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Abstract

Online LTI System Identification and Time Delay Estimation
© Seyed Hossein Rahnamaee, 2016 Master of Applied Science

Electrical and Computer Engineering

Ryerson University

Model order selection for linear time-invariant (LTI) systems is an important system modeling con-

cern and has been widely investigated through past decades. Different approaches of order selec-

tion such as Akaike information criterion (AIC), Bayesian information criterion (BIC), minimum

description length (MDL) and reconstruction error LTI system identification (RE-LTI) propose

different criteria to select the optimum order of a system. In many real life applications of model

order selection the size of an observed data set is increasing. Thus, order selection methods need

to adopt the best fit of a model as the data set size is increasing. This is our motivation to extend

RE-LTI order selection for online application of order selection with lower computational cost

and complexity. It has been shown previously that AIC, BIC, two-stage MDL and many existing

order selection criteria are special cases of RE-LTI method. Our online order selection approach

reduces the computational complexity of the offline approach from O(N3) to O(N2). It should be

noted that RE-LTI and MNDL order selection methods have same fundamentals and consequently

extending RE-LTI to online RE-LTI also extends MNDL to online MNDL.

Another crucial issue in system identification and modeling is estimating the time delay of a

system’s impulse response (or determining the start of its non-zero part). This problem is addressed

in various areas including radar, sonar, acoustic source tracking, multipath channel identification,

as well as many automatic control applications. Utilizing fundamentals of RE-LTI approach, here

we introduce a new time-delay estimator. Simulation results show advantages of the proposed

method and its superiority to existing approaches in accuracy and robustness in terms of the FIT

index.
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Chapter 1

Introduction

System modeling and identification is an important subject with various applications [3], [4].

One crucial subject in this type of modeling that has received much attention in the literature is

model order selection. In model order selection the number of parameters involved in modeling is

not known. Over the past years, many different criteria and prior assumptions have been proposed

for this important question. [5]. It has been shown that reconstruction error is an order selection

method that is consistent and can cover many other order selection approaches such as AIC and

two-stage MDL [6].The first focus of this thesis is on online order selection. Online order selection

aims to find the system order and identify the system as more and more data becomes available.

With the fast developments in technology and consequently the fast growth of the amount of data

to be processed, a consistent online order selection approach is highly desirable as it would be the

answer to many applications needing real-time processes.

Model order selection has a rich history. Back in 1970s, Akaike, a pioneer in model selection,

introduced a minimum information criterion estimate (MAICE) based on the previously proposed

minimum information criterion (AIC) to provide an objective judgment among the competing mod-

els [7]. Although AIC has received much attention in literature, it tends to overestimate as data set

size increases or when noise variance is very small. Consequently, AIC is not consistent [8]. How-
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ever, some other works have tried to solve the AIC inconsistency issue by modifying its penalty

term to achieve a more generalized information criterion (GIC) [9], [10], [11]. Nevertheless, the

true model being a subset of the estimated model set is an unrealizable assumption of AIC and

the other methods expanding AIC to more consistent criteria. A more parsimonious criterion in

comparison with AIC is Bayesian information criterion (BIC) [12]. It has the same structure of pe-

nalized likelihood as AIC but penalizes the model order more than AIC. Therefore, for underlying

models with finite number of parameters BIC outperforms AIC, but the problem is we do not have

such information of true model in real application . This method like AIC leads to overestima-

tion and as a result many modifications such as e-BIC, lp-BIC, and h-BIC in literature have been

proposed as the better understanding of BIC framework with more consistency in high signal to

noise ratios (SNRs) [13], [14]. Another well-known and more recent criterion of model selection

is minimum description length (MDL). It measures the probability of models’ goodness consid-

ering a code length that must be minimized [15]. Among all code length formulations, two-stage

MDL as the best criterion has the same form of penalized likelihood as BIC. Although MDL is

consistent for large data set sizes, in high SNRs it tends to overestimate the model and like AIC is

inconsistent [8]. In [5] an informative review of previously mentioned criteria is presented.

Exponentially embedded family (EEF) is another method of model selection for linear models

[16]. Even though the high SNR consistency of EEF is shown in the literature [8], the asymptotic

behavior of EEF is like BIC that means its consistency is met under the assumption of large enough

data sizes compared to the number of parameters. This assumption is not always realizable in real

applications [17].

Kullback information criterion (KIC) and its different variants as model selection criteria, based

on Kullback divergence, have been investigated in [18]. They are used for autoregressive models.

It has been shown that KIC outperforms AIC for large samples in that KIC overestimates less.

However, KIC and its variants like the AIC have the assumption of the true model being a member

of a family of searched estimated models, that cannot be fulfilled.
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Reconstruction error model order selection introduced in [6] has solved the shortcomings of

all previously mentioned methods. This approach has utilized a different type of error along with

feasible assumptions. This method has proved its consistency and unwillingness to overestimation

in different scenarios for data set size and SNR. Despite the rich history of order selection, to our

knowledge none of the most used order selection approaches mentioned above has been modified

for fast and efficient online procedures.

The second focus of this thesis is on time delay estimation (TDE). Several TDE methods are

investigated in literature for different applications. A review of some of these methods is provided

here.

Ground penetrating radars (GPR) or through wall radars (TWR) localize hidden targets behind

the wall or in subsurfaces of the ground by estimating the time delay between backscattered echoes

from different layers. In [19] a model-based method of TDE, Estimation of Signal Parameters via

Rotational Invariance Techniques (ESPRIT), is used for the purpose of subsurface investigations

by GPR. This method has two preprocessing steps prior to time delay estimation procedure . First,

a deconvolution of the transmitted pulse in frequency domain is done to eliminate the effect of

ESPRIT’s assumption of time-shifted Dirac echoes and then to create the correlation matrix a

subband smoothing method (ISS) is applied to prevent the failure of ESPRIT in the case of strongly

correlated GPR echoes. The support vector machines (SVMs) in [20] have been chosen among

supervised machine learning algorithms to estimate the time delays of correlated GPR signals with

low computational time. Estimation results of this algorithm have shown good accuracy when

signals are correlated. In [21] a time delay estimation method based on compressive sensing (CS)

along with a clustering principle to enhance the echoes received in GPRs has been investigated. In

this paper, weak noisy correlated echoes are enhanced with the Karhunen-Loeve transform (KLT)

and then the estimation problem is done by an optimization.

To identify channel characteristics in wireless communications, the overlapped signals must be

recovered. In [22] to estimate the time delay of overlapped signals, the least squares estimator with

3



two preprocessing steps is proposed.The preprocessing steps, under-sampling and interpolation,

are used to compensate errors caused by low sampling rate in ultra-wideband systems. It has

been shown that the proposed time domain algorithm has a good performance in terms of lower

mean square error for different SNRs. In biomedical applications, artificial time delays resulted

from artifacts (e.g. coughing, sneezing, choking) must be estimated. This is an important part of

intensive care to decrease the discomfort of patients. This kind of time delay during ICU anesthesia

has been estimated in [23] by using a cross-correlation analysis over a sliding window. The sliding

window provides an online way of considering the changes in time delays.

Considering a signal corrupted by different types of additive independently and identically dis-

tributed (i.i.d) noise (like uniform, Gaussian, mixed Gaussian), [24] has estimated its time delay by

using maximum likelihood function. This method has shown that the variance of its estimator satis-

fies the Cramer-Rao lower bound (CRLB) to prove better performance of maximum log-likelihood

estimate over the other methods. In [25] a time delay estimation methods in the frequency domain

has been introduced. The method estimate the time delay between two received band-pass signals

by averaging their phase differences or their different frequency components in the pass-band.

In [26] a detailed review of methods for estimating the time delay has been presented. These

methods are classified into four groups as time delay approximation methods, explicit time delay

estimation, area and moments and finally higher order statistics methods. Different goals of time

delay estimation have been determined by the author as well. It has been specified that in some

applications the estimation of true time delay is needed while in some other applications the most

suitable time delay for a given model is estimated. Another objective of time delay estimation has

been defined in [2]. This objective is estimating a time delay that provides the best fit of a model

in terms of the system identification process.

In this thesis, we are focused on the type of time delay estimation that gives the best fit of a

model in the system identification process.
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1.1 Thesis Contributions

Considering two crucial issues, online order selection and time delay estimation, in Chapter 3

we develop an online reconstruction error linear time-invariant (RE-LTI ) model order selection

procedure. We show the one order decrease in the complexity order of our online procedure com-

pared with RE-LTI offline procedure. Stop-ID threshold is defined in this chapter to validate our

online model order selection method. In Chapter 4 using RE-LTI model order selection, we pro-

pose a method of time delay estimation with respect to the definition of system identification and

we show its superiority compared with existing methods by using the FIT index.

The remainder of this thesis is arranged as follows. In Chapter 2 a review of popular model

order selection criteria is presented. Also, there is a brief study of RE-LTI order selection as the

state of the art and basis of our online procedure. This chapter ends with a short review of the

time delay estimation concept with respect to te the definition of system identification. In Chapter

3 our online RE-LTI order selection has been introduced. The simulation results are provided to

show the consistency and fast computational time of our online procedure. This chapter ends with

a case study and its simulation results. We start chapter 4 by proposing a time delay estimation

method based on RE-LTI reconstruction error. The simulation results are presented at the end of

this chapter. Finally, in Chapter 5 we come to our conclusions and suggest some future works.
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Chapter 2

Background

2.1 System Identification and Online Order selection

2.1.1 System Identification

In system identification, a mathematical model is formulated based on prior knowledge of a

system. In many cases, the available input and output of the system play the critical role in this

procedure. Applications of system identification in various fields of science and engineering are

in numerous examples [4]. For instance, in signal processing, applications of this field are such

as fault detection, pattern recognition, and spectral analysis. The applications are also extended

in other areas such as biology and econometrics that require predictions or decisions based on the

system identification models [3].

As the exact underlying system is not available in this scenario, the aim of system identification

is finding the best fit of a true system which is analytically well-defined. Generally, a system

identification approach requires the following:
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1. Recording input-output data of the system to be modeled.

2. Considering a set of model structures that can define the relationship between input and

output such as linear difference equation.

3. Some assessment criteria like the least squares or maximum likelihoods to find the best

model in the set.

Going through the steps of the above procedure we reach to a model that needs to pass a validation

test to be accepted as a good enough and true description of the system, otherwise the procedure

must be repeated until the validation test is satisfied [4].

Due to wide applications of system identification, linear or non-linear, in different fields such

as automatic control, biology, economics, geology and many others on one hand, and on the other

hand the need to deal with more complicated systems as a result of rapidly developing technol-

ogy, this topic has received much attention in the literature and has been developed through past

decades. In [5] a review of system identification methods is provided. Methods including least

squares and maximum likelihood are the well-studied traditional methods for linear system iden-

tification while neural networks, fuzzy logic, genetic algorithm, swarm intelligence optimization

algorithms are modern system identification methods of non-linear systems [5,27,28,29,30,31,32].

Linear time-invariant (LTI) systems as the idealizations of real-life processes are the most im-

portant model structures considered in the field of system identification; while time-varying and

nonlinear models also have their uses in describing systems. Representing LTI systems is through

their impulse responses or their transfer functions and determining these definitions could be done

with selecting a finite set of parameters as the best fit for a system or directly without a set of

possible models, known as parametric or nonparametric identification methods respectively [4].

LTI system identification field has an important role yet still has its own challenges. The focus of

this thesis is on LTI system identification. However, proposing an online approach for this type of

system identification is also beneficial in slowly varying scenarios. In the following one general
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formulation of LTI system identification, which is used in this thesis, is derived.

The input-output relation of a causal and finite impulse response duration (FIR) LTI system

can be defined by its impulse response in the discrete time domain as:

y[n] =
M−1∑
i=0

a?iu[n− i] + w[n] (2.1)

where u[n] , y[n], a?i s, w[n] and M are input, observed output, impulse response coefficients, ad-

ditive white Gaussian noise with zero mean and variance of σ2
w, and number of impulse response’s

coefficients or system’s order respectively.

In this situation, if M in (2.1) is assumed to be known the optimum parameter model order

selection is typical of parametric approaches of system identification while it is not the case in

nonparametric methods because they do not use finite-dimensional vectors to find the best model

for a system [5]. Since maximum likelihood (ML) estimates of a system parameters has been

proved to be asymptotically efficient [33], it is usually used in parameter estimation and conse-

quently, order selection methods are mostly tied to it. In ML estimate, a likelihood function of

observed data y depending on a parameter vector θ = [a0, a1, ..., am−1]
T is maximized to obtain

the estimate of θ, as [6]:

θ̂ = argmax
θ

f(y; θ) (2.2)

when f(y; θ) is the probability density function (PDF) of observed data y depending on the param-

eter θ. If the assumptions are such that observed data of length N , yN , is normally distributed or

in other words its PDF is:

f(y; θ) =
1

(2πσ2)N/2
e
−
‖yN−ASM θ‖22

2σ2w (2.3)

where ASM is an N ×M Toeplitz matrix generated by the available input data of finite length N ,

uN = [u[1], ..., u[N ]]T , and the observed data, yN , is the noisy data as:

y[n] = ASM θ
? + w[n] (2.4)

consequently, the ML estimate in (2.2) is reduced to the form of least square (LS) estimate as:

θ̂SM = argmin
θ
‖yN − ASM θ‖22 (2.5)
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= (ATSMASM )−1ATSMy
N (2.6)

This system identification problem becomes much more challenging if no information on the value

of M is available. In this scenario, if absolutely no information on this value is available, M can

grow up to data length N . In this case, the parameter estimate for the different values of m is

calculated as follows:

θ̂Sm(yN) = (ATSmASm)−1ATSmy
N (2.7)

where ASm is the matrix with the first m columns of Toeplitz matrix ASM .

Using the available data error defined as:

xSm =
1

N
‖yN − ŷNSm‖

2
2 (2.8)

where ŷNSm is:

ŷNSm = ASm θ̂Sm (2.9)

combining the order selection with maximum likelihood estimator provides the following known

solution:

N = argmin
m

min
θ̂
‖yN − ASm θ̂‖22 (2.10)

This is a well-known problem with using only ML estimator and data error. Illustration of this

is given in Figure (2.1) which shows a typical behavior of this error as a function of m that is

1 ≤ m ≤ M . As the figure shows in this case that N = 100 even though the true order M = 50,

ML estimation and using the data error as a criterion picks m = 100 as the order of the system

since the data error is zero at that point.

So while data error is an important available value to be used in order selection, by minimizing

itself it will not provide the best fit of a system. Consequently, the following section concentrates

on the methods answering the order selection problem.
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Figure 2.1: Typical behavior of data error as the function of m

2.1.2 Order Selection

Choosing the best model among the estimated models of different orders based on a set of ob-

served data or in other words model order selection has been investigated for years. Model order

selection has many practical applications. Well-known methods of order selection in literature are

Akaike information criterion (AIC) [7], Bayesian information criterion (BIC) [12], the Minimum

Description Length (MDL) [15] and generalized information criterion (GIC) [9]. The common

part of all these methods is the ML estimator as an unbiased efficient estimate of a defined likeli-

hood function depending on an unknown vector of parameters, namely true parameters, for which

occurrence of the observed data has the highest probability. The next step in these methods which

is the part that makes the difference among them is the way of finding the optimum order among

the subspaces of different orders estimated for the set of observed data of a system.

Maximum likelihood estimator as the basis of the above methods looks for the best estimate of

a model parameters by minimizing the estimation error. Estimation error is a decreasing function
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of model order,therefore, minimizing this error does not help us with choosing the optimum order.

Thus a penalty term ,which is an increasing function of the model order, must be added to create

the bias-variance tradeoff [34] that leads to the optimum choice.

A general form, penalized log likelihood (PLL), of AIC, BIC, GIC and two-stage MDL is:

− 1

N
ln fm(y, θ̂m) + P (m,N) (2.11)

where fm(y, θ̂m) is the likelihood function of observed data and θ̂m is its maximizer in different

subspaces of order m. The second term of this general form, P (m,N), is the penalty term as

a function of subspace order m and data length N . The penalty term of each rule is derived

differently as [9]:

AIC : P (m,N) =
m

N
(2.12)

BIC : P (m,N) =
lnN

N
(2.13)

GIC : P (m,N) =
ρ+ 1

N
(2.14)

MDL(two− stage) : P (m,N) =
m logN

2N
(2.15)

All these rules are based on two important assumptions. First, the data length, N , is large enough

in comparison with subspace order, m, and then they assume that true model, θ?, is a subset of

estimated models:

m << N (2.16)

θ? ∈ Sm (2.17)

In many real applications, the set of available observed data has a finite length which means that

the first assumption is not always met. On the other hand because true model is unknown the

second assumption is not fulfilled. Obviously, out of the scope of these assumptions mentioned

methods are not consistent [35]. The inconsistency problem in high SNR conditions when data set

size is finite and noise variance tends towards zero has been addressed by many recent works.

Seminal article [8] has explored inconsistency or overestimation of MDL and AIC in case of

finite data sample sizes or when the noise variance is very small σ2
w → 0, in other words in high
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SNR conditions. Authors defined the probability of choosing model order Hj when the true model

order is Hp as the probability of wrong model order, Pe. They introduced a lower bound of the

probability of choosing the wrong model order in case of MDL and AIC. They proved this lower

bound is fixed by the size of observed data and is not dependent on noise variance in case of

MDL. In terms of AIC, this lower bound is constant for all different data sizes which shows the

inconsistency of AIC for both finite and infinite data set sizes.

Inconsistency of BIC when the length of available data, N , is finite and noise variance is very

small was discussed in [14] and then considering two different conditions of large N and small

noise variance, σ2
w << 1, authors introduced a proper form of BIC for only high SNR cases as

BICSNR(n). Since this form of BIC is only valid for high SNRs and fails in case of large N to

estimate the model order, n, authors tried to combine the BICSNR(n) with its basic form BICN (n)

to obtain a compact form BICN,SNR(n). In the combined form, the penalty term is the largest

one between BICN and BICSNR penalty terms. Although, in different combinations of observed

data size, N , and noise variance, σ̂2
w, they have shown acceptable choice of penalty term in their

method, in a small N and low SNR case their method is equal to BICN (n) which is not a good

choice. With the basis of BIC, in [13] another supplement to proper forms of BIC studied in [14]

has been presented by introducing three model order selection methods, namely empirical BIC (e-

BIC), hyper BIC (h-BIC) and laplace BIC (lp-BIC). Estimating the hyperparameter g of the g-prior

when the SNR is unknown yields e-BIC, considering g as a random variable with a defined pdf out

of a marginal likelihood results in h-BIC, and Laplace approximation for ln g shows the lp-BIC, all

has been illustrated as improvements to BICN,SNR which perform well under conditions of high or

low SNRs.

In [36] the consistency of penalized likelihood order selection methods and their limitations in

the absence of a prior upper bound of model order with respect to penalty terms of different orders

have been explored and showed that penalty terms of order log log n are minimal while penalties

of order n are maximal. Necessary and sufficient conditions to provide penalty functions for PLL

based order estimation approaches such as AIC,BIC and MDL, that result in high SNR consistency
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are looked for in [11]. Achieving this goal, authors considered two events of overestimation (O)

and underestimation (U) and investigated conditions that make the probability of occurring these

two events zero when the variance of noise is very small (high SNR conditions). Satisfying the

following assumptions is the necessary and sufficient conditions proposed in [11]:

h(k, σ2)− h(k0, σ
2)

P−→∞ as σ2 → 0; for k > k0 (2.18)

σ2
[
h(k0, σ

2)− h(k, σ2)
] P−→ 0 as σ2 → 0; for k < k0 (2.19)

where h is the penalty function, k0 is true order and σ2 is noise variance which is known. In

[10] a review of information theoretic criteria (ITC) such as AIC, BIC, MDL or more generally

generalized information criterion (GIC) has been presented and analyzed the performance of those

criteria with respect to the probability of correct detection of model order for different SNRs:

Pc = Pc(q, SNR, ν) = 1− Pover − P − under (2.20)

Pover ' P

(
qmax−q⋃
i=1

{ITC(q + 1) < ITC(q)}

)
(2.21)

Punder ' P

(
q⋃
i=1

{ITC(q − 1) < ITC(q)}

)
(2.22)

where q is the model order, ν is the parameter of GIC which must be selected properly, and Pover

and Punder are probabilities of overestimation and underestimation respectively. As they have

proved for high SNR underestimation probability is almost zero and consequently due to non-zero

overestimation probability these criteria always select the model order incorrectly. Based on the

assumption that true model is a member of the estimated model set, to overcome this shortcoming

in case of finite sample sizes authors proposed setting the parameter ν in GIC as:

ν̃ = arg max
ν

max
q,SNR

{
Pover(q, SNR, ν) | Pover ≤ PMAX

over

}
(2.23)

Another approach to model order selection proposed in [16] is done by embedding exponentially

two or more probability density functions, pi(X), (PDFs) into a family of pdfs:

pi(x; η) = exp

[
η ln

pi(X; θi)

p0(X)
− ln

∫
pη1(X)p1−η0 (X)dx+ ln p0(X)

]
(2.24)
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where θi is a vector of unknown model parameters, 0 ≤ η < 1, and p0(X) is given. Thus the

model order selection method is choosing the maximum pi(X; η̂) among all models:

EEF(i) = max
η

[
η ln

(
1

pTi(t(X); 0)

)
−K0(η)

]
(2.25)

A detailed study on the performance of EEF as an order selection criterion with a generalized

likelihood ratio (GLR) base has been presented in [17] where authors illustrated that estimating

model order, n, is through maximizing f̂(n) which is defined as:

max
n

f̂(n) = 2 ln

(
p̂n+1

p̂1

)
− n

1 + ln

2 ln
(
p̂n+1

p̂1

)
n

 (2.26)

In this work, it has been shown that the asymptotic behavior of EEF is like BIC and similarly this

method holds as long as the observed data size is large enough compared to the model order or in

the other words N >> n.

From what have been discussed so far, we can understand that underestimation or overestima-

tion issue of model order selection’s forefathers, AIC, BIC and MDL, is because of their penalty

terms. Therefore, many works have been done during the past years in literature to address these

problems by modifying the penalty terms used in those criteria. These modifications have led to

many variants of previously mentioned methods. However, a novel approach to model order se-

lection has been introduced in [6], namely reconstruction error model order selection (RE). This

method unlike the previous criteria, instead of using data error and then trying to find a penalty

term to create the tradeoff between the estimated fit goodness and its complexity, has used another

error. The error used in [6] has the desired tradeoff in itself, therefore, it does not need an addi-

tional penalty term. The error used in this method is the difference between the observed output

data and the noiseless output. Since the noiseless output as the representative of the true model is

not available, this error has been bounded probabilistically. Furthermore, unlike the above order

selection criteria, this method does not consider the true model to be a subset of estimated model

sets, which is a realizable assumption. Last but not least, this approach has proved that AIC, BIC,

and two-stage MDL are its special cases. Considering these specifications, RE-LTI model order
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selection is the state of the art to the best of our knowledge and we develop our online procedure

based on this method.

2.1.3 Reconstruction Error (RE)

Here we briefly review RE as the one powerful method of model order selection. Note that this

method is closely related to the MNDL approach [37] :

MNDL(yN , σ2
w) = min

Sm
DLσ2

w
(yN ; ŷNSm) (2.27)

where description length (DL) is:

DL(yN ; ŷNSm) = log2

√
2πσ2

w +
log2 e

2σ2
w

zSm (2.28)

and reconstruction error, zSm , is:

zSm =
1

N
‖yN − ŷNSm‖

2
2 (2.29)

In the absence of noise if we consider a class of estimated model sets with different orders for

an LTI system, obviously the highest order among them would introduce the least estimation error

while in the presence of noise estimating more parameters of impulse responses, in other words

models with higher orders, always do not result in smaller estimation errors since they are noisier

than the lower orders [6]. As a result, to compare model sets with different orders a metric which

shows parameter estimation error as a decreasing function of model sets orders by using available

noisy finite-length input-output data of the system is needed. Considering the input-output relation

for a causal LTI system with finite length impulse response as follows:

y(n) =
M−1∑
i=0

a∗iu[n− i] (2.30)

where u[n] is the input and independent of additive noise with length N ,a∗i represents the real-

valued coefficients of the impulse response which has the maximum length of M and y is the
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noiseless output of length N which is not available. Available noisy version of the output is:

y[n] = y[n] + w[n] (2.31)

w[n] is additive white Gaussian noise with zero mean and variance of σ2
w.

To write (2.30) as a linear transformation using Toeplitz matrix, we consider the vector of

impulse response coefficients as:

θ∗ = [a∗0, a
∗
1, ..., a

∗
M−1]

T , θ∗ ∈ SM (2.32)

where θ∗, true parameter, is a member of a compact set SM which is a subset of RM . It is assumed

that M is an upper bound for the order of the true parameter. Then:

yN = ASM θ
∗ (2.33)

Now considering θ̂SM as the parameter estimate of order M , a Maximum Likelihood estimator

of θ∗ as previously defined in (2.6) is:

θ̂SM (yN) = (ATSMASM )−1ATSMy
N = (2.34)

(ATSMASM )−1ATSM (y + wN)

which is the projection of yN , the sum of noiseless output and additive Gaussian noise into the

parameters space. As we can see in (2.34) when wN = 0 ,in the absence of noise, the parameter

estimate is true parameter. On the other hand, when wN 6= 0, some amounts of additive noise are

added to the elements of true parameter which must be especially noted when the amount of each

element is zero or much smaller than the amount of corresponding fitting element of noise, in this

case in order to reduce the effect of noise and decrease the estimation error, it would be better to

look for an estimate of a subset of true parameter which means setting those elements to zero or in

other words having them unmodeled. When estimating in subspaces of SM , we can rewrite true

parameter vector as :

θ∗ =

 θ∗Sm

∆Sm

 (2.35)
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where θ∗Smis the vector of true parameter in the subspace Sm with length m, 1 ≤ m ≤ M , and

∆Sm is a vector of length M − m for the rest of parameters not modeled in the subspace Sm .

Therefore, elements of each subspace Sm would be:

θ = [a0, a1, ..., am−1, 0, ..., 0]T ∈ Sm, Sm ⊂ SM (2.36)

Now, looking at the first m columns of ASM matrix as ASm and the rest of M −m columns as

BSm , we can rewrite (2.33) as :

yN =
[
ASm BSm

] θ∗Sm

∆Sm

 =
[
ASmθ

∗
Sm

+BSm∆Sm

]
(2.37)

and for parameter estimate of order m in subspace Sm we just replace ASm instead of ASM in

(2.34):

θ̂Sm(yN) =

 θ∗Sm + (ATSmASm)−1ATSm(BSm∆Sm + wN)

0(N−m)×1

 (2.38)

and using estimation of true parameter in subspace Sm we can define estimate of observed output

data as:

ŷNSm = ASm θ̂Sm =
[
ASm BSm

]
θ̂Sm = (2.39)

 ASm(θ∗Sm + (ATSmASm)−1ATSm(BSm∆Sm + wN))

0(N−m)×1


To compare the estimates of true parameter in subspaces with different lengths of m and choose

the optimum number of elements to be estimated, we can use the parameter estimation error. Since

unmodeled coefficients are not available, parameter estimation error cannot be calculated with

available data. In each subspace, observed output and its estimate are available so a possible error

to calculate is data error, xSm , (2.8). As it has been shown in Figure (2.1) data error is a decreasing

function of m or in other words it cannot be used as a comparing error among the subspaces to find

the optimum length of true parameter estimate. According to this error the lowest amount of error

is obtained for the highest amount of m which is the length of true parameter itself. Obviously,
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an increasing function of m as a penalty term must be added to this error then it could be used as

a comparing measurement. Having data error available and knowing its distribution we can find

lower and upper bounds for parameter estimation error that is our comparing criterion to find the

optimum m. In order to get to that point another error which is the transformation of parameter

error into the output space by using Toeplitz matrix ASM is defined and called reconstruction error:

zSm =
1

N
‖yN − ŷNSm‖

2
2 =

1

N
‖ASM (θ? − θ̂Sm)‖22 = (2.40)

1

N
‖GSmBSm∆Sm + CSmw

N‖22

where

GSm = I − ASm(ATSmASm)−1ATSm (2.41)

CSm = ASm(ATSmASm)−1ATSm (2.42)

are projection matrices with ranks N −m and m respectively.

Bounding ZSm in order to compare the competing model sets, we have to consider the worst case

value of this error which is the upperbound of zSm .

zSm(Q(β), xN , yN , Q(α)) ≤ zSm ≤ zSm(Q(β), xN , yN , Q(α)) (2.43)

Using available observed data and data error the probabilistic bounds of zSm are possible to be

calculated and its upperbound as the worst case is:

zSm(Q(β), xN , yN , Q(α)) = USm(Q(α), xN , yN) +
m

N
σ2
w + β

√
2mσ2

N
(2.44)

where USm an upperbound of unmodeled coefficients effect is defined as:

USm(xN , yN , Q(α)) = xSm −mw +
2α2σw

2

N
+KSm(α) (2.45)

and xSm is the available data error and KSm and mw are:

KSm(α) = 2α
σw√
N

√
α2σ2

N
+ xSm −

1

2
mw (2.46)

mw =
(

1− m

N

)
σ2
w (2.47)
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Q(α) and Q(β) are chosen confidence and validation probabilities such that:

Q(β) = Pr

{
| ZSm − E(ZSm) |≤ β

√
2m

N
σ2
w

}
(2.48)

Q(α) = Pr
{
| XSm − E(XSm) |≤ α

√
varXSm

}
(2.49)

Confidence and validation probabilities are desired to be as high as possible but under certain

conditions to provide tight bounds on zSm [6], therefore conditions are:

lim
N→∞

αN = ∞ (2.50)

lim
N→∞

βN = ∞ (2.51)

lim
N→∞

αN√
N

= 0 (2.52)

lim
N→∞

βN√
N

= 0 (2.53)

Setting the confidence and validation probabilities to zero causes the upper and lower bounds

converge together therefore an estimate of the reconstruction error is:

zSm ≈ xSm + (
2m

N
− 1)σ2

w (2.54)

which in this format is like AIC defined by data error and a penalty term as a function of model

order and data length. On the other hand setting the confidence probability to zero and setting β as
√
m log(N) for the validation probability will make the upper bound of reconstruction error like

the criterion used in BIC or two-stage MDL.

The bias-variance tradeoff in zSm can be illustrated with its expectation and variance:

E(zSm) =
m

N
σ2
w +

1

N
‖GSmBSm∆Sm‖22 (2.55)

V ar(zSm) =
2m

N2
(σ2

w)2 (2.56)

∆Sm as the effect of unmodelled coefficients would be zero for orders greater than true parameter’s

order where only the first term of E(ZSm) is not zero which is like a penalty increasing by m. But

in the limit this term would become zero as well which means in the limit for subspaces of orders

greater than true parameter’s order E(ZSm) is zero.

19



Finally, summarizing the proposed method in [6] to choose the optimum subspace order, m,

would be as follows:

Sm∗ = argmin
Sm

zSm (Q(β), xN , yN , Q(α)) (2.57)

where m? is the optimum order and θ̂Sm? is its corresponding least noisy estimated impulse re-

sponse.

2.2 Time Delay Estimation (TDE)

As discussed in Chapter 1, many methods of time delay estimation (TDE) are available in

literature. Time delay can be estimated in different domains such as time domain or frequency

domain. If the time delay is not an explicit parameter of a model, the model parameters must

be estimated first and then the time delay is estimated. Otherwise, the time delay and model

parameters can be estimated at the same time [26]. In the time domain, a delayed impulse response

has a zero part at its beginning. Therefore, some methods such as Cumulative Sum (CUSUM) [2]

try to detect the beginning of non-zero part. These methods need to first estimate the impulse

response parameters. Then, they use some techniques to reduce the uncertainty of the estimated

parameters and finally, some thresholding methods are applied to detect the delay at the beginning

of the impulse response. In the frequency domain, the real part of the Fourier transform of an

impulse response consists of a sinusoid with the frequency of time delay and a phase shift. The

spectrum of this real part has a peak at the frequency of time delay [26].

Having described the above time delay estimation methods, we are going to estimate the time

delay in the time domain when it is not an explicit parameter of a model. Therefore, in Chapter

4 we use RE-LTI order selection to estimate the delayed impulse response. Then, we propose a

method to estimate the number of zero taps at the beginning of the estimated impulse response. The

estimated time delay is going to provide the best fit of the model. In order to show that estimated
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delay leads to the best fit of the model, we use fit index [2] as:

fit = 100

(
1− ‖ŷ − y‖
‖y − y‖

)
(%) (2.58)
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Chapter 3

Online RE- LTI Order Selection

How should the least noisy estimated parameters or order of a linear time-invariant system be

modified when the available data set enlarges?

The above question would be addressed through online model order selection.

Among the information theoretic criteria discussed in Chapter 2, we have chosen the RE-LTI

model order selection method [6] as it outperforms the other criteria in finding the best fit of a

true model from the available data set. Utilizing (2.57) for an online model order selection would

be time-consuming and cannot be implemented in an online procedure. Therefore, in order to be

able to keep up with the incoming information flow we should introduce a recursive function of

previously defined Sm∗(N) and newly arrived data as:

Sm∗(N + 1) = f (Sm∗(N), u[N + 1], y[N + 1]) (3.1)

In this way, f should be defined as a recursive function with small and simple steps as possible

that responds fast to the changes of input data set size, especially when the data set size becomes

extremely large. A metric providing an upper bound on the growth rate of a function is big O

notation. This notation is used in the following sections of this chapter to show the proposed
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online algorithm improvement.

According to (2.57), the optimum m is the one that minimizes the upper bound of reconstruc-

tion error, zSm , for all nested subspaces m , 1 ≤ m ≤ M . As the data length grows, using

this equation to find the least noisy estimate is time-consuming in particular when the data length

becomes extremely large.

Considering the upper bound of zSm with respect to the computational complexity order, we

find that computing the data error, xSm , is the most complicated part due to finding the estimate

of true parameter for every m as data length grows. Thus to achieve a fast online model order

selection algorithm, we should estimate θ̂SM (yN+1) recursively. But prior to that, we go briefly

through the definition of θ̂SM (yN).

Parameter estimate of order M, θ̂SM (yN) is defined in (2.6) as:

θ̂SM (yN) =
(
ATSM (N)ASM (N)

)−1
ATSM (N)yN (3.2)

where ASM is the N ×M Toeplitz matrix generated by the available input uN as:

u1 0 0 0 . . . 0

u2 u1 0 0 . . . 0

u3 u2 u1 0 . . . 0

. . . . . . . .

. . . . . . . .

. . . . . . . .

uN uN−1 uN−2 uN−3 . . . uN−M+1


(3.3)

and yN is the observed output.

When the length of available data is increased by one, uN becomes uN+1 and yN becomes yN+1,

the new θ̂Sm(yN+1) can be calculated by using θ̂Sm(yN) in a recursive manner. In this way, the

number of steps to calculate new θ̂Sm(yN+1) will be decreased substantially and consequently, as

shown in the next section, we will reach a lower complexity order in comparison with simply

defining all matrices from the beginning and using (2.57).
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Important Notation: In the following sections, θ̂Sm(yN+1) is denoted by θ̂Sm(N + 1) and also

θ̂Sm(N) represents θ̂Sm(yN) to simplify notations.

3.1 Online Parameter Estimation θ̂Sm(N + 1)

Increasing data length by one adds a new row and column to ASM (N) and ATSM (N) respec-

tively. Instead of multiplying the new matrices of ASM (N +1) and ATSM (N +1), we can add to the

previously multiplied ASM and ATSM a new matrix as the added new row and column effect, and

find the same result. Therefore, the complexity order of matrix multiplication of the size of ASM

and its transpose in each increasing data length step, N to N + 1, reduces from O(N3) to O(N) as

shown in the following:

FN = ATSM (N)ASM (N) (3.4)

Now adding a new row and column to ASM (N) and ATSM (N) respectively, and then multiplying

them to find the FN+1 can be shown as:

FN+1 = FN +



uN+1

uN

uN−1

uN−2

.

.

.

uN−M+2



[
uN+1 uN uN−1 uN−2 . . . uN−M+2

]
(3.5)

and if we define an M × 1 column vector U as:

UT =
[
uN+1 uN uN−1 uN−2 . . . uN−M+2

]
(3.6)

then FN+1 is:

FN+1 = FN + UUT = (3.7)
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FN +



u2N+1 uN+1uN uN+1uN−1 . . . uN+1uN−M+2

uNuN+1 u2N uNuN−1 . . . uNuN−M+2

uN−1uN+1 uN−1uN u2N−1 . . . uN−1uN−M+2

. . . . . . .

. . . . . . .

. . . . . . .

uN−M+2uN+1 uN−M+2uN uN−M+2uN−1 . . . u2N−M+2


where FN is an M ×M matrix defined by u1 to uN and an M ×M matrix with rank one. As (3.5)

indicates, updating FN to FN+1 needs N multiplications at most.

Although FN+1 is done in N steps as the data length goes to infinity, its inverse still has a com-

plexity order of O(N3). So the lemma is to calculate F−1N+1 based on F−1N .

As proved in [38], because the rank of matrix UUT is one:

F−1N+1 = (FN + UUT )−1 = F−1N −
1

1 + g
F−1N UUTF−1N (3.8)

where

g = trace(UUTF−1N ) (3.9)

g 6= −1

Updating the inverse of FN by using (3.8) and finding F−1N+1 decreases the complexity order of

matrix inversion from O(N3) to O(N2) [38], which decreases the processing time of our online

order estimation procedure significantly.

Finally, calling the previously calculated ATSM (N)yN as matrix CN :

CN = ATSM (N)yN (3.10)
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we can define CN+1 as:

CN+1 = CN + UyN+1 = CN +



uN+1yN+1

uNyN+1

uN−1yN+1

.

.

.

uN−M+2yN+1


(3.11)

UyN+1 is the effect of the new column and row added to ATSM (N) and yN respectively in their

multiplication. It decreases the big O notation of CN+1 from O(N2) to O(N).

Now substituting F−1N+1 and CN+1 in θ̂SM (N) we have:

θ̂SM (N + 1) = F−1N+1CN+1 =

(
F−1N −

1

1 + g
F−1N UUTF−1N

)
(CN + UyN+1) (3.12)

θ̂SM (N + 1) =

(
I − 1

1 + g
F−1N UUT

)
θ̂SM (N) + (3.13)(

I − 1

1 + g
F−1N UUT

)
F−1N UyN+1

and consequently, parameter estimate in subspaces of order m, 1 ≤ m ≤ N , is as follows:

θ̂Sm(N + 1) = (3.14)

(I − 1
1+g

(ATSmASm)−1UmU
T
m

)
θ̂Sm(N) +

(
I − 1

1+g
(ATSmASm)−1UmU

T
m

)
(ATSmASm)−1UmyN+1

0(N+1−m)


Getting back to Chapter 2, the reconstruction error upper bound, as the worst case is used to

compare subspaces of different orders. To calculate zSm recursively we should also define data

error, xSm , ŷSm and θ̂Sm(N) recursively. Replacing (3.14) and ASM (N + 1) in (2.37) we have:

ŷSm(N + 1) = ASM (N + 1)θ̂Sm(N + 1) (3.15)

26



and then updated xSm would be:

xSm(N + 1) =
1

N
‖yN+1 − ŷN+1

Sm
‖22 (3.16)

substituting (3.16) in (2.44):

zSm(Q(β), uN+1, yN+1, Q(α)) = USm(Q(α), uN+1, yN+1) +
m

N + 1
σ2
w + β

√
2mσ2

N + 1
(3.17)

where USm(N + 1) is:

USm(uN+1, yN+1, Q(α)) = xSm(N + 1)−mw(N + 1) +
2α2σw

2

N + 1
+KSm(α,N + 1) (3.18)

3.2 Online RE-LTI Order Selection Procedure

Through the previous sections we derived the reconstruction error upper bounds based on its

previous amounts for subspaces of different orders when the data set size increases by one . Now,

putting all those equations together we can modify the proposed offline model selection process

in [6] to get the online RE-LTI order selection procedure as follows:

• Step 1: Optimum subspace order, m?, is chosen for any data length of N through RE-LTI

system identification approach (2.57).

• Step 2: For any new data point arrived, any subspace’s impulse response is updated using

(3.14). Then ŷSm(N + 1), xSm(N + 1) and zSm(N + 1) are calculated using (3.15), (3.16),

and (3.17) respectively.

• Step 3: Optimum subspace order, m?, is updated for any new data point arrived, by compar-

ing the probabilistic worst cases for all subspaces of S1, S2, ..., SM :

Sm∗(N + 1) = argmin
Sm

zSm(Q(β), uN+!, yN+1, Q(α)) (3.19)

where m? is the updated optimum order and θ̂Sm? is its corresponding least noisy estimated

impulse response.

27



• Step 4: Go to step 2.

As discussed in Chapter 2, MNDL and RE-LTI model order selections are closely related in

that MNDL and RE-LTI use the same reconstruction error, zSm . Therefore, following the above

steps also make the MNDL online.

Important Notation: In terms of zSm , because the worst case is its upper bound which is the basis

of all decisions in RE-LTI, in the remainder of this thesis zSm is denoted by zSm .

3.3 Complexity Order of Online RE-LTI Order Selection Pro-

cedure

In Section 3.1, we showed that updating θ̂Sm(N) to θ̂Sm(N + 1) is done through a recursive

function 3.14 with the complexity order of O(N2). As a result, updating xSm(N) to xSm(N +

1) through 3.16 also has the complexity order of O(N2) because ŷSm(N + 1) can be updated

recursively as in 3.15. The upper bound of reconstruction error, zSm , is calculated through 3.17

and 3.18. In these equations, the highest complexity order is for updating data error which is

O(N2). Finally, since the optimum order, m?, in online procedure is chosen based on the upper

bound of reconstruction error 3.19, the complexity order of our online procedure is O(N2) which

shows one order decrease compared with the offline RE-LTI order selection algorithm.

3.4 Online RE-LTI System Identification and Slowly Varying

Systems

As it was described, RE-LTI system identification approach chooses the optimum m? for any

data of length N . In this chapter, we have shown how to update the value of m? as the data length

28



grows. The procedure for each N provides an m? (3.19) and consequently a value of zSm? (3.17).

In online system identification our confidence in the calculation of m? will improve as the data

length increases. Where should be the stopping point of identification depends on the application.

Defining the normalized reconstruction error as follows:

NzSm =
zSm
‖y‖22

(3.20)

for each given data set of length N , the optimum normalized reconstruction error is calculated as

follows:

NzSm? = argmin
m?

NzSm (3.21)

We call the tolerance for this error Stop-ID threshold. Stop-ID threshold is provided by the user to

be an ε value. Once the normalized zSm? becomes less than this value the online system identifi-

cation procedure will halt. Consequently, another potential application of this method will be for

slowly varying LTI systems. The online system identification procedure keeps searching for the

optimum system until the ε normalized reconstruction error is reached. Then the procedure uses

that estimated system until the value of normalized reconstruction error becomes larger than ε.

This indicates that the system has slowly been changed . Note that up to this stage the zSm will be

updated using the already estimated parameters. At this point, the system identification procedure

gets activated till the normalized reconstruction error again becomes less than ε. The following

steps summarize this procedure:

• Step 1: Value of Stop-ID threshold, ε, for the optimum normalized reconstruction error,

zSm? , is selected by the user.

• Step 2: Optimum subspace order, m?, is chosen for any data length of N through RE-LTI

system identification approach (2.57).

• Step 3: Optimum subspace order, m?, is updated through online RE-LTI order selection

procedure (3.2) for any new data point.
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• Step 4: At the end of each iteration of online RE-LTI order selection procedure, the normal-

ized reconstruction error is calculated (3.20) and then the optimum normalized reconstruc-

tion error is obtained by (3.22)

• Step 5: IfNzSm? < ε then the online procedure will halt at this point to update the parameters

and optimum order. From now it just updates the zSm for new arriving data points using the

already estimated parameters up to the stopping point and as soon as NzSm? becomes larger

than ε the online procedure gets back to its full operation. Otherwise, the online procedure

keeps searching for the optimum system.

3.5 Simulation Results

Considering an independent identically distributed (i.i.d.) Bernoulli sequence of ±1 with in-

creasing length from N = 50 to N = 400 data samples and three different SNRs of 10 dB, 15 dB,

and 40 dB as the input data of an LTI system with the following structure:

y[n] =
M∑
i=0

a?iu[n− 1] + w[n] (3.22)

where a?i s are the coefficients of an FIR filter, h[n], of length 50 as:

a?i = 0.3(0.5)i−1 + 3(i− 1)(0.8)i−1 , 0 ≤ i ≤ 50 (3.23)

Figure 3.1 shows the impulse response as defined in (3.22). Reconstruction error simulation results

of such a system are provided in Figures 3.2, 3.3, and 3.4 when α and β used in validation and

confidence probabilities are chosen as:

α = 15 ln(ln(N)) (3.24)

β = 25 ln(N) (3.25)

Different data lengths and SNRs are used for these figures to illustrate the asymptotic behavior and

the robustness of our online order selection method. As m increases, more noise is fitted and the
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number of unmodeled coefficients is decreased. Therefore, we see the zSm bias-variance tradeoff

behavior which helps us to find the optimum order. For example, in Figure 3.3, when data length

has arrived to N = 400 estimating more than 20 taps will increase the zSm as a result of fitting

more noise. Comparing these three figures, reveals that when data length is increased because of

noise effect reduction (2.55) reconstruction error is decreased. Figure 3.5 shows optimum order as

a function of data length for three different SNRs. This figure illustrates that for higher SNRs the

chance of choosing the correct order is higher. Furthermore, this figure shows the convergence of

the optimum order to the true model order as data length and SNR are increased.

Figure 3.6 shows the minimums of normalized reconstruction error as a function of data length

for three different SNRs (3.20). NzSm? decreases as data length and SNR are increased because of

noise effect reduction. On this figure, the ε is 10−2 as an example to show the Stop-ID definition.

When SNR is 40dB, the NzSm? is less than our defined threshold by arriving only 50 samples so

the online procedure should be stopped after arriving 50 samples. For 10 dB SNR, the NzSm?

passes the threshold after arriving 250 samples.
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Figure 3.1: True Impulse Response
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Figure 3.2: Reconstruction error as a function of m , for data lengths N = 200, N = 300, and

N = 400 when SNR=10 dB.
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Figure 3.3: Reconstruction error as a function of m , for data lengths N = 200, N = 300, and

N = 400 when SNR=15 dB.
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Figure 3.4: Reconstruction error as a function of m , for data lengths N = 200, N = 300, and

N = 400 when SNR=40 dB.
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Figure 3.5: Optimum subspace order m? as a function of data length N for three different SNRs

of 10 dB, 15 dB, and 40 dB.
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Figure 3.6: Normalized reconstruction error zSm? as the function of data length for three different

SNRs of 10 dB, 15 dB, and 40 dB.

In Table (3.1), the performance of the proposed online procedure is illustrated in terms of elapsed

time as data samples arrive. In this table, ε is 10−2 and the number of data points needed to pass

the ε and their corresponding optimum orders are shown. Four last columns of this table are the

elapsed times at ε and at N = 200. To show the low complexity and fast computational time of

our online procedure, we used the offline RE-LTI order selection in an online manner. Although

for larger data sizes the time gap between online and offline algorithm would be greater, still we

can see our online procedure is almost 1.7 times faster than the offline algorithm.
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SNR (dB)

Stop-ID

Threshold

ε

Stop-ID

Threshold

at N

m? at

Stop-ID

Threshold

Time

Passed at

ε (Online)

(Sec.)

Time

Passed at

ε (Offline)

(Sec.)

Time

Passed at

N = 200

(Online)

(Sec.)

Time

Passed at

N = 200

(Offline)

(Sec.)

10 10−2 254 16 0.9205 1.7054 2.0029 3.4209

15 10−2 178 19 0.4922 0.9804 2.015 3.4032

40 10−2 50 24 0.0122 0.0122 2.0062 3.4173

Table 3.1: Online RE-LTI vs. Offline RE-LTI Procedure

3.6 Practical Application in Power System

In a power system, electrical loads vary considerably throughout the day. These variations are

shown in load curves such as in Figure 3.7. Therefore, the load of a power system is not constant

that leads to a mismatch between real power generated at the power system and the amount of

power consumed at the load side. In power systems, load variation is detected by monitoring the

variations in frequency. For instance, when load increases the power system frequency would

decrease. Thus additional generation is needed to supply required power to consumers [39].

To overcome the mismatch problem, an adjusting system for the output power of interconnected

generators is designed. This unit is known as automatic generation control (AGC). AGC has

three kinds of control loops, namely primary, secondary and tertiary ( [39]). Each control loop

has different time duration as shown in Table 3.2. There is a primary control loop or governor

for every generator. The primary loop controls the variations of frequency around a specified

frequency which is defined by the secondary control loop. The secondary control loop or AGC has

a proportionalintegral (PI) controller which resets frequency droops to maintain a balance between

generation and load. A group of generators which are controlled by a regulation unit and have the

same frequency variations is named an area.
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Figure 3.7: Ontario Demand At 12:00pm EST July 26, 2016 [1]

Control Loop Time Duration

Primary (or Governor) A few seconds

Secondary (or AGC) Less than one minute

Tertiary (or ED) More than 12 minutes and less than an hour

Table 3.2: AGC Control Loops’ Time Duration

An area is controlled by AGC that is located on the regulation unit. AGC should update PI con-

troller parameters because of load changes in an area. These parameters depend on load-generation

scenario which is determined by the third control loop. The tertiary control loop or economic dis-

patch (ED) determine the generation scenario for every generator based on the amount of load [40].

Therefore, PI controller parameters should be updated at least every 12 minutes.
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Due to the nonlinearity of power systems, the system is tried to be linearized around its oper-

ating point [40]. Then the linear model is used in designing the AGC controller parameters. Al-

though, there are methods of designing robust automatic generation controllers against the changes,

another way is designing controller parameters through online algorithms. Considering the second

solution, there is a need for an online procedure capable of linearly modeling the changes in system

frequency caused by load variation in a fast and consistent enough way.

3.6.1 Power System Simulation Results

In this section we are going to prove the ability of our online procedure in a practical applica-

tion which is a system of two interconnected power plants, hydro and nuclear. This system has a

transfer function model as shown in Figure 3.8. We simulated this system in MATLAB/Simulink

with a 10% load variation in hydro plant and we collected the frequency variations as the out-

put data from both plants. Having this input and output data available, we can apply our online

RE-LTI order selection procedure to estimate a linear model which is used by AGC to redesign

its controller parameters over the period of arriving new data. As an example, we consider the

frequency variation at hydro plant and we show the simulation results.

Figure 3.9 illustrates zSm as a function of m when length of data is 3000 and for three different

SNRs. For example, when SNR is 40 dB, zSm starts increasing after 35 estimated parameters of the

system impulse response. This tradeoff in behavior of the reconstruction error for lower SNRs can

be seen for a smaller number of estimated impulse response taps, which mean some coefficients

are set to zero in order to reduce the effect of the noise in the estimated model while achieving the

best fit.

Figure 3.10 provides us with a better understanding of the SNR and data length effects on the

estimated optimum order. This figure shows the convergence of the optimum order to the true

model order as more data becomes available. As SNR grows, this figure shows that the optimum
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order goes faster towards the true model order.

Figure 3.8: Transfer function model of an interconnected two-area Hydro-Nuclear system [41]
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Figure 3.9: Reconstruction error as a function of m , for data length N = 3000 and three different

SNRs of 10 dB, 15dB and 40dB.
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Figure 3.10: Optimum subspace order m? as a function of data length N for three different SNRs

of 10 dB, 15 dB, and 40 dB.

Normalized reconstruction error as a function of N is shown in Figure 3.11 for three different

SNRs. An ε ,as the Stop-ID threshold defined by the user, on this figure can validate the estimated

model and stop the online procedure after arriving a number of samples.

According to Table 3.2, in tertiary loop we should be able to update the PI controller parameters

in less than an hour. While Table 3.3 shows that our online procedure needs almost 16 minutes to

model 10000 data samples. On the other hand Figure 3.11 shows after arriving 3000 data samples

NzSm? is very small meaning that the PI controller parameters have been updated fast enough to

control the frequency deviation.
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Figure 3.11: Normalized reconstruction error zSm? as the function of data length for three different

SNRs of 10 dB, 15 dB, and 40 dB.

Number of Samples Arrived (N) Elapsed Time at N

3000 85.97 Sec.

5000 235.48 Sec.

10000 983.21 Sec.

Table 3.3: Elapsed Time
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Chapter 4

Optimal Time Delay Estimation

We reviewed different classifications and concepts of time delay estimation in Chapter 1 . Some

of the methods looked for the true time delay estimation such as time delay estimated in radars

target localization [42], channel equalization in communications [43], echo cancellation [44] and

ultrasonic ranging [45]. A few of them looked for the most suitable time delay of a given model.

The others estimated the time delay that provides the best fit of a model [2]. As we mentioned in

Chapter 2, in this chapter, we propose a method of estimating time delay which results in the best

fit of a model.

Considering the model structure in (2.1), if the impulse response of this model has a number of

zero coefficients at its beginning, then the input-output relation of that model would be as follows:

y[n] =
M−1∑
i=0

h[n− d]u[n− i] + w[n] =
M−1∑
i=0

h[n]u[n− d− i] + w[n] (4.1)

where h[n− d] is the impulse response with delay as:

h[n− d] = [0, . . . , 0︸ ︷︷ ︸
d

, a?0, a
?
1, . . . , a

?
M−1−d] (4.2)

uN and yN are available data, d is the true delay, and w[n] is additive white Gaussian noise with

zero mean and variance of σ2
w. Here the definition of time delay is the starting point of impulse re-
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sponse or the beginning of non-zero part. Employing RE-LTI model order selection, we introduce

a process of estimating optimum time delay as:

d? = argmin
d
zSdm? (Q(β), uN , yN , Q(α)) (4.3)

where d? is the optimum estimate of true delay d, Sdms for 1 ≤ dm ≤ m? are the competing

subspaces with different delays of 0 ≤ d ≤ m?−1,Q(α) andQ(β) are chosen such that conditions

in (2.51), (2.52), (2.53), (2.54) are satisfied, uN and yN are available data, and m? is the optimum

order of the model structure with delay as in (4.1) chosen by RE model order selection in (2.57).

4.1 RE Time-Delay Estimation

If θ̂Sm? is the optimum parameter estimate of order m? for model structure in (4.1) obtained

by minimizing the reconstruction error over all subspaces, we are going to seek in subspaces of

m? for an optimum estimate of delayed parameter, θ̂Sdm? using (4.3). In other words, the proposed

process is twofold:

• Step 1: Estimating an optimum order and parameters of the delayed model based on (2.57).

• Step 2: Estimating the optimum number of zero taps at the beginning of the estimated model

in Step 1.

Step 1 has been studied in detail in [6]. In this section, we go through details of step 2 as our

contribution to the time delay estimation problem.
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4.1.1 Estimation of Model Parameters in Subspaces of m?

To estimate the optimum delay, d?, we consider subspaces of optimum estimated order m? as

1 ≤ dm ≤ m?, with the following structure of θ̂Sm? :

θ̂Sm? =

dSdm
θSdm

 (4.4)

where dSdm is a zero vector of length d and θSdm is a vector of non-zero parameters of the optimum

estimated delayed model with the length of m? − d. In order to estimate the number of zero

coefficients, d, and consequently the non-zero parameters of θSdm we use the least square estimator

as in (2.38). Thus, we define the Toeplitz matrix generated by the input, uN , with the following

format:

ASdm? =



u1 0 0 . . . 0

u2 u1 0 . . . 0

u3 u2 u1 . . . 0

· · · · · · · · · · · · · · ·

uN uN−1 uN−2 . . . uN−m?+1


(4.5)

when ASdm? is an N ×m? matrix, it can be represented as:

ASdm? =
[
ASdm BSdm

]
(4.6)

where ASdm is the first d columns of Toeplitz matrix ASd?m and BSdm
is the rest of m?− d columns

of that Toeplitz matrix. Now the estimated parameters of delayed model would be:

θ̂Sdm =

 0(d×1)

(BT
Sdm

BSdm
)−1BT

Sdm
yN

 (4.7)

BSdm
matrices for different dms are like Toeplitz matrices generated by delayed version of uNs

for different lengths of delay, d.Therefore, the results of least square error correspond to dm co-

efficients of non-zero part of the delayed true impulse response. The rest of d coefficients at the

beginning of each vector of estimated impulse response corresponds to the number of zero taps

which is the estimated delay.
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4.2 Simulation Results

To generate Figures 4.1, 4.2, 4.3, and 4.4 Our true model is the delayed version of FIR filter

in (3.23) for 23 taps. We considered an i.i.d. Bernoulli sequence of ±1 with length N = 300 and

three different SNRs. The true impulse response and its estimates for three SNRs of 10 dB, 15

dB and 40 dB are shown in Figure 4.1, 4.2 and 4.3. As it has been shown, the optimum estimated

delay for SNR=10 dB and SNR=15 dB is 25 and for SNR=40 dB is 24. Obviously, for SNR=40

dB our optimum estimated delay is closer to the true time delay than the two other SNRs. This is

the result of noise effect reduction. However, it does not mean that our method is not accurate for

low SNRs. It must be noted that this method looks for the time delay which results in the best fit

of the true model in the presence of the noise. In the next section, we use an index to illustrate our

method accuracy or superiority better.
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Figure 4.1: True Impulse Response and Optimum Time Delay Estimated Impulse Response with

N = 300, Td = 23, and d? = 25
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Figure 4.2: True Impulse Response and Optimum Time Delay Estimated Impulse Response with

N = 300, Td = 23, and d? = 25

In Figure 4.4, reconstruction errors as functions of m for both steps of time delay estimation are

illustrated. There are two graphs for each SNR in this figure, one graph corresponds to the zSm used

in model order selection step and the other corresponds to the zSm used in time delay estimation

step. For example, the black graph with SNR=15 dB shows that more than 40 taps estimation

increases the reconstruction error as the effect of fitting more noises. The red graph with the same

SNR as the black one shows the calculated reconstruction error in step 2 of time delay estimation.

The red graph has its minimum at m = 23 which is the number of zero taps at the beginning of the

estimated impulse response.
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Figure 4.3: True Impulse Response and Optimum Time Delay Estimated Impulse Response with

N = 300, Td = 23, and d? = 24
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4.2.1 Comparison between Proposed and Existing Methods

An index to measure the quality of an estimated time delay as the best fit in a system identifi-

cation scenario is presented in [2] as follows:

fit = 100

(
1− ‖ŷ − u‖
‖y − y‖

)
(%) (4.8)

where y is the observed output, ŷ is the estimated output and y is the noiseless output. Some time-

delay estimation methods investigated thoroughly in [26], such as the Cumulative Sum (CUSUM),

delayest algorithm and separating time delay from dynamics in the frequency domain, are com-

pared in terms of the fit index when the process model is:

G(n) = 0.256(0.909)nu(n)− 0.333(0.815)nu(n) (4.9)

when the true time delay at the beginning of (4.9) is 11. To excite this model, 1000 samples of a

pseudo-random binary sequence (PRBS) are used. Three scenarios are considered. First, the order

of (4.9) is identified correctly by all methods. Second, A wrong order for our considered model

is identified by all methods. Finally, an output error model with correct order is applied. In these

three scenarios considered methods are: CUSUM-CrossCorr, CUSUM-FIR and CUSUM-ARX-

High, frequency domain technique, delayest and OPT which are studied completely in [26] and [2].

CUSUM-CrossCorr use crosscorrelation to estimate the impulse response, CUSUM-FIR uses an

FIR model to model the impulse response and CSUM-ARX-High uses a high order autoregressive

to model the impulse response. OPT is a two-step optimization problem which first tries to predict

the best model and then it estimates the time delay. All techniques are applied when the true time

delay, nk is 11. Data in Table 4.1 are adopted from [2]. The last row of this table shows the

estimation of the time delay for the same settings as the other methods by our proposed RE time-

delay estimation method. Since our method is not order dependent and it selects the best order

47



using reconstruction error, therefore the second and third scenario does not apply to our method

and just SNR variations make changes in our results.

In the absence of the noise, like OPT and delayest, our method provides the true delay as the

best fit. In case of SNR=3 dB and SNR=30dB, RE-LTI order selection method will set some

impulse response parameters to zero in order not to fit too much noise to parameters which are too

small. Therefore, the estimated result will not fit 100% the true model and as we mentioned earlier,

it would be the best fit of the model. As the results show, RE time-delay estimation method would

provide better fit for low SNRs than OPT and delayest.
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Chapter 5

Conclusions and Future Works

In this thesis, we studied one powerful method of model order selection: RE-LTI order selec-

tion. We started Chapter 1 with an overview of information theoretic criteria such as AIC, BIC,

two-stage MDL and we discussed some of their variants that have been proposed to improve their

performances. We continued this chapter with the review of time delay estimation methods. In

Chapter 2 we presented a short review of system identification. We studied existing model order

selection criteria more in detail and we discussed their shortcomings. In this chapter, we provided

a brief review of RE-LTI model order selection as the basis of our contributions. At the end of this

chapter, we stated the type of time delay we wanted to estimate.

In Chapter 3 we proposed our Online RE-LTI Order Selection method. In our online procedure,

we updated the optimum order and its corresponding estimated parameters recursively. We showed

one order decrease, from O(N3) to O(N2), in complexity order of our online procedure compared

with the offline RE-LTI order selection method. Stop-ID threshold as a criterion to validate our

online order selection procedure was introduced in this chapter. Stop-ID threshold defined by the

user can halt the procedure and restart it. We discussed the advantages of our online procedure in

case of slowly varying systems. Our simulation results showed the improvement in consistency

and computational time of our online procedure compared with offline RE-LTI method. Estimating
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the impulse response of an AGC in a power system of two interconnected hydro and nuclear plants

was presented at the end of this chapter. We suggested updating the controller parameters of

AGC by using our online RE-LTI order selection procedure to improve the power system dynamic

performance.

In Chapter 4 we used the RE-LTI order selection in two steps to estimate the time delay that

provides the best fit of a true model. First, we estimated the optimum order of the true model and

then we estimated the number of zero taps at the beginning of the estimated model. We compared

the simulation results of our method with the existing methods in the literature, in terms of FIT

index, and showed the superiority of our proposed method.

Applying RE-LTI online order selection procedure to updating orders of real-time applications

would lead to great results in future.
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