
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2012

Trajectory Analysis on Spherical Self-Organizing
Maps With Application to Gesture Recognition
Artur Oliva Gonsales
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Gonsales, Artur Oliva, "Trajectory Analysis on Spherical Self-Organizing Maps With Application to Gesture Recognition" (2012).
Theses and dissertations. Paper 1458.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1458&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1458&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1458&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1458&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1458?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1458&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

Trajectory Analysis on Spherical

Self-Organizing Maps with Application to

Gesture Recognition

by

Artur Oliva Gonsales

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Masters of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2012

©Artur Oliva Gonsales 2012

I hereby declare that I am the sole author of this dissertation. This is a true copy of the

dissertation, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this dissertation to other institutions or individuals

for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this dissertation by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

I understand that my dissertation may be made electronically available to the public.

iii

Trajectory Analysis on Spherical Self-Organizing Maps with application to gesture

recognition

Masters of Applied Science 2012

Artur Oliva Gonsales

Electrical and Computer Engineering

Ryerson University

Abstract

In this work, a new approach to gesture recognition using the properties of Spherical Self-

Organizing Map (SSOM)is investigated. Bounded mapping of data onto a SSOM creates

not only a powerful tool for visualization but also for modeling spatiotemporal information

of gesture data. The SSOM allows for the automated decomposition of a variety of gestures

into a set of distinct postures. The decomposition naturally organizes this set into a spatial

map that preserves associations between postures, upon which we formalize the notion of a

gesture as a trajectory through learned posture space. Trajectories from different gestures

may share postures. However, the path traversed through posture space is relatively unique.

Different variations of posture transitions occurring within a gesture trajectory are used to

classify new unknown gestures. Four mechanisms for detecting the occurrence of a trajectory

of an unknown gesture are proposed and evaluated on two data sets involving both hand

gestures (public sign language database) and full body gestures (Microsoft Kinect database

collected in-house) showing the effectiveness of the proposed approach.

v

Acknowledgement

I would like to express my sincere gratitude to Prof. Matthew Kyan, who has guided me

through my master’s degree and have provided a lot of support and help during my studies.

To all my family and friends for their support and understanding. To all my colleagues and

friends from Ryerson Multimedia Lab who have helped me by sharing their knowledge with

me. Especially to Adrian Bulzacki for collecting and providing the Microsoft Kinect data set

used in this thesis. To Naimul Mefraz Khan, for his support in the topic of Spherical Self-

Organizing Maps. Finally, to Chun-Hao Wang for providing network access to the Microsoft

Kinect data set.

vi

Contents

1 Introduction 1

1.1 Introduction to Gestures and Gesture Recognition 1

1.1.1 Recent developments in acquisition technology 6

1.1.2 Traditional approaches to gesture recognition 7

1.1.3 Domain independent approach to gesture recognition 11

1.1.4 Introduction to gesture data sets used in this thesis 12

1.1.5 Mathematical definition of a gesture 15

1.2 A brief introduction to Supervised and Unsupervised Learning 17

1.3 Thesis Overview . 19

1.4 Thesis Contributions . 21

1.4.1 Publications . 21

2 Self organizing approaches to gesture recognition 22

2.1 Introduction . 22

2.2 Neural Networks . 23

2.3 Self-Organization . 26

2.3.1 Principles of Self-Organization . 26

2.3.2 The Kohonen Self-Organizing Feature Map (SOFM) 28

2.4 Gesture recognition using Self-Organizing Maps and Trajectories 31

2.5 Summary . 41

3 Trajectory analysis of temporal data using Self-Organizing Maps 43

3.1 Introduction . 43

3.2 Spherical SOM (SSOM) . 43

3.2.1 Topology of the SOFM lattice . 43

3.2.2 Weight adaptation strategy in the spherical SOM 45

viii

3.2.3 Significance of the Spherical Topology 49

3.3 Temporal data analysis using SOM and SSOM 50

3.3.1 SOM based approaches for video analysis 50

3.3.2 Video information analysis based on SSOM 56

3.4 Four approaches to gesture recognition through trajectory analysis 63

3.4.1 Approach #1: gesture recognition using all postures 64

3.4.2 Approach #2: gesture recognition using weighted aggregation of all

postures . 65

3.4.3 Approach #3: gesture recognition using posture transitions 67

3.4.4 Approach #4: gesture recognition using weighted aggregation of all

posture transitions . 68

3.5 Summary . 69

4 Experimental Results 70

4.1 Experimental setup . 70

4.2 Results . 72

4.2.1 Approach #1: gesture recognition using all postures 72

4.2.2 Approach #2: gesture recognition using weighted aggregation of all

postures . 86

4.2.3 Approach #3: gesture recognition using posture transitions 86

4.2.4 Approach #4: gesture recognition using weighted aggregation of all

posture transitions . 90

4.3 Comparison of results . 90

4.4 Summary . 93

5 Conclusions and Future Work 96

5.1 Conclusions . 96

5.2 Thesis Contributions . 97

5.3 Future Work . 98

ix

List of Tables

1.1 Australian Sign Language Variable description 14

1.2 Australian Sign Language gesture data . 14

1.3 Microsoft Kinect Full body gesture data . 15

1.4 Microsoft Kinect Full body gesture variables 18

4.1 Recognition rate for Kinect dataset: Approach #1 83

4.2 Recognition rate for PowerGlove dataset: All postures 86

4.3 Recognition rate for Kinect dataset: Weighted aggregation of all postures . . 86

4.4 Recognition rate for PowerGlove dataset: Weighted aggregation of all postures 87

4.5 Recognition rate for Kinect dataset: Using posture transitions 87

4.6 Recognition rate for PowerGlove dataset: Using posture transitions 90

4.7 Recognition rate for Kinect dataset: Weighted aggregation of all posture tran-

sitions . 90

4.8 Recognition rate for PowerGlove dataset: Weighted aggregation of all posture

transitions . 91

4.9 Results comparison for Microsoft Kinect dataset 92

4.10 Results comparison for Australian Sign Language (ASL) dataset 92

x

List of Figures

1.1 Kendon’s Gesture Continuum . 3

1.2 Examples of human postures . 4

1.3 Pattern Recognition System (ideal for static gesture recognition) 5

1.4 Recent touch technology . 7

1.5 Examples of body motion sensors and controllers. From top to bottom: Sony

Playstation Move, Nintendo Wii, Microsoft Kinect 8

1.6 Recurrent Neural Network . 10

1.7 Dynamic Time Warping . 11

1.8 Nintendo PowerGlove . 13

1.9 Microsoft Kinect skeleton . 16

1.10 Representation of a single feature . 17

1.11 The problem of defining a cluster. The clusters are formed based on the

coordinates of the data points . 20

2.1 A Simple Neuron [1] . 24

2.2 Example of a basic Neural Network . 25

2.3 Self-Amplification, Competition and Co-operation in learning: wk∗ represents

the synaptic vector of the winning neuron (competition), which adapts (self

amplifies) toward the input thereby strengthening its correlation with future

inputs in this region. At the same time, associative memory is imparted

to neighbouring neurons (co-operation): related to the winner through some

defined or inferred topology . 28

2.4 Mapping samples from an input space onto a SOM lattice of prototypes;

showing the winning node (best matching unit: BMU of the current input xi

(top), Gaussian neighbourhood function (bottom) 30

xi

2.5 Flow chart and data structures for the learning process based on Oshita and

Matsunaga method [2] . 32

2.6 Winner neurons for a gesture element [3] . 34

2.7 Time invariant recognition with sparse code [3] 35

2.8 Sparse code for a backward gesture element [3] 36

2.9 Sparse code with time transition [3] . 36

2.10 Sparse code for gesture elements and gesture [3] 37

2.11 Correspondence of gesture trajectory points to their respective BMUs on the

SOM. The BMUs constitute the states of the Markov models [4] 40

2.12 Markov model for a gesture’s optical flow [4] 40

3.1 One-dimensional SOM (<1) . 44

3.2 Data association (<2 space (3.2a)) and (<3 space (3.2b) 45

3.3 Spherical SOM with quadrilateral elements 46

3.4 Data association in a spherical SOM . 47

3.5 The spherical self-organizing map . 48

3.6 The feature vector is calculated from the raw data. Then the vector is mapped

on the SOM by finding the best-matching map unit [5] 51

3.7 Segments of trajectory at three different time steps. The trajectory is illus-

trated with a black dotted line [5] . 51

3.8 Representative frames and SOM signatures of three video shots [6] 53

3.9 Growing Self-Organizing map after training [7] 55

3.10 Sample frames used for training the Spherical SOFM (taxi scene) 58

3.11 Spherical SOM after training. The color green, red, and blue show the different

edges belonging to the three different shots. 60

3.12 Spherical SOM after training. The color green, red, and blue show the different

edges belonging to the three different shots. 60

3.13 Video scene/shot separation using Spherical SOM 61

3.14 Spherical SOM after training with individual features 62

3.15 Spherical SOM after training with individual features 62

3.16 Linkage between keyframes in the video shots 63

3.17 Temporal sequence of postures representing an arbitrary gesture. In this ex-

ample a simple gesture consisting of 5 postures is displayed. The mapping of

the gesture is shown as a trajectory on the SSOM in red 65

xii

3.18 Showing the gesture recognition process: the classification occurs by creating

a counter for the unknown gesture (blue trajectory), which counts the com-

mon instances or postures between the unknown gesture trajectory and the

already learned by the SSOM trajectories (trajectories 1 & 2, red and green

respectively). A histogram is then built based on these counters and a gesture

is classified according to the highest value obtained in this histogram 66

3.19 Showing the gesture recognition process: Assume the SSOM learned the path

of two trajectories from gesture 1 class (pink & red). These two trajectories

have common postures in their path. In this method we look at the frequency

information obtained from trajectories within one gesture class. Specifically,

we add a weight factor representing how frequent a specific posture was found

in the path of a trajectory from a specific gesture class. The unknown blue

trajectory is classified using this frequency information 67

3.20 In this approach we use temporal information obtained from trajectories,

specifically we use posture transitions represented as Ri. A histogram is built

based on how many common posture transitions occur between the unknown

gesture trajectory and all the gesture trajectories learned by the SSOM . . . 68

4.1 PowerGlove Gesture trajectories 1. First row: Alive; Second row: All; Third

row: Answer; Fourth row: Boy . 73

4.2 PowerGlove Gesture trajectories 2. First row: Building; Second row: Buy;

Third row: Change; Fourth row: Cold . 74

4.3 PowerGlove Gesture trajectories 3. First row: Come; Second row: Computer;

Third row: Cost; Fourth row: Crazy . 75

4.4 PowerGlove Gesture trajectories 4. First row: Danger; Second row: Deaf;

Third row: Different; Fourth row: Draw . 76

4.5 PowerGlove Gesture trajectories 5. First row: Drink; Second row: Eat; Third

row: Exit; Fourth row: Forget . 77

4.6 Microsoft Kinect Gesture trajectories 1. First row: Air Guitar; Second row:

Archery; Third row: Baseball; Fourth row: Boxing 78

4.7 Microsoft Kinect Gesture trajectories 2. First row: Celebration; Second row:

Chicken; Third row: Clapping; Fourth row: Crying 79

4.8 Microsoft Kinect Gesture trajectories 3. First row: Driving; Second row:

Elephant; Third row: Football; Fourth row: Heart Attack 80

xiii

4.9 Microsoft Kinect Gesture trajectories 4. First row: Laughing; Second row:

Monkey; Third row: Skip Rope; Fourth row: Sleeping 81

4.10 Microsoft Kinect Gesture trajectories 5. First row: Swimming; Second row:

Titanic; Third row: Zombie . 82

4.11 Gesture Recognition: Using all postures - Microsoft Kinect Dataset 84

4.12 Gesture Recognition: Using all postures - Nintendo PowerGlove Dataset . . . 85

4.13 Gesture Recognition: Using posture transitions - Microsoft Kinect Dataset . 88

4.14 Gesture Recognition: Using posture transitions - Nintendo PowerGlove Dataset 89

4.15 Microsoft Kinect gesture recognition comparison chart 94

4.16 Nintendo PowerGlove gesture recognition comparison chart 95

xiv

List of Abbreviations

Abbreviation Description

2D Two Dimensional

3D Three Dimensional

ANN Artificial Neural Network

SOM Self-Organizing Map

SOFM Self-Organizing Feature Map

SSOM Spherical Self-Organizing Map

PCA Principal Component Analysis

MDS Multi-Dimensional Scaling

VQ Vector Quantization

SBD Shot Boundary Detection

BMU Best Matching Unit

CCD Compact Composite Descriptor

CEDD Color and Edge Directivity Descriptor

FCTH Fuzzy Color and Texture Histogram

BTDH Brightness and Texture Directionality Histogram

SpCD Spatial Color Distribution Descriptor

SGONG Self-Growing and Self-Organized Neural Gas network

SVM Support Vector Machine

HMM Hidden Markov Model

DP Dynamic Programming

HSOM Hierarchical Self-Organizing Map

xxi

Chapter 1

Introduction

1.1 Introduction to Gestures and Gesture Recognition

As computer hardware becomes more and more powerful, their processing power makes it

possible to create new ways for humans to interact with computers, and to be able to perform

tasks more intuitively, creatively and productively. We need to no longer be constrained by

what the keyboard and mouse allow us to do. Nowadays, efficient human computer interac-

tion frameworks carry a big role in our daily lives. Gestures could be considered as a tool

that facilitates the exchange of information between humans and computers. Being able to

identify gestures through gesture recognition approaches is a challenge that researchers have

to handle. In simple words, gesture recognition is the process by which the gestures made

by the user are recognized by the receiver.

In this thesis, we attempt to develop a gesture recognition framework, which would be

able to accurately classify complex body and hand gestures. This thesis also investigates

new Self-Organizing architectures that would allow us to express these gestures as a set of

unified features.

According to [8], ”Gestures are expressive, meaningful body motions involving physical

movements of the fingers, hands, arms, head, face, or body with the intent of: 1) conveying

1

meaningful information or 2) interacting with the environment. Human gestures simply in-

corporate a small subspace of possible human motion.” Interestingly, a gesture may also be

perceived by the environment as a compression technique for the information to be transmit-

ted elsewhere and subsequently reconstructed by the receiver [8]. Some of the applications

of gesture recognition are [8]:

• developing aids for the hearing impaired;

• enabling very young children to interact with computers;

• designing techniques for forensic identification;

• recognizing sign language;

• medically monitoring patients’ emotional states or stress levels;

• lie detection

• navigating and/or manipulating in virtual environments;

• communicating in video conferencing;

• distance learning/tele-teaching assistance;

• monitoring automobile drivers’ alertness/drowsiness levels, etc.

Figure 1.1 shows Kendon’s Gesture Continuum, which was an early step to understanding

and describing the nature of human gesture [9]. Kendon defined five types of gestures as

follows:

1. Gesticulation represents the unprompted actions of the hands and arms which accom-

pany speech.

2. Language-like gestures are movements that are part of speech, and replace spoken

words or phrases.

2

3. Pantomimes are gestures that portray actions or objects, and may or may not be

associated with speech

4. Emblems are culturally specific gestures, such as the ”thumbs up” for ”good”, or

holding up the index and middle fingers in a ”V” for victory (during World War II) or

peace (since the 1970s).

5. Sign language is a formalized language system which uses manual communication,

body-Language and lip patterns instead of sound to convey meaning.

Figure 1.1: Kendon’s Gesture Continuum

As one moves to the right in Figure 1.1, the accompaniment of speech with gesture is

reduced, impulsiveness decreases, language properties increase, and social guidelines increase.

In computer interfaces, two types of gestures are distinguished [10] - online and offline

gestures. Online gestures involve direct manipulation of digital content, for e.g. The use of

hands and movements to scale or rotate a tangible object. Offline gestures are those gestures

that are processed after the user’s interaction with an object has been acquired, for e.g. the

activation of a menu, or the recognition of an event.

Breaking gestures down into their component parts, or segmenting them, is required to

correctly identify natural and uninterrupted gestures. Segmenting a gesture automatically is

very difficult, and this step is often skipped in gesture recognition systems. As a workaround,

a start position in time and/or space is required. Often, postures are used as a unit to ges-

tures. A posture here is referred to a body (or body part) position at a given point in time.

3

It is similar to breaking a continuous signal (gesture) into a set of discrete points (postures)

describing the nature of the signal. Figure 1.2 provides some examples of human body and

hand postures. More general that this, we define a posture in this work to be the state

(configuration of a set of variables describing the motion, position or visual properties) of

the body at a particular instance in time during a gesture, where a gesture is a temporal

sequence of postures whose order conveys specific meaning.

(a) Body postures (b) Hand postures

Figure 1.2: Examples of human postures

In order to capture the gesture fully, one has to be aware of the gesturer’s position,

movement and configuration. Usually this is done with a data suit, sensors, or special gloves

being worn by the gesturer, or using a computer vision system to capture and describe con-

figurations based on image properties.

Gestures tend to vary from person to person, so it is critical to capture the invariant

4

gesture properties to keep a system universal. When it comes to static gestures, the recog-

nition system can be accomplished through a process illustrated in Figure 1.3, by a way of

pattern recognition methods. In general, such techniques for pattern recognition fall into

two categories: rule based or exemplar based systems; the latter of which implies the use

of a learning mechanism that builds models of gestures from real example data; while the

former imposes a model based on domain knowledge. This thesis investigates the exemplar

based approaches to tackle gesture recognition.

Figure 1.3: Pattern Recognition System (ideal for static gesture recognition)

Exemplar based approaches can be further subdivided into supervised (learning with a

teacher) and unsupervised (learning without a teacher). In supervised approaches, we have

a training set of examples that are labeled, i.e. it is known upfront which example belongs

to which class. In unsupervised techniques, some learning takes place without such labels,

in which characteristic patterns in the data are sought independently of any class member-

ship. In this work, a hybrid mechanism is proposed that leverages an unsupervised phase of

learning known as self organization to extract key characteristics of gestures, in addition to

a supervised phase to formalize the description of gestures and aid in their detection.

5

1.1.1 Recent developments in acquisition technology

Gestures are a very powerful tool for interacting with environment, therefore the discussion

about gestures cannot be complete without mentioning recent technologies in gesture ac-

quisition and recognition. Touch interfaces have become common in the present with the

introduction of touch displays in mobile phones, tablets, computers, monitors, etc. User can

interact with the device via direct touch of the screen, interacting with the data directly

rather than using buttons or keyboards as it was in the past. Some examples include Flicks

for Microsoft Windows1(Fig.1.4a) and finger gestures in Apple MacBook laptops2(Fig.1.4b).

The first one involves gestures that can be made with a tablet pen to quickly navigate or

perform shortcuts. The same tasks can be done in the second example but using fingers

gestures traced on a track pad.

The technology has gone further by introducing gaming consoles such as Microsoft Kinect,

Nintendo Wii and Sony Playstation Move (Fig.1.5), where the user plays games by just using

his or her body and various gestures understood by the console. In this case the body gestures

serve as a language between the computer and human and facilitate the interaction between

them for a rich and full experience for the user. Visualization tools have been created based

on this technology. One example of such visualization tool is immersive virtual reality which

was created due to recent advances in research and can provide a rich visualization and

interactive modeling and analysis tool [11]. Augmented reality combines real world objects

with virtual reality. By overlaying additional information on a real scene, a person, for

example, can walk through the streets of New York, without being there physically. It is

very interesting to see what the development of this technology will bring us in the future.

1http://windows.microsoft.com/en-US/windows7/What-are-flicks
2http://www.apple.com/osx/what-is/gestures.html

6

(a) Windows Flicks (b) MacBook finger gestures

Figure 1.4: Recent touch technology

1.1.2 Traditional approaches to gesture recognition

Before gestures are analysed they are normally divided into states - it may be a set of

postures, or sequence of postures. All these states are typically used as a feature space,

on top of which a recognition model is built. Traditionally, techniques such as Hidden

Markov Model(HMM), Recurrent Neural Networks(RNN), Dynamic Time Warping(DTW)

and Metafeatures have been used for gesture recognition:

1. HMM. A HMM [12] is a variant of a finite state machine. However, unlike finite state

machines, they are not deterministic but rather probabilistic. HMM consists of the

following parts:

7

Figure 1.5: Examples of body motion sensors and controllers. From top to bottom: Sony
Playstation Move, Nintendo Wii, Microsoft Kinect

• A set of states S = {1, ..., n}.

• A set of output symbols Y .

• Two special subsets of S, the starting states and the ending states. Typically the

HMM starts in state 1 and end in state n (although multiple start and end points

are also possible).

• A set of allowed transitions T between states. T is a subset of SXS, in other

words, a transition goes from one state to another. Self-transitions (eg. from

state 1 to state 1) are allowed.

• For each transition, from state i to state j, a probability that the transition is

take. This probability is usually represented as aij. For disallowed transitions

aij = 0. These are known as transition probabilities.

• For each state j, and for each possible output, a probability that a particular

output symbol o is observed in that state. This is represented by the function

bj(o), which gives the probability that o is emitted in state j. These are called

8

the emission probabilities.

HMMs can be employed for classification in the following way: given several HMM

models, it is possible to determine the model which will produce a given sequence of ob-

servations (postures) with the highest probability. Thus, for each class there is a model

with the states, transitions and probabilities set appropriately the Viterbi3algorithm

can be used to calculate the model that most probably generated the sequence of ob-

servations.

The problem with this approach is that it is hard to choose the correct model, i.e.

what are the appropriate states and transitions. Since there is no definitive answer,

experts use domain knowledge and trial and error.

2. RNN. Another tool that has been used for temporal classification problems is recur-

rent neural networks [13]. It is a type of neural network (refer to section 2.2 for more

information about neural networks), which is modified to allow for temporal classifi-

cation (Fig.1.6). A context layer is added to the structure, which retains information

between observations. The previous contents of the hidden layer are passed into the

context layer. These are then fed back into the hidden layer in the next time step. To

do classification, post-processing of the outputs form the RNN is performed: when a

threshold on the output from one of the nodes is observed, a particular class (gesture)

has been registered.

The disadvantage of this approach is that involves many parameters such as the number

of units in the hidden layer, the appropriate structure, the learning rate, etc. Also, if

we deal with complex gestures involving many variables and states, a large network is

required.

3An algorithm for calculating the sum of the probabilities over all possible paths

9

Figure 1.6: Recurrent Neural Network

3. DTW. Dynamic time warping [14] is an instance-based learning approach. Instances

of postures and posture sequences are warped together to form a template (Fig.1.7)

of the same length and size. Unlabeled gesture instances are then compared against

those templates based on the distance between the input and the templates, and the

unknown gesture is attributed to the nearest template. Although this is a stateless

approach, it is difficult to use this approach when dealing with multivariate data, and

complex gestures are recognized.

4. Metafeatures. Instead of looking at a sequence of postures, in this approach, we look

for a set of features in sub-events from the training data, which are either important,

typical or distinctive [15]. A learner or classifier is then applied to look for these features

in all the gesture instances. The disadvantage of this method is that it involves domain

knowledge and different rules need to be applied for the learner to correctly classify

unknown gestures. It is domain dependant and rule-based approach, where rules are

build based on the nature of the data.

10

Figure 1.7: Dynamic Time Warping

1.1.3 Domain independent approach to gesture recognition

To overcome the problems and limitations of the approaches described earlier, some recent

works have been done using Self-Organizing Maps(SOM). The purpose of SOM is to decom-

pose temporal input samples into commonly occurring states and build a map to know how

the states relate to each other. The map (Fig.2.4) works by considering individual vectors

from the input space (assume a vector represents a set of input variables describing the con-

figuration of a posture). Training samples are mapped to their closest representation on the

lattice: the winning node. This node and surrounding nodes on the lattice are proportionally

tuned toward that input vector. Over time, by presenting many different input vectors, all

nodes on the lattice tune themselves to samples that occur frequently in the input space. A

natural organization results which sees similar postures fall onto similar spatial locations in

11

the map.

Ultimately, we can think of the mapping as a topology preserved projection of postures,

into a low dimensional representation. If we map temporal gesture data onto the lattice, the

smooth changes happening in high dimensional space should move relatively smoothly also

in low-dimensional lattice. This allows us to model some kind of transitions or path that is

traced on the map.

The idea behind SOM is that we do not want to use domain knowledge but instead we

want to automatically learn or partition the input space into a set of commonly occurring

states (postures), and this is achieved in an unsupervised manner. This thesis exploits the

properties of the SOM to model gesture trajectories.

1.1.4 Introduction to gesture data sets used in this thesis

For the experiments involved in this thesis it was used two different datasets involving full

body gestures and hand gestures. The first data set that was used is the Australian Sign

Language. The reason why this data set was chosen is because it is an established data

set, which is used for sign language. This data set is used as base evaluation in this thesis,

since there have been some prior work done on it involving gesture recognition. This thesis

also uses a much more newer and complex data set obtained in house with the help of

Microsoft Kinect IR camera. Arbitrary gestures classes are used. This data set was used

an an exploratory phase for the framework developed in this work. These two datasets were

used separately but with a similar experimental setup. The description of the datasets is

given below:

1. Australian Sign Language signs [16]. This dataset consists of 20 different signs, which

were collected from five signers with a total of 6650 samples. The source of data is

the raw measurements from a Nintendo PowerGlove, see Fig. 1.8. It was interfaced

through a PowerGlove Serial Interface to a Silicon Graphics 4D/35G workstation. Po-

12

sition information is calculated on the basis of ultrasound emissions from emitters the

glove to a 3-microphone ”L-Bar” sits atop a monitor. There are two emitters on the

glove; and three receivers. This allows the calculation of four pieces of information:

x(left/right), y(up/down), z(backward/forward), and roll(is the palm pointing up or

down?). x, y and z are measured with 8 bit accuracy. These x, y, z positions are

relative to a calibration point which is when the palm is resting on the seated signer’s

thigh. Roll is four bits. Finger bend is generated by conductive bend sensors on the

first four fingers. Values vary between zero(straight) and three(fully bent). Accuracy is

2 bits. The gloves automatically apply a hysteresis filter on these bend sensors. Table

1.1 describes the variables from the dataset.

Figure 1.8: Nintendo PowerGlove

In total there are 70 samples per gesture class and each feature vector contains 8 en-

tries depicted in Table 1.1. Since each gesture takes a different amount of time to

be performed, the gestures’ length is variable but usually ranges between 40 and 60

samples. Table 1.2 shows the gestures involved in the experiments.

2. Microsoft Kinect full body gesture database. This dataset was collected using a sensor

equipment in the Microsoft Kinect camera, see Fig. 1.5. A virtual version of the game

Charades was used to collect full body gesture data. Nineteen gestures were selected

randomly out of a classic commercial version of Charades. Table 1.3 alphabetically

13

Variable Data Type Description

x continuous x position between -1 and 1. Units are in
meters

y continuous y position between -1 and 1. Units are in
meters

z continuous z position between -1 and 1. Units are NOT
meters. This space should not be treated as
linear, although it is safe to treat it as mono-
tonically increasing

roll continuous roll with 0 meaning ’palm down’, rotating
clockwise through to a maximum of 1 (not
included), which is also ’palm down’

thumb continuous thumb bend; has a value of 0 (straight) to 1
(fully bent)

fore continuous forefinger bend; has a value of 0 (straight) to
1 (fully bent)

index continuous index finger bend; has a value of 0 (straight)
to 1 (fully bent)

ring continuous ring finger bend; has a value of 0 (straight)
to 1 (fully bent)

Table 1.1: Australian Sign Language Variable description

Alive All Answer

Boy Building Buy

Change Cold Come

Computer Cost Crazy

Danger Deaf Different

Draw Drink Eat

Exit Forget Visual

Table 1.2: Australian Sign Language gesture data

14

lists the 19 different gestures that were used in the database. It is easy to see how

these gestures are very open to interpretation. Of the 19 gestures (classes), 50 full

samples of each gesture were sampled.

The Kinect primarily samples user ’gesture’ information from the IR depth camera.

The data coming from the camera is oriented relative to its distance from the Kinect.

This becomes problematic when searching for the solution to universal truths in ges-

tures. A normalization technique was developed that converted all depth and position

data into vectors relative to a single joint presumed most neutral. In this case the

torso was considered as the neutral position of the body. Figure 1.9a shows the skele-

ton model with the points (body parts) used in the dataset and Table 1.4 shows all the

body parts being tracked. The result includes positive and negative x, y, and z-axis

values. Figure 1.10 demonstrates a sample feature vector obtained from the Kinect

sensors. The feature vector consists of 60 features (three displacement vectors -x,y,z

multiplied by 20 body points). The average temporal length of each gesture in the

database is 200-300 frames.

1.1.5 Mathematical definition of a gesture

We define a gesture xi, where xi = {t0, t1, ..., tj, ...tn} is an ordered time series of multivariate

input vectors tj, where tj = {a1, a2, ..., aM} a set of M real valued attributes describing the

raw sensor data from input gesture device.

Air Guitar Clapping Laughing

Archery Crying Monkey

Baseball Driving Skip Rope

Boxing Elephant Sleeping

Celebration Football Swimming

Chicken Heart Attack Titanic

Zombie

Table 1.3: Microsoft Kinect Full body gesture data

15

(a) Showing body points be-
ing tracked

(b) ”Zombie” gesture in-
stance

(c) ”Celebration” gesture in-
stance

Figure 1.9: Microsoft Kinect skeleton

In the case of the ASL data set, tj = {xj, yj, zj, rollj, thumbj, forej, indexj, ringj} repre-

senting the state of the input sensors in the PowerGlove at time j.

In the Kinect data set, tj = {p1, p2, ..., pk, ..., p60}, where pk = [xk, yk, zk] is the x, y, z

position of the kth joint in the skeletal data detected by the Microsoft Kinect SDK.

Let X = {(x1, L1), (x2, L2), ..., (xp, Lp), ..., (xn, Ln)} be the labeled set of samples, where

Lp is an element of L - the set of possible labels: L = {w1, w2, ..., wn}.

In the ASL data set, examples of wi’s are w1 = ”Alive”, w2 = ”Boy”, ..., w20 = ”Visual”

(See Fig. 1.2b).

In the Kinect data set, w1 = ”Air Guitar”, w2 = ”Archery”, ..., w19 = ”Zombie” (Exam-

ples of gesture instances are shown in fig.1.9c and 1.9b).

16

Figure 1.10: Representation of a single feature

1.2 A brief introduction to Supervised and Unsuper-

vised Learning

In an effort to provide some background without delving into the vast landscape of pattern

recognition, this section, will highlight the main features of supervised versus unsupervised

approaches in a general sense. For a more complete survey, the reader is referred to [17]. In

supervised learning, as alluded to earlier, examples relating to known classes or categories are

used in ”direct” or ”teach” system. This typically proceeds by learning a weighted mapping

(e.g. linear or nonlinear) transform of the input pattern (xi) onto a decision space (w), i.e.

the class labels referred to in the previous section. In general, the approach is to start with

an arbitrary mapping and an example input (training sample), and consider the error of

mapping to the desired output. The mapping is then adjusted to reduce this error. By con-

sidering many training samples, error is reduced and an appropriate mapping is ”learned”.

Neural networks and support vector machines are examples of supervised learning ([18], [19]).

17

Torso

Head

Neck

Left Shoulder

Left Elbow

Left Hand

Right Shoulder

Right Elbow

Right Hand

Left Hip

Left Knee

Left Foot

Right Hip

Right Knee

Right Foot

Table 1.4: Microsoft Kinect Full body gesture variables

Unsupervised Learning by contrast, implies no access to class labels, and involves a more

subtle goal: to essentially formulate or discover significant patterns or features in a given

set of data, without the guidance of a teacher. The patterns are usually stored as a set

of exemplars (prototypes): representations of natural groupings of similar data or clusters,

present within the input space. The piece we have no labels or definitions for are the actual

postures. We want to use unsupervised learning to identify such postures. This is a kind of

interim mapping between x and w. We go from x− > p− > w, where p is a posture space.

This will be explained further in chapter 3.

The concept of clustering is invariably tied to an adequate definition of what consti-

tutes a cluster. This is a subject of much debate, and often depends on problem domain.

Never the less, the concept of a cluster is inherently related to the concept of similarity

between samples from an input data space. In the majority of cases, the distinct lack of a

priori information in an unsupervised learning problem warrants the need for a generalized

framework. As such, the process of clustering can be broadly defined as one that seeks to

18

group together similar or related entities. Each entity or sample is often taken to be some

n-dimensional vector (defined on an input space <n): this is represented as a 2D space in

Figure 1.11. For instance, an input gesture may be represented as a set of x, y, z positions

representing joint locations as in the Kinect data mentioned previously. Generally, the ability

of an algorithm to extract natural groupings from the data is linked to a choice of distance

metric used to assess similarity (for e.g., a standard Euclidean metric might result in the set

of colored groupings shown in Fig.1.11, each reflecting a similar type of pattern in the input).

A popular method for identifying groupings in the literature is the k-means method [20],

where the groupings are often considered as classes unto themselves. Hybrid approaches may

perform such groupings and then associate groups with a label in a later supervised step.

This is often employed when we have partially labeled data available for training. In these

configurations down to a set of characteristic postures typically encountered in gestures ex-

pressed for a given application. Working with this reduced set, we then apply a supervised

approach to describe a sequence of these key postures that is relevant for a particular gesture.

Specifically this thesis explores the use of a Spherical Self-Organizing Map (SSOM) for

this purpose, which performs unsupervised clustering of the gesture data. The ability to

map the gesture data from higher dimension to lower along while preserving the topological

association (described in Chapter 2 and 3) between postures belonging to a particular gesture

makes the SSOM a suitable tool to explore and model smoothly changing data such as gesture

data.

1.3 Thesis Overview

The objective of this thesis is to investigate the potential of SSOM’s to facilitate the modeling

and recognition of high dimensional temporal information in gesture recognition applications.

Alternative Self-Organizing Map (SOM) structures are studied for their ability to represent

data. Following is the structure of the remainder of this thesis:

19

Figure 1.11: The problem of defining a cluster. The clusters are formed based on the
coordinates of the data points

• Chapter 2 (Gesture Recognition) discusses self-organization, supervised and unsuper-

vised learning. It brings examples from literature where 2D self-organizing maps are

used to tackle gesture recognition. It introduces how trajectories are used for analyzing

gesture data.

• Chapter 3 (Trajectory analysis based on video and gesture data using Self-Organizing

Maps) gives an introduction into spherical self-organizing map and discusses some

benefits over the conventional 2D SOM. An experiment is performed using a 3D SOM

to show some of the properties of the Self-Organizing Map to help map smoothly

(slowly) varying data such as a video clip containing several scenes. Some conclusions

are drawn, which are later used for next chapter, where the main experiments are

discussed. Trajectory methods, which are used in this thesis are introduced: using

all postures, weighted aggregation of all postures, using posture transitions, weighted

aggregation of all posture transitions.

20

• Chapter 4 (Experiments and Results) explains the experimental setup. A thorough

explanation is given on each of the four methods implemented for gesture recognition

and results are discussed.

• Chapter 5 (Conclusion) summarizes the results of this thesis’s contributions. It gives

an evaluation to the experiments and suggests some future work and suggestions.

1.4 Thesis Contributions

The main contributions to this thesis are twofold:

1. Using a Spherical Self-Organizing Map to decompose gestures into a well separated

sparse set of postures.

- Constrained trajectories on the sphere formed from mapping the gesture data onto

the spherical lattice gives an ability to analyse the data without worrying about the

size of the sphere.

- SSOM has more resolution comparing to 2D (flat) SOM (no border effect), and it is

ideal for reducing high dimensional sequence of data into trajectories on the sphere.

2. Proposal and investigation of four different approaches to model gesture trajectories

extracted from the SSOM mapping with application to gesture recognition.

1.4.1 Publications

”Trajectory analysis on Spherical Self-Organizing Maps with application to gesture recogni-

tion”. Submitted to WSOM 2012, 9th workshop on Self-Organizing Maps.

21

Chapter 2

Self organizing approaches to gesture

recognition

2.1 Introduction

The gesture recognition challenge lies largely in mathematical computation and modeling.

Systems need to be created that use more complex data sets and models than a speech

recognition system, which is a two-dimensional problem (2D), or a handwriting recognition

system, which is a three-dimensional problem (3D). Gestures are complex, because they are

represented as high dimensional data and the challenge lies in both to recognize and inter-

pret the current gesture, and to understand its meaning by analyzing its context as indicated

earlier.

Rule based approach to gesture recognition refers to gesture recognition systems that do

not perform learning on the gesture data. But rather, impose a set of rules that must be

satisfied in order for a gesture to be recognized. Often such systems cannot generalize well

however, and if a gesture is performed poorly by a person, for example, then the system will

be unable to recognize it. An example of this type of gesture recognition systems may be

seen in modern touch-screen mobile phone or tablets, where a user has to use a specific set

of touch gestures with his or her fingers in a certain order. These gestures are recognized

22

easily because they are programmed and hard coded onto the device itself, and in case if

the user performs the gesture poorly or in a wrong way, no interaction between the device

and the person will occur. Some examples include Flicks for Microsoft Windows, and fin-

ger gestures on MacBook Apple laptops, which were mentioned earlier in the introductory

chapter. These kinds of gestures make the interaction between the person and the device

more natural, although there is also a limitation in the complexity of the gesture: complex

patterns of movement cannot be easily understood.

Exemplar based learning approaches on the other hand, typically have the ability to

generalize, unlike rule based approaches, and thus are the directions explored in this work.

As mentioned, neural networks represent a common family of such approaches in pattern

recognition. In fact, the architecture investigated in this work is based on a special type of

neural network known as a self-organizing map (SOM). In this Chapter, we give a founda-

tion and an overview of neural networks with focus on self-organization and unsupervised

learning, and review some works from the literature that have used such principles in gesture

recognition.

2.2 Neural Networks

A neural network in the context of this thesis represents a data modeling tool that can cap-

ture and represent complex input/output relationships [1]. It is thought to be inspired by

the way biological nervous systems, such as the brain, process information. The network is

built from a large number of highly interconnected processing elements (neurons) all work-

ing in parallel, see Figure 2.1. In contrast to conventional computers, where problems are

being solved by a specific algorithm or a step by step instruction, Neural networks learn by

example and by the data that is being provided to the network. A neural network is usu-

ally configured for a specific application, such as pattern recognition or data classification,

through a learning process.

23

Figure 2.1: A Simple Neuron [1]

In general a Neural Network consists of three types of layers which have input neurons,

hidden neurons and output neurons respectively. Figure 2.2 shows the basic principle of

Neural Networks.

In this case X1, X2, ..., XN represents the inputs which might be from other neurons; Y

represents the outputs which might be inputs to other neurons or the final outputs, and

W1,W2, ...,WN representing the strength of the connections between the inputs and the

neuron. Finally, the neuron collects all the adaptive inputs, and uses the activation function

to generate the output. The activation function could be non-linear function or Gaussian.

The formula is shown below:

24

Figure 2.2: Example of a basic Neural Network

y = f(
n∑

i=0

WiXi) (2.1)

where y is the output from the neuron, n is the number of inputs, Wi is the weight of

the input, Xi is the input to the neuron, and f is the activation function, e.g. for sigmoid,

f(x) = 1
1+e−x .

The majority of neural networks learn in a supervised manner, i.e. the actual output of

a neural network is compared to the desired output. The weights learned by the network,

which initially are random, are adjusted so that with the next cycles or iterations will closely

resemble the desired output. In general, this learning method tries to minimize the error of

all the processing elements by constantly modifying the input weights until they reach some

acceptable accuracy. The data used to train a neural network has to be numeric, therefore

often the raw data has to be converted from its environment (i.e. extracting color features

25

from an image). It is important to emphasize how the training of the network is important.

After a successful training, a supervised network should be tested on an unknown data to

see how it performs. This step is to ensure that the network has not just simply memorized

a given set of data but has also learned the general patterns in the data.

Unsupervised learning is another category of a neural network learning process. This

method is used by the SOM, also commonly known as Kohonen network [21]. These net-

works use no external influences (e.g. guiding ”error” signals) to adjust their weights. They

use their input data to look for patterns or trends and make according adaptations. The

network has all the necessary information to organize itself. As such competition between

the processing elements in this type of network is used as a the basis for learning. The

next section will introduce the topic of Self-Organization and discuss the Kohonen’s Self-

Organizing Feature Map (SOFM).

2.3 Self-Organization

2.3.1 Principles of Self-Organization

Unsupervised Learning and Self-Organization are inherently related. In general, self organiz-

ing systems are typified by the union of local interactions and competition over some limited

resource. In his book [22] identifies four major principles of self-organization:

1. Synaptic Self-Amplification and Competition: This principle is expressed through

Hebb’s postulate of learning [23]. This states that, when two neurons are within a sig-

nificant proximity enabling one to excite another, and furthermore, do so persistently,

some form of physiological/metabolic growth process results. A synaptic path evolves

and strengthens between the two neurons, so that future associations occur much more

readily. This action of strengthening the association between two nodes, functions as

a correlation between their two states. These properties combined, have led to the

26

modified Hebbian adaptive rule, as proposed by Kohonen [24]:

∆wk∗ = αϕ(k∗, xi)[xi − wk∗] (2.2)

where wk∗ is the synaptic weight vector of the winning neuron k∗, α is the learning

rate, and some scalar response ϕ(.) to the firing neuron k∗ (activation).

The activation function ϕ(.) is the result of the second principle (synaptic competition).

Neurons generally compete to see which is most representative of a given input pattern

presented to the network. Some form of discriminative function oversees this process

(for example: choosing a neuron as a winner if its synaptic vector minimizes Euclidean

distance over the set of all neurons). This process is often termed Competitive Learning.

2. Co-operation: Hebb’s postulate is also suggestive of the lateral or associative aspect

to the way knowledge is then captured in the network: i.e. not just through the winner,

but also through nearby neurons in the output layer. Often the strength of connection

is not considered, but rather a simple link function as an indicator of which other nodes

in the network will more readily be associated with a a winning node. Thus a local

neighbourhood is defined and it is through this that knowledge may be imparted. Local

adaptation usually follows the simple Kohonen update rule 2.2, whereby a portion of

information is learnt by the winning node, with neighbouring nodes extracting lesser

portions from the same input.

3. Knowledge through Redundancy When exposed, any order or structure inherent

within a series of activation patterns represents redundant information that is ulti-

mately encoded by the network as knowledge. In other words, the network will evolve

such that similar patterns will be captured and encoded by similar output nodes, whilst

neighbouring nodes organize themselves around these dominant redundancies, each in

turn focusing on and encoding lesser redundant pattern across the input space.

27

2.3.2 The Kohonen Self-Organizing Feature Map (SOFM)

Architectures such as Kohonen’s Self-Organizing Feature Map (SOFM) [24] represent one of

the most fundamental realizations of the principles outlined in Section 2.3.1, and as such

have been the foundation for much neural network based research in data mining.

In the basic SOM, shown in Figure 2.4 (top), samples (vectors from an input space de-

fined on <d), are essentially mapped onto a lower dimensional grid or lattice (typically 2D

or 3D). Nodes on the grid (neurons) act as memory elements: storing prototype vectors that

ultimately describe commonly occurring vector patterns from the input space. The mapping

takes place such that nodes nearby to one another on the lattice, map to patterns that are

nearby one another in the input space.

Figure 2.3: Self-Amplification, Competition and Co-operation in learning: wk∗ represents the
synaptic vector of the winning neuron (competition), which adapts (self amplifies) toward
the input thereby strengthening its correlation with future inputs in this region. At the same
time, associative memory is imparted to neighbouring neurons (co-operation): related to the
winner through some defined or inferred topology

The lattice on which a SOM is defined, thus serves as a set of associative connections

linking prototypes to one another, through which information is shared laterally throughout

learning. This is a basic expression of the principle depicted in Figure 2.3. The SOM

28

algorithm is presented as follows:

1. Initialize the map lattice as an MxN matrix neuron vectors W = [wi,j] : wi,j ∈

<d; 0 < i < M − 1; 0 < j < N − 1. Choose random values for each vector on the grid

(or initialize with random samples selected from X)

2. Randomly select a sample vector xi from X, and present to the network

3. Choose a winning node wi∗,j∗ such that: d(wi,j,xi)∀i 6= i∗j 6= j∗

4. Update the neurons on the lattice according to the Kohonen learning rule:

w’i,j + α(t)H(ri∗,j∗, ri,j, σ(t))[xi −wk∗] (2.3)

H(ri∗,j∗, ri,j, σ(t)) = exp(
−‖ri∗,j∗ − ri,j‖

2σ(t)
(2.4)

5. Update α(t) and σ(t): which are relaxed over time

6. Repeat step 2, until all wi,j have converged

In the above algorithm, ri,j denotes the position vector of the node at (i, j) on the map

lattice, α represents a learning rate which decays from a small initial value (say 0.1) allowing

small portions of information from the input vector to be learnt by the neurons in the lattice.

The neighbourhood function, in this case a Gaussian neighbourhood Eq.2.4 is depicted in

Figure 2.4 (bottom), and is adaptively controlled by a decaying radius σ(t) (initially larger

than that of the map: e.g. sqrt(M2 +N2)). This allows information from the input vector to

be further modulated and shared across the map relative to the winner (wi∗,j∗). With time,

as the radius over which information is shared reduces, the map switches from a locating

phase where nodes reorganize themselves over the input space, to more of a tuning phase

where only the winners are adjusted.

29

Figure 2.4: Mapping samples from an input space onto a SOM lattice of prototypes; show-
ing the winning node (best matching unit: BMU of the current input xi (top), Gaussian
neighbourhood function (bottom)

In general, it is this feature that leads to a SOM’s innate ability to infer an ordered or

topologically preserved mapping of the underlying data space. Associations between nodes

are advantageous as they help guide the evolution of such networks, and may also assist in

formulating post-processing strategies or for extracting higher-level properties of any clusters

discovered (e.g. inter-cluster relationships).

Now that SOM has been introduced, this thesis will continue with a section related to

gesture recognition using SOMs, which inspired to investigate the way gesture data maps onto

a SOM’s lattice. Because of its temporal nature, gestures are ideal for studying trajectories

(by trajectories we refer to the spatio-temporal trace that the gesture data maps on the

SOFM.

30

2.4 Gesture recognition using Self-Organizing Maps and

Trajectories

The use of SOM in the area of gesture recognition has been relatively recent. Some methods

which will be discussed shortly in this section have used SOM in various ways to divide the

sample data into clusters of phases, which are further processed with the help of other tools

and techniques. The use of trajectories in these works has been limited used just as a transi-

tional step towards gesture recognition, whereas this thesis focuses on the use of trajectories

as a feature itself, from which one can perform the recognition process.

The first work discussed is called automatic learning of gesture recognition model using

SOM and SVM [2] by M. Oshita and T. Matsunaga. The authors proposed a method in

which they first use SOM to process the gesture data and then apply a Support Vector Ma-

chine (SVM) to partition the feature space into regions belonging to separate classes. They

emphasize that the gesture data, in this case they use two Nintendo Wii Remote controller

with three-dimensional acceleration sensors as input, is multi-dimensional and time-varying.

Their approach is interesting because they divide each gesture into short phases and then

apply a pattern recognition technique for multi-dimensional data to recognize each phase.

The authors mention that the main issue lies in the ability to deal with multi-dimensional

and time-varying input data. They bring as an example the Hidden Markov Model (HMM)

[2], which is a popular method for recognizing time-varying data. It simply represents a

recognition model as a network of nodes that produce some symbols and transition proba-

bilities between nodes. The problem with this approach is that it handles input data as a

series of discrete symbols, which causes difficulty in handling multi-dimensional signals and

prevents accurate recognition.

Dynamic Programming (DP) is another method that authors mention in their work. In

31

this technique they match the trajectory from the input signals and the sample trajectory

from a gesture. In this manner the system can determine whether the gesture has been

executed. The disadvantage of this is that the trajectories must be projected onto a low-

dimensional feature space. Furthermore, a valid threshold must be specified to measure the

similarity of two trajectories.

Figure 2.5: Flow chart and data structures for the learning process based on Oshita and
Matsunaga method [2]

Figure 2.5 shows the flow chart for the learning process based on Oshita and Matsunaga

method. The system is explained here:

1. Input signals are taken from the sample data performed by a user.

2. SOFM is applied to all feature vectors from the sample data and states are constructed

32

for the state machine. Each of the states contains feature vectors belonging to the

corresponding unit.

3. The system determines possible transitions for each state: if state A is followed by a

feature vector of state B in the input sample data, an edge from state A to state B is

created.

4. SVM is applied to learn the transition conditions for each state. In order to construct

an SVM for each state, the sample data belonging to the state and those belonging to

adjacent - possible transition - states are used as training data.

5. A state machine is constructed from the above process

The system determines the correct path for a gesture by storing the path from the sample

data as a series of states. Then, depending on the transition in the state machine from new

incoming data, the gesture following the most states in a particular gesture is chosen.

Another interesting approach to gesture recognition using Self-Organizing Maps was pub-

lished by A. Shimada and R. Taniguchi in [3]. Their method is based on Sparse Code of

Hierarchical SOM (HSOM). First, we shall describe how HSOM is different from a regular

SOFM. Hierarchical Self-Organizing Map [25] is a two layer SOM network, where the lower

layer has a connection with an input layer. In this case, the second layer receives an input

vector from the first layer directly.

The method proposed here uses the property of HSOM to first learn postures (which are

the minimum unit of a gesture) in the first layer, and then learn short gestures consisting

of some time-series postures in the second layer. Authors argue that the time length of a

human gesture is not always the same even if same gestures are compared. They highlight

that the key issue in their method is to absorb the time variant appropriately in order to

make clusters which include the same gesture class.

33

The term Sparse Code is used by the authors to represent the activated pattern of neurons

in the first layer of the SOM. The first layer of the SOM learns human posture information

represented as a vector I1 and consisting of the positional information of the head, hands,

feet, etc. The output of the SOFM from first layer denoted as O1 is then used as input to

the second layer. Here a posture is shown as I1(t), where t simply represents the time length

of the gesture and c(t) is the winning node or neuron of the input I1(t). In Figure 2.6 all

the c(t) for all of the postures which make up a gesture element are shown. In the figure,

each circle shows a neuron of the SOM and the bottom part show a gesture element. The

grey-coloured neurons in the figure are the winners for the posture sequence (I(1), I(2), I(3)).

Figure 2.6: Winner neurons for a gesture element [3]

The output regarded as a sparse code and consisting of an activated pattern of winner

neurons for a gesture element has the possibility to have same neurons selected more than

once for different gestures. In this case the sparse code helps the upper layer of the SOM to

reach time invariant recognition, because the sparse code is similar between gesture elements

which have different time lengths from each other, see Fig. 2.7. As seen in the Figure 2.7,

although the time length of the gesture element is longer than the one in Figure 2.6, the

sparse code is the same.

A problem may occur in the case where a gesture is forward and backward similar. The

SOM will treat this as one gesture, although they may belong to different ones. To solve

34

Figure 2.7: Time invariant recognition with sparse code [3]

this problem authors use an ordering mechanism to keep track of the sequence of activated

neurons. An example of a backward gesture element is shown in Figure 2.8.

Figure 2.9 shows how the order of the activated neurons is expressed in the color strength.

It is clear that the color pattern of the forward gesture is different from the one of the

backward gesture.

To eliminate the slight difference between sparse codes for the same gesture category

authors apply a Gaussian filter to the code. This can be seen in Figure 2.10, where element

2 and 3 seem to look similar because they have a backward relation. In Shimada’s and

Taniguchi’s approach the sparse codes are distinguished by the second layer’s SOM, because

transition information is considered in the sparse code.

The interesting part of this technique for gesture recognition is how the authors tackle

the problem of time invariance or length invariance if one talks in terms of trajectories that

gestures leave on the SOM lattice. The use of multi-layer Self-Organizing network allows

them to obtain a more general gesture path on the lattice without worrying about its length.

Another novel approach to Video-Based Gesture Recognition Using Self-Organizing Fea-

ture Maps was also created by G. Caridakis, C. Pateritas and A. Drosopoulos in [4] and [26].

Their work introduces a probabilistic recognition scheme for hand gestures, where SOMs

35

Figure 2.8: Sparse code for a backward gesture element [3]

Figure 2.9: Sparse code with time transition [3]

36

Figure 2.10: Sparse code for gesture elements and gesture [3]

are used to model spatiotemporal information extracted from images. It uses a combination

of SOM and Markov models for gesture classification. The classification scheme consists of

tracking the transformation of gesture representations from a series of coordinate movements.

First, authors use a near real-time skin detection and tracking module [27] to create mov-

ing skin masks, and by tracking their centroids they produce an estimate of user’s movements.

Each gesture here, is represented by a time series of points, representing the hand’s location

with respect to the head of the person performing the gesture [4]. The probabilistic model

is built from the transformation of a gesture representation from a series of coordinates and

movements to a symbolic form. The first transformation is achieved by a Self-Organizing

map and is based on the relative position of the hand during a gesture. The argument here

is that the SOFM’s neighbourhood function provides a distance metric between the gesture

symbols used during the classification of an unlabeled gesture.

37

Another transformation used in this work is based on the optical flow of the gesture,

whose main goal is to describe the direction changes in the gesture. These direction changes

describe a set of angles of the gesture’s trajectory. This set is then used in a quantized form

as symbols for the creation of an additional set of Markov models. The system works as

follows:

1. Coordinates from all the points from all the gestures are used to train a hexagonal, 2D

grid SOM. A gesture Gi can then be transformed from a series of points to a series of

map units based on their best matching units (BMUs)

T (Gi) = (u1, u2, ..., ul), ui = BMU(xi, yi). (2.5)

Given that ui is the index of a map unit the function BMU(xi, yi) creates S - set of

indices of all map units treated as a set of symbols. As explained by the authors in [4],

because the ui value of consequent points of a gesture remains the same - this is because,

although continuous hand movement is described by distinct points, consequent points

are generally close in the input data space. (Note: although we are talking about 2D

SOM in this case, we can once more see the property of the SOM for smoothly varying

data and even though we are projecting data from high-dimensional space into lower-

dimensional space, we still see a correlation between the similarity distance between

the input data and its mapping onto the SOM lattice).

2. Consequent equal values of ui are replaced with single value which result in the following

definition:

Gi = N(T (Gi)) = {u1, u2, ..., um} : m ≤ l,∀t ∈ [2, l]ut 6= ut−1, (2.6)

where N is a function that removes consecutive equal ui value and Gi is the transformed

gesture instance.

3. The transformation of the gestures with the help of SOM is equivalent to a transfor-

38

mation of the continuous trail to a sequence of m discrete symbols and which define

the finite states for the building of first order Markov chain models. One model for

each gesture data is created and the sequence of ui values is used for the calculation

of transition probabilities. These models are used to evaluate new unlabeled gesture.

This transformation can be seen in Figure 2.11.

4. An optical flow of each gesture is used to provide a more descriptive representation

of each gesture. This descriptive information provides a direction information instead

of just the spatial position of gesture points. Authors apply quantization to obtain

eight different symbolic values representing direction vectors from consecutive gesture

trajectory points. This process is illustrated in Figure 2.12.

Figures 2.11 and 2.12 depict a set of coordinates that belong to the same cluster -

BMU and Quantized Angle for Fig. 2.11 and Fig. 2.12 respectively.

5. The classification of an unlabeled gesture is based on the two sets of Markov models

discussed previously. Authors provide the following equation to find the probability

of a gesture to belong to category j where MM som represents a model describing a

specific category of gesture:

P (Gk|MM som
j) =

∑m
i=1 S

som
i

m
(2.7)

According to the authors of this work, the above equations averages the values of Ssom
i ,

which represent an evaluation factor for each ui value of the Gk transformed gesture

with respect to the MM som
j Markov model, and are calculated as follows:

Ssom
i = maxz(NF

som
ui

(z)P (z|ui,MM som
j)) (2.8)

39

Figure 2.11: Correspondence of gesture trajectory points to their respective BMUs on the
SOM. The BMUs constitute the states of the Markov models [4]

Figure 2.12: Markov model for a gesture’s optical flow [4]

40

ui = argmaxz(S
som
i), (2.9)

where z is a variable that indexes the units of the trained map and NF som
ui

(z) is

the distance of the unit z defined by the self-organizing map Gaussian neighbourhood

function with the ui unit as its center. For comparing the length of the unknown gesture

with the length of the known gestures authors use a distance metric - Generalized

Median gesture, which is described by the following equation:

∑
si

L(si,m),∀si ∈ S, (2.10)

where S is a set of symbol strings si and m is a string that consists of a combination

of all or some of the symbols used in the set. L(,) the Levenshtein distance - one of

the most widely used string distance metric and calculated as Lkj = L(Gk|M(Dj))

representing the distance between Gk and the Generalized media M(Dj) of each Dj

set.

6. Finally the category of the unknown gesture is decided using the MM som set of models

expressed in the following form:

argmaxjP (Gk|MM som
j) (2.11)

Caridakis, Pateritsas and Drosopoulos claim to reach a 93% average accuracy in gesture

recognition by using their technique.

2.5 Summary

This chapter has mentioned non-learning gesture recognition approach with an example of

modern touch screen devices. It has given an introductory overview of neural networks and

supervised and unsupervised learning. Principles of self-organization were discussed along

41

with the Kohonen’s Self-Organizing Map. Finally, some works were presented which related

to the topic of gesture recognition with emphasis on using SOMs and trajectories.

42

Chapter 3

Trajectory analysis of temporal data

using Self-Organizing Maps

3.1 Introduction

This chapter will discuss the spatio-temporal nature of SOM. The spherical version of the

SOM will be introduced and some properties will be studied initially with the use of video

data. Advantages of using a spherical version as opposed to the conventional 2D SOM will be

highlighted. Finally, four approaches based on trajectories will be discussed for addressing

the problem of gesture recognition.

3.2 Spherical SOM (SSOM)

3.2.1 Topology of the SOFM lattice

The map in the SOM space is a lattice with predefined connections between the nodes. Each

node represents a data vector in a one-to-one mapping or a cluster of data vectors in a many-

to-one mapping. The topology of the SOM refers to the inter-node connections in the lattice.

Based on the topology of the SOM lattice the network may suffer from limitations due to

a restricted neighbourhood along the boundaries of the map. A one-dimensional string of

connected nodes is the simplest form of the SOM lattice. It may be of either open-ended

43

topology or closed-loop topology, see Figure 3.1.

In the latter, the effect of a restricted neighbourhood at the boundaries of the map is

minimized as compared to that in the former since every node in the string will have the

same number of neighbouring nodes. A two-dimensional SOM lattice is defined as a sheet

of connected nodes in Fig. 3.2a, while a cubic structure [28], is the more commonly used

three-dimensional SOM lattice, Figure 3.2b. These structures have data association as indi-

cated, as well as in the diagonal direction. A three-dimensional lattice offers a high degree

of data correlation or grouping as compared to a one and two-dimensional lattice.

Although a 2D and cubic 3D lattice offer a high degree of association as compared to a

1D string of nodes, due to the additional dimension for lateral interaction among the cluster

units, they still have a restricted neighbourhood at the boundaries of map. An alternative

3D lattice is a tessellated sphere with quadrilateral elements shown in Figure 3.3.

Its inter-node structure is equivalent to the latitude-longitude arrangement on the globe.

However, its lattice consists of an irregular or non-uniform distribution of nodes, thereby

resulting in a quadrilateral facets of varying sizes. There is also a limitation on the number

of nodes, because of the possibility of having several nodes overlapping at the poles. Fur-

(a) Open ended topology (b) Closed-loop topology

Figure 3.1: One-dimensional SOM (<1)

44

(a) Two-dimensional SOM (b) Three-dimensional SOM

Figure 3.2: Data association (<2 space (3.2a)) and (<3 space (3.2b)

thermore, the neighbourhood configuration at the poles is different from that in the rest of

the map.

The motivation came to Ritter in [29], who introduced a hyperbolic SOM which employs a

predefined grid of spherical topology thereby taking advantage of the symmetry and overall

continuity found in the spherical shape. The structure consists of a regular tessellated

unit sphere, each node or vertex representing a cluster unit of the SOM. The cluster units

are uniformly distributed on the sphere and the faceted structure of the map is defined

by triangular elements, Figure 3.4. In contrast to the previous case, the neighbourhood

configuration in the lattice of a tessellated sphere with a triangular elements is the same

throughout.

3.2.2 Weight adaptation strategy in the spherical SOM

The tessellated lattice in the spherical SOM is created by sub-dividing a regular Icosahedron

to a desired level. The structure of the SOM therefore consists of nodes uniformly arranged

on a tessellated unit sphere with a uniform triangular elements, each node representing a

45

Figure 3.3: Spherical SOM with quadrilateral elements

cluster unit. Each training pattern X (defined in Chapter 2) in the input data space is con-

nected to every cluster unit in the SOM space ($) by a weight vector wi,j,k. Every node or

cluster unit located at (i, j, k) has a variable neighbourhood (NEi,j,k) associated with it and

all the nodes that fall within the area defined by NEi,j,k constitute the region-of-influence of

(i, j, k). The spherical SOM is shown in Figure 3.5.

Training proceeds much the same way as in the standard SOM, where a weight vector is

associated with each node in the lattice and adapts to represent exemplars (clusters) in the

input space.

The following are steps of the self-organizing algorithm used to generate the spherical

map:

I Step 0. Initialize the weight vectors to small random values and set the desired number

of cycles, Ncycle.

I Step 1. Randomly select an input vector xi from the dataset. For each selected input

vectors do Steps 2-4.

I Step 2. Compute the error or difference Ei
i,j,k between the input vector and the weight

vectors for all the cluster units (i.e. nodes) in the network using

46

Figure 3.4: Data association in a spherical SOM

Ei
i,j,k = ϕ(ui,j,k)

N∑
n=1

‖xin − wn,i,j,k‖ (3.1)

where ϕ(ui,j,k) is a count-dependent non-decreasing function used to prevent cluster

under-utilization [30], and wn,i,j,k is the weight from the nth input to the (i, j, k)th cluster

unit given i = 1, 2, ..., Ij = 1, 2, ..., J, and k = 1, 2, ..., K.

I Step 3. Select the winning cluster unit (i, j, k)∗ to be the one with the minimum error,

Ei
i,j,k. This determines the mapping Φ between an input vector and the weight vector of a

node in the SOM lattice.

(i, j, k)∗ = min{Ei
i,j,k} (3.2)

I Step 4. Update the weights associated with the winning cluster unit (i, j, k)∗ and all

the units residing within the specified neighbourhood NEi,j,k∗ using

wi,j,k∗(new) = wi,j,k∗(old) + α[xi − wi,j,k∗(old)] (3.3)

where

47

Figure 3.5: The spherical self-organizing map

α = µ(
NEi,j,k∗

NEinitial

), (3.4)

and

NEi,j,k∗ = f(Ncycle), (3.5)

µ is a predefined learning rate, and NEinitial is the initial neighbourhood size in terms of

the number of units. The neighbourhood size is gradually reduced in discrete steps during

training such that only the winning unit is updated at the end of the training period. This

is achieved using heuristic rules that are dependent on the initial neighbourhood size.

I Step 5. Check the stopping criterion. If the stopping criterion is not satisfied then go

to Step 1 and repeat the process.

48

3.2.3 Significance of the Spherical Topology

One of the advantages of the Spherical Self-Organizing feature map over the conventional

2D SOM topology is its closed structure, which makes it possible to reflect inter-node asso-

ciations in the map in the form of a closed 3D shape. In [31] Brennan and Hulle conducted

a case study in which they demonstrated the advantages of Spherical SOM, where, in par-

ticular, they looked at the border effect (border neurons are surrounded by fewer neurons)

- a common feature of a 2D SOM. The case study involved a real world data set consisting

of 144 students from a university-level school for Science and Arts in Brussels, Belgium.

14 different scores in different skills were used such as general literacy, skills using operat-

ing systems, skills with email, text processing, presentation software and other computer or

language related skills. First they trained a 2D SOM of size 13x5 neurons using the given

data, followed by a training of a Spherical SOM. By using the collected Best Matching Units

(BMU’s), authors were able to calculate the quantization error and in the case of the flat

(2D) SOM the values were higher: 3.036 vs. 2.051 of the Spherical SOM. Brennan and Hulle

concluded by mentioning that the Spherical SOM distinguished itself from the flat SOM in

their case study, showing their representations to be more suitable to modeling the data

set [31].

As it will be revealed later in this thesis, a SSOM is a good tool for visualizing temporal

data that slowly changes with time. Because of its bounded nature, such data has the freedom

to map anywhere in its lattice, interacting with the neighbour data in manner which is not

possible in a conventional 2D SOM. Trajectories forming from such mapping can be used

as features itself when analysis new data (in this thesis trajectories are used to classify new

gestures).

49

3.3 Temporal data analysis using SOM and SSOM

Similar as to gestures, video contains gradually changing data. As one can decompose

gestures into postures, the same can be said about video - it can be decomposed into a series

of keyframes, each representing a still image (snapshot) of the video. A set of postures or

keyframes form a gesture or a video respectively. This Section begins by introducing some

literature review on how the SOM has been used mainly for video scene/shot detection and

video summarization. It continues by introducing an experiment conducted to demonstrate

how the use of SSOM can decompose a video clip into their respective scenes and shots.

3.3.1 SOM based approaches for video analysis

One of the recent studies has been trying to analyse video data and how it maps onto a

SOM. This way in [5] authors proposed a method for Video Segmentation and Shot Bound-

ary Detection Using Self-Organizing Maps. Their video shot boundary detection (SBD)

algorithm spots discontinuities in the visual stream by monitoring video frame trajectories

on Self-Organizing Maps. Their argument is that the SOM space resembles the probability

density differences in the feature space and that distances between SOM coordinates give

more information than distances between plain features taken from the video stream.

SOM can be very helpful in video segmentation. The reason being is because consecutive

frames in a continuous video segment that has been filmed by a single camera are normally

visually similar. In this manner any transition effects can be categorized into abrupt cuts

and gradual transitions based on how fast these changes happen in the video stream. For

instance, in cut transitions the change from one shot to another is instantaneous, whereas

in the gradual scene change the transition has some duration.

In the proposed technique in [5] authors call the path that the data maps onto the SOM

as the time advances a temporal trajectory. At each moment in time a feature vector is

first calculated from the raw video and then a vector is mapped to the best matching unit

50

(BMU). This process is illustrated in Figure 3.6.

Figure 3.6: The feature vector is calculated from the raw data. Then the vector is mapped
on the SOM by finding the best-matching map unit [5]

In Figure 3.7 one can observe the gradual and abrupt changes in the trajectory as frames

are being mapped onto their BMUs on the SOM. Similar frames are mapped close to each

other and the distances between consecutive frames can be used to find discontinuities in

the video segment.

Figure 3.7: Segments of trajectory at three different time steps. The trajectory is illustrated
with a black dotted line [5]

For their work authors in [5] use a sliding frame windows technique to detect a shot

boundary. In simple words, they use distances between multiple frames before and after a

current point of interest, instead of using map distances between two consecutive BMUs.

51

If the lengths of the preceding and following frame windows are lp and lf , the sets of the

preceding and the following frames, Sp(t) and Sf (t), at time instants t ∈ {lp, lp + 1, ...} can

be expressed mathematically as:

Sp(t) = {ft−lp , ft−lp+1, ..., ft−1}

Sf (t) = {ft, ft+1, ..., ft+lf−1},
(3.6)

where fn denotes frame n of the video. The distance measured at time t on SOM k can

be formulated as:

d(k, t) = d(k;Sp(t), Sf (t)) = minfi,fj‖Ck(fi)− Ck(fj)‖; fi ∈ Sp(t), fj ∈ Sf (t). (3.7)

The function Ck(fn) maps frame fn on SOM k by calculating the corresponding map-

specific feature vector value and finding the BMU. The function returns the discrete BMU

coordinates (x, y). The decision of whether there is a shot boundary between the frame

windows Sp(t) and Sf (t), i.e. between frames ft−1 and ft is done by comparing the distance

to a fixed SOM specific threshold Tk such that d(k, t) > Tk. For the training authors have

used standard MPEG-7 descriptors: MPEG-7 Colour Structure,MPEG-7 Dominant Colour,

MPEG-7 Scalable Colour, MPEG-7 Region Shape and MPEG-7 Edge Histogram. Other fea-

tures used were Average Colour, Colour Moments, Texture Neighbourhood, Edge Histogram,

Edge Co-occurrence and Edge Fourier [32].

Similarly in [6] Koskela and Laaksonen used the above method to do rushes summariza-

tion using self-organizing maps for the BBC rushes summarization task [33] of TRECVID12007

[34]. After applying the shot boundary detection algorithm (SBD) to the rushes videos, the

shots obtained are analysed further for their summarization. A new idea introduced here

is the construction of shot-wise signatures of video segments. As authors explain in their

work, this is needed to analyse the trajectory of the consecutive BMUs during the shot and

52

obtain a temporal signature representing the dynamic structure of the shot. This approach

might be needed if for instance, one wants to distinguish a scene where a man walks into a

room from another where a man walks out of the room since this method takes into account

the temporal or causal aspect of the video. Without going into much detail, representative

frames and SOM signatures of video segments are built and compared to each other to find

unique segments for building the video summary, see Figure 3.8.

Figure 3.8: Representative frames and SOM signatures of three video shots [6]

Below of each video frame, as it appears as red spots are the convolved (low-pass fil-

tered) hit distribution on the SOM surface which form the basis of the signature (due to the

topology preservation property of the SOM, authors decided to smooth the representation

by forcing the neighbouring SOM units to interact with each other). The hit frequencies give

a discrete histogram representing the visual contents of the shot. Three different SOMs were

used with different features such as color layout, edge co-occurrence and edge histogram to

obtain the three signatures below each representative frame.

1TREC Video Retrieval Evaluation - a conference series by the National Institute of Standards and
Technology, to encourage research in information retrieval by providing a large test collection and uniform
scoring procedures.

53

Thomas Barecke in [7] also uses a SOM to do a summarization of video information. In

his approach Berecke divides a video sequence into (still-) image, audio, and motion infor-

mation, but only uses still image features. After applying a shot detection algorithm on the

video he uses a representative keyframe from each shot, from which the author extracts a

color histogram using a specified color space. His system supports IHS, HSV, and RGB color

models2. Every histogram is described by a numerical feature vector and the resulting de-

scription for a video sequence is a set of vectors. These sets of vectors are then used to train

the self-organizing map. As Berecke mentions the main difficulty is defining an appropriate

size for the map. This occurs because a 2D SOM has to have big enough grid size to create

as many clusters as it is needed to separate the keyframes. An extension of self-organizing

maps that overcomes this problem is the growing SOM [35]. Its main idea is to start with a

small map and then add during training iteratively new units to the map, until the overall

measured error is sufficiently small.

Figure 3.9 illustrates the Growing self-organizing map after its training. The brightness of

a cell indicates the number of shots assigned to each node. Also, on each node the keyframe

of the shot with the smallest difference to the cluster center is displayed. The main role of

a SOM here is to separate the keyframes into clusters which then can be used to summarize

a video.

Dim P. Papadopoulos in his paper Video Summarization Using a Self-Growing and Self-

Organized Neural Gas Network [36] demonstrates another video summarization technique

using a SOM. The novelty of his method consists in using Compact Composite Descriptors

(CCDs) to describe each frame on the video. The family of CCDs includes the following four

descriptors:

2RGB color model - an additive color model in which red, green and blue light are added together in
various ways to reproduce a broad array of colors; HSV color model - a blend of three color components: Hue,
Saturation and Value; IHS color model - a blend of three color components: Intensity, Hue and Saturation

54

Figure 3.9: Growing Self-Organizing map after training [7]

1. the Color and Edge Directivity Descriptor (CEDD) [37]

2. the Fuzzy Color and Texture Histogram (FCTH) [37]

3. the Brightness and Texture Directionality Histogram (BTDH) descriptor [38] and

4. the Spatial Color Distribution Descriptor (SpCD) [39]

In order to classify the frames into clusters, the method utilizes a Self-Growing and Self-

Organized Neural Gas (SGONG) network. Its main advantage is that it adjusts the number

of created neurons and their topology in an automatic way [36].

55

3.3.2 Video information analysis based on SSOM

As seen from the literature review in the previous section, it is a common practice to use

a regular flat (2D) SOM for clustering or separating multi-dimensional video data. All the

experiments seen here use a SOM in an attempt to decompose the video into small enti-

ties such as keyframes or so called phases (e.g. scenes, shots). Normally, by studying how

this entities map on the SOM lattice, one can guess the similarity between the consecutive

frames or phases. Due to SOM’s topology preservation, it is evident that semantically simi-

lar shots and scene from the video will map in a nearby neighbourhood on the SOMs surface.

The attempt in this thesis is to research alternative SOM structures to represent slowly

changing data such as video or gestures. In this thesis, the ability of Spherical Self-Organizing

Maps to describe and represent the data in such a manner that it can be compared among

other similar data of the same nature is studied. This thesis builds upon the believe that the

Spherical SOM, because of its nature, can uniformly distribute a smoothly varying data on

its lattice. This work studies the path that the data traces in a form of a trajectory signature.

Because of its Spherical nature, SSOM does not have the limitations of having boundaries

as the 2D version and the trajectories can freely be created on the whole sphere.

The following experiment was conducted to demonstrate the smoothness property of a

Spherical SOFM on a slowly varying video data. The video clip used for this experiment

came from a movie scene of a Hollywood movie taken from HollyWood2 - Human Actions

and Scenes Dataset3 [40]. The goal was to visualize the separation of the video clip into dif-

ferent scenes or shots. In this case, the video clip consisted of three semantically and visually

different parts. The video clip was separated into its keyframes using FFmpeg4software and

the beginning and end of each shot was known beforehand.

3www.di.ens.fr/ laptev/actions/hollywood2
4FFmpeg is an open source, complete cross-platform solution to record, convert and stream audio and

video with various audio/video codec libraries: http://ffmpeg.org

56

Figure 3.10 shows some of the sample keyframes that were used during the training

process. From the figure it is clear that the video clip consists of three visually different

shots. In order to train the network and get a good separation results the following steps

were taken:

1. Separated the video clip into its keyframes

2. Extracted Features from each keyframe

3. Trained the Spherical Self-Organizing Feature map with the extracted features

4. Visualized the various shots by mapping individual frames onto the SOFM and colour-

ing them according to their shot

As mentioned before, the video clip had to be split into its keyframes in order to extract

some features that would represent the video. Some experimentation was needed at this

point, since it was required to choose a set of features that would represent the video in the

best manner. It was chosen to use the following features: Color Histogram [41], Color Lay-

out [42], Color Moment [43], and Edge Histogram [44]. Color Histogram was chosen because

it gave the ability to trace the color changes throughout the keyframes and detect where sud-

den color changes happened. Color Layout was chosen because of its ability to capture the

spatial distribution of the colors in the keyframes.Color Moment was chosen because it is

a good texture descriptor, especially in the area of content-based image retrieval [45]. And

finally the standard MPEG-75Edge Histogram Descriptor was used because of its compact-

ness in describing edge distribution with a histogram based on local edge distributions in

images [46].

The next step was to adjust our Spherical SOM parameters for its training. The SOM

consisted of 2562 nodes uniformly distributed on the sphere. This number of nodes allowed

to have a uniform number of neighbours between each node of five or six neighbours and was

5Multimedia content description standard or formally Multimedia Content Description Interface

57

Figure 3.10: Sample frames used for training the Spherical SOFM (taxi scene)

big enough to cluster a big dataset containing over a thousand data samples. Please, refer to

Fig. 3.4 for a topological view of the Spherical SOM. The other two important parameters

for the experiment were the neighbourhood operator and the number of epochs or training

cycles through which the network had to go through to obtain satisfactory results. These

two parameters were experimentally adjusted through several trials. For instance, it was

found that for the neighbourhood operator value of four the SOM gave a good separation

between the shots (this process can be seen in Fig. 3.11-3.12. Also, after twenty epochs of

training only small changes were noticed in the distribution of data on sphere, so 20 epochs

were used for the experiment.

Following the algorithm of weight adaptation given in Section 3.2.2 all the features for

58

each keyframe were converted to a feature vector and concatenated into 375x165 vector con-

taining all the features, where 375 represented the number of frames used for training and

165 represented the length of all the features concatenated together (64 for Color Histogram,

12 for Color Layout, 9 for Color Moment, and 80 for Edge Histogram).

Figures 3.11 and 3.12 show the result after the training of the network. All the keyframes

were mapped onto their corresponding best matching units on the sphere. The different col-

ors represent a different shot or scene in the video. On this particular video there are three

different scenes. One can see how the value of the neighbourhood operator influences on the

separation between the keyframes. The higher the value the better the separation between

individual keyframes belonging to different scenes. After a few trials of training, it was de-

termined that the best result was given by a neighbourhood operator value of 4 depicted in

Fig. 3.12b. A zoomed version of the SOM is shown in Fig. 3.13, where it is clearly seen that

there is practically no overlapping between the three scenes.

Also, to see the benefits of using all the four features (Color Histogram, Color Layout,

Color Moment, Edge Histogram) as opposed to using them separately for training, a few

more experiments were conducted. Figures 3.14 and 3.15 show the result of the SOM after

training with each single feature separately. As one may notice, none of the maps gave a

perfect separation between the different scenes as some keyframes mapped onto the wrong

cluster. The linkage between the keyframes on the map was artificially created based on the

distance between the keyframes. That is the reason why the keyframes appear connected

to each other. This way all the neighbouring keyframes were linked together as seen in Fig.

3.13. Whenever bigger jumps occurred the linkage between the keyframes was broken. This

can be seen in the video shot shown in green color in Fig. 3.16. The frames were removed

on purpose so that the linkages could be seen more clearly. Only the nodes on the lattice

were left for visualization. The discontinuities have been shown with black circles. What

these jumps tell us is that the change in the consecutive keyframes has been big enough in

59

(a) trained with a neighbourhood operator value
of 0.5

(b) trained with a neighbourhood operator value
of 1

Figure 3.11: Spherical SOM after training. The color green, red, and blue show the different
edges belonging to the three different shots.

(a) trained with a neighbourhood operator value
of 2

(b) trained with a neighbourhood operator value
of 4

Figure 3.12: Spherical SOM after training. The color green, red, and blue show the different
edges belonging to the three different shots.

60

Figure 3.13: Video scene/shot separation using Spherical SOM

the video shot such that the trajectory had to be continued somewhere further out from its

immediate neighbours.

The experiments that were conducted with the video scenes gave a new thought on

how the Spherical SOM could be used the problem domain of interest for this work: namely

gesture recognition. It is understood the difficulty in representing a video clip and its various

scenes and shots with a trajectory because of the complexity of the video. For instance,

video does not necessarily have to change smoothly from frame to frame, and may experience

abrupt jumps on its trajectory. It is difficult to analyze such instances because visually similar

frames can overlap in clusters that they do not belong to and may introduce some errors in

defining a trajectory for a scene. Instead, it was thought that by treating all the elements

61

(a) trained with Color Histogram (b) trained with Color Layout

Figure 3.14: Spherical SOM after training with individual features

(a) trained with Color Moment (b) trained with Edge Histogram

Figure 3.15: Spherical SOM after training with individual features

62

Figure 3.16: Linkage between keyframes in the video shots

falling in the trajectory as snapshots or postures that form the path of the trajectory, These

trajectories themselves can carry useful information that could be analyzed directly. With

this thought in mind, the next section introduces four different approaches based on SSOM

trajectories aiming to tackle gesture recognition.

3.4 Four approaches to gesture recognition through

trajectory analysis

This section introduces four gesture recognition approaches through the use of trajectories

traced on the SSOM lattice. One of the advantages of the SSOM for this kind of application

is that regions of density found in the feature space will map to equally spaced and well

separated locations on the sphere due to the wrap-around effect of the lattice. In this thesis,

this property is leveraged to build trajectory based features to distinguish between human

full body motions and hand gestures.

63

3.4.1 Approach #1: gesture recognition using all postures

The gesture recognition and classification initially starts with a simple approach. As men-

tioned earlier, all the BMUs that trace a trajectory for a specific gesture are considered as

postures. A trajectory in this case, is referred to the temporal path that the data maps into

on the SSOM lattice based on a set of consecutive BMUs, Fig.3.17. All the BMUs from

each of the gesture classes are used as a collection of nodes or postures for the purpose of

classification of unknown data (Note: the datasets for these experiments were introduced in

Section 1.1.1). This is done in the following manner:

1. All the BMUs falling into trajectories belonging to a specific gesture are recorded into

a set Gi as follow:

Gi = {Tr(i,1), ..., T r(i,m−1), T r(i,m)}, (3.8)

where Tr(i,j)forj = 1, 2, ...m is a trajectory forming a gesture Gi and i is the gesture

index which represents a gesture class, also

Tr(i,j) = {Pk, ..., Pn−1, Pn}, (3.9)

where Pk is the kth node in the Spherical SOFM lattice (i.e. posture) and n is the

number of nodes or postures in the trajectory Tr(i,j).

2. Feature vectors (consisting of the coordinates of the body parts and sensor data from

Microsoft Kinect dataset and Nintendo PowerGlove accordingly) of an unknown gesture

coming from the testing portion of the dataset are then compared against the weights of

the SSOM and the BMUs from the new trajectory of an unknown gesture are collected

into a new set Tp similarly as in Eq. 3.9, where p is the index of the new unknown

gesture.

3. A frequency posture counter Ki assists in determining the class of the unknown gesture,

64

where i represents an index of a known gesture. The counter Ki for a gesture i is

incremented if a posture from an unknown gesture belongs to a gesture being compared

against. This way Tp is compared against all the Gi in the database. So, if Ki ≥

K1, K2, ..., Kn, where Kn is a counter belonging to gesture with index n, then Ki is

chosen as the winning counter and the unknown gesture is classified as gesture Gi, see

Fig.3.18.

Figure 3.17: Temporal sequence of postures representing an arbitrary gesture. In this ex-
ample a simple gesture consisting of 5 postures is displayed. The mapping of the gesture is
shown as a trajectory on the SSOM in red

3.4.2 Approach #2: gesture recognition using weighted aggrega-

tion of all postures

The approach taken for gesture recognition in the last section only takes into consideration a

set of postures as a primary data to classify an unknown gesture. This set does not take into

account the frequency with which a specific posture is encountered in a gesture’s trajectories.

For this reason a frequency factor is introduced in this approach. All postures are aggregated

into a set, but at the same time each posture is associated with a weight. The more a posture

appears in a gesture path while training the network, the more weight it has towards that

65

Figure 3.18: Showing the gesture recognition process: the classification occurs by creating
a counter for the unknown gesture (blue trajectory), which counts the common instances
or postures between the unknown gesture trajectory and the already learned by the SSOM
trajectories (trajectories 1 & 2, red and green respectively). A histogram is then built based
on these counters and a gesture is classified according to the highest value obtained in this
histogram

gesture. The reason behind the weight factor is that the path that a trajectory, representing

a specific gesture maps, on the lattice of the SSOM tends to activate the same neurons (pos-

tures), giving it a higher probability to appear again if the same gesture is traced, see Fig.3.19

Mathematically this can be expressed as Pk (See Eq. 3.9) having a weight factor wi

associated with it. Simply, when making a decision about a new unknown gesture wi is

multiplied by Ki rather than just using the frequency posture counter all by itself as in the

previous Section. So, if Ki ∗ wi ≥ K1 ∗ w1, K2 ∗ w2, ..., Kn, where Kn is a counter belonging

to gesture with index n, then Ki is chosen as the winning counter and the unknown gesture

is classified as gesture Gi.

66

Figure 3.19: Showing the gesture recognition process: Assume the SSOM learned the path
of two trajectories from gesture 1 class (pink & red). These two trajectories have common
postures in their path. In this method we look at the frequency information obtained from
trajectories within one gesture class. Specifically, we add a weight factor representing how
frequent a specific posture was found in the path of a trajectory from a specific gesture class.
The unknown blue trajectory is classified using this frequency information

3.4.3 Approach #3: gesture recognition using posture transitions

Previous approaches, treated each BMU as a posture and no dynamic information was used.

Dynamic information in this case refers to the posture transitions that occur during the

tracing of a gesture onto the SSOM. The main argument here is that trajectories belonging

to the same gesture should follow not only the same path on the Spherical lattice but also have

similar transitions in terms of postures. For example, when a person performs a ”Driving”

gesture, he or she will follow the same posture transition as he or she moves the hands in

a 3D space. For this specific reason the classification of an unknown gesture is evaluated

based on similar posture transitions during the formation of its trajectory. Gi still consists

of a set of trajectories as shown in Eq. 3.8, but instead:

Tr(i,j) = {Rk, ...Rn−1, Rn}, (3.10)

67

where Rk is the kth posture transition and n is the number of posture transitions in the

trajectory Tr(i,j).

The classification of an unknown gesture is done similarly as in the method using all pos-

tures in approach #1, but instead of having a Ki being a posture counter, now it is replaced

by a posture transition counter. So, if Ki ≥ K1, K2, ..., Kn, where Kn is a gesture transition

counter belonging to a gesture with index n, then Ki is chosen as the winning counter and

the unknown gesture is classified as gesture Gi, where i is the index of a known gesture, see

Fig.3.20

Figure 3.20: In this approach we use temporal information obtained from trajectories, specif-
ically we use posture transitions represented as Ri. A histogram is built based on how many
common posture transitions occur between the unknown gesture trajectory and all the ges-
ture trajectories learned by the SSOM

3.4.4 Approach #4: gesture recognition using weighted aggrega-

tion of all posture transitions

The last approach in this thesis uses a weighted aggregation of all posture transitions. Sim-

ilarly as in the method with weighted aggregation of all postures a weight is introduced.

68

This approach not only takes in consideration the posture transitions happening in a ges-

ture trajectory but also the frequency with which these transitions occur. For this approach

Equation 3.10 is still used but the classification process is based on the following statement:

if Ki ∗ wi ≥ K1 ∗ w1, K2 ∗ w2, ..., Kn, where Kn is a counter belonging to gesture with index

n, then Ki is chosen as the winning counter and the unknown gesture is classified as gesture

Gi. Here w is the weight of a particular posture transition.

3.5 Summary

This chapter has introduced the Spherical SOM. Details about the SSOM configuration,

important parameters and benefits over a SOM were discussed. It was evident from the

discussion that the SSOM is an optimal choice for applications such as analyzing video clips

and gesture data, because of its ability to minimize topological discontinuity. Some examples

from literature were brought up, where SOM was used as a tool for analyzing smooth and

abrupt changes in the video stream, highlighting the advantages of SOM. An experiment

was shown with a video clip from a movie, where regions of density found in the feature

space were mapped into equally spaced and well separated locations on the sphere of SSOM

clearly showing the wrap-around effect. Finally, four different approaches to gesture recog-

nition were presented based on the use of trajectories obtained from the mapping of gesture

data onto the SSOM. Here, the trajectories were used as features themselves to extract useful

information and create a baseline to compare against unknown gesture data samples.

The next chapter will present the experimental results based on the approaches described

above.

69

Chapter 4

Experimental Results

4.1 Experimental setup

In all the experiments performed in this thesis the setup was identical. A Spherical SOM

was used with specific settings and size which will be discussed shortly. All the experiments

were performed on stand alone PC with Windows 7, 4GB of RAM and Intel Core i7 CPU

(2.67GHz). MATLAB R2011b environment was used for all the experiments and the visu-

alization part. On average it took several minutes to train the network with one gesture

depending on the feature vector size of a specific gesture.

Similarly as with the SSOM experiment with the video clip, where some of the Spherical

SOM properties were explored, the same topological structure was used. The SOM consisted

of 2562 neurons (nodes) uniformly distributed on the sphere. Similarly as in the video scene

experiment performed in the previous chapter, this number of nodes gave a uniform number

of neighbours between the nodes and was big enough to cluster the gesture datasets contain-

ing thousands of samples each. The neighbourhood operator was also left intact and was set

to a value of 4, as it was already tested to give a fairly good separation while exploring the

video scenes. Finally, the number of epochs was set to 20.

The network was trained once for every gesture dataset. For both datasets, half was

70

used for training purposes and the other half was used for gesture recognition (25 gesture

samples from the Microsoft Kinect dataset, and 35 gesture samples from Australian Sign

Language dataset (Nintendo PowerGlove)). The data from the Microsoft Kinect sensors and

the Nintendo PowerGlove was directly used as a feature space for training the SOM. No

data normalization was necessary in this case. Every feature vector from the feature space

represented a specific state for a given gesture. These states are treated as postures, similarly

as keyframes in a video stream.

The main motivation behind these experiments was to obtain a trajectory representa-

tion of the gestures datasets and use this information for gesture recognition. The fact that

gesture information is a smoothly varying data was used as the main argument to use a

Spherical SOM. Because of its ability to reduce dimensionality and represent dynamic struc-

tures well without boundaries such as video or gesture information a SSOM gives the best

option in terms of data visualization.

Below is shown the training process of the SSOM with all the variables and feature space

given:

1. Weight vectors w are initialized to small random values and the desired number of

cycles Ncycle is set to 20.

2. Input vector xi is randomly selected from the dataset (since two trainings were per-

formed, the two datasets were used separately one at a time), See Figure 1.10 for a

feature vector example from Microsoft Kinect gesture dataset.

3. The error or difference Ei
i,j,k between the input vector and the weight vectors for all

the cluster units (i.e. nodes) in the network is computed using Equation 3.1.

4. The winning cluster unit (i, j, k) to be the one with the minimum error, Ei
i,j,k is selected.

5. The weights associated with the winning cluster unit (i, j, k) and all the units residing

71

within the specified neighbourhood NEi,j,k are updated using Equations 3.3, 3.4 and

3.5.

6. The steps above are repeated until all Ncycle are used.

The next few pages show some sample trajectories that were obtained during the map-

ping process (See Figures 4.1 - 4.10). These gesture trajectories are a representation of the

BMUs hit sequence that each gesture class mapped onto the SSOM. Information from these

trajectories was used for gesture recognition and classification. The data that is being used

in the trajectory mapping comes from the training portion of the datasets. All the BMUs

are in 3D space although they appear as a 2D images. The lattice of the Spherical SOM was

removed on purpose so that the trajectories could be seen more clearly. Three trajectories

from each gesture class for both Microsoft Kinect and Nintendo PowerGlove were chosen

randomly.

Each gesture class was displayed at a specific and different angle from the rest in order to

show the data path more clearly. From Figures 4.1 - 4.10 it is evident that the trajectories

for each gesture class trace a similar if not identical path on the spherical lattice of the

SSOM. It is also clear that each gesture leaves a path which is unique if comparing to other

gestures, although it is important to point that many gestures might and will have common

BMUs since they may contain similar postures that trace a specific gesture. Every BMU hit

of a gesture is considered a posture belonging to a given gesture class. A collection of these

postures forms a gesture.

4.2 Results

4.2.1 Approach #1: gesture recognition using all postures

Figures 4.11 and 4.12 show some of the results obtained from the registration process. The

results have been normalized between zero and one. There are 25 gestures tested from Mi-

72

Figure 4.1: PowerGlove Gesture trajectories 1. First row: Alive; Second row: All; Third
row: Answer; Fourth row: Boy

73

Figure 4.2: PowerGlove Gesture trajectories 2. First row: Building; Second row: Buy; Third
row: Change; Fourth row: Cold

74

Figure 4.3: PowerGlove Gesture trajectories 3. First row: Come; Second row: Computer;
Third row: Cost; Fourth row: Crazy

75

Figure 4.4: PowerGlove Gesture trajectories 4. First row: Danger; Second row: Deaf; Third
row: Different; Fourth row: Draw

76

Figure 4.5: PowerGlove Gesture trajectories 5. First row: Drink; Second row: Eat; Third
row: Exit; Fourth row: Forget

77

Figure 4.6: Microsoft Kinect Gesture trajectories 1. First row: Air Guitar; Second row:
Archery; Third row: Baseball; Fourth row: Boxing

78

Figure 4.7: Microsoft Kinect Gesture trajectories 2. First row: Celebration; Second row:
Chicken; Third row: Clapping; Fourth row: Crying

79

Figure 4.8: Microsoft Kinect Gesture trajectories 3. First row: Driving; Second row: Ele-
phant; Third row: Football; Fourth row: Heart Attack

80

Figure 4.9: Microsoft Kinect Gesture trajectories 4. First row: Laughing; Second row:
Monkey; Third row: Skip Rope; Fourth row: Sleeping

81

Figure 4.10: Microsoft Kinect Gesture trajectories 5. First row: Swimming; Second row:
Titanic; Third row: Zombie

82

crosoft Kinect dataset and 35 from Nintendo PowerGlove, but only a few graphs are shown

as an example. The figures represent a histogram of the BMUs hit (postures) frequency

from various gestures. The gestures with higher values are the winning gestures. The label

of each graph represents the true gesture classification, so if that specific gesture has a higher

value among other gestures in the graph, than the gesture is considered to be recognized

correctly. Otherwise the gesture is not registered correctly. For instance in Fig. 4.14a the

correct gesture is Air Guitar and it is evident from the graph that the gesture ”Air Guitar”

has the highest value, therefore is registered correctly. As mentioned earlier, some postures

are repeated in different gestures, for that reason misclassification occurs. An example of

this is Fig. 4.14f, where the gesture has been misclassified to a gesture ”Crying” although

the true gesture is ”Celebration”.

In Fig. 4.12, representing the Nintendo PowerGlove dataset, it is evident that the graph

contains more noise than in Kinect data, therefore more misclassifications occur and the

correct gesture recognition rate is lower. The gesture recognition rate is shown in Tables

4.1 and 4.2. In brackets is shown the number of correctly classified gestures: the values are

out of 25 and 35 for Microsoft Kinect data and Nintendo PowerGlove data accordingly. It is

evident that the recognition rate of the Nintendo Powerglove is lower if comparing to Kinect

rate for reasons explained earlier. The next section explains another gesture recognition

method which somewhat increases the accuracy of classified gestures.

Gesture Rate % Gesture Rate % Gesture Rate %

Air Guitar 80(20) Clapping 52(13) Laughing 80(20)

Archery 72(18) Crying 56(14) Monkey 84(21)

Baseball 76(19) Driving 68(17) Skip Rope 64(16)

Boxing 88(22) Elephant 64(16) Sleeping 72(18)

Celebration 84(21) Football 68(17) Swimming 96(24)

Chicken 48(12) Heart Attack 80(20) Titanic 52(13)

Zombie 60(15)

Table 4.1: Recognition rate for Kinect dataset: Approach #1

83

(a) AirGuitar 22 (b) AirGuitar 23

(c) Archery 6 (d) Archery 7

(e) Celebration 7 (f) Celebration 8

Figure 4.11: Gesture Recognition: Using all postures - Microsoft Kinect Dataset

84

(a) Alive 4 (b) Alive 5

(c) All 31 (d) All 32

(e) Buy 32 (f) Buy 33

Figure 4.12: Gesture Recognition: Using all postures - Nintendo PowerGlove Dataset

85

Gesture Rate % Gesture Rate % Gesture Rate %

Alive 48.6(17) Cold 34.3(12) Different 45.7(16)

All 65.7(23) Come 20(7) Draw 60(21)

Answer 20(7) Computer 14.3(5) Drink 25.7(9)

Boy 42.9(15) Cost 22.9(8) Eat 14.3(5)

Building 54.3(19) Crazy 54.3(19) Exit 20(7)

Buy 22.9(8) Danger 28.6(10) Forget 28.6(10)

Change 60(21) Deaf 37.1(13)

Table 4.2: Recognition rate for PowerGlove dataset: All postures

4.2.2 Approach #2: gesture recognition using weighted aggrega-

tion of all postures

The results of this approach are seen in Tables 4.3 and 4.4. The overall results for correct

gesture classification have gone up if comparing to the first approach where no weights were

used. Another approach to gesture recognition will follow, which focuses on the dynamic

nature of the gesture trajectories.

4.2.3 Approach #3: gesture recognition using posture transitions

Figures 4.13 and 4.14 show some classification results based on the given approach. If com-

pared to Figures 4.11 and 4.12 the winning gestures appear to be more dominant. For

instance in Figure 4.14a and 4.14b for gestures ”Alive” and ”Buy” the value of the cor-

Gesture Rate % Gesture Rate % Gesture Rate %

Air Guitar 100(25) Clapping 92(23) Laughing 100(25)

Archery 100(25) Crying 88(22) Monkey 92(23)

Baseball 96(24) Driving 100(25) Skip Rope 80(20)

Boxing 88(22) Elephant 96(24) Sleeping 28(7)

Celebration 100(25) Football 100(25) Swimming 100(25)

Chicken 48(12) Heart Attack 84(21) Titanic 96(24)

Zombie 100(25)

Table 4.3: Recognition rate for Kinect dataset: Weighted aggregation of all postures

86

Gesture Rate % Gesture Rate % Gesture Rate %

Alive 54.3(19) Cold 60(21) Different 57.1(20)

All 74.3(26) Come 34.3(12) Draw 37.1(13)

Answer 42.9(15) Computer 51.4(18) Drink 11.4(4)

Boy 48.6(17) Cost 40(14) Eat 40(14)

Building 25.7(9) Crazy 54.3(19) Exit 17.1(6)

Buy 65.7(23) Danger 22.9(8) Forget 88.6(31)

Change 45.7(16) Deaf 25.7(9)

Table 4.4: Recognition rate for PowerGlove dataset: Weighted aggregation of all postures

responding gesture are much higher when comparing to other gestures. However, some

misclassification still occurs as seen in Fig. 4.14c for the gesture ”All”. These results will

be improved by taking into account the frequency of the posture transitions discussed in the

next Section.

Table 4.5 and 4.6 depict the results of the gesture recognition process. It is clear the

advantage of this method over the previous two. Most of the correctly classified values for

the Microsoft Kinect data have gone up, only a few have gone down or stayed unchanged.

For the Nintendo PowerGlove data there is a significant boost in correct gesture classification

as seen in Table 4.6.

Gesture Rate % Gesture Rate % Gesture Rate %

Air Guitar 100(25) Clapping 100(25) Laughing 100(25)

Archery 100(25) Crying 80(20) Monkey 100(25)

Baseball 88(22) Driving 100(25) Skip Rope 80(20)

Boxing 60(15) Elephant 44(11) Sleeping 100(25)

Celebration 96(24) Football 100(25) Swimming 100(25)

Chicken 76(19) Heart Attack 100(25) Titanic 100(25)

Zombie 100(25)

Table 4.5: Recognition rate for Kinect dataset: Using posture transitions

87

(a) AirGuitar 22 (b) AirGuitar 23

(c) Archery 6 (d) Archery 7

(e) Celebration 7 (f) Celebration 8

Figure 4.13: Gesture Recognition: Using posture transitions - Microsoft Kinect Dataset

88

(a) Alive 4 (b) Alive 5

(c) All 31 (d) All 32

(e) Buy 32 (f) Buy 33

Figure 4.14: Gesture Recognition: Using posture transitions - Nintendo PowerGlove Dataset

89

Gesture Rate % Gesture Rate % Gesture Rate %

Alive 88.6(31) Cold 94.3(33) Different 88.6(31)

All 91.4(32) Come 74.3(26) Draw 80(28)

Answer 85.7(30) Computer 91.4(32) Drink 85.7(30)

Boy 88.6(31) Cost 82.9(29) Eat 85.7(30)

Building 91.4(32) Crazy 82.9(29) Exit 77.1(27)

Buy 85.7(30) Danger 85.7(30) Forget 80(28)

Change 85.7(30) Deaf 80(28)

Table 4.6: Recognition rate for PowerGlove dataset: Using posture transitions

4.2.4 Approach #4: gesture recognition using weighted aggrega-

tion of all posture transitions

Tables 4.7 and 4.8 show the classification results. Clearly this approach helped obtain the

best gesture recognition result out of all approaches implemented in this thesis. The results

of this approach clearly support the argument that gestures of the same class tend to trace

the same path and have the same posture transitions when mapped onto the SSOM.

4.3 Comparison of results

When testing a solution to some problem it is always necessary to have a baseline for com-

parison of results to see the benefits of using one method against another one. In this thesis

Gesture Rate % Gesture Rate % Gesture Rate %

Air Guitar 100(25) Clapping 100(25) Laughing 100(25)

Archery 92(23) Crying 100(25) Monkey 100(25)

Baseball 100(25) Driving 100(25) Skip Rope 92(23)

Boxing 100(25) Elephant 100(25) Sleeping 100(25)

Celebration 100(25) Football 100(25) Swimming 96(24)

Chicken 100(25) Heart Attack 100(25) Titanic 88(22)

Zombie 92(23)

Table 4.7: Recognition rate for Kinect dataset: Weighted aggregation of all posture transi-
tions

90

Gesture Rate % Gesture Rate % Gesture Rate %

Alive 94.3(33) Cold 97.1(34) Different 88.6(31)

All 97.1(34) Come 85.3(30) Draw 88.6(31)

Answer 97.1(34) Computer 94.3(33) Drink 91.4(32)

Boy 94.3(33) Cost 88.6(31) Eat 88.6(31)

Building 97.1(34) Crazy 91.4(32) Exit 85.3(30)

Buy 85.7(30) Danger 94.3(33) Forget 91.4(32)

Change 94.3(33) Deaf 91.4(32)

Table 4.8: Recognition rate for PowerGlove dataset: Weighted aggregation of all posture
transitions

two different datasets were used: Australian Sign Language (Nintendo PowerGlove) and Mi-

crosoft Kinect dataset. The Kinect data set is an artificial dataset obtained in Ryerson’s

University Multimedia Lab, therefore there are simply no other experiments in literature,

which have used this dataset. Also, because of the use of new technologies used to obtain

the Kinect gesture data, it is difficult to find a similar dataset that would have used a similar

device setup. Having said that, the recognition result for the Microsoft Kinect dataset is

merely evaluated based on the percentage of correct categorization of gestures. Although

direct comparison of results would not be suitable in this case, Table 4.9 shows the results

from this thesis related to Kinect dataset along with results of other works discussed in Sec-

tion 2.4. All the values in the Table are given as an average of correct gesture classifications.

As for the Australian Sign Language, the dataset has been used previously for gesture

recognition in [47], see Table 4.10. As a baseline for comparison we use a metafeatures

and HMM approach. In the first one, author relies on domain knowledge and learners and

classifiers, which are based on the nature of the gesture data. The disadvantage of using

metafeatures, as pointed in section 1.1.2, is that domain specific knowledge is required. Rules

have to be created based on the properties of the gesture data. This requires a lot of obser-

vations to be made from the gesture data. On the other hand, it is a trial and error method,

where experiments need to be performed based on the set of attributes or features chosen to

91

Method Recognition rate[%]
Kinect data: Approach #1 70.7
Kinect data: Approach #2 88.8
Kinect data: Approach #3 90.7
Kinect data: Approach #4 97.8
Approach in [2] 90.5
Approach in [3] 98.25
Approach in [4] 93

Table 4.9: Results comparison for Microsoft Kinect dataset

Method Recognition rate[%]
ASL data: Approach #1 36
ASL data: Approach #2 44.9
ASL data: Approach #3 85.3
ASL data: Approach #4 92.3
Metafeatures (rule-based) [47] 94
HMM [47] 86.5

Table 4.10: Results comparison for Australian Sign Language (ASL) dataset

represent the gesture data in order to compare what features work better. Approach 4 in this

thesis for example, does not impose domain specific knowledge reaching similar performance

in terms of correctly classified gestures. In terms of complexity, approach 4 is much simpler

with nearly the same recognition result as in [47]. Another advantage that is worth mention-

ing is that only 50% of the gesture data is used for training the SSOM in the four proposed

approaches. Instead, author in [47] uses a 80%-20% ratio for training and testing respectively.

Similarly, HMM performance is also being used for comparison (How HMM works is dis-

cussed in section 1.1.2.). Falling behind in correct classification rate (Table 4.10), not only it

performs poorly, but also possesses a number of disadvantages such as: making assumption

about the data (the transition probabilities depend only on the current state), requiring a

large number of parameters to be set, only positive data can be used to train, to name a

few. The approaches mentioned here do not suffer from these limitations.

92

4.4 Summary

This chapter has introduced the results of the four approaches to gesture recognition using

Spherical Self-Organizing Map given in the previous chapter. Two different body and hand

gesture datasets were used to prove the benefits of using trajectories on Spherical SOMs to

classify unknown gestures. The concept of unbounded mapping of data was clearly shown

with an example of experiments conducted in this chapter yielding good classification result.

Figures 4.15 and 4.16 show the final classification results in a chart view. The results for all

the approaches discussed in this chapter are given. As expected, Weighted aggregation of all

posture transitions performed the best among others for both datasets. Interestingly, from

these figures one may notice that some gestures are classified better than other for various

approaches. After some thoughts of why this is the case, it was apparent that some gestures

are very similar to others in terms of the postures that they consisted of. For instance, gesture

”Driving” was mistakenly classified with gesture ”Zombie” in approaches 1,2, and 3, because

these two gestures are very alike in their postures. Other examples may include ”Chicken”

vs. ”Heart Attack” all for the same reasons. However, most misclassification was eliminated

with the introduction of the weight factor, specifically in approach #4. Because no other

experiments involving Spherical Self-Organizing Maps with application to gesture recognition

similar to the ones performed here with the same datasets were found in literature, the results

were evaluated merely on the percentage of correct classification. It was obtained an average

result of 97.8% and 92.3% for correct classifications based Microsoft Kinect and Nintendo

PowerGlove respectively. This result is considered satisfactory, although some improvements

could be made, which will be discussed in the final chapter of this thesis.

93

Figure 4.15: Microsoft Kinect gesture recognition comparison chart

94

Figure 4.16: Nintendo PowerGlove gesture recognition comparison chart

95

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, gesture recognition was approached from the perspective of time-varying and

multi-dimensional data. The differences between a conventional 2D Self-Organizing Map

and a Spherical 3D Self-Organizing Map were introduced, highlighting the benefits of us-

ing the latter. Some examples of studies involving Self-Organizing Maps were brought into

reader’s attention with application to video scene/shot detection and summarization, and

gesture recognition. In these studies, temporal trajectories were introduced as a product of

data being mapped onto the SOM. Spatio-temporal data was tested such as video keyframes

and gesture data represented mostly by space coordinates. An experiment was conducted

to demonstrate not only the clustering properties of the Spherical SOM, but also the ability

to retain the dynamic structure of the data. Examples of gesture recognition were given

that used various tools along with the Self-Organizing Maps such as Dynamic Programming,

Markov Models, and different variations of SOFMs such as the Hierarchical SOM. Finally,

full body and hand gesture datasets were used to form temporal trajectories based on a

SSOM, where posture transitions were studied and used as a classification mean for gesture

recognition.

Approach 4 - gesture recognition using weighted aggregation of all posture transitions -

96

proved to be the best performing approach. There are several reasons to this:

1. Considering that the Spherical lattice of the SSOM is divided into thousands of neurons

(or better say postures), after the SSOM training, different paths corresponding to

various gestures are formed. These paths that the SSOM learns are all unique to

each other in terms of postures that the path traverses. Some transitions on the lattice

occur more often for some gestures than for others. If performing a given gesture (body

or hand gesture), the gesturer tends to describe the same path in space, following a

similar sequence of postures. This idea is taken and used on the SSOM lattice based

on the ability to map the data from higher dimension to lower, while preserving the

topological order. This allows the SSOM, while in the training process, to learn the

common posture transitions that occur when a gesture is executed.

2. The weight introduced in this approach also boosts the correct classification rate.

The weight increases the probability of an unknown gesture having similar posture

transitions to a given gesture mapped on the SSOM to be classified correctly.

3. Finally, temporal trajectory information is used. As opposed to approaches 1, and 2,

where just a set of postures are used to distinguish between gestures the last approach 4

uses a spatio-temporal model of classification, benefiting from the ability of the SSOM

to map the feature space into equally spaced and separated locations on the sphere.

5.2 Thesis Contributions

The main contributions to this thesis are as follow:

1. Using a Spherical Self-Organizing Map to decompose gestures into well separated sparse

set of postures.

- Constrained trajectories on the sphere formed from mapping the gesture data onto

the spherical lattice gives an ability to analyse the data without worrying about the

size of the sphere.

97

- SSOM has more resolution comparing to 2D (flat) SOM (no border effect) and it is

ideal for reducing high dimensional sequence of data into trajectories on the sphere.

2. Investigation of four different approaches to model gesture trajectories with application

to gesture recognition.

5.3 Future Work

Considering that the main thesis contributions involve the use of SSOM trajectories in the

study of gesture data, it is intuitive and natural to assume that the next step would be to

look further into the dynamic connections that the trajectories have. Different approaches

can still be implemented for example, by using more than two consecutive posture transitions

for the classification of new gesture data. Also, more accurate and meaningful features could

be used, as it is obvious from the results that the Australian Sign Language dataset yields

lower classification rate compared to Microsoft Kinect dataset, therefore giving somewhat

worse trajectory representation. Similar gestures also would tend to provide poorer result

in classification (e.g. ”Driving” vs ”Zombie”), because they normally contain similar set of

postures in a similar sequence. A way for distinguishing such gestures with similar set of

postures needs to be addressed for future work.

When dealing with temporal trajectories the problem of non-uniform data arises. A lot of

thought was put toward finding a method to represent trajectories of the same gesture class

as a feature having the same length. This is because every trial of a gesture may contain

a variable number of postures traced on the SSOM lattice. Although they all describe a

similar path, the number of postures would always be variable. The approaches for gesture

recognition here do not deal with this issue as only posture transitions are being used.

However it should be possible to use a Fourier Descriptor (FD) to represent such a trajectory.

Every trajectory on the SSOM consisted of some kind of a shape and FDs are one immediate

way of describing a shape mathematically. Since, all the postures on the Spherical SOM are

98

represented as a set of coordinates with x,y,z and all the points are equally located from the

radius of the sphere, these coordinates could easily be converted from Cartesian coordinate

system into Spherical coordinate system by dropping the radius value r and just leaving

the angles in (r, θ, φ). A Fourier Descriptor could be obtained and used for new gesture

classification. The only issue is the variable length of the FDs for the trajectories which

would give different FD values for the same gesture class. This problem with length variance

in the trajectory was discussed in this thesis by A. Shimada and R. Taniguchi in [3] in

Chapter 2. The authors deal with this problem by using a Hierarchical SOFM consisting of

several network layers. However, the use of Fourier Descriptor to describe a SSOM trajectory

would form a good feature in applications like gesture recognition and video analysis. In

this case, the advantage of using a spherical SOM is that it offers a constrained spherical

coordinate system on which such a descriptor can be based.

99

Bibliography

[1] A. P. Kshirsagar and M. N. Rathod, “Article: Artificial neural network,” IJCA Proceed-

ings on National Conference on Recent Trends in Computing, vol. NCRTC, pp. 12–16,

May 2012.

[2] M. Oshita and T. Matsunaga, “Automatic learning of gesture recognition model using

som and svm,” in Proceedings of the 6th international conference on Advances in visual

computing, vol. 6453, pp. 751-759, Springer, 2010.

[3] A. Shimada and R. I. Taniguchi, “Gesture recognition using sparse code of hierarchical

SOM,” in 19th International Conference on Pattern Recognition, pp. 1–4, December

2008.

[4] G. Caridakis, C. Pateritsas, A. I. Drosopoulos, A. Stafylopatis, and S. D. Kollias, “Prob-

abilistic video-based gesture recognition using self-organizing feature maps,” in Inter-

national Conference on Artificial Neural Networks, vol. 4669, pp. 261–270, Springer,

2007.

[5] H. Muurinen and J. T. Laaksonen, “Video segmentation and shot boundary detection

using self-organizing maps,” in Scandinavian Conference on Image Analysis, pp. 770–

779, 2007.

[6] M. Koskela, M. Sjöberg, J. Laaksonen, V. Viitaniemi, and H. Muurinen, “Rushes sum-

marization with self-organizing maps,” in Proceedings of the 1st workshop on TRECVID

on Video Summarization, pp. 45–49, ACM, 2007.

100

[7] T. Bärecke, E. Kijak, A. Nürnberger, and M. Detyniecki, “Summarizing video informa-

tion using self-organizing maps,” in Proceedings of the IEEE International Conference

on Fuzzy Systems (FUZZ-IEEE’2006), pp. 540–546, July 2006.

[8] S. Mitra and T. Acharya, “Gesture recognition: A survey,” IEEE Trans. Systems, Man

and Cybernetics, vol. 37, pp. 311–324, May 2007.

[9] A. Kendon, “Some relationships between body motion and speech,” A. Siegman and B.

Pope, Eds., Studies in Dyadic Communication, pp. 177–210, 1972.

[10] D. Kammer, G. Freitag, M. Keck, and M. Wacker, “Taxonomy and overview of multi-

touch frameworks: Architecture, scope and features,” in Workshop on Engineering Pat-

terns for Multitouch Interfaces, (Berlin), 2010.

[11] A. van Dam, A. S. Forsberg, D. H. Laidlaw, J. J. L. Jr., and R. M. Simpson, “Immer-

sive VR for scientific visualization: A progress report,” IEEE Computer Graphics and

Applications, vol. 20, no. 6, pp. 26–52, 2000.

[12] A. Meng, “An introduction to markov and hidden markov models.” Internet:

http://www2.imm.dtu.dk/pubdb/p.php?3313, Oct. 2003. [July 25, 2012].

[13] Y. Bengio, Neural networks for speech and sequence recognition. International Thomson

Computer Press, 1996.

[14] W.-D. Chang and J. Shin, “Dynamic positional warping: Dynamic time warping for

online handwriting,” International Journal of Pattern Recognition and Artificial Intel-

ligence, vol. 23, no. 5, pp. 967–986, 2009.

[15] M. W. Kadous and C. Sammut, “Classification of multivariate time series and structured

data using constructive induction,” Machine Learning, vol. 58, no. 2-3, pp. 179–216,

2005.

101

[16] T. U. K. A. Information and I. Computer Sciene University of Cal-

ifornia, “Recordings of a subset of australia sign language signs.”

http://www.cse.unsw.edu.au/ waleed/tml/data/, June 1999. [Feb. 2012].

[17] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Englewood Cliffs: Prentice

Hall, 1988.

[18] A. E. Maren, “The need-to-know of neural networks,” Journal of Neural Network Com-

puting, no. Summer, pp. 57–65, 1989.

[19] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3,

pp. 273–297, 1995.

[20] Y. M. Cheung, “K*-means: A new generalized k-means clustering algorithm,” Pattern

Recognition Letters, vol. 24, pp. 2883–2893, Nov. 2003.

[21] T. Kohonen, “The self-organizing map,” Proc. IEEE, vol. 78, pp. 1464–1480, Sept. 1990.

[22] S. Haykin, Neural Networks: A Comprehensive Introduction. Prentice Hall, 1999.

[23] D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory. New York:

Wiley, 1949.

[24] T. Kohonen, “Self-organized formation of topologically correct feature maps,” Biological

Cybernetics, vol. 43, pp. 59–69, 1982.

[25] J. Lampinen and E. Oja, “Clustering properties of hierarchical self-organizing maps,”

J. Mathematical Imaging and Vision, vol. 2, pp. 261–272, Nov. 1992.

[26] G. Caridakis, K. Karpouzis, C. Pateritsas, A. I. Drosopoulos, A. Stafylopatis, and

S. D. Kollias, “Hand trajectory based gesture recognition using self-organizing feature

maps and markov models,” in IEEE International Conference on Multimedia and Expo,

pp. 1105–1108, 2008.

102

[27] J.-C. Martin, G. Caridakis, L. Devillers, K. Karpouzis, and S. Abrilian, “Manual anno-

tation and automatic image processing of multimodal emotional behaviors: validating

the annotation of TV interviews,” Personal and Ubiquitous Computing, vol. 13, no. 1,

pp. 69–76, 2009.

[28] M. H. Gross and F. Seibert, “Visualization of multidimensional image data sets using

a neural network,” The Visual Computer, vol. 10, pp. 145–159, Dec. 1993.

[29] H. Ritter, “Self-organizing maps on non-euclidean spaces,” in Kohonen Maps. E. Oja

and S. Kaski eds., Amsterdam: Elsevier, 1999, pp. 97-110.

[30] A. K. Krishnamurthy, S. C. Ahalt, D. E. Melton, and P. Chen, “Neural networks for

vector quantization of speech and images,” IEEE Journal on Selected Areas in Com-

munications, vol. 8, no. 8, pp. 1449–1457, 1997.

[31] D. B. M. M. V. Hulle, “Comparison of flat SOM with spherical SOM: A Case Study,”

H. Tokutaka, M. Ohkita, K. Fujimura Eds., Japan Springer, 2007, pp. 31-41.

[32] M. Sjberg, H. Muurinen, J. Laaksonen, and M. Koskela, “Picsom experiments in trecvid

2006,” in In Proceedings of the TRECVID 2006 Workshop, (Gaithersburg, MD, USA),

Nov. 2006.

[33] P. Over, A. F. Smeaton, and P. Kelly, “The TRECVID 2007 BBC rushes summariza-

tion evaluation pilot,” in Proceedings of the international workshop on TRECVID video

summarization, (New York, NY, USA), pp. 1–15, ACM, 2007.

[34] A. F. Smeaton, P. Over, and W. Kraaij, “Evaluation campaigns and trecvid,” in Pro-

ceedings of the 8th ACM international workshop on Multimedia information retrieval,

(New York, NY, USA), pp. 321–330, ACM, 2006.

[35] A. Nurnberger and M. Detyniecki, “Weighted self-organizing maps: Incorporating user

feedback,” in International Conference on Artificial Neural Networks and Neural In-

103

formation Processing - ICAN/ICONIP 2003, in Lecture Notes in Computer Science,

pp. 883–890, 2003.

[36] D. P. Papadopoulos, S. A. Chatzichristofis, and N. Papamarkos, “Video summarization

using a self-growing and self-organized neural gas network,” in MIRAGE, vol. 6930 of

Lecture Notes in Computer Science, pp. 216–226, Springer, 2011.

[37] S. A. Chatzichristofis, K. Zagoris, Y. S. Boutalis, and N. Papamarkos, “Accurate image

retrieval based on compact composite descriptors and relevance feedback information,”

International Journal of Pattern Recognition and Artificial Intelligence, vol. 24, no. 2,

pp. 207–244, 2010.

[38] S. A. Chatzichristofis and Y. S. Boutalis, “Content based radiology image retrieval

using a fuzzy rule based scalable composite descriptor,” Multimedia Tools Appl, vol. 46,

no. 2-3, pp. 493–519, 2010.

[39] S. A. Chatzichristofis, Y. S. Boutalis, and M. Lux, “SpCD - spatial color distribution

descriptor - A fuzzy rule based compact composite descriptor appropriate for hand

drawn color sketches retrieval,” in ICAART 2010 - Proceedings of the International

Conference on Agents and Artificial Intelligence, pp. 58–63, INSTICC Press, 2010.

[40] M. Marsza lek, I. Laptev, and C. Schmid, “Actions in context,” in IEEE Conference on

Computer Vision & Pattern Recognition, 2009.

[41] L. G. Shapiro and G. C. Stockman, Computer Vision. Prentice Hall, 2001.

[42] L. Cieplinski, “MPEG-7 color descriptors and their applications,” in Proceedings of the

9th International Conference on Computer Analysis of Images and Patterns, (London,

UK, UK), pp. 11–20, Springer-Verlag, 2001.

[43] Z.-C. Huang, P. P. K. Chan, W. W. Y. Ng, and D. S. Yeung, “Content-based image

retrieval using color moment and gabor texture feature,” in IEEE International Con-

ference on Machine Learning and Computing, pp. 719–724, 2010.

104

[44] P. Wu, Y. Choi, Y. M. Ro, and C. S. Won, “Mpeg-7 texture descriptors,” International

Journal of Image and Graphics, vol. 1, pp. 547–563, Oct. 2001.

[45] H. Yu, M. Li, H. Zhang, and J. Feng, “Color texture moments for content-based image

retrieval,” in IEEE International Conference on Image Processing, vol. 3, pp. 929–932,

2002.

[46] C. S. Won, D. K. Park, and S.-J. Park, “Efficient use of MPEG-7 edge histogram

descriptor,” ETRI Journal, vol. 24, pp. 23–30, Feb. 2002.

[47] M. W. Kadous, Temporal Classification: Extending the Classification Paradigm to Mul-

tivariate Time Series. PhD thesis, The University of New South Wales, 2002.

105

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2012

	Trajectory Analysis on Spherical Self-Organizing Maps With Application to Gesture Recognition
	Artur Oliva Gonsales
	Recommended Citation

