prediction of the voltage value of an Electrical Arc France (EAF). These models will utilize 

present value of the current and previous values of the voltage to do their predictions. The 

motivation behind this work can be expressed from two different angles. 

Firstly, development of a forecasting model is a necessity for design and development of 

reactive power compensators. As it has been described in section  1.2, EAFs are extremely 

chaotic and nonlinear. These properties of EAFs will cause voltage fluctuations on power grid 

which can be very harmful for other power consumers. The job of the reactive power 

compensator is to regulate these fluctuations and eliminate them as much as possible. 

Therefore from industrial point of view development of these models are very useful. 

Secondly, we know that the chaotic and nonlinear behaviour of EAFs are not fixed. That 

means the nonlinear and chaotic characteristics of EAFs will change over different stages of 

their operation  [2] [3]. Moreover, these characteristics are also under influence of other 

operating conditions of furnaces (e.g. wear of graphite electrodes or consistency of the 

charged materials, etc.). All of these situations present us with one important problem; that is 

any dataset collected from an EAF is just representative of a specific working condition. That 

means any model developed from this dataset could only be useful for the corresponding 

working condition, and probably would not do well for other working conditions. 

Development of an online self-adjusting model can eliminates this problem. An online self-
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adjusting model will perpetually correct and adapt itself to the new conditions; therefore the 

aforementioned problem will be solved effectively. 

For development of such a model, Extended Kalman Filter (EKF) technique has been selected. 

Kalman filtering has very successful history in industrial applications (See section  1.5). EKF 

offers several benefits, however the most important one for us in this application is the online 

self-adjusting capability of the EKF. 

The data set which has been used in this work is collected for a typical industrial electrical arc 

furnace utilized in steel production. Since the models, we will develop in this study are self-

adjusting, the selection of a specific part of dataset is not very important. During their 

operation, these models can adapt themselves to new working conditions. For our 

experiments, one part of dataset with 5000 samples has been selected randomly for training 

and test phases. The details of our experiments can be found in Chapter  5. 

 

1.5. Preliminary introduction to Kalman Filter and its a pplications 

In 1960, Dr. Rudolf Emil Kalman, a Hungarian-born American electrical engineer, published 

his influential paper  [9] on the subject of linear filtering. By his paper, Dr. Kalman made a 

significant contribution to the system estimation and the control theory. In his paper he 

proposed a sequential solution to the time varying filtering problem by eliminating the 

stationary requirement of the Weiner filter. In fact his pivotal idea was to apply the notion of 

state variables to the Wiener Filter  [7]. By adding the assumption of finite dimensionally, he 
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was able to derive Wiener Filter with much simpler mathematical complexity as it become 

accessible even to most undergraduate students. 

 

 

Figure  1-2: Typical application of Kalman Filter [8] 

 

The Kalman Filter is one of the most influential discoveries in signal processing and control 

theory in twentieth century  [7]. Theoretically Kalman filter, also known as LQE (Linear 

Quadratic Estimator), is a state estimator for linear dynamic systems which are perturbed by 

white noise1  [8]. Kalman Filter provides optimal system estimation through a recursive 

process by extracting the signal from its noise. Kalman Filter has vast application in 

engineering especially in the control of complex dynamic systems such as space crafts, 

                                                 

1 In signal processing a random signal with constant Power Spectral Density (PSD) is known as white noise. 
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aircrafts, ships or continuous manufacturing processes  [7]. In many of these cases it is not 

possible to measure all variables of the systems which we might want to control; in these 

situations the Kalman Filter helps us to infer missing information from indirect and noisy 

measurements. Kalman Filter can also be used, as in this study, to predict likely future state of 

a dynamic system such as the trajectory of celestial bodies, economical prices and indexes, or 

even course of water during flood season  [7]. 

Figure  1-2 illustrates typical application of Kalman Filter. A dynamic system is driven by a set 

of inputs and/or control inputs. The external output of the system is observed by measuring 

devices which have some uncertainty by their nature. The job of the Kalman Filter is to 

estimate the state of the system given the inputs/controls and the observed uncertain state. To 

explain it in simple terms, the Kalman Filter tries to eliminate uncertainty of the output of the 

system as much as possible. Generally any system which can be fitted into this scheme can be 

modeled by Kalman Filter if some certain mathematical properties are met. 

From historical point of view, an early application of Kalman filter was in trajectory 

estimation and navigation control systems  [7] [10]. During early 60s NASA was involved with 

the Apollo project, and Ames Research Center of NASA was wrestling with trajectory and 

navigation problem. Since Ames engineers and researchers were already heavily involved 

with the field and contemplated about a filtering approach to their problem, Dr. Kalman found 

them to be very receptive to his work. From there by collaboration of Schmidt and Kalman, 

the concept of linear perturbation of a non-linear system applied to the Kalman Filter and 

Extended Kalman Filter (EKF) was developed. From there by influence of Schmidt Kalman 

Filter became an important part of the Apollo guidance system  [7]. The Kalman filter 
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effectively solved the data fusion problem between on-board sensor data and radar data. Soon 

other researchers and engineers followed the lead and the Kalman Filter become an integral 

part of almost any onboard trajectory estimation and navigation control systems  [7] [10]. 

The Kalman Filter has variety of applications in different fields. One of the application of the 

Kalman Filter in the computer vision is the “visual tracking”  [11]. Since this particular 

application is quite interesting and also very intuitive, we will discuss it here briefly to convey 

a preliminary understanding of the Kalman filter capabilities and utilizations. 

 

  

Figure  1-3: New position is searched within the searching area  [11] 

 

Visual tracking is the process of determining the location of a specific object over time in the 

sequence of images  [11]. The object can be anything, a car in a video captured by a traffic 

camera or a head in a video streaming by web-cam. The process begins with the selection of 
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some specific features within the target object (e.g. corners, specific patterns, etc.). The 

relative position of these features gives us the orientation and the positon of the target. Now in 

the next image the orientation and the position of the target must be recalculated. Ideally the 

tracking algorithm must be able to find the position of the target anywhere within the new 

image. Nevertheless this approach is not practical since it is computationally expensive 

especially in the cases of real-time applications. For solving this problem the searching area 

should be limited (see Figure  1-3).  

 

 

Figure  1-4: Target outside of searching area  [11] 

 

Clearly adaptation of the “searching area” approach can help us reduce the complexity of the 

tracking problem, but on the other hand it will cause another problem. If the speed of the 

target is too high or the frame rate is too low or the searching area is too small, the target can 
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be well outside of the area (see Figure  1-4). For resolving the issue we have to predict the 

probable location of the target, and set the center of the searching area in that location. 

Normally the previously obtained location is used for guessing the new “would-be” location, 

but since the tracking algorithms are not perfect2 the previous location itself is not accurate. In 

other words what we are trying to do here is the prediction of the new location based on an 

inaccurate previous one, and that is the task which the Kalman Filter has been designed to 

accomplish. The Kalman Filter is developed to handle these types of uncertainties and give us 

better predictions/estimations. Some other applications of Kalman Filter in the computer 

vision are also worth mentioning. Among them we can name de-nosing  [14], depth 

measurement stabilization  [15], cluster tracking  [16] and sensor and optical data fusion  [17]. 

Kalman Filter has also been used as a training algorithm  [12] [13]. In a higher view training is 

nothing more than an estimation of the free parameters of a model by an estimator. Kalman 

Filter can be utilized for this purpose. For instance the Kalman Filter has been used for 

training of the Neural Networks  [18]. The most well-known training algorithm of the Neural 

Networks is the back-propagation algorithm (BPA). The BPA uses first-order stochastic 

gradient decent method to adjust the free parameters of the neural network; however in some 

situations it can be very slow. Several attempts have been made to address this problem such 

as classical nonlinear programming  [20], or adaptation of Hessian matrix  [19]. The Extended 

Kalman Filter (EKF) as full second order gradient decent method has also been used for 

speeding up the BPA  [18]. By using EKF, more information is extracted from the surface of 

                                                 

2 Some phenomena such as occlusions, changes in lighting and shadows can affect the appearance of the target 
hence causing difficulty in tracking.  
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the error function hence the training becomes more efficient and faster  [12] [19]. Another 

example of utilization of the Kalman Filter in training algorithms can be found in Fuzzy Logic 

Interface (FIS)  [12]. In his work, Dan Simon used the Extended Kalman Filter algorithm to 

train a fuzzy system. His objective was to model fuzzy estimator for motor current windings. 

Today the Kalman filter has numerous applications in different scientific and engineering 

fields. Some applications which have been discussed here were trajectory estimation, 

navigation, vehicle control (especially aircraft and spacecraft) and visual tracking. 

Furthermore, we briefly discussed the application of the Kalman Filter as a derivative based 

method in the training algorithms. Here in this study we will try to use it as a 

training/adjusting tool for development of a model for prediction of future value of a typical 

EAF time-series. 

 

1.6. Contribution 

The main contribution of this study is the development of an online self-adjusting predictive 

model. Models which have been previously developed by other researchers do not have this 

capacity. The working conditions of an EAF can vary depending on the operation stage, wear 

of graphite electrodes, consistency of charged scrap metals, charge level, etc. All of these 

varying properties will cause difficulty in obtaining a universal training set. Any training 

dataset would eventually be representative of some of these conditions and cannot cover all 

working conditions. Consequently the output of models, trained by specific training set, is 
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unknown if the conditions differ for training set. In this thesis we propose a self-adjusting 

predictive model based on Kalman Filtering to mitigate this problem. 

 

1.7. Thesis overview 

This thesis is organized in six chapters. In chapter one, we talked about Electrical Arc 

Furnaces, and we give a brief introduction about the operation of the furnace. We also provide 

a preliminary introduction to Kalman Filtering and its applications in this chapter. 

In the second chapter we will discuss about Kalman filtering and derivation of Kalman Filter. 

If readers are familiar with the Kalman Filtering they can skip this chapter. 

In the third chapter we will discuss about the previous works on EAF modeling. The previous 

models have been categorized into two broad groups of white and black box models each with 

corresponding subcategories. 

In the fourth chapter, we will discuss about our methodology and how the Kalman Filtering 

can be utilized for the problem in hand. In this chapter three models are proposed, and the 

interworking of these models are depicted and explained. 

In the fifth chapter, the experimental results of the implemented models will be discussed with 

graphs and tables. 

Finally in the last chapter, chapter six, the conclusion will be drawn. At the end some possible 

avenues for future works of this kind will be discussed.   
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2. KALMAN FILTER 

 

2.1. Estimation theory and Kalman Filter 

The Kalman Filter belongs to the class of mathematical techniques best known as estimation 

methods. The development of the mathematical concepts of the estimation theory goes well 

back to ancient time. Figure  2-1 shows the last 500 years of its development. Carl Friedrich 

Gauss (1777-1855) is the one who is generally recognized for the discovery of the first 

method for extracting an optimal estimation from noisy data  [7]. The inevitability of noise in 

measured data was well-known since the time of Galileo Galilei (1564-1642), but it was 

Gauss who first formally proposed a mathematical method to deal with them. Today this 

method is commonly known as least square method (See  Appendix A). In fact this method is a 

special case of the Kalman Filter  [22]. 

  

Figure  2-1: Historical progress of estimation theory  [7] 



 

 

 15 

The development of the Kalman Filter is the logical progression from least square method and 

other underlying foundations (See Figure  2-2). Kalman Filter works as an estimator for 

stochastic dynamic systems. A Dynamic system is a time variant systems which its properties 

can change over time (See  Appendix B). Stochastic systems are another group of systems in 

which we have some random properties. These random properties have impact on behaviour 

of the system (See  Appendix C). Kalman Filter essentially provides a mathematical technique 

to estimate stochastic dynamic systems through a probabilistic approach (Basic background of 

probability theory is provided in  Appendix D). 

  

Figure  2-2: Mathematical foundation of the Kalman Filter  [7] 

 

The term “filter” in Kalman Filter name, refers to the intended capacity of Kalman Filter for 

elimination of the noise from real signal which we try to estimate. Indeed in the case of linear 

Kalman Filtering, this is done optimally in mathematical sense. Nevertheless the “filtering” 

term does not do justice to the capability of Kalman Filter, and in fact what the Kalman Filter 
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does is well beyond that scope. Kalman Filter also includes the solution of an “inversion 

problem” and we briefly explain what we mean by that. 

Inverse or inversion problems are a class of mathematical problems in which the observed 

data are used to extract some information about a physical system  [21]. In almost all cases the 

observed data does not give us a determined system hence an objective function needs to be 

defined to solve the problem. The objective function is used for estimation of the system 

parameters. The inverse problem has various applications in many branches of science and 

engineering including, but not limited to machine learning, computer vision, natural language 

processing statistics, statistical inference, geophysics, medical imaging, remote sensing, ocean 

acoustic tomography, non-destructive testing, astronomy and physics  [21]. In the case of the 

Kalman Filter, it essentially inverts and estimates the functional relationship of independent 

variables of the system (system’s state variables) with observed/measured variables. 

 

2.2. Kalman filtering 

The general form of stochastic dynamic systems can be presented as following (See  Appendix 

C) 

 
��
 = ��(
�, �� , ��)      � ≥ 0 ( 2.1) 

 �� = ℎ�(
�, ��, ��) ( 2.2) 
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The equation ( 2.1) is known as the system equation. The output of this equation provides us 

with the state of the system in next time step. The other equation, ( 2.2), is known as 

measurement equation. This equation gives us a secondary value (measured value of ��) 

which depends on the same input vectors as the equation ( 2.1). The only difference here is that 

the random vector �� is replace with ��, however both of these vector represent error in the 

system, while the first on represent error in the system equation, and the next one error in the 

measurement equation. 

In a high overview, what we are trying to do with Kalman Filtering is that we use the system 

equation to predict the value of the state vector 
��
. Then in the next step, we 

measure/observe the value of ���
 from the system. This value will be used in Kalman 

filtering algorithm to correct our prediction (
��
), and achieve better value closer to real 

value of the state vector. Now that the concept of the Kalman Filter is clear, we continue to 

formulate the Kalman filtering problem. 

Assuming that ��(… ) and ℎ�(… ) are linear, we can rewrite equation ( 2.1) and ( 2.2) in the 

linear form respectively 

 
��
 = ��
� + ���� + ���      � ≥ 0 ( 2.3) 

 �� = ��
� + �� ( 2.4) 

where 


(�) ∈  !" is the system state vector, 
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��
� + ���� + ��� is the linear form of system equation (��(… )), 

�(�) ∈ !# is the deterministic input or control vector, 

�(�) ∈ !" is the vector conveying the system error, 

�(�) ∈ !$ is known as observation vector, 

��
� + �� is the linear form of measurement function, 

and finally, �(�) ∈ !$ is the vector which constitutes the error associated with 

measurement. 

{��} and {��} are assumed to be sequence of white, zero mean, Gaussian noise hence the 

expected value of �� and �� are 

 '(��) = '(��) = 0 ( 2.5) 

the joint covariance matrix of �� and �� is considered to be known 

 ' *+���� , (��- ��-). =  /0� 00 !�1 ( 2.6) 

the initial state 
2 is Gaussian random vector with expected/mean value of, 

 '(
2) =  
̅2 ( 2.7) 

and the covariance matrix, 
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 '((
2 −  
̅2)(
2 −  
̅2)-) = Σ2  ( 2.8) 

Σ2 is the initial covariance matrix of the state vector 
2 in the beginning of the algorithm (time 

step 0). This matrix must be set by try and error approach through judgment of an expert, 

therefore we assume it to be known. Now having the input/control set {�2, �
, … , ��5
} and 

the measurement set {�
, … , ��} the goal is to obtain the best estimate of 
(�). By taking a 

Bayesian approach the filter tries to calculate an optimal value of the system’s state 

recursively. The term optimal conveys that minimization of state estimation error. It is done 

by propagating the conditional probability density function of the desired quantities (state 

estimates), given the known information coming from measurement and input. Hence the 

filter evaluates and propagates the following conditional PDF for increasing values of � (The 

concept of conditional probability has been explained in  Appendix D) 

 6(
�|�
, … , ��, �2, … , ��5
) ( 2.9) 

For given time instance of � consider that the sequence of previous inputs and the sequence of 

previous measurements are denoted by 

 82�5
 = {�2, �
, … , ��5
} ( 2.10) 

 9
: = {�
, �;, … , ��} ( 2.11) 

then the entire filtering process can be described  [8] [27] as the following evolutionary 

process, 

• Given: 
2 
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o System apply �2 (caused by the uncertainty of the system), 

o We apply �2 (as input or control signals), 

o The system moves to state 

, 

o We make a measurement �
, 

• Question: Which is the best estimate of 

? Answer: Is Obtained from 6(

|9

, 822), 

o System apply �
, 

o We apply �
, 

o The system moves to state 
;, 

o We make a measurement �;, 

• Question: Which is the best estimate of 
;? Answer: Is Obtained from 6(
;|9
;, 82
), 

o System apply �;, 

o We apply �;, 

o The system moves to state 
<, 

o We make a measurement �<, 

• Question: Which is the best estimate of 
�? Answer: Is Obtained from 

6(
�|9
�, 82�5
), 

o System apply ��, 

o We apply ��, 

o The system moves to state 
��
, 

o We make a measurement ���
, 

For the system represented by equations ( 2.3) and ( 2.4), the Kalman Filter will estimate the 

state vector with minimum mean-square error. Indeed when the system and measurement 
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noises are white and Gaussian and the 
2 is Gaussian vector then the conditional probability 

density functions 6(
�|9
�, 82�5
) are Gaussian for any � and consequently we can express it 

as the following  [8] 

 6=
�>9
�, 82�5
? ~ A(
B(�|�), C(�|�)) ( 2.12) 

where 
B(�|�) and C(�|�)3 represent first and second moment of the probability distribution 

respectively4 

 
B(�|�) = '(
(�)>9
�, 82�5
) ( 2.13) 

 C(�|�) = '((
(�) − 
B(�|�))(
(�) − 
B(�|�))-|9
�, 82�5
) ( 2.14) 

In fact with the Kalman Filter instead of propagating the entire conditional PDF we only 

propagate the mean and the covariance matrix of the distribution (Figure  2-3). Therefore the 

dynamic of the Kalman Filter is the general transformation from 6=
�>9
� , 82�5
? to 

6=
��
>9
��
, 82�? 

 6=
�>9
�, 82�5
? − − − − → 6=
��
>9
��
, 82�?  ( 2.15) 

                                                 

3 The meaning of the conditional term “�|�” is that given time � we have estimate value of 
B and C at the time � 
according to the formula. As we go ahead in this section, we will see at some point we need to estimate the value 
of 
B and C one time step ahead. We express it as following 
B(� + 1|�) and C(� + 1|�). That means that at given 
time � we have the estimate value of 
B and C for time � + 1. 
 
4 The first and second moments are mean and covariance matrix of the conditional PDF respectively. The C(�|�) 
is also known as error covariance matrix. 
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where both probability distributions are Gaussian and the input and the measurement vectors 

are available at time � and � + 1. 

 

 

Figure  2-3: Propagation of conditional PDF in KF  [8] 

 

The transition depicted in equation ( 2.15) is a two-step transition rather than one step. 

Therefore instead of jumping from the evaluation of 6=
�>9
� , 82�5
? to the evaluation of 

6=
��
>9
��
, 82�?, we first evaluate 6=
��
>9
� , 82�? and from there we will evaluate 

6=
��
>9
��
, 82�? 

 6=
�     >9
� , 82�5
? − − − − → 6=
��
>9
�    , 82�?  ( 2.16) 

 6=
��
>9
� , 82�    ? − − − − → 6=
��
>9
��
, 82�?  ( 2.17) 
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These two transitions, ( 2.16) and ( 2.17), are known as the prediction and the filtering/update 

cycles respectively (Figure  2-4). 

  

Figure  2-4: Two cycles of the Kalman Filter dynamics  [8] 

 

It should be noted that in the first cycle the evaluation of 6=
��
>9
�, 82�? is done at time 

instant � + 1, however the estimation of 
(� + 1) is “before” the observation of �(� + 1). 

That is why we call this cycle the “prediction cycle”. In the next cycle we are still at time 

instant � + 1, however the predicted value of 
(� + 1) is updated “after”  the observation of 

�(� + 1) hence this cycle is called the “update/filtering cycle”. By looking at Figure  2-5 one 

can understand how the recursive application of the prediction and the update/filtering cycles 

works. 
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Figure  2-5: Consecutive cycles of KF dynamics  [8] 

 

2.2.1. Kalman Filter derivation 

Derivation of the Kalman Filter formulation is straight forward. Our goal is to calculate 


B(� + 1|� + 1) estimation. As explained 6=
�>9
� , 82�5
? and 6=
��
>9
�, 82�? can be given 

as the following 

 6=
�>9
�, 82�5
? ~ A(
B(�|�), C(�|�)) ( 2.18) 

 6=
��
>9
�, 82�? ~ A(
B(� + 1|�), C(� + 1|�)) ( 2.19) 

where 
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B(�|�) = '(
(�)|9
�, 82�5
) ( 2.20) 

 
B(� + 1|�) = '(
(� + 1)|9
�, 82�) ( 2.21) 

and 

 C(�|�) = '(=
� − 
B(�|�)?=
� −  
B(�|�)?-|9
�, 82�5
) ( 2.22) 

 C(� + 1|�) = '(=
��
 − 
B(� + 1|�)?=
��
 −  
B(� + 1|�)?-|9
�, 82�) ( 2.23) 

Assuming that 
B(�|�) and C(�|�) are known at this stage, first we evaluate 6=
��
>9
�, 82�?. 

For doing so, 
B(� + 1|�) and C(� + 1|�) should be calculated. Now by substitution of 

equation ( 2.3) in ( 2.21) and knowing that '(��>9
� , 82�) = 0 we have 

 '(
��
>9
� , 82�) = ��'(
�>9
� , 82�) + ��'(��>9
�, 82�) + �'(��>9
�, 82�) ( 2.24) 

 
B(� + 1|�) = ��
B(�|�) + ���� ( 2.25) 

By defining the prediction error as 

 
G(� + 1|�) ≜ 
(� + 1) − 
B(� + 1|�) ( 2.26) 

and also the filtering error as 

 
G(�|�) ≜ 
(�) − 
B(�|�) ( 2.27) 
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and working with these equations we eventually have5 

 C(� + 1|�) = ��C(�|�)��- + ��0���- ( 2.28) 

With the same method we can show that the evaluation of 6(���
|9
�, 82�) leads to 

 '(
��
�G-(� + 1|�)) = C(� + 1|�)���
-  ( 2.29) 

and finally using equation ( 2.29) the evaluation of 6(
I�
|9
��
, 82�) yields 

 
B(��
|��
) =  
B(��
|�) + J(��
)(�(��
) − �(��
)
B(��
|�)) ( 2.30) 

 C(��
|��
) = C(��
|�) − J(��
)���
C(��
|�) ( 2.31) 

where J(� + 1) is called “Kalman Gain” and defined as 

 J(��
) = C(��
|�)���
- K���
C(��
|�)���
- + !L5

 ( 2.32) 

 

2.2.2. Kalman Filter algorithm 

The Kalman Filter algorithm is quite simple and can be followed from previous section 

nevertheless we reiterate it here again to make it clearer. Assuming that a linear time-varying 

system is governed by the following two equations, 

                                                 

5 The detailed steps can be found on various references (e.g.  [8]) 
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��
 = ��
� + ���� + ���          � ≥ 0 ( 2.33) 

 �� = ��
� + �� ( 2.34) 

the algorithm goes as following, 

Step 0 (Initial condition) 

At step 0 we collect the necessary information from previous step which are the posterior 

estimate and error covariance matrix; 
B(�|�) and C(�|�) respectively. 

 

Step 1 (Prediction) 

 
B��
|�  = ��
B�|� + ���� ( 2.35) 

 C��
|� = ��C�|���- + ��0���- ( 2.36) 

Note that at the very first step we consider that the prior estimate and error covariance matrix 

are 

 
B(0|−1) = 
̅2 ( 2.37) 

 C(0|−1) = Σ2 ( 2.38) 

hence we don’t need any information from none-exiting last step (
B(5
|5
) and C(5
|5
)). 
̅2 

and Σ2 are average and covariance matrices of state vector 
 at time step 0 respectively, and 

they are set by try and error approach through expert knowledge. 
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Step 2 (Filtering) 

 J��
 = C��
|����
- K���
C��
|����
- + !L5

 ( 2.39) 

 
B��
|��
 =  
B��
|� + J��
(���
 − ���

B��
|�) ( 2.40) 

 C��
|��
 = (M − J��
���
)C��
|� ( 2.41) 

where the M is identity matrix. For the next iteration of the algorithm we take 
B��
|��
 and 

C��
|��
 as 
B�|� and C�|� respectively and will repeat the process again. 

 

2.3. Extended Kalman filtering 

In section  2.2 we discussed about the Kalman Filter in the context of linear dynamic systems 

governed by linear stochastic difference equations. Now the question is what we should do if 

the system is not linear. Similar to a Tylor series, what can be done here is the linearization of 

the estimation around the current estimate using partial derivative of nonlinear process and 

measurement functions. We consider a nonlinear dynamic system without external input as 

below 

 
��
 = ��(
�) + �� ( 2.42) 

 �� = ℎ�(
�) + �� ( 2.43) 

where 
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� ∈ ℛ"�� ∈ ℛ$�� ∈ ℛ$�� ∈ ℛ"��(
�): ℛ" →  ℛ"ℎ�(
�): ℛ" →  ℛ$
 ( 2.44) 

{��} and {��} are white Gaussian, independent and random process and measurement noises 

with zero means and covariance matrices 

 '(����-) = !� ,                 '(����-) = 0� ( 2.45) 

and finally 
2 is the initial state of the system as a Gaussian random vector 

 
2 ~ A(
̅2, Σ2) ( 2.46) 

Similar to linear Kalman Filter, 
̅2 and Σ2 are average and covariance matrices of state vector 


 at time step 0 respectively, and they are set by try and error approach through expert 

knowledge. As the derivation of the EKF is lengthy we do not discuss it here for further study 

one can refer to  [8], or for more generalized form to  [28]. 

 

2.3.1. Extended Kalman Filter algorithm 

The algorithm of the EKF is very similar to the KF algorithm, 
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Step 0 (Initial condition) 

At step 0 we collect the necessary information from previous step which are the posterior 

estimate 
B(�|�) and matrix C(�|�). It should be noted that in the EKF C(�|�) is no longer 

representative of the error covariance. 

 

Step 1 (Prediction) 

 
B��
|� = ��(
B�|�) ( 2.47) 

 C��
|� = P�C�|�P�- + 0� ( 2.48) 

where P� is Jacobean matrix of ��(. ) at 
B�|� and denoted by 

 P� = ∇��|IBR|R ( 2.49) 

The Jacobian matrix is the matrix of first partial derivatives of a vector-valued function. What 

the Jacobian matrix does here is the linearization of the process function around 
B�|�. The 

Jacobean matrix is defined as the following, 

For a vector-valued function ℱ(
), 

 ℱ(
): ℛ" →  ℛ#  ( 2.50) 

The Jacobian matrix is 
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 T = UℱU
 = / VℱV

 … VℱV
"1 =  
WX
XX
Y V�
V

 … V�
V
"⋮ ⋱ ⋮V�#V

 … V�#V
"\]

]]̂ ( 2.51) 

 

Step 2 (Filtering) 

For filtering step first we calculate the Kalman Gain as defined below 

 J��
 = C��
|�_��
- K_��
C��
|�_��
- + !��
L5

 ( 2.52) 

where _��
 is Jacobean matrix of ℎ�(. ) at 
B��
|� and denoted by 

 _��
 = ∇ℎ��
|IBR`a|R ( 2.53) 

the next step is the calculation of the posterior estimate 

 
B��
|��
 =  
B��
|� + J��
(���
 − ℎ��
(
B��
|�)) ( 2.54) 

and C��
|��
 matrix 

 C��
|��
 = (M − J��
_��
)C��
|� ( 2.55) 

where M is the identity matrix. 

For the next iteration of the algorithm we take 
B��
|��
 and C��
|��
 as 
B�|� and C�|� 

respectively and repeat the process again.   
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3. ELECTRICAL ARC FURNACE MODELING 

 

3.1. On Mathematical modeling of physical phenomena 

Mathematical modeling of a system is description of the system by mathematical language 

and concepts. The origin of word “Modeling” comes from Latin world “modellus” describing 

a typical human behaviour of copying with reality  [29]. The history of the modeling goes back 

to the ancient civilizations of the Middle East and Greek. Perhaps the first recognizable 

models were “numbers” and development of ability to count and record on primitive media 

(e.g. bones or cave’s walls). From there humanity has come a long way in development of its 

ability to make better understanding of the world by mathematical modeling. 

Models can be classified in many different categories depending on how they are analyzed. 

Some examples of these categorizations are “linear vs. nonlinear”, “continuous vs. discrete”, 

“static vs. dynamic”, “deterministic vs. stochastic”, “implicit vs. explicit”, “deductive vs. 

inductive”, “white box vs. black box”, etc. Most of these categorization schemes are self-

explanatory, however we discuss the last three here briefly.  

Explicit or implicit modeling is often referred to numerical solution schemes that are 

implemented in modeling. In the explicit methods the state of a system at a later time (
��∆�) 

is calculated from the state of the system at the current time (
�) through an explicit equation, 
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(� + ∆�) = P(
(�)) ( 3.1) 

while in implicit method the solution is obtained from an equation involving both current and 

later state of the system, 

 �=
(� + ∆�), 
(�)? = 0 ( 3.2) 

The main difference of the explicit and implicit methods is the stability of the solution with 

regard to the size of the time step (∆�). The implicit method tends to be unstable on large time 

steps while the implicit method provides stable solution using an iterative numerical method. 

Selection between these two approaches is based on the nature of the problem on hand  [30]. 

A deductive model is developed based on the theory while an inductive model arises from 

empirical information and generalization from them. In practice no model is purely deductive 

or inductive but resides somewhere in between. These terms are mostly used for the models 

developed for the human science applications (e.g. sociology, management and, etc.)  [31]. 

Finally the last pair reflects a generalized categorization of the mathematical modeling which 

arises from the way the model is seen. A black box is a model that the user or the developer 

does not have any knowledge of its internal workings therefore it is merely seen as an input to 

output model. Here the most immediate question is if the internal working of the model is 

completely unknown how the model is developed at first place. The answer to this question is 

the architecture of the model is partly or completely known; however the parameters of the 

model are unknown initially and will be learned through a learning process. Considering a 

model with numerous parameters it would apparently be very difficult to infer any meaningful 
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relation between parameters and the outputs therefore the internal working of the model is 

assumed to be unknown. On the other hand in the white box modeling a priori information on 

the system is available, and this knowledge is used for establishment of relationship between 

inputs and outputs. The developed models are directly based on these relationships therefore 

models are transparent, and their internal working are fully understood. It is quite clear that in 

the real world applications no model is absolutely white or black, thus the practical models are 

somewhere between the two ends of the spectrum. 

 

3.2. Electrical Arc Furnace Modeling 

In this section we use the general “white box” and “black box” categories to classify the 

previous works on the EAF modeling. Nevertheless, it should be mentioned again that no 

model is fully white or black, but at least by this categorization one can see how the 

researchers try to approach the problem. 

 

3.2.1. White box models of EAFs 

A Large number of models can be considered as white box models. In fact there are numerous 

papers in which the authors try to adapt an explicit framework for modeling of the dynamic 

behaviour of the EAFs. There are a variety of techniques which can be implemented as an 

explicit framework for EAF modeling. Most of these models take some oversimplifying 

assumptions. Nevertheless some of these methods are reviewed in this section. 
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Differential equations based on Kirchoff’s Curent Law 

In their work  [32], Benoit Boulet et al. pursue an analytical approach to model the dynamic of 

EAFs. For the purpose of an efficient power controlling a good dynamic model must be 

developed. As first step, Benoit Boulet et al. utilized the Kirchoff’s Curent Law (KCL) to 

relate currents and voltages. With some assumptions on the resistance of circuit components, 

they developed the current equations of the electrodes. Using these equations, they developed 

an open-loop system by Simulink/MATLAB software to investigate different cases of several 

electrode positions. Finally by adding a feedback loop and models of other dynamic 

components (electrode’s hydraulic actuators, valves, etc.) a closed-loop dynamic system for 

controlling the power is developed by them. 

 

Chaos theory and differential equations 

Chaos theory is the study of the behavior of dynamical systems that exhibit high sensitivity to 

initial conditions  [33]. Chaos theory has numerous applications in different scientific fields 

such as fluids mechanics, economics, biology, and computer science. Chaos theory in 

conjugation with different methods can provide reasonable framework for EAF modeling. 

In  [34], Hariyanto et al. investigate an analytical approach to characterize voltage and current 

of EAFs. At first step the dynamic component of EAF is obtained by solving the energy 

equation of EAF. On the next step using “Chua’s Chaotic Circuit” the chaotic behaviour of the 

EAF is modeled. Using Simulink/MATLAB software the researchers combine the dynamic 
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and the chaotic components, and obtain a pre-phased model. Finally at the last step the pre-

phased model is connected to each phase of the EAF load model, and then the developed 

model is used to simulate EAF for the refining stage. The results of study show that the 

generated voltage and current successfully resemble actual EAF especially in harmonic 

content. 

Ozgun and Abur‘s work  [35] is predecessor of the previous work  [34]. They also use chaos 

theory for EAF modeling. From historical point of view, we have two general approaches to 

the problem of arc furnace modeling: stochastic and chaotic. The main advantage of chaotic 

approach is that models developed by this method will capture changes in the 	 − � 

characteristics as the operating conditions change. In contrast, stochastic approaches or some 

other empirical relations are not normally able to do that.  [35] Ozgun et al. start with modeling 

of EAF’s dynamic behaviour based on Collantes-Bellido and T. Gomez work  [36] using 

energy equations. The second step is similar to Hariyanto et al. work  [34] as the low-

frequency chaotic signal generated by the simulation of Chua’s circuit is combined with 

dynamic model obtained from previous step. The main differences of these two studies are 

that Hariyanto et al. work  [34] is extended to three phased EAF while Ozgun and Abur ‘s 

work is limited to one phase. The simulation results show that the voltage and current 

resemble actual EAF. 
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Probability theory 

Another well-known approach for dynamic modeling of chaotic and non-linear systems is 

probabilistic approach. Within chaos and nonlinearity there is hidden order which can be 

investigated with probabilistic methods. EAF modeling can also be tackled with this view 

point. 

Using probability techniques, Petersen et al.  [37] provide two models to study the flickering 

phenomena of EAFs. In the first model, “Arc-Voltage Model”, the fluctuation of the arc 

voltage is assumed to be Gaussian approximately. The primary source of this fluctuation is the 

variation of the arc length caused by arc movement and sudden collapse of metal scarps. The 

inherent response-time limitation of the electrode displacement control system is another 

contributor. By using mean voltage and variance of square arc voltage the authors propose a 

model to simulate the arc voltage. In the second model, “Arc-resistance model”, the authors 

try to model the arc resistance by statistical properties as well. Although true distribution of 

the furnace resistance is more concentrated around mean value than what is expected for 

normal distribution, an assumption of Gaussian distribution provides an acceptable model. In 

their conclusions, authors acknowledge that though models provide accurate results, they are 

only simulated for one case study. For that reason, the models should be investigated on 

several other furnace installations to establish a confidence level of developed models. 
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Hidden Markov theory 

Hidden Markov Models (HMMs) are another statistical scheme to model stochastic dynamic 

system. They originally have been developed for speech recognition, and became extremely 

popular  [38]. 

In their work  [39] Esfahani and Vahidi use hidden Markov model (HMM) to approach EAF 

problem. At first authors analyze the properties of the arc. Based on observed characteristics 

they argue that current properties of the arc depend on its current and previous states. Hence, 

by sampling from the voltage and the current of an actual arc, the hidden Markov theory can 

be adopted. For this purpose the arc � − 	 characteristic is divided into four regions. Then, 

different operating points are created in the aforesaid regions. Using the actual measured 

current and voltage of an electric arc in several working cycles, the statistical probability of 

the operating point is obtained under hidden Markov theory. According the authors the main 

advantages of this model are its non-approximation and accuracy in modeling which stems 

from the fact that the model is developed by experimental samples and applied HMM rather 

than specific mathematical equations. For that reason the developed model cannot completely 

be considered as white model.  

At the end it should be mentioned that that white box models do not generally offer accurate 

dynamic models for EAFs. Even for some models the random states of the arc is non-

existence. That is primarily due to the fact that most of these models use a specific set of 

mathematical equations to characterize the behavior of electric arc. Hence, the exhibited 



 

 

 39 

behaviour of the models is limited to that specific framework, and consequently the true 

randomness of the electric arc is not correctly modeled. 

 

3.2.2. Black box models of EAFs 

Black box modeling is useful when “a priori” knowledge is not available or the underlying 

process is so complex that it cannot be described into any conventional mathematical model 

accurately. In these cases the primary goal is fitting available data to a model regardless of its 

detailed mathematical structure. In general the model would have some free parameters that 

must be adjusted by several training cycles. This scheme is very much sensible for EAF 

modelling as EAFs are chaotic and highly nonlinear by nature. Many frameworks can be 

adopted to model an EAF in this context. Here we will discuss some with one or two 

examples. 

 

Fuzzy Interface System approach 

Fuzzy Interface System (FIS) is a reasoning system which is used for decision making and 

mathematical modeling. Compared to the classical logic this system accommodates partial 

true/false values, and for that reason these systems are quite versatile. The main advantage of 

FIS over other modeling systems is its capability in utilization of qualitative “if-then” rules to 

express nonlinear input/output relationships. 
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Sadeghian and Lavers use FIS approach to model an EAF in their work  [40]. Within this study 

two models have been developed. The first model tries to solve the problem with classical 

fuzzy logic method, and the second model uses adaptive fuzzy logic method. Here we will 

discuss the first approach and the other will be discussed later. In general for classical fuzzy 

logic, rule development is a try and error process. The existence of expert knowledge is also 

very helpful as it narrows the search space; Nevertheless with large number of inputs and 

chaotic/nonlinear behaviour of EAF the try and error approach, even with expert knowledge, 

would not be feasible. To solve this problem the authors use a straightforward fuzzy 

partitioning method.  

At first, the input/output space is identified. Then the input and output spaces are divided to 

arbitrary number of clusters with Gaussian membership functions. At the next step, each 

training data point is used to associate the input clusters to the output clusters in fuzzy rule 

format. In general with this method, a large number of data points tend to produce a large 

number of rules, however a trimming algorithm can be utilized to trim and resolve the 

redundant/conflicting rules. With the larger training set, this technique does not necessarily 

provide better result yet the training would be faster since it is done in one pass. 

 

Adaptive Neuro Fuzzy approach 

Adaptive neuro-fuzzy networks are hybrid of classical fuzzy rule based systems and neural 

networks. They encode the reasoning style of fuzzy systems into a neural network structure; 

hence the models developed by this method can be trained by proper training algorithm (e.g. 
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BP algorithm) based on training/verification sets. In their papers  [1] [40] Sadeghian and Lavers 

use adaptive neuro-fuzzy interface system (ANFIS) to model an EAF. The ANFIS adopts 

Gaussian membership functions for the input sets, linear functions for the rule outputs, and 

Sugeno's inference for aggregation of the rule outputs. 

At first step, authors use subtractive clustering algorithm to extract fuzzy rules from training 

data set. The main advantages of clustering algorithms are fuzzy rule reduction and 

association of good initial value to the model parameters. Then a hybrid algorithm consisting 

of the gradient descent and the least-squares estimate is deployed to tune up these parameters. 

Each iteration of this algorithm has a forward pass and a backward pass. In the forward pass, 

while the antecedent parameters are fixed, using the linear least-square estimate the 

consequent parameters are optimized. In the backward pass, the consequent parameters are 

considered to be fixed, and the output error is back propagated through the network. Then by 

using BP concept, the antecedent parameters will be updated.  

The results of Sadeghian and Lavers’ study show that ANFIS provides accurate result with 

fast training. Their ANFIS model  [1] offers a better model than their classical fuzzy logic 

model  [40]. 

 

Neural network approach 

The idea of artificial neural networks (ANNs) is based on simplified biological neural 

networks. The success of biological neural network (e.g. animal brains) in nature has been an 
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inspiring force for researchers to advance this field throughout decades of research. ANNs are 

utilized when the problem on hand cannot be easily materialized with conventional 

mathematical models. As all other statistical/adaptive models ANNs have to go through an 

training process which can be supervised or unsupervised depending on the type of network 

and the methodology used for training. With this brief introduction it is quite natural to see 

ANNs as a good candidate for EAF modeling since EAFs are chaotic and untamed 

mathematically. Several studies are conducted for EAF modeling with different variations of 

ANNs. 

In their work  [41], Chang and Chen propose an ANN model for EAFs. The classical 

multilayered perceptrons, also known as backpropagation networks (BPNs), are the most 

popular artificial networks. They are very effective in handling nonlinear problems, and 

providing results with high prediction. Normally these networks are trained with the 

backpropagation algorithm; however this algorithm has two undesirable drawbacks namely 

slow convergence and convergence to local minima of the error surface instead of the global 

minimum  [42]. The radial basis function neural networks (RBFNN) are an alternative to BPNs 

with simpler structure. As RBFNNs are very suitable for function learning and modeling the 

authors use them to model EAFs. Generally BPN and RBFNN both assume that there is a 

stationary relationship between input and output. Consequently they cannot provide good 

model for the systems which their state are changing chaotically  [40] (such as EAFs). To 

solve this problem authors combine RBFNN with lookup table (LUT) method. In fact LUT 

provides a framework for the network to memorize the dynamic characteristic of EAF 
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waveform. Simulation shows that their method can accurately model the 	 − � characteristic 

for assessment of waveform distortions, flickers, and reactive power consumptions. 

Some other techniques can also be combined with ANNs. For instance Mishra et al.  [43] use 

the combination of S-transforms and probabilistic neural network (PNN) to do power quality 

disturbances characterization and detection. In  [44] Santoso et al. propose the combination of 

Wavelet analysis and ANN for disturbance detection. In general these hybridizations are done 

by feature extraction. In these models instead of feeding raw input vectors to the neural 

networks the input vectors are pre-processed by one of these methods, and some feature 

vectors will be extracted. On the next step, feature vectors alone or combined with original 

inputs are feed to the networks.   
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4. PROPOSED METHODOLOGY 

4.1. Reasons for Using Kalman Filter 

Kalman Filter is a well-known tool for estimation and prediction of dynamic systems since 

1960s. There are substantial studies regarding to Kalman Filter and time series 

analysis  [45] [47] [46][47] [48]. Kalman filter provides an online algorithm that constantly 

updates itself to produce new estimate based on space state models  [46] . It can effectively 

handle the missing data which is quite common in real applications as well  [46]. Extended 

Kalman Filter, as a full second order gradient decent method, has faster convergence rate than 

the first order gradient decent algorithm since it normally converges with fewer iterations. All 

of these properties make Kalman Filter to be a good candidate for EAF modeling. 

 

4.2. Data acquisition 

In this study, the data that we are using for modeling is collected from a typical EAF. The 

dataset has two variables, current and voltage of the electrical arc; therefore it is considered as 

a multivariate time-series. The sampling rate of data acquisition (the Nyquist frequency) is 

1920 Hz. No information is available about the transducers or the techniques involved in data 

collection hence the uncertainty level is unknown. Nevertheless it should be mentioned that as 

the data is not synthetic, with no doubt we do have some level of uncertainty in our data. The 

source of uncertainty for these types of measurements are normally bonded to transducers 
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properties (accuracy, response time, etc.) as well as measurement techniques (e.g. direct 

measurement, indirect measurement, etc.). In this study we treat the dataset as it is. 

 

4.3. Preprocessing of data 

The data set might or might not be preprocessed. Preprocessing depends on the structure of 

the model and modeling technique. After selection of the model and its structure, the free 

parameter of the model will be adjusted and updated by Extended Kalman Filter (EKF). Here 

we will discuss three models. Pre-preprocessing of the data (if needed) will be discussed for 

each model individually in section  4.5. 

 

4.4. Training/adjustment of the model by Kalman filter 

The objective of the model is to predict the present value of the arc voltage based on previous 

values of the current and the voltage. We also consider that the present value of the current, 

corresponding to the unknown arc voltage, is known. That means at time c the de is unknown, 

while the known variables are de5
, de5;, … and Me, Me5
, Me5;, … . This can be seen in 

Figure  4-1. In this figure known data are color-coded in blue. The model’s job is mapping 

from known data to the unknown value (de). This mapping can be described as a following 

function ℎ(. ), 
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ℎ ∶  ℛ" →  ℛ                                                                 de = ℎ(Mg6�c �hicjk ,   Clklmhchk �hicjk)        ( 4.1) 

The input vector is the information obtained from previous values of the voltage and the 

current (which also includes the present value of the current as mentioned earlier). The input 

vector can simply be raw values of the d and M, or depending on the model’s structure some 

extracted features can also be included. Nevertheless all extracted features are also derived 

from previous values of d and M. The parameter vector is the collection of adjusting 

parameters of the model. These parameters are updated by Kalman filter in each time step 

hence the model is trained online. 

  

Figure  4-1: The objective of the model is to predict ��  
 

Now by representing the parameter vector (state vector) and input vector as ne and 8e 
respectively the following is the general form of the model, 

 de = ℎ(8e, ne) ( 4.2) 
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In his work  [12], Dan Simon used the Extended Kalman Filter algorithm to train a fuzzy 

system. His objective was to model fuzzy estimator for motor current windings. In this work 

we use the same concept with some adjustments to accommodate our problem. We will 

describe the mathematical formulation of our method in the following. 

Equation ( 4.2) provides an estimate for present value of the voltage. By assuming that this 

equation provides the answer with some error, the desired value (Ue) can be written as the 

following,   

 Ue = ℎ(8e, ne) + �e ( 4.3) 

In above equation the desired value is actually the target value, and the model must converge 

to this value in each step. Now by assuming the state vector is mapped by �(. ) with Gaussian 

error �, we would have, 

 ne = �(ne5
) + �e5
 ( 4.4) 

In fact equation ( 4.4) is the system equation and ( 4.3) is the measurement equation in Kalman 

filter terminology. To summarize, different terms in these two equations are, 

ne ∈  ℛ" is the system state vector (ne = (
", 
"5
, 
"5;, … , 

)), 
�(ne) is the system equation; mapping from present state vector to the next one. 

8e ∈ ℛ# is the input vector,  

�e ∈ ℛ" is the vector conveying the system error, 
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Ue is the target value of the voltage, 

ℎ(8e, ne) is model mapping and provides the prediction of the voltage value (de), 
and finally �e is the error related to the model. 

Since �(ne) is unknown we simply consider it as identity mapping therefore our equations are 

reduced to, 

 ne = ne5
 + �e5
    ( 4.5) 

 Ue = ℎ(8e, ne) + �e ( 4.6) 

Assuming that the initial state of model is no and sequences {�"} and {�"} are Gaussian and 

independent from each other with, 

 '(n2) =  np2 ( 4.7) 

 '((n2 −  np2)(n2 − np2)-) = C2 ( 4.8) 

 '(��) = '(��) = 0 ( 4.9) 

 ' *+�e�e , (�e- �e-). =  /0e 00 !e1 ( 4.10) 

where, the 0e and !e are joint covariance matrix of �e and �e respectively.  

With aforementioned assumptions and assuming that the nonlinearities of ( 4.6) are sufficiently 

smooth so that the EKF algorithm can be applied. By referring to the section  2.3.1 we have, 
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Step 1 (Prediction) 

 nqe|e5
 = nqe5
|e5
 ( 4.11) 

 Ce|e5
 = PCe5
|e5
P- + 0e ( 4.12) 

Since we assumed that the �(. ) is identify function, its Jacobean matrix is equal to identity 

matrix, 

 P = ∇�|rqsta|sta = M ( 4.13) 

hence the equation ( 4.12) is reduced to, 

 Ce|e5
 = Ce5
|e5
 + 0e5
 ( 4.14) 

 

Step 2 (Filtering) 

First we calculate the Kalman Gain, 

 Je = Ce|e5
_e-K_eCe|e5
_e- + !eL5

 ( 4.15) 

where _e is Jacobean matrix of ℎ(. ) around nqe|e5
 and denoted by, 

 _e = ∇ℎ|rqs|sta  ( 4.16) 

The next step is the calculation of the posterior estimate, 
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 ne|e =  nqe|e5
 + Je(Ue − ℎe(nqe|e5
))  ( 4.17) 

And finally the last step of the Kalman algorithm is the update of covariance matrix for next 

iteration of the algorithm. 

 Ce|e = (M − Je_e)Ce|e5
 ( 4.18) 

The results of equations ( 4.17) and ( 4.18) give us the estimate and covariance matrix for the 

next iteration of EKF algorithm. The equation ( 4.17) provides the updated state vector for the 

calculation of the output (predicted voltage through equation ( 4.2) ) on the next iteration of the 

algorithm. Figure  4-2 shows the flow chart of algorithm. 

In the beginning, we start with initialization of 02, !2, C2 and nq2. 02 and !2 are the 

covariance matrices of �2 and �2 respectively. As mentioned earlier, �" and �" are artificial 

noises that have been added to the process. Their values can be defined as fixed or variable 

during the process, nevertheless they control convergence speed and accuracy of the training. 

Selection of proper value for �" and �" is subjected to try and error method. nq2 is also 

initialized by try and error method as improper values may prevent convergence of the 

algorithm. Finally since C and 0 are closely related, as suggested by equation ( 4.14), we 

initialized them to be equal to 02 for the first iteration. 
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Figure  4-2: Flow chart of algorithm. The model is updated by EKF 

 

Moving down in the flow chart, the next step is the calculation of the model’s output by 

equation ( 4.2). The rest of the flow chart is simply EKF algorithm in which the new estimate 
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of state vector (ne|e) and the new error covariance6 matrix (Ce|e) are computed for the next 

iteration. 

 

4.5. Building the mapping function h 

As it has been discussed earlier our model is represented by Function ℎ described in equation 

( 4.2). In this section we will discuss three different approaches to define this function. 

4.5.1. Linear Auto-regression model 

The linear model is the simplest model we can consider. In this model we assume that the 

present value of the arc voltage can be predicted based on linear summation of previous values 

of the voltage and also present and pervious values of the current, 

 de =  u vwde5w
x

wy
 + u zwMe�
5w
{

wy
 + | ( 4.19) 

where, 

vw, zw and | are the parameters of the model, and form the state vector, 

 ne = (v
, … , vx , z
, … , z{, |)e  ( 4.20) 

                                                 

6 In reality Ce|e does not represent error covariance matrix as this can only be true when �(. ) and ℎ(. ) are linear. 
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This vector is learned and adjusted in each time step as it has been discussed in 

section  4.4. 

} is the number of previous values of voltage, 

~ is the number of present and previous values of current. 

For implementation of the algorithm MATLAB platform has been utilized. 

 

4.5.2. Fuzzy – Kalman model 

In this section we combine our previous linear autoregressive model with fuzzy subtractive 

clustering algorithm. The subtractive clustering algorithm is a modified version of the 

Mountain Method  [51]. In the beginning, the algorithm assumes each data point is a cluster 

center, and calculates its likelihood based on the density of the surrounding data points. Then 

the algorithm selects the data point with the highest potential and removes all data points in its 

vicinity according to a predetermined radius. This process is iterated until all data points are 

within the vicinity of at least one cluster.  

In this work we use the subtractive clustering algorithm which has been provided by 

MATLAB. The “subclust” function of MATLAB receives a training data set and computes 

the number of the clusters based on radius of influence  [52]. The eventual output of algorithm 

is a series of Gaussian membership functions for each cluster and each dimension of data 

point. For instance if the dimension of our data points was three, and the algorithm provided 
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us with two clusters; then we would have two sets of three membership functions. By utilizing 

a fuzzy inference engine (most commonly Sugeno inference system) the degree of 

membership for each cluster can be calculated. 
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Figure  4-3: Fuzzy - Kalman model (Function �(. )) 

 

For building the fuzzy model, we start with the subtractive clustering algorithm on our 

training dataset. After obtaining a number of clusters (�), we assume that each cluster has its 
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own linear equation ( 4.19) to predict the present value of the voltage. The final output of the 

model is the linear summation of each equation’s output weighted by corresponding 

membership degree of the cluster. Figure  4-3 shows the process for the fuzzy model. In this 

model the free parameters are (l

, … , lx
, z

, … , z{
, |
)e , (l
;, … , lx;, z
;, … , z{;, |;)e , 
… , (l
� , … , lx� , z
�, … , z{�  , |�)e. Consequently the system state vector is the aggregation 

all these vectors, 

 ne = (l

, … , lx
 , z

, … , z{
 , |
, … , l
� , … , lx�  , z
� , … , z{�  , |�)e ( 4.21) 

Here the Kalman Filter will adjust and update this vector at each time step.  

 

4.5.3. Wavelet - Kalman model 

Discrete Wavelet Analysis (DWA) is a branch of signal analysis which is commonly known 

as Multi Resolution Analysis (MRA). Methodologically wavelet analysis is similar to Fourier 

analysis as both methods break down a signal into its components for further analysis. Fourier 

analysis does this job by decomposing a signal into series of sine waves with different 

frequencies while the wavelet analysis does it by decomposing the signal into its wavelets 

through scaling and shifting of the “mother wavelet”. However there are some fundamental 

differences between Fourier and wavelet analysis. As it can be seen in Figure  4-4 sine waves, 

in Fourier analysis, are smooth and of infinite length while, on the other hand, wavelets are 

temporally localized and irregular in shape. These properties make wavelet to be an efficient 

tool for analysis of non-stationary signals  [53].  
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Figure  4-4: Sine wave (left), Daubechies db2 (right) 

 

The DWT of a signal is calculated by passing it through a tree of low and high pass filters. 

The high pass filter provides us with the detail coefficients while the low pass filter gives us 

the approximation coefficients of the signal  [54]. Since the signal loses half of its frequency 

by the filtering process, according to the Nyquist theorem, half of the samples are discarded. 

The algorithm is perpetually repeated on approximation coefficients, and consequently new 

details of lower resolution are obtained. Figure  4-5 depicts the output of multiresolution 

analysis up to level three. 

In our third model the wavelet analysis is used as preprocessing tool for our raw data. For this 

purpose the previous values of the voltage and current are individually subjected to DWT 

algorithm to calculate approximation and detail coefficients to a desired level. Then the result, 

accompanying with some or all of the raw data (voltage and current without any 

preprocessing) forms our input vector. 
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Figure  4-5: Filter bank representation of the DWT 

 

The input vector is defined as following, 

 8e = (���� , ��
,…,�� , ����, ��
,…,�� , de5
,…,e5 ", Me,…,e5#) ( 4.22) 

where, 
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����  : Approximation coefficients of vector Me,…,{ at level �. 

��
,…,��  : Detail coefficients of vector Me,…,{ from level 1 to level �. 

���� : Approximation coefficients of vector de5
,…,x at level �. 

��
,…,��  : Detail coefficients of vector de5
,…,x from level 1 to level �. 

de5
,…,e5" : Desired number of samples from the original voltage input vector 

(de5
,…,e5x). 

Me,…,e5# : Desired number of samples from the original current input vector 

(Me,…,e5{). 
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Figure  4-6: Wavelet model (Function �(. )) 

 

Now at the next step our input vector is used in a linear regression function, 

 de =  u vw�w
:

wy
 + | ( 4.23) 

where J is the number of elements in input vector 8e (See Figure  4-6). The vw and | are the 

free parameters of the model which form the system state vector, 

 ne = (vw , … , v:, |)e ( 4.24) 

This vector is updated and adjusted by Kalman Filter through each time step. 



 

 

 60 

4.6. Computational complexity of the proposed algorithm 

In general Kalman Filter is computationally expensive. Since the core of the proposed 

algorithm is based on Extended Kalman Filter, our learning algorithm is also computationally 

expensive. A quick review of the algorithm (depicted in Figure  4-2) indicates that the main 

burden of computation lies on the step where the Kalman Gain is calculated, 

 Je = Ce|e5
_e-K_eCe|e5
_e- + !eL5

 ( 4.25) 

Inversing matrix _eCe|e5
_e- + !e by Gaussian Elimination method leads to �(g<) 

complexity. In general complexity of matrix inversion is between �(g<) to �(g;.<�) 

depending on property of the matrix and the implemented algorithm  [57]. Generally 

algorithms with equal or larger than quadratic time, �(g;), do not scale well. Therefore we 

should be careful not to develop a mapping function with too many free parameters for 

adjustment, for the proposed algorithm would be too slow.   



 

 

 61 

5. DISCUSSIONS OF RESULTS 

 

5.1. Result of Linear Auto-regression model 

Our first model is the Linear Auto-regression model. As it has been described in section  4.5.1 

the free parameters of the following equation (vw, zw, |) are adjusted by Kalman Filter, 

 de =  u vwde5w
x

wy
 + u zwMe�
5w
{

wy
 + | ( 5.1) 

} and ~ represent the number of previous values of the current and voltage used in the 

mapping function. We consider them to be equal in our model therefore when we state that } 

is two, it means that two previous value of the voltage and one previous value of the current 

(in addition to its present value) is fed to the algorithm in each time step. It should also be 

noted that the present value of the current is known to our model hence we only need to go 

one step back for the current. 

On the next step 02, !2, C2 and nq2 must be initialized for the algorithm. 02 and !2 are the 

covariance matrices of �2 and �2 respectively, and calculated as following, 

 02 = �({�});M
�
 ( 5.2) 

 !2 = �({�});M;�x�
 ( 5.3) 
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The selection of proper value for standard deviation of {�} and {�} is subjected to try and 

error. After some tries, we decided to set them to be equal to 

 �({�}) = �({�}) = 0.1 ( 5.4) 

The nq2 is also subjected to try and error and we set it to be 

 nq2 = 0.001 � M;�x�
 ( 5.5) 

where M is the identity matrix, and 2 � } + 1 represents the number of free parameters in the 

model. 

After initialization, the model is fed with 600 samples of the time series repeatedly for 150 

times. This helps the free parameters to settle to their stable values therefore this phase can be 

seen as training/adjustment phase. The selection of number of samples (600) and number of 

epochs (150) is done by the observation of the error fluctuation and the level of generalization 

of the model. In this study we check two error indexes, None Dimensional Error Index 

(NDEI) and Root Mean Square Error (RMSE). The first is normalized dimensionless error 

index and the second is the standard deviation of the differences between predicted values and 

observed values. The NDEI and RMSE are calculated by following formulas respectively 

 
}�'M = !�~'�1� � ∑ =Ue − '(Ue)?;-ey


 
( 5.6) 
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 !~�' =  �∑ (de − Ue);-ey
 �  ( 5.7) 

where Ue is the desired (target) value of the voltage and '(Ue) represents the average of the 

desired values. de represents model’s output, and finally � represents the number of samples. 

Table  5-1: Result of first experiment - Linear Auto-regression model 

 Training/Adjustment Test  with EKF ON Test with EKF Off 

N NDEI RMSE (V) NDEI RMSE (V) NDEI RMSE (V) 

1 0.1616 39.7911 0.2060 50.6568 0.6988 94.4757 

2 0.1310 32.2646 0.1356 33.4040 0.3350 82.5498 

4 0.0597 14.7226 0.0661 16.2804 0.0597 14.7130 

8 0.0494 12.2315 0.0530 13.0603 0.0692 17.0308 

16 0.0412 10.1656 0.0457 11.2648 0.0825 20.3180 

32 0.0321 7.9226 0.0351 8.6477 0.0871 21.4609 

64 0.0320 7.8854 0.0364 8.9768 0.1376 33.8931 

Note: � represents the number of previous values of the current and voltage 

used in the mapping function �(. ), hence the size of input vector is � � �. 

The number of adjusting free parameter is � � � + �. 
 

On the next phase, the adjusted model is presented with a new set of data with size of 4400 

samples to see how it performs. Consequently this phase can be called the test phase of our 

experiment. We do this in two ways. First we discount EKF part of the algorithm meaning that 

the free parameters of the model do not update on each time step. Contrarily in second try we 

make sure that the EKF part of the algorithm is still engaged and the free parameters are 

constantly adjusted in each time step. We also repeat the process for different size of input 

vector (}: 1, 2, 4, 8, 16 , 32 lgU 64) to study the effect of number of previous values of the 

current and voltage on the prediction. The result of study can be seen in Table  5-1 and 
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Figure  5-1. Figure  5-2, Figure  5-3 and Figure  5-4 shows outputs of model against target 

values. The model’s output is color coded in blue, while the target value is presented with red 

colored line. The None Dimensional Error Index (NDEI) is presented in these figures with 

black colored line. As it can be seen, for windowing size of } = 32 (Figure  5-2) the red line 

can hardly be seen which means the model has good prediction. The situation is not as good as 

Figure  5-2 for Figure  5-3 and Figure  5-4, as they have higher level of error, }�'M =  0.053 

and }�'M =  0.135 respectively. The reason for this phenomenon is the windowing size for 

Figure  5-3 and Figure  5-4 are } =  8 and } =  2 respectively which is smaller than } = 32 

of Figure  5-2. In general the output Figure  5-1 shows that increase in windowing size will lead 

to lower level of error, however this effect is not that much, if we go higher than } =  32. 

By reviewing Table  5-1 and Figure  5-1, it is clear that the output of model is much better 

when the EKF is engaged. That means that the developed model cannot be used in “train and 

use” scheme. In fact the EKF part of algorithm must always be engaged to perpetually adjust 

the parameters. 
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Figure  5-1: Error Vs. numbers of previous values used in modeling - Linear Auto-regression model 
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Figure  5-2: Linear auto regression model – N: 32 – NDEI: 0.035 

 

Figure  5-3: Linear auto regression model – N: 8 – NDEI: 0.053 

 

Figure  5-4: Linear auto regression model – N: 2 – NDEI: 0.135 
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5.2. Result of Fuzzy - Kalman model 

As it has been discussed in section  4.5.2, our second model is developed by combination of 

the Fuzzy model and Kalman filtering. After series of try and error, it has been decided to 

perform fuzzy clustering on the latest value of the voltage and current available in each time 

step. In has been observed that using more training values of current and voltage does not 

provide any meaningful differences in the results. 

We start with dividing our dataset into two parts. As the first model, 600 samples of the time 

series are selected for training/adjusted phase and the rest (4400 samples) will be used in the 

testing phase. At first the samples are fed to subtractive fuzzy clustering algorithm to obtain 

clusters and their membership functions. The result of fuzzy clustering algorithm is four 

clusters. Consequently for each attribute of the clusters (latest value of current and voltage) we 

have four Gaussian membership functions. Using Larsen Product Implication, membership 

degree of each cluster at each time step is calculated from following equation, 

 

 �e����e�$x=������e�$x, ������e�$x? = ������e�$x � ������e�$x ( 5.8) 

where, 

�e����e�$x is the degree of membership for � �¡chk} (}: 1, 2, 3 or 4). 

������e�$x is Gaussian membership function for latest available value of voltage. 

Meaning that for time step c the de5
 is used for calculation of the membership 
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function’s value while the spread and center of membership function are 

calculated by fuzzy clustering algorithm. 
������e�$x is Gaussian membership function for latest available value of current. 

Meaning that for time step c the Me is used for calculation of the membership 

function’s value. As of ������e�$x, the spread and center of the membership 

function is also provided by fuzzy clustering algorithm.  

 
As depicted in Figure  4-3 each one of the four clusters has its own linear regression functions. 

Nevertheless the final output is calculated by the summation of weighted output of each 

function based on the membership degree of corresponding cluster. During the 

training/adjustment phase the free parameters of these four equations are adjusted by EKF 

algorithm. Now if we consider that we use the } latest values of voltage and current, then we 

have to adjust 4 � (2 � } + 1) or 8 � } + 4 free parameters for the whole model. 

The initialization of 02, !2, C2 and nq2 is done similar to the first model. Now we are all set to 

start training/adjustment phase. 600 samples of the dataset are fed to the model for 150 times. 

This helps the free parameters of the model settle to their stable values. Then the developed 

model will be exposed to the rest of dataset (4400 samples) to check its performance. This is 

done in two times. First we disengage the EKF part of algorithm, and in the second try we let 

the EKF part of algorithm to stay engaged during the test phase. This will help us to study the 

role of EKF on testing phase as well. The performance of the model is monitored with two 
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error indexes which has been introduce in section  5.1. The results of experiment are given in 

Table  5-2 and Figure  5-5 to Figure  5-9. 

Studying Figure  5-6 to Figure  5-9 reveals the same finding similar to our previous model 

(linear auto-regression model). Increase in windowing size will give us better error rate, 

however the improvement quickly becomes insignificant once }, the windowing size, 

increases. This trend can be seen in Figure  5-5 clearly. 

A quick review on Table  5-2 and Figure  5-5 indicates that similar to our first experiment 

(linear auto-regression model), the accuracy of the model heavily depends on the engagement 

of the EKF algorithm during the test phase. A cross examination of Table  5-2 and Table  5-1 

reveals that the error rate of Fuzzy-Kalman models are slightly more than linear auto-

regression models. 

Table  5-2: Result of second experiment, Fuzzy - Kalman model 

 Training/Adjustment Test  with EKF ON Test  with EKF Off 

N NDEI RMSE (V) NDEI RMSE (V) NDEI RMSE (V) 

1 0.1412 34.7833 0.1927 47.4730 0.2936 72.3382 

2 0.1282 31.5884 0.1345 33.1531 0.3181 78.3888 

4 0.0578 14.2530 0.0635 15.6544 0.0769 18.9357 

8 0.0474 11.7272 0.0511 12.5961 0.0836 20.5798 

16 0.0406 10.0086 0.0457 11.2645 0.0986 24.2955 

32 0.0358 8.8446 0.0393 9.6831 0.1181 29.0893 

Note: � represents the number of previous values of the current and voltage 

used in the mapping function �(. ) hence the size of input vector is � � �. As 

we have four clusters in our Fuzzy – Kalman model the size of the free 

parameter vector is ¢ � � + £. 
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Figure  5-5: Error Vs. numbers of previous values used in modeling, Fuzzy - Kalman model 

 

The main rationale behind incorporating fuzzy logic with Kalman filtering was to provide a 

decision making capability for the model. However to our surprise, it did not improve model’s 

error rate. In fact, it caused slight increase in the error. In addition, Fuzzy-Kalman model has 

more free parameters comparing to our first model (8} + 4 to 2} + 1, since fuzzy clustering 

divides dataset to four clusters). That must theoretically help Fuzzy-Kalman model to have better 

prediction which did not happen here. In fact, having more free parameters means more 

computation, and consequently this leads to lower efficiency of the model from computational 

point of view. 



 

 

 71 

 

Figure  5-6: Fuzzy – Kalman model, N: 32, NDEI: 0.0393 

 

Figure  5-7: Fuzzy – Kalman model, N: 16, NDEI: 0.0457 
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Figure  5-8: Fuzzy – Kalman model, N: 2, NDEI: 0.1345 

 

Figure  5-9: Fuzzy – Kalman model, N: 1, NDEI: 0.1927 
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5.3. Result of Wavelet–Kalman model 

In the third experiment we use DWT for preprocessing of the data. The initialization of the 

02, !2, C2 and nq2 is done in a similar manner to our previous models. Again we spilt the 

dataset into two parts. The first part has 600 samples, and will be used for training/adjustment 

phase. The rest of dataset (4400 samples) will be used for the test phase. Preprocessing of the 

data is quite straight forward (see Figure  4-6). Voltage and current vectors are individually 

decomposed by DWT algorithm to desired level. The latest values of the voltage (de) and 

current (Me5
) alongside of the two decomposed vectors are concatenated and fed to the EKF 

algorithm to adjust model’s free parameters. After 150 times of iteration on the 

training/adjustment dataset, the value of free parameters settles to their stable values and the 

model is ready for performance test. 

The performance test is also done in a similar fashion to our previous models. We first 

disengage the EKF algorithm to see how model performs without online adjustment of 

Kalman algorithm. Then in the second run the EKF is engaged and continuously adjusts 

model’s free parameters online. 

The process of training/adjustment and performance test has been done several times with 

decomposition levels of 1, 2 and 3. Since the minimum number of samples required for level 3 

decomposition is equal to 8, the smallest windowing size of 8 is selected for these models. In 

general, minimum number of samples for decomposition level of g is equal to 2".  
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The results of our third experiment can be seen in Table  5-3, Table  5-4 and Table  5-5. 

Table  5-3 provides us with error rates of decomposition level of 1 for different windowing 

size (Starting from } =  8 up to } =  64), while Table  5-4 and Table  5-5 provide the same 

information about decomposition level of 2 and 3 respectively. By reviewing these three 

tables, one can infer that there is no significant improvement in error rate when we increase 

the decomposition level. For instance, by comparing the None Dimensional Error Index 

(NDEI) for } = 64, we virtually observe the same error rate for EKF engaged test phase. The 

error rate of decomposition level 1 is 0.0335 while level 2 and 3 provide 0.0334. Moreover, a 

quick glance on Figure  5-13, Figure  5-13 and Figure  5-15 show us that the output of models, 

with windowing size of 32, for all decomposition level is identical. 

 

Table  5-3: Result of third experiment – Wavelet-Kalman - decomposition level : 1 

 Wavelet-Kalman - decomposition level : 1 - Haar wavelet 

 Training/Adjustment Test  with EKF ON Test  with EKF Off 

N NDEI RMSE (V) NDEI RMSE (V) NDEI RMSE (V) 

8 0.0492 12.1645 0.0528 13.0070 0.0661 16.2792 

16 0.0414 10.2061 0.0460 11.3439 0.0843 20.7725 

32 0.0316 7.7917 0.0349 8.5871 0.0915 22.5429 

64 0.0283 6.9779 0.0335 8.2424 0.0651 16.0371 

Note: � represents the number of previous values of the current and voltage 

used in the mapping function �(. ). Since the latest values of voltage and 

current is also concatenated to the decomposed vectors the number of 

model’s free parameter is � � � + ¤. 
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Table  5-4: Result of third experiment – Wavelet-Kalman - decomposition level : 2 

 Wavelet-Kalman - decomposition level : 2 - Haar wavelet 

 Training/Adjustment Test  with EKF ON Test  with EKF Off 

N NDEI RMSE (V) NDEI RMSE (V) NDEI RMSE (V) 

8 0.0492 12.1647 0.0528 13.0073 0.0661 16.2803 

16 0.0414 10.2068 0.0460 11.3450 0.0843 20.7749 

32 0.0316 7.7908 0.0349 8.5869 0.0915 22.5433 

64 0.0283 6.9763 0.0334 8.2402 0.0651 16.0282 

Note: � represents the number of previous values of the current and voltage 

used in the mapping function �(. ). Since the latest values of voltage and 

current is also concatenated to the decomposed vectors the number of 

model’s free parameter is � � � + ¤. 

 

 

Table  5-5: Result of third experiment – Wavelet-Kalman - decomposition level : 3 

 Wavelet-Kalman - decomposition level : 3 - Haar wavelet 

 Training/Adjustment Test  with EKF ON Test  with EKF Off 

N NDEI RMSE (V) NDEI RMSE (V) NDEI RMSE (V) 

8 0.0492 12.1645 0.0528 13.0071 0.0661 16.2797 

16 0.0414 10.2077 0.0461 11.3461 0.0843 20.7763 

32 0.0316 7.7914 0.0349 8.5871 0.0915 22.5478 

64 0.0283 6.9742 0.0334 8.2382 0.0651 16.0258 

Note: � represents the number of previous values of the current and voltage 

used in the mapping function �(. ). Since the latest values of voltage and 

current is also concatenated to the decomposed vectors the number of 

model’s free parameter is � � � + ¤. 

 

Studying Figure  5-10, Figure  5-11 and Figure  5-12 show that similar to our two previous 

experiments (linear auto-regression and Fuzzy-Kalman models), the Wavelet-Kalman models 

need to have EKF algorithm engaged during the test phase. The comparison between these 

three experimental models (linear auto-regression, Fuzzy-Kalman and Wavelet-Kalman) 
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reveals that the Wavelet models have slightly better outcome than linear regressive models. 

That is not very surprizing since the decomposed vectors of current and voltage contains 

coefficients reflecting both low and high frequencies. Low frequency coefficients 

(approximations coef.) present information about the global trend of the signal, while high 

frequency coefficients of different decomposition levels (detail coef.) provide more transient 

oriented information. We believe that is the main reason for better performance of Wavelet-

Kalman models. 

 

 

Figure  5-10: Error vs. number of previous samples used in modeling – Wavelet-Kalman model – decomposition level: 

1 
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Figure  5-11: Error vs. number of previous samples used in modeling – Wavelet-Kalman model – decomposition level: 

2 

 

 

Figure  5-12: Error vs. number of previous samples used in modeling – Wavelet-Kalman model – decomposition level: 

3 
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Figure  5-13: Wavelet–Kalman model, N: 32, Dec. level:1, NDEI: 0.0349 

 

Figure  5-14: Wavelet–Kalman model, N: 32, Dec. level:2, NDEI: 0.0349 
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Figure  5-15: Wavelet–Kalman model, N: 32, Dec. level:3, NDEI: 0.0349 
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6. CONCLUSIONS AND FUTURE WORKS 

6.1. Summary and Conclusions 

In this work, we tried to approach the arc furnace prediction problem using Kalman Filtering. 

Other attempts have also been made to generate a good model for this purpose, and some 

provided very good results (e.g.  [40]). However, all of these attempts might be compromised 

by one fundamental problem. When we are using a training set to train a model, we limit the 

model to the conditions which exist within that set. Normally real world processes are very 

complicated. Hence, obtaining a training set that could effectively encompass all possible 

working conditions is a hard or even an impossible task. In the case of electrical furnace, there 

are numerous conditions that could change from time to time. For instance, the graphite 

electrodes are constantly eroded during operation of the furnace or the consistency of the 

metal scraps differs from one charge to another. All of these varying conditions have impacts 

on the transfer function that we want to model. Consequently, when a model is trained by a 

training set, it would only respond best to conditions resemble to that set, and its response to 

other working conditions would be unknown. Using an online self-adjusting model can 

eliminate this problem, and that is what we tried in this work. 

In this study we used Kalman Filter algorithm to develop a number of online self-adjusting 

forecasting models. In the conducted experiments, we developed three models based on 

Kalman Filtering. The first model was a linear auto-regressive model based of EKF algorithm. 

The best results by this model was achieved, when the windowing size of } =  32 was 

selected. The error rate of this model was 0.0351 with aforementioned windowing size. In 
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second experiment we tried to incorporate Fuzzy logic and Kalman Filter to improve the error 

rate. However, to our surprise there was no improvement in the output of Fuzzy-Kalman 

model. The best error rate was achieved with windowing size of } =  32, and it was 0.0393. 

This shows that the error performance of this model is less than linear auto-regression model. 

Finally, in the third attempt, we tried to combine the Wavelet analysis with Kalman Filtering. 

This approach proved to be relatively successful, and the developed model gave us relatively 

better results. A Wavelet-Kalman model with decomposition level 1 and the windowing size 

of } =  64, provided the best error performance. In fact, it gave us 0.0334 as the error rate. 

The cross examination these three models are given in Table  6-1. 

 

Table  6-1: Comparing three developed models 

 
 

Error rate 

(NDEI) 

Error rate 

(RMS) 

Improvement 

to Model 1 

Model 1 

N = 32 

Linear AR-

Kalman 
0.0351 8.6477 V N/A 

Model 2 

N = 32 

Fuzzy-

Kalman 
0.0393 9.6831 V -11.97 % 

Model 3 

N = 64 

Wavelet-

Kalman 
0.0334 8.2382 V 4.74 % 

 

Developed models can also be analyzed from speed performance point of view as well. Linear 

AR-Kalman model (linear auto regression model) does not need any pre-processing, hence it 

provides the fastest performance among our models. On the other hand, Fuzzy-Kalman model 

has more free parameters for adjustment. The number of free parameters for Fuzzy-Kalman 

model is proportional to the number of clusters used in modeling. For instance, if we use four 
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clusters, then the number of free parameter is four times of the Linear AR-Kalman with same 

windowing size. Finally, Wavelet-Kalman model is not computationally expensive as Fuzzy-

Kalman models. That is true because Harr wavelet decomposition can be done in linear time, 

�(g)  [58]. From Section  4.6, we know that the complexity of our algorithm is something 

between cubic and quadratic depending on implementation of the EKF algorithm. It is quite 

clear that the linear complexity of Harr wavelet decomposition does not add any burden to the 

complexity of the whole algorithm. Consequently, the speed performance of the Linear AR-

Kalman and the Wavelet-Kalman models are very similar when they have same windowing 

size.  

 

6.2. Possible future works 

Generally the proposed model can be improved by two methods. First we can use more 

intelligent functions as a measurement function. In this thesis we tried three different 

functions. Perhaps some types of neural networks or non-linear regression function could also 

be incorporated with Kalman Filtering. Another aspect of the model which can be improved is 

the prediction step of EKF algorithm. In this work we assumed that the predicted values of the 

state variables are equal to its previous values, 

 nqe|e5
 = nqe5
|e5
 ( 6.1) 

Now instead of using this passive approach we might have a more educated guess. One 

example of such approach can be borrowed from neural network learning algorithms. The 
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momentum technique  [55] provides higher convergence rate for neural network learning, and 

probably the concept can be adapted here. It should also be noted that this technique is 

originally designed for first order gradient descent algorithm, and it proved to be very useful 

in deep learning  [56]. Nevertheless the usefulness of some variation of this method for the 

EKF algorithm, which is a second order algorithm, should be thoroughly examined. Finally it 

is worth mentioning that Kalman Filtering is generally computationally expensive. That is true 

especially when we are dealing with state space of higher dimensions. The main reason behind 

this is the calculation of an inverse matrix during the KF algorithm. The size of this square 

matrix is equal to the size of state vector; therefore any improvement which requires more 

state variables is not quite the right direction to follow.  
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APPENDICES 

: Least square method Appendix A

Least square method is used for estimation of unknown values in an overdetermined system. 

Gauss had discovered if a system of equation is written in the matrix form then the problem 

can be solved by finding an estimate for unknown variables, 

 ¦ℎ

 ℎ
; … ℎ
#ℎ;
 ℎ

 … ℎ;#⋮ ⋮ ⋱ ⋮ℎ"
 ℎ"; … ℎ"#
§ ¦ 


;⋮
#

§ = ¦ �
�;⋮�#
§ ( A.1) 

or in the compact form, 

 _
 = � ( A.2) 

The estimate value of 
 is denoted by 
B, and can be calculated by minimizing the estimate 

error. The estimate error is defined as Euclidian vector norm, 

 ¨;(
B) =  |_
B − �|; ( A.3) 

 ¨;(
B) =  u ©u ℎwª
Bª − �ª
"

ªy
 «;#
wy
  ( A.4) 

To calculate the estimate value the derivative of equation ( A.4) must be equal to zero, 
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V¨;V
B� = 2 u ℎw� ©u ℎwª
Bª − �w

"
ªy
 « = 0#

wy
  ( A.5) 

The last term of equation can be expressed as following, 

 u ℎwª
Bª − �w
"

ªy
 =  {_
B − �}w ( A.6) 

hence the equation ( A.5) can be written as, 

 2_-(_
B − �) =  2_-_
B −  2_-� = 0 ( A.7) 

or, 

 _-_
B =  2_-� ( A.8) 

the equation ( A.8) is known as “Normal Equation”. Finally when the normal equation is 

solved for 
B we have, 

 
B =  (_-_)5
_-� ( A.9) 

The key term in the equation ( A.9) is _-_. This term is known as “Gramian Matrix”, 

 ¬ = _-_ ( A.10) 

The ¬ resolves how the equation ( A.9) behaves. If the Gramian Matrix is non-singular (i.e., 

invertible) then 
B can be determined. On the other hand if the Gramian Matrix is singular (i.e., 

non-invertible) then the column vectors of _ are linearly dependent therefore 
B cannot 
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uniquely be determined. In this case we say the system is underdetermined. The equation 

( A.9) gives an approximate solution when no exact solution exists (overdetermined system), 

and when the exact solution does exist (determined system) it will provide us with the “exact” 

solution. The least square method is an optimal estimator when the system is overdetermined. 
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 : Dynamic Systems Appendix B

A system is an assembly of interrelated or interdependent entities which can be seen as an 

integrated whole  [7]. If some properties of a system change over time, then the system is time 

variant therefore called a “Dynamic System”. Essentially anything which evolves through 

time can be considered as a dynamic system. Dynamic systems can broadly be categorized 

into linear and nonlinear. 

Dynamic systems are usually described [7] by differential equations. The following 

differential equation describes a dynamic system with time-varying dynamic characteristics in 

general form, 

 
U(
(c))U(c) = �(c, 
(c), �(c)) ( B.1) 


(c) and �(c) are vectors, and they are considered as state variables and input variables of the 

system respectively. The notion of “state variable” is quite important since these variables 

dictate how the system will react at a given time along with the corresponding input. The 

concept becomes clearer if we write the equation ( B.1) in its extended format, 

 

 

 

U=

(c)?U(c) = �
=c, 

(c), 
;(c), … , 
"(c),  �
(c), �;(c), … , �$(c)?U=
;(c)?U(c) = �;=c, 

(c), 
;(c), … , 
"(c),  �
(c), �;(c), … , �$(c)?⋮U=
"(c)?U(c) = �"=c, 

(c), 
;(c), … , 
"(c),  �
(c), �;(c), … , �$(c)?
 ( B.2) 
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As in can be seen variables 

 … 
" are all dependent, meaning that for finding their values, 

the given differential equation system must be solved. Here the only independent variable is 

the time (c). 

In the equation ( B.1) the state variables (

 … 
") and the input variables (�
 … �$) are 

collected in two vectors. The first one ( B.3) is the state vector and the second one ( B.4) is the 

input vector. 

 
(c) =  (

, 
;, 
<, … , 
")- ( B.3) 

 �(c) =  (�
, �;, �<, … , �$)- ( B.4) 

The g value of state vector can change independently at any time; hence the degree of 

freedom of the system is equal to g. 

The equation ( B.1) is an instance of a continuous time system, nevertheless in the most 

engineering applications we are dealing with the discrete time. In this case the equivalent 

equation is written in the recursive format, 

 
(c��
) = �(c�, 
(c�), �(c�))  ( B.5) 

given the time step is fixed (c� = �∆c). We simply can rewrite it in the compact subscript 

format as well, 

 
��
 = �(c�, 
� , ��) ( B.6) 

where 
� and �� are the state and the input vectors at the time c� respectively. 
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In some cases what we want from a dynamic system is the state itself, however in greater 

majority of cases the state variables are used to get a variable or variables which are the actual 

properties of interest. These variables are considered as the “outputs” of the dynamic system. 

To make it clear we provide a simple example. 

Consider a simple harmonic system. This dynamic system can fully be described by the speed 

and the position of the mass as the system variables (Figure  B-1). Now if someone is 

interested on the energy of the system, then the system variables (speed and position) can be 

used to calculate it. The energy of a simple harmonic system is equal to the summation of the 

kinetic energy of the mass and the potential energy of the spring, 

 ' = 8 + J = 12 �
; + 12 md; ( B.7) 

therefore for a simple harmonic system energy is a function of state variables, 

 '(c) = ℎ(
e, de) ( B.8) 

  

Figure  B-1: Simple harmonic system 
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In general the outputs of a dynamic system depend on the state variables and the inputs of the 

system as well. Consequently the general form of the dynamic system outputs can be written 

as the following, 

 � = ℎ(c, 
(c), �(c)) ( B.9) 

where � is the output vector of the dynamic system. 

 

  

Figure  B-2: Dynamic system block diagram  [7] 

 

Equation ( B.1) and ( B.9) are in general form. The linear form of these equations can be 

written respectively as following, 
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U(
(c))U(c) = P(c)
(c) + �(c)�(c) ( B.10) 

 �(c) = _(c)
(c) + �(c)�(c) ( B.11) 

where the P(c), �(c), _(c) and �(c) are time varying matrices. The matrix P(c) is called 

“Dynamic Matrix”, and its elements are known as “Dynamic Coefficients”. Similarly the 

matrix �(c) is called “Coupling Matrix” and its elements are best known as “Coupling 

Coefficients”. For formulation of Kalman Filter problem the discrete form of the equations 

( B.10) and ( B.11) are used.   
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: Stochastic systems and Random Processes Appendix C

If the dynamic system is relatively non-complex and with small number of components the 

system equations can be expressed explicitly. In this case, if the dynamic system is 

deterministic and it can be approximated to a linear form, then the prediction of the future 

state of the system is not mathematically a difficult task. Unfortunately in practice, what we 

are dealing with is a complex system possibly with a large number of components. Normally 

these systems are highly nonlinear in most cases. In this situation, it is quite clear that the 

deterministic approach will not work, and we have to think about a new approach. This new 

approach is “statistical”. In a nutshell by using statistical approach, the underlying dynamics 

of the system is treated as a random process and by combining the statistical and deterministic 

mathematical models, we will end up with “stochastic systems”  [7]. 

The following equation provides us a deterministic model for the discrete process under 

investigation, 

 
(c��
) = �(c�, 
(c�), �(c�))  ( C.1) 

The obvious implication of this equation is that the outcome of the equation at arbitrary time 

step (� + 1) only depends on the initial value of the state variables at first time step and the 

input vectors between first step and the step of interest (� + 1). This can be shown by 

recursive calculation of 
��
, 
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��
 = �(c�, 
�, ��)             
�     = �(c�5
, 
�5
, ��5
)
�5
 = �(c�5;, 
�5;, ��5;)⋮                           

     = �(c2, 
2, �2)              
 ( C.2) 

or, 

 
��
 = �(�(�(�(… �(
2, c2, �2), … ), c�5;, ��5;), c�5
, ��5
), c�, ��) ( C.3) 

Noticeably all intermediate values of 
 are eliminated, hence the output of this recursive 

function only depends on the initial state vector 
2 and known input vectors ({�2, �
, �;, … ,
��}). Clearly this model is not realistic as the real world systems with known inputs are not 

solely dependent on initial state  [25]. It is quite well known that some level of uncertainty is 

always present in any natural or engineering process. This uncertainty can stem from the 

imperfection in design of an engineering process or complexity of the natural process under 

investigation; as all involved factors cannot be considered due to the enormous complexity. In 

this situation the corrective approach is to add another input vector whose values are not 

known to the dynamic system equation, 

 
��
 = �(c�, 
�, �� , ��) ( C.4) 

By adding �� the future state of the system is no longer bonded just to the initial state. The 

equation ( C.4) can also be expressed slightly differently, if we consider that each time step has 

its own function, and consequently the time variable (c�) can be taken out, 

 
��
 = ��(
�, ��, ��) ( C.5) 
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Although �� is assumed to be unknown but its statistical properties are considered to be 

known. In fact the sequence {�2, �
, �;, … , ��} is a stochastic process with known 

probability law, which means the joint probability distribution of the random vector �� is 

known for each �. 

The same notion can also be applied to the secondary system equation ( B.9), hence it can be 

written as following, 

 �� = ℎ�(
�, ��, ��) ( C.6) 

where the sequence of {�2, �
, �;, … , ��} is also a stochastic process which the joint 

probability distribution of its elements are known.  
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: Random variables and probability Appendix D

A random variable is basically a function which maps from its domain to real valued numbers. 

For instance the random variable n(c) can maps time to position meaning that at any given 

time c the n(c) gives us the “expected” position. The term “expected” emphasized on the 

randomness of the value. This indicates we don’t know what the position is before its 

occurrence. Instead of the exact value of the function, we have some probabilistic information 

about its value. 

 

D.1 Probability 

The probability of an event � is defined as the likeliness of the occurrence of that event in the 

sample space, 

 C(�) = Cj¡¡	­ h j�cijmh¡ �l�jk	g® h�hgc ��jcl  g�m­hk j� 6j¡¡	­ h j�cijmh¡  ( D.1) 

If two events are mutually exclusive then the probability of an outcome favoring either � jk � 

is, 

 C(� jk �) = C(� ∪ �) = C(�) + C(�) ( D.2) 

The joint probability of two independent events � and � is the likeliness of an outcome 

favoring both � lgU �, 
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 C(� lgU �) = C(� ∩ �) = C(�)C(�) ( D.3) 

Finally, the conditional probability of � given � is defined as the outcome of event � given 

the occurrence of event � with C(�)  >  0, 

 C(�|�) = C(� ∩ �)C(�)  ( D.4) 

 

D.2 Cumulative Density Function 

The cumulative distribution function (CDF) is defined as the probability of a real valued 

random variable (e.g. n(c)) to be found to acquire a value less or equal to a specific number 

(e.g. 
), 

 Pr(
) = 6(−∞, 
) ( D.5) 

 

D.3 Probability Density Function 

The derivative of the equation ( D.5) is more common and known as the Probability Density 

Function (PDF). The PDF is none negative function, 

 �r(
) = UU
 Pr(
) ( D.6) 

The PDF is used for calculation of the probability over any interval (l, ­), 
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 Cr(l, ­) = ³ �r(
)U
´
µ  ( D.7) 
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