
DISTRIBUTED RECOMMENDER SYSTEM

USING MULTI-AGENT FOR SOCIAL NETWORKS

by

Lubaid Ahmed

M.Sc. Computer Science, Ryerson University, Toronto, Canada, 2010

M.Sc. Computer Science, NED University of Engineering & Technology, Karachi, Pakistan, 2002

M.Sc. Applied Physics with Specialization in Electronics, University of Karachi, Pakistan, 1996

B.Sc. University of Karachi, Pakistan, 1993

A dissertation

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Program of

Computer Science

Toronto, Ontario, Canada, 2016

© Lubaid Ahmed 2016

ii

Author’s Declaration

I hereby declare that I am the sole author of this dissertation. This is a true copy of the

dissertation, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this dissertation to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this dissertation by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my dissertation may be made electronically available to the public.

iii

DISTRIBUTED RECOMMENDER SYSTEM

USING MULTI-AGENT FOR SOCIAL NETWORKS

Lubaid Ahmed, 2016

Doctor of Philosophy

Computer Science

Ryerson University

Abstract

Social networks have become significant tools due to the vast and useful information existing in

them. The social platforms also act as the storage of entered choices of millions of users for

various applications such as political surveys, research studies, marketing product preferences

and many more. Social network recommender systems exploit this information and direct users

in selecting their choices. It is clear that recommender systems should be efficient enough to be

able to process the huge magnitude of data that has been generated in recent years by social

network users. This research proposes a foundation of an efficient and scalable recommender

system to be able to process large amount of data (i.e. Big data) in a short amount of time. The

main goal is providing scalability and efficiency of the recommender system. The simulation of

the prototype of such a distributed recommender system by using multi-agent based technologies

shows promising results. These prototypes provide recommendations to users about other users

with the similar interests in online and distributed manner as real recommender systems. The

agents can simulate users or can be used as the containers of algorithms for comparing the

similarity between users by different approaches, such as cosine similarity and clustering

iv

methods for testing and examining real scenarios. To be able to test these prototypes in agent-

based simulation environment an agent-based framework is developed. This framework has three

modules named social network crawler, social network simulator and employed prototype of the

distributed recommender system that use different text and data mining algorithms. Finally,

newly developed performance metric (called Scalability Factor) is introduced that shows the

minimum number of servers needed to be able to run the agent systems in parallel. This thesis

shows using a distributed and parallel model for recommender systems is the key to increase the

speed of recommendation convergence and as a result to provide scalability. Multi-agent based

simulation results, coupled with numerical analysis affirm that the proposed solution provides

scalability and efficiency for recommender systems.

v

Acknowledgements

It is my honour to express my deep gratitude to the people who made this challenge possible for

me. I would like to thank my supervisor Dr. Abdolreza Abhari, for giving me the opportunity to

work under his supervision. He offered me such a challenging topic. With his support and

guidance, I am finally able to achieve my goals. I would also like to express my gratitude to my

thesis committee members, Dr. Alex Ferworn, Dr. Isaac Woungang, Dr. Denis Hamelin,

Dr. Kosta Derpanis and Dr. Alagan Anpalagan for their time and effort they spent reviewing my

thesis. My sincere appreciation is extended to Dr. Shervin Shirmohammadi, University of

Ottawa, for his valuable comments and agreeing to be in my committee.

I also thank all the members of our research group in the Distributed Systems and Multimedia

Processing lab (DSMP) for their support.

Finally, and most importantly, my family. A special and deep gratitude to my mother Mrs. Lubna

Farooqui who taught me to cherish knowledge and seek for it. Also, I would like to thank my

brothers Saad and Munad, and my wife Sadaf, they are always being cooperative and patient. It

is their prayers and support that gave me courage to achieve my goals.

vi

Dedication

To my Mother

I would not be here without her support, encouragement and strong belief in me.

vii

Table of Contents

Abstract ... iii

Acknowledgements ... v

Dedication ... vi

List of Tables ... x

List of Figures .. xii

List of Abbreviations .. xvii

List of Appendices .. xix

Chapter 1 ... 1

Introduction ... 1

1.1. Motivation .. 1

1.2. Problem Statement ... 3

1.3. Recommender Systems .. 6

1.4. Methodology .. 8

1.5. Contributions .. 9

1.6. Thesis Organization ... 12

Chapter 2 ... 14

Background and Related Research ... 14

2.1. Background Information .. 14

2.1.1. Filtering Techniques used in Recommender Systems ... 14

2.1.2. Similarity Measures ... 17

2.1.3. Clustering Methods .. 18

2.1.4. Recommender System for Social Networks .. 21

2.1.5. Recommender System using Multi-Agent based System 23

2.2. Related Research .. 24

viii

2.2.1. State-of-the-art Social Recommender Systems ... 24

2.2.2. Recommender System using Twitter Data .. 29

2.3. Summary .. 31

Chapter 3 ... 32

Modelling the proposed Distributed Recommender Systems ... 32

3.1. Text Processing Unit .. 33

3.2. Recommender Unit .. 35

3.2.1. Term Frequency Unit ... 35

3.2.2. Term Frequency Inverse Document Frequency Unit .. 37

3.2.3. Cosine Similarity Unit ... 40

3.2.4. K-mean Clustering Unit ... 41

3.3. Organizing Unit .. 43

3.4. Distributed Storage and Data Distribution ... 46

3.5. Distributed Recommender Systems ... 48

3.5.1. Similarity-based Distributed Recommender System (SDRS) 49

3.5.2. Clustering-based Distributed Recommender System (CDRS) 53

3.6. Message Passing in Distributed Recommender System .. 56

3.7. Summary .. 57

Chapter 4 ... 59

Multi-Agent based Framework, Specification and Implementation...................................... 59

4.1. Structure of the Proposed Multi-Agent based Framework .. 61

4.1.1. Data Crawler Module ... 62

4.1.2. Twitter Environment Simulator Module .. 64

4.1.3. Distributed Recommender System Module ... 65

4.2. Message Passing in Distributed Recommender System .. 70

4.3. Agent Development Environment .. 71

4.4. Verification and Validation .. 72

4.5. Summary .. 73

ix

Chapter 5 ... 75

Simulation and Experimental Results... 75

5.1. Datasets .. 76

5.2. Simulation Platform ... 77

5.3. Experimental Setup and Scenarios ... 78

5.4. Experimental Results for SDRS ... 79

5.4.1. Running Time of each Algorithm used in SDRS .. 79

5.4.2. Performance Improvement of each Algorithm used in SDRS 83

5.4.3. Message Passing Time in SDRS .. 84

5.4.4. Total Running Time of SDRS using Distributed Database 85

5.5. Experimental Results for CDRS .. 88

5.5.1. Running Time of each Algorithm used in CDRS .. 88

5.5.2. Performance Improvement of each Algorithm used in CDRS 90

5.5.3. Message Passing Time in CDRS ... 92

5.5.4. Total Running Time of CDRS using Distributed Database 93

5.6. Evaluation of Distributed Recommender System .. 95

5.7. Comparison with Related Works ... 97

5.8. Discussion of Scalability Factor ... 104

5.9. Summary .. 106

Chapter 6 ... 108

Conclusions and Future Works ... 108

References .. 115

x

List of Tables

Table 2.1: Different Term Weighting Schemes [43]. ... 20

Table 5.1: Shows the user graph information downloaded by using data crawler. 76

Table 5.2: Shows five datasets used in the experiments. .. 77

Table 5.3: System Configuration .. 78

Table 5.4: Shows the average tweet time (in milliseconds) for TF and cosine similarity for

central server by using SDRS. ... 83

Table 5.5: Shows the average tweet time (in milliseconds) for TF and cosine similarity for 2, 4,

and 8 server configurations using SDRS. .. 84

Table 5.6: Shows the performance improvement of the average tweet (in percentage) for 2, 4,

and 8 recommender server configurations using SDRS. ... 84

Table 5.7: Total time (in second) for central, 2, 4, and 8 server configurations for SDRS using

distributed database.. 86

Table 5.8: Shows performance improvement (in %) for 2, 4, and 8 server configurations for

SDRS using a disk-based distributed database. ... 87

Table 5.9: Shows the average tweet time (in milliseconds) for TFIDF and k-mean clustering for

central server using CDRS. .. 91

Table 5.10: Shows the average tweet time (in milliseconds) for TFIDF and k-mean clustering for

2, 4, and 8 server configurations using CDRS. .. 91

Table 5.11: Shows the performance improvement for average tweet (in percentage) for 2, 4, and

8 recommender server configurations using CDRS. ... 92

xi

Table 5.12: Shows the total time (in second) for central, 2, 4, and 8 server configurations for

CDRS. .. 93

Table 5.13: Shows performance improvement (in %) for 2, 4, and 8 server configurations for

CDRS using a disk-based distributed database.. 95

Table 5.14: Shows the Prediction Accuracy for central, 2, 4, and 8 server configurations using

SDRS for five datasets. .. 96

Table 5.15: Shows the Prediction Accuracy for central configuration using CDRS for five

datasets. .. 97

xii

List of Figures

Figure 3.1: Shows the time complexity of the text processing algorithm. 45

Figure 3.2: Shows the time complexity of the term frequency algorithm. 45

Figure 3.3: Shows the time complexity of the TFIDF algorithm. .. 45

Figure 3.4: Shows the time complexity of the cosine similarity algorithm. 45

Figure 3.5: Shows the time complexity of the K-mean clustering algorithm. 45

Figure 3.6: Distributed recommender system using TF and cosine similarity. 49

Figure 3.7: Total time complexity of the similarity-based distributed recommender system

(SDRS). .. 52

Figure 3.8: Distributed recommender system using TFIDF and k-mean clustering..................... 53

Figure 3.9: Total Time Complexity of the clustering-based distributed recommender system

(CDRS). ... 55

Figure 3.10: Shows the time complexity of message passing. ... 57

Figure 4.1: Shows MAS based Distributed Recommender System. .. 60

Figure 4.2: Multi-Agent based proposed framework. ... 61

Figure 4.3: Multi-Agent based Twitter Data Crawler. .. 63

Figure 4.4: Twitter Data Crawler Module showing user agents and bearer token agent. 64

Figure 4.5: Multi-Agent based Twitter Environment Simulator Module. 65

Figure 5.1: Shows text processing units used in 4 different server configurations for dataset 1.. 80

Figure 5.2: Shows term frequency processing used in 4 different server configurations for dataset

1. .. 80

xiii

Figure 5.3: Shows cosine similarity units used in 4 different server configurations for dataset 1.

 ... 80

Figure 5.4: Shows text processing units used in 4 different server configurations for dataset 2.. 80

Figure 5.5: Shows term frequency processing used in 4 different server configurations for dataset

2. .. 80

Figure 5.6: Shows cosine similarity units used in 4 different server configurations for dataset 2.

 ... 80

Figure 5.7: Shows text processing units used in 4 different server configurations for dataset 3.. 81

Figure 5.8: Shows term frequency processing used in 4 different server configurations for dataset

3. .. 81

Figure 5.9: Shows cosine similarity units used in 4 different server configurations for dataset 3.

 ... 81

Figure 5.10: Shows text processing units used in 4 different server configurations for dataset 4.81

Figure 5.11: Shows term frequency processing used in 4 different server configurations for

dataset 4. .. 81

Figure 5.12: Shows cosine similarity units used in 4 different server configurations for dataset 4.

 ... 81

Figure 5.13: Shows text processing units used in 4 different server configurations for dataset 5.82

Figure 5.14: Shows term frequency processing used in 4 different server configurations for

dataset 5. .. 82

Figure 5.15: Shows cosine similarity units used in 4 different server configurations for dataset 5.

 ... 82

xiv

Figure 5.16: Shows average user message passing time in similarity-based distributed

recommender system. .. 85

Figure 5.17: Shows Total time for SDRS in 4 different server configurations for dataset 1........ 86

Figure 5.18: Shows Total time for SDRS in 4 different server configurations for dataset 2........ 86

Figure 5.19: Shows Total time for SDRS in 4 different server configurations for dataset 3........ 87

Figure 5.20: Shows Total time for SDRS in 4 different server configurations for dataset 4........ 87

Figure 5.21: Shows Total time for SDRS in 4 different server configurations for dataset 5........ 87

Figure 5.22: Shows the performance improvement (in %) for all five datasets using a disk-based

distributed database for SDRS. .. 88

Figure 5.23: Shows TFIDF processing used in 4 different server configurations for dataset 1. .. 89

Figure 5.24: Shows k-mean clustering units used in 4 different server configurations for dataset

1. .. 89

Figure 5.25: Shows TFIDF processing used in 4 different server configurations for dataset 2. .. 89

Figure 5.26: Shows k-mean clustering units used in 4 different server configurations for dataset

2. .. 89

Figure 5.27: Shows TFIDF processing used in 4 different server configurations for dataset 3. .. 89

Figure 5.28: Shows k-mean clustering units used in 4 different server configurations for dataset

3. .. 89

Figure 5.29: Shows TFIDF processing used in 4 different server configurations for dataset 4. .. 90

Figure 5.30: Shows k-mean clustering units used in 4 different server configurations for dataset

4. .. 90

Figure 5.31: Shows TFIDF processing used in 4 different server configurations for dataset 5. .. 90

xv

Figure 5.32: Shows k-mean clustering units used in 4 different server configurations for dataset

5. .. 90

Figure 5.33: Shows average user message passing time in cluster-based distributed recommender

system. ... 92

Figure 5.34: Shows Total time for CDRS in 4 different server configurations for dataset 1. 93

Figure 5.35: Shows Total time for CDRS in 4 different server configurations for dataset 2. 93

Figure 5.36: Shows Total time for CDRS in 4 different server configurations for dataset 3. 94

Figure 5.37: Shows Total time for CDRS in 4 different server configurations for dataset 4. 94

Figure 5.38: Shows Total time for CDRS in 4 different server configurations for dataset 5. 94

Figure 5.39: Shows the performance improvement (in %) for all five datasets using a disk-based

distributed database for CDRS. ... 95

Figure 5.40: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for

central, 2, 4, and 8 server configurations for SDRS (Dataset1). 98

Figure 5.41: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for

central, 2, 4, and 8 server configurations for SDRS (Dataset2). 98

Figure 5.42: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for

central, 2, 4, and 8 server configurations for SDRS (Dataset3). 99

Figure 5.43: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for

central, 2, 4, and 8 server configurations for SDRS (Dataset4). 99

Figure 5.44: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for

central, 2, 4, and 8 server configurations for SDRS (Dataset5). 100

Figure 5.45: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for

central, 2, 4, and 8 server configurations for CDRS (Dataset1). 101

xvi

Figure 5.46: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for

central, 2, 4, and 8 server configurations for CDRS (Dataset2). 101

Figure 5.47: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for

central, 2, 4, and 8 server configurations for CDRS (Dataset3). 102

Figure 5.48: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for

central, 2, 4, and 8 server configurations for CDRS (Dataset4). 102

Figure 5.49: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for

central, 2, 4, and 8 server configurations for CDRS (Dataset5). 103

Figure 5.50: Shows the Numerical Analysis of total time using SDRS. 104

Figure 5.51: Shows the total running time using SDRS. .. 104

Figure 5.52: Shows the Numerical Analysis of total time using CDRS. 104

Figure 5.53: Shows the total running time using CDRS. .. 104

Figure 5.54: Shows the Numerical Analysis of total time for 5,000,000 tweets using SDRS. .. 105

Figure 5.55: Shows the Numerical Analysis of total time for 5,000,000 tweets using CDRS. .. 105

xvii

List of Abbreviations

ACL Agent Communication Language

ANNS Approximate Nearest Neighbour Search

ATC Automatic Text Categorization

CBF Content-Based Filtering

CDRS Clustering-based Distributed Recommender System

CF Collaborative Filtering

DCSP Distributed Constraint Satisfaction Problems

DF Demographic Filtering

DS Distributed Systems

EM Expectation Maximization

GAAC Group Average Agglomerative Clustering

GPU Graphic Processing Unit

HAC Hierarchical Agglomerative Clustering

HAC Hierarchical Agglomerative Clustering

HC Hierarchical Clustering

HF Hybrid filtering

IA Initializer Agent

IDF Inverse Document Frequency

IR Information Retrieval

JADE Java Agent DEvelopment framework

JMSD Jaccard Mean Squared Differences

kNN k-Nearest Neighbours

MAS Multi Agent System

NLP Natural Language Processing

NNS Nearest Neighbour Search

OU Organizing Unit

RA Recommender Agent

xviii

RS Recommender System

RU Recommender Unit

SDRS Similarity-based Distributed Recommender System

SM Similarity Measure

TA Tweeting Agent

TARS Trust-Aware Recommender System

TF Term Frequency

TFIDF Term Frequency Inverse Document Frequency

TPU Text Processing Unit

UA User Agent

UGC User Generated Contents

URL Universal Resource Locator

VSM Vector Space Model

WC Word Count

xix

List of Appendices

Appendix I: List of mysql Tables ... 113

Appendix II: Prediction Accuracy for 2, 4, and 8 Server Configurations using CDRS 114

1

Chapter 1

Introduction

1.1. Motivation

Recently web researchers have proposed several data mining and web mining methods

which are used for building recommendation systems for the Web 2.0 social networking

sites such as Facebook, Twitter, YouTube, and LinkedIn. Unfortunately, the large amount

of data feeding in social networks by millions of users causes efficiency problems in the

online employment of these methods for real time recommender systems. Therefore,

scalability and efficiency of recommender systems are open questions and hot research

topics.

One of the known and common methods for improving the scalability and efficiency of

massive data processing applications is to develop them as parallel and distributed

systems. Currently, the use of cloud computing and common use of distributed data

processing tools such as Hadoop and MapReduce, and availability of hundreds of servers

make it possible to turn the central applications to parallel or distributed applications at

low cost. However, there are limited studies that show the benefits of transforming a

central data processing system to distributed system. Many studies that proposing

methods or guidelines for the transformation of a central text processing recommender

2

system into a parallel and distributed system are either suggest using distributed

algorithms instead of central algorithms or employing distributed file system for data

processing which needed change of the program or software and data modelling of the

applications. The simplest proposed method for recommender system which does need

change of application, is dividing the data in smaller granularity (called chunks) to

provide scalability. This thesis studies the benefits of simple transformation of a central

recommender system by replicating an entire recommender system on a distributed and

parallel model without changing used algorithms, adding additional software layer or

reducing the granularity of the data needed to be processed by a recommendation system.

This thesis will first define a formal model of the problem and then introduce a

framework implemented by multi-agent based systems (MAS) to be able to conduct a

simulation. Multi-agent based prototypes used in the simulations of turning central text

processing recommender applications to distributed systems, determine the benefits based

on number of processed tweets. These multi-agent based systems will be used as data

crawlers to input real data for examining the recommender system’s efficiency as well as

recommending the users with other similar users while they are entering data in Web 2.0

social networking platforms. The main feature of the distributed recommender system is

the capability of using distributed storages of multiple servers instead of one server to

distribute the load of data when performing data processing, which significantly reduces

the running time. The use of distributed multi-agent based framework with text based

recommender systems in social network sites is a novel idea. To measure performance of

such a framework two variations of distributed recommender systems have been

3

developed and compared with each other. Besides comparing the accuracy, new

performance metrics (specifically to measure distributed processing effectiveness and

scalability) are used for examining the employed Web mining methods in these

recommender systems.

1.2. Problem Statement

The problem is to design a scalable and efficient recommender system to perform the

recommendations by text processing based data mining algorithms (i.e. functions). In this

design rather than inventing a new data mining or recommending algorithm the common

algorithms (i.e. clustering and cosine similarity) employed in the recommender systems

are used in parallel to provide scalability. Given that such algorithms are fully replicated

in a distributed environment including servers containing local databases, the number of

servers (i.e. scalability factor) of algorithms are unknown. The general form of the

problem is explained as follows: Assume a recommender system has the Accuracy of A

and is consisting of a set of algorithms that are shown as the functions:

},....,,{ 21 hfffF 

Where,

 F = Set of function or algorithm of the recommender system.

 f = Functions or algorithms.

 h = Total number of functions.

For processing the information of k users, each of the users generates tweets shown by the

set of

},....,,{ 21 jiiii tUtUtUTU 

4

Where,

 Ui = User i.

 T = Set of Tweets.

 j = Number of tweets.

Let },....,,{ˆ
21 mSSSS  be the sets of servers that are hosting functions F, where iS

represents the server number which is hosting function F. Each server m has a limited

storage capacity (𝐶𝑖) for storing in its local database which is required to be processed by

a set of functions F, given that each function uses the tweet vectors which are locally

stored on each server’s local database. The global storage constraint is the total numbers

of stored tweet vectors ∑ |𝑈𝑖
𝑘
𝑖=1 𝑇| which should be equal to the total number of tweet

vectors on the centralized recommender system (where, k is the number of users). For the

distributed versions of recommender systems (presented in this thesis) this constraint will

be distributed constraints and for simplicity defined as tweet vectors distributed almost

equally on each server. It means assuming the tweet vectors of each user stored entirely

on one server. This constraint is defined as follows

∑|𝑈𝑖

𝑙

𝑖=1

𝑇| ≤ ∑|𝑈𝑖

𝑘

𝑖=1

𝑇|/𝑚

Where,

l = Number of users whose tweet vectors are stored in local servers.

m = Number of servers.

k = Total number of users.

5

For the given number of tweets it is required to find the minimum number of servers (i.e.

scalability factor) in the set of Ŝ , which is a set of m servers that host recommendation

system consisting of function F, provide scalability for the recommender system.

That shall:

 Reduce the running time of recommendation process by running the functions

in parallel.

 Produce the recommendations for a user 𝑈𝑖 with the same degree of accuracy

of A by recommending the similar users who have the highest possible similar

tweets as in the central version upon receiving a request from each user 𝑈𝑖.

 Considering the amount of message passing in the system should be in the

range of |𝑈𝑖𝑇| ∗ (∑ |𝑚
𝑖=1 𝑆𝑖| − 1) and the system should be capable of providing

recommendations upon receiving a request from each user 𝑈𝑖. Where, |𝑈𝑖𝑇| is

the cardinality of the set 𝑈𝑖𝑇.

The variable in the general form of the problem is to find the number of replications (i.e.

replication factor) of each function on the m hosting servers and the local constraint can

be number of tweets and the processing power of each server. However, in reality the

number of servers is limited, so in this thesis the simplified model is used for simulation.

In the simplified simulation model, we assume all servers have the same processing

power and approximately equal number of tweets and all functions are replicated just one

time on each server. In Chapter 3, the relation of time complexity models of the functions

6

will be examined against the number of tweets to be able to define the scalability factor

for each function and finally for the whole recommender system. These models will be

implemented by agents for simulations discussed in Chapter 4 and Chapter 5.

1.3. Recommender Systems

 Recently, the recommender system that is based on social network data, has gained

importance in the applications of data mining. The internet users constantly share their

views and ideas using these social networking sites. This valuable information is

increasing every day. The recommender systems are based on user’s preferences, needs,

and desires, which are the inputs to the recommender system. Textual messages in

microblogs directly relate to sentiments of public opinion, which are measured from the

polls. Data that is present in social networking sites are growing exponentially. The

recommender system that uses collaborative filtering techniques reduces the information

overload [1]. The application of this well-known technique on e-commerce shows its

limitation of scalability [2]. The purpose of recommender system is to acquire previous

knowledge from different inputs and gives suggestions for the given problem. The

effectiveness of the recommender system mainly depends on how it makes good

suggestions for those who are seeking recommendations. The recommender system uses

information from different sources as their input. Nowadays, many recommender systems

are internet dependent, as we have huge significant data (text, multimedia) that can be

used for commerce, politics and security. The recommender system emerges as an

excellent technique, which enables us to find the best solution.

7

The idea is to develop a recommender system that uses distributed and parallel algorithms

to process big social data in real time. For such development a multi-agent based system

is designed to simulate users in the Twitter environment. The Twitter social network,

users’ behaviors and their communication with the recommender system and the

combination of recommender system modules are considered as complex environment,

which can be effectively simulated by multi-agent based systems.

In the proposed system, the Twitter user data, such as tweets are analyzed to find user

interest. However, it is a challenge due to three main reasons: the tweets have a maximum

of 140 characters, unstructured language is used in the tweets and the volume of tweets is

huge as millions of user tweets in a given time. These challenges guarantee the scalability

issues.

Recently, the recommender system that is based on social network data has gained

importance in the field of information retrieval. But the fact is that it is difficult to find

valuable and useful information from big social data for recommendation purposes. For

example, for the Twitter due to the challenges mentioned above, it is a very time

consuming technique to use central algorithms available for recommender systems.

Therefore, efficiency of social recommender system is dependent on the processing

power of the server. There are many recommender systems available for social networks,

but the efficiency of the recommender system in real time is an open question. These

central algorithms are time consuming and cannot work in an online manner. In this

thesis, a framework is proposed that employs common recommender system algorithms

8

as distributed and parallel components working on processing tweets which are

distributed on the servers. The proposed framework is called distributed recommender

system and addresses the scalability problems of the algorithms used in current

distributed systems.

1.4. Methodology

In this thesis, a distributed and parallel model is proposed to provide scalability for a

recommender system. An agent-based model is developed and the algorithms of TF,

TFIDF, k-mean and cosine similarity are used for agent-based simulation of simplified

model. By building prototypes of many agents, each of them acts as the representative

algorithm (function) used in text-based recommender systems simulation. The

communication between the agents can be performed by message passing between their

hosting servers. In Chapter 3, the theoretical foundation of building a distributed

recommender system is presented by examining common algorithms and showing the

benefits in terms of reducing the running time for these common algorithms when used in

recommender systems. Also, cost is defined in terms of message passing when using a

distributed system consisting of these algorithms in parallel. For the simplified problem

addressed in the thesis, numerical analysis and multi-agent based simulation are used to

compare theoretical and practical solutions. In Chapter 4, prototyping, specification and

implementation of multi-agent based framework are detailed. Two variations of

distributed recommender systems are implemented by using agent systems, one based on

clustering and the other based on similarity of data. In Chapter 5, we explain how we

measure the accuracy to be able to get the same accuracy in distributed or parallel version

9

of the examining recommender system as their central variation. To measure the accuracy

of each system the collected data of the Twitter follower and followees information will

be measured by using the mean average error performance metrics. Measuring the

benefits and cost in recommender systems by reporting the reduction in processing time

of the system when implementing as distributed recommender system together with five

real data sets is presented. MAS is used for prototyping and implementing a distributed

recommender system and simulating the users who are generating text based information

collected from real data. Using real data by collecting user selections from user network

information makes it possible to assign an accurate value to the examining recommender

systems and examine them against distributed versions of the system. For all these steps,

only the Twitter public information of user tweets and user network information are

required. Finally by comparing the achieved results in Chapter 3 (by doing numerical

analysis) and simulation results in Chapter 5, the scalability factor (i.e. number of servers

that make the recommender system scalable) for five data sets (maximum 25,000 of

tweets) is determined theoretically and in practice for the above problem.

1.5. Contributions

Three main contributions are made in this thesis, as follows:

 Distributed Recommender System: Implementation of the novel distributed

recommender systems by using multi-agent based system and providing analytical

and experimental values for efficiency.

10

 Implementing the recommender system by using multi-agent system: Two

variations of the distributed recommender system with different architectures are

developed in this thesis by using multi-agent based technology. The first

architecture uses a similarity approach called Similarity-based distributed

recommender system (SDRS) and the second uses clustering method called

Cluster-based distributed recommender system (CDRS). Implementation of both

systems by using MAS has been introduced and detailed in this thesis.

 Providing analytical and experimental values for efficiency (i.e. scalability factor):

In Chapter 3, the scalability factors for two variations of developed distributed

recommender systems are presented by finding the number of servers that produce

the linear relation of running time and number of tweets for consisting algorithms.

The effectiveness of both memory and disk storage-based scenarios for processing

data have been tested and together with the accuracy of each system are provided

in Chapter 5.

 For all used datasets: We found that for processing of up to 25,000 of tweets

adding minimum of two servers and transforming a central common recommender

system into a parallel and distributed system provides scalability. The

recommender systems that use clustering-based algorithms benefit more from

distributed model explained in the thesis than the ones using similarity-based

algorithms.

11

Contrary to the centralized recommender system, the suggested distributed systems

architecture uses specific numbers of servers to improve the performance by running

parallel algorithms to process massive data. The number of servers can be given as the

constraint, which can be determined by the finding of this thesis. In the last chapter, by

comparing the two developed distributed systems with memory and disk data storage, the

values for scalability factor and performance improvement are shown for different

algorithms use in the distributed recommender system. These values can be used as the

guideline for transforming current central recommender systems to distributed ones.

Transferring this prototype to a real world distributed recommender system is a straight

forward task. A user agent in form of very light weight app. can be installed in user social

network account. This app can communicate with other distributed components (i.e.

agents) which are running in parallel in a cloud or multi-server environment. The

following are the publications related to this work.

 L. Ahmed and A. Abhari. "Agent-Based Simulation of Twitter for Building

Effective Recommender System." In Proceedings of 17th Communications and

Networking Simulation Symposium (CNS14) of SCS/ACM, 1-7, Tampa, Florida,

USA, 2014.

 L. Ahmed and A. Abhari. "A Multi-Agent-Based Simulator for a Transmission

Control Protocol/Internet Protocol Network." SIMULATION: Transactions of The

Society for Modeling and Simulation International, vol. 90, no. 5 (May 1, 2014):

511-21, 2014.

12

 L. Ahmed and A. Abhari. "Distributed Recommender System for Online

Processing of Big Social Data." In Spring Simulation Multiconference

(SpringSim’15) of SCS/ACM, 699-700, Alexandria, Virginia, USA, 2015.

 L. Ahmed and A. Abhari. "Information Retrieval using Multi-Agent Distributed

System for Social Networks” In Information Retrieval Journal, 2015 (under

review).

1.6. Thesis Organization

This thesis is composed of the following chapters:

Chapter 2: Background and Related Research

In this chapter, we discuss previous works on the subject and their limitations. We then

discuss the motivations behind our work.

Chapter 3: Modelling the proposed Distributed Recommender Systems

This chapter constitute of the core of this thesis. In this chapter, we show the relation of

running time of the parallel run of the algorithms for each distributed recommender

system against a number of tweets employed based on typical information retrieval

algorithms. This chapter also details the scalability degree for each participating

algorithm and distributed processing effectiveness of the combined distributed

recommender system architecture.

13

Chapter 4: Multi-Agent based Framework, Specification and Implementation

This chapter details the implementation of the multi-agent based simulation framework

and prototypes. We describe a simulation framework, including a development of the

Twitter simulator and Twitter data crawler based on multi-agent systems. We also present

various algorithms used in the distributed recommender system prototypes. This chapter

also provides an insight into the theoretical aspects on which our work is based. The

papers discussing the architecture of agent based system and the initial results of this

work are published in [3, 4, 5].

Chapter 5: Simulation and Experimental Results

In this chapter, the prototyped multi-agent based system will be used in simulation.

Measuring the efficiency performance of the proposed framework is of course an

essential part of this research work. In this chapter, we describe the simulation setup,

scenario, performance parameters and the results. Also validation and verification

techniques together with the effects on accuracy and comparison with a similar work

discussed.

Chapter 6: Conclusions and Future Works

We conclude our work and present future possible directions that can be done to extend

the scope of the work we carried in this thesis.

14

Chapter 2

Background and Related Research

This chapter presents the studies and research that are related to this thesis. This chapter is

divided into two main sections. In Section 2.1, background information about the design

issues and components of recommender systems are explained. In Section 2.2, related

research and state of the art recommender systems are discussed. Section 2.1 is further

divided into five subsections. Section 2.1.1, discusses information filtering techniques

that are used in recommender systems. Section 2.1.2 explains the similarity measures that

are used in recommender systems, Section 2.1.3 discusses clustering method. Section

2.1.4 shows recommender systems that are used for social network. Section 2.1.5

discusses multi-agent systems with their use in recommender systems. In Section 2.2.1

state of the art systems are presented. At the end, in Section 2.3 a summary of this chapter

is presented.

2.1. Background Information

2.1.1. Filtering Techniques used in Recommender Systems

Many techniques are proposed to build recommender systems. These techniques are used

in different applications and domains. The main component of any recommender system

is its filtering technique. The recommendation provided by a recommender system is

15

dependent on the precision and accuracy of filtering technique. There are four main

filtering techniques [6, 7], which are Content-based filtering, Collaborative filtering,

Hybrid filtering and Demographic filtering techniques.

2.1.1.1. Content-Based Filtering

Content-based filtering (CBF) is discussed in [8]. This filtering method uses information

about the selection or viewed items by a user and then recommends new item to that user

on that information. The recommender system that is built on CBF needs to select the

right set of features to be used in recommendations.

2.1.1.2. Collaborative Filtering

Collaborative filtering (CF) technique uses collaboration of previous user ratings

histories. This means that when a user purchases an item, the system asks the user to rate

the purchased item. On the basis of this collected information, the item is suggested to the

target user, as it is highly rated by similar users. The collaborative filtering does not

require item knowledge; therefore, it can be applied to any kind of items and is used in

many online recommendation systems, including websites, songs, videos, jokes, stocks,

books and news articles. For example, CF is used in Amazon [9] for recommending

items. Additionally CF technique is used for filtering emails as in [10].

According to [11], k-Nearest Neighbours (kNN) is the most commonly used algorithm in

collaborative filtering. kNN is the reference algorithm for recommendation systems which

use collaborative filtering for its simplicity and accuracy [12]. kNN uses a similarity

16

approach to calculate recommendations. The similarity between the two users is

calculated based on their item ratings. This algorithm uses the following steps for

recommendations: 1) the set of k neighbour users for active user A is generated using

selected similarity measures (such as the Pearson Correlation, Cosine, Constraint Pearson

Correlation, Mean Squared Differences, Euclidean etc.). The resulted set represents the

users who are similar to a user A. 2) an aggregation approach (such as average, weighted

sum and adjusted weighted aggregation) is used to predict item I for the user A. From the

list of recommendations, top n items are recommended to the active user A. The main

limitations of this algorithm are that it lacks in scalability [13] and sparsity [14] in

recommendation system database.

2.1.1.3. Demographic Filtering

Demographic filtering (DF) technique uses the information about the user, which depends

on the user’s age, country, sex etc. In [15, 16] a framework that uses user’s profile to

recommend restaurants is presented. That framework uses DF along with CBF and CF.

2.1.1.4. Hybrid Filtering

Hybrid filtering (HF) technique is the combination of two or more filtering techniques

[17, 18]. In [19], a hybrid filtering technique that combinations CF and DF is presented.

In [20], CF and CBF are combined. In [21], a recommendation system is presented for

maintaining the accuracy and scalability of CF. In this recommendation system, a hybrid

fuzzy-genetic approach is used.

17

2.1.2. Similarity Measures

Similarity measure (SM) is the metric which is used to determine the similarity of two

users or two items [22]. In RS context, similarity measure can be used to compare all the

items ratings of two users. The widely used similarity metrics are discussed in [7, 23, 24],

which are Pearson Correlation, Cosine Similarity, Adjusted Cosine, Constrained

Correlation, Mean Square Differences, Euclidean, and Jaccard Mean Squared differences.

In [23], Jaccard Mean Squared Differences (JMSD) is introduced. This similarity measure

uses both numerical information of rating (using Mean Squared Differences) as well as

non-numerical information (using Jaccard). This method uses Pareto dominance for pre-

filtering, which is useful in removing users with less representation value, in turn, keeps

most valuable users in the k nearest neighbours process. In [25], a collaborative filtering

SM Sing is proposed. This method uses vote information for all users and related

information for two users or two items. In [26], genetic SM GEN is proposed, this

similarity metric is based on a model generated by using genetic algorithm.

Due to significant increase in Web 2.0 applications and a huge number of users of social

media websites, new types of social information are introduced, such as friends,

followers, etc. These types of information can be used in social recommender systems.

This information is based on user trust, reputation and their credibility [27]. In [28, 29],

trust information is extracted using user’s rating set. In [30], it is shown that it is more

effective to use the specific similarity metric which includes some recommendations

related parameters than using traditional similarity metrics.

18

In [31], a framework for evaluating collaborative systems is presented. This framework

considers the evolving process of the evaluated collaborative system. Validation of

recommender system can be performed by using a cross validation technique of random

sub-sampling and K-fold cross validation [32].

2.1.3. Clustering Methods

Clustering problem is defined as partitioning a set of data points into different groups,

where the points in each group are as similar as possible [33]. The most common

clustering techniques are: K-mean Clustering and Group Average Agglomerative

Clustering (GAAC).

2.1.3.1. K-mean Clustering

K-mean clustering is a flat clustering technique that clusters the data point to a predefined

number of clusters [34]. In k-mean, the following steps are applied in order to cluster n

data points in euclidean space: 1) initially and randomly select k points that represent

centriod of the clusters, 2) perform the following steps for all other remaining (n-k) points

in Euclidean space: a) Check centriod of all clusters against each data point and assign

that point to the nearest cluster. b) Calculate the mean of all data points and assign the

new value to the centriod. c) For all data points in the clusters, compute the Euclidian

distance from the centroid of all clusters. Move the data point to its nearest cluster and

then update cluster’s centroid. d) Repeat step c, until convergence is achieved.

19

2.1.3.2. Group Average Agglomerative Clustering

Group average agglomerative clustering is a hierarchical clustering (HC) algorithm [34].

There are two types of HC algorithms: namely agglomerative (bottom-up) and divisive

(top-down). Hierarchical clustering algorithm generates a set of clusters which are

organized in the form of a tree. Bottom-up hierarchical clustering is also known as

Hierarchical Agglomerative Clustering (HAC), where each document is a cluster

considered as a singleton and each cluster pair merge together until all pairs are merged to

form a single cluster which contains all the documents.

2.1.3.3. Vector Space Model

Most of the well-known clustering algorithms use vector space model (VSM) to represent

the document corpus [33, 34]. In [35], a document corpus is represented by a vector in the

term space. In order to find out the similarity of two documents and differentiate them,

the term weight algorithm is used as in [36, 37, 38, 39]. Term frequency inverse

document frequency (TFIDF) is the widely used term weight algorithm [40, 41]. In this

algorithm, term frequency (TF) of a term is calculated as the number of times that term is

found or appears in the given document. Inverse document frequency (IDF) is calculated

as the number of documents in which the term under consideration is found [42]. The

TFIDF of a term can be calculated by multiplying the TF by IDF of that term [39]. There

are many variants of TFIDF algorithms such as automatic text categorization (ATC) [37],

LTU [36] and Okapi [38]. In ATC, maximum term frequency is used as an extra

parameter, while LTU and Okapi use two extra parameters, which are the document

length and average document length.

20

In [43], term frequency inverse corpus frequency (TFICF) algorithm is proposed. This

algorithm does not require the TF of other documents. It can be used in data streams.

Table 2.1 shows the formulas used in each of these methods.

Table 2.1: Different Term Weighting Schemes [43].

The main limitation of these algorithms is that they require updating the values of term

weighting when a new document is included. Therefore, we can say that they are not very

efficient in online data streams in real time. Utilizing the strength of parallel processing

can increase the performance of these algorithms. Therefore, in this thesis, we use multi-

agent systems as core components of the proposed framework.

21

2.1.4. Recommender System for Social Networks

The applications of a recommender system are used in social networks. Many works are

available in the literatures that discuss the extraction of data and user’s information from

network media sites. The first recommender system for the web was developed in 1992

by Tapestry [10]. The emergence of Web 2.0 allows the internet users to easily access and

use social media sites, such as, Wordpress [44] for blogging, Twitter [45] for micro-

blogging, Facebook [46] for social networking, YouTube [47] for video sharing, Flickr

[48] for photo sharing, Digg [49] for social news reading, Delicious [50] for bookmarking

[51] , furl [52] for searchable copies of webpages, CiteULike [53] for research papers,

and Pinterest [54] for keep things. Internet users come to these social media sites to

express their experiences in daily life, browse, watch videos, play songs etc. In the last

few years, researchers have been taking interest in exploiting the valuable information

found in the social media sites, and they have managed to come up with many interesting

models and frameworks to utilize the huge data available on these sites. Therefore,

recommender systems using social media data have emerged as a significant trend in the

world of social media applications. For example, many recommender systems have been

developed to recommend films, books, and music to the users [55]. In [56], the

correlation model between social media users with e-commerce is discussed. This study

shows the close loop model exists between e-commerce and social media sites.

2.1.4.1. Classification of Social Recommender System

Recommender systems can be classified by using three major factors, which are:

22

1. Source of data used by recommender system, which includes websites

(traditional way), social networks or Web 2.0 (two way), and internet of things or

Web 3.0 (health signals, GPS locations).

2. Targeted data of user and item.

3. Data extraction methods which include explicit method and implicit method.

2.1.4.2. Factors Affecting Social Recommender System

The two main factors which affect the quality of recommendation in social recommender

systems are user profile and trust issues.

User profiling is the top factor when addressing the quality of the recommendation. This

information can be gathered by mining social networks. Most of the time, users enter their

profile explicitly when using social media sites. This information can also be gathered by

using software agents that capture user behaviours. There are two types of methods used

to get user profile information.

1. Explicit Method.

2. Implicit Method.

In explicit method, information is entered by users where they rate the items according to

their liking. This method is more accurate as it was registered personally by the user. The

implicit method uses system agents to capture the behaviours of the user to extract their

interests. In online recommender systems, user log data of click streams and navigation

23

patterns are used as implicit inputs. This method of inference is not always valid (erratic),

but it is transparent to the user, and the user is not required to input any information. In

both methods, we need sufficient information about the user profile and his/her behaviour

in order to give recommendations [34].

The second main factor which affects the quality of recommendations is the trust of the

user. When a user has to select between recommendations from a friend and a

recommender system, a user always prefers their friend’s recommendation [57].

Therefore, a recommender system should have trust feature that gives more reliability to

the recommendations.

2.1.5. Recommender System using Multi-Agent based System

In this section, we discuss the fundamentals and architecture of an agent and the multi-

agent systems. In the last few years, agents and multi-agent based systems have been

growing very fast in the field of computer science. Multi-agent based systems are

significantly beneficial in the decentralized and distributed computation environments,

such as distributed data mining and information retrieval [58, 59], sensor networks [60,

61], social sciences, artificial life, computer games, simulations, and soccer robots

applications. In MAS environment, one or more agents coexist and collaborate in order to

achieve a predefined goal. The soccer playing robots and software agents on the Internet

are examples of multi-agent system environments. In a MAS environment, all agents have

to communicate and coordinate with each other. Because of their ability of parallel

processing, MAS is utilized in social recommender systems [62, 63].

24

In [64], a framework for parallel crawlers for online social network is proposed. In this

work, many crawlers operate independently in order to increase the reliability of the

system; such that, if one crawler fails, it does not influence the operations of the others. In

[65], a collaborative filtering technique that depends on simultaneous clustering of users

and items is presented. In that work, a design of incremental and parallel versions of the

co-clustering algorithm is used. This version of the co-clustering algorithm is utilized in

order to build an efficient real-time collaborative filtering framework.

In [62], a multi-agent based system called “Infonorma” is proposed to recommend its

users for legal normative instruments. This system uses content-based similarity analysis

of web documents. In [63], a mobile application that uses multi-agent system is presented

in order to provide personalized and quick recommendations to the social network users.

In [66], a multi-agent recommender system is presented for e-tourism. It is based on a

reputation collaborative filtering algorithm and deals with the cold start problem mostly

found in tourism domain.

2.2. Related Research

2.2.1. State-of-the-art Social Recommender Systems

Many factors play important roles in the development of social recommender systems

such as novelty, accuracy and stability [30]. The biggest challenge for online social

recommender systems are the complete user profile and efficiency of recommendations.

A sophisticated user profile can be created by applying the above mentioned techniques

on user generated content. It is possible to predict opinion of users for a particular item by

25

using information available through user generated contents (UGC). By using UGC data,

an accurate user profile can be created. These profiles can reduce the problems of cold

start and malicious rating.

In [67], researchers developed a program which can search the user blogs and recommend

new blogs on the basis of user blogs. This program uses similarity clustering and tagging

for recommendations. In [68], a new blog crawler called RetriBlog for Blogsphere was

developed. It deals with the variations typically found in blogs. In [69], the trust-based

social recommender systems are discussed. Trust rating is used to define the level of trust

of the user. This method has three main properties of trust: transitivity, asymmetry, and

personalization. It is feasible for small social network, but it is very difficult to define

trust for all users of a large social network. Trusting a user or not, depends on the personal

opinion. In [70], a method is proposed to improve accuracy of group recommendation

using group personality composition along with trust between members of a group.

Researchers define the trust that should be personalized, where users can have the ability

to define different levels of trust to other users on the social network. In [71], a

probabilistic matrix factorization framework is employed. This framework uses both

user’s social trust network and user-item matrix for recommendations. This framework

outperforms state-of-the-art model of collaborative filtering and social trust-based

recommendation algorithms. The experiments have been done on Epinions datasets. Their

results were promising when few ratings were available in the dataset. In [72], a trust-

aware recommender system (TARS) is proposed. They use trust metric weight estimation

which is able to measure the trustworthiness of the trusted network. This method is

26

capable of using large datasets. Using a larger dataset increases number of ratings and not

compromise on accuracy. In [73], a trust-aware recommender system was proposed. This

system is able to solve the data sparseness problem. They proposed a new routing

protocol for their TARS. This protocol has a higher prediction compared to classical

routing protocol of free-scale network. Trust is the personal opinion about the user. In

[74], it has been found that similar interests of people lead to create trust between them.

In [75], a probabilistic modelling approach is presented for Digg website [49]. This

website provides services for its user to submit their favourite articles and also rate the

articles on the website. The rating criteria are based on votes by the user. Digg only uses

article’s vote counts, and then puts that highly voted article on the front page of their

website, no user preferences are considered for recommendations. If the

recommendations are based on user preferences, then it is possible that the user can vote

for articles without searching for their interested articles.

In [75], a personalized recommender system is presented. This model can be very useful

for the cold-start and warm-start problem faced by many recommender systems. This

model also recommends the low score relevant articles with equal importance as other

high score articles. An algorithm is proposed named EM algorithm. This algorithm is able

to learn proposed probabilistic model parameters. A generalized probabilistic latent

semantic indexing is used, which is similar to the technique used in [76].

In [77], model based algorithms predict user`s preferences for unknown products or

items. Precision of recommendation can be increased when using a probabilistic model.

27

Netflix [78] uses a probabilistic matrix factorization technique for movie

recommendations.

Tags are very effective information that can be used in social recommender system. Tags

are keywords which can be added to any digital object such as website, pictures, video,

songs, and movies. These objects are explored by using these keywords. Tags are used in

many websites such as Delicious [50], Flickr [48], Technorati [79], and CiteULike [53].

Social tagging analysis was done on the Delicious bookmarking system in [80]. The result

shows improvement while searching. In [81], distribution of tags in Delicious is studied.

This work suggests a generative model of collaborative tagging. The tag information is

gaining more importance due to the effect of information available in tags as compared to

other user information like a click stream or data logs. Tag is a small piece of

information, but very powerful because it is contributed by human intelligence. There is

no restriction of language, words, etc. for tagging. Tags have different meanings for

different users. Almost 60% of the tags are personal tags. Tags can be used to profile the

user's topic preferences accurately. This brings more challenges to the researchers for

example, how to solve freestyle vocabulary of tags. In [82], a model uses standard expert

ontology or item taxonomy for each user tag. This model tries to minimize the noise from

the tags. Item taxonomy is the controlled vocabulary terms or topics to classify items. For

example, Amazon uses book taxonomy.

28

People-tags based recommender system uses no explicit information from users. It is

based on people’s relationships and user tags information. In [51], a people-tag based

personalized recommender system for enterprise is proposed. This method is based

entirely on aggregating social network data. In [83], it was shown that aggregating social

network information from different sources will have accurate and better results.

Suggested item for the user is based on the item-people and user-tags aggregated

relationship for the target user. In [51], people and tags are used for recommendations in

social aggregation system [84, 85]. First, the relationship between people, tags, and items

are aggregated. They compared their results with tags-based recommender system,

people-based recommender system, people-or-tag-based recommender system, people-

and-tags-based recommender system, and popularity-based recommender system. The

tags-based recommender system that uses incoming tags and user tags has achieved better

recommendation results (success rate of 70%) as compared to others recommender

systems. The compared people-based recommender system and tags-based recommender

system only have 2% overlapping of recommendations. A hybrid people-or-tag-based

recommender system, which includes explanations, gives slightly better results. The

outcome, by combining peoples and tags relationship to user profile does not produce

much larger change as compared to only tags-based recommender system. The

recommendation provided by this method gives item diversity and lower recommendation

of already known items to the target user.

The main and critical outcomes are to define user profiles accurately and the system

should have enough information that can be used in recommendations. These social

29

networking sites have rich information which is related to the users. This information can

be extracted using latest data mining techniques. Personalised recommender systems can

use tagging, blogs mining, and trust techniques to strengthen their recommendation.

2.2.2. Recommender System using Twitter Data

Recommender system using the Twitter data is discussed in [86, 87]. A comprehensive

and detailed Twitter data analysis can be found in [86]. Followee-recommender system

for Twitter is proposed in [87]. This system is based on the user profile, followees, and

followers. The dataset of 20,000 Twitter users is used for experimental purposes. User

tweets and tweets from followees and followers are used in that research. New system

architecture, which is described as a Twittomender recommender system, is introduced as

a web service. The user has two basic modes, namely: user search and user

recommendation. The user search mode is used to handle the queries entered by the user,

while in user recommendation mode user profile is used as query source. User profiling is

done using tweets and social connections. Five different methods are used for profiling:

user’s own tweets, user`s followee tweets, user`s followers tweets, user’s followee ids,

and user`s follower ids. Lucene platform, which depend on TFIDF weighting metric is

used. If content sources such as user tweets, followee tweets, follower tweets are used,

then it can act as content-based recommender system. On the other hand, if indexing the

users by their followee and followers then collaborative-based recommender system can

be formed. The collaborative filtering method performs better than content filtering

method from the perceptive of precision. Precision result ranges from 0.15 to 0.2, which

means 2 out of 10 recommendations for followees is correct. In position of results for

30

recommendation-list, content filtering performs better than collaborative filtering. That

research shows that social media data such as Twitter, which is noisy data, can be applied

for recommendation purposes. In [88], an approximate TFIDF is implemented using the

graphic processing unit (GPU), which shows better results as compared to TFIDF using a

brute force algorithm.

For reducing the total processing time of the tweets different types of approaches are used

by researchers. In [89], uses a locality sensitive hashing method [90] to speedup first story

detection task. In [91], which is a fairly new development uses chuck of tweets to reduce

the total processing time. This method is able to reduce the total processing time by

limiting the amount of tweets to be processed at a given time. There is no other work

found to reduce the total processing time for social network data either by using

parallelization or distributed architecture.

As a part of this thesis, the Twitter data crawler tool is presented. The proposed crawler is

MAS based which downloads Twitter data and stores them in the database. In [3], we

presented the Twitter simulated environment that can be used for the distributed

recommender system. This Twitter environment is capable of simulating Twitter users as

agent in multi-agent environment. In [5], a multi-agent simulator for TCP/IP network is

presented. We use the message passing between agents that is presented in [3, 4, 5] and

the Twitter simulated environment presented in [3, 4] as the major components of the

proposed framework. Also, the method which is referred to as data grouping method is

31

compared with the proposed distributed recommender system in the Chapter 5 Section

5.7.

2.3. Summary

In this chapter, we presented the key background research material for this thesis. In the

first section, we introduced the task that we are dealing in more detail, by providing

detailed information on filtering techniques and the methods used in recommender

systems. In the second section, we explained the similarity methods used in the

recommendation process. We then presented the current state-of-the-art approaches in the

area of recommender systems. Furthermore, we explained different state-of-the-art social

recommender system along with different Twitter recommender systems. Finally, we

explain the concepts of multi-agent based system, which is one of the key techniques in

this work. In the rest of this thesis, we develop algorithms for distributed recommender

system that address all the key challenges, by reducing the online processing time for big

social data.

32

Chapter 3

Modelling the proposed Distributed

Recommender Systems

In this chapter, a simulation model will be presented for the distributed recommender

system. The objective of such model is finding the relation between the input variable

number of tweets and output variable running time of distributed recommender system.

The proposed distributed recommender system has the components running in parallel,

referred to as processing units. Another part of the distributed recommender system is the

distributed storage of databases used by these units. In summary, these units that may

include other units are categorized as follows:

 A set of text processing units.

 A set of recommender units.

 An organizing unit.

that is explained in the following sections.

33

3.1. Text Processing Unit

The text processing unit (TPU) is responsible for receiving the tweets published from the

user. After capturing the tweet, a text processing unit performs text processing based on

general text filtering criteria, which is used in common text processing algorithms that are

designed for processing post or tweets in online social websites. The criteria include

stopwords removal, retweets removal and stemming of words. Tweet have a maximum of

140 characters. These tweets contain lots of noises, which needs to be removed. The

example of the noises are non-English words, stopwords and URLs. The first step is the

conversion of tweet sentences into a sequence of words/terms by tokenizing each

sentence. This will separate words or terms from the sentence that can be used for further

processing. The following are the steps involved in the processing of the raw tweets to

produce a clean set of tweets.

1. Stopword Removal: Each word is compared and checked against a standard

stopword list of English terms. The stopword list from the Natural Language Tool

Kit’s is used to remove least informative terms. This process is used to rectify

articles (such as ‘an’, ‘a’, ‘the’) from the sequence of words in a tweet. The

remaining words are the alphanumeric words which are then used. This process also

removes URLs and a word which starts with ‘@’ (aka mention or reply) to be

removed from the tweets, however, the words with ‘#’ sign (aka hashtags) are

retained.

34

2. Number of Words: This process counts the number of English words present in

the clean tweet text. The lower limit for the number of words in one tweet is set to

three words, which means a tweet should have at least 3 words. Once a tweet

passes this criteria, then the clean tweet text will be taken for further processing.

Once the word filtration process is complete, each tweet is split into a set of

tokens or features and included in the vector space model [92]. Considering the

above explanation for a common text processing algorithm, the following

algorithm is used for a text processing unit.

Algorithm 1 Pseudo-Code for text processing unit

1. procedure stopWordRemovel(Tweets)

2. Declare:

3. N = number of tweets

4. L = number of stops words in stopWord array.

5. cleantweetText = temp string variable to store clean tweet

6. wordCount = number of words in cleantweetTweet

7.

8. for i = 1to N // remove all stop words from all tweet

// tweetText is tokenized by using the space between words

9. wordtokens ← tokenize(tweetText[i])

10. W = number of words in raw tweetText.

11. for j = 1 to W // for all words in tweetText

12. word ←wordtokens[j]

13. flag = 0

14. for k = 1 to L // remove all stop word from tweet

15. if(word = stopWord[k]

16. flag = 1

17. end

18. if (flag = 0 AND wordCount >= 3)

19. Append in cleantweetText += word // word and space

20. end

21. end

N is the total number of tweets to analyse the complexity of the above algorithm. The

worst case scenario is considered and time complexity (worst case) of Algorithm 1 for

line 8-21 is calculated as:

35

= 𝑂(𝑁 ∗ 𝑊 ∗ 𝐿)

Where, N = Number of tweets.

 W = Number of words in each tweet.

 L = Number of stopwords.

It is clear that the number of tweets (N) is the dominating factor, so the complexity of

typical text processing unit is 𝑂(𝑁).

3.2. Recommender Unit

Recommender Unit (RU) is responsible for performing two types of functions. First, the

name indicates itself, it provides recommendations to the requesting users upon their

requests and the second, it calculates weight for words of tweets for all users connected to

the recommender unit. When the clean tweet arrives at the recommender unit, it is stored

in a local database along with a user name. There are in total four different algorithms

which are implemented to build a common recomender unit. These algorithms can be

configured and initialize according to the architecture of the distributed recommender

system under test. The recommender unit is composed of the following, term frequency

unit, term frequency inverse document frequency unit, cosine similarity unit, and k-mean

clustering unit.

3.2.1. Term Frequency Unit

When a request is initiated from a user, recommender unit process all tweets present in

the unit by using Algorithm 2. A word bag is created for each user separately. This word

36

bag contains all the words it receives from the user. If the word is not present in user word

bag, it will create an entry for that word and if the word is previously present, the word

count is increased by one. Each user's word bag is then used in finding that user's

interests. A general method of term frequency [92] can be used which is defined as

follows:

𝑡𝑓(𝑡, 𝑑) = 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

Term frequency represents the number of terms present in the document. The following

Algorithm 2 is used for calculating the term frequency for one user tweet.

Algorithm 2 Pseudo-Code for calculating term frequency for creating wordbag

1. procedure wordBag(cleantweetText)

2. Declare:

3. Variable Tweets contains N tweets

4. wordBag ← {word, wordCount}

5.

6. for i = 1to N // for all clean tweets received for one user

// W = number of words in cleantweetText

// cleantweetText is tokenized by using the space between words

7. wordtokens ← tokenize(cleantweetText[i])

8. for j = 1 to W // for all words in tweetText

9. word ←wordtokens[j]

10. if (word not in wordBag) // wordCount = 1

11. Insert in wordBag (word, wordCount)

12. else

13. Increment wordCount of word in wordBag

14. if (word not in wordList)

15. Insert in wordList(word, wordCount)

16. else

17. Increment wordCount of word in wordList

18. end

19. end

Time complexity (worst case) of Algorithm 2 is calculated as:

37

= 𝑂(𝑁 ∗ 𝑊)

Where, N = Number of tweets

W = Number of words in each tweet.

Obviously, the number of tweets (N) is the dominating factor, so the complexity of term

frequency can be approximated by 𝑂(𝑁).

3.2.2. Term Frequency Inverse Document Frequency Unit

Recommender unit can also include term frequency inverse document frequency weight

calculation. When a request is initiated from a user, recommender unit process all tweets

present in the unit by using Algorithm 3. The term weight or term importance in a tweet

depends on the following three factors [93].

 Term Frequency (tf).

 Inverse Document Frequency (idf).

 Length Normalization (ln).

The term frequency inverse document frequency algorithm is the most widely used term

weight algorithm for information retrieval. It is the product of two statistics methods, term

frequency and inverse document frequency. Inverse Document Frequency is the number

of documents counted in a searched collection and is indexed by the term. The idf is also

called a Global term weight [94] and represents the importance of terms in the corpus

[95].

38

𝑖𝑑𝑓(𝑡, 𝐷) = log2

𝑁

𝑑𝑓

Where,

N = Total number of documents searched.

df = Document frequency (number of documents with same keyword).

Inverse document frequency for all tweets has to be calculated every time, when a user

tweets. Therefore, TFIDF is calculated when a new tweet received by the unit using

following formula:

𝑡𝑓 ∗ 𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) ∗ 𝑖𝑑𝑓(𝑡, 𝐷)

There are short tweets as well as long tweets. To give importance to both types of tweets,

we need to use normalization. If the tweet is long and has the same term available

repeatedly, then this tweet will have more influence on term frequency weight. If there

are more terms in the tweet, then again this will influence the search criteria. To reduce

the effect of long tweets (higher term frequencies and more terms), we need to employ

normalization on the basis of tweet length. We use cosine normalization in the vector

space model [35]. We use tweet vector to calculate cosine normalization. For a tweet ti,

we formally define

𝑐𝑜𝑠𝑁𝑜𝑟𝑚 [𝑖, 1] = 𝑇𝐼𝐷𝑖

𝑐𝑜𝑠𝑁𝑜𝑟𝑚 [𝑖, 2] = √(𝑤1
𝑖)

2
+ (𝑤2

𝑖)
2
+ ⋯+ (𝑤𝑛

𝑖)
2

𝑐𝑜𝑠𝑁𝑜𝑟𝑚 [𝑖, 2] = √∑(𝑤𝑗
𝑖)

2
𝑚

𝑗=1

Where, 𝑤𝑖 = 𝑡𝑓𝑖 × 𝑖𝑑𝑓

39

By using cosine normalization, we can normalize both higher term frequencies as well as

more terms in the long tweet. The output is a tweet feature vector which consists of tweet

ids and their TFIDF values. The following Algorithm 3 shows the pseudo code for TFIDF

unit.

Algorithm 3 Pseudo-Code for calculating TFIDF values by creating wordBag and tweetVector

1. procedure wordBag(cleantweetText)

2. Declare:

3. Tweets contains N tweets called tweet chunk

4. wordBag ← {word, wordCount}

5. tweetVectorTable ← {tweetID, wordList} where, wordList ← list of {word, wordCount}

6. for i = 1 to N // for all clean tweets received

// W = number of words in cleantweetText

// tweetText is tokenized by using the space between words

7. wordtokens ← tokenize(tweetText[i])

8. for j = 1 to W // for all words in tweetText

9. word ←wordtokens[j]

10. if (word not in wordBag) // wordCount = 1

11. Insert in wordBag (word, wordCount)

12. else

13. Increment wordCount of word in wordBag

14. if (word not in wordList)

15. Insert in wordList (word, wordCount)

16. else

17. Increment wordCount of word in wordList

18. end

19. Insert in tweetVectorTable (tweetID, wordList)

20.

21. end

22. tweetCount = Total number of tweets in tweetVectorTable

23. for i = 1 to N // calculate TFIDF for all tweets

24. tweetVector_Info ← tweetVectorTable[i]

25. for j = 1 to W // n is number of words in wordList

26. wordList_Info ← wordList[j]

27. totalwordCount ← (wordlist_Info(i,1), wordBag)

28. wordidf = wordCount * log (N / totalwordCount)

29. wordtfidf = wordCount * wordidf

40

30. tweettfidf += (wordtfidf) 2

31. end

32. tfidfvalue =  tweettfidf

33. tweettfidfVector[i] ← {get_TweetID(tweetVector_info), tfidfivalue}

34. end

Time Complexity (worst case) for Algorithm 3 is

= 𝑂(𝑁2) + 𝑂(𝑊)

3.2.3. Cosine Similarity Unit

Cosine similarity is a similarity measure of two vectors. It is the measure of cosine angle

between two vectors not their magnitude. If two vectors are exactly the same it means

cosine similarity is 1, because both vectors have no difference in their angle (i.e. a

direction which is zero, cos 0 = 1). The calculated similarity is bounded between [0, 1].

By using following Euclidean dot product formula, the cosine of two vectors can be

calculated as follows:

𝐴 ∙ 𝐵 = ‖𝐴‖‖𝐵‖ cos 𝜃

𝑐𝑜𝑠𝑆𝑖𝑚(𝐴, 𝐵) =
𝑉⃗ (𝐴) ∙ 𝑉⃗ (𝐵)

|𝑉⃗ (𝐴)||𝑉⃗ (𝐵)|

=
∑ 𝐴𝑖 × 𝐵𝑖

𝑛
𝑖=1

√∑ (𝐴𝑖)2𝑛
𝑖=1 × √∑ (𝐵𝑖)2𝑛

𝑖=1

Where,

A, B = Two users’ word vectors.

n = Number of words in the vector.

The following Algorithm 4 is used to calculate the cosine similarity of requesting user

against each user present in the unit.

41

Algorithm 4 Pseudo-Code for finding user interest using cosine similarity

1. procedure cosSimilarity(userReq, listofuser)

2. Declare:

3. cosSim ← {username, cosValue}

4. U = list of users

5. userReq = requesting user

// rUV = requesting user word vector

// UV = temp word vector, use for temp user words

// generate vector for requesting user (rUV)

6. for i = 1 to U // all users in listofuser

// generate vector for temp user.

7. for j = 1 to W // all words in requesting user vector

8. value += rUV[j] * UV[i][j]

9. mag1 += (rUV[j])2

10. mag2 += (UV[i][j])2

11. end

12. mag1 = sqrt(mag1)

13. mag2 = sqrt(mag2)

14. if both mag1 and mag2 is not zero

15. cosValue = value / (mag1 * mag2)

16. else

17. cosValue = 0.0

18. // save cosine similarity value with username in cosSIM

19. Insert in cosSim(username, cosValue)

20. end

Time Complexity (worst case) Algorithm 3 can be calculated as:

= 𝑂(𝑟𝑈𝑉(𝑟𝑈𝑉 + 𝑈𝑉))

Where,

 rUV = Vector size of requesting user.

 UV = Vector size of all user in the server.

The complexity of cosine similarity in the worst case is that if the number of users (U) is

equal to the number of tweets (N) then it can be calculated by using 𝑂(𝑁2).

3.2.4. K-mean Clustering Unit

The K-mean clustering unit is used for finding recommendations. Clustering is performed

on all the tweets vectors present in the recommender unit’s local database. By using k-

mean clustering algorithm, two clusters (k=2) are created as C1 and C2. Each TFIDF

42

value of a tweet is checked against the mean value of both tweet clusters. The tweetID of

TFIDF value is assigned to the cluster whose cluster mean distance is less than the other

cluster mean. The method is divided into two steps, which are, assignment, and update

steps. In the first step, random mean values in two clusters are defined and used as the

centriod for calculation by using the following formula:

𝐶𝑖
(𝑡)

= {𝑥𝑝: || 𝑥𝑝 − 𝑚𝑖
(𝑡)

 ||2 ≤ || 𝑥𝑝 − 𝑚𝑗
(𝑡) ||2 ∀𝑗 , 1 ≤ 𝑗 ≤ 𝑘}

Where 𝑥𝑝 is assigned in one or more than one 𝐶(𝑡) clusters.

In the next step, which is the update step, mean is again calculated and set as the new

centriod, by using the following formula:

= 𝑚𝑖
(𝑡+1)

=
1

|𝐶𝑖
(𝑡)|

 ∑ 𝑥𝑗

𝑥𝑗 ∈ 𝐶𝑖
(𝑡)

The time complexity of k-mean (Lloyd’s algorithm) is given by)(nkdiO , where n is the

number of d-dimensional vectors, k is the number of clusters and i is the number of

iterations needed. In this thesis, the number of dimensions is already defined for k and d.

Where k = 2 (clusters) and d = 1 (one TFIDF value for each tweet). Therefore the time

complexity can be solved exactly in)log(1 nnO dk

 time, where n is the number of

tweetIDs to be assigned. The following Algorithm 5 is used by the recommender unit to

perform clustering when the request from user is received. K-mean clustering algorithm is

a stochastic in nature, therefore, each clustering result varies depending on initialization

of centriod (which is pseudo random).

43

Algorithm 5 Pseudo-Code for Distributed Algorithm (Finding similar user interest using k-mean)

1. procedure clusters(tweettfidfVector)

2. Declare:

3. tweettfidfVector ← {tweetID, tfidfvalue}

4. N = Total number of tweet vectors in tweettfidfVector

5. k = 2, // k is the number of clusters to create similar interest user list

6. C1 = {} and C2 = {} // C1 and C2 are two lists that represent cluster 1 and cluster 2.

// calculate random r1 and r2 that represent the centre of two clusters K1, K2.

// r1 and r2 are in the range of 0 to maximum value in tweettfidfVector(tfidfvalue)

7. maxtfidf ← MAX(tweettfidfVector(tfidfvalue))

8. r1 = RANDOM(0: maxtfidf)

9. r2 = RANDOM(0: maxtfidf)

10. while (mean(C1) & mean(C2))

// calculate distance between all tweettfidf and r1 and r2 for each cluster

11. for i = 1 to N // all vectors in tweettfidfVector

// Calculate distance d1 b/w each tfidf(i) and cluster mean r1.

// Calculate distance b/w each tfidf(i) and cluster mean r2.

12. d1 = Distance (tweetVector (i,2), r1)

13. d2 = Distance (tweetVector (i,2), r2)

14. if d1 >= d2

15. ADD in cluster C1 (tweettfidfVector(i,:))

16. else

17. ADD in cluster C2 (tweettfidfVector(i,:))

18. Recalculate the new cluster's centre r1 and r2 by using formula.

19.)2:()/1(
1

jKlr
ml

j

mmm 


 where ml is the number of tweets in mth cluster

20. if (mean value of cluster is unchanged then exists while loop)

21. end

22. end

23. result = {C1, C2}

24. // sort the interest list using merge sort

Time Complexity (worst case) for Algorithm 5 is

= 𝑂(𝑁2 log𝑁) + 𝑂(𝑊)

3.3. Organizing Unit

Third unit is Organizing Unit (OU). This unit is responsible to receive request generated

by user and sent the request to all recommender units. This unit does not have any data

processing overheads.

44

Time complexity is calculated to show the relation between running time and number of

tweets for each unit. By increasing the number of tweets and showing the time complexity

of above discussed units the relation between time complexity and number of tweets is

analysed. The effects of number of users on time complexity is not included and

assumption is that the users are distributed evenly based on total number of their tweets

on each server. From Figure 3.1 to Figure 3.5 shows the time complexity of five

algorithms that are used to show the increase in the number of tweets in the above

discussed units and their performance improvement when running them in parallel by

multiple servers. It can be seen all the algorithms that have higher time complexities

benefits more from having more processing units (i.e. running them in a distributed

environment). However, there is a limit for that which is determined by additional time of

message passing which is described in Section 3.6 and is measured in the experiments of

Chapter 5, Section 5.4.3 and Section 5.5.3. For example, the recommender unit benefits a

lot from the multi-processing of its units because all the consisting four units have the

algorithms with running times approximated as 𝑂(𝑁2) and in Figure 3.2 to Figure 3.4

also shows that when using them with two servers their running times are significantly

reduced (around 75%). Text processing unit also benefits from multiple processing, for

example 40% reduction in running time with two servers and so forth.

45

Figure 3.1: Shows the time complexity of the text

processing algorithm.

Figure 3.2: Shows the time complexity of the term

frequency algorithm.

Figure 3.3: Shows the time complexity of the

TFIDF algorithm.

Figure 3.4: Shows the time complexity of the

cosine similarity algorithm.

Figure 3.5: Shows the time complexity of the K-mean clustering algorithm.

The important observation is for the units with the algorithms of O(N2) the running time

has non-linear relation to the increase in the number of the tweets (i.e. Figure 3.2 to

Figure 3.5) which means they are non-scalable. Whereas, when using the same units with

46

two servers this relation became linear relation for upto 50,000 tweets. Based on this

observation, we define scalability factor as the following: For the units of recommender

systems with O(N2) running time complexity, using two servers (i.e. running two units in

parallel) make them scalable for upto 50,000 tweets. Of course it is just a theoretical

result with no consideration of length of tweets, effects of message passing, disk storage

latency, and other delays of organizing all components of recommender system.

In the next section, we provide a computational model to be used in different scenarios,

but before that we need to discuss distributed storage of the database and data

distribution.

3.4. Distributed Storage and Data Distribution

So far, the theoretical improvements of the parallel running of the units which are in

proposed recommender distributed systems have been discussed. Another feature of the

distributed recommender system proposed in this thesis is the use of a distributed

database for the storage of tweets that are processed by parallel units. For example, each

recommender unit uses its local database for providing recommendations; therefore, the

storage of user tweets is distributed across distributed databases. In the distributed

database (disk storage), the performance of the distributed recommender system depends

on disk latency.

Let m be the number of recommender units used in the distributed system, U be the

number of users and N be the tweets of the user which are given as input to the system.

47

The tweets that need to be distributed belong to different users, so we divide the tweets

based on users. This way, all tweets from each user will be stored in one recommender

unit's local database. To do this, users are assigned to a specific recommender unit and

local database. Moreover, data distribution (or load balancing) of tweets makes it possible

for the distributed local databases have approximately equal number of tweets, this

process of data distribution is done by initializer agent. Data distribution in the distributed

recommender system is done by dividing the total number of processed tweets by m.

Thus, we should get a reduction in disk seek time in the amount of total seek time in

central version divided by m. This calculation will be done in all three phases of the data

process.

In Phase 1, each user Ui from the list of user U is assigned to one text processing unit (pi).

Each text processing unit processes all tweets of that user. In Phase 2, the text processing

unit is assigned to a specific recommender unit, such that each text processing unit stores

the clean tweets in a local database connected to a recommender unit. If we assume the

system knows how many tweets are stored in each server at a time, then it can move all

the tweets of one user if it exceeds the calculated capacity of the local database of that

server. Since the system depends on some parameters (e.g., the geographical location of

each user) at the beginning each user can be assigned to specific server. The idea is to

divide tweets available in the local databases equally to all recommender units, but

sometimes it may not be possible to have equal tweets on each server because we want to

process all tweets of a user by one recommender unit. Also, the tweets of one user should

not be fragmented in different servers. It is possible some users have more tweets than the

48

others. In this case, some recommender unit may get more than the specific amount of

tweets, so we may add more recommender units. The main benefit that we expect to get

from data distribution is to reduce the total disk seek time for processing the tweets in the

local databases instead of the central database. Although, the load balancing (i.e. data

distribution) would not be 100%, as the number of tweets from each user may differ from

the other users. We expect to reduce the total seek times in half for the distributed system

with two servers compared to the central system.

3.5. Distributed Recommender Systems

In this section, we will explain two simple configurations that can be easily made by

using this framework. These configurations are as follows:

1. By using text processing, term frequency units (i.e. algorithms) referred to as

similarity-based distributed recommender system (SDRS).

2. By using text processing, term frequency inverse document frequency units

referred to as clustering-based distributed recommender system (CDRS).

For simplicity in both models, the number of units is assumed to be one instance (i.e. unit)

in each server. Thus, m refers to the processing units or servers in both the following

system architectures:

49

3.5.1. Similarity-based Distributed Recommender System (SDRS)

In first the distributed recommender system configuration, three different units (i.e.

algorithms) are used. The following Figure 3.6 shows the distributed recommender

system architecture with the initial number of the above units on two servers. These initial

values are used to solve the problem with a theoretical approach in the following section.

For each unit, common and existing algorithms of text processing, term frequency

calculation, and cosine similarity are used.

Figure 3.6: Distributed recommender system using TF and cosine similarity.

The text processing unit receives the raw tweets and gives output in clean tweet text to the

recommender unit. There are two functions of the recommender unit. First, this unit is

50

responsible for receiving cleantweets and storing them locally in the database. Second,

when user request arrives, it calculates term frequency by using Algorithm 2, and find, the

similar user by using a cosine similarity algorithm (Algorithm 3) as explained previously.

3.5.1.1. Examining the Effect of Parallel Processing on SDRS

The time complexity of the distributed recommender system can be calculated by the

number of text processing units (p) connected to the recommender unit (m). The time

complexity of processing text is the time required by each text processing unit to

complete the processing of all user tweets. From the previous section, the time complexity

of the text processing unit is calculated as 𝑂(𝑁). To determine the time complexity of the

text processing unit when having p processing units can be calculated by the following

formula:

= 𝑂 (
𝑁

𝑝
)

Where,

N = Number of tweets

p = Number of text processing units

By using the above formula, the effects of having multiple text processing units are

examined and shown in the Figure 3.1. We can observe from the graph, when the number

of tweets increased, the time increased exponentially when using central processing.

Using two processing units reduces the time significantly. The following formula shows

the time complexity by using multiple recommender units (m).

= 𝑂((
𝑁

𝑚
)
2

)

51

Where,

N = Number of tweets received by recommender unit.

m = Number of recommender units.

We can observe from the graph when the number of server increases, the time decreases

approximately in half. The time complexity of the recommender unit for cosine similarity

(Algorithm 3) is calculated. The following graph shows the time complexity using

multiple units (m). The complexity of cosine similarity in the worst case is that if the

number of users (U) is equal to the number of tweets (N) then the time complexity can be

calculated by 𝑂(𝑁2). Therefore, the time complexity of cosine similarity for one unit can

be defined by

= 𝑂 ((
𝑁

𝑚
)
2

)

Where,

 N = Number of tweets.

 m = Number of recommender unit.

The total time complexity of the distributed recommender system can be calculated by

using the following formula with the initial number of one text processing for each

recommender unit.

 = 𝑂(𝑇𝑒𝑥𝑡 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 + 𝑇𝑒𝑟𝑚 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦)

 = 𝑂(𝑁 + 𝑁2 + 𝑁2)

 = 𝑂(𝑁2)

For m recommender units, the total time complexity can be expressed as

 = 𝑂 (
N

m
 + 2 (

𝑁

𝑚
)
2

)

52

Where,

 N = number of tweets.

 m = number of recommender units.

Following is the graph for total running time complexity reduction for SDRS as the

number of processing units (i.e. servers) increased.

Figure 3.7: Total time complexity of the similarity-based distributed recommender system (SDRS).

The graph also shows that in theory, parallelization of recommender units contributes

more by reducing the total running time. Figure 3.7, shows the increase in time

complexity of central variation has a power law relation with the increase of the number

of tweets. Figure 3.7 indicates that the time complexity of SDRS is non-linear (i.e. non-

scalable) when using one server and it is linear (i.e. scalable) when using at least two

servers for upto 50,000 tweets. Figure 3.7 also shows that for the small number of tweets

(i.e. around 50,000 tweets) using two servers reduces running time almost 75% for SDRS

configuration. For calculating total benefits of such parallelization, we need to know the

53

cost which means the time of message passing (calculated in the Chapter 3 Section 3.6) in

SDRS.

3.5.2. Clustering-based Distributed Recommender System (CDRS)

In the second distributed recommender configuration, we use text processing, TFIDF and

k-mean clustering units (i.e. algorithms). The Figure 3.8 shows the distributed

recommender system architecture with the initial number of the above units on two

servers. For each unit, common and existing algorithms of text processing, TFIDF and k-

mean clustering are used. In this configuration, text processing is similar to the previous

configuration as explained before.

Figure 3.8: Distributed recommender system using TFIDF and k-mean clustering.

54

Similar to the previous configuration, recommender unit uses two functions, namely

TFIDF and k-mean clustering. When the user request arrived, the recommender unit

calculates TFIDF by using Algorithm 3 for all users present in the local database, and

then to find similar users by using k-mean clustering (Algorithm 5).

3.5.2.1. Examining the effect of parallel processing on CDRS

The time complexity of the text processing unit is 𝑂 (
𝑁

𝑝
) as explained in first

configuration. Where, N is the number of tweets and p is the number of text processing

units. The time complexity of the recommender unit of TFIDF function is calculated as

= 𝑂((
𝑁

𝑚
)
2

)

Where,

N = Number of tweets received by recommender unit.

m = Number of recommender unit.

The time complexity of k-mean algorithm for one server can be defined by

= 𝑂 ((
𝑁

𝑚
)
2

log (
𝑁

𝑚
))

Where,

 N = Number of tweets vector to cluster.

 m = Number of Recommender unit.

The total time complexity of the distributed recommender system can be calculated by

using the following formula:

 = 𝑂(𝑇𝑒𝑥𝑡 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 + 𝑇𝐹𝐼𝐷𝐹 + 𝑘 𝑚𝑒𝑎𝑛)

55

 = 𝑂 (
N

p
+ (

N

m
)
2

+ (
N

m
)
2

log (
N

m
))

Where,

 N = number of tweets.

 p = number of text processing units.

 m = number of recommender units.

Figure 3.9 shows the power law relation between increase in time complexity and number

of tweets for the central variation of CDRS configuration. Figure 3.9 shows that by using

two servers the relation between time complexity of CDRS and the number of tweets

become linear and scalable. Figure 5.39 also shows that for a small number of tweets (i.e.

around 50,000 tweets) for making the system scalable the total time complexity reduction

by using two servers is approximately 77% for CDRS which is more than the reduction

gained by two servers in SDRS. Thus, we require more reduction in time complexity of

CDRS in comparison to SDRS to make the system scalable. However, using scalability

factor of two servers still it is working for CDRS.

Figure 3.9: Total Time Complexity of the clustering-based distributed recommender system (CDRS).

56

In Chapter 5, we examine these results with simulation of the system prototype

implemented by using multi-agent system.

3.6. Message Passing in Distributed Recommender System

To calculate a general message passing in such system, this can be formally represented

as follows. Suppose we want to find, what is the worst case scenario for message passing,

which can be calculated by assuming that after each tweet, a user requests for

recommendations. It means that the system should transfer N messages to (𝑚 − 1)

processing units on each server, considering m is the number of servers present in the

distributed environment. So the cost is the number of message passing when a user asks a

question after each tweet (worst case) is

= (𝑚 − 1) ∗ ∑𝑖

𝑁

𝑖=1

= (𝑚 − 1) ∗
𝑁(𝑁 + 1)

2

It means that the time of message passing is proportional to N in the power of 2 times m.

The graph of the message passing is shown in the following figure:

57

Figure 3.10: Shows the time complexity of message passing.

It can be observed from the Figure 3.10 that the total cost of the system will increase by

adding the number of servers (m). Please note that message passing time has the opposite

trend compare to total running time, Figure 3.10 shows adding more servers increases

message passing time by adding the number of tweets. It is clear that if the message

passing time increased and becomes more than achieved reduction in running time, then

having many units running in parallel is not useful.

3.7. Summary

In this chapter, the time complexities of algorithms of a typical recommender system are

analysed. Then, the relation between running time and number of tweets are shown by

time complexity. Arguably, the most important challenge that modern recommender

systems face is the high volume of online data that they are dealing with. In this chapter,

58

we found that using at least two servers (i.e. the scalability factor of two) will scale the

common recommender systems by improving the time complexity of typical units

involved in them. The core of our approach is to reduce the running time of the

algorithms by running them in parallel. We further showed that how the reduced

processing time can be used to find scalability factor for each recommender system. We

found that by using at least two servers we can make two variations of common

recommender systems to be scalable for upto 50,000 tweets. By running recommender

units in parallel, we expect that the running time of the proposed distributed systems to be

reduced by the 75% when using at least two servers in comparison to one server. In the

next chapters, we examine the theoretical result that was found here with multi-agent

based simulation of discussed recommender systems.

59

Chapter 4

Multi-Agent based Framework, Specification and

Implementation

Agent based development is one of the recent approaches in software engineering for

development of complex applications. Agent based development is similar to object based

development, but it is more suitable for distributed and complex applications. The

environment for which the proposed distributed recommender system is developed is a

complex environment. Agents are also very useful tools to simulate complex

environments such as social networking. In this thesis, a group of the agents is developed

as a prototype of the proposed distributed system that can be turned into a real system in

the future and some other agents are developed to simulate a user (called user agent)

which communicates with other agents on behalf of a Twitter user. Therefore, the whole

developed agents system is referred to as multi-agent based framework in this thesis. For

now, the user agent is very simple and just relays user’s tweets. In the future, it can be

very complicated by analysing the user’s interests and providing suggestions for its users

based on the recommendations it receives from recommender agents. The user agents

communicate with the distributed recommender system and can be located in different

geographical locations.

60

This chapter presents the design issues of a multi-agent based framework that can process

the huge amount of social data of Web 2.0 sites in an online manner. This framework

consists of multi-agent systems, making three different applications (they are referred to

as modules in the rest of this chapter) which are: Data crawler, Twitter simulator, and

distributed recommender system. All of these applications have been developed to be able

to test proposed distributed recommender system. The main focus of this chapter is to

build multi-agent recommender system that consists of developing agents to do the tasks

of the algorithms explained in Chapter 3. These tasks are, text processing, tweet analysis

using Term Frequency, providing recommendations by using cosine similarity algorithms

and etc.

Figure 4.1: Shows MAS based Distributed Recommender System.

61

4.1. Structure of the Proposed Multi-Agent based Framework

The proposed multi-agent based framework consists of the following modules, as shown

in Figure 4.2.

1. Data Crawler Module.

2. Twitter Simulation Module.

3. Distributed Recommender System Module.

Figure 4.2: Multi-Agent based proposed framework.

1. Data Crawler Module: This module is based on a multi-agent system which is

used to extract tweets from the Twitter web site and store them in “usertweet”

database, more details about how this module work is presented in Section 4.1.1.

2. Twitter Simulation Module: This module is a multi-agent system that utilizes

tweet text, date time stamp, tweet ID, and user ID, which are stored in “usertweet”

62

database to simulate the Twitter environment. Later, this environment is used to

test our proposed distributed recommender system. The description of this module

is in Section 4.1.2.

3. Distributed Recommender System Module: Distributed recommender system

module, is also based on a multi-agent system. This is a core module of the

proposed framework. The task of this module is to recommend a user with similar

users based on their interest. The detail of this module is presented in Section

4.1.3.

4.1.1. Data Crawler Module

Data crawler module reads the input from a text file called “userdatadownload”. This file

contains a set of Twitter users IDs along with a number of friends’ and followers’ tweets

to be downloaded. Data crawler uses these inputs in order to extract tweets along with

their attributes from the Twitter website. The outputs of this module are the tweets of the

user, user’s friends, and user’s followers. The list of Twitter user IDs is used to create

data crawler agent. Each agent is responsible for downloading tweets of its Twitter user

from the Twitter website. These agents work in distributed environment, so it is possible

to download tweets in parallel. The downloaded tweets are then stored in “usertweet”

database. In the crawler module, the following processes are performed:

63

Figure 4.3: Multi-Agent based Twitter Data Crawler.

1. Authentication: In order to get the user data from the Twitter website, first we

need to create the Twitter application development account. This account is used

to get authentication in the form of bearer token from the Twitter website. To

authenticate the data crawler agents, a bearer token agent is created. This bearer

token agent is responsible for getting the bearer token and distribute it to all data

crawler agents.

64

Figure 4.4: Twitter Data Crawler Module showing user agents and bearer token agent.

2. The token is passed to a set of data crawler agents in a multi-agent environment. A

data crawler agent is created for each Twitter user ID which is defined in

“userdatadownload” text file. For example, if we have ten Twitter user IDs in

“userdatadownload” file, the data crawler tool will create ten data crawler agents.

The data crawler agent uses a bearer token to download tweets of these users and

stored them in the “usertweet” database.

4.1.2. Twitter Environment Simulator Module

This module is used to simulate Twitter users in a multi-agent based environment. The

input of this module is a text file called “simulateusers”. This text file has a set of Twitter

user IDs. This list of users IDs are used to create Twitter simulator user agents. Each

65

Twitter simulator user agent reads their tweets from the “usertweet” database. In the

Twitter simulator environment, the following processes are performed:

Figure 4.5: Multi-Agent based Twitter Environment Simulator Module.

1. Read the tweets from the database depending on the following parameters:

start date, start time, end date and end time.

2. Each tweet is published sequentially based on the date time stamp. Also the

tweets are timed as per their tweet date time stamp received from the Twitter

website.

4.1.3. Distributed Recommender System Module

The distributed recommender system is the module responsible for generating

recommendations for Twitter user about the other users with similar interests. The input

to this module is a set of Twitter users’ tweets information published by the Twitter

66

simulator module. The output is a set of the recommendation list for the user. Note that, in

real Twitter environment tweets will be captured directly from the Twitter website. Each

element of this set of tweets includes the following attributes:

 User ID: shows the identification of the Twitter user who has published the tweet.

 Tweet ID: is the number that is the unique identifier for the tweet.

 Date/Time Stamp: shows the date and time that a tweet has been published.

 Tweet text: includes the text content of the tweet. It also includes URLs, retweets,

hashtags etc.

The proposed distributed recommender system architecture in this thesis is based on

MAS, where each agent is used to simulate node in the distributed environment. The node

in the distributed environment can be a Twitter user agent, recommender agent and

organizing agent. To evaluate this platform we use the Twitter website for real text data

from actual users. In a real environment, server machines have a lot of resources as they

are designed to handle many incoming client requests. The request from the light weight

Twitter user agent is redirected to the recommender agent by the organizing agent for the

recommendations. This organizing agent sends the user agent request to all available

recommender agents in the network environment. In return, recommender agent replies to

it with the response message. This message contains the list of similar users, which is sent

to the requesting user agent. There are two types of agents designed in this simulation

model are as follows.

67

1. Administrative Agents;

2. Runtime Agents.

4.1.3.1. Administrative Agents

This type of agent can communicate with all under laying agents, but only be controlled

by the system administrator (a person). The administrator provides test scenarios for the

agents in a simulation environment and logs all the information processed by other

agents. This agent is called initializer agent. Initialzer Agent is an administrative agent,

which is responsible for deploying and initialling the complete test scenario. The runtime

environment consists of user agents, recommender agents, and the organizing agent. The

user of the simulator can only interact with the initializer agent. The initializer agent uses

property file, and reads all the start-up and configuration information. This includes

connection information related to the user agents to all agents in the environment. Each

agent is initialized with a separate handler. For instance, the recommender agent will be

created and initialized by the recommender agent handler.

4.1.3.2. Runtime Agents

These agents participate in the simulation environment by processing data from different

agents. They implement the behaviour and functionality of each text based algorithm in

the distributed environment. They are able to communicate with other agents; however,

there is a provision that the administrative agent could also directly communicate with the

runtime agents. To evaluate the simulation tool, three types of runtime agents are

designed, which are as follows:

68

1. Text processing agent.

2. Recommender agent.

3. Organizing agent.

The complete configuration of the distributed simulation network is defined in a property

file that is uploaded during the system start-up process. This start-up process is initiated

by the initialize agent. Once a property file is uploaded, the complete runtime

environment is created in the multi-agent based environment. Runtime agents’ behaviors

are based on the text processing and message passing algorithms. These algorithms are

initialized by an administrative agent. After the initialization process is complete, agents

can use these algorithms’ behavior as they are needed.

4.1.3.2.1. Text Processing Agent

The text processing agents are responsible for receiving the tweets published from the

user or tweeting agent in the Twitter simulator module. After capturing the tweet, the text

processing agent performs text processing based on the criteria which are detailed in

Chapter 3 Section 3.1. Once the tweet is cleaned and passes selection criteria of the

tweets, it will be sent for further processing.

4.1.3.2.2. Recommender Agent

The recommender agent is responsible for performing two types of functions. These

functions are implemented as behaviours of the agent. The first behaviour of this agent is

the receiving of the cleantweets and storing them in a local database. The second

69

behaviour is the generation of a recommendations list for requesting users. This behavior

is used when a request is initiated by a user agent for finding the similar users. This

behaviour has four different functions that can be selected during initialization.

1. Term frequency weighting function.

2. Term frequency inverse document frequency weighting function.

3. Cosine Similarity recommendation function.

4. K-mean Clustering recommendation function.

These functions are implemented as a separate behaviours and the user has the option to

select any combination of these functions. In this thesis, we selected term frequency with

cosine similarity as the first configuration, and TFIDF with k-mean clustering for second

configuration. These configurations are used in the experiments, detailed in the next

chapter.

4.1.3.2.3. Organizing Agent

The organizing agent is a runtime agent and is also created by the start-up process. The

responsibility of this agent is to receive request generated by user agents and send the

request to all recommender agents. This process is called the recommendation process,

which is explained in the next section.

70

4.2. Message Passing in Distributed Recommender System

In order to generate recommendation list of similar user the following processes are

performed:

1. User agent sent a request for recommendation of similar user to organizing agent.

2. The organizing agent uses the sender ID information to find out which user has

requested for the recommendation. The user name (sender ID) is then broadcast to

all recommender agents. The goal of this broadcast is to request all recommender

agents for the recommendation list.

3. Each recommender agent checks whether the requesting user is present in its local

user database. Only one recommender agent will have a requesting user connected

to it. The first step is if recommender agent found requesting user in its local

database, then recommender agent will obtain the requesting user tweets vector

(tw), which is then sent to other recommender agents. The second step is to find

the interest list for the requesting user from its own server by using cosine

similarity or k-mean clustering algorithm (depending on the initial configuration).

The interest list of users is generated, this list has two columns: first column is for

user name and second column includes the interest percentage. This list is then

sent to the organizing agent.

71

4. The recommender agent who does not have the requesting user in its local

database will not respond to the broadcast of the organizing agent as in step 2. It

will only respond to the message which is sent from recommender agent who has

requested user connected. This message contains tweet vectors of the requesting

user. When other recommender agent receives the tweet vectors, they will store

them temporarily in the recommender agent (servers) memory for one time

processing. The received tweets will not be stored permanently on recommender

agent (server) database. Once all tweet vectors of the requesting user are received,

the similarity or clustering algorithm (explained in previous Chapter 3) are applied

and recommendation list is generated.

5. Next, recommender agent will prepare the recommendation list with the first

column for the user name and interest percentage in the second column and send

the recommendation list to the organizing agent.

6. The organizing agent receives the interest list from all recommender agents. The

lists from all RAs are combined and send to the requesting user agent.

4.3. Agent Development Environment

The multi-agent based distributed recommender system is implemented by using Java

Agent Development framework (JADE). It is a software framework written in Java

language and is use for development of intelligent agent. This framework was developed

by Telecom Italia and can be downloaded freely under GNU Lesser General Public

License (LGPL). The JADE frame uses the Foundation for Intelligent Physical Agent –

72

Asynchronous Communication Language (FIPA-ACL). FIPA-ACL is used for

coordination and communication between the agents [96]. JADE uses a container to host

agents in distributed agent platform. The platform provide different tools for debugging,

agent mobility and execution of different agents in parallel [58].

4.4. Verification and Validation

The verification and validation of the multi-agent based distributed recommender system

was done by two methods, which is previously presented in [5]. The first method is done,

by validating the complete results of the simulation. The second method is the verification

of the behaviour of each agent by checking the message sent to other agents (information

flow). The validation of the MAS simulator was done by comparing its results to the

central recommender system based simulator using the same selected scenario. For that

reason, the same algorithms are used by the proposed multi-agent based simulator [3] and

[4]. This is the extension of the previous work [3], a simulator application written in java

language.

For the verification of the multi-agent system, we investigated the information flow of

message passing from each agent to a recommender unit. Java agent development

framework’s test feature is used, which is compliant with the Foundation for Intelligent

Physical Agent standards. The proposed simulator used the same compliance for

interaction between the agents as detailed in [58]. For the verification of the information

flow (message passing), the JADE Sniffer Agent was used. Sniffer agent, when activated

in the MAS platform, can track all messages sent and received by any agent in the MAS

73

environment. This agent can sniff or track a single agent or a group of agents. Messages

exchanged in the agent platform can be recorded and viewed using the sniffer agent

window [58, 96]. We verified each agent that sends information to the next agent by using

the sniffer agent. This verification approach is similar to the verification approach of

Virtual Overlay Multi-Agent System (VOMAS) used in [97]. The verification is also

done manually by comparing all the message passing used in the simulation with the

results of the sniffer agent which detailed the complete flow of information (message)

between the agents.

4.5. Summary

In this chapter, we develop the multi-agent framework to be used for prototyping the

recommender system for various simulation scenarios. The implementation is done in

three modules. In the first, the data (tweets) is downloaded from selected users from the

Twitter website. This is accomplished by implementing a multi-agent based data crawler

module. In the second module, a multi-agent based Twitter Simulator module is

developed that can mimic the Twitter environment. This Twitter simulator uses tweets

from database (downloaded by data crawler module) and simulating users publishing the

tweets. In the third module, a multi-agent based distributed recommender system is

developed. This distributed recommender system is capable of using different agents,

including text processing agents and recommender agents based on algorithms and

models discussed in Chapter 3. In the next chapter, two configurations of distributed

recommender system will be used in multi-agent based simulation to examine the

74

theoretical results found in Chapter 3 about scalability factors and running time

reductions.

75

Chapter 5

Simulation and Experimental Results

The intent of this chapter is to evaluate the efficiency of the proposed distributed

recommender system by conducting simulation and comparing it against a central

recommender system or one server recommender system. Also, we will show results

obtained from the simulation of four different types of experiments on each dataset. A

total of four experiments are performed on each dataset by using the central recommender

system, two server recommender system, four server recommender system and eight

server recommender system. In total five different algorithms are implemented and

simulated in the experiments.

As explained in Chapter 3, main modules that have been implemented to develop the

framework are data crawler module, Twitter environment simulator module, and

distributed recommender system module. The data collection is done by using MAS

based data crawler module that is explained in Chapter 4.1. There are five seed Twitter

users that are used for data collection and to construct the Twitter social network graph.

The data set for each seed user is collected in the interval of every 15 days for six months.

The last data set is used for evaluating the recommended results.

76

The second module is the MAS based Twitter environment simulator module, this module

uses the data sets collected by the data crawler module. Twitter environment simulator

module as explained in Chapter 4.2, is a multi-agent based system. Each Twitter user has

its own agent in a multi-agent environment which simulated as a tweet text generator.

5.1. Datasets

To evaluate the proposed framework we need to build the Twitter social network graph,

which is available on the Twitter website. Data crawler module builds the local repository

for each user by downloading the following data:

 User Profile (user name, location, number of follower, number of followee, etc.)

1. Tweets and retweets of user.

2. List of Followers of user.

3. List of Followees of user.

4. Tweets and retweets of user's followers.

5. Tweets and retweets of user’s followees.

Information which was downloaded for each tweets and retweets of any user includes the

userID, tweetID, date and time tweet is published and tweet text. Following are the total

data (tweets and user) downloaded by using the data crawler module.

Table 5.1: Shows the user graph information downloaded by using data crawler.

Attributes Total

Users 6095

Tweets 931031

Followers 12898

Followees 1961

Restricted Users 293

77

The five different datasets are downloaded. The datasets are collected in different time

frame. The main reason to use 5 different datasets is that each dataset shows users

following specific twitter user therefore capturing different types of tweets from different

set of users. The network graph is created for all users based on specific user followed by

them. For example the data of all users who followed Ryerson user in a specific time

frame captured in dataset 4. Tweets text, tweetIDs, etc. are collected for all the followers

of the user for specific date, so that comparison can be done in the recommendation

process. The recommendation process uses all the tweets one day before the real date

when the users start following the main user. The following table shows five datasets used

in the experiments for two different sets of the distributed recommender system.

Table 5.2: Shows five datasets used in the experiments.

Data

Set

Total

Tweets

Total

Users

1 8003 37

2 9760 35

3 16009 56

4 21766 15

5 25533 41

5.2. Simulation Platform

All three proposed modules are implemented using Java programming language in

Eclipse IDE for Java EE Developers compiler on the Windows 7 platform. System

configuration used in this work is shown in Table 5.3. All modules are based on multi-

agent system, therefore, we use a development tool known as Java Agent Development

framework [58, 98]. The data crawler module connects to the Twitter API 1.1, different

functions are developed to get user content from the Twitter website. Twitter API is freely

78

available for all developers and researchers. There are many functions such as get user

time line or get followers of user by implementing GET connection. The output of each

GET function is in a simple JSON (JavaScript Object Notation) format. The JSON output

is then parsed and stored in the database. We used mySQL Server 5.6 Database, which is

a lightweight relational database management system and also use mySQL Workbench

6.3 Community Edition, both are available freely under GPL Licenses. Different tables

are created in the database named “twdatabase”. Tables which are created are userTweets,

userFollowers, userFollowees, and userRestricted.

Table 5.3: System Configuration

CPU Intel core i5-430M

Speed 2.26GHz, 3MB L3 Cache

RAM 4GB DDR3

Platform Windows 7

The implementation of the Twitter simulator module is also based on JADE. One agent is

used for each Twitter user. The user agent reads their own tweets from mySQL database

and is responsible to tweet based on the date time stamp of the tweet. This tweet is then

published the Twitter simulator environment.

5.3. Experimental Setup and Scenarios

In this section, two main simulation scenarios are considered which are as follows:

 Varying the number of distributed servers to minimize the running time of the

recommendation process.

 Maximize the degree of accuracy by performing simulations using different

configurations of proposed system architecture.

79

For each experiment, dynamic programming is used to find how many users can be

placed on one server, which depends on the number of servers available in the distributed

environment. Each server will have almost equal number of tweets to process, but the

total number of tweets on each server may not be 100% equal, because every user may

have a different number of tweets. The number of tweets in each dataset is less than

50,000 so the results can be compared with theoretical results of time complexity

provided in Chapter 3.

5.4. Experimental Results for SDRS

In this section, the first experimental results for each of the consisting algorithms of

SDRS will be shown and then entire SDRS including all algorithms.

5.4.1. Running Time of each Algorithm used in SDRS

In this section, we show the results obtained on five datasets for all algorithms used

namely, text processing, tern frequency, and cosine similarity. We compare the central

algorithm with 2 servers, 4 servers, and 8 servers distributed systems on the basis of the

performance metrics stated in Chapter 3. The results which are obtained, validates the

theoretical proofs provided in Chapter 3.

Following are the experiments, where the number of servers is changed whose range are

1, 2, 4, and 8, when only one server is used, it is known as a central recommender system,

while from 2 to 8 (in power of 2) are the distributed recommender systems. When the

number of server varied, we find that there is a great impact on processing time as

80

mentioned in Chapter 3, which justifies the theoretical foundation of this thesis. The

results of all five datasets for all server configurations are depicted in the following

figures:

Figure 5.1: Shows text processing units used in 4

different server configurations for dataset 1.

Figure 5.2: Shows term frequency processing used

in 4 different server configurations for dataset 1.

Figure 5.3: Shows cosine similarity units used in 4

different server configurations for dataset 1.

Figure 5.4: Shows text processing units used in 4

different server configurations for dataset 2.

Figure 5.5: Shows term frequency processing used

in 4 different server configurations for dataset 2.

Figure 5.6: Shows cosine similarity units used in 4

different server configurations for dataset 2.

81

Figure 5.7: Shows text processing units used in 4

different server configurations for dataset 3.

Figure 5.8: Shows term frequency processing used

in 4 different server configurations for dataset 3.

Figure 5.9: Shows cosine similarity units used in 4

different server configurations for dataset 3.

Figure 5.10: Shows text processing units used in 4

different server configurations for dataset 4.

Figure 5.11: Shows term frequency processing used

in 4 different server configurations for dataset 4.

Figure 5.12: Shows cosine similarity units used in 4

different server configurations for dataset 4.

82

Figure 5.13: Shows text processing units used in 4

different server configurations for dataset 5.

Figure 5.14: Shows term frequency processing used

in 4 different server configurations for dataset 5.

Figure 5.15: Shows cosine similarity units used in 4 different server configurations for dataset 5.

In all of the above experiments, the results show significant reduction in the processing

time when different number of servers are used in a distributed configuration. The total

time of text processing decreases as the number of text processing unit increases.

Therefore, each text processing unit as they are in parallel will work simultaneously and

the total text processing time decreases. In a similar way, the time of term frequency

calculation will decrease by the increase in the number of recommender units. This

performance improvement is from sharing tweets workload to multiple recommender

units, by reducing the amount of data that each parallel recommender unit process. All

83

Figure 5.1 to Figure 5.15 confirm the theoretical results achieved in Section 3.3 of

Chapter 3 which shows cosine and term frequency algorithms in central version running

time tend to show non-linear relation with the increase in the number of tweets. We can

see by using a minimum of two servers, it results linear relation between running time and

number of tweets which makes the all algorithms to be scalable. And also when we use 4

servers instead of 2 servers the performance increases in all datasets. It is interesting to

note that for small dataset such as dataset 1, when the number of servers increase to 8

instead of 4 the performance improves only marginally compared to 4 servers scenarios.

5.4.2. Performance Improvement of each Algorithm used in SDRS

In the experiment for dataset 1, the results shows that the average tweet time is reduced

for text processing from 0.202 milliseconds on the central to 0.05 milliseconds on the

distributed recommender system with 8 recommender units, Similarly, the average tweet

time reduction for term frequency is from the central 1.319 milliseconds to the 8 server

distributed 0.078 milliseconds and the cosine similarity time reduction from central 0.644

milliseconds to the 8 server distributed 0.011 milliseconds. The following Table 5.4 and

Table 5.5 shows the average tweet time for central and distributed respectively for all five

datasets.

Table 5.4: Shows the average tweet time (in milliseconds) for TF and cosine similarity for central server by

using SDRS.

Data

Set

Central (1 Server)

Text TF Sim

1 0.202 1.319 0.644

2 0.220 1.098 0.536

3 0.208 2.494 1.928

4 0.269 0.496 0.082

5 0.248 1.767 0.618

84

Table 5.5: Shows the average tweet time (in milliseconds) for TF and cosine similarity for 2, 4, and 8

server configurations using SDRS.

Data

Set

2 Servers 4 Servers 8 Servers

Text TF Sim Text TF Sim Text TF Sim

1 0.148 0.450 0.127 0.094 0.157 0.029 0.050 0.078 0.011

2 0.161 0.510 0.122 0.094 0.160 0.040 0.051 0.071 0.009

3 0.143 0.835 0.332 0.097 0.340 0.107 0.055 0.140 0.016

4 0.181 0.289 0.019 0.130 0.092 0.007 0.060 0.037 0.003

5 0.139 0.668 0.129 0.105 0.255 0.040 0.063 0.104 0.012

The Table 5.6 shows the performance improvement calculation for each algorithm by

using 2, 4, and 8 server configurations for all datasets. In dataset 1, we have gained

75.25% improvement in the text processing by using the 8 server configuration. The

performance improvement for term frequency and cosine similarity calculation in dataset

1 are 94.09% and 98.29% respectively by using the 8 server configuration.

Table 5.6: Shows the performance improvement of the average tweet (in percentage) for 2, 4, and 8

recommender server configurations using SDRS.

Data

Set

Performance Improvement (in %)

2 Servers 4 Servers 8 Servers

Text TF Sim Text TF Sim Text TF Sim

1 26.73 65.88 80.28 53.47 88.10 95.50 75.25 94.09 98.29

2 26.82 53.55 77.24 57.27 85.43 92.54 76.82 93.53 98.32

3 31.25 66.52 82.78 53.37 86.37 94.45 73.56 94.39 99.17

4 32.71 41.73 76.83 51.67 81.45 91.46 77.70 92.54 96.34

5 43.95 62.20 79.13 57.66 85.57 93.53 74.60 94.11 98.06

5.4.3. Message Passing Time in SDRS

This experiment shows the total time for message passing for different configurations of

servers (i.e. 2, 4, and 8). The message passing time is the total time to send and receive

messages from one server to other(s). This total time also includes the time required to

85

send a request message from organizing agent. In the Figure 5.16, the message passing

time is shown for similarity-based distributed recommender system.

Figure 5.16: Shows average user message passing time in similarity-based distributed recommender

system.

In the above Figure 5.16, it can be seen that the average message passing time for a user

is negligible. It is only in the range from 0.03 seconds to 0.06 seconds.

5.4.4. Total Running Time of SDRS using Distributed Database

As explained in Chapter 3, another component of the distributed recommender system is

that it reduces disk seek time when using distributed databases. To calculate such

reduction we have performed experiments for the proposed distributed recommender

system by using distributed database (disk storage).

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 = 𝑇𝑖𝑚𝑒 (𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠) + 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 𝑃𝑎𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 + 𝐷𝑖𝑠𝑘 𝐼𝑂

The following Table 5.7 shows the total running time (in seconds) when distributed

database is used for data processing. It can be seen from Table 5.7 below for dataset 1,

86

when using the central recommender system, the total running time is 41.18 seconds

which is reduced to 9.21 seconds by using 8 recommender units. Total time for all

datasets using SDRS are shown in Figure 5.17 to Figure 5.21. These figures show that in

all datasets (except for dataset 5) the central configuration is scalable. The reason for the

non-linear behaviour of dataset 5 is because the last dataset has more number of tweets

therefore, running time of SDRS contributes more than disk IO in total SDRS time. In the

other datasets improvement of using two servers reduces running time, but does not

change linearity because with a low number of tweets the disk IO is dominating factor

that has a linear relation with the increase in the number of tweets.

Table 5.7: Total time (in second) for central, 2, 4, and 8 server configurations for SDRS using distributed

database.

Data

Set

Total

Tweets

Total

Users

Total Time for SDRS

(in sec)

1 Server 2 Server 4 Server 8 Server

1 8003 37 41.18 26.08 14.03 9.21

2 9760 35 48.41 33.82 17.53 10.68

3 16009 56 121.63 59.07 29.33 16.91

4 21766 15 90.82 70.84 38.85 21.96

5 25533 41 148.40 89.74 45.27 26.68

Figure 5.17: Shows Total time for SDRS in 4

different server configurations for dataset 1.

Figure 5.18: Shows Total time for SDRS in 4

different server configurations for dataset 2.

87

Figure 5.19: Shows Total time for SDRS in 4

different server configurations for dataset 3.

Figure 5.20: Shows Total time for SDRS in 4

different server configurations for dataset 4.

Figure 5.21: Shows Total time for SDRS in 4 different server configurations for dataset 5.

The Table 5.8 shows that when using eight servers the reduction of running time for

SDRS is in the range of 75.82% to 86.1%. The results of performance improvement by

using 2, 4, and 8 server configurations are shown in the Figure 5.22.

Table 5.8: Shows performance improvement (in %) for 2, 4, and 8 server configurations for SDRS using a

disk-based distributed database.

Data

Set

Performance Improvement for SDRS (in %)

2 Server 4 Server 8 Server

1 36.67 65.93 77.63

2 30.15 63.79 77.93

3 51.44 75.89 86.10

4 22.00 57.22 75.82

5 39.53 69.50 82.02

88

Figure 5.22: Shows the performance improvement (in %) for all five datasets using a disk-based distributed

database for SDRS.

5.5. Experimental Results for CDRS

5.5.1. Running Time of each Algorithm used in CDRS

In this section, we will show the results obtained on five datasets for all algorithms used

namely, text processing, term frequency inverse document frequency and k-mean

clustering algorithm. We compare the central, 2 servers, 4 servers and 8 servers

distributed system on the basis of the performance metrics stated in Chapter 3. The results

which are obtained, validates the theoretical concepts provided in Section 3.3 clearly

shows the central variation in k-mean running time for all dataset is non-linear whereas

using two servers it is linear and scalable.

89

Figure 5.23: Shows TFIDF processing used in 4

different server configurations for dataset 1.

Figure 5.24: Shows k-mean clustering units used in

4 different server configurations for dataset 1.

Figure 5.25: Shows TFIDF processing used in 4

different server configurations for dataset 2.

Figure 5.26: Shows k-mean clustering units used in

4 different server configurations for dataset 2.

Figure 5.27: Shows TFIDF processing used in 4

different server configurations for dataset 3.

Figure 5.28: Shows k-mean clustering units used in

4 different server configurations for dataset 3.

90

Figure 5.29: Shows TFIDF processing used in 4

different server configurations for dataset 4.

Figure 5.30: Shows k-mean clustering units used in

4 different server configurations for dataset 4.

Figure 5.31: Shows TFIDF processing used in 4

different server configurations for dataset 5.

Figure 5.32: Shows k-mean clustering units used in

4 different server configurations for dataset 5.

In all above experiments, the result shows significant reduction in processing time when

distributed configuration of server is used. In a similar way as explained above, the time

of TFIDF calculation is decreases with the increase in the number of recommender units.

5.5.2. Performance Improvement of each Algorithm used in CDRS

In the experiment for dataset 1, the results show that the average tweet time is reduced for

TFIDF processing from 2.074 milliseconds on the central to 0.116 milliseconds on the

distributed recommender system with 8 recommender units. Similarly, the average tweet

91

time reduction for k-mean clustering is from central 10.436 milliseconds to 0.058

milliseconds using 8 servers. The following Table 5.9 shows the average tweet time for

the central recommender system and Table 5.10 shows the average tweet time for 2, 4,

and 8 servers distributed recommender system for all five datasets.

Table 5.9: Shows the average tweet time (in milliseconds) for TFIDF and k-mean clustering for central

server using CDRS.

Data

Set

Central (1 Server)

TFIDF K-mean

1 2.074 10.436

2 1.707 16.751

3 2.684 53.205

4 0.571 19.980

5 2.193 70.893

Table 5.10: Shows the average tweet time (in milliseconds) for TFIDF and k-mean clustering for 2, 4, and

8 server configurations using CDRS.

Data

Set

2 Servers 4 Servers 8 Servers

TFIDF K-mean TFIDF K-mean TFIDF K-mean

1 0.865 1.612 0.218 0.278 0.116 0.058

2 0.766 1.875 0.228 0.330 0.053 0.028

3 1.260 5.208 0.426 0.855 0.119 0.153

4 0.221 2.096 0.144 0.353 0.047 0.047

5 0.880 10.642 0.302 1.343 0.154 0.265

The Table 5.11 shows the performance improvement for 2, 4, and 8 server configurations.

We have able to achieve the improvement of 96.90% for TFIDF by using the 8 server

configuration (in dataset 2). The performance improvement for clustering (k-mean)

calculation is 99.83% by using 8 servers distributed recommender system (in dataset 2).

92

Table 5.11: Shows the performance improvement for average tweet (in percentage) for 2, 4, and 8

recommender server configurations using CDRS.

Data

Set

Performance Improvement (in %)

2 Servers 4 Servers 8 Servers

TFIDF K-mean TFIDF K-mean TFIDF K-mean

1 58.29 84.55 89.49 97.34 94.41 99.44

2 55.13 88.81 86.64 98.03 96.90 99.83

3 53.06 90.21 84.13 98.39 95.57 99.71

4 61.30 89.51 74.78 98.23 91.77 99.76

5 59.87 84.99 86.23 98.11 92.98 99.63

5.5.3. Message Passing Time in CDRS

This experiment shows the total time for message passing for different configurations of

servers (i.e. 2, 4, and 8) using CDRS. In the Figure 5.33, the message passing time is

shown for clustering-based distributed recommender systems using all five datasets. In

the Figure 5.33, it can be seen that the message passing time for a user is low. It is only in

the range from 0.05 seconds to 0.18 seconds.

Figure 5.33: Shows average user message passing time in cluster-based distributed recommender system.

93

5.5.4. Total Running Time of CDRS using Distributed Database

We have performed the experiment using distributed database for CDRS. The following

Table 5.12 shows the total time when distributed database is used. When using two

servers the reduction of total running time for CDRS is 40.99 seconds while the central

recommender system is 125.6 seconds, which confirms the theoretical results shown in

Chapter 3. Total time for all datasets using CDRS are shown in Figure 5.34 to Figure

5.38.

Table 5.12: Shows the total time (in second) for central, 2, 4, and 8 server configurations for CDRS.

Data

Set

Total

Tweets

Total

Users

Total Time for CDRS

(in sec)

1 Server 2 Server 4 Server 8 Server

1 8003 37 125.60 40.99 15.56 8.79

2 9760 35 212.61 52.66 19.90 9.33

3 16009 56 945.55 143.34 41.84 17.07

4 21766 15 525.55 114.44 47.29 22.71

5 25533 41 1953.61 363.02 78.69 32.22

Figure 5.34: Shows Total time for CDRS in 4

different server configurations for dataset 1.

Figure 5.35: Shows Total time for CDRS in 4

different server configurations for dataset 2.

94

Figure 5.36: Shows Total time for CDRS in 4

different server configurations for dataset 3.

Figure 5.37: Shows Total time for CDRS in 4

different server configurations for dataset 4.

Figure 5.38: Shows Total time for CDRS in 4 different server configurations for dataset 5.

Table 5.13 shows that, when using two servers the reduction of total time for CDRS is in

the range of 67.37% to 84.84%. The results of performance improvement by using 2, 4,

and 8 server configurations are also shown in the Figure 5.39. With regards to scalability

using at least two servers makes the system to have a non-linear relation between run time

and number of tweets which confirms the theoretical results (time complexity) of CDRS

in Section 3.5.2.1. It is interesting to note that in spite of SDRS in CDRS disk IO is not

the dominating factor and non-scalable behaviour in the central recommendation system

and the change it to linear relation by using two servers for such low data is shown. We

expect for larger datasets the effectiveness of distributed solution will be obvious for all

configurations of similarity or clustering based recommender systems.

95

Table 5.13: Shows performance improvement (in %) for 2, 4, and 8 server configurations for CDRS using a

disk-based distributed database.

Data

Set

Performance Improvement for CDRS (in %)

2 server 4 server 8 server

1 67.37 87.61 93.00

2 75.23 90.64 95.61

3 84.84 95.57 98.19

4 78.23 91.00 95.68

5 81.42 95.97 98.35

Figure 5.39: Shows the performance improvement (in %) for all five datasets using a disk-based distributed

database for CDRS.

5.6. Evaluation of Distributed Recommender System

In this section, we look at the accuracy of recommender systems because our solution for

efficiency will be useful when it does not change the accuracy of recommender systems.

In this section, a common evaluation method of the mean absolute error for recommender

systems is used for evaluating the accuracy of the proposed distributed recommender

system. The mean absolute error method (MAE) is used in evaluating the accuracy of

recommender systems by finding the prediction accuracy of the recommendations. MAE

is calculated using the average absolute deviation of the predicted values from the actual

values. If MAE value is small, then this means less error and the system is more accurate.

96

The MAE is an average of the absolute errors | 𝑒𝑖|, this can be calculated by the following

formula:

𝑀𝐴𝐸 =
1

𝑛
∑|𝑅𝑖 − 𝐴𝑖|

𝑛

𝑖=1

𝑀𝐴𝐸 =
1

𝑛
∑|𝑒𝑖|

𝑛

𝑖=1

Where, R = Recommended value.

 A = Actual value.

 e = Error between recommended value and actual value.

The smaller value of MAE shows that the prediction accuracy is higher and the highest

value of MAE is 1. The MAE for SDRS using different server configurations is calculated

for all five datasets and is shown in Table 5.14. As discussed, we checked the accuracy by

using user network information, including followees and followers, which is cross

checked with the recommendation of the proposed system in different time periods.

Table 5.14: Shows the Prediction Accuracy for central, 2, 4, and 8 server configurations using SDRS for

five datasets.

MAE

top k

Prediction Accuracy of SDRS

DataSet1 DataSet2 DataSet3 DataSet4 DataSet5

3 0.97 0.97 0.95 0.93 0.95

10 0.72 0.65 0.67 0.43 0.88

20 0.36 0.32 0.45 0.00 0.80

30 0.03 0.00 0.27 0.00 0.55

40 0.00 0.00 0.09 0.00 0.00

In above Table 5.14 when k=10, the prediction accuracy is in the range of 0.43 to 0.88 for

central, 2, 4, and 8 server configurations. Please note that the prediction accuracy of 2, 4,

97

and 8 servers are same as of central configuration. This is dues to the fact that in

recommendation process cosine similarity is used; the cosine similarity depends on term

frequency which is same for all distributed configurations of 2, 4, and 8 servers.

Table 5.15: Shows the Prediction Accuracy for central configuration using CDRS for five datasets.

MAE

top k

Prediction Accuracy of CDRS

DataSet1 DataSet2 DataSet3 DataSet4 DataSet5

3 0.08 0.03 0.72 1.00 0.86

10 0.00 0.00 0.68 1.00 0.86

20 0.00 0.00 0.68 0.07 0.79

30 0.00 0.00 0.29 0.07 0.79

40 0.00 0.00 0.29 0.07 0.65

50 0.00 0.00 0.00 0.07 0.00

The above Table 5.15 show the prediction accuracy of the CDRS. When k=3, the

prediction accuracy is in the range of 0.03 to 1 for central server configuration. The

prediction accuracy for 2, 4, and 8 server configurations can be found in Appendix II. All

the results show that, except for datasets 1 and 2 that have low numbers of tweet and

users, the change in accuracy by increasing the number of servers in CDRS is negligible

and in SDRS there is no change and the proposed method does not lower the accuracy of

common recommender systems.

5.7. Comparison with Related Works

In this section, we compare our distributed recommender system with the closest method

to ours used in the literature. In most of the similar works (for example [91] and [89])

data grouping (called a data chunk) are used to speedup the processing time for the large

number of tweets. The following experiments compare data grouping technique and our

proposed method for central, 2, 4, and 8 server configurations. Since the central approach

98

is used in all related works, it is used as the compared method here and is examined with

different chunk sizes together with our proposed methods. In other words, these

experiments examine parallelization and distribution of data (used in proposed method)

compared to grouping of data.

Figure 5.40: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2,

4, and 8 server configurations for SDRS (Dataset1).

Figure 5.41: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2,

4, and 8 server configurations for SDRS (Dataset2).

99

Figure 5.42: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2,

4, and 8 server configurations for SDRS (Dataset3).

Figure 5.43: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2,

4, and 8 server configurations for SDRS (Dataset4).

100

Figure 5.44: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2,

4, and 8 server configurations for SDRS (Dataset5).

In all above experiments three factors affect the total processing speed. First is the total

tweets processed by the recommender system, the second is the number of users which

have those tweets that are being processed and the third factor which affects the

recommendation processing time is the number of tweets for each users present in that

chunk. In these experiments, it can be seen that with all chunk sizes (i.e. 50, 100, 200,

400, and 800) using all configurations of servers (i.e. 2, 4, and 8 servers) in our proposed

method perform better than central which means the proposed solution also gets benefits

of data grouping and is applicable for a small amount of data. It is clear with the increase

in the number of tweets the proposed solutions become more superior.

101

Figure 5.45: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2,

4, and 8 server configurations for CDRS (Dataset1).

Figure 5.46: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2,

4, and 8 server configurations for CDRS (Dataset2).

102

Figure 5.47: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2,

4, and 8 server configurations for CDRS (Dataset3).

Figure 5.48: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2,

4, and 8 server configurations for CDRS (Dataset4).

103

Figure 5.49: Shows the performance when 50, 100, 200, 400, and 800 tweet chunks are used for central, 2,

4, and 8 server configurations for CDRS (Dataset5).

In the above experiments for cluster-based distributed recommender system, it can be

seen that when the chunk size is increased more processing time is required to process the

chunk. Again, it is clear that the performance is improved by distributing the workload to

2, 4, and 8 servers, which are processing those distributed loads in parallel. Also, CDRS

with 8 server configuration outperforms the other distributed configurations for all chunk

size (data grouping) experiments. Finally, the comparison shows grouping data in the

small chunk sizes less than 1,000 tweets reduces the processing time. However, it is clear

the recommendation accuracy is reduced when number of tweets reduces. The graph

shows our proposed method gains similar benefits from data grouping techniques in

reducing processing time. But the advantage of our method is that it is useful for the

recommendation techniques that need to use the large size of tweets to provide more

accurate recommendations.

104

5.8. Discussion of Scalability Factor

The following graphs show for CDRS theoretical results confirmed very well by

experimental results and using two servers (i.e. the scalability factor of two) makes the

recommender system to be scalable for up to 25,000 tweets. For SDRS since the

algorithms are faster than CDRS, even the central variation shows scalability for 25,000

tweets but still adding more servers reduces the running time significantly. Although

message passing time increases by having more servers, these graphs show with having 2

to 8 servers for 25,000 of tweets and adding more servers provides more improvement for

both SDRS and CDRS.

Figure 5.50: Shows the Numerical Analysis of total

time using SDRS.

Figure 5.51: Shows the total running time using

SDRS.

Figure 5.52: Shows the Numerical Analysis of total

time using CDRS.

Figure 5.53: Shows the total running time using

CDRS.

105

For the datasets which are greater than 25,000 tweets, gathering real data is very time

consuming because the datasets are collected in different time frames for the specific

twitter users and their followers, therefore capturing different types of tweets from

different sets of users during these time frames is very time consuming. However, in

theory the numerical analysis of larger datasets for example for 5,000,000 tweets shown

below indicates the proposed method for providing scalability is still effective but the

scalability factor should be different. The following graphs determine the scalability

factor for both SDRS and CDRS with 5,000,000 tweets based on numerical analysis of

time complexities. It is clear using 2 servers’ causes non-linear relation whereas the

scalability factor of 4 (using at least 4 servers) makes the systems more scalable.

Figure 5.54: Shows the Numerical Analysis of total

time for 5,000,000 tweets using SDRS.

Figure 5.55: Shows the Numerical Analysis of total

time for 5,000,000 tweets using CDRS.

Please note that the practical experiments with the smaller traces that is used, show that

the running times of the recommender systems even with 2 servers are measured by

seconds and using larger number of servers is preferred to have faster processing time. It

means in practice for processing of hundreds of thousands of the tweets more servers than

the scalability factor (that shows the scalable rate of growth) should be used in building

online distributed recommender systems. Thus, in this thesis the scalability factor and the

106

achieved improvement (shown as percentage of running time reduction) by using more

servers is also discussed. Both Figure 5.4 and Figure 5.5 show significant improvement in

running time speed will be achieved by adding more servers for processing of millions of

tweets.

5.9. Summary

In this chapter, we have shown the performance results on five different datasets. The

results for scalability and performance improvement are achieved by using both variations

of distributed configurations. With regards to scalability for the algorithms with the time

complexity of O(N2) the results for agent-based simulation confirmed the theoretical

result which is using at least two servers for all tested datasets makes them linear and

scalable. In SDRS, because disk latency contributes more than algorithms running time,

for the lower amount of datasets SDRS is scalable even for central configuration because

the distribution of data already gains lots of reduction in total running time of SDRS.

However, CDRS clearly shows that using minimum two servers makes the system to be

scalable for all datasets with regards to improvement. We found, for smaller datasets with

the amount of less than 10,000 tweets the central variation of SDRS is scalable and using

such small dataset for both systems, adding eight servers instead of four servers improves

the running time marginally. For all of our used traces when using eight server distributed

configuration for SDRS, performance improvement is in the range of 75.82% to 86.1%.

While for CDRS the performance improvement result using eight servers is almost 93%

to 98.35%. We also evaluated the accuracy for both SDRS and CDRS distributed

recommender systems. In summary, using at least two servers makes both systems to be

107

scalable, which is achieved by using distributed database and parallelization of

algorithms. In the last part of this chapter, we used a data grouping technique by reducing

the number of tweets which is used in similar works to reduce processing time. It is clear

that when the less number of tweets is used by a recommender system, the accuracy will

be reduced. In the conducted experiments we examined how our proposed technique

performed against data grouping technique when the number of tweets is reduced

assuming that we don’t want high accuracy. The results show our proposed technique

gained similar benefits for small tweets and is superior for larger number of tweets.

However, the reason for proposing to distribute and parallelization of data is to have

maximum possible accuracy by processing more tweets. That is why in our proposed

technique all tweets were used in each dataset and the proposed technique showed

significant improvement in reducing the processing time with having high accuracy.

108

Chapter 6

Conclusions and Future Works

In this thesis, a novel framework of a distributed recommender system for social networks

is proposed and effects of using multiple servers on scalability are discussed. First, in

Chapter 1 the problem of having a scalable recommender system is formalized. Then in

Chapter 2, a comprehensive discussion on prominent works on a social network has been

presented. Second, in Chapter 3 we have discussed the proposed distributed recommender

system in terms of algorithms and mathematical models, mainly with regards to

scalability and distributed processing effectiveness. Also in Chapter 3 we have presented

the theoretical results of time complexity to capture the scalability behaviours of the

designed algorithms. Third, in Chapter 3 we have explained the models of two variations

of proposed distributed recommender systems referred to as similarity-based distributed

recommender system (i.e. SDRS) and cluster-based distributed recommender system (i.e.

CDRS) for building their prototypes used in simulation. In Chapter 4, we have

implemented CDRS and SDRS prototypes by using multi-agent based system. Fourth, in

Chapter 4 a whole framework for providing multi-agent based simulation for testing the

prototypes is discussed and developed. Finally, in Chapter 5 we have used CDRS and

SDRS prototypes in several experiments with disk and memory based data and then

compared them to their central recommender system counterparts. Running time and

109

number of tweets are used as the main factors for finding performance metrics of the

scalability factor and running time improvement of the proposed distributed recommender

systems.

Also in Chapter 5, to demonstrate the effectiveness of the proposed distributed

recommender system used in the social network environment, we have examined five

different simple text based algorithms such as text cleaning, TF, TFIDF, cosine similarity

and k-mean clustering algorithms. These algorithms are deployed on different agents for

conducting multi-agent based simulation for finding the effectiveness of the distributed

recommender system for social networks. Also in Chapter 5, we have used mean absolute

error to find the accuracy of the proposed distributed recommender system and found that

accuracy is not affected in the proposed distributed recommender systems. To test

accuracy, in several experiments the proposed distributed recommender system generated

lists of recommendations to the followees (to follow similar users), ranked based on their

previous tweets and tweets of their own followees. These recommendation lists have been

checked against the real selections of same users and based on that mean absolute error

has been calculated to measure accuracy of the system.

The scalability factor is defined as the minimum number of servers that makes the system

scalable. This is illustrated by the experiments shown in Chapter 5. The experiments are

conducted on four different configurations, namely central, 2 server, 4 server, and 8

server configurations, which indicated that using at least two servers the proposed

distributed system architecture become scalable, which confirmed the results achieved in

110

Chapter 3. For example, CDRS when running in the distributed environment with records

(tweets) stored on the disk has achieved a reduction in running time in the range of 67%

to 87% by using 2 servers for all the tested datasets respectively. In Chapter 3, theoretical

results shows that by using 2 servers the system becomes scalable and can provide up to

75% reduction in running time.

In summary the multi-agent based simulation results achieved in Chapter 5 are in line

with theoretical results achieved in Chapter 3. The results of both similarity and cluster-

based distributed recommender systems have better performance of processing times

compared to their central counterparts. For cluster-based recommender system the

proposed solution is more promising in terms of efficiency. By using only two servers for

up to 25,000 tweets used in each tested dataset the system become scalable and the

running time is reduced by at least 67% in the CDRS. The proposed distributed

recommender system can also be easily deployed in the cloud environment. It is a

straightforward task to assign each distributed component to different servers running in

the cloud environment.

The major contributions of the research are:

1. Development and implementation of a novel distributed recommender system

based on multi-agent based system in two prototypes, referred to as SDRS and

CDRS which significantly reduce the running time of the central system. Theses

prototypes can be easily turned into real systems in future work.

111

2. Development of a framework for multi-agent based simulation including

following components:

2.1. The Twitter data crawler module based on multi-agent system, which is able

to generate user network graph or links, and can download the required

information from the website.

2.2. Development of the Twitter simulation module, also based on a multi-agent

based system. This agent based system is capable of tweeting “tweets” of the

users under test. The tweets are first read from the stored corpus downloaded

by the crawler. This environment can be used as a test bed for performing

experiments where a researcher wants to mimic real time tweeting

environment.

3. Performing simulation and determining the scalability factor which has confirmed

theoretical results and indicated that by using a minimum of two servers in

common recommender systems becomes scalable for processing up to 25,000

tweets.

In the future, we would like to continue our work on the distributed recommender system

and its performance improvement by following new directions stated below:

1. To expand the role of the agents, we would like to develop more agents for the

proposed distributed recommender system. These new agents will be capable of

using different environments such as mobile based environment to provide

recommendation to the users who are using cell phones or other mobile devices.

112

New agents for other text based algorithm in different configuration will be

developed. By using MAS, each agent with different algorithms (stored as its

behaviour) is able to connect with other agents.

2. We can also introduce a followee deletion pattern of the user. This may be useful

for finding better recommendations, which can also improve overall performance

of the recommendation process. If we consider followee deletion, the effect of

adding wrong followee can be reduced on the recommendations.

3. It will be interesting to investigate our achieved results in other massive data

processing systems such as gaming, etc. The agent based approach used in this

research can be extended to build a distributed system that requires scalability to

improve efficiency for using them in social networking websites.

4. Finally, we plan to design a graphical user interface for the system that regular

users of the system will be capable to configure the agents and to generate other

variations of the recommender systems similar to CDRS and SDRS without

having the deep knowledge of agent programming.

113

Appendix I

List of mysql Tables

Table Name: userTweets

Field Data Type

referenceUser varchar (100)

tweetID bigint(40) PK

created_at Datetime

userID varchar(45)

screen_name varchar(45)

text varchar(500)

Table Name: userfollowers

Field Data Type

referenceUser varchar(45)

cursorposition varchar(60)

followerlist varchar(500)

followername varchar(45) PK

addedon datetime

Table Name: userfollowees

Field Data Type

referenceUser varchar(45)

cursorposition varchar(60)

followeelist varchar(500)

followeename varchar(45) PK

addedon datetime

Table Name: restrictedUser

Field Data Type

referenceUser varchar(45)

followerorfollowee varchar(45)

restrictedUser varchar(45) PK

addedon datetime

114

Appendix II

Prediction Accuracy for 2, 4, and 8 Server Configurations

using CDRS

Table: Shows the Prediction Accuracy for 2 server configuration using CDRS for five datasets.

MAE

top k

Prediction Accuracy of CDRS

DataSet1 DataSet2 DataSet3 DataSet4 DataSet5

3 0.10 0.93 0.76 1.00 0.86

10 0.00 0.71 0.65 1.00 0.86

20 0.00 0.47 0.64 0.00 0.86

30 0.00 0.28 0.45 0.00 0.79

40 0.00 0.00 0.14 0.00 0.54

50 0.00 0.00 0.01 0.00 0.00

Table: Shows the Prediction Accuracy for 4 server configuration using CDRS for five datasets.

MAE

top k

Prediction Accuracy of CDRS

DataSet1 DataSet2 DataSet3 DataSet4 DataSet5

3 0.72 0.04 0.76 1.00 0.84

10 0.29 0.00 0.68 1.00 0.84

20 0.17 0.00 0.62 0.18 0.83

30 0.07 0.00 0.61 0.18 0.74

40 0.00 0.00 0.52 0.18 0.48

50 0.00 0.00 0.46 0.18 0.00

Table: Shows the Prediction Accuracy for 8 server configuration using CDRS for five datasets.

MAE

top k

Prediction Accuracy of CDRS

DataSet1 DataSet2 DataSet3 DataSet4 DataSet5

3 0.88 0.46 0.77 1.00 0.84

10 0.57 0.10 0.65 0.96 0.83

20 0.31 0.00 0.60 0.11 0.81

30 0.04 0.00 0.54 0.11 0.74

40 0.00 0.00 0.45 0.11 0.68

50 0.00 0.00 0.39 0.11 0.23

115

References

1. Miller, B.N., Konstan, J.A., and Riedl, J., PocketLens: Toward a personal

recommender system. ACM Trans. Inf. Syst., 2004. 22(3), pp. 437-476.

2. Cho, Y.H., Kim, J.K., and Kim, S.H., A personalized recommender system based

on web usage mining and decision tree induction. Expert Systems with

Applications, 2002. 23(3), pp. 329-342.

3. Ahmed, L. and Abhari, A. Agent-Based Simulation of Twitter for Building

Effective Recommender System. In 17th Communications and Networking

Simulation Symposium (CNS14) of SCS/ACM. Tampa, Florida, Society for

Computer Simulation International, 2014, pp. 266-272.

4. Ahmed, L. and Abhari, A. Distributed Recommender System for Online

Processing of Big Social Data. In Spring Simulation Multiconference

(SpringSim'15 Poster Track), SCS/ACM. Alexandria, VA, USA., 2015, pp. 699-

700.

5. Ahmed, L. and Abhari, A., A multi-agent-based simulator for a transmission

control protocol/internet protocol network. SIMULATION, 2014. 90(5), pp. 511-

521.

6. Adomavicius, G. and Tuzhilin, A., Toward the next generation of recommender

systems: a survey of the state-of-the-art and possible extensions. Knowledge and

Data Engineering, IEEE Transactions on, 2005. 17(6), pp. 734-749.

7. Candillier, L., Meyer, F., and Boullé, M., Comparing State-of-the-Art

Collaborative Filtering Systems, In Machine Learning and Data Mining in

Pattern Recognition, P. Perner, Editor 2007, Springer Berlin Heidelberg, pp. 548-

562.

116

8. Mooney, R.J. and Roy, L. Content-based book recommending using learning for

text categorization. In Proceedings of the fifth ACM conference on Digital

libraries. San Antonio, Texas, USA, ACM, 2000, pp. 195-204.

9. Amazon, http://www.amazon.com, Last visited: Jan. 8, 2016.

10. Goldberg, D., et al., Using collaborative filtering to weave an information

tapestry. Communications of The ACM, 1992. 35(12), pp. 61-70.

11. Park, D.H., et al., A literature review and classification of recommender systems

research. Expert Systems with Applications, 2012. 39(11), pp. 10059-10072.

12. Bobadilla, J., Serradilla, F., and Bernal, J., A new collaborative filtering metric

that improves the behavior of recommender systems. Knowledge-Based Systems,

2010. 23(6), pp. 520-528.

13. Luo, X., Xia, Y., and Zhu, Q., Incremental Collaborative Filtering recommender

based on Regularized Matrix Factorization. Knowledge-Based Systems, 2012. 27,

pp. 271-280.

14. Bobadilla, J. and Serradilla, F. The effect of sparsity on collaborative filtering

metrics. In Proceedings of the Twentieth Australasian Conference on Australasian

Database - Volume 92. Wellington, New Zealand, Australian Computer Society,

Inc., 2009, pp. 9-18.

15. Pazzani, M., A Framework for Collaborative, Content-Based and Demographic

Filtering. Artificial Intelligence Review, 1999. 13(5-6), pp. 393-408.

16. Krulwich, B., Lifestyle finder: Intelligent user profiling using large-scale

demographic data. AI Magazine, 1997. 18(2), pp. 37-45.

17. Burke, R., Hybrid Recommender Systems: Survey and Experiments. User

Modeling and User-Adapted Interaction, 2002. 12(4), pp. 331-370.

http://www.amazon.com/

117

18. Porcel, C., et al., A hybrid recommender system for the selective dissemination of

research resources in a Technology Transfer Office. Information Sciences, 2012.

184(1), pp. 1-19.

19. Vozalis, M.G. and Margaritis, K.G., Using SVD and demographic data for the

enhancement of generalized Collaborative Filtering. Information Sciences, 2007.

177(15), pp. 3017-3037.

20. Barragáns-Martínez, A.B., et al., A hybrid content-based and item-based

collaborative filtering approach to recommend TV programs enhanced with

singular value decomposition. Information Sciences, 2010. 180(22), pp. 4290-

4311.

21. Al-Shamri, M.Y.H. and Bharadwaj, K.K., Fuzzy-genetic approach to

recommender systems based on a novel hybrid user model. Expert Syst. Appl.,

2008. 35(3), pp. 1386-1399.

22. Jarvis, R.A. and Patrick, E.A., Clustering using a similarity measure based on

shared near neighbors. Computers, IEEE Transactions on, 1973. 100(11), pp.

1025-1034.

23. Ortega, F., et al., Improving collaborative filtering-based recommender systems

results using Pareto dominance. Information Sciences, 2013. 239, pp. 50-61.

24. Jae Yoon, C., et al. An effective similarity metric for application traffic

classification. In Network Operations and Management Symposium (NOMS),

2010 IEEE. 2010, pp. 286-292.

25. Bobadilla, J., Ortega, F., and Hernando, A., A collaborative filtering similarity

measure based on singularities. Information Processing & Management, 2012.

48(2), pp. 204-217.

26. Bobadilla, J., et al., Improving collaborative filtering recommender system results

and performance using genetic algorithms. Knowledge-Based Systems, 2011.

24(8), pp. 1310-1316.

118

27. Yuan, W., et al., Improved trust-aware recommender system using small-

worldness of trust networks. Knowledge-Based Systems, 2010. 23(3), pp. 232-

238.

28. Kwon, K., Cho, J., and Park, Y., Multidimensional credibility model for neighbor

selection in collaborative recommendation. Expert Systems with Applications,

2009. 36(3, Part 2), pp. 7114-7122.

29. Jeong, B., Lee, J., and Cho, H., User credit-based collaborative filtering. Expert

Systems with Applications, 2009. 36(3, Part 2), pp. 7309-7312.

30. Bobadilla, J., et al., Recommender systems survey. Knowledge-Based Systems,

2013. 46, pp. 109-132.

31. Antunes, P., et al., Structuring dimensions for collaborative systems evaluation.

ACM Comput. Surv., 2012. 44(2), pp. 1-28.

32. Bengio, Y. and Grandvalet, Y., No Unbiased Estimator of the Variance of K-Fold

Cross-Validation. J. Mach. Learn. Res., 2004. 5, pp. 1089-1105.

33. Aggarwal, C.C. and Reddy, C.K., Data clustering: algorithms and applications

2014, CRC Press.

34. Manning, C.D., Raghavan, P., and Schütze, H., Introduction to Information

Retrieval. Computational Linguistics. Vol. 35. 2009, MIT Press, 307-309.

35. Salton, G., Wong, A., and Yang, C.S., A vector space model for information

retrieval. Journal of the American Society for Information Science, 1975. 18(11),

pp. 613-620.

36. Buckley, C., Singhal, A., and Mitra, M. New retrieval approaches using SMART:

TREC 4. In 4th Text Retrieval conference (TREC-4). Gaithersburg, 1996.

37. Sebastiani, F., Machine learning in automated text categorization. ACM Comput.

Surv., 2002. 34(1), pp. 1-47.

119

38. Jones, K.S. and Willett, P., Readings in Information Retrieval, chapter 3, 1997,

Morgan Kaufmann Publishers, San Francisco, CA, pp. 305-312.

39. Salton, G. and Buckley, C., Term-weighting approaches in automatic text

retrieval. Information Processing and Management, 1988. 24(5), pp. 513-523.

40. Jones, K.S., A Statistical Interpretation of Term Specificity and its Application in

Retrieval. Journal of Documentation, 1972. 28(1), pp. 11-21.

41. Salton, G., Automatic Information Organization and Retrieval. 2nd ed. Computer

Science Series 1968, McGraw-Hill.

42. Zipf, G., Selective Studies and the Principle of Relative Frequencies in Language,

1932, MIT Press.

43. Reed, J.W., et al. TF-ICF: A New Term Weighting Scheme for Clustering

Dynamic Data Streams. In Machine Learning and Applications, 2006. ICMLA '06.

5th International Conference on. 2006, pp. 258-263.

44. Wordpress, https://wordpress.com, Last visited: Jan. 8, 2016.

45. Twitter, "Year in Review: Tweets per second." https://twitter.com, Last visited:

Jan. 8, 2016.

46. FaceBook, https://www.facebook.com, Last visited: Jan. 8, 2016.

47. YouTube, https://www.youtube.com, Last visited: Jan. 8, 2016.

48. Flickr, https://www.flickr.com, Last visited: Jan. 8, 2016.

49. Digg, http://digg.com, Last visited: Jan. 8, 2016.

50. Delicious, https://delicious.com, Last visited: Jan. 8, 2016.

51. Guy, I., et al. Social media recommendation based on people and tags. In

Proceedings of the 33rd international ACM SIGIR conference on Research and

http://www.facebook.com/
http://www.youtube.com/
http://www.flickr.com/
http://digg.com/

120

development in information retrieval. Geneva, Switzerland, ACM, 2010, pp. 194-

201.

52. Furl, http://www.furl.com, Last visited: Jan. 8, 2016.

53. CiteULike, http://www.citeulike.org, Last visited: Jan. 8, 2016.

54. Pinterest, https://www.pinterest.com, Last visited: Jan. 8, 2016.

55. Zhou, X., et al., The state-of-the-art in personalized recommender systems for

social networking. Artificial Intelligence Review, 2012. 37(2), pp. 119-132.

56. Zhang, Y. and Pennacchiotti, M. Recommending branded products from social

media. In Proceedings of the 7th ACM conference on Recommender systems.

Hong Kong, China, ACM, 2013, pp. 77-84.

57. Sinha, R. and Swearingen, K., Comparing Recommendations Made by Online

Systems and Friends. In Proceedings of the DELOS-NSF workshop on

personalization and recommender systems in digital libraries, 2001.

58. Fabio Bellifemine, Giovanni Caire, and Greenwood, D., Developing multi-agent

systems with JADE 2007, Chichester, West Sussex, John Wiley & Sons Ltd.

59. Kowalczyk, W. and Vlassis, N., Newscast EM, In Advances in neural information

processing systems 17, Lawrence K. Saul, Yair Weiss, and L. Bottou, Editors.

2005, MIT Press, Cambridge, pp. 713-720.

60. Paskin, M., Guestrin, C., and McFadden, J. A robust architecture for distributed

inference in sensor networks. In Information Processing in Sensor Networks,

2005. IPSN 2005. Fourth International Symposium on. 2005, pp. 55-62.

61. Lesser, V., Ortiz, C.L., and Tambe, M., eds. Distributed Sensor Networks: A

Multiagent Perspective. 2003, Kluwer, Dodrecht.

62. Drumond, L. and Girardi, R., A multi-agent legal recommender system. Artificial

Intelligence and Law, 2008. 16(2), pp. 175 - 207.

http://www.furl.com/
http://www.citeulike.org/
http://www.pinterest.com/

121

63. Moin, S., Muhamamd, A., and Martinez-Enriquez, A.M. Agent based mobile

recommender system. In Electrical Engineering, Computing Science and

Automatic Control (CCE), 2014 11th International Conference on. 2014, pp. 1-6.

64. Chau, D.H., et al. Parallel crawling for online social networks. In Proceedings of

the 16th international conference on World Wide Web. ACM, 2007, pp. 1283-

1284.

65. George, T. and Merugu, S. A scalable collaborative filtering framework based on

co-clustering. In Data Mining, Fifth IEEE International Conference on. IEEE,

2005, pp. 1-4.

66. Bedi, P., et al., MARST: Multi-Agent Recommender System for e-Tourism Using

Reputation Based Collaborative Filtering, In Databases in Networked Information

Systems, A. Madaan, S. Kikuchi, and S. Bhalla, Editors. 2014, Springer

International Publishing, pp. 189-201.

67. Joshi, M. and Belsare, N. BlogHarvest: Blog Mining and Search Framework. In

Proc. of the Int’l Conf. on Management of Data COMAD. 2006.

68. Ferreira, R., et al. RetriBlog: a framework for creating blog crawlers. In

Proceedings of the 27th Annual ACM Symposium on Applied Computing. Trento,

Italy, ACM, 2012, pp. 696-701.

69. Golbeck, J. and Hendler, J., Inferring binary trust relationships in Web-based

social networks. ACM Trans. Internet Technol., 2006. 6(4), pp. 497-529.

70. Quijano-Sanchez, L., et al., Social factors in group recommender systems. ACM

Trans. Intell. Syst. Technol., 2013. 4(1), pp. 1-30.

71. Ma, H., King, I., and Lyu, M.R. Learning to recommend with social trust

ensemble. In Proceedings of the 32nd international ACM SIGIR conference on

Research and development in information retrieval. Boston, MA, USA, ACM,

2009, pp. 203-210.

122

72. Massa, P. and Avesani, P. Trust-aware recommender systems. In Proceedings of

the 2007 ACM conference on Recommender systems. Minneapolis, MN, USA,

ACM, 2007, pp. 17-24.

73. Yuan, W., et al. Efficient routing on finding recommenders for trust-aware

recommender systems. In Proceedings of the 6th International Conference on

Ubiquitous Information Management and Communication. Kuala Lumpur,

Malaysia, ACM, 2012, pp. 1-6.

74. Ziegler, C.-N. and Golbeck, J., Investigating Correlations of Trust and Interest

Similarity - Do Birds of a Feather Really Flock Together? Decis Support Systems,

2005, pp. 1-34.

75. Kim, Y., Park, Y., and Shim, K. DIGTOBI: a recommendation system for Digg

articles using probabilistic modeling. In Proceedings of the 22nd international

conference on World Wide Web. Rio de Janeiro, Brazil, International World Wide

Web Conferences Steering Committee, 2013, pp. 691-702.

76. Hofmann, T. Probabilistic latent semantic indexing. In Proceedings of the 22nd

annual international ACM SIGIR conference on Research and development in

information retrieval. Berkeley, California, USA, ACM, 1999, pp. 50-57.

77. Pazzani, M. and Billsus, D., Learning and Revising User Profiles: The

Identification of Interesting Web Sites. Machine Learning, 1997. 27(3), pp. 313-

331.

78. NetFlix, https://www.netflix.com, Last visited: Jan. 8, 2016.

79. Technorati, http://technorati.com, Last visited: Jan. 8, 2016.

80. Heymann, P., Koutrika, G., and Garcia-Molina, H. Can social bookmarking

improve web search? In Proceedings of the 2008 International Conference on

Web Search and Data Mining. Palo Alto, California, USA, ACM, 2008, pp. 195-

206.

http://technorati.com/

123

81. Halpin, H., Robu, V., and Shepherd, H. The complex dynamics of collaborative

tagging. In Proceedings of the 16th international conference on World Wide Web.

Banff, Alberta, Canada, ACM, 2007, pp. 211-220.

82. Liang, H., et al. Personalized Recommender Systems Integrating Social Tags and

Item Taxonomy. In Proceedings of the 2009 IEEE/WIC/ACM International Joint

Conference on Web Intelligence and Intelligent Agent Technology - Volume 01.

IEEE Computer Society, 2009, pp. 540-547.

83. Guy, I., et al. Harvesting with SONAR: the value of aggregating social network

information. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. Florence, Italy, ACM, 2008, pp. 1017-1026.

84. Ronen, I., et al. Social networks and discovery in the enterprise (SaND). In

Proceedings of the 32nd international ACM SIGIR conference on Research and

development in information retrieval. Boston, MA, USA, ACM, 2009, pp. 836-

836.

85. Carmel, D., et al. Personalized social search based on the user's social network.

In Proceedings of the 18th ACM conference on Information and knowledge

management. Hong Kong, China, ACM, 2009, pp. 1227-1236.

86. Kwak, H., et al. What is Twitter, a social network or a news media? In

Proceedings of the 19th international conference on World wide web. Raleigh,

North Carolina, USA, ACM, 2010, pp. 591-600.

87. Hannon, J., Bennett, M., and Smyth, B. Recommending twitter users to follow

using content and collaborative filtering approaches. In Proceedings of the fourth

ACM conference on Recommender systems. Barcelona, Spain, ACM, 2010, pp.

199-206.

88. Erra, U., et al., Approximate TF–IDF based on topic extraction from massive

message stream using the GPU. Information Sciences, 2015. 292, pp. 143-161.

124

89. Petrović, S., Osborne, M., and Lavrenko, V. Streaming first story detection with

application to twitter. In Human Language Technologies: The 2010 Annual

Conference of the North American Chapter of the Association for Computational

Linguistics. Association for Computational Linguistics, 2010, pp. 181-189.

90. Indyk, P. and Motwani, R. Approximate nearest neighbors: towards removing the

curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium

on Theory of computing. ACM, 1998, pp. 604-613.

91. Kamath, K.Y. and Caverlee, J. Content-based crowd retrieval on the real-time

web. In Proceedings of the 21st ACM international conference on information and

knowledge management. ACM, 2012, pp. 195-204.

92. Salton, G. and McGill, M.J., Introduction to Modern Information Retrieval 1983,

New York, McGraw Hill Book Co.

93. Singhal, A., Buckley, C., and Mitra, M., Pivoted document length normalization.

In proceedings 19th annual international ACM Special Interest Group on

Information Retrieval conference on Research and Development in Information

Retrieval, SIGIR’96, New York, NY,USA, 1996, pp. 21–29.

94. Tian Xia and Chai, Y., An Improvement to TF-IDF - Term Distribution based

Term Weight Algorithm. Journal of Software, 2011. 6(3).

95. Manning, C., Raghavan, P., and Schütze, H., Introduction to Information Retrieval

2008, Cambridge University Press.

96. Java Agent Development Framework, http://jade.tilab.com, Last visited: Jan. 8,

2016.

97. Niazi, M.A., Hussain, A., and Kolberg, M. Verification and Validation of Agent

Based Simulations using the VOMAS (Virtual Overlay Multi-agent System)

approach. In Proceedings of the Third Workshop on Multi-Agent Systems and

Simulation '09 (MASS '09). Torino, Italy, 2009.

http://jade.tilab.com/

125

98. Segrouchni, A.E.F., et al., eds. Multi-Agent Programming Languages, Tools, and

Applications. 2009, Springer, New York.

