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Abstract 

Social networks have become significant tools due to the vast and useful information existing in 

them. The social platforms also act as the storage of entered choices of millions of users for 

various applications such as political surveys, research studies, marketing product preferences 

and many more. Social network recommender systems exploit this information and direct users 

in selecting their choices. It is clear that recommender systems should be efficient enough to be 

able to process the huge magnitude of data that has been generated in recent years by social 

network users. This research proposes a foundation of an efficient and scalable recommender 

system to be able to process large amount of data (i.e. Big data) in a short amount of time. The 

main goal is providing scalability and efficiency of the recommender system. The simulation of 

the prototype of such a distributed recommender system by using multi-agent based technologies 

shows promising results. These prototypes provide recommendations to users about other users 

with the similar interests in online and distributed manner as real recommender systems. The 

agents can simulate users or can be used as the containers of algorithms for comparing the 

similarity between users by different approaches, such as cosine similarity and clustering 
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methods for testing and examining real scenarios. To be able to test these prototypes in agent-

based simulation environment an agent-based framework is developed. This framework has three 

modules named social network crawler, social network simulator and employed prototype of the 

distributed recommender system that use different text and data mining algorithms. Finally, 

newly developed performance metric (called Scalability Factor) is introduced that shows the 

minimum number of servers needed to be able to run the agent systems in parallel. This thesis 

shows using a distributed and parallel model for recommender systems is the key to increase the 

speed of recommendation convergence and as a result to provide scalability. Multi-agent based 

simulation results, coupled with numerical analysis affirm that the proposed solution provides 

scalability and efficiency for recommender systems. 
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Chapter 1    

Introduction 

 

1.1.  Motivation 

Recently web researchers have proposed several data mining and web mining methods 

which are used for building recommendation systems for the Web 2.0 social networking 

sites such as Facebook, Twitter, YouTube, and LinkedIn. Unfortunately, the large amount 

of data feeding in social networks by millions of users causes efficiency problems in the 

online employment of these methods for real time recommender systems. Therefore, 

scalability and efficiency of recommender systems are open questions and hot research 

topics. 

 

One of the known and common methods for improving the scalability and efficiency of 

massive data processing applications is to develop them as parallel and distributed 

systems. Currently, the use of cloud computing and common use of distributed data 

processing tools such as Hadoop and MapReduce, and availability of hundreds of servers 

make it possible to turn the central applications to parallel or distributed applications at 

low cost. However, there are limited studies that show the benefits of transforming a 

central data processing system to distributed system. Many studies that proposing 

methods or guidelines for the transformation of a central text processing recommender 
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system into a parallel and distributed system are either suggest using distributed 

algorithms instead of central algorithms or employing distributed file system for data 

processing which needed change of the program or software and data modelling of the 

applications. The simplest proposed method for recommender system which does need 

change of application, is dividing the data in smaller granularity (called chunks) to 

provide scalability. This thesis studies the benefits of simple transformation of a central 

recommender system by replicating an entire recommender system on a distributed and 

parallel model without changing used algorithms, adding additional software layer or 

reducing the granularity of the data needed to be processed by a recommendation system. 

 

This thesis will first define a formal model of the problem and then introduce a 

framework implemented by multi-agent based systems (MAS) to be able to conduct a 

simulation. Multi-agent based prototypes used in the simulations of turning central text 

processing recommender applications to distributed systems, determine the benefits based 

on number of processed tweets. These multi-agent based systems will be used as data 

crawlers to input real data for examining the recommender system’s efficiency as well as 

recommending the users with other similar users while they are entering data in Web 2.0 

social networking platforms. The main feature of the distributed recommender system is 

the capability of using distributed storages of multiple servers instead of one server to 

distribute the load of data when performing data processing, which significantly reduces 

the running time. The use of distributed multi-agent based framework with text based 

recommender systems in social network sites is a novel idea. To measure performance of 

such a framework two variations of distributed recommender systems have been 
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developed and compared with each other. Besides comparing the accuracy, new 

performance metrics (specifically to measure distributed processing effectiveness and 

scalability) are used for examining the employed Web mining methods in these 

recommender systems. 

 

1.2.  Problem Statement 

The problem is to design a scalable and efficient recommender system to perform the 

recommendations by text processing based data mining algorithms (i.e. functions). In this 

design rather than inventing a new data mining or recommending algorithm the common 

algorithms (i.e. clustering and cosine similarity) employed in the recommender systems 

are used in parallel to provide scalability. Given that such algorithms are fully replicated 

in a distributed environment including servers containing local databases, the number of 

servers (i.e. scalability factor) of algorithms are unknown. The general form of the 

problem is explained as follows: Assume a recommender system has the Accuracy of A 

and is consisting of a set of algorithms that are shown as the functions: 

},....,,{ 21 hfffF   

Where, 

 F = Set of function or algorithm of the recommender system. 

 f = Functions or algorithms. 

 h = Total number of functions. 

For processing the information of k users, each of the users generates tweets shown by the 

set of  

},....,,{ 21 jiiii tUtUtUTU   
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Where, 

 Ui = User i. 

 T = Set of Tweets. 

 j = Number of tweets. 

 

Let },....,,{ˆ
21 mSSSS  be the sets of servers that are hosting functions F, where iS

represents the server number which is hosting function F. Each server m has a limited 

storage capacity (𝐶𝑖) for storing in its local database which is required to be processed by 

a set of functions F, given that each function uses the tweet vectors which are locally 

stored on each server’s local database. The global storage constraint is the total numbers 

of stored tweet vectors ∑ |𝑈𝑖
𝑘
𝑖=1 𝑇| which should be equal to the total number of tweet 

vectors on the centralized recommender system (where, k is the number of users). For the 

distributed versions of recommender systems (presented in this thesis) this constraint will 

be distributed constraints and for simplicity defined as tweet vectors distributed almost 

equally on each server. It means assuming the tweet vectors of each user stored entirely 

on one server. This constraint is defined as follows  

∑|𝑈𝑖

𝑙

𝑖=1

𝑇|  ≤   ∑|𝑈𝑖

𝑘

𝑖=1

𝑇|/𝑚 

Where, 

l = Number of users whose tweet vectors are stored in local servers. 

m = Number of servers.  

k = Total number of users. 
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For the given number of tweets it is required to find the minimum number of servers (i.e. 

scalability factor) in the set of Ŝ , which is a set of m servers that host recommendation 

system consisting of function F, provide scalability for the recommender system. 

That shall: 

 Reduce the running time of recommendation process by running the functions 

in parallel. 

 

 Produce the recommendations for a user 𝑈𝑖 with the same degree of accuracy 

of A by recommending the similar users who have the highest possible similar 

tweets as in the central version upon receiving a request from each user 𝑈𝑖. 

 

 Considering the amount of message passing in the system should be in the 

range of |𝑈𝑖𝑇| ∗ (∑ |𝑚
𝑖=1 𝑆𝑖| − 1) and the system should be capable of providing 

recommendations upon receiving a request from each user 𝑈𝑖. Where, |𝑈𝑖𝑇| is 

the cardinality of the set 𝑈𝑖𝑇. 

 

The variable in the general form of the problem is to find the number of replications (i.e. 

replication factor) of each function on the m hosting servers and the local constraint can 

be number of tweets and the processing power of each server. However, in reality the 

number of servers is limited, so in this thesis the simplified model is used for simulation. 

In the simplified simulation model, we assume all servers have the same processing 

power and approximately equal number of tweets and all functions are replicated just one 

time on each server. In Chapter 3, the relation of time complexity models of the functions 
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will be examined against the number of tweets to be able to define the scalability factor 

for each function and finally for the whole recommender system. These models will be 

implemented by agents for simulations discussed in Chapter 4 and Chapter 5. 

 

1.3.  Recommender Systems 

 Recently, the recommender system that is based on social network data, has gained 

importance in the applications of data mining. The internet users constantly share their 

views and ideas using these social networking sites. This valuable information is 

increasing every day. The recommender systems are based on user’s preferences, needs, 

and desires, which are the inputs to the recommender system. Textual messages in 

microblogs directly relate to sentiments of public opinion, which are measured from the 

polls. Data that is present in social networking sites are growing exponentially. The 

recommender system that uses collaborative filtering techniques reduces the information 

overload [1]. The application of this well-known technique on e-commerce shows its 

limitation of scalability [2]. The purpose of recommender system is to acquire previous 

knowledge from different inputs and gives suggestions for the given problem. The 

effectiveness of the recommender system mainly depends on how it makes good 

suggestions for those who are seeking recommendations. The recommender system uses 

information from different sources as their input. Nowadays, many recommender systems 

are internet dependent, as we have huge significant data (text, multimedia) that can be 

used for commerce, politics and security. The recommender system emerges as an 

excellent technique, which enables us to find the best solution. 

 



7 
 

The idea is to develop a recommender system that uses distributed and parallel algorithms 

to process big social data in real time. For such development a multi-agent based system 

is designed to simulate users in the Twitter environment. The Twitter social network, 

users’ behaviors and their communication with the recommender system and the 

combination of recommender system modules are considered as complex environment, 

which can be effectively simulated by multi-agent based systems. 

 

In the proposed system, the Twitter user data, such as tweets are analyzed to find user 

interest. However, it is a challenge due to three main reasons: the tweets have a maximum 

of 140 characters, unstructured language is used in the tweets and the volume of tweets is 

huge as millions of user tweets in a given time. These challenges guarantee the scalability 

issues. 

 

Recently, the recommender system that is based on social network data has gained 

importance in the field of information retrieval. But the fact is that it is difficult to find 

valuable and useful information from big social data for recommendation purposes. For 

example, for the Twitter due to the challenges mentioned above, it is a very time 

consuming technique to use central algorithms available for recommender systems. 

Therefore, efficiency of social recommender system is dependent on the processing 

power of the server. There are many recommender systems available for social networks, 

but the efficiency of the recommender system in real time is an open question. These 

central algorithms are time consuming and cannot work in an online manner. In this 

thesis, a framework is proposed that employs common recommender system algorithms 
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as distributed and parallel components working on processing tweets which are 

distributed on the servers. The proposed framework is called distributed recommender 

system and addresses the scalability problems of the algorithms used in current 

distributed systems. 

 

1.4.  Methodology 

In this thesis, a distributed and parallel model is proposed to provide scalability for a 

recommender system. An agent-based model is developed and the algorithms of TF, 

TFIDF, k-mean and cosine similarity are used for agent-based simulation of simplified 

model. By building prototypes of many agents, each of them acts as the representative 

algorithm (function) used in text-based recommender systems simulation. The 

communication between the agents can be performed by message passing between their 

hosting servers. In Chapter 3, the theoretical foundation of building a distributed 

recommender system is presented by examining common algorithms and showing the 

benefits in terms of reducing the running time for these common algorithms when used in 

recommender systems. Also, cost is defined in terms of message passing when using a 

distributed system consisting of these algorithms in parallel. For the simplified problem 

addressed in the thesis, numerical analysis and multi-agent based simulation are used to 

compare theoretical and practical solutions. In Chapter 4, prototyping, specification and 

implementation of multi-agent based framework are detailed. Two variations of 

distributed recommender systems are implemented by using agent systems, one based on 

clustering and the other based on similarity of data. In Chapter 5, we explain how we 

measure the accuracy to be able to get the same accuracy in distributed or parallel version 
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of the examining recommender system as their central variation. To measure the accuracy 

of each system the collected data of the Twitter follower and followees information will 

be measured by using the mean average error performance metrics. Measuring the 

benefits and cost in recommender systems by reporting the reduction in processing time 

of the system when implementing as distributed recommender system together with five 

real data sets is presented. MAS is used for prototyping and implementing a distributed 

recommender system and simulating the users who are generating text based information 

collected from real data. Using real data by collecting user selections from user network 

information makes it possible to assign an accurate value to the examining recommender 

systems and examine them against distributed versions of the system. For all these steps, 

only the Twitter public information of user tweets and user network information are 

required. Finally by comparing the achieved results in Chapter 3 (by doing numerical 

analysis) and simulation results in Chapter 5, the scalability factor (i.e. number of servers 

that make the recommender system scalable) for five data sets (maximum 25,000 of 

tweets) is determined theoretically and in practice for the above problem. 

 

1.5.  Contributions 

Three main contributions are made in this thesis, as follows: 

 

 Distributed Recommender System: Implementation of the novel distributed 

recommender systems by using multi-agent based system and providing analytical 

and experimental values for efficiency. 
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 Implementing the recommender system by using multi-agent system: Two 

variations of the distributed recommender system with different architectures are 

developed in this thesis by using multi-agent based technology. The first 

architecture uses a similarity approach called Similarity-based distributed 

recommender system (SDRS) and the second uses clustering method called 

Cluster-based distributed recommender system (CDRS). Implementation of both 

systems by using MAS has been introduced and detailed in this thesis. 

 

 Providing analytical and experimental values for efficiency (i.e. scalability factor): 

In Chapter 3, the scalability factors for two variations of developed distributed 

recommender systems are presented by finding the number of servers that produce 

the linear relation of running time and number of tweets for consisting algorithms. 

The effectiveness of both memory and disk storage-based scenarios for processing 

data have been tested and together with the accuracy of each system are provided 

in Chapter 5. 

 

 For all used datasets: We found that for processing of up to 25,000 of tweets 

adding minimum of two servers and transforming a central common recommender 

system into a parallel and distributed system provides scalability. The 

recommender systems that use clustering-based algorithms benefit more from 

distributed model explained in the thesis than the ones using similarity-based 

algorithms.  
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Contrary to the centralized recommender system, the suggested distributed systems 

architecture uses specific numbers of servers to improve the performance by running 

parallel algorithms to process massive data. The number of servers can be given as the 

constraint, which can be determined by the finding of this thesis. In the last chapter, by 

comparing the two developed distributed systems with memory and disk data storage, the 

values for scalability factor and performance improvement are shown for different 

algorithms use in the distributed recommender system. These values can be used as the 

guideline for transforming current central recommender systems to distributed ones. 

 

Transferring this prototype to a real world distributed recommender system is a straight 

forward task. A user agent in form of very light weight app. can be installed in user social 

network account. This app can communicate with other distributed components (i.e. 

agents) which are running in parallel in a cloud or multi-server environment. The 

following are the publications related to this work. 

 

 L. Ahmed and A. Abhari. "Agent-Based Simulation of Twitter for Building 

Effective Recommender System." In Proceedings of 17th Communications and 

Networking Simulation Symposium (CNS14) of SCS/ACM, 1-7, Tampa, Florida, 

USA, 2014. 

 L. Ahmed and A. Abhari. "A Multi-Agent-Based Simulator for a Transmission 

Control Protocol/Internet Protocol Network." SIMULATION: Transactions of The 

Society for Modeling and Simulation International, vol. 90, no. 5 (May 1, 2014): 

511-21, 2014. 
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 L. Ahmed and A. Abhari. "Distributed Recommender System for Online 

Processing of Big Social Data." In Spring Simulation Multiconference 

(SpringSim’15) of SCS/ACM, 699-700, Alexandria, Virginia, USA, 2015. 

 L. Ahmed and A. Abhari. "Information Retrieval using Multi-Agent Distributed 

System for Social Networks” In Information Retrieval Journal, 2015 (under 

review). 

 

1.6.  Thesis Organization 

This thesis is composed of the following chapters: 

 

Chapter 2: Background and Related Research 

In this chapter, we discuss previous works on the subject and their limitations. We then 

discuss the motivations behind our work. 

 

Chapter 3: Modelling the proposed Distributed Recommender Systems  

This chapter constitute of the core of this thesis. In this chapter, we show the relation of 

running time of the parallel run of the algorithms for each distributed recommender 

system against a number of tweets employed based on typical information retrieval 

algorithms. This chapter also details the scalability degree for each participating 

algorithm and distributed processing effectiveness of the combined distributed 

recommender system architecture.  
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Chapter 4: Multi-Agent based Framework, Specification and Implementation 

This chapter details the implementation of the multi-agent based simulation framework 

and prototypes. We describe a simulation framework, including a development of the 

Twitter simulator and Twitter data crawler based on multi-agent systems. We also present 

various algorithms used in the distributed recommender system prototypes. This chapter 

also provides an insight into the theoretical aspects on which our work is based. The 

papers discussing the architecture of agent based system and the initial results of this 

work are published in [3, 4, 5]. 

 

Chapter 5: Simulation and Experimental Results 

In this chapter, the prototyped multi-agent based system will be used in simulation. 

Measuring the efficiency performance of the proposed framework is of course an 

essential part of this research work. In this chapter, we describe the simulation setup, 

scenario, performance parameters and the results. Also validation and verification 

techniques together with the effects on accuracy and comparison with a similar work 

discussed. 

 

Chapter 6: Conclusions and Future Works 

We conclude our work and present future possible directions that can be done to extend 

the scope of the work we carried in this thesis. 
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Chapter 2   

Background and Related Research 

 

This chapter presents the studies and research that are related to this thesis. This chapter is 

divided into two main sections. In Section 2.1, background information about the design 

issues and components of recommender systems are explained. In Section 2.2, related 

research and state of the art recommender systems are discussed. Section 2.1 is further 

divided into five subsections. Section 2.1.1, discusses information filtering techniques 

that are used in recommender systems. Section 2.1.2 explains the similarity measures that 

are used in recommender systems, Section 2.1.3 discusses clustering method. Section 

2.1.4 shows recommender systems that are used for social network. Section 2.1.5 

discusses multi-agent systems with their use in recommender systems. In Section 2.2.1 

state of the art systems are presented. At the end, in Section 2.3 a summary of this chapter 

is presented. 

 

2.1.  Background Information 

2.1.1. Filtering Techniques used in Recommender Systems 

Many techniques are proposed to build recommender systems. These techniques are used 

in different applications and domains. The main component of any recommender system 

is its filtering technique. The recommendation provided by a recommender system is 
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dependent on the precision and accuracy of filtering technique. There are four main 

filtering techniques [6, 7], which are Content-based filtering, Collaborative filtering, 

Hybrid filtering and Demographic filtering techniques. 

 

2.1.1.1. Content-Based Filtering 

Content-based filtering (CBF) is discussed in [8]. This filtering method uses information 

about the selection or viewed items by a user and then recommends new item to that user 

on that information. The recommender system that is built on CBF needs to select the 

right set of features to be used in recommendations. 

 

2.1.1.2. Collaborative Filtering 

Collaborative filtering (CF) technique uses collaboration of previous user ratings 

histories. This means that when a user purchases an item, the system asks the user to rate 

the purchased item. On the basis of this collected information, the item is suggested to the 

target user, as it is highly rated by similar users. The collaborative filtering does not 

require item knowledge; therefore, it can be applied to any kind of items and is used in 

many online recommendation systems, including websites, songs, videos, jokes, stocks, 

books and news articles. For example, CF is used in Amazon [9] for recommending 

items. Additionally CF technique is used for filtering emails as in [10].  

 

According to [11], k-Nearest Neighbours (kNN) is the most commonly used algorithm in 

collaborative filtering. kNN is the reference algorithm for recommendation systems which 

use collaborative filtering for its simplicity and accuracy [12]. kNN uses a similarity 
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approach to calculate recommendations. The similarity between the two users is 

calculated based on their item ratings. This algorithm uses the following steps for 

recommendations: 1) the set of k neighbour users for active user A is generated using 

selected similarity measures (such as the Pearson Correlation, Cosine, Constraint Pearson 

Correlation, Mean Squared Differences, Euclidean etc.). The resulted set represents the 

users who are similar to a user A. 2) an aggregation approach (such as average, weighted 

sum and adjusted weighted aggregation) is used to predict item I for the user A. From the 

list of recommendations, top n items are recommended to the active user A. The main 

limitations of this algorithm are that it lacks in scalability [13] and sparsity [14] in 

recommendation system database.  

 

2.1.1.3. Demographic Filtering 

Demographic filtering (DF) technique uses the information about the user, which depends 

on the user’s age, country, sex etc. In [15, 16] a framework that uses user’s profile to 

recommend restaurants is presented. That framework uses DF along with CBF and CF. 

 

2.1.1.4. Hybrid Filtering 

Hybrid filtering (HF) technique is the combination of two or more filtering techniques 

[17, 18]. In [19], a hybrid filtering technique that combinations CF and DF is presented. 

In [20], CF and CBF are combined. In [21], a recommendation system is presented for 

maintaining the accuracy and scalability of CF. In this recommendation system, a hybrid 

fuzzy-genetic approach is used.  
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2.1.2. Similarity Measures 

Similarity measure (SM) is the metric which is used to determine the similarity of two 

users or two items [22]. In RS context, similarity measure can be used to compare all the 

items ratings of two users. The widely used similarity metrics are discussed in [7, 23, 24], 

which are Pearson Correlation, Cosine Similarity, Adjusted Cosine, Constrained 

Correlation, Mean Square Differences, Euclidean, and Jaccard Mean Squared differences. 

 

In [23], Jaccard Mean Squared Differences (JMSD) is introduced. This similarity measure 

uses both numerical information of rating (using Mean Squared Differences) as well as 

non-numerical information (using Jaccard). This method uses Pareto dominance for pre-

filtering, which is useful in removing users with less representation value, in turn, keeps 

most valuable users in the k nearest neighbours process. In [25], a collaborative filtering 

SM Sing is proposed. This method uses vote information for all users and related 

information for two users or two items. In [26], genetic SM GEN is proposed, this 

similarity metric is based on a model generated by using genetic algorithm. 

 

Due to significant increase in Web 2.0 applications and a huge number of users of social 

media websites, new types of social information are introduced, such as friends, 

followers, etc. These types of information can be used in social recommender systems. 

This information is based on user trust, reputation and their credibility [27]. In [28, 29], 

trust information is extracted using user’s rating set. In [30], it is shown that it is more 

effective to use the specific similarity metric which includes some recommendations 

related parameters than using traditional similarity metrics.  
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In [31], a framework for evaluating collaborative systems is presented. This framework 

considers the evolving process of the evaluated collaborative system. Validation of 

recommender system can be performed by using a cross validation technique of random 

sub-sampling and K-fold cross validation [32]. 

 

2.1.3. Clustering Methods 

Clustering problem is defined as partitioning a set of data points into different groups, 

where the points in each group are as similar as possible [33]. The most common 

clustering techniques are: K-mean Clustering and Group Average Agglomerative 

Clustering (GAAC). 

 

2.1.3.1. K-mean Clustering 

K-mean clustering is a flat clustering technique that clusters the data point to a predefined 

number of clusters [34]. In k-mean, the following steps are applied in order to cluster n 

data points in euclidean space: 1) initially and randomly select k points that represent 

centriod of the clusters, 2) perform the following steps for all other remaining (n-k) points 

in Euclidean space: a) Check centriod of all clusters against each data point and assign 

that point to the nearest cluster. b) Calculate the mean of all data points and assign the 

new value to the centriod. c) For all data points in the clusters, compute the Euclidian 

distance from the centroid of all clusters. Move the data point to its nearest cluster and 

then update cluster’s centroid. d) Repeat step c, until convergence is achieved. 
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2.1.3.2. Group Average Agglomerative Clustering 

Group average agglomerative clustering is a hierarchical clustering (HC) algorithm [34]. 

There are two types of HC algorithms: namely agglomerative (bottom-up) and divisive 

(top-down). Hierarchical clustering algorithm generates a set of clusters which are 

organized in the form of a tree. Bottom-up hierarchical clustering is also known as 

Hierarchical Agglomerative Clustering (HAC), where each document is a cluster 

considered as a singleton and each cluster pair merge together until all pairs are merged to 

form a single cluster which contains all the documents.  

 

2.1.3.3. Vector Space Model 

Most of the well-known clustering algorithms use vector space model (VSM) to represent 

the document corpus [33, 34]. In [35], a document corpus is represented by a vector in the 

term space. In order to find out the similarity of two documents and differentiate them, 

the term weight algorithm is used as in [36, 37, 38, 39]. Term frequency inverse 

document frequency (TFIDF) is the widely used term weight algorithm [40, 41]. In this 

algorithm, term frequency (TF) of a term is calculated as the number of times that term is 

found or appears in the given document. Inverse document frequency (IDF) is calculated 

as the number of documents in which the term under consideration is found [42]. The 

TFIDF of a term can be calculated by multiplying the TF by IDF of that term [39]. There 

are many variants of TFIDF algorithms such as automatic text categorization (ATC) [37], 

LTU [36] and Okapi [38]. In ATC, maximum term frequency is used as an extra 

parameter, while LTU and Okapi use two extra parameters, which are the document 

length and average document length.  
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In [43], term frequency inverse corpus frequency (TFICF) algorithm is proposed. This 

algorithm does not require the TF of other documents. It can be used in data streams.  

Table 2.1 shows the formulas used in each of these methods. 

Table 2.1: Different Term Weighting Schemes [43]. 

 

 

The main limitation of these algorithms is that they require updating the values of term 

weighting when a new document is included. Therefore, we can say that they are not very 

efficient in online data streams in real time. Utilizing the strength of parallel processing 

can increase the performance of these algorithms. Therefore, in this thesis, we use multi-

agent systems as core components of the proposed framework. 
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2.1.4. Recommender System for Social Networks 

The applications of a recommender system are used in social networks. Many works are 

available in the literatures that discuss the extraction of data and user’s information from 

network media sites. The first recommender system for the web was developed in 1992 

by Tapestry [10]. The emergence of Web 2.0 allows the internet users to easily access and 

use social media sites, such as, Wordpress [44] for blogging, Twitter [45] for micro-

blogging, Facebook [46] for social networking, YouTube [47] for video sharing, Flickr  

[48] for photo sharing, Digg [49] for social news reading, Delicious [50] for bookmarking 

[51] , furl [52] for searchable copies of webpages, CiteULike [53] for research papers, 

and Pinterest [54] for keep things. Internet users come to these social media sites to 

express their experiences in daily life, browse, watch videos, play songs etc. In the last 

few years, researchers have been taking interest in exploiting the valuable information 

found in the social media sites, and they have managed to come up with many interesting 

models and frameworks to utilize the huge data available on these sites. Therefore, 

recommender systems using social media data have emerged as a significant trend in the 

world of social media applications. For example, many recommender systems have been 

developed to recommend films, books, and music to the users [55]. In [56], the 

correlation model between social media users with e-commerce is discussed. This study 

shows the close loop model exists between e-commerce and social media sites.  

 

2.1.4.1.  Classification of Social Recommender System 

Recommender systems can be classified by using three major factors, which are: 
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1. Source of data used by recommender system, which includes websites 

(traditional way), social networks or Web 2.0 (two way), and internet of things or 

Web 3.0 (health signals, GPS locations). 

2. Targeted data of user and item. 

3. Data extraction methods which include explicit method and implicit method. 

 

2.1.4.2.  Factors Affecting Social Recommender System 

The two main factors which affect the quality of recommendation in social recommender 

systems are user profile and trust issues.  

 

User profiling is the top factor when addressing the quality of the recommendation. This 

information can be gathered by mining social networks. Most of the time, users enter their 

profile explicitly when using social media sites. This information can also be gathered by 

using software agents that capture user behaviours. There are two types of methods used 

to get user profile information. 

 

1. Explicit Method. 

2. Implicit Method. 

 

In explicit method, information is entered by users where they rate the items according to 

their liking. This method is more accurate as it was registered personally by the user. The 

implicit method uses system agents to capture the behaviours of the user to extract their 

interests. In online recommender systems, user log data of click streams and navigation 
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patterns are used as implicit inputs. This method of inference is not always valid (erratic), 

but it is transparent to the user, and the user is not required to input any information. In 

both methods, we need sufficient information about the user profile and his/her behaviour 

in order to give recommendations [34]. 

 

The second main factor which affects the quality of recommendations is the trust of the 

user. When a user has to select between recommendations from a friend and a 

recommender system, a user always prefers their friend’s recommendation [57]. 

Therefore, a recommender system should have trust feature that gives more reliability to 

the recommendations.  

 

2.1.5. Recommender System using Multi-Agent based System 

In this section, we discuss the fundamentals and architecture of an agent and the multi-

agent systems. In the last few years, agents and multi-agent based systems have been 

growing very fast in the field of computer science. Multi-agent based systems are 

significantly beneficial in the decentralized and distributed computation environments, 

such as distributed data mining and information retrieval [58, 59], sensor networks [60, 

61], social sciences, artificial life, computer games, simulations, and soccer robots 

applications. In MAS environment, one or more agents coexist and collaborate in order to 

achieve a predefined goal. The soccer playing robots and software agents on the Internet 

are examples of multi-agent system environments. In a MAS environment, all agents have 

to communicate and coordinate with each other. Because of their ability of parallel 

processing, MAS is utilized in social recommender systems [62, 63]. 
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In [64], a framework for parallel crawlers for online social network is proposed. In this 

work, many crawlers operate independently in order to increase the reliability of the 

system; such that, if one crawler fails, it does not influence the operations of the others. In 

[65], a collaborative filtering technique that depends on simultaneous clustering of users 

and items is presented. In that work, a design of incremental and parallel versions of the 

co-clustering algorithm is used. This version of the co-clustering algorithm is utilized in 

order to build an efficient real-time collaborative filtering framework.  

 

In [62], a multi-agent based system called “Infonorma” is proposed to recommend its 

users for legal normative instruments. This system uses content-based similarity analysis 

of web documents. In [63], a mobile application that uses multi-agent system is presented 

in order to provide personalized and quick recommendations to the social network users. 

In [66], a multi-agent recommender system is presented for e-tourism. It is based on a 

reputation collaborative filtering algorithm and deals with the cold start problem mostly 

found in tourism domain.  

 

2.2.  Related Research 

2.2.1. State-of-the-art Social Recommender Systems 

Many factors play important roles in the development of social recommender systems 

such as novelty, accuracy and stability [30]. The biggest challenge for online social 

recommender systems are the complete user profile and efficiency of recommendations. 

A sophisticated user profile can be created by applying the above mentioned techniques 

on user generated content. It is possible to predict opinion of users for a particular item by 
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using information available through user generated contents (UGC). By using UGC data, 

an accurate user profile can be created. These profiles can reduce the problems of cold 

start and malicious rating. 

 

In [67], researchers developed a program which can search the user blogs and recommend 

new blogs on the basis of user blogs. This program uses similarity clustering and tagging 

for recommendations. In [68], a new blog crawler called RetriBlog for Blogsphere was 

developed. It deals with the variations typically found in blogs. In [69], the trust-based 

social recommender systems are discussed. Trust rating is used to define the level of trust 

of the user. This method has three main properties of trust: transitivity, asymmetry, and 

personalization. It is feasible for small social network, but it is very difficult to define 

trust for all users of a large social network. Trusting a user or not, depends on the personal 

opinion. In [70], a method is proposed to improve accuracy of group recommendation 

using group personality composition along with trust between members of a group. 

Researchers define the trust that should be personalized, where users can have the ability 

to define different levels of trust to other users on the social network. In [71], a 

probabilistic matrix factorization framework is employed. This framework uses both 

user’s social trust network and user-item matrix for recommendations. This framework 

outperforms state-of-the-art model of collaborative filtering and social trust-based 

recommendation algorithms. The experiments have been done on Epinions datasets. Their 

results were promising when few ratings were available in the dataset. In [72], a trust-

aware recommender system (TARS) is proposed. They use trust metric weight estimation 

which is able to measure the trustworthiness of the trusted network. This method is 
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capable of using large datasets. Using a larger dataset increases number of ratings and not 

compromise on accuracy. In [73], a trust-aware recommender system was proposed. This 

system is able to solve the data sparseness problem. They proposed a new routing 

protocol for their TARS. This protocol has a higher prediction compared to classical 

routing protocol of free-scale network. Trust is the personal opinion about the user. In 

[74], it has been found that similar interests of people lead to create trust between them. 

In [75], a probabilistic modelling approach is presented for Digg website [49]. This 

website provides services for its user to submit their favourite articles and also rate the 

articles on the website. The rating criteria are based on votes by the user. Digg only uses 

article’s vote counts, and then puts that highly voted article on the front page of their 

website, no user preferences are considered for recommendations. If the 

recommendations are based on user preferences, then it is possible that the user can vote 

for articles without searching for their interested articles.  

 

In [75], a personalized recommender system is presented. This model can be very useful 

for the cold-start and warm-start problem faced by many recommender systems. This 

model also recommends the low score relevant articles with equal importance as other 

high score articles. An algorithm is proposed named EM algorithm. This algorithm is able 

to learn proposed probabilistic model parameters. A generalized probabilistic latent 

semantic indexing is used, which is similar to the technique used in [76].  

 

In [77], model based algorithms predict user`s preferences for unknown products or 

items. Precision of recommendation can be increased when using a probabilistic model. 
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Netflix [78] uses a probabilistic matrix factorization technique for movie 

recommendations. 

 

Tags are very effective information that can be used in social recommender system. Tags 

are keywords which can be added to any digital object such as website, pictures, video, 

songs, and movies. These objects are explored by using these keywords. Tags are used in 

many websites such as Delicious [50], Flickr [48], Technorati [79], and CiteULike [53]. 

 

Social tagging analysis was done on the Delicious bookmarking system in [80]. The result 

shows improvement while searching. In [81], distribution of tags in Delicious is studied. 

This work suggests a generative model of collaborative tagging. The tag information is 

gaining more importance due to the effect of information available in tags as compared to 

other user information like a click stream or data logs. Tag is a small piece of 

information, but very powerful because it is contributed by human intelligence. There is 

no restriction of language, words, etc. for tagging. Tags have different meanings for 

different users. Almost 60% of the tags are personal tags. Tags can be used to profile the 

user's topic preferences accurately. This brings more challenges to the researchers for 

example, how to solve freestyle vocabulary of tags. In [82], a model uses standard expert 

ontology or item taxonomy for each user tag. This model tries to minimize the noise from 

the tags. Item taxonomy is the controlled vocabulary terms or topics to classify items. For 

example, Amazon uses book taxonomy. 
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People-tags based recommender system uses no explicit information from users. It is 

based on people’s relationships and user tags information. In [51], a people-tag based 

personalized recommender system for enterprise is proposed. This method is based 

entirely on aggregating social network data. In [83], it was shown that aggregating social 

network information from different sources will have accurate and better results. 

Suggested item for the user is based on the item-people and user-tags aggregated 

relationship for the target user. In [51], people and tags are used for recommendations in 

social aggregation system [84, 85]. First, the relationship between people, tags, and items 

are aggregated. They compared their results with tags-based recommender system, 

people-based recommender system, people-or-tag-based recommender system, people-

and-tags-based recommender system, and popularity-based recommender system. The 

tags-based recommender system that uses incoming tags and user tags has achieved better 

recommendation results (success rate of 70%) as compared to others recommender 

systems. The compared people-based recommender system and tags-based recommender 

system only have 2% overlapping of recommendations. A hybrid people-or-tag-based 

recommender system, which includes explanations, gives slightly better results. The 

outcome, by combining peoples and tags relationship to user profile does not produce 

much larger change as compared to only tags-based recommender system. The 

recommendation provided by this method gives item diversity and lower recommendation 

of already known items to the target user. 

 

The main and critical outcomes are to define user profiles accurately and the system 

should have enough information that can be used in recommendations. These social 
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networking sites have rich information which is related to the users. This information can 

be extracted using latest data mining techniques. Personalised recommender systems can 

use tagging, blogs mining, and trust techniques to strengthen their recommendation.  

 

2.2.2. Recommender System using Twitter Data 

Recommender system using the Twitter data is discussed in [86, 87]. A comprehensive 

and detailed Twitter data analysis can be found in [86]. Followee-recommender system 

for Twitter is proposed in [87]. This system is based on the user profile, followees, and 

followers. The dataset of 20,000 Twitter users is used for experimental purposes. User 

tweets and tweets from followees and followers are used in that research. New system 

architecture, which is described as a Twittomender recommender system, is introduced as 

a web service. The user has two basic modes, namely: user search and user 

recommendation. The user search mode is used to handle the queries entered by the user, 

while in user recommendation mode user profile is used as query source. User profiling is 

done using tweets and social connections. Five different methods are used for profiling: 

user’s own tweets, user`s followee tweets, user`s followers tweets, user’s followee ids, 

and user`s follower ids. Lucene platform, which depend on TFIDF weighting metric is 

used. If content sources such as user tweets, followee tweets, follower tweets are used, 

then it can act as content-based recommender system. On the other hand, if indexing the 

users by their followee and followers then collaborative-based recommender system can 

be formed. The collaborative filtering method performs better than content filtering 

method from the perceptive of precision. Precision result ranges from 0.15 to 0.2, which 

means 2 out of 10 recommendations for followees is correct. In position of results for 
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recommendation-list, content filtering performs better than collaborative filtering. That 

research shows that social media data such as Twitter, which is noisy data, can be applied 

for recommendation purposes. In [88], an approximate TFIDF is implemented using the 

graphic processing unit (GPU), which shows better results as compared to TFIDF using a 

brute force algorithm. 

 

For reducing the total processing time of the tweets different types of approaches are used 

by researchers. In [89], uses a locality sensitive hashing method [90] to speedup first story 

detection task. In [91], which is a fairly new development uses chuck of tweets to reduce 

the total processing time. This method is able to reduce the total processing time by 

limiting the amount of tweets to be processed at a given time. There is no other work 

found to reduce the total processing time for social network data either by using 

parallelization or distributed architecture. 

 

As a part of this thesis, the Twitter data crawler tool is presented. The proposed crawler is 

MAS based which downloads Twitter data and stores them in the database. In [3], we 

presented the Twitter simulated environment that can be used for the distributed 

recommender system. This Twitter environment is capable of simulating Twitter users as 

agent in multi-agent environment. In [5], a multi-agent simulator for TCP/IP network is 

presented. We use the message passing between agents that is presented in [3, 4, 5] and 

the Twitter simulated environment presented in [3, 4] as the major components of the 

proposed framework. Also, the method which is referred to as data grouping method is 
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compared with the proposed distributed recommender system in the Chapter 5 Section 

5.7.  

 

2.3.  Summary 

In this chapter, we presented the key background research material for this thesis. In the 

first section, we introduced the task that we are dealing in more detail, by providing 

detailed information on filtering techniques and the methods used in recommender 

systems. In the second section, we explained the similarity methods used in the 

recommendation process. We then presented the current state-of-the-art approaches in the 

area of recommender systems. Furthermore, we explained different state-of-the-art social 

recommender system along with different Twitter recommender systems. Finally, we 

explain the concepts of multi-agent based system, which is one of the key techniques in 

this work. In the rest of this thesis, we develop algorithms for distributed recommender 

system that address all the key challenges, by reducing the online processing time for big 

social data. 
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Chapter 3    

Modelling the proposed Distributed 

Recommender Systems 

 

In this chapter, a simulation model will be presented for the distributed recommender 

system. The objective of such model is finding the relation between the input variable 

number of tweets and output variable running time of distributed recommender system. 

The proposed distributed recommender system has the components running in parallel, 

referred to as processing units. Another part of the distributed recommender system is the 

distributed storage of databases used by these units. In summary, these units that may 

include other units are categorized as follows: 

 

 A set of text processing units. 

 A set of recommender units. 

 An organizing unit. 

 

that is explained in the following sections. 
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3.1.  Text Processing Unit 

The text processing unit (TPU) is responsible for receiving the tweets published from the 

user. After capturing the tweet, a text processing unit performs text processing based on 

general text filtering criteria, which is used in common text processing algorithms that are 

designed for processing post or tweets in online social websites. The criteria include 

stopwords removal, retweets removal and stemming of words. Tweet have a maximum of 

140 characters. These tweets contain lots of noises, which needs to be removed. The 

example of the noises are non-English words, stopwords and URLs. The first step is the 

conversion of tweet sentences into a sequence of words/terms by tokenizing each 

sentence. This will separate words or terms from the sentence that can be used for further 

processing. The following are the steps involved in the processing of the raw tweets to 

produce a clean set of tweets. 

 

1. Stopword Removal: Each word is compared and checked against a standard 

stopword list of English terms. The stopword list from the Natural Language Tool 

Kit’s is used to remove least informative terms. This process is used to rectify 

articles (such as ‘an’, ‘a’, ‘the’) from the sequence of words in a tweet. The 

remaining words are the alphanumeric words which are then used. This process also 

removes URLs and a word which starts with ‘@’ (aka mention or reply) to be 

removed from the tweets, however, the words with ‘#’ sign (aka hashtags) are 

retained. 
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2. Number of Words: This process counts the number of English words present in 

the clean tweet text. The lower limit for the number of words in one tweet is set to 

three words, which means a tweet should have at least 3 words. Once a tweet 

passes this criteria, then the clean tweet text will be taken for further processing. 

Once the word filtration process is complete, each tweet is split into a set of 

tokens or features and included in the vector space model [92]. Considering the 

above explanation for a common text processing algorithm, the following 

algorithm is used for a text processing unit. 

 

Algorithm 1 Pseudo-Code for text processing unit 

 

1. procedure stopWordRemovel(Tweets) 

2. Declare: 

3.  N = number of tweets 

4.  L = number of stops words in stopWord array. 

5.        cleantweetText = temp string variable to store clean tweet 

6.        wordCount = number of words in cleantweetTweet 

7.  

8. for i = 1to N  // remove all stop words from all tweet 

// tweetText is tokenized by using the space between words 

9.  wordtokens ← tokenize(tweetText[i])  

10. W = number of words in raw tweetText. 

11. for j = 1 to W  // for all words in tweetText 

12.   word ←wordtokens[j] 

13.   flag = 0 

14.   for k = 1 to L // remove all stop word from tweet 

15.    if(word = stopWord[k] 

16.     flag = 1 

17.   end 

18.   if (flag = 0 AND wordCount >= 3) 

19.    Append in cleantweetText  += word  // word and space 

20.  end 

21. end 

 

N is the total number of tweets to analyse the complexity of the above algorithm. The 

worst case scenario is considered and time complexity (worst case) of Algorithm 1 for 

line 8-21 is calculated as: 
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= 𝑂(𝑁 ∗ 𝑊 ∗ 𝐿) 

Where,  N = Number of tweets. 

  W = Number of words in each tweet. 

  L = Number of stopwords. 

 

It is clear that the number of tweets (N) is the dominating factor, so the complexity of 

typical text processing unit is 𝑂(𝑁). 

 

3.2.  Recommender Unit 

Recommender Unit (RU) is responsible for performing two types of functions. First, the 

name indicates itself, it provides recommendations to the requesting users upon their 

requests and the second, it calculates weight for words of tweets for all users connected to 

the recommender unit. When the clean tweet arrives at the recommender unit, it is stored 

in a local database along with a user name. There are in total four different algorithms 

which are implemented to build a common recomender unit. These algorithms can be 

configured and initialize according to the architecture of the distributed recommender 

system under test. The recommender unit is composed of the following, term frequency 

unit, term frequency inverse document frequency unit, cosine similarity unit, and k-mean 

clustering unit.  

 

3.2.1. Term Frequency Unit 

When a request is initiated from a user, recommender unit process all tweets present in 

the unit by using Algorithm 2. A word bag is created for each user separately. This word 
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bag contains all the words it receives from the user. If the word is not present in user word 

bag, it will create an entry for that word and if the word is previously present, the word 

count is increased by one. Each user's word bag is then used in finding that user's 

interests. A general method of term frequency [92] can be used which is defined as 

follows: 

 

𝑡𝑓(𝑡, 𝑑) =  𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 

 

Term frequency represents the number of terms present in the document. The following 

Algorithm 2 is used for calculating the term frequency for one user tweet. 

 

Algorithm 2 Pseudo-Code for calculating term frequency for creating wordbag 

 

1. procedure wordBag(cleantweetText) 

2. Declare: 

3.  Variable Tweets contains N tweets 

4.  wordBag ← {word, wordCount} 

5.  

6. for i = 1to N  // for all clean tweets received for one user 

// W = number of words in cleantweetText 

// cleantweetText is tokenized by using the space between words 

 

7.  wordtokens ← tokenize(cleantweetText[i])  

8. for j = 1 to W  // for all words in tweetText 

9.   word ←wordtokens[j] 

10.   if (word not in wordBag)  // wordCount = 1 

11.    Insert in wordBag (word, wordCount) 

12.   else 

13.    Increment wordCount of word in wordBag 

 

14.   if (word not in wordList) 

15.    Insert in wordList(word, wordCount) 

16.   else 

17.    Increment wordCount of word in wordList 

18.  end 

19. end 

 

Time complexity (worst case) of Algorithm 2 is calculated as: 
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= 𝑂(𝑁 ∗ 𝑊) 

Where,  N = Number of tweets  

W = Number of words in each tweet. 

 

Obviously, the number of tweets (N) is the dominating factor, so the complexity of term 

frequency can be approximated by 𝑂(𝑁).  

 

3.2.2. Term Frequency Inverse Document Frequency Unit 

Recommender unit can also include term frequency inverse document frequency weight 

calculation. When a request is initiated from a user, recommender unit process all tweets 

present in the unit by using Algorithm 3. The term weight or term importance in a tweet 

depends on the following three factors [93]. 

 

 Term Frequency (tf). 

 Inverse Document Frequency (idf). 

 Length Normalization (ln). 

 

The term frequency inverse document frequency algorithm is the most widely used term 

weight algorithm for information retrieval. It is the product of two statistics methods, term 

frequency and inverse document frequency. Inverse Document Frequency is the number 

of documents counted in a searched collection and is indexed by the term. The idf is also 

called a Global term weight [94] and represents the importance of terms in the corpus 

[95].  



38 
 

𝑖𝑑𝑓(𝑡, 𝐷) =  log2

𝑁

𝑑𝑓
  

Where, 

N  = Total number of documents searched. 

df  = Document frequency (number of documents with same keyword). 

 

Inverse document frequency for all tweets has to be calculated every time, when a user 

tweets. Therefore, TFIDF is calculated when a new tweet received by the unit using 

following formula: 

𝑡𝑓 ∗ 𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) ∗ 𝑖𝑑𝑓(𝑡, 𝐷) 

There are short tweets as well as long tweets. To give importance to both types of tweets, 

we need to use normalization. If the tweet is long and has the same term available 

repeatedly, then this tweet will have more influence on term frequency weight. If there 

are more terms in the tweet, then again this will influence the search criteria. To reduce 

the effect of long tweets (higher term frequencies and more terms), we need to employ 

normalization on the basis of tweet length. We use cosine normalization in the vector 

space model [35]. We use tweet vector to calculate cosine normalization. For a tweet ti, 

we formally define 

𝑐𝑜𝑠𝑁𝑜𝑟𝑚 [𝑖, 1] =  𝑇𝐼𝐷𝑖 

𝑐𝑜𝑠𝑁𝑜𝑟𝑚 [𝑖, 2] =  √(𝑤1
𝑖)

2
+ (𝑤2

𝑖)
2
+ ⋯+ (𝑤𝑛

𝑖 )
2
 

𝑐𝑜𝑠𝑁𝑜𝑟𝑚 [𝑖, 2] =  √∑(𝑤𝑗
𝑖)

2
𝑚

𝑗=1

 

Where,   𝑤𝑖 = 𝑡𝑓𝑖  × 𝑖𝑑𝑓 
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By using cosine normalization, we can normalize both higher term frequencies as well as 

more terms in the long tweet. The output is a tweet feature vector which consists of tweet 

ids and their TFIDF values. The following Algorithm 3 shows the pseudo code for TFIDF 

unit. 

 

Algorithm 3 Pseudo-Code for calculating TFIDF values by creating wordBag and tweetVector 

 

1. procedure wordBag(cleantweetText) 

2. Declare: 

3.   Tweets contains N tweets called tweet chunk 

4.   wordBag ← {word, wordCount} 

5.   tweetVectorTable ← {tweetID, wordList}  where, wordList ← list of {word, wordCount} 

 

6. for i = 1 to N   // for all clean tweets received 

// W = number of words in cleantweetText   

// tweetText is tokenized by using the space between words 

 

7. wordtokens ← tokenize(tweetText[i]) 

      

8. for j = 1 to W  // for all words in tweetText 

9.    word ←wordtokens[j] 

10.   if (word not in wordBag)  // wordCount = 1 

11.    Insert in wordBag (word, wordCount) 

12.   else 

13.    Increment wordCount of word in wordBag 

 

14.   if (word not in wordList) 

15.    Insert in wordList (word, wordCount) 

16.   else 

17.    Increment wordCount of word in wordList 

18.   end 

19.  Insert in tweetVectorTable (tweetID, wordList) 

20.  

21.  end 

 

22. tweetCount = Total number of tweets in tweetVectorTable 

 

23. for i = 1 to N   // calculate TFIDF for all tweets 

24.   tweetVector_Info ← tweetVectorTable[i] 

25.   for j = 1 to W  // n is number of words in wordList 

26.    wordList_Info ← wordList[j] 

27.    totalwordCount  ←  (wordlist_Info(i,1), wordBag) 

28.   wordidf  = wordCount  * log ( N / totalwordCount ) 

29.   wordtfidf = wordCount * wordidf 
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30.   tweettfidf += (wordtfidf ) 2 

31.  end 

32.   tfidfvalue =  tweettfidf 

33.   tweettfidfVector[i] ← {get_TweetID(tweetVector_info), tfidfivalue} 

34. end 

 

Time Complexity (worst case) for Algorithm 3 is 

= 𝑂(𝑁2) +  𝑂(𝑊) 

 

3.2.3. Cosine Similarity Unit 

Cosine similarity is a similarity measure of two vectors. It is the measure of cosine angle 

between two vectors not their magnitude. If two vectors are exactly the same it means 

cosine similarity is 1, because both vectors have no difference in their angle (i.e. a 

direction which is zero, cos 0 = 1). The calculated similarity is bounded between [0, 1]. 

By using following Euclidean dot product formula, the cosine of two vectors can be 

calculated as follows: 

𝐴 ∙  𝐵 =  ‖𝐴‖‖𝐵‖ cos 𝜃 

𝑐𝑜𝑠𝑆𝑖𝑚(𝐴, 𝐵) =
𝑉⃗ (𝐴)  ∙  𝑉⃗ (𝐵)

|𝑉⃗ (𝐴)||𝑉⃗ (𝐵)|
 

= 
∑ 𝐴𝑖 × 𝐵𝑖

𝑛
𝑖=1

√∑ (𝐴𝑖)2𝑛
𝑖=1  ×  √∑ (𝐵𝑖)2𝑛

𝑖=1

 

Where,   

A, B = Two users’ word vectors. 

n = Number of words in the vector. 

 

The following Algorithm 4 is used to calculate the cosine similarity of requesting user 

against each user present in the unit. 
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Algorithm 4 Pseudo-Code for finding user interest using cosine similarity 

 

1. procedure cosSimilarity(userReq, listofuser) 

2. Declare: 

3.  cosSim ← {username, cosValue} 

4.  U = list of users  

5.  userReq = requesting user  

// rUV = requesting user word vector 

// UV = temp word vector, use for temp user words 

// generate vector for requesting user (rUV) 

6.  for i = 1 to U  // all users in listofuser 

// generate vector for temp user. 

7.                      for j = 1 to W       // all words in requesting user vector 

8.    value += rUV[j] * UV[i][j] 

9.    mag1 += (rUV[j])2 

10.    mag2 += (UV[i][j])2 

11.                       end 

12.   mag1 = sqrt(mag1) 

13.   mag2 = sqrt(mag2) 

14.   if  both mag1 and mag2 is not zero 

15.    cosValue = value / (mag1 * mag2) 

16.   else  

17.    cosValue = 0.0 

 

18.   // save cosine similarity value with username in cosSIM 

19.   Insert in cosSim(username, cosValue) 

20.  end            

 

Time Complexity (worst case) Algorithm 3 can be calculated as: 

= 𝑂(𝑟𝑈𝑉(𝑟𝑈𝑉 + 𝑈𝑉)) 

Where, 

  rUV = Vector size of requesting user. 

  UV = Vector size of all user in the server. 

The complexity of cosine similarity in the worst case is that if the number of users (U) is 

equal to the number of tweets (N) then it can be calculated by using 𝑂(𝑁2).  

 

3.2.4. K-mean Clustering Unit 

The K-mean clustering unit is used for finding recommendations. Clustering is performed 

on all the tweets vectors present in the recommender unit’s local database. By using k-

mean clustering algorithm, two clusters (k=2) are created as C1 and C2. Each TFIDF 
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value of a tweet is checked against the mean value of both tweet clusters. The tweetID of 

TFIDF value is assigned to the cluster whose cluster mean distance is less than the other 

cluster mean. The method is divided into two steps, which are, assignment, and update 

steps. In the first step, random mean values in two clusters are defined and used as the 

centriod for calculation by using the following formula: 

𝐶𝑖
(𝑡)

= {𝑥𝑝: || 𝑥𝑝 − 𝑚𝑖
(𝑡)

 ||2  ≤  || 𝑥𝑝 − 𝑚𝑗
(𝑡) ||2 ∀𝑗 , 1 ≤ 𝑗 ≤ 𝑘} 

Where 𝑥𝑝 is assigned in one or more than one 𝐶(𝑡) clusters. 

 

In the next step, which is the update step, mean is again calculated and set as the new 

centriod, by using the following formula:  

= 𝑚𝑖
(𝑡+1)

= 
1

|𝐶𝑖
(𝑡)|

 ∑ 𝑥𝑗

𝑥𝑗 ∈ 𝐶𝑖
(𝑡)

 

The time complexity of k-mean (Lloyd’s algorithm) is given by )(nkdiO , where n is the 

number of d-dimensional vectors, k is the number of clusters and i is the number of 

iterations needed. In this thesis, the number of dimensions is already defined for k and d. 

Where k = 2 (clusters) and d = 1 (one TFIDF value for each tweet). Therefore the time 

complexity can be solved exactly in )log( 1 nnO dk

 time, where n is the number of 

tweetIDs to be assigned. The following Algorithm 5 is used by the recommender unit to 

perform clustering when the request from user is received. K-mean clustering algorithm is 

a stochastic in nature, therefore, each clustering result varies depending on initialization 

of centriod (which is pseudo random). 
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Algorithm 5 Pseudo-Code for Distributed Algorithm (Finding similar user interest using k-mean) 

 

1. procedure clusters(tweettfidfVector) 

2. Declare: 

3.   tweettfidfVector ← {tweetID, tfidfvalue} 

4.   N = Total number of tweet vectors in tweettfidfVector 

5.   k = 2,   // k is the number of clusters to create similar interest user list 

6.  C1 = {} and C2 = {} // C1 and C2 are two lists that represent cluster 1 and cluster 2. 

// calculate random r1 and r2 that represent the centre of two clusters K1, K2. 

// r1 and r2 are in the range of 0 to maximum value in tweettfidfVector(tfidfvalue) 

 

7. maxtfidf ← MAX(tweettfidfVector(tfidfvalue)) 

8. r1 = RANDOM(0: maxtfidf ) 

9. r2 = RANDOM(0: maxtfidf) 

 

10. while ( mean(C1) & mean(C2) ) 

// calculate distance between all tweettfidf and r1 and r2 for each cluster 

11.  for i = 1 to N  // all vectors in tweettfidfVector 

// Calculate distance d1 b/w each tfidf(i) and cluster mean r1. 

// Calculate distance b/w each tfidf(i) and cluster mean r2. 

12.     d1 = Distance ( tweetVector (i,2), r1 )  

13.   d2 = Distance ( tweetVector (i,2), r2 )  

14.    if d1 >= d2  

15.     ADD in cluster C1 ( tweettfidfVector(i,:) ) 

16.    else  

17.     ADD in cluster C2 ( tweettfidfVector(i,:) ) 

 

18.   Recalculate the new cluster's centre r1 and r2 by using formula. 

19.    )2:()/1(
1

jKlr
ml

j

mmm 


    where ml is the number of tweets in mth cluster 

20.   if (mean value of cluster is unchanged then exists while loop) 

21.  end 

22. end 

23. result = {C1, C2} 

24. // sort the interest list using merge sort 

 

 

Time Complexity (worst case) for Algorithm 5 is 

= 𝑂(𝑁2 log𝑁) +  𝑂(𝑊) 

 

 

3.3.  Organizing Unit 

Third unit is Organizing Unit (OU). This unit is responsible to receive request generated 

by user and sent the request to all recommender units. This unit does not have any data 

processing overheads.  
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Time complexity is calculated to show the relation between running time and number of 

tweets for each unit. By increasing the number of tweets and showing the time complexity 

of above discussed units the relation between time complexity and number of tweets is 

analysed. The effects of number of users on time complexity is not included and 

assumption is that the users are distributed evenly based on total number of their tweets 

on each server. From Figure 3.1 to Figure 3.5 shows the time complexity of five 

algorithms that are used to show the increase in the number of tweets in the above 

discussed units and their performance improvement when running them in parallel by 

multiple servers. It can be seen all the algorithms that have higher time complexities 

benefits more from having more processing units (i.e. running them in a distributed 

environment). However, there is a limit for that which is determined by additional time of 

message passing which is described in Section 3.6 and is measured in the experiments of 

Chapter 5, Section 5.4.3 and Section 5.5.3. For example, the recommender unit benefits a 

lot from the multi-processing of its units because all the consisting four units have the 

algorithms with running times approximated as 𝑂(𝑁2) and in Figure 3.2 to Figure 3.4 

also shows that when using them with two servers their running times are significantly 

reduced (around 75%). Text processing unit also benefits from multiple processing, for 

example 40% reduction in running time with two servers and so forth. 
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Figure 3.1: Shows the time complexity of the text 

processing algorithm. 

 

 
Figure 3.2: Shows the time complexity of the term 

frequency algorithm. 

 

  

 
Figure 3.3: Shows the time complexity of the 

TFIDF algorithm. 

 

 
Figure 3.4: Shows the time complexity of the 

cosine similarity algorithm. 

 

  

 
Figure 3.5: Shows the time complexity of the K-mean clustering algorithm. 

 

The important observation is for the units with the algorithms of O(N2) the running time 

has non-linear relation to the increase in the number of the tweets (i.e. Figure 3.2 to 

Figure 3.5) which means they are non-scalable. Whereas, when using the same units with 
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two servers this relation became linear relation for upto 50,000 tweets. Based on this 

observation, we define scalability factor as the following: For the units of recommender 

systems with O(N2) running time complexity, using two servers (i.e. running two units in 

parallel) make them scalable for upto 50,000 tweets. Of course it is just a theoretical 

result with no consideration of length of tweets, effects of message passing, disk storage 

latency, and other delays of organizing all components of recommender system.  

 

In the next section, we provide a computational model to be used in different scenarios, 

but before that we need to discuss distributed storage of the database and data 

distribution.  

 

3.4.  Distributed Storage and Data Distribution 

So far, the theoretical improvements of the parallel running of the units which are in 

proposed recommender distributed systems have been discussed. Another feature of the 

distributed recommender system proposed in this thesis is the use of a distributed 

database for the storage of tweets that are processed by parallel units. For example, each 

recommender unit uses its local database for providing recommendations; therefore, the 

storage of user tweets is distributed across distributed databases. In the distributed 

database (disk storage), the performance of the distributed recommender system depends 

on disk latency.  

 

Let m be the number of recommender units used in the distributed system, U be the 

number of users and N be the tweets of the user which are given as input to the system. 
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The tweets that need to be distributed belong to different users, so we divide the tweets 

based on users. This way, all tweets from each user will be stored in one recommender 

unit's local database. To do this, users are assigned to a specific recommender unit and 

local database. Moreover, data distribution (or load balancing) of tweets makes it possible 

for the distributed local databases have approximately equal number of tweets, this 

process of data distribution is done by initializer agent. Data distribution in the distributed 

recommender system is done by dividing the total number of processed tweets by m. 

Thus, we should get a reduction in disk seek time in the amount of total seek time in 

central version divided by m. This calculation will be done in all three phases of the data 

process.  

 

In Phase 1, each user Ui from the list of user U is assigned to one text processing unit (pi). 

Each text processing unit processes all tweets of that user. In Phase 2, the text processing 

unit is assigned to a specific recommender unit, such that each text processing unit stores 

the clean tweets in a local database connected to a recommender unit. If we assume the 

system knows how many tweets are stored in each server at a time, then it can move all 

the tweets of one user if it exceeds the calculated capacity of the local database of that 

server. Since the system depends on some parameters (e.g., the geographical location of 

each user) at the beginning each user can be assigned to specific server. The idea is to 

divide tweets available in the local databases equally to all recommender units, but 

sometimes it may not be possible to have equal tweets on each server because we want to 

process all tweets of a user by one recommender unit. Also, the tweets of one user should 

not be fragmented in different servers. It is possible some users have more tweets than the 
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others. In this case, some recommender unit may get more than the specific amount of 

tweets, so we may add more recommender units. The main benefit that we expect to get 

from data distribution is to reduce the total disk seek time for processing the tweets in the 

local databases instead of the central database. Although, the load balancing (i.e. data 

distribution) would not be 100%, as the number of tweets from each user may differ from 

the other users. We expect to reduce the total seek times in half for the distributed system 

with two servers compared to the central system. 

 

3.5.  Distributed Recommender Systems 

In this section, we will explain two simple configurations that can be easily made by 

using this framework. These configurations are as follows: 

 

1. By using text processing, term frequency units (i.e. algorithms) referred to as 

similarity-based distributed recommender system (SDRS). 

2. By using text processing, term frequency inverse document frequency units 

referred to as clustering-based distributed recommender system (CDRS). 

 

For simplicity in both models, the number of units is assumed to be one instance (i.e. unit) 

in each server. Thus, m refers to the processing units or servers in both the following 

system architectures: 
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3.5.1. Similarity-based Distributed Recommender System (SDRS) 

In first the distributed recommender system configuration, three different units (i.e. 

algorithms) are used. The following Figure 3.6 shows the distributed recommender 

system architecture with the initial number of the above units on two servers. These initial 

values are used to solve the problem with a theoretical approach in the following section. 

For each unit, common and existing algorithms of text processing, term frequency 

calculation, and cosine similarity are used. 

 

 

Figure 3.6: Distributed recommender system using TF and cosine similarity. 

 

The text processing unit receives the raw tweets and gives output in clean tweet text to the 

recommender unit. There are two functions of the recommender unit. First, this unit is 
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responsible for receiving cleantweets and storing them locally in the database. Second, 

when user request arrives, it calculates term frequency by using Algorithm 2, and find, the 

similar user by using a cosine similarity algorithm (Algorithm 3) as explained previously. 

 

3.5.1.1.  Examining the Effect of Parallel Processing on SDRS 

The time complexity of the distributed recommender system can be calculated by the 

number of text processing units (p) connected to the recommender unit (m). The time 

complexity of processing text is the time required by each text processing unit to 

complete the processing of all user tweets. From the previous section, the time complexity 

of the text processing unit is calculated as 𝑂(𝑁). To determine the time complexity of the 

text processing unit when having p processing units can be calculated by the following 

formula: 

= 𝑂 (
𝑁

𝑝
) 

Where,  

N = Number of tweets 

p = Number of text processing units 

 

By using the above formula, the effects of having multiple text processing units are 

examined and shown in the Figure 3.1. We can observe from the graph, when the number 

of tweets increased, the time increased exponentially when using central processing. 

Using two processing units reduces the time significantly. The following formula shows 

the time complexity by using multiple recommender units (m). 

= 𝑂((
𝑁

𝑚
)
2

) 



51 
 

Where,  

N = Number of tweets received by recommender unit. 

m = Number of recommender units. 

We can observe from the graph when the number of server increases, the time decreases 

approximately in half. The time complexity of the recommender unit for cosine similarity 

(Algorithm 3) is calculated. The following graph shows the time complexity using 

multiple units (m). The complexity of cosine similarity in the worst case is that if the 

number of users (U) is equal to the number of tweets (N) then the time complexity can be 

calculated by 𝑂(𝑁2). Therefore, the time complexity of cosine similarity for one unit can 

be defined by  

= 𝑂 ((
𝑁

𝑚
)
2

) 

Where, 

  N = Number of tweets. 

  m = Number of recommender unit. 

The total time complexity of the distributed recommender system can be calculated by 

using the following formula with the initial number of one text processing for each 

recommender unit. 

  =  𝑂(𝑇𝑒𝑥𝑡 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 + 𝑇𝑒𝑟𝑚 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦) 

  = 𝑂(𝑁 + 𝑁2 + 𝑁2) 

  = 𝑂(𝑁2) 

For m recommender units, the total time complexity can be expressed as  

  = 𝑂 (
N

m
 + 2 (

𝑁

𝑚
)
2

) 
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Where, 

  N = number of tweets. 

  m = number of recommender units. 

Following is the graph for total running time complexity reduction for SDRS as the 

number of processing units (i.e. servers) increased. 

 

Figure 3.7: Total time complexity of the similarity-based distributed recommender system (SDRS). 

 

The graph also shows that in theory, parallelization of recommender units contributes 

more by reducing the total running time. Figure 3.7, shows the increase in time 

complexity of central variation has a power law relation with the increase of the number 

of tweets. Figure 3.7 indicates that the time complexity of SDRS is non-linear (i.e. non-

scalable) when using one server and it is linear (i.e. scalable) when using at least two 

servers for upto 50,000 tweets. Figure 3.7 also shows that for the small number of tweets 

(i.e. around 50,000 tweets) using two servers reduces running time almost 75% for SDRS 

configuration. For calculating total benefits of such parallelization, we need to know the 
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cost which means the time of message passing (calculated in the Chapter 3 Section 3.6) in 

SDRS. 

 

3.5.2. Clustering-based Distributed Recommender System (CDRS) 

In the second distributed recommender configuration, we use text processing, TFIDF and 

k-mean clustering units (i.e. algorithms). The Figure 3.8 shows the distributed 

recommender system architecture with the initial number of the above units on two 

servers. For each unit, common and existing algorithms of text processing, TFIDF and k-

mean clustering are used. In this configuration, text processing is similar to the previous 

configuration as explained before. 

 

Figure 3.8: Distributed recommender system using TFIDF and k-mean clustering. 
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Similar to the previous configuration, recommender unit uses two functions, namely 

TFIDF and k-mean clustering. When the user request arrived, the recommender unit 

calculates TFIDF by using Algorithm 3 for all users present in the local database, and 

then to find similar users by using k-mean clustering (Algorithm 5). 

 

3.5.2.1.  Examining the effect of parallel processing on CDRS 

The time complexity of the text processing unit is 𝑂 (
𝑁

𝑝
) as explained in first 

configuration. Where, N is the number of tweets and p is the number of text processing 

units. The time complexity of the recommender unit of TFIDF function is calculated as  

= 𝑂((
𝑁

𝑚
)
2

) 

Where,  

N = Number of tweets received by recommender unit. 

m = Number of recommender unit. 

 

The time complexity of k-mean algorithm for one server can be defined by  

= 𝑂 ((
𝑁

𝑚
)
2

log (
𝑁

𝑚
)) 

Where, 

 N = Number of tweets vector to cluster. 

 m = Number of Recommender unit. 

The total time complexity of the distributed recommender system can be calculated by 

using the following formula: 

   =  𝑂(𝑇𝑒𝑥𝑡 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 + 𝑇𝐹𝐼𝐷𝐹 + 𝑘 𝑚𝑒𝑎𝑛) 
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   = 𝑂 (
N

p
+ (

N

m
)
2

+ (
N

m
)
2

log (
N

m
)) 

Where, 

 N = number of tweets. 

 p = number of text processing units. 

 m = number of recommender units. 

Figure 3.9 shows the power law relation between increase in time complexity and number 

of tweets for the central variation of CDRS configuration. Figure 3.9 shows that by using 

two servers the relation between time complexity of CDRS and the number of tweets 

become linear and scalable. Figure 5.39 also shows that for a small number of tweets (i.e. 

around 50,000 tweets) for making the system scalable the total time complexity reduction 

by using two servers is approximately 77% for CDRS which is more than the reduction 

gained by two servers in SDRS. Thus, we require more reduction in time complexity of 

CDRS in comparison to SDRS to make the system scalable. However, using scalability 

factor of two servers still it is working for CDRS. 

 

Figure 3.9: Total Time Complexity of the clustering-based distributed recommender system (CDRS). 
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In Chapter 5, we examine these results with simulation of the system prototype 

implemented by using multi-agent system. 

 

3.6.  Message Passing in Distributed Recommender System 

To calculate a general message passing in such system, this can be formally represented 

as follows. Suppose we want to find, what is the worst case scenario for message passing, 

which can be calculated by assuming that after each tweet, a user requests for 

recommendations. It means that the system should transfer N messages to (𝑚 − 1) 

processing units on each server, considering m is the number of servers present in the 

distributed environment. So the cost is the number of message passing when a user asks a 

question after each tweet (worst case) is  

= (𝑚 − 1) ∗ ∑𝑖   

𝑁

𝑖=1

 

= (𝑚 − 1)  ∗
𝑁(𝑁 + 1)

2
 

 

It means that the time of message passing is proportional to N in the power of 2 times m. 

The graph of the message passing is shown in the following figure: 
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Figure 3.10: Shows the time complexity of message passing. 

 

It can be observed from the Figure 3.10 that the total cost of the system will increase by 

adding the number of servers (m). Please note that message passing time has the opposite 

trend compare to total running time, Figure 3.10 shows adding more servers increases 

message passing time by adding the number of tweets. It is clear that if the message 

passing time increased and becomes more than achieved reduction in running time, then 

having many units running in parallel is not useful.  

 

3.7.  Summary 

In this chapter, the time complexities of algorithms of a typical recommender system are 

analysed. Then, the relation between running time and number of tweets are shown by 

time complexity. Arguably, the most important challenge that modern recommender 

systems face is the high volume of online data that they are dealing with. In this chapter, 
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we found that using at least two servers (i.e. the scalability factor of two) will scale the 

common recommender systems by improving the time complexity of typical units 

involved in them. The core of our approach is to reduce the running time of the 

algorithms by running them in parallel. We further showed that how the reduced 

processing time can be used to find scalability factor for each recommender system. We 

found that by using at least two servers we can make two variations of common 

recommender systems to be scalable for upto 50,000 tweets. By running recommender 

units in parallel, we expect that the running time of the proposed distributed systems to be 

reduced by the 75% when using at least two servers in comparison to one server. In the 

next chapters, we examine the theoretical result that was found here with multi-agent 

based simulation of discussed recommender systems. 
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Chapter 4   

Multi-Agent based Framework, Specification and 

Implementation 

 

Agent based development is one of the recent approaches in software engineering for 

development of complex applications. Agent based development is similar to object based 

development, but it is more suitable for distributed and complex applications. The 

environment for which the proposed distributed recommender system is developed is a 

complex environment. Agents are also very useful tools to simulate complex 

environments such as social networking. In this thesis, a group of the agents is developed 

as a prototype of the proposed distributed system that can be turned into a real system in 

the future and some other agents are developed to simulate a user (called user agent) 

which communicates with other agents on behalf of a Twitter user. Therefore, the whole 

developed agents system is referred to as multi-agent based framework in this thesis. For 

now, the user agent is very simple and just relays user’s tweets. In the future, it can be 

very complicated by analysing the user’s interests and providing suggestions for its users 

based on the recommendations it receives from recommender agents. The user agents 

communicate with the distributed recommender system and can be located in different 

geographical locations.  
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This chapter presents the design issues of a multi-agent based framework that can process 

the huge amount of social data of Web 2.0 sites in an online manner. This framework 

consists of multi-agent systems, making three different applications (they are referred to 

as modules in the rest of this chapter) which are: Data crawler, Twitter simulator, and 

distributed recommender system. All of these applications have been developed to be able 

to test proposed distributed recommender system. The main focus of this chapter is to 

build multi-agent recommender system that consists of developing agents to do the tasks 

of the algorithms explained in Chapter 3. These tasks are, text processing, tweet analysis 

using Term Frequency, providing recommendations by using cosine similarity algorithms 

and etc.  

 

Figure 4.1: Shows MAS based Distributed Recommender System. 
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4.1.  Structure of the Proposed Multi-Agent based Framework 

The proposed multi-agent based framework consists of the following modules, as shown 

in Figure 4.2.  

 

1. Data Crawler Module. 

2. Twitter Simulation Module. 

3. Distributed Recommender System Module. 

 

 

Figure 4.2: Multi-Agent based proposed framework. 

 

1. Data Crawler Module: This module is based on a multi-agent system which is 

used to extract tweets from the Twitter web site and store them in “usertweet” 

database, more details about how this module work is presented in Section 4.1.1. 

 

2. Twitter Simulation Module: This module is a multi-agent system that utilizes 

tweet text, date time stamp, tweet ID, and user ID, which are stored in “usertweet” 
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database to simulate the Twitter environment. Later, this environment is used to 

test our proposed distributed recommender system. The description of this module 

is in Section 4.1.2. 

 

3. Distributed Recommender System Module: Distributed recommender system 

module, is also based on a multi-agent system. This is a core module of the 

proposed framework. The task of this module is to recommend a user with similar 

users based on their interest. The detail of this module is presented in Section 

4.1.3. 

 

4.1.1. Data Crawler Module  

Data crawler module reads the input from a text file called “userdatadownload”. This file 

contains a set of Twitter users IDs along with a number of friends’ and followers’ tweets 

to be downloaded. Data crawler uses these inputs in order to extract tweets along with 

their attributes from the Twitter website. The outputs of this module are the tweets of the 

user, user’s friends, and user’s followers. The list of Twitter user IDs is used to create 

data crawler agent. Each agent is responsible for downloading tweets of its Twitter user 

from the Twitter website. These agents work in distributed environment, so it is possible 

to download tweets in parallel. The downloaded tweets are then stored in “usertweet” 

database. In the crawler module, the following processes are performed: 
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Figure 4.3: Multi-Agent based Twitter Data Crawler. 

 

1. Authentication: In order to get the user data from the Twitter website, first we 

need to create the Twitter application development account. This account is used 

to get authentication in the form of bearer token from the Twitter website. To 

authenticate the data crawler agents, a bearer token agent is created. This bearer 

token agent is responsible for getting the bearer token and distribute it to all data 

crawler agents. 
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Figure 4.4: Twitter Data Crawler Module showing user agents and bearer token agent. 

 

2. The token is passed to a set of data crawler agents in a multi-agent environment. A 

data crawler agent is created for each Twitter user ID which is defined in 

“userdatadownload” text file. For example, if we have ten Twitter user IDs in 

“userdatadownload” file, the data crawler tool will create ten data crawler agents. 

The data crawler agent uses a bearer token to download tweets of these users and 

stored them in the “usertweet” database. 

 

4.1.2. Twitter Environment Simulator Module  

This module is used to simulate Twitter users in a multi-agent based environment. The 

input of this module is a text file called “simulateusers”. This text file has a set of Twitter 

user IDs. This list of users IDs are used to create Twitter simulator user agents. Each 
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Twitter simulator user agent reads their tweets from the “usertweet” database. In the 

Twitter simulator environment, the following processes are performed: 

 

 

Figure 4.5: Multi-Agent based Twitter Environment Simulator Module. 

 

1. Read the tweets from the database depending on the following parameters: 

start date, start time, end date and end time. 

 

2. Each tweet is published sequentially based on the date time stamp. Also the 

tweets are timed as per their tweet date time stamp received from the Twitter 

website. 

 

4.1.3. Distributed Recommender System Module  

The distributed recommender system is the module responsible for generating 

recommendations for Twitter user about the other users with similar interests. The input 

to this module is a set of Twitter users’ tweets information published by the Twitter 
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simulator module. The output is a set of the recommendation list for the user. Note that, in 

real Twitter environment tweets will be captured directly from the Twitter website. Each 

element of this set of tweets includes the following attributes: 

 

 User ID: shows the identification of the Twitter user who has published the tweet. 

 Tweet ID: is the number that is the unique identifier for the tweet. 

 Date/Time Stamp: shows the date and time that a tweet has been published. 

 Tweet text: includes the text content of the tweet. It also includes URLs, retweets, 

hashtags etc. 

 

The proposed distributed recommender system architecture in this thesis is based on 

MAS, where each agent is used to simulate node in the distributed environment. The node 

in the distributed environment can be a Twitter user agent, recommender agent and 

organizing agent. To evaluate this platform we use the Twitter website for real text data 

from actual users. In a real environment, server machines have a lot of resources as they 

are designed to handle many incoming client requests. The request from the light weight 

Twitter user agent is redirected to the recommender agent by the organizing agent for the 

recommendations. This organizing agent sends the user agent request to all available 

recommender agents in the network environment. In return, recommender agent replies to 

it with the response message. This message contains the list of similar users, which is sent 

to the requesting user agent. There are two types of agents designed in this simulation 

model are as follows. 
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1. Administrative Agents; 

2. Runtime Agents. 

 

4.1.3.1.  Administrative Agents 

This type of agent can communicate with all under laying agents, but only be controlled 

by the system administrator (a person). The administrator provides test scenarios for the 

agents in a simulation environment and logs all the information processed by other 

agents. This agent is called initializer agent. Initialzer Agent is an administrative agent, 

which is responsible for deploying and initialling the complete test scenario. The runtime 

environment consists of user agents, recommender agents, and the organizing agent. The 

user of the simulator can only interact with the initializer agent. The initializer agent uses 

property file, and reads all the start-up and configuration information. This includes 

connection information related to the user agents to all agents in the environment. Each 

agent is initialized with a separate handler. For instance, the recommender agent will be 

created and initialized by the recommender agent handler. 

 

4.1.3.2.  Runtime Agents 

These agents participate in the simulation environment by processing data from different 

agents. They implement the behaviour and functionality of each text based algorithm in 

the distributed environment. They are able to communicate with other agents; however, 

there is a provision that the administrative agent could also directly communicate with the 

runtime agents. To evaluate the simulation tool, three types of runtime agents are 

designed, which are as follows: 
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1. Text processing agent.  

2. Recommender agent. 

3. Organizing agent. 

 

The complete configuration of the distributed simulation network is defined in a property 

file that is uploaded during the system start-up process. This start-up process is initiated 

by the initialize agent. Once a property file is uploaded, the complete runtime 

environment is created in the multi-agent based environment. Runtime agents’ behaviors 

are based on the text processing and message passing algorithms. These algorithms are 

initialized by an administrative agent. After the initialization process is complete, agents 

can use these algorithms’ behavior as they are needed. 

 

 

4.1.3.2.1. Text Processing Agent 

The text processing agents are responsible for receiving the tweets published from the 

user or tweeting agent in the Twitter simulator module. After capturing the tweet, the text 

processing agent performs text processing based on the criteria which are detailed in 

Chapter 3 Section 3.1. Once the tweet is cleaned and passes selection criteria of the 

tweets, it will be sent for further processing.  

 

4.1.3.2.2.  Recommender Agent 

The recommender agent is responsible for performing two types of functions. These 

functions are implemented as behaviours of the agent. The first behaviour of this agent is 

the receiving of the cleantweets and storing them in a local database. The second 
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behaviour is the generation of a recommendations list for requesting users. This behavior 

is used when a request is initiated by a user agent for finding the similar users. This 

behaviour has four different functions that can be selected during initialization.  

 

1. Term frequency weighting function. 

2. Term frequency inverse document frequency weighting function. 

3. Cosine Similarity recommendation function. 

4. K-mean Clustering recommendation function. 

 

These functions are implemented as a separate behaviours and the user has the option to 

select any combination of these functions. In this thesis, we selected term frequency with 

cosine similarity as the first configuration, and TFIDF with k-mean clustering for second 

configuration. These configurations are used in the experiments, detailed in the next 

chapter. 

 

4.1.3.2.3. Organizing Agent 

The organizing agent is a runtime agent and is also created by the start-up process. The 

responsibility of this agent is to receive request generated by user agents and send the 

request to all recommender agents. This process is called the recommendation process, 

which is explained in the next section. 
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4.2.  Message Passing in Distributed Recommender System 

In order to generate recommendation list of similar user the following processes are 

performed: 

 

1. User agent sent a request for recommendation of similar user to organizing agent.  

 

2. The organizing agent uses the sender ID information to find out which user has 

requested for the recommendation. The user name (sender ID) is then broadcast to 

all recommender agents. The goal of this broadcast is to request all recommender 

agents for the recommendation list.  

 

3. Each recommender agent checks whether the requesting user is present in its local 

user database. Only one recommender agent will have a requesting user connected 

to it. The first step is if recommender agent found requesting user in its local 

database, then recommender agent will obtain the requesting user tweets vector 

(tw), which is then sent to other recommender agents. The second step is to find 

the interest list for the requesting user from its own server by using cosine 

similarity or k-mean clustering algorithm (depending on the initial configuration). 

The interest list of users is generated, this list has two columns: first column is for 

user name and second column includes the interest percentage. This list is then 

sent to the organizing agent. 
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4. The recommender agent who does not have the requesting user in its local 

database will not respond to the broadcast of the organizing agent as in step 2. It 

will only respond to the message which is sent from recommender agent who has 

requested user connected. This message contains tweet vectors of the requesting 

user. When other recommender agent receives the tweet vectors, they will store 

them temporarily in the recommender agent (servers) memory for one time 

processing. The received tweets will not be stored permanently on recommender 

agent (server) database. Once all tweet vectors of the requesting user are received, 

the similarity or clustering algorithm (explained in previous Chapter 3) are applied 

and recommendation list is generated. 

 

5. Next, recommender agent will prepare the recommendation list with the first 

column for the user name and interest percentage in the second column and send 

the recommendation list to the organizing agent. 

 

6. The organizing agent receives the interest list from all recommender agents. The 

lists from all RAs are combined and send to the requesting user agent. 

 

4.3.  Agent Development Environment 

The multi-agent based distributed recommender system is implemented by using Java 

Agent Development framework (JADE). It is a software framework written in Java 

language and is use for development of intelligent agent. This framework was developed 

by Telecom Italia and can be downloaded freely under GNU Lesser General Public 

License (LGPL). The JADE frame uses the Foundation for Intelligent Physical Agent – 
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Asynchronous Communication Language (FIPA-ACL). FIPA-ACL is used for 

coordination and communication between the agents [96]. JADE uses a container to host 

agents in distributed agent platform. The platform provide different tools for debugging, 

agent mobility and execution of different agents in parallel [58]. 

 

4.4.  Verification and Validation 

The verification and validation of the multi-agent based distributed recommender system 

was done by two methods, which is previously presented in [5]. The first method is done, 

by validating the complete results of the simulation. The second method is the verification 

of the behaviour of each agent by checking the message sent to other agents (information 

flow). The validation of the MAS simulator was done by comparing its results to the 

central recommender system based simulator using the same selected scenario. For that 

reason, the same algorithms are used by the proposed multi-agent based simulator [3] and 

[4]. This is the extension of the previous work [3], a simulator application written in java 

language.  

 

For the verification of the multi-agent system, we investigated the information flow of 

message passing from each agent to a recommender unit. Java agent development 

framework’s test feature is used, which is compliant with the Foundation for Intelligent 

Physical Agent standards. The proposed simulator used the same compliance for 

interaction between the agents as detailed in [58]. For the verification of the information 

flow (message passing), the JADE Sniffer Agent was used. Sniffer agent, when activated 

in the MAS platform, can track all messages sent and received by any agent in the MAS 
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environment. This agent can sniff or track a single agent or a group of agents. Messages 

exchanged in the agent platform can be recorded and viewed using the sniffer agent 

window [58, 96]. We verified each agent that sends information to the next agent by using 

the sniffer agent. This verification approach is similar to the verification approach of 

Virtual Overlay Multi-Agent System (VOMAS) used in [97]. The verification is also 

done manually by comparing all the message passing used in the simulation with the 

results of the sniffer agent which detailed the complete flow of information (message) 

between the agents. 

 

4.5.  Summary 

In this chapter, we develop the multi-agent framework to be used for prototyping the 

recommender system for various simulation scenarios. The implementation is done in 

three modules. In the first, the data (tweets) is downloaded from selected users from the 

Twitter website. This is accomplished by implementing a multi-agent based data crawler 

module. In the second module, a multi-agent based Twitter Simulator module is 

developed that can mimic the Twitter environment. This Twitter simulator uses tweets 

from database (downloaded by data crawler module) and simulating users publishing the 

tweets. In the third module, a multi-agent based distributed recommender system is 

developed. This distributed recommender system is capable of using different agents, 

including text processing agents and recommender agents based on algorithms and 

models discussed in Chapter 3. In the next chapter, two configurations of distributed 

recommender system will be used in multi-agent based simulation to examine the 



74 
 

theoretical results found in Chapter 3 about scalability factors and running time 

reductions. 
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Chapter 5   

Simulation and Experimental Results 

 

The intent of this chapter is to evaluate the efficiency of the proposed distributed 

recommender system by conducting simulation and comparing it against a central 

recommender system or one server recommender system. Also, we will show results 

obtained from the simulation of four different types of experiments on each dataset. A 

total of four experiments are performed on each dataset by using the central recommender 

system, two server recommender system, four server recommender system and eight 

server recommender system. In total five different algorithms are implemented and 

simulated in the experiments. 

 

As explained in Chapter 3, main modules that have been implemented to develop the 

framework are data crawler module, Twitter environment simulator module, and 

distributed recommender system module. The data collection is done by using MAS 

based data crawler module that is explained in Chapter 4.1. There are five seed Twitter 

users that are used for data collection and to construct the Twitter social network graph. 

The data set for each seed user is collected in the interval of every 15 days for six months. 

The last data set is used for evaluating the recommended results. 
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The second module is the MAS based Twitter environment simulator module, this module 

uses the data sets collected by the data crawler module. Twitter environment simulator 

module as explained in Chapter 4.2, is a multi-agent based system. Each Twitter user has 

its own agent in a multi-agent environment which simulated as a tweet text generator.  

 

5.1.  Datasets 

To evaluate the proposed framework we need to build the Twitter social network graph, 

which is available on the Twitter website. Data crawler module builds the local repository 

for each user by downloading the following data: 

 

 User Profile (user name, location, number of follower, number of followee, etc.) 

1. Tweets and retweets of user. 

2. List of Followers of user. 

3. List of Followees of user. 

4. Tweets and retweets of user's followers. 

5. Tweets and retweets of user’s followees. 

Information which was downloaded for each tweets and retweets of any user includes the 

userID, tweetID, date and time tweet is published and tweet text. Following are the total 

data (tweets and user) downloaded by using the data crawler module. 

Table 5.1: Shows the user graph information downloaded by using data crawler. 

Attributes Total 

Users 6095 

Tweets 931031 

Followers 12898 

Followees 1961 

Restricted Users 293 
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The five different datasets are downloaded. The datasets are collected in different time 

frame. The main reason to use 5 different datasets is that each dataset shows users 

following specific twitter user therefore capturing different types of tweets from different 

set of users. The network graph is created for all users based on specific user followed by 

them. For example the data of all users who followed Ryerson user in a specific time 

frame captured in dataset 4. Tweets text, tweetIDs, etc. are collected for all the followers 

of the user for specific date, so that comparison can be done in the recommendation 

process. The recommendation process uses all the tweets one day before the real date 

when the users start following the main user. The following table shows five datasets used 

in the experiments for two different sets of the distributed recommender system. 

Table 5.2: Shows five datasets used in the experiments. 

Data 

Set 

Total 

Tweets 

Total  

Users 

1 8003 37 

2 9760 35 

3 16009 56 

4 21766 15 

5 25533 41 

 

5.2.  Simulation Platform 

All three proposed modules are implemented using Java programming language in 

Eclipse IDE for Java EE Developers compiler on the Windows 7 platform. System 

configuration used in this work is shown in Table 5.3. All modules are based on multi-

agent system, therefore, we use a development tool known as Java Agent Development 

framework [58, 98]. The data crawler module connects to the Twitter API 1.1, different 

functions are developed to get user content from the Twitter website. Twitter API is freely 
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available for all developers and researchers. There are many functions such as get user 

time line or get followers of user by implementing GET connection. The output of each 

GET function is in a simple JSON (JavaScript Object Notation) format. The JSON output 

is then parsed and stored in the database. We used mySQL Server 5.6 Database, which is 

a lightweight relational database management system and also use mySQL Workbench 

6.3 Community Edition, both are available freely under GPL Licenses. Different tables 

are created in the database named “twdatabase”. Tables which are created are userTweets, 

userFollowers, userFollowees, and userRestricted.  

Table 5.3: System Configuration  

CPU Intel core i5-430M 

Speed 2.26GHz, 3MB L3 Cache 

RAM 4GB DDR3 

Platform Windows 7 

 

The implementation of the Twitter simulator module is also based on JADE. One agent is 

used for each Twitter user. The user agent reads their own tweets from mySQL database 

and is responsible to tweet based on the date time stamp of the tweet. This tweet is then 

published the Twitter simulator environment. 

 

5.3.  Experimental Setup and Scenarios 

In this section, two main simulation scenarios are considered which are as follows: 

 Varying the number of distributed servers to minimize the running time of the 

recommendation process. 

 Maximize the degree of accuracy by performing simulations using different 

configurations of proposed system architecture. 
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For each experiment, dynamic programming is used to find how many users can be 

placed on one server, which depends on the number of servers available in the distributed 

environment. Each server will have almost equal number of tweets to process, but the 

total number of tweets on each server may not be 100% equal, because every user may 

have a different number of tweets. The number of tweets in each dataset is less than 

50,000 so the results can be compared with theoretical results of time complexity 

provided in Chapter 3. 

 

5.4.  Experimental Results for SDRS 

In this section, the first experimental results for each of the consisting algorithms of 

SDRS will be shown and then entire SDRS including all algorithms. 

 

5.4.1. Running Time of each Algorithm used in SDRS 

In this section, we show the results obtained on five datasets for all algorithms used 

namely, text processing, tern frequency, and cosine similarity. We compare the central 

algorithm with 2 servers, 4 servers, and 8 servers distributed systems on the basis of the 

performance metrics stated in Chapter 3. The results which are obtained, validates the 

theoretical proofs provided in Chapter 3. 

 

Following are the experiments, where the number of servers is changed whose range are 

1, 2, 4, and 8, when only one server is used, it is known as a central recommender system, 

while from 2 to 8 (in power of 2) are the distributed recommender systems. When the 

number of server varied, we find that there is a great impact on processing time as 
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mentioned in Chapter 3, which justifies the theoretical foundation of this thesis. The 

results of all five datasets for all server configurations are depicted in the following 

figures: 

 
Figure 5.1: Shows text processing units used in 4 

different server configurations for dataset 1. 

 
Figure 5.2: Shows term frequency processing used 

in 4 different server configurations for dataset 1. 

 
 

 

 
Figure 5.3: Shows cosine similarity units used in 4 

different server configurations for dataset 1. 

 
Figure 5.4: Shows text processing units used in 4 

different server configurations for dataset 2. 

  

 

 
Figure 5.5: Shows term frequency processing used 

in 4 different server configurations for dataset 2. 

 

 
Figure 5.6: Shows cosine similarity units used in 4 

different server configurations for dataset 2. 
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Figure 5.7: Shows text processing units used in 4 

different server configurations for dataset 3. 

 
 

 
Figure 5.8: Shows term frequency processing used 

in 4 different server configurations for dataset 3. 

 

 

 

 

 

 
Figure 5.9: Shows cosine similarity units used in 4 

different server configurations for dataset 3. 

 

 
Figure 5.10: Shows text processing units used in 4 

different server configurations for dataset 4. 

 

 

 

 

 

 
Figure 5.11: Shows term frequency processing used 

in 4 different server configurations for dataset 4. 

 

 
Figure 5.12: Shows cosine similarity units used in 4 

different server configurations for dataset 4. 
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Figure 5.13: Shows text processing units used in 4 

different server configurations for dataset 5. 

 

 
Figure 5.14: Shows term frequency processing used 

in 4 different server configurations for dataset 5. 

 

 

 

 

 
Figure 5.15: Shows cosine similarity units used in 4 different server configurations for dataset 5. 

 

In all of the above experiments, the results show significant reduction in the processing 

time when different number of servers are used in a distributed configuration. The total 

time of text processing decreases as the number of text processing unit increases. 

Therefore, each text processing unit as they are in parallel will work simultaneously and 

the total text processing time decreases. In a similar way, the time of term frequency 

calculation will decrease by the increase in the number of recommender units. This 

performance improvement is from sharing tweets workload to multiple recommender 

units, by reducing the amount of data that each parallel recommender unit process. All 
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Figure 5.1 to Figure 5.15 confirm the theoretical results achieved in Section 3.3 of 

Chapter 3 which shows cosine and term frequency algorithms in central version running 

time tend to show non-linear relation with the increase in the number of tweets. We can 

see by using a minimum of two servers, it results linear relation between running time and 

number of tweets which makes the all algorithms to be scalable. And also when we use 4 

servers instead of 2 servers the performance increases in all datasets. It is interesting to 

note that for small dataset such as dataset 1, when the number of servers increase to 8 

instead of 4 the performance improves only marginally compared to 4 servers scenarios. 

 

5.4.2. Performance Improvement of each Algorithm used in SDRS 

In the experiment for dataset 1, the results shows that the average tweet time is reduced 

for text processing from 0.202 milliseconds on the central to 0.05 milliseconds on the 

distributed recommender system with 8 recommender units, Similarly, the average tweet 

time reduction for term frequency is from the central 1.319 milliseconds to the 8 server 

distributed 0.078 milliseconds and the cosine similarity time reduction from central 0.644 

milliseconds to the 8 server distributed 0.011 milliseconds. The following Table 5.4 and 

Table 5.5 shows the average tweet time for central and distributed respectively for all five 

datasets. 

Table 5.4: Shows the average tweet time (in milliseconds) for TF and cosine similarity for central server by 

using SDRS. 

Data 

Set 

Central (1 Server) 

Text TF Sim 

1 0.202 1.319 0.644 

2 0.220 1.098 0.536 

3 0.208 2.494 1.928 

4 0.269 0.496 0.082 

5 0.248 1.767 0.618 
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Table 5.5: Shows the average tweet time (in milliseconds) for TF and cosine similarity for 2, 4, and 8 

server configurations using SDRS. 

Data 

Set 

2 Servers 4 Servers 8 Servers 

Text TF Sim Text TF Sim Text TF Sim 

1 0.148 0.450 0.127 0.094 0.157 0.029 0.050 0.078 0.011 

2 0.161 0.510 0.122 0.094 0.160 0.040 0.051 0.071 0.009 

3 0.143 0.835 0.332 0.097 0.340 0.107 0.055 0.140 0.016 

4 0.181 0.289 0.019 0.130 0.092 0.007 0.060 0.037 0.003 

5 0.139 0.668 0.129 0.105 0.255 0.040 0.063 0.104 0.012 

 

The Table 5.6 shows the performance improvement calculation for each algorithm by 

using 2, 4, and 8 server configurations for all datasets. In dataset 1, we have gained 

75.25% improvement in the text processing by using the 8 server configuration. The 

performance improvement for term frequency and cosine similarity calculation in dataset 

1 are 94.09% and 98.29% respectively by using the 8 server configuration. 

Table 5.6: Shows the performance improvement of the average tweet (in percentage) for 2, 4, and 8 

recommender server configurations using SDRS. 

Data 

Set 

Performance Improvement (in %) 

2 Servers 4 Servers 8 Servers 

Text TF Sim Text TF Sim Text TF Sim 

1 26.73 65.88 80.28 53.47 88.10 95.50 75.25 94.09 98.29 

2 26.82 53.55 77.24 57.27 85.43 92.54 76.82 93.53 98.32 

3 31.25 66.52 82.78 53.37 86.37 94.45 73.56 94.39 99.17 

4 32.71 41.73 76.83 51.67 81.45 91.46 77.70 92.54 96.34 

5 43.95 62.20 79.13 57.66 85.57 93.53 74.60 94.11 98.06 

 

 

5.4.3. Message Passing Time in SDRS 

This experiment shows the total time for message passing for different configurations of 

servers (i.e. 2, 4, and 8). The message passing time is the total time to send and receive 

messages from one server to other(s). This total time also includes the time required to 
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send a request message from organizing agent. In the Figure 5.16, the message passing 

time is shown for similarity-based distributed recommender system. 

 
Figure 5.16: Shows average user message passing time in similarity-based distributed recommender 

system. 

 

In the above Figure 5.16, it can be seen that the average message passing time for a user 

is negligible. It is only in the range from 0.03 seconds to 0.06 seconds. 

 

5.4.4. Total Running Time of SDRS using Distributed Database 

As explained in Chapter 3, another component of the distributed recommender system is 

that it reduces disk seek time when using distributed databases. To calculate such 

reduction we have performed experiments for the proposed distributed recommender 

system by using distributed database (disk storage). 

 

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 = 𝑇𝑖𝑚𝑒 (𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠) + 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑃𝑎𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 + 𝐷𝑖𝑠𝑘 𝐼𝑂 

 

The following Table 5.7 shows the total running time (in seconds) when distributed 

database is used for data processing. It can be seen from Table 5.7 below for dataset 1, 
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when using the central recommender system, the total running time is 41.18 seconds 

which is reduced to 9.21 seconds by using 8 recommender units. Total time for all 

datasets using SDRS are shown in Figure 5.17 to Figure 5.21. These figures show that in 

all datasets (except for dataset 5) the central configuration is scalable. The reason for the 

non-linear behaviour of dataset 5 is because the last dataset has more number of tweets 

therefore, running time of SDRS contributes more than disk IO in total SDRS time. In the 

other datasets improvement of using two servers reduces running time, but does not 

change linearity because with a low number of tweets the disk IO is dominating factor 

that has a linear relation with the increase in the number of tweets. 

 

Table 5.7: Total time (in second) for central, 2, 4, and 8 server configurations for SDRS using distributed 

database. 

Data 

Set 

Total  

Tweets 

Total 

Users 

Total Time for SDRS 

(in sec) 

1 Server 2 Server 4 Server 8 Server 

1 8003 37 41.18 26.08 14.03 9.21 

2 9760 35 48.41 33.82 17.53 10.68 

3 16009 56 121.63 59.07 29.33 16.91 

4 21766 15 90.82 70.84 38.85 21.96 

5 25533 41 148.40 89.74 45.27 26.68 

 

 

 
Figure 5.17: Shows Total time for SDRS in 4 

different server configurations for dataset 1. 

 
Figure 5.18: Shows Total time for SDRS in 4 

different server configurations for dataset 2. 

  



87 
 

 
 

 
Figure 5.19: Shows Total time for SDRS in 4 

different server configurations for dataset 3. 

 
 

 
Figure 5.20: Shows Total time for SDRS in 4 

different server configurations for dataset 4. 

 
 

 

 
Figure 5.21: Shows Total time for SDRS in 4 different server configurations for dataset 5. 

 

The Table 5.8 shows that when using eight servers the reduction of running time for 

SDRS is in the range of 75.82% to 86.1%. The results of performance improvement by 

using 2, 4, and 8 server configurations are shown in the Figure 5.22. 

Table 5.8: Shows performance improvement (in %) for 2, 4, and 8 server configurations for SDRS using a 

disk-based distributed database. 

Data 

Set 

Performance Improvement for SDRS (in %) 

2 Server 4 Server 8 Server 

1 36.67 65.93 77.63 

2 30.15 63.79 77.93 

3 51.44 75.89 86.10 

4 22.00 57.22 75.82 

5 39.53 69.50 82.02 
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Figure 5.22: Shows the performance improvement (in %) for all five datasets using a disk-based distributed 

database for SDRS. 

 

5.5.  Experimental Results for CDRS 

5.5.1. Running Time of each Algorithm used in CDRS 

In this section, we will show the results obtained on five datasets for all algorithms used 

namely, text processing, term frequency inverse document frequency and k-mean 

clustering algorithm. We compare the central, 2 servers, 4 servers and 8 servers 

distributed system on the basis of the performance metrics stated in Chapter 3. The results 

which are obtained, validates the theoretical concepts provided in Section 3.3 clearly 

shows the central variation in k-mean running time for all dataset is non-linear whereas 

using two servers it is linear and scalable. 
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Figure 5.23: Shows TFIDF processing used in 4 

different server configurations for dataset 1. 

 
Figure 5.24: Shows k-mean clustering units used in 

4 different server configurations for dataset 1. 

 

 

 

 

 
Figure 5.25: Shows TFIDF processing used in 4 

different server configurations for dataset 2. 

 
Figure 5.26: Shows k-mean clustering units used in 

4 different server configurations for dataset 2. 

  

 

 

 
Figure 5.27: Shows TFIDF processing used in 4 

different server configurations for dataset 3. 

 

 

 
Figure 5.28: Shows k-mean clustering units used in 

4 different server configurations for dataset 3. 
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Figure 5.29: Shows TFIDF processing used in 4 

different server configurations for dataset 4. 

 
 
 

 
Figure 5.30: Shows k-mean clustering units used in 

4 different server configurations for dataset 4. 

 

 

 

 
Figure 5.31: Shows TFIDF processing used in 4 

different server configurations for dataset 5. 

 
Figure 5.32: Shows k-mean clustering units used in 

4 different server configurations for dataset 5. 

 

In all above experiments, the result shows significant reduction in processing time when 

distributed configuration of server is used. In a similar way as explained above, the time 

of TFIDF calculation is decreases with the increase in the number of recommender units. 

 

5.5.2. Performance Improvement of each Algorithm used in CDRS 

In the experiment for dataset 1, the results show that the average tweet time is reduced for 

TFIDF processing from 2.074 milliseconds on the central to 0.116 milliseconds on the 

distributed recommender system with 8 recommender units. Similarly, the average tweet 



91 
 

time reduction for k-mean clustering is from central 10.436 milliseconds to 0.058 

milliseconds using 8 servers. The following Table 5.9 shows the average tweet time for 

the central recommender system and Table 5.10 shows the average tweet time for 2, 4, 

and 8 servers distributed recommender system for all five datasets. 

 

Table 5.9: Shows the average tweet time (in milliseconds) for TFIDF and k-mean clustering for central 

server using CDRS. 

Data 

Set 

Central (1 Server) 

TFIDF K-mean 

1 2.074 10.436 

2 1.707 16.751 

3 2.684 53.205 

4 0.571 19.980 

5 2.193 70.893 
 

Table 5.10: Shows the average tweet time (in milliseconds) for TFIDF and k-mean clustering for 2, 4, and 

8 server configurations using CDRS. 

Data 

Set 

2 Servers 4 Servers 8 Servers 

TFIDF K-mean TFIDF K-mean TFIDF K-mean 

1 0.865 1.612 0.218 0.278 0.116 0.058 

2 0.766 1.875 0.228 0.330 0.053 0.028 

3 1.260 5.208 0.426 0.855 0.119 0.153 

4 0.221 2.096 0.144 0.353 0.047 0.047 

5 0.880 10.642 0.302 1.343 0.154 0.265 

 

The Table 5.11 shows the performance improvement for 2, 4, and 8 server configurations. 

We have able to achieve the improvement of 96.90% for TFIDF by using the 8 server 

configuration (in dataset 2). The performance improvement for clustering (k-mean) 

calculation is 99.83% by using 8 servers distributed recommender system (in dataset 2). 
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Table 5.11: Shows the performance improvement for average tweet (in percentage) for 2, 4, and 8 

recommender server configurations using CDRS. 

Data 

Set 

Performance Improvement (in %) 

2 Servers 4 Servers 8 Servers 

TFIDF K-mean TFIDF K-mean TFIDF K-mean 

1 58.29 84.55 89.49 97.34 94.41 99.44 

2 55.13 88.81 86.64 98.03 96.90 99.83 

3 53.06 90.21 84.13 98.39 95.57 99.71 

4 61.30 89.51 74.78 98.23 91.77 99.76 

5 59.87 84.99 86.23 98.11 92.98 99.63 

 

5.5.3. Message Passing Time in CDRS 

This experiment shows the total time for message passing for different configurations of 

servers (i.e. 2, 4, and 8) using CDRS. In the Figure 5.33, the message passing time is 

shown for clustering-based distributed recommender systems using all five datasets. In 

the Figure 5.33, it can be seen that the message passing time for a user is low. It is only in 

the range from 0.05 seconds to 0.18 seconds. 

 

 
Figure 5.33: Shows average user message passing time in cluster-based distributed recommender system. 
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5.5.4. Total Running Time of CDRS using Distributed Database 

We have performed the experiment using distributed database for CDRS. The following 

Table 5.12 shows the total time when distributed database is used. When using two 

servers the reduction of total running time for CDRS is 40.99 seconds while the central 

recommender system is 125.6 seconds, which confirms the theoretical results shown in 

Chapter 3. Total time for all datasets using CDRS are shown in Figure 5.34 to Figure 

5.38. 

 

Table 5.12: Shows the total time (in second) for central, 2, 4, and 8 server configurations for CDRS. 

Data 

Set 

Total  

Tweets 

Total 

Users 

Total Time for CDRS 

(in sec) 

1 Server 2 Server 4 Server 8 Server 

1 8003 37 125.60 40.99 15.56 8.79 

2 9760 35 212.61 52.66 19.90 9.33 

3 16009 56 945.55 143.34 41.84 17.07 

4 21766 15 525.55 114.44 47.29 22.71 

5 25533 41 1953.61 363.02 78.69 32.22 

 

 

 
Figure 5.34: Shows Total time for CDRS in 4 

different server configurations for dataset 1. 

 
Figure 5.35: Shows Total time for CDRS in 4 

different server configurations for dataset 2. 
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Figure 5.36: Shows Total time for CDRS in 4 

different server configurations for dataset 3. 

 

 
Figure 5.37: Shows Total time for CDRS in 4 

different server configurations for dataset 4. 

 

 
Figure 5.38: Shows Total time for CDRS in 4 different server configurations for dataset 5. 

 

Table 5.13 shows that, when using two servers the reduction of total time for CDRS is in 

the range of 67.37% to 84.84%. The results of performance improvement by using 2, 4, 

and 8 server configurations are also shown in the Figure 5.39. With regards to scalability 

using at least two servers makes the system to have a non-linear relation between run time 

and number of tweets which confirms the theoretical results (time complexity) of CDRS 

in Section 3.5.2.1. It is interesting to note that in spite of SDRS in CDRS disk IO is not 

the dominating factor and non-scalable behaviour in the central recommendation system 

and the change it to linear relation by using two servers for such low data is shown. We 

expect for larger datasets the effectiveness of distributed solution will be obvious for all 

configurations of similarity or clustering based recommender systems. 
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Table 5.13: Shows performance improvement (in %) for 2, 4, and 8 server configurations for CDRS using a 

disk-based distributed database. 

Data 

Set 

Performance Improvement for CDRS (in %) 

2 server 4 server 8 server 

1 67.37 87.61 93.00 

2 75.23 90.64 95.61 

3 84.84 95.57 98.19 

4 78.23 91.00 95.68 

5 81.42 95.97 98.35 
 

 

 
Figure 5.39: Shows the performance improvement (in %) for all five datasets using a disk-based distributed 

database for CDRS. 

 

5.6.  Evaluation of Distributed Recommender System 

In this section, we look at the accuracy of recommender systems because our solution for 

efficiency will be useful when it does not change the accuracy of recommender systems. 

In this section, a common evaluation method of the mean absolute error for recommender 

systems is used for evaluating the accuracy of the proposed distributed recommender 

system. The mean absolute error method (MAE) is used in evaluating the accuracy of 

recommender systems by finding the prediction accuracy of the recommendations. MAE 

is calculated using the average absolute deviation of the predicted values from the actual 

values. If MAE value is small, then this means less error and the system is more accurate. 
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The MAE is an average of the absolute errors | 𝑒𝑖|, this can be calculated by the following 

formula: 

𝑀𝐴𝐸 = 
1

𝑛
∑|𝑅𝑖 − 𝐴𝑖|

𝑛

𝑖=1

 

𝑀𝐴𝐸 = 
1

𝑛
∑|𝑒𝑖|

𝑛

𝑖=1

 

Where,      R = Recommended value. 

                  A = Actual value. 

 e = Error between recommended value and actual value. 

 

The smaller value of MAE shows that the prediction accuracy is higher and the highest 

value of MAE is 1. The MAE for SDRS using different server configurations is calculated 

for all five datasets and is shown in Table 5.14. As discussed, we checked the accuracy by 

using user network information, including followees and followers, which is cross 

checked with the recommendation of the proposed system in different time periods. 

 

Table 5.14: Shows the Prediction Accuracy for central, 2, 4, and 8 server configurations using SDRS for 

five datasets. 

MAE 

top k 

Prediction Accuracy of SDRS 

DataSet1 DataSet2 DataSet3 DataSet4 DataSet5 

3 0.97 0.97 0.95 0.93 0.95 

10 0.72 0.65 0.67 0.43 0.88 

20 0.36 0.32 0.45 0.00 0.80 

30 0.03 0.00 0.27 0.00 0.55 

40 0.00 0.00 0.09 0.00 0.00 

 

In above Table 5.14 when k=10, the prediction accuracy is in the range of 0.43 to 0.88 for 

central, 2, 4, and 8 server configurations. Please note that the prediction accuracy of 2, 4, 
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and 8 servers are same as of central configuration. This is dues to the fact that in 

recommendation process cosine similarity is used; the cosine similarity depends on term 

frequency which is same for all distributed configurations of 2, 4, and 8 servers. 

Table 5.15: Shows the Prediction Accuracy for central configuration using CDRS for five datasets. 

MAE 

top k 

Prediction Accuracy of CDRS 

DataSet1 DataSet2 DataSet3 DataSet4 DataSet5 

3 0.08 0.03 0.72 1.00 0.86 

10 0.00 0.00 0.68 1.00 0.86 

20 0.00 0.00 0.68 0.07 0.79 

30 0.00 0.00 0.29 0.07 0.79 

40 0.00 0.00 0.29 0.07 0.65 

50 0.00 0.00 0.00 0.07 0.00 

 

The above Table 5.15 show the prediction accuracy of the CDRS. When k=3, the 

prediction accuracy is in the range of 0.03 to 1 for central server configuration. The 

prediction accuracy for 2, 4, and 8 server configurations can be found in Appendix II. All 

the results show that, except for datasets 1 and 2 that have low numbers of tweet and 

users, the change in accuracy by increasing the number of servers in CDRS is negligible 

and in SDRS there is no change and the proposed method does not lower the accuracy of 

common recommender systems. 

 

5.7.  Comparison with Related Works 

In this section, we compare our distributed recommender system with the closest method 

to ours used in the literature. In most of the similar works (for example [91] and [89]) 

data grouping (called a data chunk) are used to speedup the processing time for the large 

number of tweets. The following experiments compare data grouping technique and our 

proposed method for central, 2, 4, and 8 server configurations. Since the central approach 
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is used in all related works, it is used as the compared method here and is examined with 

different chunk sizes together with our proposed methods. In other words, these 

experiments examine parallelization and distribution of data (used in proposed method) 

compared to grouping of data. 

 

Figure 5.40: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2, 

4, and 8 server configurations for SDRS (Dataset1). 

 

Figure 5.41: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2, 

4, and 8 server configurations for SDRS (Dataset2). 
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Figure 5.42: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2, 

4, and 8 server configurations for SDRS (Dataset3). 

 

 

Figure 5.43: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2, 

4, and 8 server configurations for SDRS (Dataset4). 
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Figure 5.44: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2, 

4, and 8 server configurations for SDRS (Dataset5). 

 

In all above experiments three factors affect the total processing speed. First is the total 

tweets processed by the recommender system, the second is the number of users which 

have those tweets that are being processed and the third factor which affects the 

recommendation processing time is the number of tweets for each users present in that 

chunk. In these experiments, it can be seen that with all chunk sizes (i.e. 50, 100, 200, 

400, and 800) using all configurations of servers (i.e. 2, 4, and 8 servers) in our proposed 

method perform better than central which means the proposed solution also gets benefits 

of data grouping and is applicable for a small amount of data. It is clear with the increase 

in the number of tweets the proposed solutions become more superior. 
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Figure 5.45: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2, 

4, and 8 server configurations for CDRS (Dataset1). 

 

 

Figure 5.46: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2, 

4, and 8 server configurations for CDRS (Dataset2). 
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Figure 5.47: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2, 

4, and 8 server configurations for CDRS (Dataset3). 

 

 

Figure 5.48: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2, 

4, and 8 server configurations for CDRS (Dataset4). 
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Figure 5.49: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2, 

4, and 8 server configurations for CDRS (Dataset5). 

 

In the above experiments for cluster-based distributed recommender system, it can be 

seen that when the chunk size is increased more processing time is required to process the 

chunk. Again, it is clear that the performance is improved by distributing the workload to 

2, 4, and 8 servers, which are processing those distributed loads in parallel. Also, CDRS 

with 8 server configuration outperforms the other distributed configurations for all chunk 

size (data grouping) experiments. Finally, the comparison shows grouping data in the 

small chunk sizes less than 1,000 tweets reduces the processing time. However, it is clear 

the recommendation accuracy is reduced when number of tweets reduces. The graph 

shows our proposed method gains similar benefits from data grouping techniques in 

reducing processing time. But the advantage of our method is that it is useful for the 

recommendation techniques that need to use the large size of tweets to provide more 

accurate recommendations. 
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5.8.  Discussion of Scalability Factor 

The following graphs show for CDRS theoretical results confirmed very well by 

experimental results and using two servers (i.e. the scalability factor of two) makes the 

recommender system to be scalable for up to 25,000 tweets. For SDRS since the 

algorithms are faster than CDRS, even the central variation shows scalability for 25,000 

tweets but still adding more servers reduces the running time significantly. Although    

message passing time increases by having more servers, these graphs show with having 2 

to 8 servers for 25,000 of tweets and adding more servers provides more improvement for 

both SDRS and CDRS.  

 

Figure 5.50: Shows the Numerical Analysis of total 

time using SDRS. 

 

Figure 5.51: Shows the total running time using 

SDRS. 

 

 

Figure 5.52: Shows the Numerical Analysis of total 

time using CDRS. 

 

Figure 5.53: Shows the total running time using 

CDRS. 
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For the datasets which are greater than 25,000 tweets, gathering real data is very time 

consuming because the datasets are collected in different time frames for the specific 

twitter users and their followers, therefore capturing different types of tweets from 

different sets of users during these time frames is very time consuming. However, in 

theory the numerical analysis of larger datasets for example for 5,000,000 tweets shown 

below indicates the proposed method for providing scalability is still effective but the 

scalability factor should be different. The following graphs determine the scalability 

factor for both SDRS and CDRS with 5,000,000 tweets based on numerical analysis of 

time complexities. It is clear using 2 servers’ causes non-linear relation whereas the 

scalability factor of 4 (using at least 4 servers) makes the systems more scalable.  

 

Figure 5.54: Shows the Numerical Analysis of total 

time for 5,000,000 tweets using SDRS. 

 

Figure 5.55: Shows the Numerical Analysis of total 

time for 5,000,000 tweets using CDRS. 

 

Please note that the practical experiments with the smaller traces that is used, show that 

the running times of the recommender systems even with 2 servers are measured by 

seconds and using larger number of servers is preferred to have faster processing time.  It 

means in practice for processing of hundreds of thousands of the tweets more servers than 

the scalability factor (that shows the scalable rate of growth) should be used in building 

online distributed recommender systems. Thus, in this thesis the scalability factor and the 
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achieved improvement (shown as percentage of running time reduction) by using more 

servers is also discussed. Both Figure 5.4 and Figure 5.5 show significant improvement in 

running time speed will be achieved by adding more servers for processing of millions of 

tweets.  

 

5.9.  Summary 

In this chapter, we have shown the performance results on five different datasets. The 

results for scalability and performance improvement are achieved by using both variations 

of distributed configurations. With regards to scalability for the algorithms with the time 

complexity of O(N2) the results for agent-based simulation confirmed the theoretical 

result which is using at least two servers for all tested datasets makes them linear and 

scalable. In SDRS, because disk latency contributes more than algorithms running time, 

for the lower amount of datasets SDRS is scalable even for central configuration because 

the distribution of data already gains lots of reduction in total running time of SDRS. 

However, CDRS clearly shows that using minimum two servers makes the system to be 

scalable for all datasets with regards to improvement. We found, for smaller datasets with 

the amount of less than 10,000 tweets the central variation of SDRS is scalable and using 

such small dataset for both systems, adding eight servers instead of four servers improves 

the running time marginally. For all of our used traces when using eight server distributed 

configuration for SDRS, performance improvement is in the range of 75.82% to 86.1%. 

While for CDRS the performance improvement result using eight servers is almost 93% 

to 98.35%. We also evaluated the accuracy for both SDRS and CDRS distributed 

recommender systems. In summary, using at least two servers makes both systems to be 
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scalable, which is achieved by using distributed database and parallelization of 

algorithms. In the last part of this chapter, we used a data grouping technique by reducing 

the number of tweets which is used in similar works to reduce processing time. It is clear 

that when the less number of tweets is used by a recommender system, the accuracy will 

be reduced. In the conducted experiments we examined how our proposed technique 

performed against data grouping technique when the number of tweets is reduced 

assuming that we don’t want high accuracy. The results show our proposed technique 

gained similar benefits for small tweets and is superior for larger number of tweets. 

However, the reason for proposing to distribute and parallelization of data is to have 

maximum possible accuracy by processing more tweets. That is why in our proposed 

technique all tweets were used in each dataset and the proposed technique showed 

significant improvement in reducing the processing time with having high accuracy. 
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Chapter 6   

Conclusions and Future Works 

 

In this thesis, a novel framework of a distributed recommender system for social networks 

is proposed and effects of using multiple servers on scalability are discussed. First, in 

Chapter 1 the problem of having a scalable recommender system is formalized. Then in 

Chapter 2, a comprehensive discussion on prominent works on a social network has been 

presented. Second, in Chapter 3 we have discussed the proposed distributed recommender 

system in terms of algorithms and mathematical models, mainly with regards to 

scalability and distributed processing effectiveness. Also in Chapter 3 we have presented 

the theoretical results of time complexity to capture the scalability behaviours of the 

designed algorithms. Third, in Chapter 3 we have explained the models of two variations 

of proposed distributed recommender systems referred to as similarity-based distributed 

recommender system (i.e. SDRS) and cluster-based distributed recommender system (i.e. 

CDRS) for building their prototypes used in simulation. In Chapter 4, we have 

implemented CDRS and SDRS prototypes by using multi-agent based system. Fourth, in 

Chapter 4 a whole framework for providing multi-agent based simulation for testing the 

prototypes is discussed and developed. Finally, in Chapter 5 we have used CDRS and 

SDRS prototypes in several experiments with disk and memory based data and then 

compared them to their central recommender system counterparts. Running time and 
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number of tweets are used as the main factors for finding performance metrics of the 

scalability factor and running time improvement of the proposed distributed recommender 

systems.  

 

Also in Chapter 5, to demonstrate the effectiveness of the proposed distributed 

recommender system used in the social network environment, we have examined five 

different simple text based algorithms such as text cleaning, TF, TFIDF, cosine similarity 

and k-mean clustering algorithms. These algorithms are deployed on different agents for 

conducting multi-agent based simulation for finding the effectiveness of the distributed 

recommender system for social networks. Also in Chapter 5, we have used mean absolute 

error to find the accuracy of the proposed distributed recommender system and found that 

accuracy is not affected in the proposed distributed recommender systems. To test 

accuracy, in several experiments the proposed distributed recommender system generated 

lists of recommendations to the followees (to follow similar users), ranked based on their 

previous tweets and tweets of their own followees. These recommendation lists have been 

checked against the real selections of same users and based on that mean absolute error 

has been calculated to measure accuracy of the system. 

 

The scalability factor is defined as the minimum number of servers that makes the system 

scalable. This is illustrated by the experiments shown in Chapter 5. The experiments are 

conducted on four different configurations, namely central, 2 server, 4 server, and 8 

server configurations, which indicated that using at least two servers the proposed 

distributed system architecture become scalable, which confirmed the results achieved in 
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Chapter 3. For example, CDRS when running in the distributed environment with records 

(tweets) stored on the disk has achieved a reduction in running time in the range of 67% 

to 87% by using 2 servers for all the tested datasets respectively. In Chapter 3, theoretical 

results shows that by using 2 servers the system becomes scalable and can provide up to 

75% reduction in running time. 

 

In summary the multi-agent based simulation results achieved in Chapter 5 are in line 

with theoretical results achieved in Chapter 3. The results of both similarity and cluster-

based distributed recommender systems have better performance of processing times 

compared to their central counterparts. For cluster-based recommender system the 

proposed solution is more promising in terms of efficiency. By using only two servers for 

up to 25,000 tweets used in each tested dataset the system become scalable and the 

running time is reduced by at least 67% in the CDRS. The proposed distributed 

recommender system can also be easily deployed in the cloud environment. It is a 

straightforward task to assign each distributed component to different servers running in 

the cloud environment.  

 

The major contributions of the research are: 

1. Development and implementation of a novel distributed recommender system 

based on multi-agent based system in two prototypes, referred to as SDRS and 

CDRS which significantly reduce the running time of the central system. Theses 

prototypes can be easily turned into real systems in future work. 
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2. Development of a framework for multi-agent based simulation including 

following components:  

2.1. The Twitter data crawler module based on multi-agent system, which is able 

to generate user network graph or links, and can download the required 

information from the website. 

2.2. Development of the Twitter simulation module, also based on a multi-agent 

based system. This agent based system is capable of tweeting “tweets” of the 

users under test. The tweets are first read from the stored corpus downloaded 

by the crawler. This environment can be used as a test bed for performing 

experiments where a researcher wants to mimic real time tweeting 

environment. 

 

3. Performing simulation and determining the scalability factor which has confirmed 

theoretical results and indicated that by using a minimum of two servers in 

common recommender systems becomes scalable for processing up to 25,000 

tweets. 

 

In the future, we would like to continue our work on the distributed recommender system 

and its performance improvement by following new directions stated below: 

1. To expand the role of the agents, we would like to develop more agents for the 

proposed distributed recommender system. These new agents will be capable of 

using different environments such as mobile based environment to provide 

recommendation to the users who are using cell phones or other mobile devices. 
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New agents for other text based algorithm in different configuration will be 

developed. By using MAS, each agent with different algorithms (stored as its 

behaviour) is able to connect with other agents. 

 

2. We can also introduce a followee deletion pattern of the user. This may be useful 

for finding better recommendations, which can also improve overall performance 

of the recommendation process. If we consider followee deletion, the effect of 

adding wrong followee can be reduced on the recommendations. 

 

 

3. It will be interesting to investigate our achieved results in other massive data 

processing systems such as gaming, etc. The agent based approach used in this 

research can be extended to build a distributed system that requires scalability to 

improve efficiency for using them in social networking websites. 

 

4. Finally, we plan to design a graphical user interface for the system that regular 

users of the system will be capable to configure the agents and to generate other 

variations of the recommender systems similar to CDRS and SDRS without 

having the deep knowledge of agent programming. 
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Appendix I 

List of mysql Tables 

Table Name: userTweets 

Field Data Type 

referenceUser varchar (100) 

tweetID bigint(40) PK 

created_at Datetime 

userID varchar(45) 

screen_name varchar(45) 

text varchar(500) 

 

Table Name: userfollowers 

Field Data Type 

referenceUser  varchar(45)  

cursorposition  varchar(60)  

followerlist  varchar(500)  

followername  varchar(45) PK  

addedon  datetime  

 

 

Table Name: userfollowees 

Field Data Type 

referenceUser  varchar(45)  

cursorposition  varchar(60)  

followeelist  varchar(500)  

followeename  varchar(45) PK  

addedon  datetime  

 

Table Name: restrictedUser 

Field Data Type 

referenceUser  varchar(45)  

followerorfollowee  varchar(45)  

restrictedUser  varchar(45) PK  

addedon datetime  
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Appendix II 

Prediction Accuracy for 2, 4, and 8 Server Configurations 

using CDRS 
 

Table: Shows the Prediction Accuracy for 2 server configuration using CDRS for five datasets. 

MAE 

top k 

Prediction Accuracy of CDRS 

DataSet1 DataSet2 DataSet3 DataSet4 DataSet5 

3 0.10 0.93 0.76 1.00 0.86 

10 0.00 0.71 0.65 1.00 0.86 

20 0.00 0.47 0.64 0.00 0.86 

30 0.00 0.28 0.45 0.00 0.79 

40 0.00 0.00 0.14 0.00 0.54 

50 0.00 0.00 0.01 0.00 0.00 

 
Table: Shows the Prediction Accuracy for 4 server configuration using CDRS for five datasets. 

MAE 

top k 

Prediction Accuracy of CDRS 

DataSet1 DataSet2 DataSet3 DataSet4 DataSet5 

3 0.72 0.04 0.76 1.00 0.84 

10 0.29 0.00 0.68 1.00 0.84 

20 0.17 0.00 0.62 0.18 0.83 

30 0.07 0.00 0.61 0.18 0.74 

40 0.00 0.00 0.52 0.18 0.48 

50 0.00 0.00 0.46 0.18 0.00 
 

Table: Shows the Prediction Accuracy for 8 server configuration using CDRS for five datasets. 

MAE 

top k 

Prediction Accuracy of CDRS 

DataSet1 DataSet2 DataSet3 DataSet4 DataSet5 

3 0.88 0.46 0.77 1.00 0.84 

10 0.57 0.10 0.65 0.96 0.83 

20 0.31 0.00 0.60 0.11 0.81 

30 0.04 0.00 0.54 0.11 0.74 

40 0.00 0.00 0.45 0.11 0.68 

50 0.00 0.00 0.39 0.11 0.23 
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