
Ryerson University
Faculty of Engineering and Architectural Science

Department of Aerospace Engineering

A Mathematical Method for
Predicting the Design Performance
of Single and Multi-stage Rockets

Alexander Chang

AER870
Aerospace Engineering Thesis

Faculty Advisor - Dr. Jeffrey Yokota
13/04/2020

Acknowledgements
The Author would like to thank Dr. Yokota for his consultation and support on
this project. The feedback given was invaluable which helped push this project
to achieve its desired results.

The Author would also like to thank Ryerson University and the Department
of Aerospace Engineering for providing this opportunity to work on an Under-
graduate Thesis project. Furthermore, the Author would like to thank Ryerson
Rocketry Club for providing the flight data.

i

Abstract
Methods for predicting the performance of rockets are not new, however they
often exist only within private organizations and in order to ensure competitive
advantage, organizations tend to not share any details about their inner per-
formance models. This open-source method gives students, design-teams and
hobbyists a method to obtain baseline approximations for the performance of
both single and multi-stage tandem rockets and provides a method which can
easily be modified to meet the end-user’s requirements. The method solves for
the mass, flight-path angle, velocity, altitude, and down-range distance using a
numerical integrator to solve a set of nonlinear ordinary differential equations.

ii

Contents
List of Figures v

List of Tables vi

1 Preface 1

2 Literature Review 2
2.1 Similar Existing Methods . 2
2.2 Numerical Integrators . 2

2.2.1 Fixed Step-Size Integrators 2
2.2.2 Variable Step-Size Integrators 4

2.3 Publicly Available Flight Data and Rocket Parameters 4

3 Flight Model Design 5
3.1 Rocket Vehicle Dynamics . 5

3.1.1 Equations of Motion . 5
3.1.2 CD as a Function of Velocity and Geometry 6
3.1.3 Thrust and Mass Flow . 7

3.2 Earth’s Gravitational Field . 7
3.3 The Atmospheric Model . 8

3.3.1 Atmospheric Temperature 8
3.3.2 Atmospheric Density . 10

4 Integrating Equations into MATLAB 11
4.1 Logic Flow Charts . 11
4.2 Modifying the method for Tandem Staging 15

5 Accuracy and Precision of the Method 18
5.1 Comparison with Hand Calculations 18

5.1.1 Equations for Single Stage Comparison 18
5.1.2 Equations for n-Stage Comparison 19
5.1.3 Results from Hand Calculations 20

5.2 Changes in Precision with Varying Step-Sizes 21
5.3 Comparison with Flight Data . 27

5.3.1 Sources of Error . 28

6 General Use and Operations of the Code 29
6.1 Loading Custom Thrust and Drag Profiles 29
6.2 Creating a Preset . 29
6.3 Launch Site Conditions . 31

6.3.1 Modifying Launch Site Conditions 31
6.4 Limitations of the Method . 31

7 Next Steps 32

iii

8 Summary of Results 33

9 References 34

A Source Code i
A.1 main.m . i
A.2 num_int.m . vii
A.3 rates.m . xi
A.4 thrust.m . xiii
A.5 drag.m . xiv
A.6 rho.m . xv
A.7 gravity.m . xviii
A.8 handcalcs.m . xix

B Test Data xxi
B.1 Thrust Curve . xxi
B.2 Drag Profile . xxii

iv

List of Figures
3.1 Reference Plane of the Rocket . 5
3.2 Defining the Parameters of Earth’s Gravitational Model 8
3.3 Standard Atmospheric Model . 9
3.4 Gradient Layer Parameters . 10
4.1 High-Level Overview of Program Logic 12
4.2 Order of Computations Within the Integrator 14
4.3 Mass Change for a 2-Stage Rocket Test Case 15
4.4 Mass Change for a 3-Stage Rocket Test Case 16
4.5 Velocity Change for a 2-Stage Rocket Test Case 16
4.6 Velocity Change for a 3-Stage Rocket Test Case 17
5.1 Mass Ratios of a 3 Stage Rocket 19
5.2 Comparison of Mass with Varying Step-Sizes 22
5.3 Comparison of Velocity with Varying Step-Sizes 23
5.4 Comparison of Altitude with Varying Step-Sizes 24
5.5 Comparison of Flight Path Angle with Varying Step-Sizes 25
5.6 Comparison of Downrange Distance with Varying Step-Sizes . . . 26
5.7 Comparison of the Predicted Altitude for a Single Stage Rocket . 27
6.1 Loading Thrust and Drag Profiles 29
6.2 Preset Template . 30
6.3 Launch Conditions within the Code 31

v

List of Tables
1 Test Parameters Used for Calculations 20
2 Tabulated Results Between Hand Calculations and Simulation . 21
3 Launch Conditions at Spaceport America for 06/21/2018 27
4 SATP Settings . 31
5 Cesaroni O3400 Motor . xxi
6 Single Stage Rocket Drag Profile xxii

vi

Nomenclature
CD Coefficient of drag, dimensionless parameter

Eq. Shorthand for Equation

Fig. Shorthand for Figure

Isp Specific Impulse, s

IV P Initial Value Problem

ODE Ordinary Differential Equation

R Ideal gas constant, 287 J/kg K

RE Radius of the Earth

ROC Rate of Change

SATP Standard Ambient Temperature and Pressure

vii

1 Preface
The purpose of this project is to design an open-source method to compute a
baseline approximation for the performance of both single and multi-stage tan-
dem rockets up to and including orbit. However, the method is only capable
of calculating gravity turns, and any type of thrust-vectoring maneuvers will
require the source code to be modified. Furthermore, as it is a flight-prediction
method for rockets, once the rocket reaches orbit, any delta-V maneuvers de-
sired by the user and determination of orbital parameters will have to be done
by either manual modification to the code or with a different method altogether.

This document covers the proper use of the code provided, the equations and
methods used to carry out the calculations, and an analysis on the precision and
accuracy of the results produced. The method is designed to output five key
parameters, namely mass, velocity, altitude, flight-path angle, and down-range
distance.

1

2 Literature Review

2.1 Similar Existing Methods
The development of flight prediction methods are not new, and exist within
many private organizations. Additionally, design tools such as open-rocket are
easily accessible to the public for model rocketry, however its accuracy comes
into question as it is an idealized case and disregards many variables which have
an effect on the rocket’s overall performance. Furthermore, many open-source
methods are only sufficient for single-stage rockets and do not provide accurate
predictions rockets reach space.

2.2 Numerical Integrators
Various methods for numerical integration exist, however the methods being
examined are those that are valid for solving IVP’s. The numerical methods
being used are for forward integration, thereby using data at step i and i+1 to
estimate the derivative. The solution at i+1 is then taken as the new ’starting
point’ which will then be used to calculate the solution until a stopping condition
is reached [1, p.110-111].

2.2.1 Fixed Step-Size Integrators

One benefit of fixed step-size integrators is that they are generally easy to im-
plement when compared to variable step-size integrators. By using higher-order
integrators or integrators with more stages, this often reduces the truncation/nu-
merical error [1, p.553-579]. With regards to computational time, consider the
Forward Euler method and the Runge-Kutta 4th (RKF4) Order methods of
integration:

Forward Euler Method

y = y + hk1; (2.1)

k1 = f(t, y); (2.2)

Runge-Kutta 4th Order Method

y = y +
h

6
(k1 + 2k2 + 2k3 + k4) (2.3)

k1 = f(t, y) (2.4)

k2 = f(t+ h/2, y + k1/2) (2.5)

k3 = f(t+ h/2, y + k2/2) (2.6)

2

k4 = f(t+ h, y + k3) (2.7)

Looking at both the Forward Euler method and the Runge-Kutta 4th Order
method, one can easily deduce that the number of computations required for
the Forward Euler method is significantly less than the RKF4 method. Where
the Forward Euler method can finish computing the system of ODE’s with 2
equations, the RKF4 method requires 5. When computed over a small step-size
or for flights with a long durations, the RKF4 method will require significantly
more time to finish computing, whereas the Forward Euler method will be rela-
tively fast. However as stated previously, using lower-order integrators or larger
step-sizes may introduce larger amounts of numerical error.

Several other numerical integrators that were used for testing include the Ex-
plicit Midpoint method, 3 stage method, and Butcher’s 5th Order Runge-Kutta
method. These additional methods are included in the code for the end-user to
easily switch between.

Explicit Midpoint Method

y = y + hk2 (2.8)

k1 = f(t, y) (2.9)

k2 = f(t+
h

2
, y +

k1
2
) (2.10)

3-Stage Method

y = y + h(
k1
6

+ k2
2

3
+
k3
6
) (2.11)

k1 = f(t, y) (2.12)

k2 = f(t+
h

2
, y +

k1
2
) (2.13)

k3 = f(t+ h, y − k1 + 2k2) (2.14)

5th Order Runge-Kutta Method

y = y +
h

90
(7k1 + 32k3 + 12k4 + 32k5 + 7k6) (2.15)

k1 = f(t, y) (2.16)

k2 = f(t+
h

4
, y + h

k1
4
) (2.17)

3

k3 = f(t+
h

4
, y + h

k1
8

+ h
k2
8
) (2.18)

k4 = f(t+
h

2
, y − h

k2
2

+ hk3) (2.19)

k5 = f(t+ h
3

4
, y + k1h

3

16
+ k4h

9

16
) (2.20)

k6 = f(t+ h, y − k1h
3

7
+ k3h

2

7
− k4h

12

7
+ k5h

8

7
) (2.21)

2.2.2 Variable Step-Size Integrators

Variable step-size integrators work in a similar fashion to fixed step-size inte-
grators, however, the step-size changes with each step depending on the total
error between steps specified by the user. This can result in significant time sav-
ings when conducting calculations over a long duration (i.e. calculations over
many orbital periods). Unlike the fixed step-size integrators, variable step-size
integrators are significantly harder to implement due to its added complexity.

2.3 Publicly Available Flight Data and Rocket Parameters
Basic information on the geometry (such as diameter, height, Isp etc.) of many
launch vehicles are easily accessible, however these values only give a rough
estimate to the actual performance of the rocket. Information regarding the
drag profile, thrust curve, and other data regarding to actual flights are often
confidential and thus unattainable. This creates a major hurdle for this project
when it comes to verifying the results due to the small sample size of data
available. This issue will be discussed further in 5.3.

4

3 Flight Model Design
Section 3 outlines the design of the rocket’s flight model and the equations used
to carry out the calculations. The back-end logic behind the implementation of
these equations and the numerical solution can be found in [2].

3.1 Rocket Vehicle Dynamics
3.1.1 Equations of Motion

Section 3.1.1 will refrain from deriving all the equations of motion as this has
already been done in numerous texts before. However, those seeking the deriva-
tions can find them in [2, p.706-711]. Before the equations can be derived, a
reference plane must first be defined.

Figure 3.1: Reference Plane of the Rocket

With the reference plane defined, the following equations are listed in the order
of which they are to be solved.

an =
dv

dt
=
T −D

m
− g sin γ (3.1)

Eq. 3.1 is the normal component of the acceleration. Alternatively, it can be
written as dv

dt ; the change in velocity over the change in time, where T is the

5

thrust produced by the rocket’s motor/engine in N , D is the drag force in N on
the rocket which acts in opposing normal direction of the vehicle’s flight path,
m is the mass of the rocket in kg, g is the gravitational constant of the Earth
in m/s2, and γ is the flight path angle in radians.

γ̇ =
dγ

dt
= −1

v
(g − v2

RE + h
) cos γ (3.2)

Eq. 3.2 is the change in the flight path angle over the change in time, where v
is the velocity of the rocket in m/s, g is the gravitational constant of the Earth
in m/s2, RE is the radius of the Earth in m, h is the altitude of the rocket in
m, and γ is the flight path angle in radians.

ḣ =
dh

dt
= v sin γ (3.3)

Eq. 3.3 is the change of the rocket’s altitude over the change in time, where v
is the velocity of the rocket in m/s and γ is the flight path angle in radians.

ẋ =
dx

dt
=

RE

RE + h
− v cos γ (3.4)

Eq. 3.4 is the change of the rocket’s downrange distance over the change in
time, where RE is the radius of the Earth in m, h is the altitude of the rocket
in m, v is the velocity of the rocket in m/s, and γ is the flight path angle in
radians.

In the equations listed above, most of the parameters are not constant and
change over the course of the rocket’s flight. Due to these parameters constantly
changing, there is a need for an iterative method to accurately compute the
parameters over the duration of flight.

3.1.2 CD as a Function of Velocity and Geometry

Another major factor on rocket performance is drag which is defined as:

1

2
ρv2ACD (3.5)

6

Where ρ is the density of the air in kg/m3, v is the velocity of the rocket in
m/s, A is the cross-sectional reference area of the rocket in m2, and CD is the
drag coefficient which is a dimensionless term. Due to the drag coefficient being
dependent on both the external geometry and free-stream velocity of the rocket,
the drag coefficient can only be found either through wind tunnel testing or a
CFD analysis.

3.1.3 Thrust and Mass Flow

Rocket motors/engines which are commercially available often have thrust curves
associated with it outlining the net thrust over the burn duration. If a thrust
curve is given, then determining the thrust at time t during a rocket’s flight is
trivial. However, if the thrust curve is unavailable, the thrust can be approxi-
mated by using a rocket’s thrust-to-weight ratio.

T =
T

W
mg (3.6)

Eq. 3.6 is the thrust of the rocket in N where T
W is the thrust-to-weight ratio

which is dimensionless, m is the mass of the rocket in kg and g is the gravita-
tional acceleration in m/s2.

ṁ =
−T
Ispg

(3.7)

Eq. 3.7 is the mass flow rate of the rocket’s propellant, where T is the total
thrust in N , Isp is the specific impulse of the rocket engine in s, and g is the
gravitational acceleration in m/s2.

3.2 Earth’s Gravitational Field
To further improve the accuracy of the model, Earth’s gravitational field can-
not be assumed to be constant for rockets reaching high-altitudes. However, the
assumption is made that the Earth is perfectly spherical, thus the gravitational
constant for any given altitude is the same throughout the Earth.

7

Figure 3.2: Defining the Parameters of Earth’s Gravitational Model

g =
g0

1 + (
hg

r)2
(3.8)

In Eq. 3.8 g is the gravitational constant for a given altitude in m/s2, hg is the
altitude in m, and r is the radius of the Earth in m. The full derivation of Eq.
3.8 can be found in [3, p.113].

3.3 The Atmospheric Model
The calculations conducted for determining the atmospheric temperature and
density are done so with the geopotential altitude, which accounts for the vari-
ation of gravity due to the latitude and altitude at sea level. Additionally, the
atmospheric model used for this simulation takes the conditions at the launch
site (namely the temperature, T and air density ρ) into account. Those inter-
ested in seeing the full derivation of the equation used in Section 3.3 can find it
in [3, p.110-121].

3.3.1 Atmospheric Temperature

The temperature of the atmosphere can be classified into two distinct categories;
isothermal layers where the temperature is constant, and gradient layers where
temperature changes linearly. The isothermal layers lies between 11 to 25 km,
47 to 53 km and 79 to 90 km, with the temperatures being 216.66 K, 282.66 K,
and 165.66 K respectively. Fig. 3.3 outlines where the isothermal and gradient
layers lay within the atmosphere.

8

Figure 3.3: Standard Atmospheric Model

Within the gradient layers, the lapse-rate can be represented with the following
equation.

a1 =
T2 − T1
h1

; (3.9)

Where a is known as the lapse rate and is dimensionless, T are the tempera-
tures at the beginning and end of the region respectively in K, and h is the
altitude in m. With this relationship, the lapse rate in region 1 (a1) can then be
changed accordingly for the launch site ambient temperatures instead of using
the standard temperature. To help visualise this, refer to Fig. 3.4 below:

9

Figure 3.4: Gradient Layer Parameters

The temperature at within any region can be found with the following relation-
ship, where T1 is the temperature at the beginning of region 1 in K, a is the
lapse rate of the region, and h is the current altitude of the rocket in m.

T = T1 + a1h; (3.10)

3.3.2 Atmospheric Density

Once the temperature and the lapse rate is known, the atmospheric density can
then be approximated with the following equation.

ρ = ρ1(
T

T1
)−

g0
a1R+1 (3.11)

Where ρ is the density at a given altitude and ρ1 is the density at the beginning
of region 1 in kg/m3, T1 is the temperature at the beginning of region 1 in K,
g0 is the gravitational constant at sea level in m/s2, a1 is the lapse rate which
is dimensionless, and R is the gas constant.

To calculate the pressure and temperatures at each subsequent region, the end
conditions from the previous region are used as the new initial conditions. For
example, if region 1 is 0 to 11 km, the temperature and pressure values at 11
km are then used to calculate values within region 2 (11 to 25 km).

10

4 Integrating Equations into MATLAB
With all of the governing equations and parameters defined in Section 3, Section
4 will outline the implementation of these equations and parameters into the
program itself. Several flow charts are included to help illustrate the processes
and sequences of events within the code.

4.1 Logic Flow Charts
Fig. 4.1 depicts a high-level overview of key processes of the method while
4.2 outlines the steps inside the integrator. Starting with 4.1, once the initial
conditions and constraints are loaded and a numerical integrator is chosen, the
method checks to see if there is still available propellant. If propellant still
remains (i.e motor burn is still in progress), it checks for a thrust curve and
determines the instantaneous thrust available. If there is no more propellant,
the program then checks to see if any additional rocket stages remain. If so, the
structural mass of the current stage is subtracted from the total mass followed
by the ’ignition’ of the next stage. Next, the mass flow rate of the propellant
is found and the new mass is calculated. With the mass found, the integrator
is then run to solve the system of ODE’s. If additional stages in the integrator
exists, it will then compute all additional stages to completion. The rocket’s new
parameters are then calculated at the end of the final stage of the integrator,
followed by a check to see if the program has reached the stopping conditions.

11

Figure 4.1: High-Level Overview of Program Logic

12

Fig. 4.2 illustrates the order of operations within the rates.m file. As the figure
shows, there two Boolean operators after the calculations of v̇ and γ̇. This is
to ensure that the program is stable and to prevent the rocket from crashing
once the program starts running. Taking the first Boolean operator just after
the calculation of v̇, for a given step-size, the gravitational force may exceed
the rocket’s instantaneous thrust term provided by the motor. However, as it
is still on the ground, an opposing normal force is needed to prevent the rocket
from essentially ’falling through the ground’. A simple statics equation can help
visualize this:

Fnet = T +G+N (4.1)

While on the ground, the net force on the rocket is a summation of thrust T ,
gravity G, and the normal force N . There is no drag as the velocity is 0. If the
gravitational acceleration term exceeds the instantaneous acceleration provided
by the motor, the acceleration (v̇) is set to zero as it has not yet taken off. The
Boolean check for time exceeding 0.5 seconds is to allow for a negative v̇ term
later on during flight if the rocket descends.

The second Boolean check just after the calculation of γ̇ is to prevent the rocket
from immediately ’tipping over’ due to an imbalance of forces, or if the rocket is
starting on a steep launch angle. The remaining blocks in the diagram outline
which parameters are being solved using the equations from Chapter 3.

13

Figure 4.2: Order of Computations Within the Integrator

14

4.2 Modifying the method for Tandem Staging
Modelling for the booster separation was done under the assumption that the
separation between the stages is instantaneous, with the following stage igniting
immediately after. One option considered for modelling the booster separation
was to split the problem into two. The first calculation would solve the pa-
rameters from launch until burnout, with the second calculation computing the
ignition of the second stage until the end of its flight. However, splitting the
problem into two and using the final values of the first calculation as the initial
values for the second may lead to variations in the solution. This is because
there may be interactions between the equations and parameters during the
separation that might not be represented properly. To avoid this possibility
completely, the entire problem must be as one.

Several test cases were run with multiple stages. The tests done were with the
exact same parameters for all stages (i.e. the same motor, CD, mass etc.).

Figure 4.3: Mass Change for a 2-Stage Rocket Test Case

15

Figure 4.4: Mass Change for a 3-Stage Rocket Test Case

Figure 4.5: Velocity Change for a 2-Stage Rocket Test Case

16

Figure 4.6: Velocity Change for a 3-Stage Rocket Test Case

Fig. 4.3 and 4.4 for both the 2 and 3 stage rockets respectively shows the sud-
den change in the mass, signifying the instance just after burnout where the
first stage is discarded, followed by the immediate ignition of the next stage.
Once burnout is reached on the final stage, the mass becomes equivalent to the
summation of the structural and payload masses.

Fig. 4.5 and 4.6 shows a significant change in velocity immediately after booster
separation which is expected. By taking a look at Newton’s Second Law, F =
ma, as mass decreases then the acceleration term must increase to remain at
equilibrium. By extension, velocity must then also increase as velocity is the
integral of acceleration.

17

5 Accuracy and Precision of the Method
Within this section, the accuracy and precision of the method will be critiqued.
The accuracy of the method itself can be split into two categories; numerical
accuracy and the accuracy between the computed results and test data. Numer-
ical accuracy can be improved by using higher-order integrators or integrators
with more stages. Going back to the comparison in 2.2.1, the RKF4 method
has a global truncation error on the order of O(h4) while the Euler method
has a global truncation error on the order of O(h2). However, the accuracy
of the results to actual flight data depends on how the flight model is built
and how closely it resembles to the behaviour of the rocket through its flight.
Furthermore, there may be small nuances between rockets, thus the parameters
within the method would need to be tweaked and adjusted. The precision of
the method can be measured by seeing how close the results are to each other
by tweaking parameters such as the step-size, integrator type, etc.

5.1 Comparison with Hand Calculations
Hand calculations for these iterative solutions produce a reasonable ballpark
estimate and can indicate whether the method is providing a reasonable solution.
By including a drag term into the calculations, this can help improve the overall
results. With hand calculations, a different set of equations must be used as the
equations in Chapter 2 are for an iterative method.

5.1.1 Equations for Single Stage Comparison

For the single-stage comparison, a modified version of the equations in [2, p.710-
711]the following set of equations were evaluated.

v = c ln
mo

mf
− got−

D

mf
t (5.1)

t =
c ln mo

mf

go +
D
mf

(5.2)

Eq. 5.1 yields an approximate value for the velocity given the initial mass mo in
kg, the final mass mf in kg, the Earth’s gravitational acceleration go, and drag
D in N . The c term is the product of Ispg0. Setting the velocity to zero in Eq.
5.1, it can then be rearranged for time in s to apogee. By taking the integral
of Eq. 5.1 with respect to time, the equation can then be solved for apogee by
substituting the time to apogee into Eq. 5.6.

h =
c

ṁe
(mo ln

mf

mo
+mo +mf) + ct ln

mo

mf
− 1

2
got

2 − 1

2

D

mf
t2 (5.3)

18

5.1.2 Equations for n-Stage Comparison

For the multi-stage calculations, the final mass mf of each stage is the sum of
all masses above it as illustrated in Fig. 5.1. mp is the mass of the propellant,
mo is the empty mass, me is the structural and electrical mass of the stage, and
mPL is the mass of the payload.

Figure 5.1: Mass Ratios of a 3 Stage Rocket

Before carrying out the following calculations, an assumption is made that the
n+1 stage ignites immediately after n stage burns out. With this assumption,
the burnout velocity can then be written as the sum of the burnout velocities

19

minus the losses from gravity and drag during the rocket’s cruise to apogee.

v =

n∑
i=1

vbo,li −
n∑

i=1

Di

mf
ti − gota (5.4)

Note the two different times. ti denotes the burn time of each individual stage
while ta is time to apogee (both in s). Assuming that the velocity of the rocket
is 0 at apogee, the equation can then be rearranged for ta. With the time to
apogee known, the apogee itself can be found taking the integral of Eq. 5.5.

h =

∫ t

0

v =

∫ t

0

n∑
i=1

vboi,li −
n∑

i=1

∫ t

0

vDti −
∫ t

0

gota (5.5)

h =

n∑
i=1

(
ci
ṁei

(moi ln
mf i

moi
+moi+mf i)+citi ln

moi

mf i
)−1

2

n∑
i=1

Di

mf i
t2i−

1

2
got

2
a (5.6)

The variable notation is the same as the single stage case with the addition of
subscript i. This denotes each stage with n being the final stage of the rocket.

5.1.3 Results from Hand Calculations

For the hand calculations carried out, the velocity used to approximate the drag
was the average velocity found from the iterative solution. Both sets of calcula-
tions were done with the same parameters and are listed in the following tables
along with the corresponding results. To simplify the multi-stage calculations,
each stage is identical (i.e. same set of parameters are used).

Diameter Ref. Area Isp mo mf vavg ρ CD

6.11 in 0.0189 m2 197 s 34.6 kg 24 kg 400 m/s 0.7 kg/m3 0.3

Table 1: Test Parameters Used for Calculations

20

Number of Stages Time to Apogee (s) Apogee (m)
1 Stage (Iterative) 37.6 s 7971 m

1 Stage (Hand Calc.) 37.21 s 8707 m
Error (%) 1.05% 9.33%

3 Stage (Iterative) 64.235 s 18800 m
3 Stage (Hand Calc.) 55.235 s 20730 m

Error (%) 14% 10.27%

Table 2: Tabulated Results Between Hand Calculations and Simulation

The difference between the hand calculations and iterative method can be
chalked up to how the equations are calculated and the assumptions made.
The hand calculations do not take any of the atmospheric conditions into ac-
count (except for density, which is used for drag losses). Furthermore, the hand
calculations are solved with the assumption that various parameters are fixed
whereas the iterative method does not. With the differences taken into account,
it can be concluded that the iterative method does provide a solution within
a reasonable ballpark. The full set of calculations carried out can be found in
Appendix A.8.

5.2 Changes in Precision with Varying Step-Sizes
One parameter which tends to have a large effect on the precision of the result
is the step-size (or time-step). To test this, a one-stage rocket case was used
where the step-sizes were made smaller after each iteration by h

2 , where h is
the step-size starting at 1. After integrating with the Runge-Kutta 4th Order
method, the following graphs were generated and illustrates some interesting
behaviours:

21

Figure 5.2: Comparison of Mass with Varying Step-Sizes

22

Figure 5.3: Comparison of Velocity with Varying Step-Sizes

23

Figure 5.4: Comparison of Altitude with Varying Step-Sizes

24

Figure 5.5: Comparison of Flight Path Angle with Varying Step-Sizes

25

Figure 5.6: Comparison of Downrange Distance with Varying Step-Sizes

From the Fig. 5.2 to 5.6 it shows that with a smaller step size, the solution
starts to converge towards an exact solution. This behaviour is as expected
as using a smaller step size helps reduces the total truncation error. However,
it is possible to increase the roundoff error in calculations due to subtractive
cancellation if the step-size is made too small. The step-size where this occurs
is dependent on a case by case basis, thus the user will have to manually test
for this.

26

5.3 Comparison with Flight Data
The flight data used for comparison is provided by Ryerson Rocketry Club
from a launch in 2018 with the data recorded on a commercially available flight
computer. However, the data provided did not include the launch site conditions
such as the launch site altitude ASL, air density, or the ambient temperature on
the day of the launch. Thus, the launch conditions used in the simulation are
approximated for 06/21/2018 around midday to coincide with the approximate
launch time.

ASL 1400.556m
Tamb(approx.) 37oC
ρamb(approx.) 1.1084 kg/m3

Dry Mass 28.93 kg
Fuel Mass 10.6 kg

Launch Angle 87o

Table 3: Launch Conditions at Spaceport America for 06/21/2018

Plotting the simulation results over the flight data, one can see the similarity
between the two from launch until apogee in Fig. 5.7. After reaching apogee,
the two values start to differ as the rocket from Ryerson Rocketry Club deploys
a parachute while in the simulation it continues on a ballistic trajectory.

Figure 5.7: Comparison of the Predicted Altitude for a Single Stage Rocket

27

The simulation calculated an apogee of 8016.8 m while the actual apogee was
8019.2 m, yielding an error of 0.0274%. This error should be taken with caution
as it could be greater or less due to the assumptions made for the atmospheric
conditions and an approximate mass value.

5.3.1 Sources of Error

As stated before, numerical integrators all have an inherent amount of trun-
cation error. This error cannot be removed completely, but it can be reduced
by using higher-order integrators. Additional numerical errors can also result
from the rounding of digits after each calculation. Furthermore, there is also
the error which comes from the approximations made in Chapter 3.

28

6 General Use and Operations of the Code
The method is designed to ideally be used with user-specified presets. However,
manually inputting parameters using the command line is also possible, albeit
time-consuming if the user wishes to test numerous cases. Furthermore, this
program assumes that the user has a basic understanding of the MATLAB
environment.

6.1 Loading Custom Thrust and Drag Profiles
If the user has a thrust curve for the rocket’s motor/engine or the drag profile of
the launch vehicle, it can be loaded into the program by modifying the section
named M2 - Load All Thrust and Drag Profiles. If no drag profile or thrust
curve exists, comment out the following section:

Figure 6.1: Loading Thrust and Drag Profiles

6.2 Creating a Preset
To create a preset, values within M3 - Launch Vehicle Parameters section in
the main.m file will need to be modified. To do so, make a copy of the template
and modify the 12 parameters accordingly. An example of the preset template
is shown in Fig. 6.2.

29

Figure 6.2: Preset Template

A brief description of each parameter is listed below:

(0) Preset index. Change this to a value that is not in use.

(1) Change this entry to the total number of stages of the rocket.

(2) Isp (in s) of each stage in an array, starting with the first stage.

(3) Cross-sectional reference area for each stage of the rocket in an array, start-
ing with the first stage.

(4) Total structural mass (including avionics, engine etc.) of each stage in an
array, starting with the first stage.

(5) Total propellant mass of each stage in an array, starting with the first stage.

(6) Total mass of actual payload (not the combined sums of n-stages above) of
each stage in an array, starting with the first stage.

(7) Launch angle of the rocket.

(8) Thrust-to-weight ratio of each stage in an array, starting with the first stage.

(9) Signifies whether a thrust curve exists for each stage in an array, starting
with the first stage. (1 - yes, 0 - no)

(10) Signifies whether a drag profile exists exists for each stage in an array,
starting with the first stage. (1 - yes, 0 - no)

(11) If no drag profile exists (i.e. 0 for entry (10)) enter a fixed CD value.

30

6.3 Launch Site Conditions
By default, the program is set to the SATP conditions. This can be found under
the launch condition setup portion within the main.m file. The only values of
interest is the altitude ASL in m, the ambient temperature in Celsius, and the
ambient pressure kg/m2. These values are tabulated below.

ASL 0
Tamb 25
ρamb 1.225

Table 4: SATP Settings

6.3.1 Modifying Launch Site Conditions

Modifying the launch site conditions can be done through the launch condition
setup section of the code and changing the following values:

Figure 6.3: Launch Conditions within the Code

hturn is the altitude where the pitchover begins (i.e. the launch angle is no
longer fixed to the initial value). This usually occurs once the rocket has cleared
the launch rail/launch pad or early on during its flight. The remaining values
should be changed to the launch site’s altitude above sea level in m, ambient
temperature in K, and the ambient air density in kg/m2.

6.4 Limitations of the Method
Due to the constrained duration of this project, only a single set of data was
readily available for comparison, and as such, the results from the use of the
method should be taken with caution. The method can produce a reasonable
estimate towards the performance of the rocket, however, further calibration
will need to be done to achieve more accurate results.

31

7 Next Steps
The next steps for this design method is to obtain additional sets of flight
data for both single and multi-stage rockets to compare with the results of the
method. This in turn will allow for adjustments to be made to further improve
the accuracy of the method and possibly validating the results obtained from this
method. Additionally, future improvements can be made to allow for additional
parameters to be handled such as delays before stage ignition, mid-flight course
adjustments, etc.

32

8 Summary of Results
Over the course of the project, a method for calculating a rocket’s mass, flight-
path angle, velocity, altitude, and down-range distance was designed. The
method utilises a numerical integrator to solve the system of ODE’s for a solu-
tion. Hand calculations were then compared with the results from several test
cases to determine whether the solution from the method was in an appropriate
’ballpark’ range. The errors between the hand-calculations and the method for
both the single and 3-stage cases were all under 15%. This difference can be
attributed to the drag being a constant fixed value and the atmospheric condi-
tions not taken into account in the hand calculations. A second test was done
to test the precision of the tool by changing the step-size, where it was found
that by reducing the step-size, the method does converge towards a single so-
lution. When compared to actual flight data from a launch in 2018, there was
an error of 0.0274% between the actual apogee and the apogee provided from
the simulation. This error can be attributed to the exact launch conditions not
being known and the assumptions made inside the method itself. The overall
accuracy of the method should be taken with some criticism, as there was only
one test case available for comparison.

33

9 References
[1] S. C. Chapra, Applied Numerical Methods. 1221 Avenue of the Americas,

New York, NY 10020: McGraw-Hill, 3 ed., 2012.

[2] H. D. Curtis, Orbital Mechanics for Engineering Students. The Boulevard,
Langford Lane, Kidlington, Oxford, OX5 1GB, UK 225 Wyman Street,
Waltham, 02451, USA: Butterworth-Heinemann, 2019.

[3] J. D. A. Jr., Introduction to Flight. 1221 Avenue of the Americas, New York,
NY 10020: McGraw-Hill, 2012.

34

A Source Code

A.1 main.m

1 %% M1 - INITIALIZATION %%
2 % ALL UNITS ARE IN SI %
3 clc;
4 clear;
5 clear global;
6

7 % Rocket Parameters %
8 global...
9 Isp... % Specific impulse (s)

10 m_t... % Total mass of stage (kg)
11 m_fuel... % Total fuel mass of stage (kg)
12 t_bo... % Burnout time of stage (s)
13 T2W... % Thrust to Weight ratio of stage (Unitless)
14 y... % column vector for paramters (Refer ...

below)
15 A... % Reference area for drag computations (m^2)
16 hturn... % Pitchover altitude (m)
17 CD % Drag Coefficient (Unitless)
18

19 % Launch Site Conditions %
20 global...
21 asl... % Launch site alt (above sea level) (m)
22 T_amb... % Ambient temperature at launch site (K)
23 rho_amb % Ambient air density (kg/m^3)
24

25 % Counters %
26 global...
27 stage... % Indicates the current stage of the vehicle
28 n_stages... % Total number of stages in launch vehicle
29 burn... % Indicates whether the motor/engine is ...

currently in use
30 bypass % Indicator of whether to bypass thrust ...

calculations after burnout
31

32 % Thrust and Drag curve_ts
33 global...
34 tc... % Thrust curve of each motor/engine
35 dp... % Drag profile of the launch vehicle at each stage
36 curve_d... % States wehether a drag profile exists
37 curve_t % States whether a thrust curve is available, if ...

not,
38 % an alternate method will be used to compute thrust
39

40 % Constants
41 global...
42 Re... % Radius of the Earth (m)
43 r2d... % Conversion; Radians to Degrees (Unitless)
44 d2r % Conversion; Degrees to Radians (Unitless)
45

46 Re = 6378100;
47 r2d = 180/pi;

i

48 d2r = pi/180;
49

50 %% M2 - LOAD ALL THRUST AND DRAG PROFILES %%
51 %Saved drag and thrust curves MUST have the variable MATLAB name of
52 %drag_profile for the C_D file
53 %thrust_curve for the thrust curve
54 %Actual file name can vary; adjust below accordingly
55

56 % 1st Stage
57 a1 = load('drag_profile.mat'); %(C_D/mach)
58 b1 = load('thrust_curve.mat'); %(N/s)
59 dp{1} = a1.drag_profile;
60 tc{1} = b1.thrust_curve;
61

62 % 2nd Stage
63 a2 = load('drag_profile.mat');
64 b2 = load('thrust_curve.mat');
65 dp{2} = a2.drag_profile;
66 tc{2} = b2.thrust_curve;
67

68 % 3rd Stage
69 a3 = load('drag_profile.mat');
70 b3 = load('thrust_curve.mat');
71 dp{3} = a3.drag_profile;
72 tc{3} = b3.thrust_curve;
73

74 %% M3 - LAUNCH VEHICLE PARAMETERS %%
75 preset = input('Enter a saved profile \n');
76 if preset == 0
77 %% NO PRESET
78 % Specify number of booster stages
79 n_stages = input('Number of Stages \n');
80

81 for i = 1:n_stages
82 Isp(i) = input(['Specific Impulse of Stage ...

' num2str(i) ' in seconds \n']);
83 A(i) = input(['Cross-Sectional Reference ...

Area of Stage ' num2str(i) ' in m^2\n']);
84 m_struc(i) = input(['Structural Mass of Stage ' ...

num2str(i) ' in kg\n']);
85 m_fuel(i) = input(['Fuel Mass of Stage ' ...

num2str(i) ' in kg\n']);
86 no_thrust_curve = input('Is a thrust curve ...

available? (1 for yes, 0 for no)');
87 if no_thrust_curve == 0
88 T2W(i) = input(['Thrust to Weight Ratio of Stage ' ...

num2str(i)]);
89 end
90 if i == n_stages
91 m_pl(i) = input(['Payload Mass of Stage ' num2str(i) ...

' in kg\n']);
92 end
93 end
94

95 % Specify an initial launch angle
96 gamma = input('Initial Launch Angle in degrees \n');
97 gamma = gamma*d2r;

ii

98

99 elseif preset == 1
100 %% PRESET 1; RRC Single Stage Sounding Rocket (Spaceport ...

America Cup 2018)
101 n_stages = 1; %Number of Stages ...

(Unitless)
102 Isp = 197; %Specific Impulse ...

(s)
103 diam = 0.155194; %Cross-Sectional ...

Diameter (m)
104 A = pi*(diam/2)^2; %Reference Area ...

(m^2)
105 m_struc(1) = 55*0.453592; %Structural Mass ...

(kg)
106 m_fuel(1) = 23.369*0.453592; %Fuel Mass ...

(kg)
107 m_pl(1) = 8.8*0.453592; %Payload Mass ...

(kg)
108 curve_t(1) = 1;
109 curve_d(1) = 1;
110 gamma = 87*d2r;
111 T2W(1) = 17;
112 CD = 0.5;
113

114 elseif preset == 2
115 %% PRESET 2; 2-Stage Sounding Rocket
116 n_stages = 2; %Number of Stages ...

(Unitless)
117 Isp = [197, 197]; %Specific Impulse ...

(s)
118 diam = 0.127; %Cross-Sectional ...

Diameter (m)
119 area = (pi*(diam/2)^2); %Reference Area ...

(m^2)
120 A = [area,area]; %Reference Area ...

(m^2)
121 m_struc = [12.68,16.68]; %Structural Mass ...

(kg)
122 m_fuel = [11,11]; %Fuel Mass ...

(kg)
123 m_pl = [0,2]; %Payload Mass ...

(kg)
124 gamma = 90*d2r;
125 % T2W = [17,17];
126 curve_t = [1,1];
127 curve_d = [1,1];
128 CD = 0.5;
129

130 elseif preset == 3
131 %% PRESET 3; 3-Stage Rocket (Hand Calculation Comparison)
132 n_stages = 3; %Number of Stages ...

(N/A)
133 Isp = [197, 197, 197]; %Specific Impulse ...

(s)
134 diam = 0.155194; %Cross-Sectional ...

Diameter (m)

iii

135 area = (pi*(diam/2)^2); %Reference Area ...
(m^2)

136 A = [area, area, area]; %Reference Area ...
(m^2)

137 m_struc = [24,24,24]; %Structural Mass ...
(kg)

138 m_fuel = [10.6,10.6,10.6]; %Fuel Mass ...
(kg)

139 m_pl = [0,0,0]; %Payload Mass ...
(kg)

140 gamma = 89*d2r;
141 % T2W = [17,17,17];
142 curve_t = [1,1,1];
143 curve_d = [1,1,1];
144

145

146 elseif preset == 4
147 %% PRESET 4; 1-Stage Rocket (Hand Calculation Comparison)
148 n_stages = 1; %Number of Stages ...

(Unitless)
149 Isp = 197; %Specific Impulse ...

(s)
150 diam = 0.155194; %Cross-Sectional ...

Diameter (m)
151 A = pi*(diam/2)^2; %Reference Area ...

(m^2)
152 m_struc(1) = 24; %Structural Mass ...

(kg)
153 m_fuel(1) = 10.6; %Fuel Mass ...

(kg)
154 m_pl(1) = 0; %Payload Mass ...

(kg)
155 curve_t(1) = 1;
156 curve_d(1) = 1;
157 gamma = 89*d2r;
158 T2W(1) = 17;
159 CD = 0.5;
160

161

162 elseif preset == 999 %(0)Modify this value
163 n_stages = 1; %(1)Number of Stages ...

(Unitless)
164 Isp = [0]; %(2)Specific Impulse ...

(s)
165 A = [0]; %(3)Reference Area ...

(m^2)
166 m_struc = [0]; %(4)Structural Mass ...

(kg)
167 m_fuel = [0]; %(5)Fuel Mass ...

(kg)
168 m_pl = [0]; %(6)Payload Mass ...

(kg)
169 gamma = 90*d2r; %(7)Launch Angle ...

(deg)
170 T2W = [0]; %(8)Thrust to Weight ...

Ratio (Unitless)

iv

171 curve_t = [0]; %(9)Thrust Curve? ...
(1-yes/0-no)

172 curve_d = [0]; %(10)Drag Profile? ...
(1-yes/0-no)

173 CD = 0.5; %(11)If 0 for above, ...
insert a constant CD

174

175 end
176

177 %% MASS RATIOS %%
178 % Iterative loop to determine the total masses of each stage, ...

where the
179 % payload mass of n-stage is the mass of all stages above
180 j = 0;
181 k = 1;
182

183 for i = n_stages:-1:1
184 if i > 1
185 m_t(n_stages-j) = m_struc(n_stages-j) + ...

m_fuel(n_stages-j) + m_pl(n_stages-j);
186 m_pl(n_stages-k) = m_t(n_stages-j);
187

188 j = j + 1;
189 k = k + 1;
190

191 elseif i == 1
192 m_t(1) = m_struc(1) + m_fuel(1) + m_pl(1);
193 end
194 end
195

196 %% M4 - SETTING LAUNCH CONDITIONS %%
197 % Launch Condition Setup
198 hturn = 0;
199 asl = 0; %1400.556; (Swap for Spaceport cond.)
200 T_amb = 25 + 273.15; %37; (Swap for Spaceport cond.)
201 rho_amb = 1.225; %1.1084; (Swap for Spaceport cond.)
202

203 % Initialize Counters
204 stage = 1;
205 t_bo = 0;
206 burn = 1;
207 bypass = 0;
208

209 % Initialize IVC
210 v = 0; % Initial velocity (m/s)
211 h = 0; % Initial Altitude (m)
212 x = 0; % Initial downrange distance (m)
213 y = [v,h,gamma,x]; % Store IVC for import ...

(Numerous) [m_t(1),v,h,gamma,x];
214 ti = 0; % Starting time of integration (s)
215 tf = 8000; % Maximum time for integration (s)
216 step = 0.001; % Step-size of the integration (s)
217 method = 4; % Chosen Integrator
218

219 % METHODS %
220 % 1 - Forward Euler Method
221 % 2 - Explicit Midpoint Method

v

222 % 3 - 3rd Order Method
223 % 4 - 4th Order Method
224 % 5 - Ralston's 4th-order method
225

226 [t1,y1,s1] = num_int(@rates, ti, tf, y, step, method);
227

228 %% M5 - VISUALIZATION %%
229 %Plotting of the results from the integration
230 figure
231 plot(s1(:,1),s1(:,2))
232 xlabel('Time (s)')
233 ylabel('Mass (kg)')
234 title('Mass Change Over the Duration of Flight')
235

236 figure(2)
237 plot(s1(:,1),s1(:,3))
238 xlabel('Time (s)')
239 ylabel('Velocity (m/s)')
240 title('Velocity Change Over the Duration of Flight')
241

242 figure(3)
243 plot(s1(:,1),s1(:,4))
244 xlabel('Time (s)')
245 ylabel('Altitude, (m)')
246 title('Altitude Change Over the Duration of Flight')
247

248 figure
249 plot(s1(:,1),s1(:,5),'--')
250 xlabel('Time (s)')
251 ylabel('Flight Path Angle (deg)')
252 title('Flight Path Angle Over the Duration of Flight')
253

254 figure
255 plot(s1(:,1),s1(:,6),'--')
256 xlabel('Time (s)')
257 ylabel('Downrange Distance (m)')
258 title('Downrange Distance Over the Duration of Flight')

vi

A.2 num_int.m

1 function [t,y,s] = num_int(f, ti, tf, y, h,method)
2 global...
3 burn...
4 m_t...
5 stage...
6 n_stages...
7 r2d...
8 bypass...
9 tc...

10 m...
11 m_fuel...
12 curve_t...
13 t_bo...
14 Isp...
15 T...
16 T2W
17

18 t = ti;
19 i = 0;
20 g0 = gravity(0);
21 m = m_t(stage);
22

23 while 1
24 if t < tf
25 %% MASS FLOW (m_dot) %%
26 % Check to see if remaining mass is equal to empty mass
27 % m_empty = m_t(stage) - m_fuel(stage);
28 % g0 = gravity(0);
29 % (1) First check is to see if the total mass is less ...

than or equal
30 % to the dry-mass of the launch vehicle (2) Second check ...

is to see
31 % if the booster burn status has been completed (0 for ...

complete, 1
32 % for in process, 2 for transition to next stage) The ...

burn variable
33 % also acts as a marker for transitioning between stages
34

35 if bypass == 1 && stage < n_stages
36 burn = 1;
37 bypass = 0;
38 stage = stage + 1;
39 m = m_t(stage);
40 elseif bypass == 1 && stage == n_stages
41 burn = 0;
42 m = m_t(stage) - m_fuel(stage);
43 end
44

45 m_empty = m_t(stage) - m_fuel(stage);
46

47 if bypass == 0
48 if m ≤ m_empty
49 T = 0;
50 burn = 0;

vii

51

52 else
53 %Checks to see if a thrust curve is available; ...

if not, the thrust to
54 %weight ratio will be used to determine the thrust
55 if curve_t(stage) == 0
56 T = T2W(stage)*m_t(stage)*g0;
57 else
58 [burn,T] = thrust(t-t_bo,tc{stage});
59 end
60 end
61

62 if burn == 0
63 t_bo = t;
64 bypass = 1;
65 end
66 else
67 T = 0;
68 end
69 %Calculating the mass flow rate of the fuel mass
70 m_dot = -T/Isp(stage)/g0;
71

72 %Resolving new mass
73 m = m + m_dot*h;
74

75 if method == 1
76 %% Forward Euler Method
77 k_1 = f(t,y,h);
78 y = y + h*k_1;
79

80 elseif method == 2
81 %% Explicit Midpoint Method
82 k_1 = f(t, y, h);
83 k_2 = f(t + h/2, y + k_1/2, h/2);
84 y = y+ h*k_2;
85

86 elseif method == 3
87 %% 3-Stage Method
88 k_1 = f(t, y, h);
89 k_2 = f(t + h/2, y + k_1/2, h/2);
90 k_3 = f(t + h, y - k_1 + 2*k_2, h);
91 y = y + h*(k_1/6 + (2/3)*k_2 + k_3/6);
92

93 elseif method == 4
94 %% 4-Stage Method
95 k_1 = f(t, y, h);
96 k_2 = f(t + h/2, y + k_1/2, h/2);
97 k_3 = f(t + h/2, y + k_2/2, h/2);
98 k_4 = f(t + h, y + k_3, h);
99 y = y + h*((1/6)*(k_1 + 2*k_2 + 2*k_3 + k_4));

100

101 elseif method == 5
102 %% Ralston's 4th Order method
103 k_1 = f(t, y, h);
104 k_2 = f(t + 0.4*h, y + 0.4*k_1, 0.4*h);
105 k_3 = f(t + 0.45573725*h, y + .29697761*k_1 + ...

.15875964*k_2, 0.45573725*h);

viii

106 k_4 = f(t + h, y + .21810040*k_1 -3.05096516*k_2 + ...
3.83286476*k_3, h);

107 y = y + h*(.17476028*k_1 -.55148066*k_2 + ...
+1.20553560*k_3 + .17118478*k_4);

108

109 elseif method == 6
110 %% Butcher's 5th Order Runge-Kutta Method
111 k_1 = f(t, y, h);
112 k_2 = f(t + h/4, y + (k_1/4)*h, h/4);
113 k_3 = f(t + h/4, y + (k_1/8)*h + (k_2/8)*h, h/4);
114 k_4 = f(t + h/2, y - (k_2/2)*h + k_3*h, h/2);
115 k_5 = f(t + h*(3/4), y + (3/16)*k_1*h + ...

(9/16)*k_4*h, h*(3/4));
116 k_6 = f(t + h, y - (3/7)*k_1*h + (2/7)*k_3*h - ...

(12/7)*k_4*h + (8/7)*k_5*h, h);
117 y = y + (1/90)*(7*k_1 + 32*k_3 + 12*k_4 + 32*k_5 + ...

7*k_6)*h;
118

119 end
120

121 %% DISPLAY DATA %%
122

123 % fprintf('\n\n -------------Step ...
%d---------------\n',i)

124 % fprintf('\n\n ...
-----------------------------------\n')

125 fprintf('\n Time = %10g s ',t)
126 % fprintf('\n Mass = %10g ...

kg ',y(1))
127 % fprintf('\n Velocity = %10g ...

m/s ',y(2))
128 % fprintf('\n Altitude = %10g m ...

',y(3))
129 % fprintf('\n Flight Path Angle = %10g ...

deg',y(4)*r2d)
130 % fprintf('\n Downrange Distance = %10g m ...

',y(5))
131 % fprintf('\n\n ...

-----------------------------------\n')
132

133 t = t + h;
134 i = i+1;
135

136 % Stores data in a matrix for graphing purposes
137 s(i,1) = t;
138 s(i,2) = m;
139 s(i,3) = y(1);
140 s(i,4) = y(2);
141 s(i,5) = y(3)*r2d;
142 s(i,6) = y(4);
143

144 if y(2) < 0 && t > 1
145 return
146 end
147 else
148 return
149 end

ix

150 end
151 end

x

A.3 rates.m

1 function dydt = rates(t,y,step)
2 global...
3 stage...
4 dp...
5 A...
6 Re...
7 m...
8 T...
9 hturn...

10 curve_d...
11 CD
12 v = y(1);
13 h = y(2);
14 gamma = y(3);
15 x = y(4);
16

17 %% VELOCITY DETERMINATION %%
18 [temp,r] = rho(h);
19 g = gravity(h);
20

21 if curve_d(stage) == 1
22 D = drag(r,v,A(stage),temp,dp{stage});
23 else
24 D = 0.5*r*v^2*A(stage)*CD;
25 end
26

27 v_dot = (T-D)/m - g*sin(gamma);
28

29 if t < 0.5 && v_dot < 0
30 v_dot = 0;
31 end
32

33 v = v + v_dot*step;
34

35 %% FLIGHT PATH ANGLE %%
36

37 %Holds gamma_dot = 0 b/c if v_dot = 0, then there can be no
38 %gamma_dot
39 if h < hturn
40 gamma_dot = 0;
41 elseif v == 0 || v < 1 && t < 1
42 gamma_dot = 0;
43 else
44 gamma_dot = (-1/v)*(g - ((v^2)/(Re+h)))*cos(gamma);
45 end
46 % solve for the new flight path angle
47 gamma = gamma + gamma_dot*step;
48

49 %% ALTITUDE %%
50 h_dot = v*sin(gamma);
51 h = h + h_dot*step;
52

53 %% DOWNRANGE DISTANCE %%
54 %solve for the rate of change downrange

xi

55 x_dot = (Re/(Re + h))*v*cos(gamma);
56

57 %solve for the new downrange distance
58 x = x + x_dot*t;
59

60 dydt(1) = v_dot;
61 dydt(2) = h_dot;
62 dydt(3) = gamma_dot;
63 dydt(4) = x_dot;
64 end

xii

A.4 thrust.m

1 %% Thrust Determination %%
2 %The function drag returns the drag force at a specific velocity ...

by using a
3 %linear approximation method for finding the C_D values in ...

intermittent
4 %ranges
5

6 %Requires inputs of density (kg/m^3), velocity (m/s^2), ...
cross-sectional

7 %area (m^2) and the drag profile (matrix with 2 columns, 1st being
8 %velocities, 2nd being the correlating C_D values)
9 function [burn,T] = thrust(t,thrust_curve)

10

11 %Check if the time is exceeding max burn time
12 if t < thrust_curve(length(thrust_curve(:,1)),1)
13 for i = 1:length(thrust_curve)
14 if t ≤ thrust_curve(i+1,1) && t ≥ thrust_curve(i,1)
15 thrust_2 = thrust_curve(i+1,2);
16 thrust_1 = thrust_curve(i,2);
17 t_2 = thrust_curve(i+1,1);
18 t_1 = thrust_curve(i,1);
19

20 %Linear approximation
21 T = ((thrust_2 - thrust_1)/(t_2 - t_1)) * ...

(t-t_1) + thrust_1; %(N)
22 burn = 1;
23 break
24 end
25 end
26 else
27 T = 0;
28 burn = 0;
29 end
30 end

xiii

A.5 drag.m

1 %% Drag Determination %%
2 %The function drag returns the drag force at a specific velocity ...

by using a
3 %linear approximation method for finding the C_D values in ...

intermittent
4 %ranges
5

6 %Requires inputs of density (kg/m^3), velocity (m/s^2), ...
cross-sectional

7 %area (m^2) and the drag profile (matrix with 2 columns, 1st being
8 %velocities, 2nd being the correlating C_D values)
9

10 function D = drag(rho,v,A,T,drag_profile)
11 gamma = 1.4;
12 R = 287.058;
13 v_sound = sqrt(gamma*R*T);
14 mach = abs(v/v_sound);
15

16 l = length(drag_profile); %length of the drag profile matrix
17 for i = 1:(l-1)
18 if mach ≥ drag_profile(i,1) && mach < drag_profile(i+1,1)
19 C_D_2 = drag_profile(i+1,2);
20 C_D_1 = drag_profile(i,2);
21 mach_2 = drag_profile(i,1);
22 mach_1 = drag_profile(i+1,1);
23

24 %Linear approximation
25 C_D = ((C_D_2 - C_D_1)/(mach_2 - mach_1)) * ...

(mach-mach_1) + C_D_1;
26 break
27

28 elseif mach ≥ drag_profile(l,1)
29 C_D = drag_profile(l,2);
30 break
31

32 elseif mach ≤ 0
33 disp('END');
34 return
35 end
36 end
37 D = 0.5*rho*(v^2)*A*C_D;
38 end

xiv

A.6 rho.m

1 %% Density Determination %%
2 %The function rho returns the density in kg/m^3
3

4 %Requires an input of an altitude above sea level
5 %Calculations are done based on the standard atmosphere
6

7 function [T,r] = rho(h_g)
8 global T_amb asl Re rho_amb
9 %d2k = 273.15;

10 g0 = gravity(0);
11 h_fix = h_g + asl;
12 R = 287;
13 h = (Re/(Re + h_fix))*h_fix;
14

15 % Region 1
16 if h < 11000
17 a1 = (216.66-T_amb)/11000;
18 T1 = T_amb + a1*h;
19 r1 = rho_amb * (T1/T_amb)^(-((g0/(a1*R)) + 1));
20

21 T = T1;
22 r = r1;
23

24 elseif h ≥ 11000 && h < 25000
25 T2 = 216.66;
26

27 a1 = (216.66-T_amb)/11000;
28 r1 = rho_amb * (216.66/T_amb)^(-((g0/(a1*R)) + 1));
29

30 r2 = r1 * exp(1)^(-(g0/(R*T2))*(h - 11000));
31

32 T = T2;
33 r = r2;
34 elseif h ≥ 25000 && h < 47000
35 a3 = 3e-3;
36 T3 = 216.66 + a3 * (h-25000);
37

38 a1 = (216.66-T_amb)/11000;
39 r1 = rho_amb * (216.66/T_amb)^(-((g0/(a1*R)) + 1));
40

41 r2 = r1 * exp(1)^(-(g0/(R*216.66))*(h - 11000));
42

43 r3 = r2 * (T3/216.66)^(-((g0/(a3*R)) + 1));
44

45 T = T3;
46 r = r3;
47

48 elseif h ≥ 47000 && h < 53000
49 T4 = 282.66;
50

51 a1 = (216.66-T_amb)/11000;
52 r1 = rho_amb * (216.66/T_amb)^(-((g0/(a1*R)) + 1));
53

54 r2 = r1 * exp(1)^(-(g0/(R*216.66))*(h - 11000));

xv

55

56 a3 = 3e-3;
57 r3 = r2 * (282.66/216.66)^(-((g0/(a3*R)) + 1));
58

59 r4 = r3 * exp(1)^(-(g0/(R*T4))*(h - 47000));
60

61 T = T4;
62 r = r4;
63

64 elseif h ≥ 53000 && h < 79000
65 a5 = -4.5e-3;
66 T5 = 282.66 + a5 * (h-53000);
67

68 a1 = (216.66-T_amb)/11000;
69 r1 = rho_amb * (216.66/T_amb)^(-((g0/(a1*R)) + 1));
70

71 r2 = r1 * exp(1)^(-(g0/(R*216.66))*(h - 11000));
72

73 a3 = 3e-3;
74 r3 = r2 * (282.66/216.66)^(-((g0/(a3*R)) + 1));
75

76 r4 = r3 * exp(1)^(-(g0/(R*282.66))*(h - 47000));
77

78 r5 = r4 * (T5/282.66)^(-((g0/(a5*R)) + 1));
79

80 T = T5;
81 r = r5;
82

83 elseif h ≥ 79000 && h < 90000
84 T6 = 165.66;
85

86 a1 = (216.66-T_amb)/11000;
87 r1 = rho_amb * (216.66/T_amb)^(-((g0/(a1*R)) + 1));
88

89 r2 = r1 * exp(1)^(-(g0/(R*216.66))*(h - 11000));
90

91 a3 = 3e-3;
92 r3 = r2 * (282.66/216.66)^(-((g0/(a3*R)) + 1));
93

94 r4 = r3 * exp(1)^(-(g0/(R*282.66))*(h - 47000));
95

96 a5 = -4.5e-3;
97 r5 = r4 * (165.66/282.66)^(-((g0/(a5*R)) + 1));
98

99 r6 = r5 * exp(1)^(-(g0/(R*T6))*(h - 47000));
100

101 T = T6;
102 r = r6;
103

104 elseif h ≥ 90000 && h < 105000
105 a7 = 4e-3;
106 T7 = 165.66 + a7 * (h-90000);
107

108 a1 = (216.66-T_amb)/11000;
109 r1 = rho_amb * (216.66/T_amb)^(-((g0/(a1*R)) + 1));
110

111 r2 = r1 * exp(1)^(-(g0/(R*216.66))*(h - 11000));

xvi

112

113 a3 = 3e-3;
114 r3 = r2 * (282.66/216.66)^(-((g0/(a3*R)) + 1));
115

116 r4 = r3 * exp(1)^(-(g0/(R*282.66))*(h - 47000));
117

118 a5 = -4.5e-3;
119 r5 = r4 * (165.66/282.66)^(-((g0/(a5*R)) + 1));
120

121 r6 = r5 * exp(1)^(-(g0/(R*165.66))*(h - 47000));
122

123 r7 = r6 * (T7/165.66)^(-((g0/(a7*R)) + 1));
124

125 T = T7;
126 r = r7;
127

128 elseif h > 105000
129 T = 0;
130 r = 0;
131 end
132 end

xvii

A.7 gravity.m

1 %% Gravity Determination %%
2 % Solves for the gravity depending on the altitude
3 function g = gravity(h)
4 global asl
5 h = h + asl;
6 g_0 = 9.81; %gravitational constant (m/s^2)
7 R_e = 6378e3; %radius of Earth (m)
8 g = g_0*(R_e/(R_e+h))^2; %adjusted gravitational const. (m/s^2)
9 end

xviii

A.8 handcalcs.m

1 clc; clear;
2 g_0 = 9.81; %Gravitational acc. ...

(m/s^2)
3 T = 4690; %Thrust ...

(N)
4 Isp = 197; %Specific impulse ...

(s)
5 lb2kg = 0.453592; %lbs to kg conversion
6 m_0 = 248+10.6; %Initial mass ...

(kg)
7 m_f = 24; %Final mass ...

(kg)
8 m_dot = T/(Isp*g_0); %Mass flow rate ...

(
9 diam = 0.155194; %Cross-Sectional ...

Diameter (m)
10 A = pi*(diam/2)^2; %Reference Area ...

(m^2)
11 %% Single Stage Case
12 D = 0.5 * 0.7 * 400^2 * 0.3 * A; %Drag ...

(N)
13 c = Isp*g_0;
14 t = (c*log(m_0/m_f))/(g_0 + (D/m_0))
15 %t1 = (c/(g_0))*log(m_0/m_f)
16

17 h = c/m_dot * (m_0*log(m_f/m_0) + m_0 - m_f) + ...
c*t*log(m_0/m_f) - 0.5*g_0*t^2 - 0.5*(D/m_f)*t^2

18

19 %% 3-Stage Case
20 % Calculating burn time of each individual stage
21 m_struc = 24; %Structural Mass ...

(kg)
22 m_fuel = 10.6; %Fuel Mass ...

(kg)
23

24 m_01 = 3*m_struc + 3*m_fuel;
25 m_f1 = 3*m_struc + 2*m_fuel;
26 m_02 = 2*m_struc + 2*m_fuel;
27 m_f2 = 2*m_struc + 1*m_fuel;
28 m_03 = m_struc + m_fuel;
29 m_f3 = m_struc;
30

31 m_av1 = (m_01+m_f1)/2;
32 m_av2 = (m_02+m_f2)/2;
33 m_av3 = (m_03+m_f3)/2;
34

35 D_1 = 0.5 * 1.225 * 100^2 * 0.3 * A;
36 D_2 = 0.5 * 1.05 * 250^2 * 0.3 * A;
37 D_3 = 0.5 * 0.3 * 400^2 * 0.3 * A;
38

39 v_bo1 = c*log(m_01/m_f1);
40 v_bo2 = c*log(m_02/m_f2);
41 v_bo3 = c*log(m_03/m_f3);
42

xix

43 t_1 = v_bo1/(g_0 + (D_1/m_01));
44 t_2 = v_bo2/(g_0 + (D_2/m_02));
45 t_3 = v_bo3/(g_0 + (D_3/m_03));
46

47 v_bo1 = v_bo1 - (D_1/m_f1)*t_1;
48 v_bo2 = v_bo2 - (D_2/m_f2)*t_2;
49 v_bo3 = v_bo3 - (D_3/m_f3)*t_3;
50

51 t_a = (v_bo1 + v_bo2 + v_bo3)/((D_3/m_f3) + g_0)
52 t_c = t_a - t_2 - t_1;
53

54 a1 = c/m_dot * (m_01*log(m_f1/m_01) + m_01 - m_f1) + ...
c*t_1*log(m_01/m_f1);

55 a2 = c/m_dot * (m_02*log(m_f2/m_02) + m_02 - m_f2) + ...
c*t_2*log(m_02/m_f2);

56 a3 = c/m_dot * (m_03*log(m_f3/m_03) + m_03 - m_f3) + ...
c*t_3*log(m_03/m_f3);

57

58 d_1 = 0.5*(D_1/m_f3)*t_1^2;
59 d_2 = 0.5*(D_2/m_f3)*t_2^2;
60 d_3 = 0.5*(D_3/m_f3)*t_3^2;
61

62 h = a1 + a2 + a3 - d_1 -d_2 - d_3 - 0.5*g_0*t_a^2

xx

B Test Data
The thrust curve and drag profile used for the single-stage case comparison is
tabulated within Appendix B.

B.1 Thrust Curve

Table 5: Cesaroni O3400 Motor

Time (s) Thrust (N)
0 0

0.04 3959.811
0.052 4432.624
0.101 4515.366
0.19 4420.804
0.38 4391.253
0.965 4444.444
2.176 4698.582
2.887 4592.199
3.658 4225.768
4.17 2854.61
4.493 2559.102
4.881 1619.385
5.483 868.794
6.137 248.227
6.322 0

xxi

B.2 Drag Profile

Table 6: Single Stage Rocket Drag Profile

Mach Number CD

0 0
0.05 0.39533
0.1 0.35821
0.15 0.34001
0.2 0.32821
0.25 0.31892
0.3 0.31193
0.35 0.30617
0.4 0.30127
0.45 0.29677
0.5 0.29277
0.55 0.28926
0.6 0.28622
0.65 0.28371
0.7 0.28184
0.75 0.28078
0.8 0.28104
0.85 0.2838
0.9 0.2929
0.95 0.32417
1 0.40027

1.05 0.50407
1.1 0.4282
1.15 0.37164
1.2 0.45966
1.25 0.47864
1.3 0.45567
1.35 0.43666
1.4 0.42557
1.45 0.4177
1.5 0.41073
1.55 0.40393
1.6 0.39714
1.65 0.39033
1.7 0.38355
1.75 0.3769
1.8 0.37032
1.85 0.3638
1.9 0.35738

xxii

