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Abstract 

 

The present research proposes methodology and mathematical models for optimisation of 

inspection and maintenance in complex multicomponent systems with finite planning horizon. 

Components are classified by failure types: hard-type and soft-type. The systems analysed are 

composed of either multiple identical hidden soft-type components in k-out-of-n redundant 

configuration, or a combination of hard-type and hidden soft-type components. Failures of hard-

type components cause system failures. Failures of components in k-out-of-n systems and soft-

type component failures are hidden and not discoverable until an inspection, but reduce the 

system’s reliability and performance. The systems are inspected either periodically, or non-

periodically. They are also inspected opportunistically at the times of system failure (occurring at 

(k – n + 1)st component failures in k-out-of-n systems, or at hard failures in the systems composed 

of hard-type and soft-type components). Inspections have negligible duration. All components may 

undergo minimal repair, or corrective replacement, with hard-type components also having a 

possibility of preventive replacement under periodic inspections. We only consider minimal repair 

and corrective replacement under non-periodic inspections. 
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We propose several models for joint optimisation of inspection and maintenance policies that 

result in the lowest total expected cost. Since soft failures are hidden, we generate expected values 

for the number of minimal repairs, number of replacements and downtime recursively. Due to 

multiple component interactions and system complexity, Monte Carlo simulation and genetic 

algorithms (GA) are used for optimisation. Using GA for optimisation allows to consider quasi-

continuous inspection intervals due to improved computational efficiency compared to Monte 

Carlo simulation. Some of proposed models feature preventive component replacements and are 

applicable even for systems with hidden component failures. 

For k-out-of-n systems, we apply periodic model to series and parallel systems and compare 

the results. We provide expressions for expected number of system failures in terms of cost ratio 

and component failure intensity. We also provide a simplified expression for system reliability. In 

addition, we derive a formula for finding the planning horizon length based on expected number 

of system failures. It may be useful for planning the system’s operating horizon, at the system 

design stage and when analysing its performance. 
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1. Introduction 

 

Systems consisting of multiple parts – components – which may fail and adversely affect 

the functionality of the entire system, are called multicomponent systems. Such systems are 

encountered in a wide variety of industries, as well as in every-day life. Some of the most 

important factors for systems in general are their reliability and availability, since these 

properties most often directly influence the costs of using or operating the former. Penalties 

(e.g. costs of downtime and lost work) are usually incurred whenever a system’s performance 

and/or reliability are adversely affected, e.g. a system stops operating completely (fails), or 

starts manifesting some sort of undesirable behaviour. For this reason, it is usually desirable to 

keep the system reliability and availability as high as possible.  Some examples of such systems 

are computer network servers, backup power generation systems and medical devices. In order 

to make the system’s reliability and availability as high as possible, while also retaining the 

economic feasibility, it is necessary to develop and implement optimal inspection and 

maintenance policies. 

Mathematical optimisation models are usually developed for the purpose of generating such 

policies. These are based on certain assumptions that can be classified by the aspects of the 

system they relate to, such as: 

1. System’s life cycle length, or equivalently, planning horizon – time period (range) over 

which the system’s operation is considered and its maintenance and/or inspection are 

optimised. The usual assumptions pertaining to this aspect are: 

a. Infinite planning horizon – a very long period is assumed over which a system 

operates, or no real consideration is given to the planning horizon’s length, since 

the costs are expressed per unit of time. 

b. Finite planning horizon – an operating period of a particular length is chosen, 

over which the calculations are performed. 

2. Types of components composing the system, generally classified by their corresponding 

types of failure. These may be subdivided into: 

a. Non-identical components – components whose parameters and/or pertinent 

operational assumptions differ from one another. Examples of such include: 
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i. Hard-type components – components which fail in a “hard failure” mode, 

i.e. cause the entire system to fail simultaneously with their failure. 

Systems composed entirely of hard-type components are identical to 

systems in series configuration, as failure of one component immediately 

causes the failure of the entire system. 

ii. Soft-type components – components that fail in a “soft failure” mode, i.e. 

do not cause immediate failure of the system, but reduce its reliability. 

iii. Hidden (hidden soft-type) components – components that fail in a 

“hidden failure” mode, i.e. which are part of protective, reserve, or safety 

equipment, whose operation is not normally required when the system 

they protect is in a working order. However, when the system fails, the 

protective equipment has to start operating, and if it is unable to perform, 

then its failure is revealed. Similarly to soft failures, hidden (or hidden 

soft) failures are not revealed until inspection occurs, but unlike soft 

failures, they do not affect the protected system’s operation until it fails 

and the protective equipment has to perform. 

b. Identical components – components which have identical operational 

assumptions and parameters. Examples of such components are encountered in 

various redundant systems, such as in k-out-of-n system configurations. It can 

be also noted that the system is still operational under the condition that the 

current number of failed components in a k-out-of-n: G system remains less than 

or equal to n – k. Such systems can be regarded as composed entirely of identical 

soft-type components. 

3. Types of maintenance action – kinds of operations performed on the failed component 

with the purpose of returning it back into service, i.e. to the functioning state. The 

following types of maintenance actions are widely used in the literature: 

a. Minimal repair – action of restoring the component to the state it was in just prior 

to failure. In the mathematical sense, minimal repair does not affect the age of 

the component, i.e. the component’s age is unchanged by the minimal repair and 

remains the same immediately after it. 
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b. Replacement – action of restoring the component to the state it was originally in. 

Mathematically, it is expressed in the component’s age’s being reset to 0. 

c. Imperfect repair – action of restoring the component to the state intermediate 

between minimal repair and replacement. Mathematically, it is usually 

represented as assigning some percentage of the age at failure to the component 

restored using imperfect repair maintenance. 

4. Criterion for choosing maintenance action – choice of how to handle components that 

are deemed to be in need of intervention from outside of the system (i.e. maintenance). 

The following criteria are used for choosing the maintenance action for a failed 

component: 

a. Age of component – this is the most common criterion used for maintenance 

decision when the necessary information about the component parameters is 

available (e.g. hours of operation, mileage, etc.). This criterion is convenient, as 

it directly translates into the operational time of the component and, therefore, 

allows for a practical monitoring of the component’s “health”. 

b. Number of failures – number of times a component has failed in the past. This 

criterion is most popular when the component’s age is not known, which is 

usually the case for components subject to soft and hidden failures. This number 

gives rise to another metric – the number of minimal repairs before replacement. 

c. Probability of a particular type of maintenance action – this is usually based on 

the age of a component, which is included as a parameter in the probability 

function. 

5. Periodicity of inspection – frequency with which inspections are performed on the 

system’s components. Two types of (mutually exclusive) periodicity are usually 

considered in the literature when considering inspection policies: 

a. Periodic inspections – inspections occurring at pre-determined regular time 

intervals (with the possible exception of the last inspection; see ‘Methodology’ 

for more details). 

b. Non-periodic inspections – inspections occurring at possibly irregular time 

intervals. 
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6. Type of inspection – kind of inspection performed on the system’s components. Most 

often, the following types of inspection are noted in the literature: 

a. Scheduled, planned inspection – inspection prescribed by the inspection policy. 

b. Opportunistic inspection – inspection not prescribed by the inspection policy, 

but performed as a result of the opportunity arising from a system event (e.g. 

system failure, which may be triggered by failure of a hard-type component). 

Given such classification of the most widely-used assumptions in the literature, the focus 

of the present research can be defined. The aspects of the systems most relevant to the present 

research (and their corresponding assumptions from the list above) are: finite system life cycle 

and planning horizon (Assumption 1b), systems composed of both non-identical (Assumption 

2a) and identical (Assumption 2b) components, subject to minimal repairs (Assumption 3a) and 

replacements (Assumption 3b), age-based and count-based criteria for choosing maintenance 

action type (Assumptions 4a and 4b), subject to periodic (Assumption 5a) and non-periodic 

(Assumption 5b), planned (Assumption 6a) and opportunistic (Assumption 6b) inspections. 

Furthermore, it should be noted that, according to the scope of the relevant aspects of 

the classification scheme presented above, the focus of the present research is on the complex 

systems. A complex system is defined as a system displaying synergy as a result of interaction 

of its components, i.e. the effect of such interaction cannot be described simply by superposing 

the effects of individual components. Thus, the combined effect of interaction of parts or 

components of a complex system does not obey the properties of superposition. Contrary to the 

complex systems, in a simple system, the effects of component interactions can be described 

using superposition, i.e. the combined effect of interaction among the constituent components 

of a simple system is equivalent to the sum of the individual effects of each component. 

The further organisation of the present dissertation is as following. 

Chapter 2 contains a summary of the relevant literature. 

Chapter 3 focusses on the periodic inspection and maintenance optimisation models for k-

out-of-n systems. Two models are proposed: the first assumes minimal repair or corrective 

replacement as the only maintenance actions; the second considers preventive replacement of 

components in addition to those in the first model. This chapter is based on the paper entitled 

“Joint Optimal Maintenance and Inspection for a k-out-of-n System”, published in the 
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International Journal of Advanced Manufacturing Technology, as well as the paper entitled 

“Joint Maintenance and Inspection Optimization of a k-out-of-n System”, presented at the 

Annual Reliability and Maintainability Symposium (RAMS) 2016 and published in the 

Proceedings of the Annual Reliability and Maintainability Symposium 2016. 

Chapter 4 deals with periodic inspection and maintenance models for complex systems 

composed of hard-type and hidden soft-type components. We propose two models: one 

assuming minimal repair or corrective replacement for the available maintenance actions; the 

other also considering preventive replacement of hard-type components at the periodic 

inspection times. This chapter is based on the paper entitled “Optimal Maintenance Policy for 

Multicomponent System with Periodic and Opportunistic Inspections and Preventive 

Replacements”, published in the Applied Mathematical Modelling journal. 

Chapter 5 concentrates on the non-periodic optimisation of inspection and maintenance for 

multicomponent systems over a finite life cycle. For the k-out-of-n system, we find the optimal 

joint bivariate policy composed of the optimal number of minimal repairs before replacement 

and the optimal inspection scheme resulting in the minimal total expected cost. For the hard-

and-soft-type system, we find the optimal joint trivariate policy composed of the optimal 

replacement ages for the hard-type components, the optimal number of minimal repairs before 

replacement for the soft-type components and the optimal inspection scheme resulting in the 

minimal total expected cost. This chapter is based on the paper entitled “Non-Periodic 

Inspection and Maintenance Optimisation of Multicomponent Systems”, submitted to the 

Computers and Industrial Engineering journal. 

Chapter 6 provides a summary of major conclusions and a direction for future research. 

References section compiles a list of bibliographical references used throughout this 

dissertation. 

Appendices contains more detailed mathematical formulations and derivations that were not 

included in the main body of the present dissertation. 

1.1. Statement of Authorship 

Most of the chapters presented in this dissertation are the extensions of the following journal 

and conference papers, which are published, accepted or submitted for publication: 
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programming the models, running the numerical examples, discussion of the results, 

sensitivity analysis, and drafting the paper. 

Second author’s contribution: programming the models. 

Third author’s contribution: verification of the results and proofreading the draft paper. 
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4. Babishin V. and Taghipour S. (2016). Joint Maintenance and Inspection Optimization 

of a k-out-of-n System. Proceedings of the Annual Reliability and Maintainability 
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programming the models, running the numerical examples, discussion of the results, 

sensitivity analysis, and drafting the paper, preparation of the presentation, presenting 

at the conference. 

Second author’s contribution: verification of the results and proofreading the draft paper. 
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1553-1562. 

Principal author’s contribution: developing the mathematical and simulation models, 

programming the models, running the numerical examples, discussion of the results, 

sensitivity analysis, and drafting the paper, preparation of the presentation. 

Second author’s contribution: verification of the results and proofreading the draft paper, 

presenting at the conference.  
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2. Literature Review 

 

The present section is organised according to the order of assumptions stated in the 

‘Introduction’. Literature relevant to each of the assumptions is critically reviewed and is 

organised under relevant subsections. 

2.1. System’s Life Cycle Length or Planning Horizon 

The majority of the available maintenance models structure the costs per unit of time, for 

convenience, and optimise them over an infinite planning horizon. Surveys in this regard 

include Wang [1], where he considers different inspection and maintenance policies for both 

single-unit and multicomponent systems. However, his emphasis is on systems consisting of a 

single component. Cho and Parlar [2] provide a survey of the models that consider infinite time 

horizon. None of the models in these surveys, however, considers optimisation of both 

inspection and maintenance over a finite time horizon. 

Since the costs over infinite time horizon are not measurable, the objective function to be 

optimised is typically expressed in terms of the cost rate, i.e. cost per unit of time. For example, 

Wang and Zhang [3] propose an optimal mixed bivariate policy to minimise the average cost 

rate, based on a critical reliability level and the number of system failures for a simple system. 

Zhang and Wang [4] establish an optimal replacement policy based on the number of component 

failures for a series system with dissimilar components under a geometric process. They 

optimise their costs per unit of time. 

Wu and Zhang [5] consider an infinite-horizon bivariate maintenance policy that is 

dependent on the interval length between preventive replacements and the number of 

component failures for a two-component cold-standby system subject to Poisson shocks. Coria 

et al. [6] develop an analytical optimisation method based on a new hazard function for 

imperfect preventive maintenance policy over an infinite planning horizon. Pan et al. [7] 

consider a preventive maintenance model with an improvement factor for an infinite planning 

horizon. 

As can be seen from the references provided, none of them considers optimisation over a 

finite time horizon. Only recently, some work has started to appear in this direction. For 
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example, Taghipour and Banjevic [8] propose models for finding the optimal inspection interval 

for a multicomponent system with hidden failures over both finite and infinite planning 

horizons. Taghipour [9], Kassaei and Taghipour [10], and Taghipour and Kassaei [11] develop 

models for finding the optimal inspection interval by minimising the total expected cost over a 

finite-time life cycle for k-out-of-n load-sharing systems, where each failure increases the 

hazard rates for the remaining operational components. These models, however, do not feature 

maintenance and inspection optimisation. 

The present dissertation is aimed at advancing the research knowledge by developing 

models that consider inspection and maintenance optimisation over finite time horizon for 

multicomponent systems. 

2.2. Types of Components in a System 

As has been previously stated, the components of a multicomponent system may be 

conveniently classified by type, or mode of failure into either hard, or soft [10]. With regard to 

purely hard-type component systems, series systems are considered, for example, by Zhang and 

Wang [4] and Zhou et al. [12]. Wang and Kuo [13] compare series systems with mixed (cold 

and warm) standby components using the mean time to failure, long-term availability and the 

cost/benefit ratio analysis. 

Systems consisting of strictly soft-type components may be considered in the context of 

redundant k-out-of-n configurations, although are rarely encountered in the literature. Instead, 

soft failures are considered in systems, where individual components may fail in both hard and 

soft failure modes. Thus, soft-type components are typically analysed in conjunction with one 

or more hard-type components. 

Multicomponent systems with hard-type and soft-type components are considered, for 

example, by Taghipour and Banjevic in [8, 14, 15]. In their first model [14], hard-type 

components are not inspected periodically, but soft-type components are inspected periodically 

and opportunistically at hard failure times. In their second model [15], hard-type components 

are periodically inspected and preventively replaced, depending on their condition at inspection. 

These models were subsequently extended and modified by these and other authors. 
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Systems, such as protective devices, usually contain components whose failures can be 

classified as hidden. Lienhardt et al. [16] define hidden failures as failures not apparent during 

the normal operation of a system, but only discoverable upon inspection. They provide a 

maintenance policy for a repairable system consisting of one component, subject to hidden 

failures and both corrective action and periodic inspection; they also obtain the optimal 

maintenance policy by minimizing the maintenance cost rate subject to the risk of corrective 

maintenance and provide exact analytical formulae for the case of a constant failure rate [16]. 

Because of the constant failure rate assumption, however, their analytical formulae are 

applicable only to homogeneous Poisson processes. Hidden failures for single-component 

systems are also investigated by Sheu et al. [17]. Systems consisting of one component and 

other assumptions used by Lienhardt et al. [16] and Sheu et al. [17], however, significantly limit 

the scope of application of their models. 

Nakagawa et al. [18] obtain the optimal testing time, the expected number of tests and the 

expected cost until fault detection, based on the theory of Markov renewal processes for a 

computer system with intermittent faults. They assume a constant known probability of failure 

due to hidden faults and obtain a finite testing time from a solution to their equation [18]. The 

assumption of a known probability of failure is too restrictive for any practical purposes, since 

it usually demands knowledge of the previous history of failures, which itself requires observing 

a large number of failures in the first place to draw any statistically-meaningful results. 

Bjarnason et al. [19, 20] consider hidden failures in the context of a k-out-of-n redundant 

system and develop a joint optimisation model for minimising the total cost of both maintenance 

and inventory policies. Bjarnason and Taghipour [21] use genetic algorithm to search for a 

solution of a three-dimensional objective function to jointly find the optimal maintenance and 

(s, S) inventory policies for a k-out-of-n system with hidden failures. None of these works, 

however, considers joint optimisation of inspection and maintenance for a k-out-of-n system. 

Based on the surveyed literature, it can be concluded that there exists a clear gap in the 

literature concerning the optimisation of both inspection and maintenance policies for 

multicomponent systems composed of hard-type and hidden soft-type components, as well as 

for k-out-of-n systems with identical components. 
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2.3. Types of Maintenance Action 

The majority of researchers considers either one, or two types of maintenance action. For 

example, Taghipour and Banjevic [14] assume in their first model minimal repairs. Fard and 

Zheng [22] consider a non-repairable multicomponent system, which implies that the only type 

of maintenance available to them is replacement. Makis and Jardine [23] consider a system 

subject to replacements, which incur a smaller cost if done prior to failure than after it. Such 

models bear, however, a rather theoretical significance than a practical one, since they only 

consider one type of maintenance action. Most multicomponent systems are designed to allow 

for repairs. This is done because it is usually more economical to repair a system than to replace 

it with the new, or “as good as new” identical system [24]. For this reason, of more interest are 

those models that consider a variety of maintenance actions, such as both minimal repair and 

replacement. 

Lienhardt et al. [16] and Chien and Sheu [25] consider two types of maintenance action: 

minimal repairs and replacements (also called “perfect repairs”) for one-component systems, 

while Taghipour and Banjevic [8, 15] consider these types of maintenance for multicomponent 

systems, but they only optimise for periodic inspection policies. Generally, there is a lack of 

literature that considers both types of maintenance in the context of complex multicomponent 

systems and that attempts to find the optimal maintenance and inspection policies. The present 

thesis contributes to this research area. 

2.4. Choice of Maintenance Action 

One approach used to determine the maintenance action is presented by Sheu et al. [26], 

who propose a model for a single-component system with the probability of type II 

(catastrophic) failure that depends on the number of repairs previously performed. In their 

article, a maintenance decision is assumed to depend on the age at failure and the number of 

overhauls (similar to minimal repairs) [26]. However, although this model is a generalisation of 

several previous models, it considers only simple one-component systems. 

Many of the surveyed models assign some probability to each type of maintenance action. 

Makis and Jardine [23], for example, consider minimal (imperfect) repairs for a one-component 

system, and in their model the probability of perfect maintenance depends on the number and 
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time of imperfect maintenance actions in a cycle. Sheu and Griffith [27] consider age-dependent 

probabilities for the type of maintenance (replacement, or minimal (imperfect) repair). Chien 

and Sheu [25] assume that the probability of replacement depends on the system’s age and the 

number of shocks tolerated by a system since last replacement. All of these models are 

developed for one-component systems. The scope of the present research is, however, on 

multicomponent systems. 

Problems in multicomponent system maintenance models are surveyed by Nowakowski and 

Werbinka [28]. Among other policies, they consider an opportunistic (L-u, L) policy proposed 

by Fard and Zheng [22], in which whenever a component is replaced on failure or its failure 

rate reaches a certain limit L, all other components with their failure rates falling in (L-u, L) are 

also replaced. The method of Fard and Zheng [22] is an approximation, since the differential 

equation formulation they propose is generally difficult to solve due to a complicated boundary 

condition. The criterion they employ is related to age-based replacement, since it relies on the 

failure rates of the units.  

With regard to multicomponent system maintenance, Zhang and Wu [29] consider a k-out-

of-n system with perfect component repairs and imperfectly-repairable maintenance equipment 

(called “repair-equipment” in the article); they propose a model that minimises the expected 

cost rate of the repair-equipment, which is based on the optimal replacement policy for the 

number of repair-equipment failures. In this policy, however, only replacements of main 

components (perfect repairs) are considered, while minimal repairs are applied to the 

maintenance equipment. The present research, however, is concerned with relaxing the 

restrictive assumption of only one type of available maintenance for a multicomponent system. 

In a second inspection optimisation model developed by Taghipour and Banjevic [14], they 

assume that soft-type components are either minimally repaired, or replaced with age-dependent 

probabilities. Instead of basing maintenance action on an age-dependent probability, a different 

approach is taken in the present research. Park [30] proposes the concept of the optimal number 

of minimal repairs before replacements where he establishes an optimal maintenance policy for 

one-component systems. A similar approach is adapted for multicomponent systems in the 

present research. It is assumed that the optimal maintenance action is directly dependent on 

either the age, or the number of maintenance actions (minimal repairs) previously performed, 
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depending on the type of component. In addition, the choice of maintenance action is also 

subject to optimisation in the present research. 

2.5. Periodicity of Inspection 

Another aspect that is essential to the analysis of any inspection policy is the periodicity of 

the latter. A general multicomponent periodic inspection framework was proposed by Ozekici 

[31]. Periodic inspection policies for complex multicomponent systems have been extensively 

studied by Taghipour et al. [24], Taghipour and Banjevic [8, 14, 15]. Taghipour and Kassaei 

[11] study periodic inspection optimisation for k-out-of-n systems. 

Non-periodic inspection optimisation has also been covered in the literature. For example, 

Zhao et al. [32] consider a one-component system subject to replacement maintenance under 

Gamma deterioration process over infinite planning horizon. They develop a model similar to 

proportional hazards model to optimise the system’s non-periodic inspection policy [32]. Su 

[33] essentially develops a model for optimising non-periodic inspections for a one-component 

multi-mode system with a combination of hidden and self-announcing operating modes, since 

his inspection “period” is a random variable, which renders it non-periodic according to the 

definitions and terminology adopted in the present dissertation. He uses the supplementary 

variable technique to find the optimal inspection period that maximises profit per unit time. 

Multicomponent non-periodic inspections have also been considered in the literature. 

Castanier et al. [34, 35] propose a condition-based maintenance policy for optimal inspection 

and replacement of a two-component system under non-periodic inspections. They develop 

separate policies for each component by assuming component independence, admitting that 

extending their approach to larger systems makes the numerical solution intractable. In this 

regard, it is worth mentioning that Vaurio notes in [36] that it is not generally possible to obtain 

an analytical solution for the optimal inspection interval even for the simple case of optimising 

only for system availability. This explains the interest in and the value of numerical and 

simulation methods for the analysis of multicomponent systems. 

Golmakani and Moakedi [37] develop a model for non-periodic inspection optimisation 

using dynamic programming and branch-and-bound technique. They introduce the A* search 

algorithm, which improves on the efficiency of branch-and-bound technique by branching only 
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on the most promising nodes at each step of the search [37]. However, the A* algorithm is at a 

disadvantage for generating a large number of nodes at each iteration. Some researchers, e.g. 

Lapa et al. [38], demonstrated the applicability and usefulness of genetic algorithms to the 

optimisation of system availability. The present research also uses genetic algorithms for the 

purpose of improving the efficiency of optimisation calculations. 

Based on a review of the literature, there appears to be a gap in the research dealing with 

multicomponent inspection and maintenance optimisation models for both periodic and non-

periodic inspections. There is a lack of models that would be general enough to include several 

types of components and maintenance actions and would at the same time have efficient 

implementations for practical analysis and calculations. The development of models and 

techniques satisfying these conditions is another goal of the current research. 

2.6. Types of Inspection 

Naturally, the innate characteristic features of any inspection policy are planned (scheduled) 

inspections. These inspections are generally encountered in any literature concerned with 

inspection or maintenance optimisation. For this reason, planned inspections are not dwelled on 

in the present section. 

Instead, the focus in the present section is placed on opportunistic inspections, which have 

received an extensive coverage in the literature. 

For example, Zhou et al. [12] consider opportunistic preventive maintenance optimisation 

for a multicomponent system with series configuration (i.e. a system consisting only of hard-

type components). Owing to only one type of components, such model has limited practical 

applications. 

In Dagpunar’s model of a multicomponent system [39], if the failed component’s age 

exceeds a specified control limit, it is opportunistically replaced. He, however, makes no 

distinction between the types of components, and a maintenance decision is based on the 

component’s age rather than its maintenance history. 

Zhu et al. [40] propose an opportunistic maintenance policy for multicomponent system 

with hard-type and soft-type components, for the case of maintaining offshore wind turbines. In 
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their model, however, maintenance action for soft-type components is again dependent on the 

ages of the latter. 

Cui and Li [41] consider a multicomponent system with opportunistic maintenance and 

stochastically-dependent components and use a cumulative damage shock model to 

stochastically compare maintenance policies. However, all of the components in their model are 

assumed to fail when exceeding some predefined threshold, and the authors assume only 

opportunistic maintenance [41]. 

Preventive replacement opportunities following a Poisson process for block and age-based 

replacement models are considered by Aven and Dekker [42]. Taghipour and Banjevic [14] 

consider minimal repairs of hard-type and soft-type components over a finite planning horizon 

with several opportunistic inspections in one of their models. In another paper, Taghipour and 

Banjevic [43] consider optimal inspection policy for complex multicomponent systems with 

hard and hidden soft failures under both periodic and opportunistic inspections and minimal 

repair or replacement maintenance options. In these models, however, the component’s 

maintenance action is determined by the age-dependent probabilities and is not subject to 

optimisation. 

Opportunistic inspections for k-out-of-n systems have also received some coverage in the 

literature. Huynh et al. [44] provide an opportunistic condition-based maintenance model for 

maintenance optimisation at the component level. Huynh et al. [45] also propose a multi-level 

decision-making model. These, however, do not cover the optimisation of inspection frequency. 

2.7. Research Gaps 

Based on the preceding discussion, it can be seen that there are gaps in the literature related 

to determining the optimal maintenance action to be taken when a component fails in a 

multicomponent system under finite planning horizon, periodic or non-periodic, scheduled and 

opportunistic inspections, where components are subject to minimal repairs and preventive or 

corrective replacements. A typical analysis involves the optimisation of either inspection, or 

maintenance policies, but not both. With optimisation of inspection policies, many authors tend 

to use rather strong assumptions on the type of maintenance policy to be taken, e.g. its 
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dependence on the age. Although not an unreasonable assumption, it limits the scope and the 

practical application of such models. The proposed research is aimed at addressing these gaps. 

Relevant papers from the literature are summarised and compared in Table 1, where check-

marks in the relevant columns denote certain aspects of multicomponent systems. 

Table 1: Contributions of the Present Work to the Multicomponent Systems Inspection and 

Maintenance Optimisation. 
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2.8. Objectives of the Proposed Research 

The focus of the present research is on inspection and maintenance optimisation for 

multicomponent systems. Many publications exist in the literature that consider either 

inspection, or maintenance optimisation of multicomponent systems. However, there seems to 

be a lack of studies on the simultaneous optimisation of inspection and maintenance for such 

systems. The main objective of the present research is to further the knowledge of inspection 

and maintenance optimisation for multicomponent systems. 

Specifically, the outlined objective refers to multicomponent systems with different aspects, 

which have been discussed in the previous sections. Namely, the focus of the current research 

is on the multicomponent systems with finite planning horizon, featuring: 

- Systems composed of hard-type and soft-type components (the latter with hidden 

failures); 

- Systems composed of identical components for k-out-of-n redundancy; 

- Minimal repair and replacement maintenance actions; 

- Age-based maintenance decision for hard-type components; 

- Maintenance count-based (number of minimal repairs before replacement) decision for 

hidden soft-type components; 

- Periodic and opportunistic inspections; 

- Non-periodic and opportunistic inspections. 

Less formally, in practical terms, the proposed objective may be expressed in answering the 

questions regarding a complex multicomponent system with a finite planning horizon, such as: 

- How to treat different components during inspection and maintenance? How different is 

the treatment going to be and which implications this could have on the total (or total 

expected) costs of inspection and maintenance for the entire system? 

- How to choose the optimal maintenance action for a particular component when taking 

into account the consequences of such choice for the entire system? Which choices of 

maintenance actions for the duration of the planning horizon (i.e. maintenance policy) 

do result in the minimal total expected cost of inspection and maintenance for the entire 

system? 
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- How to optimise inspection of different components when inspections occur at regular 

time intervals (with possible exception of the last inspection interval; see ‘Methodology’ 

for more details), as well as whenever a system fails? What is the optimal periodic 

inspection time interval that results in the minimal total expected cost of inspection and 

maintenance for the entire system? 

- How to optimise inspection of different components when inspections occur at irregular 

time intervals or whenever a system fails? What are the optimal non-periodic inspection 

times (policy) that results in the minimal total expected cost of inspection and 

maintenance for the entire system? 

Based on the stated objectives, the goal is to obtain mathematical models, each pertaining 

to the particular combination of system types and assumptions. 
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3. Joint Optimal Maintenance and Inspection for Periodic k-

out-of-n Systems 

 

The present chapter is based on the following papers: 

Babishin V. and Taghipour S. (2016). Joint Maintenance and Inspection Optimization of a k-

out-of-n System. Proceedings of the Annual Reliability and Maintainability Symposium 2016, 

pp. 523-528.  Published online at: http://dx.doi.org/10.1109/RAMS.2016.7448039. 

Babishin V. and Taghipour S. Joint Optimal Maintenance and Inspection for a k-out-of-n 

System. (2016). International Journal of Advanced Manufacturing Technology, vol. 87, no. 5, 

pp. 1739-1749. Published online at: http://dx.doi.org/10.1007/s00170-016-8570-z. 

 

 

In the present chapter, a k-out-of-n system with hidden failures is considered. The system is 

subjected to periodic inspections over a finite life cycle (planning horizon). When the 

cumulative number of hidden component failures accumulates to 𝑛 − 𝑘 + 1, a system failure 

occurs. Every system failure presents an additional opportunity for inspection and, therefore, is 

called “opportunistic”. The objective is to find the optimal periodic inspection policy and the 

optimal maintenance action at each inspection for the entire system. Three types of maintenance 

are considered: minimal repair, preventive replacement and corrective replacement. In view of 

the failures’ being hidden, the maintenance decision is based on the optimal number of minimal 

repairs before replacement (of either type). Due to the unavailability of a closed-form solution, 

joint optimisation of inspection and maintenance policies resulting in the minimal total expected 

cost is performed using exhaustive search and genetic algorithm (GA), both with integer 

inspection period constraint, and a GA implementation with quasi-continuous inspection period. 

Although both exhaustive search and GA with integer inspection period provide identical 

results, the genetic algorithm presents a more efficient procedure and requires less 

computational time, which becomes more noticeable with increasing complexity of the 

problem, as in the case of GA with quasi-continuous inspection period. 

Based on the simulation results, some insights are made regarding the system’s operation 

and cost optimisation. Expressions are derived for the expected number of system failures in 

http://dx.doi.org/10.1109/RAMS.2016.7448039
http://dx.doi.org/10.1007/s00170-016-8570-z
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terms of the cost ratio and component failure intensity under certain assumptions. In addition, a 

criterion is derived for establishing acceptable level of expected system failures over the 

system’s life cycle. This can be useful when designing the system or analysing its performance. 

Keywords: Periodic and opportunistic inspection, k-out-of-n system, maintenance, genetic 

algorithm, preventive replacement, hidden failure. 

3.1. Introduction and Background 

Redundant systems that require high levels of robustness, reliability, availability and 

performance are usually designed with k-out-of-n system configuration (Barlow and Heidtmann 

[46]). In this configuration, functionality and operation of the system is not interrupted 

whenever one of its components fails, unless the number of failed components accumulates to 

𝑛 − 𝑘 + 1. Examples of k-out-of-n systems include airplanes with multiple engines, multiple 

redundant control mechanisms, multiple pumps in hydraulic control systems, as well as multiple 

displays in the cockpit. Cars often have dual-contour brake lines to allow for the brakes to 

operate if one of the hydraulic lines fails. Thus, it can be seen that k-out-of-n active redundancy 

is employed in many systems. 

Protective devices, reserve, or safety equipment represent a special class of multicomponent 

systems. Some examples of these devices include surge-protective equipment, liquid-level 

alarms and batteries in infusion pumps. Protective devices are usually “latent”, or dormant when 

the system they protect is in a working order. However, when the system fails, the protective 

equipment has to start operating, and if it is unable to perform, then its failure is revealed. 

Because of the lack of information about the state of such protective systems, the failures of 

individual components making up these systems are most often discovered at either an 

inspection, or upon the entire system’s failure. For this reason, such failures are called “hidden” 

[8, 16]. However, in the absence of feedback on the state of protective systems, it is difficult to 

establish a reasonable, let alone optimal policy for their inspection and maintenance. At the 

same time, letting such devices run to failure is simply not an option in many instances, such 

as, for example, hospital infusion pumps, since the risks, danger and potential consequences of 

letting such devices fail are unjustifiably high. 

In order to minimise the risks of failure, frequent regular inspections of the system and its 
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components may be recommended, especially if the duration of inspection is negligible 

compared to the planning horizon. This, however, would defy the purpose of a redundant 

system, since the redundancy is embedded in such a system often with precisely the purpose to 

avoid frequent inspections, due to either difficulty, inaccessibility, high cost, etc., and so this 

option is generally inappropriate. In order to find the balance between mitigating the risks of 

failure and sustaining a cost-effective inspection policy, the inspection times have to be 

optimised over the entire planning horizon. 

Hidden failures in k-out-of-n systems are discussed by Bjarnason et al. [19, 47, 48], where 

the authors develop a joint optimisation model minimising the costs of maintenance and 

inventory. Bjarnason and Taghipour [21] also use genetic algorithm to search through a three-

dimensional objective function and to jointly find the optimal maintenance and (s, S) inventory 

policies for a k-out-of-n system with hidden failures. In previous work by Kassaei and 

Taghipour [10], Taghipour and Kassaei [43] and Taghipour [9], the authors propose models for 

finding the optimal inspection interval that would minimise the total expected cost over a finite-

time life cycle in a k-out-of-n load-sharing system, where hazard rates of the operational 

components increase with each subsequent failure. None of these works, however, considers 

joint optimisation of inspection and maintenance. 

Opportunistic inspections and preventive maintenance have received some coverage in the 

literature (Barlow and Hunter [49], Gustavsson et al. [50], Badía et al. [51]). Wang and Pham 

[52] propose a multi-objective imperfect preventive maintenance policy for a one-component 

system with hidden failures. Laggoune et al. [53] propose an opportunistic multi-grouping 

maintenance plan based on replacement optimisation for a multi-component system with series 

configuration subject to random system failures. Tambe et al. [54] use genetic algorithm, 

simulated annealing and sequence heuristic methods to find the optimal maintenance decision 

for a model with opportunistic maintenance action and available time and system availability 

constraints. Moghaddam [55] uses genetic algorithms (GAs) to solve nonlinear mixed-integer 

optimisation problem and determine the Pareto-optimal preventive maintenance plans for a 

multicomponent system. These models, however, do not feature inspection optimisation. 

Lust et al. [56] use exact and heuristic methods for finding the best maintenance action that 

maximises system reliability. Jamshidi and Esfahani [57] utilise non-dominated sorting genetic 
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algorithm II (NSGA II) to optimise maintenance action for a series and cold standby system. 

The type of system they consider is, however, different from k-out-of-n systems, which makes 

their analysis not entirely appropriate for the latter. 

In Dagpunar’s model of a multicomponent system [39], if the failed component’s age 

exceeds a specified control limit, it is opportunistically replaced. He, however, makes no 

distinction between the types of components, and maintenance decision is based on 

component’s age rather than its maintenance history. 

There exists literature on repair limit policies, with some criteria used as replacement 

decisions including repair time (Dohi et al. [58]) and repair costs (Drinkwater and Hastings [59], 

Kapur and Garg [60], Chien et al. [61], Lai [62]). When such repair limits are exceeded, the 

system or components undergo replacement. 

Zhu et al. [40] propose an opportunistic maintenance policy for multicomponent system 

with hard-type and soft-type components, for the case of maintaining offshore wind turbines. In 

their model, however, maintenance action for soft-type components is again dependent on the 

ages of the latter. 

Cui and Li [41] consider a multicomponent system with opportunistic inspections and 

stochastically-dependent components and use a cumulative damage shock model to 

stochastically compare maintenance policies. Still, they consider only one type of components. 

Opportunistic inspections for k-out-of-n systems have also received some coverage in the 

literature. Huynh et al. [44] provide an opportunistic condition-based maintenance model for 

maintenance optimisation at the component level. Huynh et al. [45] also propose a multi-level 

decision-making model. 

Preventive replacement opportunities following a Poisson process for block and age-based 

replacement models are considered by Aven and Dekker [42], while Block et al. [63] consider 

age-dependent minimal repair. Taghipour and Banjevic [14] optimise minimal repairs of hard-

type and soft-type components over a finite planning horizon with opportunistic inspections in 

one of their models. Taghipour and Banjevic [43] consider optimal inspection policy for 

complex multicomponent systems with hard and hidden soft failures under both periodic and 

opportunistic inspections and minimal repair or replacement maintenance. In these models, 
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however, the component’s maintenance action is determined by the age-dependent probabilities 

and is not subject to optimisation. 

The majority of researchers considers either one, or two types of maintenance action. For 

example, Taghipour and Banjevic [14] assume in their first model minimal repairs only. Fard 

and Zheng [22] consider a non-repairable multicomponent system, which implies that the only 

type of maintenance available to them is replacement. Makis and Jardine [23], Sheu et al. [64, 

65], Sheu and Chang [66], Cui [67], Okumura [68] and Pham and Wang [69] consider a system 

subject to replacements, which incur a smaller cost if done prior to failure than after it. Such 

models bear, however, rather a theoretical significance than a practical one, since they only 

consider one type of maintenance action. Most multicomponent systems are designed to allow 

for repairs, since it is usually more economical to repair a system than to replace it with the new, 

or “as good as new” identical system [24]. For this reason, of more interest are models which 

consider a variety of maintenance actions, such as both minimal repair and replacement. 

Lienhardt et al. [70] and Chien and Sheu [25] consider two types of maintenance action: 

minimal repairs and replacements (also called “perfect repairs”) for one-component systems, 

while Taghipour and Banjevic [8, 15] consider these types of maintenance for multicomponent 

systems, but they only optimise for periodic inspection policies. 

Based on the aforementioned, it can be seen that there is a gap in the literature related to 

determining the optimal maintenance action to be taken at each component failure in a 

multicomponent system. A typical analysis involves optimisation of either inspection, or 

maintenance policies, but rarely both. With optimisation of inspection policies, many authors 

use rather strong assumptions on the type of maintenance policy that is taken, e.g. its 

dependence on the age. Although not unreasonable, this assumption limits the scope and the 

practical application of such models. 

The current research is an attempt to fill the gap existing in the area of joint inspection and 

maintenance optimisation for k-out-of-n systems with hidden failures, periodic and 

opportunistic inspections and several types of maintenance action. 

The further structure of the present chapter is as follows: Section 3.2 outlines the problem; 

Section 3.3 proposes a model for corrective maintenance (Model 1) and describes the simulation 

procedure used to obtain the optimal joint inspection and maintenance policies; Section 3.4 
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proposes a model for preventive replacement (Model 2) along with the simulation procedure; 

Section 3.5 then provides numerical examples for each model; Section 3.6 discusses the 

numerical results and provides sensitivity analysis; finally, Section 3.7 summarises conclusions. 

3.2. Problem Description 

Consider a redundant k-out-of-n system, where k refers to the number of identical 

components required to be in working order, n refers to the total number of identical components 

and 1 ≤ 𝑘 ≤ 𝑛. It is assumed that component failures are hidden and discoverable only upon 

inspection, but that they follow a non-homogeneous Poisson process (NHPP) with the power 

law intensity function 𝜆(𝑡) =
𝛽

𝜂
(

𝑡

𝜂
)

𝛽−1

, where 𝑡 is the age of the component. 

Furthermore, it is assumed that the system is of a k-out-of-n:G type, it is able to withstand 

failure of its 𝑗th component, 𝑗 = 1,2, … , 𝑛, until 𝑛 − 𝑘 + 1 components fail. Upon failure of 𝑛 −

𝑘 + 1 components, the entire system fails and incurs the system downtime penalty. Failure of 

one or more of the system’s components also incurs a time-dependent per-component downtime 

cost as a result of the penalties associated with the components’ failures. 

The system’s planning horizon (life cycle) 𝜔 is assumed to be finite. In addition, two kinds 

of inspection are considered: periodic and opportunistic. A periodic inspection occurs with 

frequency 𝜏 months at times 𝑖𝜏, 𝑖 = 1,2, … , 𝑙, 𝑙 ∈ ℕ, with the final periodic inspection and 

maintenance occurring at time 𝜔 months (and constituting a renewal point). An opportunistic 

inspection occurs every time the system fails, i.e. whenever an opportunity is presented outside 

of the regular scheduled periodic inspections. All components are checked at each inspection, 

and those failed undergo maintenance. 

The maintenance action is considered to belong to either a minimal repair, a corrective 

replacement, or a preventive replacement. A minimal repair does not affect the component’s 

age and restores the failed component to the working state it was in just prior to failure. A 

corrective replacement applies to a failed component and may occur both at the time of periodic, 

or opportunistic inspections. A preventive replacement is performed only at a periodic 

inspection on a working component. Both types of replacement decrease the component’s age 

to 0, thus effectively making it “as-good-as-new”. 
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In the real world, automotive brake lines present such problem. Multiple (usually dual, i.e. 

1-out-of-2) redundant brake lines in cars increase reliability and safety by ensuring that if only 

one hydraulic line remains operational, there is still a pair of diagonally-opposite front and rear 

wheels with working brakes. There are common recommendations provided by the automotive 

manufacturers as to the frequency of inspections of brake fluid levels and brake master cylinder 

assembly, which fits the framework of periodic inspections. For such system, both corrective 

and preventive maintenance models developed further in the present chapter can be applied.  

Another application of the proposed models is to uninterruptible power supplies with active 

redundancy. For these systems, electrical power storage devices (e.g. batteries or 

supercapacitors) can be periodically maintained and preventively replaced, based on the number 

of minimal repairs (charging cycles).  

These models can also be applied to power relays, where corrective maintenance or 

preventive replacement may be performed based on the number of previous malfunctions. 

These models can also be applied to power relays, where corrective maintenance or 

preventive replacement may be performed based on the number of previous malfunctions. 

Both inspection and maintenance actions are assumed to be perfect and have negligible 

duration. Once the system’s operating time reaches time 𝜔, a new optimal periodic inspection 

interval and maintenance policy is found taking into account the states of all components. 

The objective of the current work is to determine the optimal periodic inspection interval 𝜏∗ 

and the optimal maintenance policy 𝑚∗ to be used upon a component failure. The optimal 

inspection and maintenance policy is defined by the minimal total expected cost for the entire 

system over the planning horizon. 

3.3. Model 1: Corrective Replacement of Components at Periodic Inspections 

Since the objective is to optimise the inspection and maintenance policies based on their 

total expected costs, it is necessary to first formulate the costs. The total expected cost 𝐸[𝐶𝑚,𝜏
𝑇 ] 

of the maintenance policy with 𝑚 as the number of minimal repairs before replacement and 𝜏 

taken as the periodic inspection interval can be formulated as following: 
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𝐸[𝐶𝑚,𝜏
𝑇 ] = 𝑙𝑐𝐼 + 𝐹(𝜔, 𝒕, 𝑘, 𝑛)𝑐𝑆𝐷 + ∑(𝑐𝑀𝑀𝑚,𝜏,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛)

𝑛

𝑗=1

+𝑐𝑅𝑅𝑚,𝜏,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛) 

+𝑐𝐷 (𝜔 − 𝑈𝑚,𝜏,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛))),                    (1) 

where 𝑙 is the number of periodic inspections in the cycle 𝜔, 𝑐𝐼 is the cost of one periodic 

inspection, 𝒕 = (𝑡1, 𝑡2, … , 𝑡𝑛) is the vector containing the components’ initial ages, 𝐹(𝜔, 𝒕, 𝑘, 𝑛) 

is the expected number of system’s failures, 𝑐𝑆𝐷 is the system downtime penalty cost, 𝑐𝑀 is the 

cost of component minimal repair, 𝑐𝑅 is the cost of component replacement, 𝑐𝐷 is the cost of 

component downtime per unit time, 𝑡𝑗 is the initial age of component 𝑗, 𝑀𝑚,𝜏,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛), 

𝑅𝑚,𝜏,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛) and 𝑈𝑚,𝜏,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛) are the expected numbers of minimal repairs, 

replacements and expected uptime of component 𝑗, respectively. These expected values depend 

on 𝜔, the initial age 𝑡𝑗 of component 𝑗, the number of required redundant components k and the 

total number of components n. It should be also noted that, although the ages of failed 

components are unknown, they are used in the simulation to generate failures from NHPP and 

to keep track of components’ uptime. It can be reasoned that the objective function, expressed 

as the total expected cost, is a convex function. Refer to Appendix A for arguments pertaining 

to convexity of the objective function. 

Since the components’ ages at failure are unknown, there is a need to use another component 

characteristic on which to base the maintenance decision. Such characteristic is taken to be the 

number of minimal repairs before replacement 𝑚 for each component 𝑗. Although components 

are identical, not all of them may fail for the same number of times, and for this reason it is 

necessary to keep track of the number of minimal repairs performed on each component. This 

approach has been applied in the past for non-identical components of multicomponent systems 

with hidden failures in [71]. 

In order to obtain the optimal number of minimal repairs before replacement, one needs to 

know the expected number of times a component will have to be fixed, i.e. the expected number 

of its failures. Since all components are identical, we obtain the expected number of failures 

𝐸[𝛷] for one component in order to construct the upper bound for the expected number of 

failures. Assuming that a component’s failure detection occurs immediately upon inspection, 

and that the failed component is always minimally repaired, the expected number of failures 
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𝐸[𝛷] can be calculated over the system’s life cycle as following: 

𝐸[𝛷] = ∫
𝛽

𝜂
(

𝑡

𝜂
)

𝛽−1𝜔

0
𝑑𝑡 = (

𝜔

𝜂
)

𝛽

.     (2) 

However, due to the stochastic nature of component failures, the exact number of failures 

encountered by each component may vary. For this reason, it is feasible to construct an 𝛼 % 

confidence interval for 𝐸[𝛷] from Poisson distribution as following: 

𝑈𝐶𝐿 = min
𝜑

{∑ 𝑃(𝛷 = 𝑓)𝜑
𝑓=0 ≥ 1 − (

1−𝛼

2
)},     

      𝐿𝐶𝐿 = max
𝜑

{∑ 𝑃(𝛷 = 𝑓) ≤
1−𝛼

2

𝜑
𝑓=0 },                     (3) 

where 𝑈𝐶𝐿 is the upper confidence limit, 𝐿𝐶𝐿 is the lower confidence limit and 𝑃(𝛷 = 𝑓) =

(𝐸[𝑓])𝑓𝑒−𝐸[𝑓]

𝑓!
 is the probability of observing 𝑓 as the expected number of failures over 𝜔. 

Allowing 𝑚 to take values from 0 to 𝑈𝐶𝐿, cases ranging from immediate replacement upon 

failure to replacement on (𝑈𝐶𝐿+1)st failure can be covered. 

In order to find the optimal number of minimal repairs before replacement 𝑚∗ and the 

optimal inspection interval 𝜏∗, the corresponding optimisation problem can be formulated as 

following: 

(𝑚∗, 𝜏∗) = min
𝑚,𝜏

{𝐸[𝐶𝑚,𝜏
𝑇 ]},        

s. t. : 0 ≤ 𝑚 ≤ 𝑈𝐶𝐿, 𝜏 = 1,2, … , 𝜔,          (4) 

where 𝐸[𝐶𝑚,𝜏
𝑇 ] is the total expected cost of the maintenance policy defined by 𝑚 and the 

inspection policy defined by 𝜏. 

The pair (𝑚∗,𝜏∗) denotes the optimal number of minimal repairs before replacement for any 

component and the optimal inspection period for the system. Hence, this pair constitutes the 

optimal joint maintenance and inspection policy for a given system. 

Because the components’ ages at failure are unknown, no explicit formula is available for 

obtaining the required expected values. The latter are obtained instead numerically from a 

simulation model, which is outlined in the following section. 
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3.3.1. Simulation Model 

The simulation model is created to take k, n, 𝜔, 𝜏, 𝑡𝑗, 𝛽, 𝜂, 𝑐𝑀, 𝑐𝑅, 𝑐𝐷, 𝑐𝐼 and 𝑐𝑆𝐷 as the 

inputs.  The simulation model then generates the times to the first failure for all components 𝑗. 

Using the Weibull-distributed reliability function ℛ𝑗(𝑡, 𝛽, 𝜂) and a random number 𝑏 generated 

from a uniform distribution 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0; 1), the next time to failure 𝜒𝑗, given the current 

component’s age 𝑡𝑗, is generated as follows: 

𝜒𝑗 = 𝜂 ((
𝑡𝑗

𝜂
)

𝛽

− ln(𝑏))
1/𝛽

− 𝑡𝑗 .     (5) 

The first failure time is compared with the time of the first scheduled (periodic) inspection, 

given the inspection interval 𝜏 and the life cycle length. If the generated failure time is smaller 

than the next periodic inspection time, then the number of failed components is increased by 1 

until it reaches 𝑛 − 𝑘 + 1, at which point the system fails and an opportunistic inspection 

occurs. At this moment, all failed components are detected, and if the total number of previous 

failures for each component is less than 𝑚, the component is minimally repaired; otherwise, it 

is replaced, and its cumulative number of failures is set to zero. 

If a component’s failure time is smaller than the periodic inspection time and the number of 

failures is smaller than 𝑛 − 𝑘 + 1, then the failed component is fixed at the periodic inspection 

time. 

At any event’s time (i.e. a component’s failure time, the system’s failure time and a periodic 

inspection’s time), the random variables to track the number of minimal repairs, replacements 

and downtime of component 𝑗, and the number of system failures are updated and the simulation 

clock is advanced to the next event’s time. Also, at an event’s time, the time to the periodic 

inspection, the time to the next failure, and the ages of the surviving components are revised 

accordingly to incorporate the passing of the simulation’s time. When the clock reaches the end 

of life cycle, the simulation stops. The averages of the estimates for the random variables 

obtained from the simulation model executed multiple times provide 𝐹, 𝑀𝑚,𝜏,𝑗, 𝑅𝑚,𝜏,𝑗 and 

𝑈𝑚,𝜏,𝑗. 

In each simulation run, for a given pair of (𝑚, 𝜏), the maintenance decision is made: either 

the component is replaced, if 𝑓 > 𝑚, or it is minimally repaired otherwise. The total expected 
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costs 𝐸[𝐶𝑚,𝜏
𝑇 ] from the simulation model obtained for different values of (𝑚, 𝜏), 0 ≤ 𝑚 ≤ 𝑈𝐶𝐿, 

𝜏 = 1,2, … , 𝜔, are then compared, and (𝑚∗, 𝜏∗) resulting in the minimal expected cost is the 

joint optimal maintenance and inspection policy. 

Thus, the intermediate output of the simulation is a total expected cost matrix 𝑬[𝑪𝒎,𝝉
𝑻 ] =

[
𝐸[𝐶1,0

𝑇 ] ⋯ 𝐸[𝐶1,𝑈𝐶𝐿
𝑇 ]

⋮ ⋱ ⋮
𝐸[𝐶𝜔,0

𝑇 ] ⋯ 𝐸[𝐶𝜔,𝑈𝐶𝐿
𝑇 ]

]

⊤

, in which for each transposed total expected cost value, its row 

index presents the periodic inspection interval 𝜏 running from 1 to 𝜔 months, and its column 

index presents the number of minimal repairs before replacement 𝑚 running from 0 to 𝑈𝐶𝐿. 

The final objective is satisfied by searching the total expected cost matrix for the minimum 

value as following: 

𝐸[𝐶𝑚∗,𝜏∗
𝑇 ] = min

𝑚∗,𝜏∗
{𝑬[𝑪𝒎,𝝉

𝑻 ]}.     (6) 

Thus, the final outputs from the proposed simulation model are: the optimal number of 

minimal repairs before replacement for any component 𝑚∗ and the optimal periodic inspection 

interval 𝜏∗. 

3.4. Model 2: Preventive Replacement of Components at Periodic Inspections 

One metric used almost universally across a variety of manufacturing, industrial and 

services sectors regardless of the type of the system analysed is the total cost. This is especially 

true for the fields of inspection and maintenance optimisation, where both reliability and 

availability of the systems are connected through a variety of costs, such as component and 

system downtime penalties, inspection and maintenance costs, etc. Thus, a natural choice for 

the objective function in the case of a k-out-of-n system is to formulate it in terms of the total 

cost of the joint inspection and maintenance policy. 

However, in order to have a deterministic closed formulation, it is necessary to know with 

certainty all of the relevant parameters of the system. In the present case, this does not apply, 

since the components’ ages at failure are unknown. Furthermore, to describe the expected values 

of the system, a recursive formulation can be developed which does not have a closed-form 

solution, since it incorporates multidimensional integrals, whose computation is intensive and 



31 

 

very cumbersome due to the required discretisation procedure. For this reason, the choice of the 

analysis approach is made in favour of stochastic programming and numerical Monte-Carlo 

simulation. 

Given the uncertainty associated with failure occurrence, we formulate the total expected 

cost 𝐸[𝐶𝑚,𝜏
𝑇 ] for the policy defined by 𝑚 as the number of minimal repairs before replacement 

and 𝜏 as the periodic inspection interval, as following: 

𝐸[𝐶𝑚,𝜏
𝑇 ] = 𝑙𝑐𝐼 + 𝐹(𝜔, 𝒕, 𝑘, 𝑛)𝑐𝑆𝐷 + ∑(𝑐𝑀𝑀𝑚,𝜏,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛)

𝑛

𝑗=1

 

+𝑐𝐶𝑅𝐶𝑅𝑚,𝜏,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛) +𝑐𝐷 (𝜔 − 𝑈𝑚,𝜏,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛))                        

+𝑐𝑃𝑅𝑃𝑅𝑚,𝜏,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛)),                                                             (7) 

where 𝑙 is the number of periodic inspections in the cycle 𝜔, 𝑐𝐼 is the cost of one periodic 

inspection, 𝒕 = (𝑡1, 𝑡2, … , 𝑡𝑛) is the vector containing the components’ initial ages, 𝐹(𝜔, 𝒕, 𝑘, 𝑛) 

is the expected number of system’s failures, 𝑐𝑆𝐷 is the system downtime penalty cost, 𝑐𝑀 is the 

cost of component minimal repair, 𝑐𝐶𝑅 is the cost of component’s corrective replacement, 𝑐𝐷 is 

the cost of component downtime per unit time, 𝑡𝑗 is the initial age of component 𝑗, 𝑐𝑃𝑅 is the 

cost of component’s preventive replacement, 𝑀𝑚,𝜏,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛), 𝐶𝑅𝑚,𝜏,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛), 

𝑃𝑅𝑚,𝜏,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛) and 𝑈𝑚,𝜏,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛) are the expected numbers of minimal repairs, 

corrective replacements, preventive replacements and expected uptime of component 𝑗, 

respectively. The variables inside the brackets following the expected values’ symbols indicate 

the parameters used to calculate these expected values for the simulation purposes. The 

convexity of this cost function is demonstrated in Appendix A. 

The component’s age, although used as a parameter to generate the expected values in the 

simulation, is not known in reality due to hidden component failures. For this reason, the age of 

a hidden component cannot be used for making maintenance decisions. Instead, this decision is 

based on the component’s number of minimal repairs before replacement. 

The component’s optimal number of minimal repairs before replacement is determined from 

its expected number of failures. Because all components in a k-out-of-n system are identical, it 

is necessary and sufficient to obtain the expected number of failures 𝐸[𝛷] for just one 
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component, subject to assumptions of (1) no delay in detecting a failure on inspection and (2) 

ages of failed components are unaffected by maintenance (i.e. failed components are always 

minimally repaired), as following: 

𝐸[𝛷] = ∫
𝛽

𝜂
(

𝑡

𝜂
)

𝛽−1𝜔

0
𝑑𝑡 = (

𝜔

𝜂
)

𝛽

.                                          (8) 

Because of the uncertain nature of component failures, the exact number of failures may 

differ among the components. In order to get a general estimate on the upper bound of 

component failures, a confidence interval of width 𝛼 is constructed from Poisson distribution 

for 𝐸[𝛷] as following: 

𝑈𝐶𝐿 = min
𝜑

{∑ 𝑃(𝛷 = 𝑓)𝜑
𝑓=0 ≥ 1 − (

1−𝛼

2
)},                                       

      𝐿𝐶𝐿 = max
𝜑

{∑ 𝑃(𝛷 = 𝑓) ≤
1−𝛼

2

𝜑
𝑓=0 },                                       (9) 

where 𝑈𝐶𝐿 is the upper confidence limit, 𝐿𝐶𝐿 is the lower confidence limit and the probability 

of observing 𝜑 as the expected number of failures over 𝜔 is given by 𝑃(𝛷 = 𝑓) =
(𝐸[𝑓])𝑓𝑒−𝐸[𝑓]

𝑓!
. 

By making 𝑚 = 0, … , 𝑈𝐶𝐿, different cases from replacement-on-first-failure to replacement on 

(𝑈𝐶𝐿+1)st failure are covered. 

The set value of 𝑚 is then used as a maintenance decision criterion for establishing a 

maintenance policy, such that minimal repair is performed on every failure until the number of 

failures for a particular component reaches 𝑚. A replacement (either corrective, or preventive) 

is then performed on (𝑚 + 1)st failure for the same component. Based on this, optimising a 

maintenance policy amounts to finding the optimal number of minimal repairs before 

replacement 𝑚∗. 

At the same time, the frequency of inspections or, equivalently, the length of a time period 

between two successive inspections, has to be determined in an inspection policy. Because all 

components in a k-out-of-n system are identical and indistinguishable, it is immaterial to know 

all the combinations of failed components. Thus, optimisation for both maintenance and 

inspection can be performed jointly to obtain the optimal number of minimal repairs before 

replacement 𝑚∗ and the optimal inspection interval 𝜏∗ as following: 
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(𝑚∗, 𝜏∗) = min
𝑚,𝜏

{𝐸[𝐶𝑚,𝜏
𝑇 ]}, 

s. t. : 0 ≤ 𝑚 ≤ 𝑈𝐶𝐿, 𝜏 = 1,2, … , 𝜔,                                  (10) 

where 𝐸[𝐶𝑚,𝜏
𝑇 ] is the total expected cost of the maintenance policy defined by 𝑚, and the 

inspection policy defined by 𝜏. 

Thus, the optimal bivariate maintenance and inspection policy (𝑚∗, 𝜏∗) can be jointly 

obtained for the components in a k-out-of-n system. 

The difficulty arising from the lack of explicit formulation associated with obtaining the 

required expected values for a system with hidden failures is resolved by means of a simulation 

procedure outlined in the following section. 

3.4.1. Simulation Model Procedure 

Simulation is used to take k, n, 𝜔, 𝜏, 𝑡𝑗, 𝛽, 𝜂, 𝑐𝑀, 𝑐𝐶𝑅, 𝑐𝑃𝑅, 𝑐𝐷, 𝑐𝐼 and 𝑐𝑆𝐷 as inputs and 

generate the times-to-failure for each component 𝑗, 𝑗 = 1,2, … , 𝑛. Given the current 

component’s age 𝑡𝑗, a random number 𝑏 generated from a uniform distribution 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0; 1) 

and assuming the Weibull-distributed reliability function ℛ𝑗(𝑡, 𝛽, 𝜂), the time-to-failure 𝜒𝑗 is 

generated from the following expression: 

𝜒𝑗 = 𝜂 ((
𝑡𝑗

𝜂
)

𝛽

− ln(𝑏))
1/𝛽

− 𝑡𝑗 .     (11) 

The time evolution of the system is then determined from comparing the time-to-failure with 

the time of the approaching periodic inspection, given the periodic inspection interval length 𝜏 

and the planning horizon of length 𝜔. If the next periodic inspection time is greater than the 

generated failure time, then the component’s number of failures increases by 1. 

The outlined procedure is repeated until the number of failures reaches 𝑛 − 𝑘 + 1 failures. 

At this point, the entire system fails, triggering opportunistic inspection, which identifies all of 

the failed components. If the cumulative number of failures for a component does not exceed 

𝑚, it is minimally repaired; otherwise, the component is fixed by corrective replacement and 

the cumulative number of its failures is reset to zero. 

If the next periodic inspection time is greater than the generated component failure time, but 
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the number of failures is less than 𝑛 − 𝑘 + 1, then the failed component is fixed at the next 

periodic inspection. If the component’s cumulative number of failures does not exceed 𝑚, it is 

minimally repaired; otherwise, similarly to the previous case, the component is fixed by 

corrective replacement and the cumulative number of its failures is reset to zero.  

If the next periodic inspection time is smaller than the generated component failure time, 

and if the cumulative number of failures for a working component at the time of a periodic 

inspection is 𝑚, then that component is preventively replaced at that periodic inspection and the 

cumulative number of its failures is reset to zero. Otherwise, if the component is found in the 

failed stated at the periodic inspection, and its number does not exceed 𝑚, it is minimally 

repaired; otherwise, similarly to the previous cases, the component is fixed by corrective 

replacement and the cumulative number of its failures is reset to zero. 

At the time of any event, such as component failure, system failure, or periodic inspection, 

the number of minimal repairs, the number of corrective and preventive replacements, the 

downtime of component 𝑗, and the number of system failures are all updated and the simulation 

clock is advanced to the time of the next event. In addition, the time until the periodic inspection, 

the time until the next failure, and the ages of the surviving components are revised accordingly 

to reflect the passage of time. When the clock reaches the end of planning horizon, the 

simulation stops. If the simulation model is run for a large number of times, it provides the 

averages of the estimates for the random variables 𝐹, 𝑀𝑚,𝜏,𝑗, 𝐶𝑅𝑚,𝜏,𝑗, 𝑃𝑅𝑚,𝜏,𝑗 and 𝑈𝑚,𝜏,𝑗. 

During each simulation run, the choice of the maintenance action is made according to a 

given policy (𝑚, 𝜏). By changing the values of (𝑚, 𝜏) in the ranges 0 ≤ 𝑚 ≤ 𝑈𝐶𝐿, 𝜏 =

1,2, … , 𝜔, the total expected costs 𝐸[𝐶𝑚,𝜏
𝑇 ] for each policy (𝑚, 𝜏) is obtained and saved in a total 

expected cost matrix 𝑬[𝑪𝒎,𝝉
𝑻 ] = [

𝐸[𝐶1,0
𝑇 ] ⋯ 𝐸[𝐶1,𝑈𝐶𝐿

𝑇 ]

⋮ ⋱ ⋮
𝐸[𝐶𝜔,0

𝑇 ] ⋯ 𝐸[𝐶𝜔,𝑈𝐶𝐿
𝑇 ]

]

⊤

. In 𝑬[𝑪𝒎,𝝉
𝑻 ], the row index 

represents the periodic inspection interval 𝜏 running from 1 to 𝑇 months, and the column index 

represents the number of minimal repairs before replacement 𝑚 running from 0 to 𝑈𝐶𝐿 for each 

policy (𝑚, 𝜏). 

Finally, in order to find the optimal joint maintenance and inspection policy (𝑚∗, 𝜏∗), the 

total expected cost matrix is searched for the minimum total expected cost 𝐸[𝐶𝑚∗,𝜏∗
𝑇 ] according 
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to the following rule: 

𝐸[𝐶𝑚∗,𝜏∗
𝑇 ] = min

𝑚∗,𝜏∗
{𝑬[𝑪𝒎,𝝉

𝑻 ]}.     (12) 

The optimal total expected cost 𝐸[𝐶𝑚∗,𝜏∗
𝑇 ] identifies the optimal number of minimal repairs 

before replacement 𝑚∗ and the optimal periodic inspection interval 𝜏∗, which together represent 

the joint maintenance and inspection policy (𝑚∗, 𝜏∗), thus accomplishing the present objective. 

The exhaustive search used for finding the optimal policy is very susceptible to the size of 

the problem, i.e. the number of periodic inspections considered, the upper confidence limit on 

the expected number of component failures, etc. For this reason, with larger planning horizons 

or components with higher failure rates, both the search space and the simulation time increase 

dramatically. Another case where the problem complexity increases is when considering a 

smaller periodic inspection interval, as in this case the number of periodic inspections also 

increases. All of these cases suggest the need for improving the efficiency and reducing the 

complexity of the computations. 

One method to reduce the complexity and the search space of the problem is to decrease the 

number of total expected cost calculations. A powerful heuristic search method that can be used 

to do this is the genetic algorithm.  

Thus, with the goal of improving the efficiency of the simulation and in order to reduce its 

running time, the following model implementations are proposed: one based on exhaustive 

search, another one incorporating heuristic search using GA (both assuming 𝜏 to be integer) and 

the third – quasi-continuous GA relaxing the assumption of integer 𝜏. The three approaches are 

further discussed below. 

3.5. Numerical Examples 

This section contains numerical examples for the two models previously discussed. 

3.5.1. Model 1: corrective replacement of components at periodic inspections in 

a k-out-of-n system 

A 2-out-of-5 redundant system with identical components is analyzed using the model 

described in the preceding section. The component parameters are given in Table 2. 
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Table 2: Per-Component Parameters of the Power Law Intensity Function and Costs. 

𝛽 
𝜂 

(months) 

Minimal 

repair cost, 𝑐𝑀 

Replacement 

cost, 𝑐𝑅 

Downtime penalty 

cost/month, 𝑐𝐷 

1.5 7.5 $75 $200 $60 
 

The cost of inspection and system downtime penalty are both assumed to be fixed (𝑐𝐼 = $50, 

𝑐𝑆𝐷 = $550, respectively). Following the method explained above, the model is simulated using 

5,000 runs with 𝑇 = 12 months. Based on the previously-stated assumptions, Equation (2) is 

used to calculate 𝐸[𝑓] and Equation (3) is used to obtain 𝑈𝐶𝐿. Table 3 below shows the 90 % 

confidence interval (CI) on the expected number of failures for identical components. 

Table 3: Upper confidence limit (𝛼 = 90 %) on the expected number of failures for 
identical components. 

Expected Number 

of Failures (𝐸[𝑓]) 
90% Upper Confidence 

Limit (𝑈𝐶𝐿) 

2.0239 5 
 

Using the value of the upper confidence limit for the expected number of failures for the 

components, we calculate 𝐸[𝐶𝑚,𝜏
𝑇 ], as given in Equation (1), for 𝑚 = 0, … , 𝑈𝐶𝐿. The optimal 

number of minimal repairs before replacement 𝑚∗ and the optimal inspection period 𝜏∗ are then 

jointly obtained from Equation (4) by sorting through 𝐸[𝐶𝑚,𝜏
𝑇 ] calculated for the system. The 

results are provided in Table 4. 

Table 4: Transposed total expected cost matrix (in $) for different values of 𝑚 = 0,1,…,5 
and 𝜏 = 1,2,…,12 months in a 2-out-of-5 system. 

  Number of Minimal Repairs before Replacement 𝑚 

  0 1 2 3 4 5* 

Periodic 
Inspection 
Interval 𝜏 
(months) 

1 1605.90 1610.28 1606.00 1622.21 1619.08 1610.40 
 2* 1515.79 1516.45 1525.55 1518.06 1518.24     1508.17** 
3 1623.49 1594.06 1610.06 1604.80 1610.70 1609.39 
4 1716.14 1717.07 1710.78 1729.57 1718.60 1732.11 
5 1729.02 1739.89 1744.25 1745.83 1740.18 1743.09 
6 1904.57 1918.17 1935.85 1926.67 1918.26 1911.46 
7 1906.33 1917.98 1896.81 1898.85 1885.37 1902.30 
8 1907.20 1910.25 1917.27 1922.72 1917.47 1917.29 
9 1930.61 1935.82 1920.46 1924.38 1938.16 1942.54 
10 1982.21 1984.59 1989.15 1990.81 1992.59 1981.67 
11 2097.96 2093.93 2092.87 2080.63 2082.53 2099.48 
12 2201.58 2178.08 2190.09 2188.84 2183.17 2195.34 

Note: * indicates the optimal values of the (𝑚∗, 𝜏∗) pair. 

          ** indicates the minimum total expected cost (i.e. 𝐸[𝐶𝑚∗,𝜏∗
𝑇 ]). 
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Table 4 above presents the total expected cost matrix 𝑬[𝑪𝒎,𝝉
𝑻 ]

⊤
. For convenience, the output 

from the simulation can be also visualized by fitting a 3-dimensional surface to the total 

expected cost matrix (see Figure 1). 

Figure 1: Surface Fitted to the Total Expected Cost Matrix for a 2-out-of-5 System. 

Plotting the surface shown in Figure 1 allows for a better visualization of the relationship 

among the inspection interval, the number of minimal repairs before replacement and the total 

expected cost of the corresponding inspection and maintenance policies. 

Looking at the 3-dimensional surface in Figure 1, it can be clearly seen that total expected 

cost is most sensitive to the periodic inspection interval length. It can be also seen that the lowest 

total expected costs occur at 𝜏 = 2 months. As can be ascertained from both Table 4 and Figure 

1, the minimum total expected cost is $1,508.17 and its corresponding values of 𝜏 and 𝑚 are 

the optimal values of 𝜏∗ = 2 and 12 months and 𝑚𝜏
∗ = 5. It can be also seen that any number of 

minimal repairs before replacement provides a near-optimal maintenance policy when periodic 

inspections are performed every 2 months. 

Two additional cases to consider are a 1-out-of-5 system, which is equivalent to a parallel 

Total Expected 

Cost 𝐸[𝐶𝑚,𝜏
𝑇 ] ($) 
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configuration, and a 5-out-of-5 system, which is equivalent to a series configuration. The results 

for these systems are provided in Table 5 and Table 6. 

Table 5: Transposed total expected cost matrix (in $) for different values of 𝑚 = 0,1,…,5 
and 𝜏 = 1,2,…,12 months in a 1-out-of-5 (parallel) system. 

  Number of Minimal Repairs before Replacement 𝑚 

  0 1 2 3 4 5* 

Periodic 
Inspection 
Interval 𝜏 
(months) 

1 1586.63 1602.32 1605.81 1594.77 1592.24 1597.77 
 2* 1436.23 1436.80     1427.65** 1435.37 1434.50 1439.09 
3 1467.36 1475.90 1472.71 1467.39 1468.77 1462.77 
4 1543.32 1547.00 1552.82 1543.84 1554.70 1545.64 
5 1568.33 1588.93 1566.97 1572.60 1578.24 1572.61 
6 1739.35 1733.60 1719.03 1729.16 1731.16 1726.46 
7 1709.20 1713.13 1711.60 1713.66 1700.74 1712.48 
8 1726.84 1729.11 1731.86 1732.53 1723.89 1743.54 
9 1790.33 1778.00 1783.18 1785.45 1778.72 1778.88 
10 1878.20 1867.67 1873.97 1873.69 1888.28 1868.67 
11 2008.08 2008.97 2007.53 2012.52 2007.29 2009.21 
12 2129.99 2125.33 2122.63 2119.70 2131.25 2122.84 

Note: * indicates the optimal values of the (𝑚∗, 𝜏∗) pair. 

          ** indicates the minimum total expected cost (i.e. 𝐸[𝐶𝑚∗,𝜏∗
𝑇 ]). 

 

In Table 5, the minimal total expected cost of $1,427.65 is incurred for the system when it 

is inspected every 2 months and when the failed components are replaced after 2nd failure. 

For the 5-out-of-5 system, in which all components have to be operational in order for the 

entire system to function, the results are shown in Table 6. 

Table 6: Transposed total expected cost matrix (in $) for different values of 𝑚 = 0,1,…,5 
and 𝜏 = 1,2,…,12 months in a 5-out-of-5 (series) system. 

  Number of Minimal Repairs before Replacement 𝑚 

  0 1 2 3 4 5* 

Periodic 
Inspection 
Interval 𝜏 
(months) 

1 6932.50 6943.58 6871.38 6933.78 6922.85 6914.75 
2 6624.50 6551.43 6601.30 6613.90 6592.10 6603.00 
3 6571.55 6520.63 6507.98 6524.63 6531.05 6521.63 
4 6470.33 6495.28 6475.20 6482.93 6472.40 6450.80 
5 6442.68 6501.30 6441.00 6450.33 6510.98 6496.50 
6 6422.63 6414.70 6430.93 6432.75 6415.83 6394.13 
7 6426.20 6463.58 6404.00 6452.63 6390.03 6394.75 
8 6358.50 6397.53 6418.48 6417.88 6397.45 6413.05 
9 6386.70 6470.75 6423.15 6407.28 6449.10 6419.80 
10 6438.23 6449.95 6390.30 6488.43 6394.28 6433.03 

 11*     6355.33** 6425.70 6392.38 6398.75 6431.35 6424.85 
12 6399.50 6363.98 6406.83 6403.63 6361.13 6393.33 

Note: * indicates the optimal values of the (𝑚∗, 𝜏∗) pair. 

          ** indicates the minimum total expected cost (i.e. 𝐸[𝐶𝑚∗,𝜏∗
𝑇 ]). 
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Table 6 shows that the minimal total expected cost of $6,355.33 for a series-configuration 

system consisting of five components is incurred whenever the system is inspected on the 11th 

and 12th months and if the failed components are replaced whenever they fail. 

Comparing the results from Table 4, Table 5 and Table 6, it can be deduced that the lowest 

cost of inspection and maintenance is incurred for a 1-out-of-5 system, whereas the highest cost 

is incurred by the 5-out-of-5 system in series configuration. This is expected, since the total 

system downtime penalty incurred for a series system is much higher than that for a k-out-of-n, 

or a parallel system. 

Looking at the periodic inspection interval length, it can be seen that the series-configuration 

system has the longest inspection interval of 11 months, compared to the 2 months optimal 

interval for 1-out-of-5 and 2-out-of-5 systems. This is likely due to the fact that the series system 

configuration is less reliable, since every component failure also causes the entire system to fail. 

For this reason, the optimal solution for such systems is to have opportunistic inspections on 

every component failure and reduce the number of periodic inspections to just 1 or 2 within the 

system’s life cycle. 

The optimal number of minimal repairs before replacement is greater for the case of 2-out-

of-5 system compared to the 1-out-of-5 system, since the number of failures, minimal repairs 

and replacements is generally greater for the 2-out-of-5 system. Thus, given the same frequency 

of periodic inspections, the 2-out-of-5 system has components failing for a greater number of 

times within the same time interval and, thus, necessitating component replacement sooner. 

3.5.2. Model 2: preventive replacement of components at periodic inspections in 

a k-out-of-n system 

Consider a redundant 3-out-of-5 system with parameters as given in Table 7. 

Table 7: Per-Component Parameters of the Power Law Intensity Function and Costs. 

𝛽 𝜂 
(months) 

Minimal 
repair 

cost, 𝑐𝑀 

Corrective 
Replacement 

cost, 𝑐𝐶𝑅 

Preventive 
Replacement 

cost, 𝑐𝑃𝑅 

1.5 7.5 $75 $200 $180 

In addition to parameters listed in Table 7, other costs include the fixed cost of inspection 

𝑐𝐼 = $50, the per-component downtime penalty monthly cost 𝑐𝐷 = $60 and the system downtime 
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penalty 𝑐𝑆𝐷 = $350. It is assumed that all components are initially as-good-as-new. 

Simulations are performed using exhaustive search and genetic algorithm techniques. Using 

both the former and the latter algorithms, the system is simulated for 5,000 runs with 𝜔 = 12 

months on the same computer. The results obtained from each simulation are discussed below. 

3.5.2.1. Exhaustive search implementation 

For the exhaustive search implementation, Equation (8) is first used to calculate 𝐸[𝑓], 

followed by Equation (9) for calculating 𝑈𝐶𝐿. For the present example, the value of the 𝑈𝐶𝐿 

was calculated to be 5 component failures, assuming a 90 % confidence interval (CI) on the 

expected number of each component’s failures. 

Once the 𝑈𝐶𝐿 value has been obtained, the system’s evolution was simulated, given the 

assumption of replacement (either corrective, or preventive) on (𝑚 + 1)st failure. Then, 𝐸[𝐶𝑚,𝜏
𝑇 ] 

was calculated from Equation (7) for 𝑚 = 0, … , 𝑈𝐶𝐿. Finally, the array of 𝑬[𝑪𝒎,𝝉
𝑻 ] values 

obtained for the system for the cases of different 𝑚 was sorted to jointly provide the optimal 

inspection period 𝜏∗ and the optimal number of minimal repairs before replacement 𝑚∗ (as 

represented in Equation (10) and (12)). See Table 8 below for details. 

Table 8: Transposed Total Expected Cost Matrix (in $) for Different Values of 𝑚 = 0,1,…,5 

and 𝜏 = 1,2,…,12 Months in a 3-out-of-5 System. 

  Number of Minimal Repairs before Replacement 𝑚 

  0 1 2 3 4 5* 

Periodic 
Inspection 
Interval 𝜏 
(months) 

1 9740.78 2383.53 1986.90 1808.52 1710.45 1676.69 
 2* 4902.86 2185.28 1903.90 1746.34 1676.11   1658.80** 

3 3579.12 2207.66 1978.73 1831.64 1765.80 1750.26 
4 3067.30 2294.54 2046.18 1909.95 1836.48 1825.84 
5 3088.20 2296.92 2064.92 1902.64 1849.47 1836.22 
6 2743.42 2383.39 2155.73 1999.22 1939.54 1931.32 
7 2758.43 2392.26 2148.75 1991.84 1940.53 1932.88 
8 2754.75 2372.45 2147.01 2000.27 1936.20 1931.16 
9 2787.67 2347.77 2153.59 1999.09 1952.41 1940.28 
10 2861.38 2346.86 2160.36 2007.89 1948.59 1942.17 
11 2973.70 2400.35 2233.75 2052.52 1993.66 1979.39 
12 2604.76 2414.26 2268.68 2101.41 2045.85 2042.88 

Note: * indicates the optimal values of the (𝑚∗, 𝜏∗) pair. 

          ** indicates the minimum total expected cost (i.e. 𝐸[𝐶𝑚∗,𝜏∗
𝑇 ]). 

Table 8 above contains the total expected costs calculated for different values of the 

simulated 𝑚 and 𝜏. These data are also visualised in Figure 2. 
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As can be seen from both Table 2 and Figure 2, the optimal total expected cost is $1658.80, 

which occurs at the optimal periodic inspection policy 𝜏∗ = 2 months and the optimal 

maintenance policy 𝑚∗ = 5 minimal repairs before replacement. 

Figure 2 also shows that periodic inspection interval has the greatest effect on the total 

expected cost, compared with the effect of the number of minimal repairs before replacement. 

The effect of the periodic inspection interval length is especially pronounced when going from 

𝜏 = 1 to 𝜏 = 2 and then to 𝜏 = 3 for 𝑚 = 0 (i.e. “replace on each failure”). This is not surprising, 

given that the costs of corrective and preventive replacements are much higher than the cost of 

minimal repair, and thus increasing the number of replacements within the planning horizon 

sharply increases the total expected cost. 

It can be also seen from Figure 2 that the variation among different inspection intervals at 

the same number of minimal repairs before replacement is relatively small. Thus, at 𝑚 = 5, 

almost any 𝜏 provides a total expected cost better than the total expected cost for the same 𝜏 at 

a different 𝑚. 

3.5.2.2. Genetic algorithm implementation with integer inspection period length 

In the genetic algorithm implementation, the values 𝑚 and 𝜏 used as inputs in the simulation 

Total Expected 

Cost 𝐸[𝐶𝑚,𝜏
𝑇 ] ($) 

Figure 2: Continuous graphical representation of total expected cost matrix for a 3-

out-of-5 system. 
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are first generated from a random population of a given size. These generated decimal values 

are then converted to binary representation and encoded as genetic strings. These strings are 

then treated as being composed of “genes”, which may be recombined, “excised”, replaced, etc. 

Several experimental runs were made, starting with the default population size of 20 and 

eventually reducing it to 4. It was found that even the population of 4 was giving accurate results 

most of the time. 

The fitness function used was similar to Equation (7), with lower total expected costs’ 

providing higher fitness value than higher total expected costs. 

For the selection procedure, “elite count” = 1 was used to guarantee that 1 individual 

survives to the next generation. A limit of 30 generations was used. 

As alternative stopping criteria, in addition to the limits on the population size and the 

number of generations, a stall generation limit of 20 was used to put an upper bound on the 

number of generations over which the average relative change in the best fitness function value 

is calculated. In addition, another stopping criterion was the tolerance limit of 10-5. This criterion 

stops the algorithm, if the average relative change of the best function value is less than or equal 

to the specified value over the assigned number of stall generations. 

The output and the results from running the genetic algorithm for the integer values of 𝜏 for 

5,000 runs with the aforementioned settings is provided in Figure 3 below. 
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Figure 3: Integer 𝜏 genetic algorithm output and results. 

The top graph in Figure 3 shows the output for the best and the mean 𝐸[𝐶𝑚,𝜏
𝑇 ] for each 

generation. As the number of generations increases, the GA-generated fitness function value 

gets closer to the optimal total expected cost and converges after about 14 generations. 

The middle graph in Figure 3 displays the distances from each member of the population to 

its nearest neighbour. Generally, the smaller the distance, the faster the algorithm will converge. 

The bottom graph in Figure 3 contains the best, worst and mean scores for the fitness 

function, i.e. the total expected cost. It can be seen that after approximately 10 generations, the 

differences among these three measures become relatively small. 

The results from the genetic algorithm implementation matched those from the exhaustive 

search. The optimal number of minimal repairs before replacement and the optimal periodic 

inspection interval joint policies were found to be (𝑚∗ = 5, 𝜏∗ = 2), with the optimal total 

expected cost of $1658.80. 

The results obtained from both simulations are based on the minimum inspection period 

length 𝜏 of 1 month, which constitutes 1/12 of the entire planning horizon length. In some cases, 

however, the minimum time between inspections may be smaller and/or the planning horizon 

file:///D:/PhD Thesis.docx#_Ref438260354
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may be much larger relative to the minimal inspection period length. In analysing such cases, 

rather than rescaling the problem to represent the minimal inspection period as an integer and 

the planning horizon as its integer multiple, the inspection period length may be thought of as 

being quasi-continuous, i.e. the integer constraint on the inspection period length can be relaxed. 

Thus, the value of 𝜏 is no longer limited to the integer number of months in this case, but may 

also take positive rational values. 

3.5.2.3. Genetic algorithm implementation with quasi-continuous inspection period 

length 

A genetic algorithm for the quasi-continuous case was also implemented. The results 

obtained from running the algorithm using the same seed, settings and constraints for 5,000 

repetitions is shown in Figure 4 below. 

As can be seen from Figure 4, the optimal total expected cost of $1622.08 was found, which 

is lower than those found from integer genetic algorithm and exhaustive search 

implementations. The joint optimal inspection and maintenance policies were found to be 𝜏∗ =

1.3335 months (40 days, based on a 30-day month) and 𝑚∗ = 5 minimal repairs before 

Figure 4: Quasi-continuous 𝜏 genetic algorithm output and results. 
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replacement, correspondingly, for the case of quasi-continuous inspection period. 

The results from comparison of running times for 5,000 iterations between the genetic 

algorithm for integer 𝜏 and the exhaustive search suggest that with the running time of 58.6 s 

for the former vs. 250.9 s for the latter, the difference is more than 4-fold, with the GA’s taking 

only about 23 % of time required for the exhaustive search to find the same solution. Thus, the 

genetic algorithm implementation can be an efficient choice when analysing complex systems 

through simulation and has significant time advantages over the exhaustive search 

implementation. 

It should be also noted that full advantage of the genetic algorithm implementation should 

become more evident with the increase in complexity of the problem. Although the quasi-

continuous case took 4379.9 s to run, which is much greater than both 250.9 s for integer 

exhaustive search and 58.6 s for integer genetic algorithm, it is not surprising, since the step 

size was reduced from 1 month to ten thousandths of a month. Thus, it can be expected that in 

transitioning to the quasi-continuous case for the inspection period length, the time difference 

between the exhaustive search with the 4-decimal points step length and the genetic algorithm 

implementation is likely to be very dramatic. This suggests that the genetic algorithm is a 

powerful and versatile method to be applied to a wide range of inspection and maintenance 

optimisation problems. 

3.6. Discussion and Sensitivity Analysis 

Since hidden failures in multicomponent systems may go unnoticed for a long time and may 

accumulate to cause system failure in redundant configurations, the cost of system downtime 

may be quite large. In the present case, the system downtime penalty 𝑐𝑆𝐷 represents the largest 

cost in the simulation. For this reason, it greatly affects the total expected cost and the latter’s 

optimality, as can be ascertained from Figure 2. Therefore, the optimality of the joint 

maintenance and inspection policy (𝑚, 𝜏) is most sensitive to variation in the cost 𝑐𝑆𝐷. 

Keeping all parameters constant and varying 𝑐𝑆𝐷, its influence on the total expected cost 

can be isolated. In Figure 5 below, 𝐸[𝐶𝑚∗,𝜏∗
𝑇 ] vs. 𝑐𝑆𝐷 is plotted for the optimal number of 

minimal repairs before replacement 𝑚∗ = 5 and the optimal 𝜏∗ = 1 and 𝜏∗ = 2, with all other 

parameters as previously indicated. 
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Figure 5: Expected total cost vs. system downtime penalty cost for 𝑚∗ = 5 and the other 

parameters as in Table 7. 

As can be seen from Figure 5, the relationship between the total expected cost and the system 

downtime penalty is linear (𝑅2 = 1) for both chosen optimal inspection periods. This is not 

surprising, since Equation (7) is linear in 𝑐𝑆𝐷. The fitted equations expressing the linear 

dependency of 𝐸[𝐶𝑚∗,𝜏∗
𝑇 ] on 𝑐𝑆𝐷 for optimal policies (𝑚∗, 𝜏∗) are: 

  For (5,2):     𝐸[𝐶𝑚∗,𝜏∗
𝑇 ] = 0.8892𝑐𝑆𝐷 + 1347.6,                   (13.1) 

 For (5,1):     𝐸[𝐶𝑚∗,𝜏∗
𝑇 ] = 0.3914𝑐𝑆𝐷 + 1539.7.      (13.2) 

Comparing Equation (13.1) and (13.2) with Equation (7), the following expressions can be 

deduced for (𝑚∗ = 5, 𝜏∗ = 2): 

𝐹(12, 𝟎, 3,5) = 0.8892 =
𝐸[𝐶𝑚∗,𝜏∗

𝑇 ]−1347.6

𝑐𝑆𝐷 , 

                ∑(75𝑀5,2,𝑗(12,0,3,5)

5

𝑗=1

+200𝐶𝑅5,2,𝑗(12,0,3,5) 

                                             +60 (12 − 𝑈5,2,𝑗(12,0,3,5)) +180𝑃𝑅5,2,𝑗(12,0,3,5))                  

  +6 ∗ 50 = 1347.6.                                                             (14.1) 

Similarly, for optimal policies (𝑚∗ = 5, 𝜏∗ = 1): 

𝐹(12, 𝟎, 3,5) = 0.3914 =
𝐸[𝐶𝑚∗,𝜏∗

𝑇 ]−1539.7

𝑐𝑆𝐷 , 

y = 0.8892x + 1347.6
R² = 1

y = 0.3914x + 1539.7
R² = 1
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                ∑(75𝑀5,1,𝑗(12,0,3,5)

5

𝑗=1

+200𝐶𝑅5,1,𝑗(12,0,3,5) 

+60 (12 − 𝑈5,1,𝑗(12,0,3,5)) +180𝑃𝑅5,1,𝑗(12,0,3,5))                 

+12 ∗ 50 = 1539.7.                                                          (14.2) 

Recalling from the definitions for Equation (7) that 𝐹(𝜔, 𝒕, 𝑘, 𝑛) denotes the expected 

number of system’s failures, it follows from Equation (14.1) that for the optimal policy (𝑚∗ =

5, 𝜏∗ = 2), the given system is expected to fail 0.8892 times within the 12-months system’s life 

cycle. Following the same logic, for the optimal policy (𝑚∗ = 5, 𝜏∗ = 1), the same system is 

expected to fail only 0.3914 times over its entire 12-months life cycle. 

In addition, based on the definition of the expected number of system’s failures for a NHPP 

over the system’s life cycle: 

𝐹(𝜔, 𝒕, 𝑘, 𝑛) = ∫ 𝜆𝑘,𝑛(𝑡)𝑑𝑡

𝜔

0

,                                                            (15) 

where 𝜆𝑘,𝑛(𝑡) denotes the system hazard or intensity function. Thus, Equation (15) directly 

connects a time-dependent stochastic expression for the expected number of system failures 

𝐹(𝜔, 𝒕, 𝑘, 𝑛) with the costs, as expressed in Equation (14.1) and (14.2). 

To obtain the system hazard function, for simplicity, as the basis for further derivation in 

this section, we only consider the reliability formula valid for non-repairable systems with k-

out-of-n configuration. Thus, the reliability and the hazard functions presented further in this 

section describe the evolution of the system until first repair. Such derivation of first-failure 

system hazard function can be justified and particularly well-suited for highly reliable systems, 

where failure events are rare and, therefore, the proposed may be a good approximation to the 

true system hazard function. 

Taking ℛ(𝑡) = ℛ = 𝑒−(𝑡/𝜂)𝛽
 for individual components in a k-out-of-n system, the system 

reliability ℛ𝑘,𝑛(𝑡) until its first repair can be generally calculated as in Equation (16) below: 

ℛ𝑘,𝑛(𝑡) = ∑ (
𝑛

𝑗
) ℛ𝑗(1 − ℛ)𝑛−𝑗

𝑛

𝑗=𝑘
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               = ∑ (
𝑛

𝑗
) 𝑒

−𝑗(
𝑡
𝜂

)
𝛽

(1 − 𝑒
−(

𝑡
𝜂

)
𝛽

)

𝑛−𝑗𝑛

𝑗=𝑘

.                                         (16) 

The failure probability density function (or, equivalently, the negative derivative of the 

reliability function) until the first repair is given as: 

−
𝑑

𝑑𝑡
ℛ𝑘,𝑛(𝑡, 𝛽, 𝜂) = ∑ (

𝑛

𝑗
)

𝑛

𝑗=𝑘

𝛽𝑡𝛽−1 (𝑒
(

𝑡
𝜂

)
𝛽

− 1)

𝑛−𝑗−1

(𝑗𝑒
(

𝑡
𝜂

)
𝛽

− 𝑛) 𝑒
−𝑛(

𝑡
𝜂

)
𝛽

𝜂𝛽
.      (17) 

The system hazard function (failure rate) 𝜆𝑘,𝑛(𝑡) until the first repair (i.e. either an 

opportunistic, or a scheduled inspection) is then: 

𝜆𝑘,𝑛(𝑡) = −

𝑑
𝑑𝑡

ℛ𝑘,𝑛(𝑡, 𝛽, 𝜂)

ℛ𝑘,𝑛(𝑡, 𝛽, 𝜂)
=                                                                              

= ∑ (
𝑛

𝑗
)

𝑛

𝑗=𝑘

𝛽𝑡𝛽−1 (𝑒
(

𝑡
𝜂

)
𝛽

− 1)

𝑛−𝑗−1

(𝑗𝑒
(

𝑡
𝜂

)
𝛽

− 𝑛) 𝑒
−𝑛(

𝑡
𝜂

)
𝛽

𝜂𝛽
                                 

∙ (∑ (
𝑛

𝑗
) 𝑒

−𝑗(
𝑡
𝜂

)
𝛽

(1 − 𝑒
−(

𝑡
𝜂

)
𝛽

)

𝑛−𝑗𝑛

𝑗=𝑘

)

−1

.                                                  (18) 

In designing or analysing the system for the number of failures, the boundary can be derived 

from Equations (15) and (16) for the expected number of system failures to remain less than 1 

over the system’s life cycle: 

𝐹 < 1 ⇔ ∫ 𝜆𝑘,𝑛(𝑡)𝑑𝑡

𝜔

0

< 1, 

∫ ∑ (
𝑛

𝑗
)

𝑛

𝑗=𝑘

𝛽𝑡𝛽−1 (𝑒
(

𝑡
𝜂

)
𝛽

− 1)

𝑛−𝑗−1

(𝑗𝑒
(

𝑡
𝜂

)
𝛽

− 𝑛) 𝑒
−𝑛(

𝑡
𝜂

)
𝛽

𝜂𝛽

𝜔

0
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∙ (∑ (
𝑛

𝑗
) 𝑒

−𝑗(
𝑡
𝜂

)
𝛽

(1 − 𝑒
−(

𝑡
𝜂

)
𝛽

)

𝑛−𝑗𝑛

𝑗=𝑘

)

−1

𝑑𝑡 < 1.                                          (19) 

For a highly reliable system with rare failures and, consequently, repair events, Equation 

(19) may be a good approximation to the general evolution of the system and not only for the 

system until its first repair.  

The expressions given in Equation (19) may be used as a criterion for deciding on the 

appropriate planning horizon for the system. This expression can be useful for eliciting the 

acceptable level of risk associated with the system’s failure. It also provides a quantifiable 

approach to setting the system’s planning horizon, which, in most cases, is not a trivial task. 

The preceding developments and Equations (13-19) allow simplifying the calculations 

pertaining to the system’s analysis. This is an example of an advantage of a simulation approach, 

where it is able to provide not only a simplified approximation, but actually elicit an exact 

relationship and provide valuable insights for the system being analysed. 

Figure 6 presents some of the values of the optimal 𝐸[𝐶𝑚∗,𝜏∗
𝑇 ] for the optimal policy (𝑚∗ =

5, 𝜏∗ = 2). The values of 𝐸[𝐶𝑚∗,𝜏∗
𝑇 ] for this policy lie on the interval [$1433.84, $1689.93] and 

their range is $256.09. The system downtime penalty 𝑐𝑆𝐷 lies on the interval [$97, $385], which 

translates into the range of $288. Thus, for every $1-increase in the system downtime penalty, 

the value of the total expected cost increases by approximately $0.89 or, equivalently, for every 

$1-increase in the total expected cost, the system downtime penalty increases by about $1.12. 

 
Figure 6: Range of system downtime penalty cost for which expected total cost remains 

optimal with 𝑚∗ = 5, 𝜏∗ = 2 and all other parameters as in Table 7. 
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Similar linear trend exists for all the values of 𝜏∗, as listed in Table 9 below. 

Table 9: Ranges of system downtime penalty cost and total expected cost with the 

corresponding values of 𝜏∗ and 𝐹(𝜔, 𝒕, 𝑘, 𝑛) for 𝑚∗ = 5 and other parameters as in Table 2. 

𝑐𝑆𝐷 Range E[Cm∗,τ∗
T ] Range 𝜏∗ 𝐹(𝜔, 𝒕, 𝑘, 𝑛) 

[386, ∞) [1690.78, ∞) 1 0.3914 

[97, 385] [1433.84, 1689.93] 2 0.8892 

[35, 96] [1356.70, 1432.92] 3 1.2494 

[7, 34] [1315.04, 1355.25] 4 1.4892 

[0, 6] [1300.60, 1313.32] 12 2.1208 

As can be seen from Table 9, the sensitivity of 𝐸[𝐶𝑚∗,𝜏∗
𝑇 ] to 𝜏∗ increases as 𝜏∗ decreases. 

This can be also ascertained from Figure 1, where the largest differences between 𝐸[𝐶𝑚∗,𝜏∗
𝑇 ] 

occur when transitioning between the smallest values of 𝜏∗. 

As the value 𝜏∗ decreases, its sensitivity to 𝑐𝑆𝐷 also decreases. This can be explained by the 

fact that higher system downtime makes it more costly for the system to remain in the failed 

state for a longer time, which is caused by the longer inspection period. Thus, 𝑐𝑆𝐷 promotes 

smaller periodic inspection interval in order to retain the optimality of the total expected cost. 

As 𝑐𝑆𝐷 decreases, the sensitivity of 𝐸[𝐶𝑚∗,𝜏∗
𝑇 ] increases, which is indicated by the increasing 

magnitude of 𝐹(𝜔, 𝒕, 𝑘, 𝑛). 

Interestingly, the values of 𝐹(𝜔, 𝒕, 𝑘, 𝑛) and 𝜏∗ both remain constant throughout the entire 

ranges of 𝑐𝑆𝐷 and 𝐸[𝐶𝑚∗,𝜏∗
𝑇 ]. This, again, can be explained by the linear relationship between 

𝑐𝑆𝐷 and 𝐸[𝐶𝑚∗,𝜏∗
𝑇 ] in Equation (7). Also, the fact that with longer duration of 𝜏∗, the value of 

𝐹(𝜔, 𝒕, 𝑘, 𝑛) increases, can be explained by the intuitive expectation that with the longer time 

intervals between inspections, more failures are expected to occur between inspections. Taking 

this into consideration, it can be seen that with lower system downtime penalty, the total 

expected cost may be optimal at less frequent inspections, which in turn allow for a higher 

number of expected system failures. Such non-trivial results re-emphasise the power and 

usefulness of the simulation models to consider a wide variety of scenarios and to provide the 

decision-makers with valuable insights regarding the given system. 

The results for the optimal number of minimal repairs before replacement from Model 1 and 

Model 2 for a 2-out-of-5 and a 3-out-of-5 configuration, respectively, are presented in Table 10. 
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Table 10: Total expected costs for Model 1 and Model 2 for each inspection period 𝜏 =
1,2, … ,12 months. 

Inspection 

period, 𝜏 

(months) 

Model 1, 

2-out-of-5, 

Model 2, 

3-out-of-5, 

𝐸[𝐶𝑚∗,𝜏∗
𝑇 ] ($) 𝐸[𝐶𝑚∗,𝜏∗

𝑇 ] ($) 

1 1610.40 1676.69 

2   1508.17*   1658.80* 

3 1609.39 1750.26 

4 1732.11 1825.84 

5 1743.09 1836.22 

6 1911.46 1931.32 

7 1902.30 1932.88 

8 1917.29 1931.16 

9 1942.54 1940.28 

10 1981.67 1942.17 

11 2099.48 1979.39 

12 2195.34 2042.88 
Note: * indicates the optimal costs. 

Since the tested system configurations differ for each model, the results do not allow for a 

close one-to-one comparison. A more informative comparison could be performed with the 

models applied to systems with identical configuration. However, there are still insights that 

could be gained from looking at the optimal costs for both models. It can be seen that the costs 

for Model 1 are lower for inspection periods of 1-8 months, even though the difference is 

generally no higher than 10 %. This can be ascribed to the fact that the 2-out-of-5 configuration 

tested for Model 1 is stochastically more reliable than 3-out-of-5 configuration tested for Model 

2, which results in the lower expected costs of failures and repairs. For the inspection period 

length of 8-12 months, however, the total expected costs for Model 2 become increasingly lower 

than those for Model 1. Thus, even though the system configuration may be more reliable, the 

expected costs resulting from using the policy with preventive component replacement from 

Model 2 results in the lower expected costs as the inspection period length increases and the 

risk of failures rises. This proves the usefulness of considering preventive replacements in 

devising the joint inspection and maintenance models as opposed to relying only on the 

corrective maintenance actions in such analysis. 

The limitations of the models arise from the assumptions of active redundancy, lack of 

operation over capacity, negligible inspection and maintenance duration, and deterministic 

inspection and maintenance costs. For example, the models do not account for “idling” of 
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components, which occurs in standby-redundant systems, where some components enter 

operation only at failure of other components, until then acting as “spare parts”. An example of 

a standby-redundant system is a set of wheels in a passenger car with a spare tyre, where the 

latter does not experience deterioration due to wear compared to the active tyres in contact with 

the road. The models proposed in this chapter also implicitly assume that components are not 

subject to load sharing when some of them fail, i.e. that the change in operating environment 

caused by failure does not affect the operating components’ deterioration process. This is 

equivalent to components operating under full capacity while in active redundancy. The 

assumption of negligible inspection and maintenance duration is justifies when these actions 

take much shorter time compared to the planning horizon of the system, especially given the 

constant inspection and maintenance costs. However, it may become more restrictive if the 

inspection and maintenance costs depend on time, or if they are stochastic. 

3.7. Conclusion 

The present chapter considers the problem of determining the optimal inspection and 

maintenance policies for k-out-of-n systems with hidden component failures under periodic and 

opportunistic inspections and finite planning horizon. Failures are assumed to follow a 

nonhomogeneous Poisson process (NHPP). The system fails when the number of component 

failures reaches 𝑛 − 𝑘 + 1. At this time, an opportunity for inspection of all of the system’s 

components is presented. Since component failures are hidden and their ages are unknown, the 

criterion used for the maintenance decision is the number of minimal repairs before 

replacement. Whenever a component reaches (𝑚 + 1)st failure, it is either correctively, or 

preventively replaced. Preventive replacements occur only for operating components at the 

periodic inspection time, whereas corrective replacements are performed for the failed 

components at periodic and opportunistic inspections. 

The total expected cost of inspection and maintenance policies is optimised jointly from 

simulation, since no closed-form solution is available due to hidden failures. 

Numerical examples for corrective replacement model (Model 1) are provided for the cases 

of 1-out-of-5 (parallel), 2-out-of-5 and 5-out-of-5 (series) systems. As expected, the 1-out-of-5 

system incurs the smallest optimal total expected cost of inspection and maintenance, while the 

5-out-of-5 system incurs the highest optimal cost. This is due to the high total system downtime 
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penalty, which is incurred more frequently for the 5-out-of-5 system. The optimal inspection 

period is longer for the 5-out-of-5 system, since the greater number of failures provides a greater 

number of opportunistic inspections, which reduces the need for frequent periodic inspections. 

Three simulation implementations are proposed and compared for preventive replacement 

model (Model 2): one involving exhaustive search and the other two based on the genetic 

algorithm (GA). Similarly to the exhaustive search, the first GA implementation imposes integer 

constraint on the minimal periodic inspection length 𝜏, while the second GA implementation 

relaxes that constraint. The exhaustive search and the integer GA simulations provide identical 

results, but the genetic algorithm is found to reach the optimal solution much faster. The quasi-

continuous GA requires much more running time, but provides joint inspection and maintenance 

policies resulting in yet lower total expected cost. 

Furthermore, based on the simulation results, expressions are derived for the expected 

number of system failures in terms of the cost ratio, as well as in terms of the component failure 

intensity (assuming system evolution until its first repair). In addition, a criterion is derived on 

the planning horizon length for establishing acceptable level of expected system failures over 

the system’s life cycle in terms of the system redundancy and component failure intensity. This 

can be useful when designing the system or analysing its performance. 

As the future work, combining the joint optimisation of inspection, maintenance and 

inventory may be considered, with some cases including both integer and quasi-continuous 

inspection period. This problem may prove an especially suitable choice for genetic algorithm 

implementation owing to its large search space. 
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4. Optimal Maintenance Policy for Multicomponent Systems 

with Periodic and Opportunistic Inspections and Preventive 

Replacements 

 

The present chapter is based on the following paper: 

Babishin V. and Taghipour S. Optimal Maintenance Policy for Multicomponent System with 

Periodic and Opportunistic Inspections and Preventive Replacements. (2016). Applied 

Mathematical Modelling, vol.40, no. 23-24, pp. 10480–10505. Published online at: 

http://dx.doi.org/10.1016/j.apm.2016.07.019. 

 

 

In the present chapter, a system with components subject to soft and hard failures is 

considered. It is assumed that hard failures are revealed and fixed immediately and present an 

additional opportunity for inspection (opportunistic inspection), but soft failures are hidden and 

only corrected at periodic inspections. The objective is to find the optimal maintenance policy 

for all components and the optimal periodic inspection for the entire system. Two models are 

considered in this context. The first model features corrective maintenance (minimal repair or 

replacement) of hard-type and soft-type components with opportunistic inspections of soft-type 

components. The second model, in addition to the assumptions of the first model, allows for 

preventive replacement of hard-type components at periodic inspections. The maintenance 

decision is based on the optimal age before replacement for hard-type components and the 

optimal number of minimal repairs before replacement for soft-type components. A recursive 

equation is provided for deriving the required expected values. The optimal periodic inspection 

interval for the system minimising its total expected life cycle cost is found for both models 

using simulation, since no closed-form formulation is available due to hidden failures. 

Keywords: Periodic inspection, opportunistic inspection, maintenance, optimisation, 

hidden soft failure, hard failure. 

http://dx.doi.org/10.1016/j.apm.2016.07.019
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4.1. Introduction 

There are many multicomponent systems in various areas of industry, as well as in our life. 

Maintenance and inspection of the systems which rely on multiple parts, assemblies and 

components is very important, as failure of some systems may entail catastrophic consequences, 

incur huge costs and/or present danger to human life. Whenever a system either ceases to 

operate completely (fails), or stops operating as desired, various penalties, such as costs of 

downtime and lost work are often incurred. In order to minimise the excessive costs and 

undesirable consequences, the availability for such systems as, for example, medical devices, 

backup power generators, or computer network servers should be kept as high as possible [47, 

48]. 

An overwhelming majority of multicomponent systems is specifically either designed, or 

may be assumed to be repairable, since it is usually more economical to repair a system than to 

replace it with the new, or “as good as new” identical system [24]. The main difference between 

the maintenance of simple (single-unit) and multicomponent (multi-unit) systems is that there 

usually exists some sort of dependency – either failure dependency, functional, structural, or 

economic dependency – among the individual components or subsystems of components in a 

multicomponent system [1]. Wang and Pham [72] study the optimal maintenance of a system 

consisting of several subsystems, assuming economic dependency among the components. 

Economic dependency in multicomponent systems is also surveyed by Dekker et al. [73]. 

Stochastic and economic dependencies and their influence on the periodic replacement policies 

are discussed within the multicomponent system’s context by Ozekici [31]. Wang and Kuo [13] 

compare series systems with mixed (cold and warm) standby components using the mean time 

to failure, long-term availability and cost/benefit ratio. Zhang and Wu [29] consider a k-out-of-

n system with perfect component repairs and imperfectly-repairable repair-equipment; they 

propose a model to minimise the expected cost rate of the repair-equipment, based on the 

optimal replacement policy for the number of repair-equipment failures. Shao and Lamberson 

[74], Taghipour [9] and L. Kassaei and Taghipour [10, 43] consider a k-out-of-n load-sharing 

system where each failure increases the hazard rates for the remaining operational components. 

They develop a model for finding the optimal inspection interval minimising the total expected 

cost over a finite-time life cycle. 
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Usually, the components of a multicomponent system may be conveniently classified by the 

type, or the mode of failure into hard and soft [75]. A component prone to hard failure is called 

a hard-type component, and that prone to soft failure – a soft-type component. If the same 

physical part of the system is subject to both soft and hard failures, it is treated as separate soft-

type and hard-type components. Failure of a hard-type component triggers the failure of the 

entire system and is, therefore, self-announcing, with the time of failure being known. Some 

examples of hard-type components are central processing unit in personal computers, fuse and 

display in infusion pumps, and ignition distributor wiring in automotive electronic ignition 

systems. Failures of soft-type components do not cause the immediate failure of the entire 

system, but usually reduce the system’s reliability by eliminating redundancy and increasing 

the risk of damage or malfunction. Some examples of soft-type components are standby-

redundant components (parallel processors, batteries, surge-protective equipment) and liquid-

level alarms in infusion pumps. 

Various models have been proposed for optimal maintenance of multicomponent systems 

(Scarf [76], Wang and Christer [77], Zille et al. [78]), subject to various features and 

assumptions, such as hidden failures, finite planning horizon (Hartman and Murphy [79]), 

preventive replacements (Hyman [80], Seo and Bai [81], Chang [82]) and opportunistic 

inspections. Some work has been done to aggregate and summarise research in this area (Wang 

and Pham [72], Nakagawa and Mizutani [83]). For example, Wang [1] surveys different 

inspection and maintenance policies for both single-unit and multicomponent systems; 

however, his emphasis is on the systems consisting of one component. Cho and Parlar [2] 

provide another survey of literature, with most of the models having been developed over 

infinite time horizon. None of the models in these surveys, however, considers optimisation of 

both inspection and maintenance over a finite time horizon. 

The planning horizon for a system usually represents its life expectancy. Examples of areas 

of industry where fixed and finite planning horizon is used include aircraft maintenance (see, 

for example, Sriram and Haghani [84]), pharmacology, medical devices with expiry date, etc. 

For example, aircraft parts usually have to be preventively repaired or replaced after a specific 

prescribed number of flight hours. Similarly, drugs and a vast majority of medical tools have an 

expiry date, after which they have to be replaced. 
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Some systems, especially protective devices, usually contain components that are subject to 

hidden failures. A hidden failure can be defined as a failure not revealed during the normal 

operation of the system and discovered only at inspection [16, 85]. Hidden failures, such as 

failures of protective units in an integrated system of protective and protected units, are only 

revealed either at inspection, or whenever the protective unit is required to function, but is 

unavailable due to failure. Soft failures are similar to hidden failures, but the system is still able 

to function despite their presence. Sheu et al. [26] investigate hidden failures for single-

component systems and assume that the probability of failure depends on the number of 

previous repairs, while basing their maintenance policy on both the component’s age-at-failure 

and its number of overhauls. Su [33] uses the supplementary variable technique to find the 

optimal inspection period that maximises the system’s profit per unit time for a multi-mode 

system with a combination of hidden and self-announcing operating modes, where the period 

of inspection is a random variable. Bjarnason et al. [19, 20] consider hidden failures in the 

context of a k-out-of-n redundant system and develop a joint optimisation model for minimising 

the total cost of both maintenance and inventory policies. Babishin and Taghipour [86] propose 

a joint optimisation procedure for minimising the total cost of both periodic and opportunistic 

inspections and corrective maintenance for a k-out-of-n system with hidden failures. In another 

article, Babishin and Taghipour [87] consider a k-out-of-n system with hidden failures under 

both periodic and opportunistic inspections, minimal repair, corrective or preventive 

replacement and find the optimal joint inspection and maintenance policies, as well as provide 

expressions for the expected number of system failures in terms of the cost ratio and component 

failure intensity. They also derive a criterion for calculating the acceptable number of system 

failures over the system’s life cycle. Because of the lack of a closed-form solution, joint 

optimisation is performed using exhaustive search and genetic algorithm (GA) with either 

integer, or quasi-continuous inspection period. Bjarnason and Taghipour [21], they use genetic 

algorithm to search through a three-dimensional objective function to jointly find the optimal 

maintenance and (s, S) inventory policies for a k-out-of-n system with hidden failures. Unlike 

in k-out-of-n systems, where all components are identical, in systems composed of various hard-

type and soft-type components, each component may require a special treatment, which makes 

the analysis much harder. 
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Gertsbakh [88] and Norros et al. [89] consider a two-component system weakened by failure 

of repairable components and analyse it in the context of semi-Markov processes. Anisimov 

and Gürler [90] propose threshold maintenance policy based on an approximate analytical 

method for a semi-Markov system composed of n identical components subject to multiple 

unreliable states. Sun et al. [91], Tu et al. [92], Boudhar et al. [93] and Zhou et al. [94] consider 

joint component replacements and use heuristic and simulation optimisation methods. Jia [95] 

uses rule-based approach to opportunistic maintenance of life-limited components. Yu [96] 

surveys hidden semi-Markov models and outlines some popular applications. Generally, 

however, hidden semi-Markov models do not apply to the soft failures in the sense of the present 

chapter. For hidden semi-Markov models to be relevant, there have to be several states and 

transition probabilities defined for the soft-type components, which can describe the hidden 

degradation process of these components. In the present chapter, the age of the hidden soft-type 

components is unknown, and we are not looking at the degradation process of these components. 

Instead, once these components are inspected at either a periodic, or opportunistic inspection, 

their state (either functional, or failed) is deterministically and unambiguously identified. 

Most of the models surveyed assign to each type of maintenance action some probability. 

Sheu and Griffith [27], for example, consider age-dependent probabilities for the type of 

maintenance (replacement, minimal repair, or imperfect repair). Complementary probabilities 

of minimal repair and replacement are considered by Murthy and Nguyen [97], Brown and 

Proschan [98] and Nakagawa and Yasui [99]. Chang et al. [100] and Chien and Sheu [25] 

assume that the probability of replacement depends on the system’s age and the number of 

shocks tolerated since last replacement. Makis and Jardine [23] consider imperfect repairs, and 

in their model the probability of perfect maintenance depends on the number and time of 

imperfect maintenance actions in a cycle. More recently, Zhang and Zeng [101] propose a 

deterioration state space partitioning model for a system composed of multiple identical 

components, unlike the present chapter, where components are generally non-identical. They 

base their maintenance decision on the preventive maintenance threshold values, which are 

related to the deterioration state values. These authors, however, disregard the stochastic 

dependence of components by assuming independent deterioration of each component, thus 

treating failures as a homogeneous Poisson process, and associate probability with each 

maintenance type. No consideration is given for inspection optimisation. Instead of basing 
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maintenance action on an age-dependent or state-dependent probability, a different approach is 

taken in the present chapter, where the optimal maintenance action is dependent directly on 

either the age, or the number of maintenance actions (minimal repairs) previously performed. 

The majority of the available maintenance models structure the costs per unit time, for 

convenience, and optimise them over infinite planning horizon. Wang and Zhang [3] propose 

an optimal mixed bivariate policy to minimise the average cost rate, based on the critical 

reliability level and the number of system failures for a simple system. Zhang and Wang [4] and 

Lam [102] establish an optimal replacement policy based on the number of component failures 

for a series system with dissimilar components under a geometric process. They optimise their 

costs per unit time. Wu and Zhang [5] consider an infinite-horizon bivariate maintenance policy 

dependent on the interval length between preventive replacements and the number of 

component failures for a two-component cold-standby system subject to Poisson shocks. Coria 

et al. [6] develop an analytical optimisation method based on a new hazard function for 

imperfect preventive maintenance policy over an infinite planning horizon. Pan et al. [7] 

consider a preventive maintenance model with improvement factor and infinite planning 

horizon. Taghipour and Banjevic [8] propose models for finding the optimal inspection interval 

for a multicomponent system with hidden failures over both finite and infinite planning 

horizons. The focus of the present study is, however, on multicomponent systems with finite 

time horizon. 

Opportunistic maintenance has also received an extensive treatment in the literature. Zhou 

et al. [12] consider opportunistic preventive maintenance optimisation for a multicomponent 

system with series configuration, which is equivalent to a multicomponent system consisting 

only of hard-type components, since failure of any component in a series configuration renders 

the entire system failed. Dagpunar [39] considers opportunistic replacement of a component in 

a multicomponent system, if the failed component’s age exceeds a specified control limit. In his 

model, however, no difference is made between the types of components, and maintenance 

decision is based on component’s age rather than its maintenance history. An opportunistic 

maintenance policy for multicomponent system with hard-type and soft-type components is 

proposed by Zhu et al. [40] for the case of maintaining offshore wind turbines. In their model, 

however, maintenance action for soft-type components is again dependent on the ages of the 

latter. Cui and Li [41] utilise stochastic comparison of maintenance policies in a cumulative 
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damage shock model for a multicomponent system with opportunistic inspections and 

stochastically-dependent components. In one of the models in Taghipour and Banjevic [14], 

only minimal repairs of hard-type and soft-type components over a finite planning horizon are 

investigated for a multicomponent system with opportunistic inspections. Preventive 

replacement opportunities following a Poisson process for a framework spanning block and age-

based replacement models are considered by Aven and Dekker [42]. Unlike the cases from the 

literature, in the present case, there is a choice of maintenance action to be taken at each 

component failure. Zhang and Zeng [103] model opportunistic maintenance based on the state 

space partition of a Markov process for a multicomponent system. However, the largest system 

they consider consists of three components, which is explained by the limiting calculation 

complexity of their approach, which is based on the stationary probability density determination 

for multi-unit system and the solution of a large system of linear equations for numerical 

integration. This reinforces the value and importance of simulation methods for modelling 

complex and/or large systems, both in theory and practice. 

Bian and Gebraeel [104] consider a multicomponent system with stochastic component 

dependencies, but do not provide any optimisation models for either inspection, or maintenance 

optimisation. Vu et al. [105] consider multicomponent system maintenance in dynamic setting 

with time-limited opportunities. These authors, however, make no distinction between the 

components and their types of failure. Moreover, Vu et al. [105] do not optimise the decision 

criteria, whereas the methodology for maintenance action optimisation is proposed and 

discussed in the present chapter. 

Taghipour and Banjevic [70] consider optimal maintenance policy and periodic inspection 

interval for complex multicomponent systems with hard and hidden soft failures under both 

periodic and opportunistic inspections and minimal repair or replacement. In their models, the 

choice of component maintenance action (minimal repair or replacement) is based on the age-

dependent probabilities and is not subject to optimisation. In the present chapter, unlike in [70], 

the maintenance decision is also subject to optimisation in addition to the inspection frequency 

[106]. In Model 3 proposed in this chapter, the optimal maintenance policy for hard-type 

components is based on the ages of these components. The optimal maintenance policy for soft-

type components is based on the number of minimal repairs before replacement for these 

components, similarly to the approach proposed by Park [30], Sheu [107], Sheu and Griffith 
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[108] and Sheu et al. [109]. Model 3 assumes minimal repair and replacement as possible 

maintenance actions for both hard-type and soft-type components. In addition to the 

corresponding assumptions in Model 3, Model 4 also allows for preventive age-based 

replacement of hard-type components at periodic inspection times, as well as for opportunistic 

inspections of soft-type components at hard failure times. Recursive formulations are provided 

for finding the relevant expected values, but, as Vaurio notes in [36], it is not generally possible 

to obtain an analytical solution for the optimal inspection interval, even in the simpler case of 

optimising system availability regardless of the costs. For this reason, simulation is used to 

calculate the required expected values and to exhaustively search for the optimal solution in the 

case of a complex system. 

To summarise the contributions, the present chapter provides a general methodology and 

two models for finding the optimal inspection period length and the optimal maintenance 

decisions for a complex multicomponent system with finite planning horizon. In the previous 

models by, for example, Taghipour et al. [24, 85], or Taghipour and Banjevic [8, 14, 70], no 

optimisation was done for maintenance action, and a failed component was just either minimally 

repaired, or replaced according to an age-dependent probability. None of the previous models 

by these, as well as other authors, have attempted to optimise both the maintenance action and 

the periodic inspection interval. In the proposed models, however, both the maintenance 

decision and the periodic inspection interval are optimised. Model 3 features corrective 

maintenance (minimal repair or replacement) of hard-type and soft-type components, and 

opportunistic and periodic inspections of soft-type components. Model 4, in addition to the 

assumptions listed for Model 3, features the possibility of preventive replacement of hard-type 

components at periodic inspections. In both models, the occurrence of hard failures may impact 

the expected number of soft failures, and thus, their expected number of minimal repairs, 

replacements and expected downtime. Consequently, these expected values influence the 

optimal periodic inspection interval. In Model 4, the costs of hard-type components can impact 

the optimal periodic inspection interval as well. In addition, general recursive mathematical 

formulations were developed separately for Model 3 and Model 4 for generating all of the 

expected values necessary for both models. These are presented in the appendices.   

Overall, inspection and maintenance optimisation models can be used as valuable tools in 

providing the safe and reliable operation of various equipment. Such models can also have 
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strong managerial implications, since in practice, it is usually important to justify and support 

managerial decisions with both qualitative and quantitative analysis in order to make them 

robust. Simulation models are particularly useful in this regard, as they can cover a great number 

of possible scenarios and provide the results both for a particular and the most general case. 

Using the proposed inspection and maintenance optimisation model, the decision-maker(s) gain 

an opportunity to observe the outcomes of their managerial decisions and to find the 

combination of decisions that is most likely to result in the greatest cost savings without 

sacrificing the required reliability and availability. For example, based on the model’s output 

for a given system with particular component parameters, it may not require as frequent 

inspection as previously thought because of the accounted effect of the additional opportunistic 

inspections. This would result in cost savings, which would be especially significant, if the costs 

of inspection were particularly high. Thus, it can be seen that optimisation of inspection and 

maintenance decisions are a valuable asset for decision-makers. 

The further structure of the present chapter is as follows: Section 4.2 provides the problem 

description; Section 4.3 contains the model formulation for the case of corrective hard-type 

component maintenance and opportunistic inspection of soft-type components; Section 4.4 

modifies the previous model by allowing for preventive replacement of hard-type components 

at periodic inspections; Section 4.5 illustrates the models with numerical examples; Section 4.6 

provides sensitivity analysis and discussion of some results; finally, Section 4.7 summarises the 

conclusions. Appendix B provides the mathematical formulations of the models described in 

Sections 4.3 and 4.4, and Appendix C lists the simulation algorithm used for the same model in 

the form of a flowchart. 

4.2. Problem Description 

The main problem considered in the present chapter is finding the optimal inspection and 

maintenance policy for a multicomponent system prone to experiencing hard and soft failures. 

For example, in general infusion pumps found in hospitals, fuses and displays are considered as 

hard-type components, and liquid-level alarm and battery – as soft-type components. 

The following assumptions are made regarding such system (assumptions pertinent to 

Model 3 are further identified by designation “M.1.#”, and those pertinent solely to Model 4 – 

by “M.2.#”, where “M.” stands for “model”): 
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M.1.1: Each of the individual components of the system is assumed to belong to one of the 

two possible types: soft type, or hard type. The total number of soft-type components 

𝑠 in the system is 𝑛1, 𝑠 = 1,2, … , 𝑛1, and the total number of hard-type components ℎ 

is 𝑛2, ℎ = 1,2, … , 𝑛2. 

M.1.2: The components’ failure times are assumed to follow a non-homogeneous Poisson 

process (NHPP) with the power law intensity function (hazard function) 𝜆𝑗(𝑡) =

𝛽𝑗

𝜂𝑗
(

𝑡

𝜂𝑗
)

𝛽𝑗−1

, where 𝑡 is the age of component 𝑗 and 𝑗 = 1,2, … , 𝑛1 + 𝑛2. 

M.1.3: By definition, soft failures are discovered only at inspections. Therefore, the ages at 

failure of soft-type components are unknown. 

M.1.4: Inspections are classified as being either periodic, or opportunistic. Periodic 

inspections occur with the periodic interval of length 𝜏 over a finite planning horizon 

𝜔 at times 𝑖𝜏, 𝑖 = 1,2, … , 𝑙, 𝑙 ∈ ℕ. Opportunistic inspections are incurred whenever a 

hard-type component fails. 

M.1.5: Repairs or replacements are performed only on failed components. 

M.1.6: Both inspections and replacements are assumed to be perfect and have negligible 

duration. 

M.1.7: Replacements put the component in the “as good as new” state, resetting the 

component’s age to 0, while minimal repairs return the component to the state it was 

in just before failure and do not affect the component’s age. 

M.1.8: All of the components are inspected at the end of the operating cycle (planning 

horizon) 𝜔 in preparation for the next planning cycle, and all failures are rectified. The 

new optimal periodic inspection interval for the next cycle can then be found by taking 

into account the current ages of all components. 

Whenever a hard-type component fails, it is inspected along with all soft-type components. 

Each failed component is then either minimally repaired, or replaced. Therefore, hard failures 



64 

 

create more opportunities for inspecting soft-type components and, consequently, influence the 

number of minimal repairs, replacements and downtime of the latter (see Figure 7). 

Figure 7: Sample soft and hard failures with periodic (scheduled) and opportunistic 

(unscheduled) inspections within cycle 𝜔.  

It should be noted that the downtime of the failed soft-type components negatively 

influences the performance of the entire system. To reflect this, the following additional 

assumption is made: 

M.1.9: Downtime penalty cost is incurred per unit time by each of the failed soft-type 

components. 

As a practical example of a system possessing the properties and assumptions given in the 

current section, programmable infusion pumps were considered. The Weibull distribution 

parameters for hard-type and soft-type components were based on the data collected from 

observing the use of programmable infusion pumps during earlier work, published in part by 

Taghipour et al. in [45]. Other suitable systems include oil pipelines, automobiles, computer 

systems, carbon monoxide detectors, uninterruptible power supply units, etc. 

The objective of the present study is to determine the optimal maintenance actions that 

should be taken for a failed component (either soft-type, or hard-type) and to find the optimal 

periodic inspection interval 𝜏∗. This is equivalent to establishing the optimal maintenance policy 

and inspection interval for the components of the system. It should be noted that it is not enough 

to simply inspect the soft-type components more frequently than the hard-type components 

because the former’s failures are hidden. The goal of the present research is to obtain policies 

that are globally-optimal for the entire system, and not necessarily for specific components or 

groups thereof. For example, the parking brake in a car may be considered as a soft-type 

component, since its failure (e.g. cable rupture) is noticeable only when its functioning is 

required, such as when preventing vehicle roll when stopped on a slope. However, it is 

unreasonable to expect that parking brake cable be inspected, for instance, before every start of 

: Scheduled inspection 
𝑘𝜏 

: Opportunistic inspection 

0 𝑙𝜏 = 𝜔 𝜏 2𝜏 (𝑖 − 1)𝜏 𝑖𝜏 

: Hard failure : Soft failure 
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the vehicle. It is much more economical (in the sense of time, at least) to have the parking brake 

inspected when the car undergoes periodic scheduled maintenance (e.g. oil change), or at the 

failure of any of its hard-type components (e.g. transmission), which presents an opportunity 

for inspection of the soft-type components as well. 

In obtaining the total expected per-component cost for a given number of minimal repairs 

before replacement 𝑛𝑗  and a given inspection period, the following assumption is made: 

M.1.10: Component 𝑠 is replaced after 𝑚𝑠 minimal repairs. 

In order to obtain an upper bound for 𝑚𝑠, an 𝛼-level confidence interval (CI) for the 

expected number of failures over 𝜔 is constructed separately for each soft-type component, 

making use of the following two assumptions:  

M.1.11: A soft failure is immediately detected upon inspection. 

M.1.12: The failed component is always minimally repaired. 

For Model 4, another assumption is made in addition to the above-listed assumptions 

pertaining to Model 3: 

M.2.1: Preventive replacements of hard-type components are possible at periodic inspection 

times for the system under consideration. 

The following sections discuss both models and provide the optimal inspection and 

maintenance strategies, followed by a numerical example to illustrate the proposed 

methodology. 

4.3. Model 3: Corrective Maintenance of Hard-Type Components and 

Periodic and Opportunistic Inspections of Soft-Type Components 

In this section, a 3-step method is proposed for finding the optimal maintenance actions after 

failures and the optimal inspection interval for the system, taking into account the fact that soft 

failures are hidden and the ages of the soft-type components at the time of failure are unknown. 

At the first stage, the optimal time to replacement resulting in the minimal expected cost for 

the component per unit time is found for each hard-type component. At the second stage, the 

optimal number of minimal repairs before replacement resulting in the minimal total expected 

cost for the component over the system’s life cycle is found for each soft-type component, since 
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its age at failure is unknown. Finally, at the third stage, given the optimal maintenance actions 

for hard-type and soft-type components, the optimal periodic inspection for the entire system 

resulting in the minimal expected cost for the system over its life cycle is found. 

The details for the three stages are provided below. 

4.3.1. Stage 1. Obtaining the optimal replacement ages for hard-type components 

Given that the ages of the hard-type components are always known, the model described by 

Park in [30], for which the renewal theory was used, can be utilised to obtain the optimal 

replacement age 𝜁ℎ
∗ of hard-type component ℎ (assuming hazard function from a Weibull 

distribution) as follows: 

𝜁ℎ
∗  = 𝜂ℎ (

𝑐ℎ
𝑅

(𝛽ℎ − 1)𝑐ℎ
𝑀)

1/𝛽ℎ

,                                                       (20) 

where 𝑐ℎ
𝑅 is the cost of replacing hard-type component ℎ, ℎ = 1, … , 𝑛2; 𝑐ℎ

𝑀 is the cost of 

minimally repairing hard-type component ℎ, 𝛽ℎ is the shape parameter and 𝜂ℎ is the scale 

parameter of the Weibull distribution describing times between the failures. 

Using Equation (20), the age of a hard-type component can be computed, such that the 

minimal total cost of repair and replacement is incurred for that component. 

Stage 1 provides the output in the form of a vector 𝜻∗ = (𝜁1
∗, 𝜁2

∗, … , 𝜁𝑛2
∗ ), which contains the 

optimal replacement ages for all hard-type components. 

4.3.2. Stage 2. Obtaining the optimal number of minimal repairs before 

replacement for soft-type components 

At this stage, the optimal replacement ages of hard-type components, i.e. 𝜻∗ =

(𝜁1
∗, 𝜁2

∗, … , 𝜁𝑛2
∗ ), are used as one of the inputs. Because there is no indication of the exact time 

of failure for a soft-type component (see Figure 7 and Problem Description), a replacement 

policy for soft-type components cannot be based on the ages of the components at failure, unlike 

the policy for hard-type components. In this case, one option is to use the number of minimal 

repairs previously performed as the decision criterion. 
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Assuming that soft-type component 𝑠 is replaced after 𝑚𝑠 failures, the total expected cost 

of this soft-type component over the life cycle 𝜔 can be obtained as following: 

𝐸[𝐶𝑠,𝑚𝑠,𝜏
𝑇 ] = Cost of inspections for component 𝑠 

+Expected cost of minimal repairs for component 𝑠              

 +Expected cost of replacements for component 𝑠                   

+Expected cost of downtime for component 𝑠 ,              (21) 

where 𝑠 = 1, … , 𝑛1, and the subscripts indicate that this cost is calculated for each soft-type 

component 𝑠 with 𝑚𝑠 as the number of minimal repairs before replacement, given scheduled 

inspection period 𝜏. The total expected cost 𝐸[𝐶𝑠,𝑚𝑠,𝜏
𝑇 ] depends on 𝑚𝑠, since smaller number of 

repairs indicates more frequent replacements of the component, and vice versa. Downtime 

penalty cost is incurred from the time the soft component fails until the time it is inspected and 

fixed. The total downtime of a soft-type component over the cycle 𝜔 is the sum of all the 

downtime periods incurred by this component’s failures. The downtime of a hard-type 

component is zero, since by assumption, it is inspected and fixed immediately at the time of its 

failure. 

If a soft failure occurs before a hard failure, the failed soft-type component is detected and 

fixed at the hard failure time. If no hard failure takes place between a soft failure and the next 

periodic (scheduled) inspection, the soft failure is detected and fixed at the periodic inspection 

time (see Figure 7). The total expected downtime of soft-type component 𝑠, 𝑠 = 1, … , 𝑛1, is the 

difference between the length of the life cycle 𝜔 and the component’s total expected uptime. 

Given 𝑙 scheduled inspections, each with cost 𝑐𝐼 and the current number of failures 𝑓𝐶 = 0 at 

the beginning of life cycle 𝜔, Equation (21) can be rewritten as follows: 

𝐸[𝐶𝑠,𝑚𝑠,𝜏
𝑇 ] =

𝑙𝑐𝐼

𝑛1
+ 𝑐𝑠

𝑀𝑀𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝐶 , 𝑚𝑠) + 𝑐𝑠
𝑅𝑅𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝐶 , 𝑚𝑠)S 

+𝑐𝑠
𝐷 (𝜔 − 𝑈𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝐶 , 𝑚𝑠)),                                                       (22) 

where 𝑐𝐼 is the cost of one periodic inspection, 𝑐𝑠
𝑀 is the cost of minimally repairing component 

𝑠, 𝑐𝑠
𝑅 is the cost of replacing component 𝑠, 𝑐𝑠

𝐷 is the cost of downtime for component 𝑠, 𝑡𝑗 is the 

initial age of soft-type component 𝑠, 𝑙 is the number of periodic inspections in the cycle 𝜔, 𝜽 =
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(𝜃1, 𝜃2, … , 𝜃𝑛2
) is the vector containing initial ages of 𝑛2 hard-type components, 

𝑀𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝐶 , 𝑚𝑠), 𝑅𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝐶 , 𝑚𝑠) and 𝑈𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝐶 , 𝑚𝑠) are the expected 

numbers of minimal repairs, replacements and expected uptime of soft-type component 𝑠, 

respectively. The expected values 𝑀𝑙,𝑠, 𝑅𝑙,𝑠 and 𝑈𝑙,𝑠 all depend on 𝜔, 𝜏, 𝑚𝑠, the initial age 𝑡𝑠 of 

soft-type component 𝑠 and the vectors 𝜽 and 𝜻∗. The mathematical formulation used for 

obtaining these values is provided in Appendix B. 

The optimal number of minimal repairs before replacement 𝑚𝑠,𝜏
∗  for each soft-type 

component 𝑠 and a given inspection period 𝜏 can be obtained using assumption M.1.10 by first 

calculating the total expected cost 𝐸[𝐶𝑠,𝑚𝑠,𝜏
𝑇 ] for different values of 𝑚𝑠 from 0 to an upper bound 

on the expected number of failures and then comparing the expected costs across all the values 

of 𝑚𝑠. 

Under assumptions M.1.11 and M.1.12 stated previously, the expected number of failures 

𝐸[𝛷𝑠] for a soft-type component 𝑠 = 1, … , 𝑛1 over 𝜔 can be calculated as following: 

𝐸[𝛷𝑠] = ∫
𝛽𝑠

𝜂𝑠
(

𝑡𝑠

𝜂𝑠
)

𝛽𝑠−1
𝜔

0

𝑑𝑡 = (
𝜔

𝜂𝑠
)

𝛽𝑠

.                                                (23) 

The 𝛼 % confidence interval for 𝐸[𝛷𝑠] is then constructed from Poisson distribution as: 

𝑈𝐶𝐿𝑠 = min
𝜑𝑠

{∑ 𝑃(𝛷𝑠 = 𝑓𝑠)

𝜑𝑠

𝑓𝑠=0

≥ 1 − (
1 − 𝛼

2
)},                                      

𝐿𝐶𝐿𝑠 = max
𝜑

{∑ 𝑃(𝛷𝑠 = 𝑓𝑠) ≤
1 − 𝛼

2

𝜑𝑠

𝑓𝑠=0

},                                       (24) 

where 𝑃(𝛷𝑠 = 𝑓𝑠) =
(𝐸[𝑓𝑠])𝑓𝑠𝑒−𝐸[𝑓𝑠]

𝑓𝑠!
 denotes the probability of observing 𝑓𝑠 as the expected 

number of failures over 𝜔. 

Then, 𝑚𝑠,𝜏
∗ , which is the optimal number of minimal repairs before replacement for each 

soft-failure component 𝑗, can be found from the following marginal optimisation problem: 

𝑚𝑠,𝜏
∗ = min

𝑚𝑠

{𝐸[𝐶𝑠,𝑚𝑠,𝜏
𝑇 ]} , s. t. : 0 ≤ 𝑚𝑠 ≤ 𝑈𝐶𝐿𝑠.                                (25) 
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At this stage, the optimal number of minimal repairs should be obtained for all soft-type 

components for different values of 𝜏 = 1,2, … , 𝜔. The output of Stage 2 is the matrix 𝒎∗ =

[

𝑚1,1
∗ ⋯ 𝑚1,𝜔

∗

⋮ ⋱ ⋮
𝑚𝑛1,1

∗ ⋯ 𝑚𝑛1,𝜔
∗

], in which each column presents the optimal number of minimal repairs for 

the soft-type components for a value of 𝜏. This matrix is then used as the input for Stage 3 of 

the method. 

In order to obtain 𝐸[𝐶𝑠,𝑚𝑠,𝜏
𝑇 ] in Equation (22), it is necessary to first obtain 𝑀𝑙,𝑠, 𝑅𝑙,𝑠 and 

𝑈𝑙,𝑠. However, since the soft failures are hidden, no explicit formula can be given for these 

expected values. Thus, a simulation model, described below, is developed to numerically obtain 

the estimates for 𝑀𝑙,𝑠, 𝑅𝑙,𝑠 and 𝑈𝑙,𝑠. 

4.3.2.1. Simulation model for obtaining the required expected values in Stage 2 

The inputs to the simulation model are the values of 𝜔,  𝜏, 𝑡𝑠, 𝑚𝑠, 𝜽, 𝜻∗, 𝑐𝑠
𝑀, 𝑐𝑠

𝑅 , 𝑐𝑠
𝐷, and 𝛽𝑠 

and 𝜂𝑠 for soft-type component 𝑠 and all hard-type components. The output of the model is 

𝐸[𝐶𝑠,𝑚𝑠,𝜏
𝑇 ] for the soft-type component 𝑠. The simulation model generates the times to the first 

failure for soft-type component 𝑠 and all hard-type components. Using the Weibull-distributed 

reliability function ℛ𝑗(𝑡, 𝛽𝑗, 𝜂𝑗) and a random number 𝑏 generated from a uniform distribution 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0; 1), the next time to failure 𝜒𝑗, given the current component’s age 𝑡𝑗, is generated 

as follows: 

𝜒𝑗 = 𝜂𝑗 ((
𝑡𝑗

𝜂𝑗
)

𝛽𝑗

− ln(𝑏))

1/𝛽𝑗

− 𝑡𝑗 .                                                    (26) 

The first failure time of the soft-type component is compared with the first failure times of 

the hard-type components, given the inspection interval 𝜏 and the cycle length 𝜔. If the 

generated soft failure time is smaller than the next hard failure time, and if the next hard failure 

time is smaller than the next periodic inspection time, then an opportunistic inspection is 

occurring at the next hard failure time. At this moment, the soft failure is detected, and if the 

total number of previous failures is less than 𝑚𝑠, the component is minimally repaired; 

otherwise, it is replaced, and its cumulative number of failures is set to zero. If the soft failure’s 

time is not smaller than the next hard failure time, but it is smaller than the periodic inspection 
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time, then the soft failure is rectified at the periodic inspection time. If there is a hard failure, 

the age of the failed hard-type component is compared with its corresponding optimal 

replacement age given in vector 𝜻∗, and the component is replaced if its age exceeds the optimal 

age, or it is minimally repaired otherwise. If the component is replaced, its age is set to zero. 

At any event’s time (i.e. a hard failure’s time, a soft failure’s time and a periodic inspection’s 

time), the random variables to track the number of minimal repairs, replacements and downtime 

of the soft-type component 𝑠 are updated and the simulation clock is advanced to the next 

event’s time. In addition, at an event’s time, the time to the periodic inspection, the time to the 

next failure, and the ages of the surviving components are revised accordingly to capture the 

passage of time. When the clock reaches the end of life cycle 𝜔, the simulation stops. The 

averages of the estimates for the random variables obtained from the simulation model executed 

multiple times provide 𝑀𝑙,𝑠, 𝑅𝑙,𝑠 and 𝑈𝑙,𝑠. 

The total expected costs 𝐸[𝐶𝑠,𝑚𝑠,𝜏
𝑇 ] of a soft-type component 𝑠 from the simulation model 

obtained for different values of 𝑚𝑠, 0 ≤ 𝑚𝑠 ≤ 𝑈𝐶𝐿𝑠, are then compared, and 𝑚𝑠 resulting in 

the minimal expected cost is the optimal number of minimal repairs before replacement for 

component 𝑠. In Stage 2, using the method described above, the optimal number of minimal 

repairs is found for all soft-type components. The simulation algorithm for this stage is 

described in the flowchart given in Appendix C. 

4.3.3. Stage 3. Obtaining the optimal inspection interval for the system 

For Stage 3 of the method, the total expected cost for all soft-type components 𝐸[𝐶𝜏
𝑇,𝑆] is 

calculated for the entire system consisting of all soft-type and hard-type components over the 

system’s life cycle for different inspection intervals 𝜏 = 1, … , 𝜔. The total expected cost is 

formulated as following: 

𝐸[𝐶𝜏
𝑇,𝑆] = 𝑙𝑐𝐼 + ∑(𝑐𝑠

𝑀𝑀𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝑠, 𝑚𝑠
∗ ) + 𝑐𝑠

𝑅𝑀𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝑠 , 𝑚𝑠
∗ )

𝑛1

𝑠=1

 

+𝑐𝑠
𝐷 (𝜔 − 𝑈𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝑠, 𝑚𝑠

∗ ))),                                                           (27) 
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where superscript 𝑆 indicates the cost for all soft-type components, given periodic inspection 𝜏. 

In Equation (27), 𝑀𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝑠, 𝑚𝑠
∗ ), 𝑅𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝑠, 𝑚𝑠

∗ ) and 𝑈𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝑠 , 𝑚𝑠
∗ ) 

represent the expected numbers of minimal repairs, replacements and expected uptime, 

respectively, for the soft-type component 𝑠. At this stage, the optimal number of minimal repairs 

obtained in Stage 2, i.e. 𝑚𝑠,𝜏
∗ , is used for a given 𝜏, as can be seen from Equation (27). With 

regard to convexity, refer to Appendix A for demonstration. 

The optimal inspection interval 𝜏∗ is obtained by calculating the total expected cost for 

different values of 𝜏 and then finding the minimal cost among them: 

𝜏∗ = min
𝜏

{𝐸[𝐶𝜏
𝑇,𝑆]}, s. t. : 𝜏 = 1,2, … , 𝜔 .                                                 (28) 

At Stage 3, 𝑀𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝑠 , 𝑚𝑠
∗ ), 𝑅𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝑠, 𝑚𝑠

∗ ) and 𝑈𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝑠 , 𝑚𝑠
∗ ) have 

to be obtained for 𝑠 = 1, … , 𝑛1. At this stage, once again, no explicit formula can be derived for 

obtaining the required expected values due to the unavailability of the ages of the failed soft-

type components at inspection times. Thus, a simulation model is developed to obtain 𝐸[𝐶𝜏
𝑇,𝑆] 

numerically for 𝜏 = 1, … , 𝜔. The recursive equation used for obtaining these expected values 

mathematically is given in Appendix A. 

4.3.3.1. Simulation model for obtaining the required expected values in Stage 3 

The simulation model in this stage is similar to the simulation model developed in Stage 2. 

The differences from Stage 2 simulation are: the simulation model here receives 𝜔, 𝜏, 𝑡𝑠, 𝑚𝑠,𝜏
∗  

for all soft-type components 𝑠 = 1, … , 𝑛1; the inputs include 𝜽, 𝜻∗, 𝛽𝑗 and 𝜂𝑗 for all components 

𝑗 = 1, … , 𝑚1 + 𝑚2; the output of the model is 𝐸[𝐶𝜏
𝑇,𝑆] for a given inspection interval 𝜏. In each 

simulation run for a given 𝜏, the number of soft failures for a soft-type component 𝑠 is compared 

with 𝑚𝑠,𝜏
∗ , and if it exceeds 𝑚𝑠,𝜏

∗ , the component is replaced; otherwise, it is minimally repaired. 

Failures and repairs of all components (soft-type and hard-type) are taken into account in the 

simulation model for Stage 3 to obtain 𝐸[𝐶𝜏
𝑇,𝑆]. The value of 𝜏 resulting in the minimal 𝐸[𝐶𝜏

𝑇,𝑆] 

is the optimal inspection interval 𝜏∗, and the optimal number of minimal repairs corresponding 

to the optimal 𝜏∗ (obtained from Stage 2) is 𝑚𝑠,𝜏∗
∗ , 𝑠 = 1, … , 𝑛1. 

The overall outputs from the method proposed here are: the vector containing the optimal 

replacement ages for the hard-type components, i.e. 𝜻∗ (from Stage 1), the optimal periodic 
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inspection interval 𝜏∗ (from Stage 3), and the optimal number of minimal repairs for each soft-

type component corresponding to 𝜏∗, i.e. 𝑚𝑠,𝜏∗
∗ , 𝑗 = 1, … , 𝑚1 (from Stages 2 and 3). The 

simulation algorithm for Stage 3 is described in the flowchart in Appendix C. 

4.4. Model 4: Preventive Replacement of Hard-Type Components at Periodic 

Inspections 

In this section, another model is developed based on an assumption M.2.1 listed previously. 

The general underlying method of this model’s development is similar to the one previously 

described for the corrective maintenance of hard-type component with opportunistic inspections 

of soft-type components. The difference comes from the assumption that hard-type components 

may be preventively replaced at a periodic inspection, based on their ages. 

In this model, all hard-type components are checked at periodic inspection times, and their 

ages are compared to the optimal replacement ages. If a hard-type component’s age exceeds the 

optimal replacement age for this component, it is replaced. Thus, in addition to soft-type 

components’ being checked at periodic and opportunistic inspection times, as prescribed by the 

model in the previous section, the model presented in the current section also requires inspection 

of hard-type components at periodic inspection times. 

In addition to the cost of periodic inspection 𝑐𝐼, the model describing preventive replacement 

of hard-type components with opportunistic inspections of soft-type components also includes 

the cost of opportunistic inspection 𝑐𝑂𝐼. Since for Stage 2 of Model 3 the expected cost of 

failures as given by Equations (21) and (22) is calculated marginally for each soft-type 

component, it is not influenced by the preventive replacements of hard-type components in 

Model 4. However, preventive replacements of hard-type components affect the total expected 

cost of failures at Stage 3 of Model 4. There, the frequency of hard failures and, consequently, 

that of opportunistic inspections of soft-type components is dependent on potential renewals of 

hard-type components occurring whenever any one of them is preventively replaced. 

The total expected cost for all components 𝐸[𝐶𝜏
𝑇,𝐻𝑆] is calculated for the entire system 

consisting of all soft-type and hard-type components over the system’s life cycle for different 

inspection intervals 𝜏 = 1, … , 𝜔 as following: 

        𝐸[𝐶𝜏
𝑇,𝐻𝑆] = 𝐸[𝐶𝜏

𝑇,𝑆] + 𝐸[𝐶𝜏
𝑇,𝐻] = 
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= 𝑙𝑐𝐼 + ∑(𝑐𝑠
𝑀𝑀𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝐶 , 𝑚𝑠) + 𝑐𝑠

𝑅𝑅𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝐶 , 𝑚𝑠)

𝑛1

𝑠=1

 

+𝑐𝑠
𝐷 (𝜔 − 𝑈𝑙,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑓𝐶 , 𝑚𝑠)))                                                

+𝑐𝑂𝐼 ∑ (𝑀𝑙,ℎ
𝐻 (𝜏, 𝜃ℎ , 𝜁ℎ

∗) + 𝑅𝑙,ℎ
𝐻 (𝜏, 𝜃ℎ , 𝜁ℎ

∗))

𝑛2

ℎ=1

                                   

+ ∑ (𝑐ℎ
𝑀𝑀𝑙,ℎ

𝐻 (𝜏, 𝜃ℎ , 𝜁ℎ
∗) + 𝑐ℎ

𝑅 (𝑅𝑙,ℎ
𝐻 (𝜏, 𝜃ℎ , 𝜁ℎ

∗) + 𝑃𝑅𝑙,ℎ
𝐻 (𝜏, 𝜃ℎ , 𝜁ℎ

∗)))

𝑛2

ℎ=1

,          (29) 

where superscript 𝐻𝑆 indicates the cost for hard-type and soft-type components, given periodic 

inspection 𝜏. In Equation (29), 𝐸[𝐶𝜏
𝑇,𝐻] represents the total expected cost for all hard-type 

components, 𝑐𝑂𝐼 is the cost of one opportunistic inspection, 𝑀𝑙,ℎ
𝐻 (𝜏, 𝜃ℎ, 𝜁ℎ

∗), 𝑅𝑙,ℎ
𝐻 (𝜏, 𝜃ℎ , 𝜁ℎ

∗), 

𝑃𝑅𝑙,ℎ
𝐻 (𝜏, 𝜃ℎ, 𝜁ℎ

∗) are the expected numbers of minimal repairs, replacements and the expected 

number of preventive replacements for hard-type component ℎ, ℎ = 1, … , 𝑛2, and the other 

terms are as previously defined. The convexity of the objective function thus expressed can be 

argued as shown in Appendix A. 

The simulation algorithm provided in Appendix C is extended for this model to incorporate 

an additional variable for the number of preventive replacements and an additional renewal 

point for the ages of hard-type components (flowchart not shown). 

4.5. Numerical Example 

In this section, we apply the models previously described to a numerical example to obtain 

the optimal maintenance policy and inspection interval for the entire system. The solution 

procedure is similar for both models, and for the reasons of brevity the two models are 

considered concurrently in this section. 

The system consists of 𝑛1 = 5 soft-type and 𝑛2 = 3 hard-type components. The input 

parameters for the failure distributions, the costs of minimal repair, replacement and downtime 

are given in Table 11. 
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Table 11: Parameters of the power law intensity function and costs for different components. 

Component 

type 
𝛽𝑗 

𝜂𝑗 

(months) 

Minimal 

repair 

cost, 𝑐𝑗
𝑀 

Replacement 

cost, 𝑐𝑗
𝑅 

Downtime 

penalty 

cost/month, 

𝑐𝑠
𝐷 

Soft 

1 1.3 3.5 $70 $290 $380 

2 1.1 4.6 $45 $150 $250 

3 2.1 6 $100 $600 $500 

4 1.8 10 $75 $450 $350 

5 1.7 3.6 $125 $540 $400 

Hard 

1 1.5 3.3 $100 $240 – 

2 1.2 1.4 $200 $450 – 

3 1.7 1.3 $150 $600 – 
 

The cost of inspections is assumed to be fixed (𝑐𝐼 = $50, 𝑐𝑂𝐼 = $100). Following the three 

stages of the method explained above, the proposed models are simulated using 5,000 runs for 

Stage 2 and 100,000 runs for Stage 3. The choice of the number of simulation runs is based 

primarily on considerations, such as the error in the calculated mean values and the simulation 

running time. Given the satisfactory level of error obtained from running the simulation for 

several thousands of replications, it was decided that taking 5,000 runs is an acceptable choice. 

The standard error obtained from 100,000 runs for Stage 3 allowed to identify the optimal result 

which was significantly different from the other suboptimal results. 

The parameters were obtained from a case study of programmable infusion pumps, for 

which the planning horizon was 10 years. For the sake of reducing the computational time for 

a numerical example, these parameters and the planning horizon were adjusted. Choosing the 

length of 𝜔 to be 12 months is based on the consideration of the number of possible inspection 

policies and component combinations, which also amount to the running time of the simulation. 

At each run, the system was assumed to start with all components in the “as-good-as-new” state. 

The simulation clock was also updated simultaneously with the system events. The end-point 

of the simulation was defined at the time 𝜔. Because of this, the simulation had no warm-up 

period. 

Stage 1. The hard-type component parameters from Table 11 are used to calculate the 

optimal replacement ages using Equation (20). The results are provided in Table 12 below. 
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Table 12: Optimal replacement ages for hard-type components. 

Hard-type 

component 

Optimal replacement 

age (months) 

1 9.4 

2 10.5 

3 3.6 
 

Minimal repairs are performed on a hard-type component every time it fails before reaching 

its corresponding optimal replacement age. Once its age exceeds the optimal replacement age, 

the hard-type component is replaced. 

Thus, the output from Stage 1 is the optimal replacement age vector 𝜻∗ ≈ (9.4, 10.5, 3.6) 

months for hard-type components ℎ = 1,2, 3. 

Stage 2. Having the output 𝜻∗ from Stage 1, the system is then simulated for 5,000 runs 

considering 𝜔 = 12 months. Based on the previously-stated assumptions, Equation (23) is used 

to calculate 𝐸[𝑚𝑠] and Equation (24) is used to obtain 𝑈𝐶𝐿𝑠. Table 13 below shows the 90 % 

confidence intervals (CIs) on the expected number of soft failures for each soft-type component. 

Table 13: Confidence interval (90 %) on the expected number of failures.  

Soft-type 

component 

𝑠 

90% lower 

confidence 

limit (𝐿𝐶𝐿𝑠) 

Expected 

number of 

failures 

(𝐸[𝑚𝑠]) 

90% upper 

confidence 

limit (𝑈𝐶𝐿𝑠) 

1 1 4.97 9 

2 0 2.87 6 

3 0 4.29 8 

4 0 1.39 4 

5 2 7.74 13 
 

As evident from Table 13, the 𝑈𝐶𝐿𝑠 values for the soft-type components are almost always 

double the 𝐸[𝑚𝑠] values. The reason for this is because of the 90 % confidence interval. 

Reducing this confidence interval would bring the 𝑈𝐶𝐿𝑠 and the 𝐸[𝑚𝑠] values closer, but might 

decrease the fidelity of the model and the number of probable scenarios it can capture, thus 

reducing its predictive power. The values of the upper confidence limit (𝑈𝐶𝐿𝑠) are used for each 

𝑠, 𝑠 = 1, … ,5, in order to calculate 𝐸[𝐶𝑠,𝑚𝑠,𝜏
𝑇 ], as given in Equation (22), for 𝑚𝑠 = 0, … , 𝑈𝐶𝐿𝑠. 

The optimal number of minimal repairs before replacement 𝑚𝑠,𝜏
∗  corresponding to 𝐸[𝐶𝑠,𝑚𝑠

∗,𝜏
𝑇 ] =
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min{𝐸[𝐶𝑠,𝑚𝑠,𝜏
𝑇 ]} is then found by sorting through 𝐸[𝐶𝑠,𝑚𝑠,𝜏

𝑇 ] calculated for each soft-type 

component for inspection intervals of length 𝜏 = 1,2, … , 𝜔 over 𝜔 = 12 months. The results 

are provided in Table 14. 

Table 14: The optimal number of minimal repairs before replacement and the corresponding 

minimal expected cost for each soft-type component 𝑠 = 1,2, … ,5 for inspection intervals of 

𝜏 = 1,2, … ,12 months. 

Inspect. 

interval 

𝜏 

(months) 

Soft-type component 

1 2 3 4 5 

𝑚1,𝜏
∗  

𝐸[𝐶1,𝑚𝑠
∗,𝜏

𝑇 ] 

($) 

𝑚2,𝜏
∗  

𝐸[𝐶2,𝑚𝑠
∗,𝜏

𝑇 ] 

($) 

𝑚3,𝜏
∗  

𝐸[𝐶3,𝑚𝑠
∗,𝜏

𝑇 ]

($) 

𝑚4,𝜏
∗  

𝐸[𝐶4,𝑚𝑠
∗,𝜏

𝑇 ]

($) 

𝑚5,𝜏
∗  

𝐸[𝐶5,𝑚𝑠
∗,𝜏

𝑇 ]

($) 

1 8 796.70 6 391.68 8 875.43 4 319.71 12 1443.59 

2 9 792.38 6 355.57 8 861.33 4 274.59 12 1436.31 

3 9 782.33 6 345.05 7 864.77 4 259.39 13 1427.47 

4 8 779.61 6 338.29 7 853.68 4 251.40 12 1435.15 

5 7 778.07 6 339.24 8 849.19 4 257.03 13 1418.45 

6 8 780.07 6 332.16 8 857.94 4 244.16 13 1431.31 

7 8 783.21 5 336.37 8 847.28 4 246.64 11 1424.83 

8 9 785.17 6 330.19 8 860.86 4 239.91 10 1430.54 

9 9 779.03 6 328.18 8 853.93 4 240.70 12 1433.48 

10 9 779.34 5 333.57 8 853.10 4 243.70 12 1422.97 

11 9 780.22 6 334.97 8 853.78 4 242.20 12 1419.50 

12 9 779.20 6 328.08 8 852.12 4 239.79 11 1419.61 
 

The result of Stage 2 calculations is vector 𝒎∗ of the optimal number of minimal repairs 

before replacement for periodic inspection interval 𝜏 = 1,2, … , 𝜔. Based on these results, soft-

type component 5 has the highest number of minimal repairs before replacement, averaged over 

𝜏, followed by soft-type component 1, which is closely followed by soft-type component 3. The 

characteristic lives 𝜂𝑠 for soft-type components 5 and 1 are very close and much lower than 

those of the other soft-type components (see Table 11). Therefore, these components are 

expected to fail more often than the others. For this reason and because of higher replacement 

costs compared to the minimal repair costs, they incur more minimal repairs before replacement 

when compared to components with higher characteristic lives. Besides, the cumulative hazard 

rate, which represents the likelihood of failure given previous history of survivals, calculated 

for soft-type component 5 over 𝜏 = 1,2, … ,12 months, is the greatest, whereas that calculated 

for soft-type component 4 is the smallest of all components. 
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Stage 3. Taking 𝒎∗ as one of the inputs, 𝐸[𝐶𝜏
𝑇,𝑆] is calculated from Equation (27) for both 

models, and 𝐸[𝐶𝜏
𝑇,𝐻𝑆] is calculated from Equation (29) for Model 4. The results from 100,000 

simulation runs are provided in Table 15 below. 

Table 15: Total expected costs for Model 3 and Model 4 for each inspection period 𝜏 =
1,2, … ,12 months. 

Inspection 

period, 𝜏 

(months) 

Model 3 Model 4 

𝐸[𝐶𝜏
𝑇,𝑆] ($) 𝐸[𝐶𝜏

𝑇,𝐻𝑆] ($) 

1 3886.51 ± 1.79 15062.64 ± 4.34 

2 3812.84 ± 1.98 14960.22 ± 4.32 

3 3802.59 ± 2.06 14842.29 ± 4.11 

4 3767.94 ± 2.06 14795.45 ± 4.29 

5 3769.80 ± 2.07 14938.11 ± 4.21 

6 3757.65 ± 2.11 14845.41 ± 4.12 

7 3758.87 ± 2.11 14847.89 ± 4.34 

8 3756.90 ± 2.10 14817.60 ± 4.20 

9 3754.76 ± 2.09 14755.14 ± 4.14 

10 3764.69 ± 2.11 14902.67 ± 4.23 

11 3732.46 ± 2.09 14785.53 ± 4.30 

12 3753.72 ± 2.13 14786.97 ± 4.13 
 

The expected total cost computed at Stage 3 for each of the periodic inspection intervals is 

composed of the sums of the optimal per-component costs, which, in turn, are based on the 

optimal number of minimal repairs before replacement for a soft-type component ranging from 

0 to 𝑈𝐶𝐿𝑠. The fact that 𝑈𝐶𝐿𝑠 values may sometimes be twice higher than the 𝐸[𝑚𝑠] values 

does not necessarily double the total expected cost for 𝑈𝐶𝐿𝑠 values compared to 𝐸[𝑚𝑠] values. 

Depending on the particular parameters and per-component costs, different numbers of minimal 

repairs before replacement may be optimal. Consequently, the effect of the 𝐸[𝑚𝑠] and the 𝑈𝐶𝐿𝑠 

values on the total expected cost is also different, depending on the particular per-component 

costs and the latter’s ratios, especially the relationship between the cost of replacement and the 

cost of minimal repair. 

Using the total expected costs from Table 15, the graphs of the expected costs of soft-type 

failures (in $) vs. different periodic inspection intervals 𝜏, ranging from 1 to 12 months, are 

plotted separately for Model 3 and Model 4 in Figure 8 and Figure 9 below. 

 



78 

 

 
 

Figure 8: Total expected costs for the case of baseline failure frequency of hard-type 

components for Model 3. 

As can be seen from Figure 8, the optimal inspection period for Model 3 is 11 months, and 

it results in the total expected soft failure cost of 3732.46 ± 2.09 dollars over the cycle of 𝜔 =

12 months. This means that, starting at 𝑖𝜏 = 0, the system subject to Model 3 assumptions 

should be optimally inspected at times 11 and 12 months. 

Generally, the total expected cost and, hence, the optimal inspection period, depend on the 

expected number of minimal repairs and replacements and expected downtime for soft-type 

components, all weighted by their respective costs. In addition, hard-type component 

parameters describing hard failures also influence the total expected cost by incurring a greater 

or smaller number of opportunistic inspections. For example, a higher frequency of hard failures 

results in more opportunistic inspections, which decreases downtime caused by soft failures and 

increases the number of minimal repairs and replacements, while also increasing the length of 

the optimal inspection interval. Generally, a shorter periodic inspection interval results in a 

lower expected number of hard failures until the next periodic inspection, which arises from the 

orderliness property of the counting process. Depending on the length of the chosen inspection 

interval, some expected costs decrease, while others increase, changing the total expected cost 

as a result. For this reason, depending on the given costs of minimal repair, replacement and 

downtime, as well as their ratios, certain expected values bear greater influence on the total 

expected cost than others.  

The total expected cost calculated at Stage 3 for Model 4 is provided in Figure 9. 
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Figure 9: Total expected costs for the case of baseline failure frequency of hard-type 

components for Model 4. 

Figure 9 shows that based on the total expected hard and soft failure cost of 14755.14 ±

4.14 dollars over the cycle of 𝜔 = 12 months obtained from Model 4, the optimal inspection 

period is 9 months, and the optimal inspection times are 9 and 12 months. Thus, Model 4 

provides a shorter optimal inspection interval than Model 3. This is a result of the fact that 

preventive replacements of hard-type components cause fewer opportunistic inspections to arise 

over the life cycle. This results in the lower chance for the soft failures to be detected. Thus, a 

shorter periodic inspection interval is required to minimise the total expected cost. 

The difference in the optimal inspection interval’s length between the models is a result of 

their cost-related features. Model 3 incurs the inspection cost of $50 for each periodic 

inspection, whereas Model 4 incurs $50 for each periodic inspection and $100 for each 

opportunistic inspection. This makes opportunistic inspections more costly for Model 4, which 

results in the optimal periodic inspection interval’s being reduced in order to incur fewer 

opportunistic inspections. This can be ascertained from high-frequency case (see Sensitivity 

Analysis section below), where Model 3 incurs, on average, 3.5 opportunistic inspections more 

than Model 4. Also, it is interesting to see that the optimal periodic inspection interval for high-

frequency case is the same (12 months) for both models in this case. In the case of the baseline 

failure frequency, Model 3 incurs, on average, 0.3 opportunistic inspections more than Model 

4, but 𝜏∗ for Model 3 is 11 months, and that for Model 4 is 9 months. This implies that whenever 

the number of opportunistic inspections is close for Model 3 and Model 4, Model 4 will tend to 

have a lower 𝜏∗ than Model 3. Conversely, whenever 𝜏∗ is close for Model 3 and Model 4, the 

number of opportunistic inspections will tend to be lower for Model 4, compared to Model 3. 
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We further compare the results obtained from using different numbers of minimal repairs 

before replacement in Stage 3 (see Figure 10(a) for Model 3 and Figure 10(b) for Model 4). The 

optimal results from the baseline failure frequency of hard-type components for Model 3 

(represented by a line with diamond-shaped markers) are compared with the results obtained 

from assuming that soft-type component replacements take place on (𝐿𝐶𝐿𝑠 + 1)st failure (line 

with round markers) and the results obtained from assuming that soft-type component 

replacements take place on (𝑈𝐶𝐿𝑠 + 1)st failure (line with square markers) on Figure 10(a). 

As can be seen from the figure, setting the number of minimal repairs before replacement 

equal to 𝐿𝐶𝐿𝑠 results in a much higher total expected cost per each tau than both finding the 

optimal number of minimal repairs before replacement, or setting the number of minimal repairs 

before replacement equal to 𝑈𝐶𝐿𝑠. The optimal total expected cost from 100,000 runs is 

5050.39 ± 2.13 dollars in the case 𝑛𝑠,𝜏 = 𝐿𝐶𝐿𝑠. Setting 𝑛𝑠,𝜏 = 𝑈𝐶𝐿𝑠, on the contrary, produces 

results that are much closer to the results obtained from the optimisation and finding the optimal 

number of minimal repairs before replacement. The optimal total expected cost from 100,000 

runs in the case 𝑛𝑠,𝜏 = 𝑈𝐶𝐿𝑠 is 3743.77 ± 2.09 dollars. The optimal total expected cost from 

the case of using 𝑚𝑠,𝜏
∗  is still lower at 3732.46 ± 2.09 dollars. These results are not surprising, 

since 𝐿𝐶𝐿𝑠 values range from 0 to 2 for the soft-type components (see Table 13), which implies 

that replacements occur every time soft-type components 2-4 fail, on second failure of soft-type 

component 1 and on third failure of soft-type component 5. Since the costs of replacement 𝑐𝑠
𝑅 

are much higher than the costs of minimal repair 𝑐𝑠
𝑀 for these components, it follows that the 

total expected cost of this policy is also much higher compared with the optimal total expected 

cost for baseline case. Because the optimal numbers of minimal repairs before replacement are 

close to 𝑈𝐶𝐿𝑠 for most soft-type components in baseline case, the latter provides the total 

expected costs close to those prescribed by the case of 𝑚𝑠,𝜏 = 𝑈𝐶𝐿𝑠. Favouring higher numbers 

of minimal repairs before replacement in the baseline case is also a result of the much lower 

costs of minimal repair compared to the costs of replacement. 

Similar comparison is presented for Model 4 in Figure 10(b) below. 
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Figure 10: Total expected costs for baseline Model 3, Model 3 with replacements occurring 

after 𝐿𝐶𝐿𝑠 number of component failures, and Model 3 with replacements occurring after 

𝑈𝐶𝐿𝑠 number of component failures (a) and for baseline Model 4, Model 4 with replacements 

occurring after 𝐿𝐶𝐿𝑠 number of component failures, and Model 4 with replacements occurring 

after 𝑈𝐶𝐿𝑠 number of component failures (b). 
 

As can be seen from Figure 10(b), the optimal total expected cost from 100,000 runs for 

Model 4 in the case 𝑚𝑠,𝜏 = 𝐿𝐶𝐿𝑠 is 16116.46 ± 4.33 dollars. The optimal total expected cost 

from 100,000 runs for the case 𝑚𝑠,𝜏 = 𝑈𝐶𝐿𝑠 is 14795.06 ± 4.13 dollars vs. 14755.14 ± 4.14 

dollars for the baseline Model 4 case. As can be seen, the relationship among different cases for 

the number of minimal repairs before replacement for Model 4 is similar to that for Model 3. 

Here too the large difference in the costs of minimal repair and replacement affects the total 

expected costs for different numbers of minimal repairs before replacement, similarly to Model 

3. 
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4.6. Sensitivity Analysis 

Two cases are considered for sensitivity analysis, classified by the frequency of hard-type 

component failures within the system’s life cycle: baseline frequency and high frequency (see 

Table 16). Distribution parameter 𝜂ℎ for hard-type components was adjusted to obtain the 

desired failure frequencies, while parameter 𝛽ℎ was left as given in Table 11. Generally, the 

higher the frequency of failure, the lower the optimal replacement age of the corresponding 

component. 

Table 16: Distribution parameters for hard-type components at baseline and high failure 

frequencies. 

Hard-type 

component 

Baseline-freq. failure High-freq. failure 

𝜂ℎ (months) 𝜂ℎ (months) 

1 3.3 

1.4 

1.3 

1.3 

0.3 

1.2 

2 

3 
 

The sensitivity of the models can be ascertained from the two cases of hard-type failure 

frequency occurrence. For Model 3, the total expected costs for inspection period of length 𝜏 =

1,2, … , 𝜔 over 𝜔 = 12 months is presented for the two cases in Figure 11. 
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Figure 11: Total expected costs for the cases of baseline and high failure frequencies of hard-

type components for Model 3. 

Similarly, the total expected costs for inspection period of length 𝜏 = 1,2, … , 𝜔 over 𝜔 =

12 months is presented for Model 4 for the two cases in Figure 12. 
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Figure 12: Total expected costs for the cases of baseline and high failure frequencies of hard-

type components for Model 4. 

As can be seen from Figure 11, the highest total expected cost for Model 3 occurs for the 

case of baseline hard failure frequency. The fact that baseline hard failure frequency case results 

in the highest total expected cost can be explained by the higher downtime penalty costs incurred 

when fewer opportunistic inspections take place due to the increased time between failure of 

hard-type components. For Model 4, however, the opposite is true: the highest total expected 

cost for this model occurs for the case of high hard failure frequency (see Figure 12), since in 

this model the cost of hard failures is also included in the optimisation. 

The graphs in Figure 11 and Figure 12 also show that the optimal periodic inspection interval 

is greater for the case of higher hard failure frequency (12 months for both models) vs. the case 

of the lower hard failure frequency (11 months for Model 3 and 9 months for Model 4). This 
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can be explained by the fact that higher hard failure frequency results in more opportunistic 

inspections, which decreases the need for scheduled periodic inspections. 

In order to estimate how the total expected cost changes with the hard failure frequency, 

ranges of the total expected cost values were obtained from Model 3 and Model 4, each at high 

and baseline hard failure frequency, taken for inspection period of length 𝜏 = 1,2, … , 𝜔 over 

𝜔 = 12 months. The resulting diagram is shown in Figure 13. 

 
Figure 13: Ranges (in $) of the total expected cost values for baseline and high hard failure 

frequencies for each of Model 3 and Model 4. 

As can be seen from Figure 13, the range of the total expected costs for both models at the 

high frequency of hard failures is smaller than that at the baseline frequency. This implies that 

more benefit can be derived from determining the optimal inspection period length when hard-

type components fail rarely within the system’s life cycle. Since it is not unreasonable to assume 

that systems with incorporated protective components, such as medical or power equipment, are 

not expected to fail too often within their life cycle, the importance of optimisation and the 

applicability of the proposed models are reinforced. 

Figure 13 also shows that the ranges of the total expected costs obtained at both high and 

baseline hard failure frequencies are close when comparing Model 3 to Model 4. This suggests 

that the models have similar sensitivity to the fluctuations in the frequency of hard failures. 
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4.7. Conclusion 

The present chapter considers the problem of finding the optimal inspection interval for a 

system consisting of multiple components with hard-type and soft-type failures, which are all 

assumed to follow a nonhomogeneous Poisson process (NHPP). When a hard-type component 

fails, an opportunistic inspection is performed for all soft-type components. Failures of soft-

type components are assumed to be hidden and revealed only at either scheduled periodic 

inspections, or unscheduled opportunistic inspections. Thus, the age at failure of soft-type 

components is not known. At all inspections, a failure is fixed in one of two ways: failed 

component is either minimally repaired, or it is replaced. Minimal repair does not affect the 

component’s age, while replacement renews the component’s age to zero (“as good as new”). 

The time required to minimally repair or replace any number or combination of components is 

assumed to be negligible.  

The method proposed to find the optimal maintenance actions is divided into 3 stages as 

following: at the first stage, for each of the hard-type components, the optimal time to 

replacement resulting in the minimal expected cost for the component per unit time is found; at 

the second stage, for each soft-type component, the optimal number of minimal repairs before 

replacement is found, which results in the minimal total expected cost for the component over 

the system’s life cycle; finally, at the third stage, given the optimal maintenance actions for soft-

type and hard-type components, the optimal periodic inspection interval for the whole system 

is obtained, which results in the minimal expected cost for the system over its planning horizon. 

Two models are considered with numerical example in the present chapter. Model 3 features 

corrective maintenance of hard-type components with opportunistic inspections of soft-type 

components. Model 4, in addition to the assumptions pertinent to Model 3, also allows for 

preventive replacement of hard-type components at periodic inspection times. Using the 3-stage 

methodology and a numerical example, the optimal inspection interval for Model 4 is found to 

be shorter than that for Model 3. This may be attributed to the fact that the expected number of 

opportunistic inspections is lower for Model 4 compared to Model 3, which decreases the 

opportunities for discovering and correcting soft failures and increases the cost of downtime. 

Because of this, the optimal inspection interval is shortened to compensate for the lower number 
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of expected opportunistic inspections. Furthermore, Model 3 and Model 4 are found to be 

similarly sensitive to fluctuations in the frequency of hard-type component failures. 

As a limitation of the proposed models, it may be seen that the optimisation procedure is not 

done all in one stage, but rather involves three stages. In other words, the optimal maintenance 

actions are obtained based on the marginal total cost of each component over the planning 

horizon, not the cost of the entire system. For finding the optimal inspection interval as well as 

the optimal maintenance actions in one stage, we require to find the optimal values for several 

variables at the same time, which makes the optimisation procedure much more difficult, 

particularly for the systems with a high number of components and longer planning horizon. 

This is because all various combinations of the possible solutions for the variables are required 

to be examined.  

One extension of the present work which may be considered is a 𝑘-out-of-𝑛 system 

configuration, where component failures are dependent on each other. For this type of system, 

we can find the optimal maintenance action for a component, as well as the optimal inspection 

interval in one stage, based on the total cost of the entire system, because all component are 

identical. Some possibilities include load-sharing, hidden failures, joint optimisation for optimal 

inspection interval and either inventory level, or maintenance action. 
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5. Non-Periodic Inspection and Maintenance Optimisation of 

Multicomponent Systems 

 

The present chapter is based on the following paper: 

Babishin V., Hajipour Y., Taghipour S. Non-Periodic Inspection and Maintenance Optimisation 

of Multicomponent Systems. Computers and Industrial Engineering.  Under revision following 

reviewer’s comments.  

 

 

The present section considers optimisation of inspection and maintenance for 

multicomponent systems composed of hard-type and soft-type components and k-out-of-n 

components under non-periodic scheduled and opportunistic inspections. Both systems are 

inspected non-periodically over a finite life cycle. For the k-out-of-n system, hidden component 

failures accumulate and cause system failure when their cumulative number reaches 𝑛 − 𝑘 + 1. 

For the system with hard-type and soft-type components, hard failures cause system failure, 

while soft failures are hidden and do not cause immediate failure of the system, but still reduce 

its reliability. Every system failure allows for an opportunistic inspection of hidden soft-type 

components in addition to the scheduled inspections. 

The objective is to find the optimal non-periodic inspection policy and the optimal 

maintenance action at each inspection for the entire system. Two types of maintenance are 

considered: minimal repair and replacement. For hard-type components, the maintenance 

decision is based on the optimal age before replacement. For hidden failures, because the soft-

type components’ ages at failure are unknown, the maintenance decision is based on the optimal 

number of minimal repairs before replacement. 

Mathematical models are proposed for each of the two system types considered. Because 

no closed-form expression is available due to the hidden failures, simulation and genetic 

algorithm (GA) are used to jointly optimise inspection and maintenance policies resulting in the 

minimum total expected cost. The genetic algorithm can be used with quasi-continuous 

planning horizon for a greater number of inspection policies and a possibly lower total expected 

cost. Due to the increasing computational complexity associated with the quasi-continuous 
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planning horizon and the number of inspection and maintenance policies to be evaluated, the 

genetic algorithm presents a promising method of multi-objective optimisation for complex 

multicomponent systems. Based on the GA’s results, some insights are made regarding the 

system’s operation and cost optimisation. 

Keywords: Non-periodic inspection, opportunistic inspection, maintenance, hidden soft 

failure, hard failure, genetic algorithm. 

5.1. Introduction and Background 

The reliability and availability of multicomponent systems drastically affects a vast majority 

of industries. Failure of certain systems (e.g. nuclear reactor cooling, medical life support 

systems, etc.) may incur huge costs, present danger to human life and may be associated with 

catastrophic consequences. Keeping the availability of such systems as high as possible reduces 

the risks of adverse consequences and excessive costs [110, 111, 112]. For this reason, the 

problem of inspecting and maintaining multicomponent systems is very important. 

In the economic sense, for most of the multicomponent systems, repair is more preferable 

upon failure than replacement, since the latter is usually more labour-intensive, technologically 

advanced and/or logistically complex. Multicomponent systems generally have higher 

complexity than unicomponent systems, since the former usually have one or more 

intercomponent dependencies, such as functional, structural, failure, or economic [1]. Optimal 

maintenance and economic dependency in multicomponent systems is studied by Dekker et al. 

[73] and Wang and Pham [72]. Periodic replacement policies for multicomponent systems with 

stochastic and economic dependencies are investigated by Ozekici [31]. Boland [113] considers 

time-varying costs of minimal repair under periodic replacement and derives the expected 

minimal repair cost in an interval in terms of the system’s failure rate and the cost function. 

Series systems with mixed standby components are compared in terms of their cost/benefit ratio, 

time to failure and long-term availability by Wang and Kuo [13].  

Redundant systems with high levels of availability, reliability and robustness are typically 

represented by a k-out-of-n system configuration, where operation of the system is not 

interrupted upon failure of up to 𝑛 − 𝑘 + 1 components. Multi-engine aircraft, multi-display 

airplane cockpits, dual-contour automotive brake lines and multiple pumps used for hydraulic 
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control are just several examples of k-out-of-n systems. A k-out-of-n system with perfect 

component repairs and maintenance equipment subject to imperfect repairs is considered by 

Zhang and Wu [29]. Load-sharing k-out-of-n systems, where working components’ failure rates 

depend on the number of component failures, are considered by Taghipour [9] and L. Kassaei 

and Taghipour [10, 43]. They minimise the total expected cost and determine the optimal 

inspection interval for a finite planning horizon. 

Another major class of multicomponent systems includes those composed of the two types 

of components classified by failure: hard-type and soft-type [75]. A hard-type component 

failure is self-evident and triggers the failure of the entire system; therefore, the time of failure 

is known for this component type. Examples of hard-type components include: wiring in 

ignition distributor in automotive electronic ignition, central processing unit in personal 

computers, fuse and display in infusion pumps, etc. A soft-type component failure does not 

trigger the immediate failure of the entire system, but the system’s reliability is usually reduced 

as a result of increased risk of malfunction, damage and/or eliminated redundancy. Examples 

of soft-type components include: liquid-level alarms in infusion pumps and standby-redundant 

components (batteries, surge-protective equipment, parallel processors). Parts of the system 

subject to both soft and hard failures are treated as separate soft-type and hard-type components. 

It can be also noted that components in k-out-of-n systems can be treated as soft-type due to the 

system’s capacity to accumulate component failures. 

Optimal maintenance of multicomponent systems has been surveyed by Ahmad and 

Kamaruddin [114], Cho and Parlar [2], Nakagawa and Mizutani and, to a lesser extent, Wang 

[1]. Optimisation of both inspection and maintenance over a finite-time planning horizon is, 

however, not considered in these surveys. Sheu et al. [115] determine the optimal number of 

minimal repairs before replacement in terms of the expected cost per unit time for a two-

component system under non-homogeneous Poisson pure birth process (NHPPBP) with either 

minimal repair, or replacement. Sheu et al. [17] consider a bivariate replacement policy for a 

one-component system, where it is replaced at either the planned age, or after a certain number 

of minimal repairs, or at the occurrence of catastrophic failure. Chang et al. [116] find the 

optimal number of minimal repairs before replacement that minimises the long-run expected 

cost per unit time for a one-component system with a pre-determined threshold as a criterion, 

exceeding which the system is minimally repaired, or replaced, depending, correspondingly, on 
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the probabilities of minor or catastrophic failure. Huynh et al. [117] also consider a periodic 

condition-based inspection and replacement policy for one-unit system subject to several failure 

modes due to degradation and shocks. 

Periodic inspection policies for complex multicomponent systems have been extensively 

studied by Taghipour et al. [24], Taghipour and Banjevic [8, 14, 15]. Taghipour and Kassaei 

[11] consider periodic inspection optimisation for k-out-of-n systems. 

For almost any system, planning horizon is an indicator of its life expectancy. Fixed and 

finite planning horizon is used in areas such as pharmacology, medical devices with expiry date, 

aircraft maintenance (Sriram and Haghani [84]), etc. For example, medications and a vast 

majority of medical tools have to be replaced once the end of their life cycle has passed. 

Similarly, aircraft parts usually have to be preventively replaced after a specific number of flight 

hours. 

Systems such as protective devices usually contain components whose failures are hidden. 

A hidden failure is a failure revealed only at inspection, but not during the normal operation of 

the system [16, 85]. The detection of a hidden failure in an integrated system composed of main 

functional (protected) and safety (protective) units may occur either at inspection, or whenever 

the protective unit is required to function, but is unavailable because of a failure. Soft failures 

are similar to hidden failures, but the system is still able to function despite their presence. 

Single-component systems with hidden failures, probability of failure dependent on the number 

of previous repairs, and maintenance policy based on both the component’s age-at-failure and 

its number of overhauls are investigated by Sheu et al. [26]. 

Bjarnason et al. [19, 20] consider a joint optimisation model for minimising the total cost of 

both maintenance and inventory policies for hidden failures in the context of a k-out-of-n 

redundant system. Babishin and Taghipour [86] propose a joint optimisation procedure for 

minimising the total cost of both periodic and opportunistic inspections and corrective 

maintenance for a k-out-of-n system with hidden failures. 

Failure of the system or some of its components can be regarded as an opportunity to check 

all of the components for damage in addition to the scheduled inspections – hence, whenever 

such opportunity is taken, inspections performed at that time are called “opportunistic”. In the 

literature, opportunistic maintenance has received an extensive treatment. For example, 
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Dagpunar [39] considers opportunistic replacement of a component in a multicomponent system 

if the failed component’s age exceeds a specified control limit. Zhu et al. [40] propose an 

opportunistic maintenance policy for offshore wind turbines with hard-type and soft-type 

components and maintenance action for soft-type components dependent on their ages. Cui and 

Li [41] use a cumulative damage shock model for a multicomponent system with opportunistic 

inspections and stochastically-dependent components. Taghipour and Banjevic [14] investigate 

in one of their models minimal repairs of hard-type and soft-type components over a finite 

planning horizon for a multicomponent system with opportunistic inspections. Aven and Dekker 

[42] consider opportunities for preventive replacement for a framework of block and age-based 

replacement models. Gunn and Diallo [118] use a depth-first shortest path algorithm to search 

a network tree representation of the opportunistic indirect grouping of periodic preventive 

replacements problem. Unlike the cases from the literature, in the present case, there is a choice 

of maintenance action to be taken at each component failure. 

Genetic algorithms (GA) have been used in the literature for inspection optimisation of 

multicomponent systems (Moghaddam and Usher [119], Alrabghi and Tiwari [120], Moura et 

al. [121], Gen and Cheng [122], Goldberg [123]). Due to the lack of a closed-form solution, 

joint optimisation is performed using exhaustive search and genetic algorithm with either 

integer, or quasi-continuous inspection period by Babishin and Taghipour [87]. They provide 

the optimal joint inspection and maintenance policies, as well as expressions for the expected 

number of system failures in terms of the cost ratio and component failure intensity for a k-out-

of-n system with hidden failures under both periodic and opportunistic inspections, minimal 

repair, corrective or preventive replacement. They also derive a criterion for calculating the 

acceptable number of system failures over the system’s life cycle. Bjarnason and Taghipour 

[21] use the GA to search through a three-dimensional objective function to jointly find the 

optimal maintenance and (s, S) inventory policies for a k-out-of-n system with hidden failures. 

It should be noted that analysing systems composed of various hard-type and soft-type 

components, where each component may require a special treatment, is generally much harder 

than analysing k-out-of-n systems, where all components are identical. 

Optimal periodic inspection interval and maintenance policies for complex multicomponent 

systems with hard and hidden soft failures subject to both periodic and opportunistic inspections 

and age-dependent probabilities of minimal repair or replacement (not subject to optimisation) 
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are considered by Taghipour and Banjevic [70]. Unlike the models in [70], in the present 

chapter, the maintenance decision is optimised in addition to the non-periodic inspection policy. 

Non-periodic inspection optimisation has also been covered in the literature. Grall et al. 

[124] propose non-periodic inspection policy for a one-component deteriorating system. Zhao 

et al. [32] consider a one-component system subject to replacement under a Gamma 

deterioration process over infinite planning horizon and develop a model similar to proportional 

hazards model to optimise the system’s non-periodic inspection policy. Su [33] essentially 

develops a model for optimising non-periodic inspections for a one-component system with a 

combination of hidden and self-announcing operating modes, since his inspection “period” is a 

random variable, which renders it non-periodic according to the definitions and terminology 

adopted in the present chapter. He uses the supplementary variable technique to find the optimal 

inspection period that maximises profit per unit time. 

Multicomponent non-periodic inspections have also been considered in the literature. 

Hajipour and Taghipour [125] propose a model to find optimal non-periodic inspection policy 

over a finite planning horizon for multicomponent systems with different maintenance actions 

performed according to the age-dependent probability. Castanier et al. [34] propose a condition-

based maintenance policy for optimal inspection and replacement of a two-component system 

under non-periodic inspections, where they essentially develop separate policies for each 

component, assuming component independence, admitting that extending their approach to 

larger systems makes the numerical solution intractable. In this regard, it is worth mentioning 

that Vaurio notes in [36] that it is not generally possible to obtain an analytical solution for the 

optimal inspection interval even in the simpler case of optimising only for system availability. 

This explains the interest in and the value of numerical and simulation methods for the analysis 

of multicomponent systems. Golmakani and Moakedi [37] develop a model for non-periodic 

inspection optimisation using dynamic programming and branch-and-bound technique, which 

they use to introduce the A* search algorithm, which attempts to improve on the efficiency of 

branch-and-bound technique by branching only on the most promising nodes at each step of the 

search. However, the A* algorithm is at a disadvantage for generating a large number of nodes 

at each iteration. Some researchers, e.g. Lapa et al. [38], demonstrated the applicability and 

usefulness of genetic algorithms to optimisation of system availability. In the present chapter, 

genetic algorithm is used for the purpose of improving efficiency of optimisation calculations. 
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To summarise, the present chapter provides a general methodology and two models for 

finding the optimal joint non-periodic inspection and maintenance policies for complex 

multicomponent systems with finite planning horizon. In the previous models such as, for 

example, by Hajipour and Taghipour [125], Taghipour et al. [24, 85], Taghipour and Banjevic 

[8, 14, 70], the maintenance action was not optimised, and failed components were minimally 

repaired, or replaced with age-dependent probabilities. Babishin and Taghipour [87] optimise 

both maintenance and inspection policies, but only for a k-out-of-n system under periodic 

inspections. Babishin and Taghipour [71, 126] use a three-stage optimisation procedure to 

obtain optimal inspection policy for hard-type components in Stage 1, optimal maintenance in 

Stage 2 and optimal periodic inspection interval for soft-type components in Stage 3 using the 

Monte Carlo simulation. The authors are unaware of any previous models which have attempted 

to optimise both the maintenance action and the inspection policy under non-periodic 

inspections. In the present chapter, both the maintenance decision and the inspection policy are 

optimised jointly in one stage. The optimal maintenance policy for soft-type components is 

based on the number of minimal repairs before replacement for these components, similarly to 

the approach proposed by Park [30]. The optimal maintenance policy for hard-type components 

is based on the ages of these components. Both of the proposed models feature corrective 

maintenance (minimal repair or replacement) of hard-type and soft-type components with 

opportunistic and scheduled non-periodic inspections of soft-type components. The occurrence 

of hard failures in the system composed of hard- and soft-type components affects the expected 

number of soft failures, expected number of minimal repairs, replacements and expected 

downtime. Therefore, these expected values influence the optimal inspection policy. The 

components of a k-out-of-n system can be regarded as being identical soft-type components, 

which facilitates the analysis of such systems. Jointly optimising for both inspection and 

maintenance in one stage for both systems allows to find the optimal inspection and 

maintenance policies for entire systems rather than marginally only for certain groups of 

components.   

Overall, the safe and reliable operation of different equipment can be facilitated with the 

help of inspection and maintenance optimisation models. The latter also have strong managerial 

implications due to the importance of justifying these decisions with both qualitative and 

quantitative analysis. Using the proposed inspection and maintenance optimisation models, the 
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decision-maker(s) gain an opportunity to find the combination of inspection and maintenance 

decisions that is most likely to result in the greatest cost savings without sacrificing availability 

or reliability. The hard-to-quantify effects, such as those of opportunistic inspections, can be 

accounted for by using the joint optimisation models in managerial decision-making process. 

This is likely to result in cost savings, which are especially significant, if the costs of inspection 

are high. Thus, it can be seen that optimisation of inspection and maintenance decisions 

represents a valuable asset for decision-makers. 

The present chapter is further structured as following: Section 5.2 states the problem 

description; Section 5.3 outlines the mathematical model formulation for k-out-of-n systems 

under non-periodic and opportunistic inspections; Section 5.4 contains the mathematical model 

formulation for the system composed of hard-type and soft-type components under non-periodic 

inspections and opportunistic inspections of soft-type components; Section 5.5 provides the 

details of the simulation model for both systems; Section 5.6 provides numerical examples to 

illustrate the models; finally, Section 5.7 summarises the conclusions. 

5.2. Problem Description 

Consider the problem of inspecting devices consisting of coupled systems, such as surge-

protected personal computers (PCs), infusion pumps with liquid-level alarms, generators or 

power distributors with reserve power supplies, etc. For such systems, it may not be 

economically feasible to have periodic inspections – for example, in the case when the optimal 

inspection period of the protective system does not coincide with the inspection period of the 

system they are coupled to. In such cases, non-periodic inspections are a good option. 

In the present article, two main kinds of multicomponent systems are considered, based on 

the classification by the types of component failures. The system belonging to the first kind 

(System 1) consists of identical components in a redundant k-out-of-n configuration, with 

component failures’ being hidden and discoverable only upon inspection. System 1 may be 

represented by several diesel generators providing electrical power to a remote base station (e.g. 

used in geophysical surveys), which because of crew staffing shortages may require non-

periodic inspection and maintenance optimisation. The system belonging to the second kind 

(System 2) consists of components belonging to either of the two types: hard type, or hidden 

soft type. An application of this model includes a MacPherson-type strut assembly found in 
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cars, where a shock absorber, a coil spring and a strut-to-mount nut are modelled as hard-type 

components, and lower and upper spring insulators, dust shield, jounce bumper and spring seat 

pad are modelled as soft-type components. Both kinds of systems are considered in more detail 

in subsequent sections. 

The present chapter concerns with finding the non-periodic optimal inspection and 

maintenance policies for two kinds of multicomponent systems described above. The number 

of components for System 1 is denoted as 𝑛. The number of soft-type components in System 2 

is denoted as 𝑛1, and the number of hard-type components – as 𝑛2. For both kinds of systems, 

the components’ failure times are assumed to follow a non-homogeneous Poisson process 

(NHPP) with the power law intensity function (hazard function) 𝜆𝑗(𝑡) =
𝛽𝑗

𝜂𝑗
(

𝑡𝑗

𝜂𝑗
)

𝛽𝑗−1

, where 𝛽𝑗 

is the shape parameter and 𝜂𝑗 is the scale parameter of the Weibull distribution describing the 

times between failures of component 𝑗, 𝑡𝑗 is the age of component 𝑗, 𝑗 = 1,2, … , 𝑛 for System 1 

and 𝑗 = 1,2, … , 𝑛1 + 𝑛2 for System 2, where 𝑠 = 1,2, … , 𝑛1 is the number of soft-type 

components and ℎ = 1,2, … , 𝑛2 is the number of hard-type components in the system. For both 

systems, soft failures are discovered only at inspections. Therefore, the ages at failure of soft-

type components are unknown. 

Inspections are classified as being either scheduled non-periodic, or opportunistic. It is 

assumed that the system is always inspected at the end of the planning horizon in order to create 

a renewal point, after which the optimisation procedure can be repeated again. Scheduled non-

periodic (further referred to as simply “non-periodic”) inspections occur with the minimal unit 

of time 𝜏 over a finite planning horizon 𝜔 at times 𝑖𝜏, 𝑖 = 1,2, … , 𝑙, 𝑙 ∈ ℕ, where 𝑙 = 𝜔/𝜏 − 1 

if 𝜔 is divisible by 𝜏, and 𝑙 = ⌊𝜔/𝜏⌋ otherwise. For System 1, opportunistic inspections are 

incurred whenever 𝑛 − 𝑘 + 1 components fail. For System 2, opportunistic inspections are 

incurred whenever a hard-type component fails. 

A system failure presents an opportunity for inspection of all components in a system. Every 

failed component is then either minimally repaired, or replaced. In System 1, the (𝑛 − 𝑘 + 1)th 

failure presents an opportunity for inspecting the system and rectifying the failed components, 

which influences the number of minimal repairs, replacements and downtime of the hidden 

components (see Figure 14). For System 2, hard failures create more opportunities for 
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inspecting soft-type components and, consequently, influence the number of minimal repairs, 

replacements and downtime of the soft-type components (see Figure 15). 

 

Figure 14: Sample hidden failures, scheduled and opportunistic inspections within one life 

cycle for System 1. 

Figure 14 provides an example of a k-out-of-n system, checked at scheduled non-periodic 

inspections (denoted by 𝑥𝑖) and opportunistically whenever 𝑛 − 𝑘 + 1 components fail. The 

numbers 1, … , 𝑛 − 𝑘 above the black circles are denoting the ordinal number of component 

failures in the system during the period between inspections (and, hence, between failure 

rectifications). This is used to demonstrate an example of possible occurrence and accumulation 

of failures within a certain period of time. 

 

Figure 15: Sample hard and hidden soft failures, scheduled and opportunistic inspections 

within one life cycle for System 2. 

Similarly, Figure 15 shows an example of hard and soft failures along with the scheduled 

and opportunistic inspections for System 2. 

It is assumed that a maintenance action can be classified as either a minimal repair, or a 

corrective replacement (further referred to as simply “replacement”). A minimal repair restores 

the component’s functionality to the state it was in just preceding the component’s failure, thus 

leaving the component’s age unaffected. A corrective replacement decreases the failed 

component’s age to 0 (“as-good-as-new” state). Minimal repairs and replacements can occur 

both at the time of scheduled, or opportunistic inspections. 

0 𝑥𝑙 = 𝜔 𝑥1 𝑥2 𝑥𝑖  𝑥𝑖+1 

: Scheduled inspection 
𝑥𝑖  

: Opportunistic inspection : System failure : jth component failure 

j 

1 n-k 1 n-k 1 1 

: Scheduled inspection 
𝑥𝑖  

: Opportunistic inspection 

0 𝑥𝑙 = 𝜔 𝑥1 𝑥2 𝑥𝑖  𝑥𝑖+1 

: Hard failure : Soft failure 
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Both maintenance and inspection are assumed to have negligible duration and are perfect. 

Once the end of the planning horizon (i.e. time 𝜔) is reached, a new optimal non-periodic 

inspection and maintenance policies can be found repeating the outlined procedure. In the case 

of System 2, current ages of hard-type components can be taken into account when planning for 

the system life cycle. 

The total cost of system maintenance and inspection is a metric used almost universally in 

different areas of industry for a large variety of systems. It is a convenient measure of the 

optimality of a system, since the latter’s reliability and availability are connected through a 

range of costs, such as inspection and maintenance costs, component and system downtime 

penalties, etc. For this reason, the objective function in the case of both System 1 and System 2 

is formulated in terms of the total cost of inspection and maintenance policies. 

A closed deterministic formulation requires knowledge of all the relevant parameters of the 

system with certainty. In the present case, however, this condition is not satisfied, since the 

hidden soft-type components’ ages at failure are unknown. In order to describe the expected 

values of the system, a recursive formulation can be developed. However, the recursive formula 

does not have a closed-form solution, as it incorporates multidimensional integrals requiring 

discretisation, which makes the computations cumbersome. Because of this, the present analysis 

is based on the results obtained from stochastic programming and numerical Monte-Carlo 

simulations, as well as on the use of the genetic algorithm (GA). 

To summarise, the objective of the current work is to determine the optimal non-periodic 

inspection policy 𝑥∗ and the optimal maintenance policy 𝑚∗ for System 1 and 𝑚𝑠
∗ for System 2. 

The optimal inspection and maintenance policies are achieved by minimising the total expected 

cost for the entire system over the planning horizon 𝜔. 

5.3. Model 5: Joint Optimisation of Non-Periodic Inspection and Corrective 

Maintenance of k-out-of-n System with Opportunistic Inspections 

In this section, a model is proposed for a k-out-of-n system that can be non-periodically 

checked at potential times 𝑖𝜏, where 𝜏 is the minimal time unit. If the choice of 𝜏 is sufficiently 

small relative to the planning horizon 𝜔, then the variable for the inspection interval length may 

be considered as quasi-continuous. Thus, finding the optimal non-periodic inspection policy 

generally amounts to quasi-continuous optimisation. At the same time, maintenance 
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optimisation is done for the discrete-valued number of minimal repairs before replacement. 

Thus, overall, joint quasi-continuous and discrete optimisation is performed in order to obtain 

the optimal joint inspection and maintenance policies. 

Maintenance optimisation is concerned with identifying the best maintenance action for a 

particular system setting. In the present chapter, at each inspection point, the decision has to be 

made whether to minimally repair, or replace the failed component(s). Inspection optimisation 

then provides the best points in time at which these maintenance actions have to be taken in 

order to incur the lowest cost. Since failures are stochastic in nature, the total expected cost is 

used for optimality computations. 

The scheduled non-periodic inspection policy 𝒙𝑎 = (𝑥1, 𝑥2, … , 𝑥𝑙), where 𝑎 refers to the 

inspection policy index, can be encoded as a binary sequence of ‘1’s and ‘0’s, where each ‘1’ 

corresponds to a scheduled inspection and ‘0’ corresponds to the lack thereof. Taking the 

number of digits of 𝒙𝑎 to be 𝑙, each digit then corresponds to time 𝑖𝜏. This binary representation 

lends itself naturally to the encoded “genome” strings used in the genetic algorithms, which 

makes it particularly convenient and effective for the purposes of inspection optimisation using 

the latter. The total number of possible distinct scheduled inspection policies is then 2𝑙−1, since 

there is always 1 inspection scheduled to occur at time 𝜔. Hence, enumerating 𝒙𝑎, 𝑎 =

1,2, … , 2𝑙−1. 

The components’ failures are hidden, making their ages at failure unknown. For this reason, 

maintenance decisions cannot be based on the age. Instead, the number of minimal repairs is 

counted for each component, and the decision of whether to minimally repair, or replace a failed 

component is based on the number of minimal repairs before replacement. Since all of the 

components in a k-out-of-n system are identical by definition, only one optimal number of 

minimal repairs before replacement has to be found for a given system. The number of minimal 

repairs before replacement depends on the expected number of component failures, since there 

is a statistical uncertainty associated with the latter. In obtaining the expected number of 

component’s failures 𝐸[𝛷], the following two assumptions are made: (1) each inspection detects 

failure immediately, and (2) maintenance does not affect the ages of failed components (i.e. 

failed components are always minimally repaired). Based on these, 𝐸[𝛷] is obtained as 

following: 
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𝐸[𝛷] = ∫
𝛽

𝜂
(

𝑡

𝜂
)

𝛽−1
𝜔

0

𝑑𝑡 = (
𝜔

𝜂
)

𝛽

.                                                      (30.1) 

The actual number of failures is expected to fall within a (100 ∗ 𝛼) % confidence interval, 

with the upper confidence limit 𝑈𝐶𝐿 given as: 

𝑈𝐶𝐿 = (min
𝜑

| ∑ 𝑃(𝛷 = 𝑓)

𝜑

𝑓=0

≥ 1 − (
1 − 𝛼

2
)),                           (31.1)  

where 𝑈𝐶𝐿 is the upper confidence limit for a component, 𝑚 is the number of minimal repairs 

before replacement, and the probability of observing 𝜑 failures over planning horizon 𝜔 is given 

by 𝑃(𝛷 = 𝜑) =
(𝐸[𝜑])𝜑𝑒−𝐸[𝜑]

𝜑!
 for each soft-type component. 

The total expected cost 𝐸[𝐶𝒙𝑎.𝑚
𝑇,𝑘,𝑛] is formulated as following: 

𝐸[𝐶𝒙𝑎,𝑚
𝑇,𝑘,𝑛] = 𝑙𝑐𝐼 + 𝐹(𝜔, 𝒕, 𝑘, 𝑛)𝑐𝑆𝐷 + ∑(𝑐𝑀𝑀𝒙𝑎,𝑚,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛)

𝑛

𝑗=1

 

     +𝑐𝑅𝑅𝒙𝑎,𝑚,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛) +𝑐𝐷 (𝜔 − 𝑈𝒙𝑎,𝑚,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛)),                  (32) 

where 𝑙 is the number of scheduled inspections in the cycle 𝜔, 𝑐𝐼 is the cost of one scheduled 

inspection, 𝒕 = (𝑡1, 𝑡2, … , 𝑡𝑛) is the vector containing the components’ initial ages, 𝐹(𝜔, 𝒕, 𝑘, 𝑛) 

is the expected number of system’s failures, 𝑐𝑆𝐷 is the system downtime penalty cost, 𝑐𝑀 is the 

cost of component minimal repair, 𝑐𝑅 is the cost of component’s corrective replacement, 𝑐𝐷 is 

the cost of component downtime per unit time, 𝑡𝑗 is the initial age of component 𝑗, 

𝑀𝒙𝑎,𝑚,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛), 𝑅𝒙𝑎,𝑚,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛) and 𝑈𝒙𝑎,𝑚,𝑗(𝜔, 𝑡𝑗 , 𝑘, 𝑛) are the expected numbers of 

minimal repairs, replacements and expected uptime of component 𝑗, respectively. In the 

proposed formulation, the expected values are generally obtained using the variables indicated 

inside the brackets as parameters. To ascertain the convexity of the total expected cost function, 

refer to Appendix A. 

The optimal joint inspection and maintenance policies are defined by the optimal inspection 

policy 𝒙∗ and the optimal number of minimal repairs before replacement 𝑚∗, correspondingly. 

Using the calculations for the combinations of possible inspection and maintenance policies 
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(𝒙𝑎, 𝑚), the optimal joint inspection policy (𝒙∗, 𝑚∗) can be obtained from searching for the 

smallest total expected cost as following: 

(𝒙∗, 𝑚∗) = min
𝒙𝑎,𝑚

{𝐸[𝐶𝒙𝑎,𝑚
𝑇,𝑘,𝑛]},                        

s. t. : 0 ≤ 𝑚 ≤ 𝑈𝐶𝐿,                                    

𝑥𝑖 = {
1, if there is an inspection at time 𝑖𝜏
0, if there is no inspection at time 𝑖𝜏

, 𝑖 = 1,2, … , 𝑙.   (33) 

The expected values required for the calculation of 𝐸[𝐶𝒙𝑎,𝑚
𝑇,𝑘,𝑛] are, however, unavailable for 

a system with hidden failures, since the ages at failure are unknown and there is no explicit 

formulation for them. This obstacle is overcome by using the simulation procedures described 

in Section 5.5. 

5.4. Model 6: non-periodic inspection and corrective maintenance of hard-type 

and soft-type components with opportunistic inspection of soft-type 

components 

This section describes the methodology for finding the optimal maintenance actions after 

failures and the optimal inspection policy for System 2, taking into account the fact that soft 

failures are hidden and the ages of the soft-type components at the time of failure are unknown. 

Due to the different failure characteristics, hard-type and soft-type components are analysed 

separately. The failure times of hard-type components are known, since the system stops 

operating immediately whenever a hard failure occurs. The goal is to find the optimal ages at 

which the hard-type components should be replaced, resulting in the lowest total expected cost 

for the system. In order to achieve this, the domain of possible replacement ages from which to 

choose the optimal ones has to be defined for each hard-type component. The replacement ages 

are represented by vector 𝜻 = (𝜁1, 𝜁2, … , 𝜁𝑛2
), consisting of replacement ages for each hard-type 

component ℎ = 1,2, … , 𝑛2. From the system life cycle’s perspective, it is impractical to make 

the hard-type component’s replacement age longer than the life span of the entire system, as 

represented by its planning horizon. It is assumed that an overhaul or similar renewal event is 

to take place at the end of the system’s planning horizon, at which point those hard-type 

components which have not been maintained over the system’s operation will be replaced. Thus, 

the replacement ages for hard-type components can be assumed to be bounded by 0 from the 
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bottom and a multiple of the system’s life cycle length at the top, for example: 0 < 𝜁ℎ ≤ 1.5𝜔, 

ℎ = 1,2, … , 𝑛2. The optimal replacement ages for all hard-type components are represented by 

vector 𝜻∗ = (𝜁1
∗, 𝜁2

∗, … , 𝜁𝑛2
∗ ) consisting of the optimal replacement ages for each hard-type 

component ℎ = 1,2, … , 𝑛2. 

Unlike those of hard-type components, the failure times of soft-type components are 

unknown, which makes it impossible to base the optimisation procedure on the ages of soft-

type components. Instead, the number of minimal repairs before replacement may be used as 

the maintenance criterion. Similarly to System 1 and using the same assumptions, the expected 

number of component failures 𝐸[𝛷𝑠] for System 2 was obtained as following: 

𝐸[𝛷𝑠] = ∫
𝛽𝑠

𝜂𝑠
(

𝑡𝑠

𝜂𝑠
)

𝛽𝑠−1
𝜔

0

𝑑𝑡 = (
𝜔

𝜂𝑠
)

𝛽𝑠

.                                             (30.2) 

The actual number of failures, however, may differ among the components, owing to the 

stochastic nature of component failures. Hard failures are assumed to be rectified immediately 

upon failure. Soft failures are rectified at the earlier of either a scheduled inspection, or hard 

failure, which presents an opportunity for inspection and fixing of the system (hence the name 

“opportunistic inspection”). The general estimate on the upper bound of the number of minimal 

repairs before replacement can then be obtained from constructing a confidence interval of 

width 𝛼 from Poisson distribution for 𝐸[𝛷𝑠] as following: 

𝑈𝐶𝐿𝑠 = (min
𝜑𝑠

| ∑ 𝑃(𝛷𝑠 = 𝑓𝑠)

𝜑𝑠

𝑓𝑠=0

≥ 1 − (
1 − 𝛼

2
)),                  (31.2)  

where 𝑈𝐶𝐿𝑠 is the upper confidence limit for soft-type component 𝑠, and the rest of terms are 

as previously defined.                                                    

It is assumed that the number of minimal repairs before replacement 𝑚𝑠 for soft-type 

component 𝑠, 𝑠 = 1, … , 𝑛1 does not exceed the upper confidence limit 𝑈𝐶𝐿𝑠 on the expected 

number of component failures and may take on any value between 0 and 𝑈𝐶𝐿𝑠, inclusively. 

Thus, different cases are covered, ranging from replacement on every failure to replacement on 

(𝑈𝐶𝐿𝑠 + 1)st failure. Furthermore, the chosen value of 𝑚𝑠 serves as the criterion for making a 

maintenance decision. Component 𝑠 is minimally repaired at each inspection until the number 
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of its failures reaches 𝑚𝑠. It is then replaced on (𝑚𝑠 + 1)st failure. The optimal number of 

minimal repairs before replacement 𝑚𝑠
∗ results in the lowest total expected cost 𝐸 [𝐶𝒙𝑎,𝑚𝑠,𝜁ℎ

𝑇,𝐻𝑆 ] for 

the entire system. 

It should be noted, that unlike in preventive replacement models for mixed systems 

composed of hard- and soft-type components encountered in Babishin and Taghipour [126], 

corrective replacement models may exclude the costs of hard-type components from the 

optimisation. This is because the hard-type components are replaced at the optimal replacement 

ages if they fail, and not at the scheduled inspection times when they are still operational. This 

makes the optimal non-periodic inspection independent of the costs of hard failures. 

 In order to obtain the lowest expected cost, all combinations of non-periodic inspection 

schedules, the numbers of minimal repairs before replacement, and various ages as threshold 

for replacement have to be considered for all soft-type components and hard-type components, 

respectively. The expected costs thus calculated can then be searched for the lowest value. 

However, the size of the search space is very large in this case. For this reason, this problem, 

albeit in the context of periodic inspections, has been previously broken down into several stages 

for maintenance and inspection optimisation for all hard-type components in Stage 1, marginal 

optimisation of the maintenance decision for each soft-type component in Stage 2 and 

optimisation of the inspection period for the entire system in Stage 3 [71, 126]. Monte-Carlo 

simulation was used for marginal multi-stage optimisation. In the present chapter, global 

system-level optimisation is performed, which requires simultaneous optimisation of all 

variables, including the optimal ages to replace hard-type components, the optimal number of 

minimal repairs before replacement for soft-type components and the optimal inspection 

scheme. This results in a dramatic increase of the search space. The latter is greatly reduced by 

means of the genetic algorithm. This allows optimising for both inspection and maintenance 

jointly in one stage. The total expected cost 𝐸 [𝐶𝒙𝑎,𝑚𝑠,𝜁ℎ

𝑇,𝐻𝑆 ] is calculated as following: 

𝐸 [𝐶𝒙𝑎,𝑚𝑠,𝜁ℎ

𝑇,𝐻𝑆 ] = 𝑙𝑐𝐼 + ∑(𝑐𝑠
𝑀𝑀𝒙𝑎,𝑚𝑠,𝑠(𝜔, 𝑡𝑠, 𝜽, 𝑓𝑠, 𝜻)

𝑛1

𝑠=1

                          

     +𝑐𝑠
𝑅𝑅𝒙𝑎,𝑚𝑠,𝑠(𝜔, 𝑡𝑠, 𝜽, 𝑓𝑠 , 𝜻) +𝑐𝑠

𝐷 (𝜔 − 𝑈𝒙𝑎,𝑚𝑠,𝑠(𝜔, 𝑡𝑠, 𝜽, 𝑓𝑠, 𝜻)) , (34) 
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where superscript 𝐻𝑆 indicates the cost for System 2 consisting of hard-type and soft-type 

components, 𝜽 = (𝜃1, 𝜃2, … , 𝜃ℎ , … , 𝜃𝑛2
) is the vector containing the initial ages of hard-type 

component ℎ, ℎ = 1,2, … , 𝑛2, 𝜻 = (𝜁1, 𝜁1, … , 𝜁𝑛2
) is the vector containing the replacement ages 

of hard-type components, 𝑡𝑠 is the initial age of soft-type component 𝑠, 𝑐𝑠
𝑀 is the cost of 

minimally repairing component 𝑠, 𝑐𝑠
𝑅 is the cost of replacing component 𝑠, 𝑐𝑠

𝐷 is the cost of 

downtime for component 𝑠, 𝑀𝒙𝑎,𝑚𝑠,𝑠(𝜔, 𝑡𝑠, 𝜽, 𝑓𝑠 , 𝜻), 𝑅𝒙𝑎,𝑚𝑠,𝑠(𝜔, 𝑡𝑠, 𝜽, 𝑓𝑠, 𝜻) and 

𝑈𝒙𝑎,𝑚𝑠,𝑠(𝜔, 𝑡𝑠, 𝜽, 𝑓𝑠, 𝜻) represent the expected numbers of minimal repairs, replacements and 

expected uptime, respectively, for the soft-type component 𝑠, 𝑠 = 1,2, … , 𝑛1. Appendix A 

contains a general argument in favour and a demonstration of the convexity of the total expected 

cost objective function. 

Using the calculations for the combinations of possible inspection and maintenance policies 

(𝒙𝑎, 𝑚𝑠, 𝜁ℎ), the optimal joint inspection and maintenance policy (𝒙∗, 𝑚𝑠
∗, 𝜻∗) can be obtained 

from searching for the smallest total expected cost as following: 

(𝒙∗, 𝑚𝑠
∗, 𝜻∗) = min

𝒙𝑎,𝑚𝑠,𝜁ℎ

{𝐸 [𝐶𝒙𝑎,𝑚𝑠,𝜁ℎ

𝑇,𝐻𝑆 ]}, 

       s. t. : 0 ≤ 𝑚𝑠 ≤ 𝑈𝐶𝐿𝑠, 𝑠 = 1,2, … , 𝑛1,                                                     

0 ≤ 𝜃ℎ ≤ 𝜁ℎ , ℎ = 1,2, … , 𝑛2,                                                           

𝑥𝑖
𝑎 = {

1, if there is an inspection at time 𝑖𝜏
0, if there is no inspection at time 𝑖𝜏

, 𝑖 = 1,2, … , 𝑙, 𝑎 = 1,2, … , 2𝑙−1. (35) 

The following section outlines the general simulation procedure used for optimisation. 

5.5. Simulation Model 

Simulation procedure is similar for both systems, but differs in some details as a result of 

the difference in the types of system’s components. 

5.5.1. Simulation model for k-out-of-n system (System 1) 

The k-out-of-n system takes as inputs the values of 𝑥𝑖
𝑎, 𝑚, 𝑘, 𝑛, 𝜔, 𝜏, 𝑡𝑗, 𝛽, 𝜂, 𝑐𝑀, 𝑐𝐶𝑅, 𝑐𝑃𝑅, 

𝑐𝐷, 𝑐𝐼 and 𝑐𝑆𝐷. These are then used to generate the time-to-failure for each component 𝑗, 𝑗 =

1,2, … , 𝑛 using each component’s current age 𝑡𝑗, a random number 𝑏 generated from a uniform 
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distribution 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0; 1) and assuming the Weibull-distributed reliability function 

ℛ𝑗(𝑡𝑗 , 𝛽, 𝜂), the time-to-failure 𝜒𝑗 is generated as following: 

𝜒𝑗 = 𝜂 ((
𝑡𝑗

𝜂
)

𝛽

− ln(𝑏))

1/𝛽

− 𝑡𝑗 .                                                      (36) 

 

The generated times-to-failure are then compared with the time 𝑘𝜏 of the soonest scheduled 

inspection flagged as ‘1’ in 𝒙. If 𝜒𝑗 < 𝑖𝜏, the number of failures of component 𝑗 is increased by 

1. When the number of failed components accumulates to 𝑛 − 𝑘 + 1 failures, the system fails, 

giving rise to opportunistic inspection, during which all of the failed components are discovered. 

A failed component is minimally repaired if its cumulative number of failures is 𝑚 or fewer; 

otherwise, it is replaced, and the cumulative number of its failures is reset to zero. 

If 𝜒𝑗 < 𝑖𝜏, but the number of failed components is less than 𝑛 − 𝑘 + 1, then the failed 

component is fixed at the next scheduled inspection. Again, if the component’s cumulative 

number of failures is 𝑚 or fewer, it is minimally repaired; otherwise, the component is replaced, 

and the cumulative number of its failures is reset to zero. 

If 𝜒𝑗 > 𝑖𝜏, the simulation clock is moved forward to the inspection time, since there is no 

failed component to be discovered at inspection. 

The simulation clock is updated at the times of events, such as component failures, system 

failures, and scheduled and opportunistic inspections. The downtime of component 𝑗, the 

number of system failures, the number of minimal repairs and replacements are all updated at 

each event’s time as well. At the same time, the ages of the surviving components, the time until 

the next failure, and the time until the scheduled inspection are also updated. The simulation 

stops when the end of the planning horizon is reached. The simulation model provides the 

expected random variables 𝐹, 𝑀𝒙𝑎,𝑚,𝑗, 𝑅𝒙𝑎,𝑚,𝑗 and 𝑈𝒙𝑎,𝑚,𝑗 when run for a large number of times. 

A given policy (𝒙𝑎, 𝑚) prescribes the choice of the maintenance action at each simulation 

run. Varying the values of (𝒙𝑎, 𝑚) in the ranges 𝒙𝑎 = (0,0, … ,0), (1,0, … ,0), … , (1,1, … ,1), 0 ≤

𝑚 ≤ 𝑈𝐶𝐿, the total expected cost 𝐸[𝐶𝒙.𝑚
𝑇,𝑘/𝑛

] for policy (𝒙𝑎, 𝑚) is computed and saved. 

Finally, in order to find the optimal joint maintenance and inspection policy (𝒙∗, 𝑚∗), the 

total expected costs are searched for the minimum total expected cost 𝐸[𝐶𝒙∗.𝑚∗
𝑇,𝑘,𝑛 ]. From the 



106 

 

optimal total expected cost 𝐸[𝐶𝒙∗.𝑚∗
𝑇,𝑘,𝑛 ], the corresponding optimal non-periodic inspection policy 

𝒙∗ and the optimal number of minimal repairs before replacement 𝑚∗ are found, thus 

representing the joint maintenance and inspection policy (𝒙∗, 𝑚∗) and satisfying the present 

objective. 

5.5.2. Simulation model for a system with hard-type and soft-type components 

(System 2) 

The general simulation procedure for System 2 is similar to that described for System 1. The 

following input variables are used: 𝑥𝑖
𝑎, 𝑚𝑠, 𝜔, 𝜏, 𝑡𝑠, 𝜃ℎ, 𝛽𝑠, 𝛽ℎ, 𝜂𝑠, 𝜂ℎ, 𝜁ℎ, 𝑐𝑠

𝑀, 𝑐ℎ
𝐷, 𝑐𝑠

𝑅, 𝑐ℎ
𝐷, 𝑐𝑠

𝐷 

and 𝑐𝐼. The same procedure as discussed in the previous section is used to generate the times 

for events and update the simulation clock. 

If 𝜒𝑠 < 𝜒ℎ < 𝑖𝜏 for the generated soft failure time 𝜒𝑠, the closest hard failure time 𝜒ℎ and 

the closest non-periodic inspection time 𝑖𝜏, then an opportunistic inspection is occurring at the 

closest hard failure time. The soft failure is detected at this moment, and if the total number of 

previous failures is less than 𝑚𝑠, the component is minimally repaired; otherwise, it is replaced, 

and its cumulative number of failures is set to zero. 

If 𝜒ℎ ≤ 𝜒𝑠 < 𝑖𝜏, then the soft failure is fixed at the time of the soonest non-periodic 

scheduled inspection. 

If 𝜒ℎ < 𝑖𝜏, the age of the failed hard-type component is compared with its corresponding 

replacement age 𝜁ℎ, and the hard-type component is replaced if 𝜃ℎ > 𝜁ℎ, or it is minimally 

repaired otherwise. The component’s age is set to zero at replacement. 

Changing the values of a given joint inspection and maintenance policy (𝒙𝑎, 𝑚𝑠, 𝜁ℎ) in the 

ranges 𝒙𝑎 = (0,0, … ,0), (1,0, … ,0), … , (1,1, … ,1), 0 ≤ 𝑚𝑠 ≤ 𝑈𝐶𝐿𝑠, 𝑠 = 1,2, … , 𝑛1, 0 ≤ 𝜁ℎ ≤

1.5𝜔, ℎ = 1,2, … , 𝑛2, the total expected cost for each policy is computed and saved. 

Finally, the optimal solution is the one with the minimum cost 𝐸 [𝐶𝒙∗,𝑚𝑠
∗,𝜁ℎ

∗
𝑇,𝐻𝑆 ] over all input 

variables, i.e. inspection schemes, possible values of the number of minimal repairs before 

replacement for soft-type components and possible values for the optimal replacement ages for 

hard-type components. The resulting triple (𝒙∗, 𝑚𝑠
∗, 𝜻∗) represents the optimal joint maintenance 

and inspection policy. 
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In using the simulation procedure described above, however, there is a significant drawback 

related to the search method used for optimisation. The exhaustive search method for finding 

the optimal joint policy is highly susceptible to the size of the problem, i.e. the choice of 𝜏, the 

upper confidence limit on the expected number of component failures, etc. Therefore, for 

systems with many components or larger planning horizons the search space and the simulation 

time increase dramatically. The problem’s complexity also increases when considering a finer 

quasi-continuous space of possible inspection times with smaller 𝜏, as in this case the number 

of non-periodic inspections increases as well and the possible number of inspection schemes 

quickly explodes. Thus, based on all of these, there is a need for improving the efficiency and 

reducing the complexity of the computations. 

In order to reduce the search space and the complexity of the problem, the number of total 

expected cost calculations should be decreased. The genetic algorithm provides a powerful 

heuristic search means to do this. This approach is further discussed below. 

5.6. Numerical Example 

The present section provides examples for each of the models developed in the preceding 

sections. 

5.6.1. Model 5: k-out-of-n system with opportunistic inspections 

We first consider a 3-out-of-5 redundant system with parameters given in Table 17. All 

components are assumed to be initially as-good-as-new. 

Table 17: Parameters of the Power Law Intensity Function and Costs. 
 

Case 

# 
𝛽 𝜂 

(months) 

Minimal 

repair 

cost, 𝑐𝑀 

Replacement 

cost, 𝑐𝑅 

Component 

downtime 

cost, 𝑐𝐷 

System 

downtime 

cost, 𝑐𝑆𝐷 

Fixed 

inspection 

cost, 𝑐𝐼 

1 1.5 3.5 $75 $200 $60 $550 $50 

2 1.5 3.5 $75 $200 $80 $550 $50 

3 1.5 3.5 $75 $200 $60 $350 $50 

4 1.5 3.5 $75 $200 $60 $550 $100 

5 1.5 5 $75 $200 $60 $550 $50 
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Simulation and optimisation was performed using genetic algorithm for 5,000 runs with 

the planning horizon of 12 months and 𝜏 = 1 month. The output of the GA for Case 1 is given 

in Figure 16 below.  

 

 
 

Figure 16: Genetic algorithm’s output and results for Case 1 of a 3-out-of-5 system. 
 

For the GA optimisation, the highest fitness value is equivalent to the lowest total 

expected cost. The genetic algorithm search used a limit of 100 generations, a stall generation 

limit of 50, an elite count of 1 and the tolerance limit of 10−5.  

As can be seen from Figure 16, the best solution was found after 11 generations. The top 

graph in Figure 16 shows the output for the best and the mean total expected cost for each 

generation. As the number of generations increases, the GA-generated fitness function value 

gets closer to the optimal total expected cost and converges after about 40 generations. 

The middle graph in Figure 16 displays the distances from each member of the population 

to its nearest neighbour. Generally, the smaller the distance, the faster the algorithm 

converges. 
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The bottom graph in Figure 16 contains the best, worst and mean scores for the fitness 

function, i.e. the total expected cost. It can be seen that starting at generation 39, the 

differences among these three measures become relatively small. 

Baseline Case 1 was compared with the other cases for sensitivity analysis. The results of 

the genetic algorithm’s optimisation procedure for the cases are given in Table 18 below. 

Table 18: Optimal Policies from the Genetic Algorithm. 
 

Case 

# 

Distinction 

from baseline 

Total expected 

cost, 𝐸[𝐶𝒙𝑎.𝑚
𝑇,𝑘,𝑛] 

Optimal inspection 

policy, 𝒙∗ 

Optimal 

maintenance 

policy, 𝑚∗ 

Number of 

inspection 

policies 

analysed, 𝑎 

1      –– $2943.64 (1 0 1 1 0 1 1 1 1 0 1 1) 5 1755 

2 𝑐𝐷 = $80 $3098.46 (0 1 1 0 1 1 1 0 1 1 1 1) 6 1654 

3 𝑐𝑆𝐷 = $350 $2775.63 (1 0 1 0 1 1 0 1 1 0 0 1) 11 1709 

4 𝑐𝐼 = $100 $3123.17 (1 0 1 1 0 1 0 1 0 1 0 1) 10 1638 

5 𝜂 = 5 $1946.68 (0 1 0 0 1 1 0 0 1 1 0 1) 7 1104 
 

As can be seen from Table 18, the optimal inspection policy suggests that for the baseline 

Case 1 system, 9 inspections should be performed at month 1, 3, 4, 6, 7, 8, 9, 11 and 12 within 

the 12-months planning horizon, and the optimal maintenance policy suggests that failed 

components should be replaced upon failure after having been minimally repaired for 5 times. 

For the system with the component downtime cost of $80 (Case 2), 9 inspections should 

be done at month 2, 3, 5, 6, 7, 9, 10, 11 and 12, and the optimal maintenance policy prescribes 

component replacement on 7th failure within the 12-months planning horizon. Unsurprisingly, 

the total expected cost for Case 2 is higher than that for Case 1, since the cost of component 

downtime is higher for Case 2 than for Case 1. 

For Case 3, the lower system downtime penalty results in the lower the total expected cost, 

fewer inspections and greater optimal number of minimal repairs before inspection as 

compared with Case 1. Lower system downtime penalty translates into more of allowable 

system downtime, which necessitates fewer inspections (7 for Case 3 vs. 9 for Case 1) and a 

much greater number of minimal repairs before replacement. The fact that the optimal number 

of minimal repairs before replacement is equal to the upper confidence limit on the expected 

number of failures implies that it is economically infeasible to replace failed components 

when the system downtime penalty is significantly decreased. However, the total effect of the 
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decrease of the system downtime penalty by $200 is reduced by the increased downtime as a 

result of the fewer inspections and greater component deterioration due to fewer replacements, 

all of which are reflected in the total expected cost’s decrease of only $168.01. 

The optimal joint inspection and maintenance policies for Case 4 are close to those of 

Case 3, but the total expected cost is greater than that for either Case 3 or Case 1. 

Unsurprisingly, increasing the cost of system inspection results in the increase in the total 

expected cost. Removing the effect of the total cost of inspection, it can be seen that the 

remaining expected cost for Case 4 is lower than that for Case 1 by $70.47. This is likely the 

result of the 2-fold increase in the optimal number of minimal repairs before replacement, 

which results in fewer component replacements prescribed by Case 4 compared with those for 

Case 1. 

Finally, for Case 5, the total expected cost is the lowest among all the tested cases. This 

can be explained by higher scale (spread) parameter of the time-to-failure distribution, which 

implies fewer failures within the same time interval for Case 5 compared to the other cases. 

Using Equation (11) from Babishin and Taghipour [87], the calculated expected number of 

system failures is approximately 5.7 for Cases 1-4 and only about 2.6 for Case 5 – a decrease 

by over 121 % for Case 5 compared to the other cases. This also results in the fewest optimal 

number of inspections (6) among all the cases and, also, a slightly higher optimal number of 

minimal repairs before replacement (7) and, correspondingly, fewer component replacements 

compared to that for Case 1. 

5.6.2. Model 6: system with hard-type and soft-type components and 

opportunistic inspections 

We consider a system composed of 𝑚1 = 5 soft-type and 𝑚2 = 3 hard-type components, 

all of which are initially “as-good-as-new”. Two cases are considered: Case 1 (Baseline) and 

Case 2 (1.5-time greater monthly downtime penalty cost compared to Baseline). The input 

parameters for the failure distributions, the costs of minimal repair, replacement and downtime 

are given for both cases in Table 19. 
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Table 19: Parameters of the power law intensity function and costs for different components 

of Case 1 (Baseline) and Case 2. 

 

Component 

type 
𝛽𝑗 

𝜂𝑗 

(months) 

Minimal 

repair 

cost, 𝑐𝑗
𝑀 

Replacement 

cost, 𝑐𝑗
𝑅 

Case 1 

downtime 

penalty 

cost/month, 

𝑐𝑗
𝐷 

Case 2 

downtime 

penalty 

cost/month, 

𝑐𝑗
𝐷 

Soft 

1 1.3 3.5 $70 $200 $80 $120 

2 2.8 4.6 $45 $150 $55  $82.5 

3 2.1 2.7 $100 $300 $85    $127.5 

4 3.2 7.0 $75 $240 $90 $135 

5 1.7 3.6 $125 $325   $100 $150 

Hard 

1 1.5 8.7 – – – – 

2 1.2 6.0 – – – – 

3 1.7 7.5 – – – – 
 

The fixed cost of scheduled inspections 𝑐𝐼 = $25. Both cases are simulated for 1,000 runs 

with the planning horizon of 12 months and 𝜏 = 1 month. Lower number of simulation runs had 

to be used because of the much greater time required to run the simulation and the genetic 

algorithm for the hard-and-soft-type system compared to a k-out-of-n system, which is a result 

of the former’s greater complexity. 

The output of the GA for Case 1 is given in Figure 17 below. The genetic algorithm search 

used a limit of 100 generations, a stall generation limit of 50, an elite count of 1 and the tolerance 

limit of 10−5. 

As can be seen from the top graph in Figure 17, the best solution (“best penalty value”) was 

found after 71 generations. 

The middle graph in Figure 17 displays the distances from each member of the population 

to its nearest neighbour. Generally, the smaller the distance, the faster the algorithm converges. 

The bottom graph in Figure 17 contains the best, worst and mean scores for the fitness 

function, i.e. the total expected cost. It can be seen that the mean scores of the fitness function 

are minimal at generations 92-94, owing to the lowest worst scores, while the best scores remain 

unchanged starting at generation 71. 
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Figure 17: Genetic algorithm’s output and results for Case 1 of a system composed of soft- 

and hard-type components. 

The soft-type and the hard-type component parameters from Table 19 are used to optimise 

for the joint inspection and maintenance policies using genetic algorithm. The results are 

obtained for both Case 1 and Case 2. The optimal maintenance policies, i.e. the optimal numbers 

of minimal repair before replacement and the optimal replacement ages, are provided for both 

cases in Table 20 below. 
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Table 20: Optimal maintenance policies for Case 1 and Case 2. 

 

Case 

# 

Distinction from 

baseline 

Soft-type 

component, 

𝑠 

Optimal number of 

minimal repairs before 

replacement, 𝑚𝑠
∗ 

Hard-type 

component, 

ℎ 

Optimal 

replacement age, 

𝜁ℎ (months) 

1 –– 

1 7 1 14.46 

2 1 2 8.25 

3 6 3 11.83 

4 8 – – 

5 13 – – 

2 
𝑐𝐷(Case 2) = 

1.5𝑐𝐷(Case 1) 

1 9 1 16.61 

2 1 2 6.77 

3 3 3 13.98 

4 0 – – 

5 10 – – 

 

As can be seen from Table 20, the optimal replacement ages for some of the hard-type 

components (namely, for hard-type component 1 for Case 1 and hard-type components 1 and 3 

for Case 2) exceed the planning horizon. This simply means that these components would be 

replaced only at the end of the planning horizon and would be minimally repaired if they fail at 

any time until then. Also, changes in the optimal maintenance policies for both the soft-type 

and the hard-type components suggest that they are affected by changes in the component 

downtime penalty. 

The resultant optimal inspection policy was also found for both cases to be as shown in 

Table 21 below. 

Table 21: Optimal policies from the genetic algorithm. 

 

Case # Total expected 

cost, 𝐸 [𝐶𝒙𝑎,𝑚𝑠,𝜁ℎ

𝑇,𝐻𝑆 ] 

Optimal inspection 

policy, 𝒙∗ 

Number of inspection 

policies analysed, 𝑎 

1 $2737.51 (0 0 0 0 1 0 0 1 0 1 0 1) 9935 

2 $3848.41 (0 0 1 1 1 1 1 1 1 1 1 1) 9935 
 

The optimal inspection policy for Case 1 implies that the system is inspected 4 times in 

months 5, 8, 10 and 12. The optimal inspection policy for Case 2 is drastically different with 10 

inspections occurring on a monthly basis in months 3–12. Thus, as a result of a 1.5-time increase 

in the per-component monthly downtime penalty cost, the optimal inspection policy alone for 

Case 2 costs $150 more ($25 ∙ (10 − 4) inspections) than that for Case 1. This leaves another 
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$960.90 as the increase in the cost of the optimal maintenance policy out of the total increase 

of $1110.90 ($3848.41 − $2737.51) in the total expected cost for Case 2 compared to Case 1. 

Converting dollars into percentages, the total expected cost is over 40 % greater for Case 2 

compared for Case 1. A large reduction in the optimal number of minimal repairs before 

replacement for 3 out of 5 soft-type components is meant to decrease these components’ 

downtime by reducing their ages to 0 with each replacement more frequently for Case 2 than 

for Case 1. The optimal number of minimal repairs before replacement, averaged across all soft-

type components, is 4.6 for Case 2 and 7 for Case 1 – a decrease of over 52 % as a result of the 

downtime costs increasing by 50 %. At the same time, the optimal replacement ages of the hard-

type components increased, on average, by only slightly over 8 % (which is less than 𝜏) for Case 

2 compared to Case 1. These results are summarised in Table 22 below. 

Table 22: Absolute and relative changes in the expected costs for Case 2 compared to Case 1. 

Change 

(Case 2 – 

Case 1) 

Average 

system 

downtime 

penalty 

cost 

Average 

optimal 

replacement 

ages 

Average optimal 

number of 

minimal repairs 

before 

replacement 

Optimal 

inspection 

policy cost 

Optimal 

maintenance 

policy cost 

Total 

expected 

cost, 

𝐸 [𝐶𝒙𝑎,𝑚𝑠,𝜁ℎ

𝑇,𝐻𝑆 ] 

Absolute + $205 + 0.94 - 2.40 + $150 + $960.90 + $1110.90 

Relative + 50 % + 8.13 % - 52.17 % + 5.48 % + 35.10 % + 40.58 % 

 

As can be concluded from Table 22, the average optimal number of minimal repairs before 

replacement is the most sensitive to change in the downtime penalty, followed by the total 

expected cost and the optimal maintenance policy cost, with an increase in downtime penalty 

causing a decrease in the optimal number of minimal repairs before replacement and increase 

in each of the total expected cost and the optimal maintenance policy cost. On the contrary, the 

optimal inspection policy cost is the least sensitive, followed by the average optimal 

replacement ages, where an increase in downtime penalty increases each of the optimal 

inspection policy cost and the average optimal replacement ages. 

Since failures are implicitly assumed to occur independently for different components 

within the same component type, it may be considered as a limitation if components are known 

to operate at full capacity. However, if the system is not strained (which is a realistic assumption 

for many k-out-of-n systems), this may not necessarily be a limitation, since components are 

able to “absorb” the increased operational load due to failure(s). 
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5.7. Conclusion 

In the present chapter, the problem of non-periodic inspection and maintenance optimisation 

was considered for complex multicomponent systems with either k-out-of-n redundant 

configuration, or with components prone to hard and soft failures. Aside from scheduled 

inspections, components can be checked opportunistically at system failures. Making the unit 

of time sufficiently small allows to treat the planning horizon as quasi-continuous for possible 

non-periodic inspections, which gives a much greater flexibility and variety in the choice of 

available inspection policies at the expense of computational complexity when compared to the 

periodic inspections. Since soft failures are hidden, component’s age cannot be used as the 

criterion for maintenance optimisation. Instead, maintenance policies are defined by the number 

of minimal repairs before replacement for each component prone to hidden soft failure. The 

optimal policies are then found by jointly optimising the inspection and maintenance policies 

for the lowest total expected cost. Using simulation and a genetic algorithm to implement the 

joint optimisation was found to be an efficient and convenient method to find the optimal 

policies for large and complex systems. This appears to be a promising method for multi-

objective optimisation with regard to complex systems. 
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6. Conclusions and Future Research 

6.1. Main Results and Contributions 

Devising effective and efficient inspection and maintenance policies for real-world systems, 

most of which are complex, is often a daunting task. Methods, techniques and approaches – 

both theoretical and practical – that have been proposed in the past, usually consider only simple 

systems consisting of very few components, or impose oversimplifying assumptions on the 

systems of interest, thus decreasing the practical value of such developments and hindering their 

real-world application and implementation. The need for models that are able to capture the 

richness of various scenarios that can occur in practice is especially important for the fields 

where system failures are associated with a great risk and large costs, such as in healthcare and 

medical industries. Ensuring the reliable operation of devices and systems designed to support, 

treat or rehabilitate patients, such as, for example, infusions pumps, is an important problem. 

Improvements in this area are likely to result not only in the reduction of the risk to the health 

and well-being of patients, but also in significant, if not dramatic, cost savings to hospitals, care 

providers, governments and the general public. 

Because of the risks and high potential costs of failure, devices used in the healthcare 

industry need to be reliable, effective and available. Most of these devices are usually complex 

and consist of many different components, which exhibit interactions among the components, 

as well as interactions with external environment. For this reason, it is usually hard to predict 

when failures of such systems will occur and, consequently, how to best manage remediation 

of the latter. This, in turn, puts weight on inspection and maintenance in providing means to 

operate these systems at the lowest possible risk and costs. It is very difficult, if not impossible 

to foresee or predict all of the risks pertaining to the above-mentioned settings and situations, 

let alone quantifying these risks. For this reason, one of the most popular metrics used for 

optimisation is the cost of inspection and maintenance. 

The goal of the research presented in this dissertation is to propose models that improve and 

facilitate inspection and maintenance methods used for multicomponent systems. The proposed 

models are meant to incorporate fewer restrictive and oversimplifying assumptions and, thus, 

to be closer in description to an actual wide range of systems encountered in practice. In all of 
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the models, components are assumed to follow a non-homogenous Poisson process with a power 

law intensity function. A finite system life cycle (planning horizon) is considered for all models. 

For the periodic inspection approach, two models are developed for the systems composed 

of hard-type and soft-type components, and two models for the k-out-of-n systems. The models 

vary depending on the assumptions made. The main contributions of Models 1 to 4 include: (1) 

joint optimisation of periodic inspection frequency and maintenance action for a multi-

component system and the development of mathematical models that are solved to find the 

expected values in the objective functions, (2) reduction of the minimal intervals at which a 

scheduled inspection can be performed – this leads to a semi-continuous variable for the 

inspection interval, and (3) the use of the genetic algorithm to improve the computational 

efficiency, so that the optimal solution can be obtained in a shorter time. 

The major contributions of the present dissertation can be classified as following. 

(a) Model 1: this model considers a k-out-of-n system subject to hidden component failures, 

which are revealed either at inspections, or system failures. We take into account both the 

periodic and opportunistic inspections occurring at the times of system failure over a finite life 

cycle. Since failures of components are discoverable only at either scheduled, or opportunistic 

inspections and are, therefore, hidden, the components’ age cannot serve as the maintenance 

optimisation criterion. Instead, the number of minimal repairs before replacement is used for 

this purpose. Inspection policy is optimised on the basis of the length of the inspection period 

(i.e. time between two consecutive periodic inspections).  

The objective function is formulated in terms of the total expected cost of system’s 

inspection and maintenance. We jointly optimise for inspection and maintenance policies. 

Optimisation is performed using a Monte Carlo simulation with exhaustive search of the joint 

inspection and maintenance policy space. Sensitivity analysis shows that the objective function 

and, therefore, the joint inspection and maintenance policy are most sensitive to the inspection 

period length. 

We also compare the model with the cases of series and parallel systems. The results suggest 

that due to the highest total system downtime penalty incurred, series systems have the highest 

total expected cost and result in an optimal joint policy with the longest inspection period and 

lowest number of minimal repairs before replacement (essentially, replace-upon-failure policy). 
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The optimal number of minimal repairs before replacement is the lowest for parallel systems, 

since the number of failures, minimal repairs and replacements is generally lower for these 

systems compared to k-out-of-n systems. 

This model is applicable to redundant brake lines in cars, where the presence of multiple 

brake line contours ensures that as long as one line remains operational, there is still a pair of 

diagonally-opposite front and rear wheels with operational brakes. This model can also be 

applied to uninterruptible power supplies with active redundancy. 

(b) Model 2: this model considers a redundant k-out-of-n system subject to hidden 

component failures with preventive replacement of components at periodic inspections, as well 

as corrective maintenance (minimal repair or replacement) of components at periodic 

inspections and system failures. 

By using the number of minimal repairs before replacement as the maintenance decision 

criterion, the model from Chapter 3 allows for preventive replacements of components even if 

their failures are hidden. 

Optimisation is performed to find the optimal joint inspection and maintenance policies first 

by using the Monte Carlo simulation, which finds the optimal joint policy by exhaustively 

searching the policy space. We then use a genetic algorithm implementation, with an integer 

inspection period length, which provides identical solutions to the exhaustive search technique, 

but in a much shorter time. 

We then demonstrate the method’s applicability to cases where the minimum time between 

inspections may be smaller and/or the planning horizon may be much larger relative to the 

minimal inspection period length. Rather than rescaling the problem to represent the minimal 

inspection period as an integer and the planning horizon as its integer multiple, the increased 

efficiency of the genetic algorithm allows to consider very small inspection periods, which 

essentially makes the set of available periodic inspection times quasi-continuous, i.e. relaxing 

the integer constraint on the length of inspection period. Thus, the value of the length of the 

inspection period is no longer limited to the integer number of time units (e.g. months), but may 

also take positive rational values. 
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The results of the sensitivity analysis suggest that the optimality of the joint inspection and 

maintenance policy is most sensitive to variation in the system’s downtime penalty cost, since 

this is usually the cost with the largest absolute value. We plot and determine the empirical 

linear relation between the system downtime penalty cost and the total expected cost in the 

objective function for the optimal joint inspection and maintenance policy. This allows the 

development of a deterministic linear empirical model for the total expected cost in terms of the 

system downtime penalty cost, thus demonstrating the method of constructing a simple 

deterministic model restricted to a set of parameters from a general stochastic model. 

The value of the objective function is found to be negatively sensitive to changes in the 

length of the optimal inspection period. We also find that sensitivity of the objective function 

to the optimal inspection period increases as the length of the inspection period decreases. As 

the optimal inspection period length decreases, its sensitivity to the system downtime penalty 

also decreases. This is because longer inspection period, on average, causes the system to remain 

in the failed state for a longer time. This, in turn, incurs greater costs due to the higher system 

downtime. Thus, system downtime penalty favours smaller periodic inspection interval in order 

to retain the optimality of the total expected cost and, consequently, of the objective function. 

The model described in this section can be applied, for example, to arrays of general purpose 

relays as encountered in factory settings. 

(c) Model 3: this model features corrective maintenance (minimal repair or replacement) of 

hard-type and soft-type components, and opportunistic and periodic inspections of soft-type 

components. Both hard-type and soft-type components are subject to opportunistic inspections 

in addition to the scheduled periodic inspections over a finite life cycle. 

Although soft failures are hidden and revealed only at periodic or opportunistic inspections, 

they degrade the system’s performance. Hidden failures do not allow for the formulation of a 

closed-form mathematical expression. 

The objective is to minimise the total expected cost of inspection and maintenance for the 

entire system. Because of the increased complexity of the problem, optimisation is performed 

using the three-stage Monte Carlo simulation. The first stage finds the optimal maintenance 

policy for the hard-type components, based on their replacement ages. The second stage finds 

the optimal maintenance policy for the soft-type components, based on the number of minimal 
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repairs before replacement. The third stage finds the optimal inspection policy based on the 

optimal maintenance policy for the soft-type components. Recursive expressions for generating 

the expected values in the simulation are provided in the present thesis. 

This models is used to optimise for the inspection and maintenance of a general infusion 

pump found in hospitals. In such pumps, fuses and displays are represented as hard-type 

components, and liquid-level alarm and battery are represented as soft-type components. 

(d) Model 4: in addition to the assumptions listed for Model 3, the possibility of preventive 

replacement of hard-type components at periodic inspections is considered. In both Models 3 

and 4, the occurrence of hard failures may impact the expected number of soft failures, and thus, 

the expected number of minimal repairs, replacements and expected downtime. Consequently, 

these expected values influence the length of the optimal periodic inspection interval. In Model 

4, the costs of hard-type components can impact the optimal periodic inspection interval as well. 

For the non-periodic inspection approach, we develop one model for a k-out-of-n system 

and one model for a system composed of hard-type and soft-type components. The main 

contributions of these models include: (4) joint optimisation of non-periodic inspection and 

maintenance (minimal repair or replacement) policies for the systems, (5) formula for the 

expected number of system failures in terms of the cost ratio and component failure intensity, 

(6) simple formula for reliability of k-out-of-n system, (7) formula for finding the planning 

horizon length based on the expected number of system failures, (8) proof outline of convexity 

of the total expected cost formula in the most general case. 

The non-periodic models and other contributions are considered in more detail below. 

(e) Model 5: in this model, we consider a redundant k-out-of-n system subject to scheduled 

non-periodic and opportunistic inspections, the latter occurring at system failures. The available 

maintenance actions are either a minimal repair, or a corrective replacement. Inspection policies 

are based on the unique inspection schemes generated by representing decimal numbers as 

binary numbers having the length dependent on the planning horizon. Maintenance policies are 

based on the number of minimal repairs before replacement. Joint inspection and maintenance 

optimisation is performed using the genetic algorithm. 
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An example of application of this model to the real-world situation is in optimising 

inspection and maintenance of several diesel generators providing electrical power to a remote 

base station (e.g. used in geophysical surveys), which because of crew staffing shortages may 

require non-periodic inspection and maintenance optimisation. 

(f) Model 6: this model features corrective maintenance (minimal repair or replacement) of 

hard-type and soft-type components, and inspections of soft-type components at scheduled and 

opportunistic inspections. The soft-and-hard-type system considered here is subject to 

scheduled non-periodic and opportunistic inspections, the latter occurring at system failures. 

We consider corrective maintenance (minimal repair or replacement) of the components at 

scheduled inspections and at system’s failures (opportunistic inspections). Maintenance policies 

for the hard-type components are based on the replacement age, generated from the interval 

bounded by 0 and some rational positive multiple of the planning horizon length. Maintenance 

policies for the soft-type components are based on the number of minimal repairs before 

replacement. 

An application of this model includes a MacPherson-type strut assembly found in cars, 

where a shock absorber, a coil spring and a strut-to-mount nut are modelled as hard-type 

components, and lower and upper spring insulators, dust shield, jounce bumper and spring seat 

pad are modelled as soft-type components. 

(g) For k-out-of-n systems, we provide expression for the expected number of system 

failures in terms of the cost ratio. We also provide expressions for the expected number of 

system failures in terms of the component failure intensity and for calculating system reliability 

whenever considering the system’s evolution until its first repair. In addition, we derive a 

criterion for establishing an acceptable level of expected system failures over the system's life 

cycle. The latter may be useful for planning the system’s operating horizon, at the system design 

stage and when analysing its performance. 

(h) We also demonstrate convexity of the objective functions used for optimisation in the 

proposed models. We provide a mathematical argument, as well as present three-dimensional 

plots for the objective functions in the case of periodic k-out-of-n systems. 
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6.2. Future Work 

The models proposed in the present dissertation can be extended by incorporating more 

realistic or relaxing restrictive assumptions, taking into account additional considerations, 

employing new methods and techniques, analysing the problem in the context of new theories, 

etc. Some of the proposed directions for future work are given below. 

(a) The most logical extension of the current work is to incorporate preventive replacements 

in the proposed non-periodic models. Conditions similar to those found in the periodic models 

can be used. Thus, for k-out-of-n systems, components may be preventively replaced at 

scheduled inspections when their number of minimal repairs before replacement is equal to the 

optimal number of minimal repairs before replacement. For systems made up of hard- and soft-

type components, preventive replacements of hard-type components can be performed at 

scheduled non-periodic inspections whenever the component’s age exceeds its optimal 

replacement age. 

(b) Environmental risk factors (e.g. temperature, vibration, friction, pressure, humidity, 

etc.), which are important for such systems as turbines, engines, or chemical reactors, can be 

incorporated into the models by modifying the failure intensity function. The power law 

intensity function can be augmented by an exponential factor, whose power is a weighted sum 

of the risk factor covariates, thus making it similar to the form of the failure intensity function 

used in proportional hazards models. 

(c) Combining the joint optimisation of inspection, maintenance and inventory may also be 

considered in a future work (see, for example, Salameh and Jaber [127], Bjarnason and 

Taghipour [21]). Of special interest are cases including both integer and quasi-continuous 

inspection periods. This problem may be especially suitable for genetic algorithm 

implementation because of its large search space. 

(d) In the present treatment of multicomponent systems, the duration of inspections was 

considered negligible relative to the length of the planning horizon, and the technicalities of 

inspection are left out of scope. However, exactly what constitutes an inspection and how the 

inspection and maintenance processes take place are some of the most important practical 

aspects. Considering who and how inspects and maintains the system leads to a different 

dimension of multicomponent systems analysis. If inspection and/or maintenance are performed 
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by different people, human, environmental and many other factors will contribute to the 

variability of these processes. In industrial operations, where workers often perform inspection 

and maintenance, the experience of individual workers may play a crucial role in the ultimate 

quality, reliability and maintainability of the operations or product. Wherever experience is 

important, training and the ability of staff to learn and re-learn their functions, responsibilities 

and procedures becomes fundamental in optimising inspection and maintenance. The processes 

of memory training, learning and forgetting emerge as very important in this regard (see, for 

example, Jaber [128]). Joining the methods from the literature on learning and forgetting 

processes with the work in inspection and maintenance optimisation is a promising area of 

future research. 

(e) Inspecting and maintaining complex systems in high-stress environments with frequent 

lack of sufficient staffing characteristic of many hospital settings, has not been considered in 

the literature as widely as the design and manufacturing phases of system development. While 

the latter are, undoubtedly, very important, there is usually a wide gap between the designed 

and the actual operational conditions and environment. This causes excessive stress on the 

devices and systems and results in greater number and increased frequency of failures – both at 

the system and component levels. 

Thus, complex systems and devices may be improved by observing their operation and use, 

including inspection and maintenance, in reality, and then using this information as a feedback 

for the (re-)design and improvement of these systems at the initial design stages. Human factors, 

in particular ergonomics, engineering psychology and human performance are of particular 

interest, since human error often leads to catastrophic consequences. Usability evaluations have 

been performed on infusion pumps (Schnittker et al. [129]), defibrillators (Fidler and Johnson 

[130], Fairbanks et al. [131], Fairbanks and Caplan [132]), etc. Incorporating the results of the 

usability analyses with the optimisation models for inspection and maintenance would attempt 

approaching the problem from both ends – the initial design stage, and the final usage stage. 

This may result in significant improvements on the designs of such devices and systems, while 

also reduce the costs associated with their operation. 

(f) Another direction for the future work may be taken towards analysing the systems where 

the underlying hazard function is not deterministic, but instead is given by a random variable. 



124 

 

Such processes fall under the generalisation of doubly-stochastic (Cox) processes and have 

found some applications in biophysics and physical chemistry [133], neuroscience [134] and 

astrophysics [135]. For example, photon arrival data in single-molecule biophysical 

experiments related to protein dynamics has been studied by Zhang and Kou [136]. Perhaps, 

application of the Cox process may be useful for studying the birth-and-death and/or renewal 

processes in maintenance and inspection optimisation of multicomponent/multiagent systems 

applicable to a wider range of physical phenomena. 

(g) Yet another direction of possible work is in considering the problem from the point of 

view of the queueing theory, in particular hidden Markov models/chains and Markov decision 

processes (Neuman and Bonhomme [137], Xiang et al. [138]). More complex systems with 

hidden soft-type components having several states and associated transition probabilities may 

be considered. Using this framework will likely results in more emphasis being put on the 

degradation process of these components. For this reason, such analysis might be more useful 

or suitable to systems where degradation of components is of particular significance. Examples 

of such systems may include jet engines (Sun et al. [91]), turbines, generators (Jia [95], Tu et 

al. [92]), compressors (Zhou et al. [94]), motors, etc. Another class of systems might be the ones 

where their state is stochastically dependent on the observed state (e.g. obtained measurement 

from a sensor). This applies primarily to complex or expensive systems with electronic 

components relying on electromagnetic measurements, such as magnetometers and various 

geophysical surveying equipment.  
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Appendices 

Appendix A. Convexity of the objective function 

The convexity of the objective function, i.e. the total expected cost function, can be 

ascertained by the following reasoning. Looking at the expressions for the total expected cost 

functions for either Type 1, or Type 2 systems, it can be seen that they are a summation 

composed of the deterministic and stochastic parts. The deterministic part is the sum of the costs 

of inspection and system downtime, and the stochastic part is the sum of the expected values of 

the costs of minimal repair, replacement and component downtime. It is known that the sum of 

the convex functions is also a convex function. In this case, the total expected cost function is 

convex if the deterministic and the stochastic parts of it are convex. We then consider each of 

the parts separately. 

In the most general case, the deterministic part (𝑙𝑐𝐼 + 𝐹𝑐𝑆𝐷) is a sum of the linear functions. 

Since linear functions are simultaneously convex and concave, it follows that their sum and, 

consequently, the deterministic part, is convex. 

In the most general case, the stochastic part is a sum of the products of constant costs and 

expected values. It can be noted that the expected number of failures (both for a component, 

and for the whole system) generally equals the sum of the expected numbers of minimal repairs 

and corrective replacements. Since the failures follow non-homogeneous Poisson process, the 

number of failures is Poisson-distributed with mean in the form of a power-law function of time 

(see Section 3.3 for derivation). Differentiating the expected value function twice, we obtain 

that its second derivative is non-negative, which is equivalent to the function’s being convex. 

Since the number of failures is Poisson-distributed, the numbers of minimal repairs and 

corrective replacements are each Poisson-distributed (following the infinite divisibility property 

of the Poisson distribution). Hence, these random variables have the same form of the expected 

function and the preceding development regarding their convexity applies. 

The most general form of the objective function used in the present work is given as 

following: 
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𝐸[𝐶𝑇] = 𝑙𝑐𝐼 + 𝐹𝑐𝑆𝐷 + ∑(𝑐𝑠
𝑀𝑀𝑠 + 𝑐𝑠

𝑅(𝑅𝑠 + 𝑃𝑅𝑠) + 𝑐𝑠
𝐷(𝜔 − 𝑈𝑠))

𝑚1

𝑠=1

 

                                   +𝑐𝑂𝐼 ∑(𝑀ℎ
𝐻 + 𝑅ℎ

𝐻)

𝑚2

ℎ=1

+ ∑(𝑐ℎ
𝑀𝑀ℎ

𝐻 + 𝑐ℎ
𝑅(𝑅ℎ

𝐻 + 𝑃𝑅ℎ
𝐻))

𝑚2

ℎ=1

.                     (A. 1) 

Considering the expected number of minimal repairs and the expected number of corrective 

replacements for each hard-type component: 

𝑀ℎ
𝐻 + 𝑅ℎ

𝐻 = 𝐸[𝑓ℎ].                                                           (A. 2) 

Similarly, for each soft-type component: 

𝑀𝑠 + 𝑅𝑠 = 𝐸[𝑓𝑠].                                                             (A. 3) 

Since each of the soft and hard failures follow NHPP by assumption, the number of each of 

the soft and hard failures is Poisson-distributed, and the time between failures is Weibull-

distributed. The numbers of soft and hard failures can be regarded as splitting of the Poisson 

process describing the arrival of component failures. 

For the number of system failures (since they occur at hard failure times), the following 

holds: 

∑(𝑀ℎ
𝐻 + 𝑅ℎ

𝐻)

𝑚2

ℎ=1

= ∑ 𝐸[𝑓ℎ]

𝑚2

ℎ=1

= 𝐹.                                         (A. 4) 

Since the number of hard failures can be regarded as a splitting process of the number of 

system failures, it follows that the latter is also Poisson-distributed. Using the form of the 

expected number of a Poisson random variable, we check the deterministic part of objective 

function for convexity: 

𝜕2

𝜕𝑡2
(𝑙𝑐𝐼 + 𝐹𝑐𝑆𝐷) = 0 +

𝑑2

𝑑𝑡2
((

𝑡

𝜂
)

𝛽

𝑐𝑆𝐷) = 𝑐𝑆𝐷
𝑑

𝑑𝑡
(

𝛽

𝜂
(

𝑡

𝜂
)

𝛽−1

) = 𝑐𝑆𝐷
𝛽(𝛽 − 1)

𝜂𝛽
𝑡𝛽−2.   (A. 5) 

But 𝑐𝑆𝐷 ≥ 0, so dividing the preceding by 𝑐𝑆𝐷 and setting it to be non-negative, obtain: 

𝛽(𝛽 − 1)

𝜂𝛽
𝑡𝛽−2 ≥ 0 ⇔ {

𝑡 ≥ 0  
𝛽 ≠ 0,1
𝜂 ≠ 0.  

                                                          (A. 6) 
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But all of these conditions follow from the properties of a Weibull distribution (for 𝛽 = 1, 

Weibull distribution turns into memoryless exponential distribution) and are, thus, satisfied. 

Therefore, it follows that the deterministic part of the objective function is convex. 

To show that the stochastic part is convex, it is only necessary to show that each of its linear 

terms is convex. Since all of the multipliers-costs are non-negative and constant, they do not 

affect convexity of the objective function. We can then focus on showing convexity of the 

expected numbers in the stochastic part of the objective function. Equations (A.2) and (A.3) 

suggest that the number of minimal repairs and the number of corrective replacements all form 

splitting of a Poisson process, which implies they are also Poisson-distributed. In this case, 

reasoning from Equations (A.5) and (A.6) applies, and it follows that the expressions for these 

expected numbers are also convex. 

The only term left that requires showing convexity is the downtime (𝜔 − 𝑈𝑠). But, since =

const. and (𝜔 − 𝑈𝑠) ≥ 0, showing convexity for downtime is equivalent to showing that for 

uptime 𝑈𝑠. Following from the assumption of NHPP and its properties, 𝑈𝑠 is Weibull-

distributed, and the expected uptime can be given by the following: 

𝑈𝑠 = 𝜂𝛤 (1 +
1

𝛽
).                                                            (A. 7) 

Checking for convexity: 

𝜕2

𝜕𝑡2
𝑈𝑠 =

𝑑2

𝑑𝑡2
(𝜂𝛤 (1 +

1

𝛽
)) = 0.                                       (A. 8) 

Therefore, it follows that the expected uptime is strictly convex. 
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Appendix B. Recursive formulations for the case of corrective maintenance of hard-

type components and opportunistic inspections of soft-type components 

Following the same notations and steps as Taghipour and Banjevic [8], we consider four 

different scenarios which may take place in an inspection interval:  

- A soft failure occurs before a hard failure 

- A hard failure occurs and no soft failure happens before it 

- A soft failure happens and no hard failure occurs after it before the periodic inspection 

time 

- No soft and hard failures happen in the inspection interval 

We consider soft-type component 𝑠 and a hard subsystem consisting of all hard-type 

components in series configuration with the hazard rate of 𝜆𝐻(𝑧|𝜽) = ∑ 𝜆ℎ(𝜃ℎ + 𝑧)𝑛2
ℎ=1 . Let us 

assume 𝜔 = 𝜏, which implies we have only one periodic inspection taking place at time 𝜏. We 

define 𝐺1,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑚𝑐, 𝑚𝑠) to be the function which provides us the expected value of a 

random variable of interest, such as the number of minimal repairs, replacements, or the 

downtime of soft-type component 𝑠 with initial age 𝑡𝑠, assuming at the beginning of the interval, 

the current number of minimal repairs already performed is 𝑚𝑐, and 𝑚𝑠 is the maximum number 

of minimal repairs before replacement for the component. 𝜽 is the vector of initial ages of all 

hard-type components. In order to provide a universal form for the function for calculating 

different expected values, we define function 𝜓(𝑦, 𝑧, 𝐼𝑠) to act as a placeholder for the expected 

value of interest. 𝐼𝑠 is 0, 1, or 2, if component 𝑠 is minimally repaired, replaced, or it is not failed 

in an interval, respectively. Assuming the first failure times of soft-type component 𝑠 and the 

hard subsystem are 𝑌 and 𝑍, correspondingly, and their density and reliability functions are 

𝑓𝑌(𝑦|𝑡𝑠), 𝑓𝑍(𝑦|𝜽), ℛ𝑌(𝑦|𝑡𝑠) and ℛ𝑍(𝑧|𝜽); we now formulate the expected value of the random 

variable of interest over inspection interval [0, 𝜏] using the conditional expected value given 

𝑌 = 𝑦 and 𝑍 = 𝑧: 

𝐺1,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑚𝑐, 𝑚𝑠) 

 = ∫ ∫ ∑{([𝜓(𝑦, 𝑧, 0) + 𝐺1,𝑠(𝜏 − 𝑧, 𝑡𝑠 + 𝑦, 𝜽⨁𝑧, 𝜻∗, 𝑚𝑐 + 1, 𝑚𝑠)]𝑟𝑠
𝑌(𝑚𝑐, 𝑚𝑠)

𝑛2

ℎ=1

𝑧

0

𝜏

0

 

 +[𝜓(𝑦, 𝑧, 1) + 𝐺1,𝑠(𝜏 − 𝑧, 0, 𝜽⨁𝑧, 𝜻∗, 0, 𝑚𝑠)]�̅�𝑠
𝑌(𝑚𝑐, 𝑚𝑠)) 𝑟ℎ

𝑍(𝜃ℎ + 𝑧, 𝜁ℎ
∗) 
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+([𝜓(𝑦, 𝑧, 0) + 𝐺1,𝑠(𝜏 − 𝑧, 𝑡𝑠 + 𝑦, (𝜽⨁𝑧)(0ℎ), 𝜻∗, 𝑚𝑐 + 1, 𝑚𝑠)]𝑟𝑠
𝑌(𝑚𝑐, 𝑚𝑠) 

 

+[𝜓(𝑦, 𝑧, 1) + 𝐺1,𝑠(𝜏 − 𝑧, 0, (𝜽⨁𝑧)(0ℎ), 𝜻∗, 0, 𝑚𝑠)]�̅�𝑠
𝑌(𝑚𝑐, 𝑚𝑠)) �̅�ℎ

𝑍(𝜃ℎ

+ 𝑧, 𝜁ℎ
∗)} 𝑞ℎ(𝑧)𝑓𝑌(𝑦|𝑡𝑠)𝑓𝑍(𝑧|𝜽)𝑑𝑦𝑑𝑧 

+ ∫ ∑{[𝜓(𝑧, 𝑧, 2) + 𝐺1,𝑠(𝜏 − 𝑧, 𝑡𝑠 + 𝑧, 𝜽⨁𝑧, 𝜻∗, 𝑚𝑐, 𝑚𝑠)]𝑟ℎ
𝑍(𝜃ℎ + 𝑧, 𝜁ℎ

∗)

𝑛1

𝑠=1

𝜏

0

 

+[𝜓(𝑧, 𝑧, 2) + 𝐺1,𝑠(𝜏 − 𝑧, 𝑡𝑠 + 𝑧, (𝜽⨁𝑧)(0ℎ), 𝜻∗, 𝑚𝑐, 𝑚𝑠)]�̅�ℎ
𝑍(𝜃ℎ

+ 𝑧, 𝜁ℎ
∗)}𝑞ℎ(𝑧)ℛ𝑌(𝑧|𝑡𝑠)𝑓𝑍(𝑧|𝜽)𝑑𝑧 

+ ∫[𝜓(𝑦, 𝜏, 0)𝑟𝑠
𝑌(𝑚𝑐, 𝑚𝑠) + 𝜓(𝑦, 𝜏, 1)�̅�𝑗

𝑌(𝑚𝑐, 𝑚𝑠)]

𝜏

0

𝑓𝑋(𝑥|𝑡𝑗) 𝑑𝑦𝑅𝑍(𝜏|𝜽) 

+𝜓(𝜏, 𝜏, 2)ℛ𝑋(𝜏|𝑡𝑗)ℛ𝑍(𝜏|𝜽),                                         (B.1) 

where 

𝑟𝑠
𝑌(𝑚𝑐, 𝑚𝑠) = {

1, if  𝑚𝑐 ≤  𝑚𝑠

0, otherwise   
 ,    𝑟ℎ

𝑍(𝑧, 𝜁ℎ
∗) = {

1, if  𝑧 ≤ 𝜁ℎ
∗

0, otherwise
 ,  �̅�𝑠

𝑌 = 1 − 𝑟𝑠
𝑌,   �̅�ℎ

𝑍 = 1 − 𝑟ℎ
𝑍. 

The placeholder function 𝜓(𝑦, 𝑧, 𝐼𝑠) varies depending on the random variable of interest. 

For the expected number of minimal repairs: 

𝜓(𝑦, 𝑧, 𝐼𝑠) = {
1, if 𝐼𝑠 = 0     
0, otherwise

 , 

For the expected number of replacements: 

𝜓(𝑦, 𝑧, 𝐼𝑠) = {
1, if  𝐼𝑠 = 1   
0, otherwise

, 

For the expected uptime: 

 𝜓(𝑦, 𝑧, 𝐼𝑠) = {
𝑦, if   𝑦 < 𝑧   
𝑧, otherwise

 .        
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𝑞ℎ(𝑧) is the probability that the failure of the hard subsystem at time 𝑍 = 𝑧 is due to the 

failure of hard-type component ℎ: 

𝑞ℎ(𝑧)𝑓𝑍(𝑧|𝜽) = 𝜆ℎ(𝑧|𝜃ℎ)exp (− ∫ 𝜆𝐻(𝜒|𝜽)𝑑𝜒

𝑍

0

).  

𝜽⨁𝑧 denotes addition of a scalar 𝑧 to each of the coordinates of vector 𝜽, i.e. 𝜽⨁𝑧 =

(𝜃1 + 𝑧, 𝜃2 + 𝑧, … , 𝜃𝑛2
+ 𝑧), and (𝜽⨁𝑧)(0ℎ) means the ℎth coordinate of vector 𝜽⨁𝑧 is replaced 

by zero, i.e. (𝜽⨁𝑧)(0ℎ) = (𝜃1 + 𝑧, … , 𝜃ℎ−1 + 𝑧, 0, 𝜃ℎ+1 + 𝑧, … , 𝜃𝑛2
+ 𝑧). 

Now, let us extend the Equation (C.1) to obtain the expected value of a random variable of 

interest over [0, 𝑖𝜏] with the periodic inspections being performed at times 𝜏, 2𝜏, …, 𝑖𝜏 and 𝑖 =

2, … , 𝑙: 

𝐺𝑖,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑚𝑐, 𝑚𝑠) 

 = ∫ ∫ ∑{([𝜓(𝑦, 𝑧, 0) + 𝐺𝑖,𝑠(𝜏 − 𝑧, 𝑡𝑠 + 𝑦, 𝜽⨁𝑧, 𝜻∗, 𝑚𝑐 + 1, 𝑚𝑠)]𝑟𝑠
𝑌(𝑚𝑐, 𝑚𝑠)

𝑚2

ℎ=1

𝑧

0

𝜏

0

 

+[𝜓(𝑦, 𝑧, 1) + 𝐺𝑖,𝑠(𝜏 − 𝑧, 0, 𝜽⨁𝑧, 𝜻∗, 0, 𝑚𝑠)]�̅�𝑠
𝑌(𝑚𝑐, 𝑚𝑠)) 𝑟ℎ

𝑍(𝜃ℎ + 𝑧, 𝜁ℎ
∗) 

+([𝜓(𝑦, 𝑧, 0) + 𝐺𝑖,𝑠(𝜏 − 𝑧, 𝑡𝑠 + 𝑥, (𝜽⨁𝑧)(0ℎ), 𝜻∗, 𝑚𝑐 + 1, 𝑚𝑠)]𝑟𝑠
𝑋(𝑚𝑐, 𝑚𝑠) 

+[𝜓(𝑦, 𝑧, 1) + 𝐺𝑖,𝑠(𝜏 − 𝑧, 0, (𝜽⨁𝑧)(0ℎ), 𝜻∗, 0, 𝑚𝑠)]�̅�𝑠
𝑋(𝑚𝑐, 𝑚𝑠)) �̅�ℎ

𝑍(𝜃ℎ

+ 𝑧, 𝜁ℎ
∗)} 𝑞ℎ(𝑧)𝑓𝑌(𝑦|𝑡𝑠)𝑓𝑍(𝑧|𝜽)𝑑𝑦𝑑𝑧 

+ ∫ ∑{[𝜓(𝑧, 𝑧, 2) + 𝐺𝑖,𝑠(𝜏 − 𝑧, 𝑡𝑗 + 𝑧, 𝜽⨁𝑧, 𝜻∗, 𝑚𝑐, 𝑚𝑠)]𝑟ℎ
𝑍(𝜃ℎ + 𝑧, 𝜁ℎ

∗)

𝑚1

𝑠=1

𝜏

0

 

+[𝜓(𝑧, 𝑧, 2) + 𝐺𝑖,𝑠(𝜏 − 𝑧, 𝑡𝑗 + 𝑧, (𝜽⨁𝑧)(0𝑚), 𝜻∗, 𝑚𝑐, 𝑚𝑠)]�̅�ℎ
𝑍(𝜃ℎ

+ 𝑧, 𝜁ℎ
∗)}𝑞ℎ(𝑧)ℛ𝑌(𝑧|𝑡𝑠)𝑓𝑍(𝑧|𝜽)𝑑𝑧 

+ ∫ [(𝜓(𝑦, 𝜏, 0) + 𝐺𝑖−1,𝑠(𝜏, 𝑡𝑠 + 𝑥, 𝜽⨁𝜏, 𝜻∗, 𝑚𝑐 + 1, 𝑚𝑠)) 𝑟𝑠
𝑌(𝑚𝑐, 𝑚𝑠)

𝜏

0

+ (𝜓(𝑦, 𝜏, 1) + 𝐺𝑖−1,𝑠(𝜏, 0, 𝜽⨁𝜏, 𝜻∗, 0, 𝑚𝑠)) �̅�𝑗
𝑋(𝑚𝑐, 𝑚𝑠)] 𝑓𝑌(𝑦|𝑡𝑠) 𝑑𝑦ℛ𝑍(𝜎|𝜽) 
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+ (𝜓(𝜏, 𝜏, 2) + 𝐺𝑖−1,𝑠(𝜏, 𝑡𝑗 + 𝜏, 𝜽⨁𝜏, 𝜻∗, 𝑚𝑐, 𝑚𝑠)) ℛ𝑌(𝜏|𝑡𝑠)ℛ𝑍(𝜏|𝜽).                           (B.2) 

To obtain the required expected values in Equation (22),  

𝐺𝑖,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑚𝑐, 𝑚𝑠) should be obtained for 𝑖 = 1, … , 𝑙 for a given 𝑚𝑠, assuming 𝑚𝑐 = 0 at 

time zero. The integrals in Equations (B.1) and (B.2) can be approximated using Simpson’s 

rule. However, due to recursive nature of the equations and discretisation approach of 

Simpson’s rule, a system of equations needed to be solved to obtain the expected values, which 

makes the procedure computationally intensive with less accurate results. 

Similarly to Equations (B.1) and (B.2) for Stage 2, recursive formula can be derived to 

obtain the required expected values in Equation (27) in Stage 3. The equations are similar to 

(B.1) and (B.2), but the difference is that 𝑚𝑠 is substituted by 𝑚𝑠
∗, since in Stage 3, the current 

number of minimal repairs is compared with the optimal number of minimal repairs 𝑚𝑠
∗ obtained 

from Stage 2. 

In Model 4, in addition to the expected values for the number of minimal repairs, 

replacements and expected uptime of soft-type components, we need to obtain the expected 

numbers of minimal repairs, corrective and preventive replacements of hard-type components, 

as well as the expected number of opportunistic inspections (see Equation (29)). Thus, we need 

to incorporate the preventive replacements of hard-type components at periodic inspections, 

assuming 𝑚𝑐 = 0 at time zero: 

𝐺𝑖,𝑠(𝜏, 𝑡𝑠, 𝜽, 𝜻∗, 𝑚𝑐, 𝑚𝑠) 

 = ∫ ∫ ∑{([𝜓(𝑦, 𝑧, 0) + 𝐺𝑖,𝑠(𝜏 − 𝑧, 𝑡𝑠 + 𝑦, 𝜽⨁𝑧, 𝜻∗, 𝑚𝑐 + 1, 𝑚𝑠)]𝑟𝑠
𝑌(𝑚𝑐, 𝑚𝑠)

𝑚2

ℎ=1

𝑧

0

𝜏

0

 

+[𝜓(𝑦, 𝑧, 1) + 𝐺𝑖,𝑠(𝜏 − 𝑧, 0, 𝜽⨁𝑧, 𝜻∗, 0, 𝑚𝑠)]�̅�𝑠
𝑌(𝑚𝑐, 𝑚𝑠)) 𝑟ℎ

𝑍(𝜃ℎ + 𝑧, 𝜁ℎ
∗) 

+([𝜓(𝑦, 𝑧, 0) + 𝐺𝑖,𝑠(𝜏 − 𝑧, 𝑡𝑠 + 𝑦, (𝜽⨁𝑧)(0ℎ), 𝜻∗, 𝑚𝑐 + 1, 𝑚𝑠)]𝑟𝑠
𝑌(𝑚𝑐, 𝑚𝑠) 

+[𝜓(𝑦, 𝑧, 1) + 𝐺𝑖,𝑠(𝜏 − 𝑧, 0, (𝜽⨁𝑧)(0ℎ), 𝜻∗, 0, 𝑚𝑠)]�̅�𝑠
𝑌(𝑚𝑐, 𝑚𝑠)) �̅�ℎ

𝑍(𝜃ℎ

+ 𝑧, 𝜁ℎ
∗)} 𝑞ℎ(𝑧)𝑓𝑌(𝑦|𝑡𝑠)𝑓𝑍(𝑧|𝜽)𝑑𝑦𝑑𝑧 
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+ ∫ ∑{[𝜓(𝑧, 𝑧, 2) + 𝐺𝑖,𝑠(𝜏 − 𝑧, 𝑡𝑠 + 𝑦, 𝜽⨁𝑧, 𝜻∗, 𝑚𝑐, 𝑚𝑠)]𝑟ℎ
𝑍(𝜃ℎ + 𝑧, 𝜁ℎ

∗)

𝑚1

ℎ=1

𝜏

0

 

+[𝜓(𝑧, 𝑧, 2) + 𝐺𝑖,𝑠(𝜏 − 𝑧, 𝑡𝑠 + 𝑧, (𝜽⨁𝑧)(0ℎ), 𝜻∗, 𝑚𝑐, 𝑚𝑠)]�̅�ℎ
𝑍(𝜃ℎ

+ 𝑧, 𝜁ℎ
∗)}𝑞ℎ(𝑧)ℛ𝑌(𝑧|𝑡𝑠)𝑓𝑍(𝑧|𝜽)𝑑𝑧 

+ ∫ [(𝜓(𝑦, 𝜏, 0) + 𝐺𝑖−1,𝑠(𝜏, 𝑡𝑠 + 𝑦, 𝝑(𝜽⨁𝜏, 𝜻∗), 𝜻∗, 𝑚𝑐 + 1, 𝑚𝑠)) 𝑟𝑗
𝑋(𝑚𝑐, 𝑚𝑠)

𝜏

0

+ (𝜓(𝑦, 𝜏, 1) + 𝐺𝑖−1,𝑠(𝜏, 0, 𝝑(𝜽⨁𝜏, 𝜻∗), 𝜻∗, 0, 𝑚𝑠)) �̅�𝑠
𝑌(𝑚𝑐, 𝑚𝑠)] 𝑓𝑌(𝑦|𝑡𝑠)𝑑𝑦ℛ𝑍(𝜎|𝜽) 

+ (𝜓(𝜏, 𝜏, 2) + 𝐺𝑖−1,𝑠(𝜏, 𝑡𝑠 + 𝜏, 𝝑(𝜽⨁𝜏, 𝜻∗), 𝜻∗, 𝑚𝑐, 𝑚𝑠)) ℛ𝑌(𝜏|𝑡𝑠)ℛ𝑍(𝜏|𝜽),              (B.3)
 

where 𝝑(𝜽, 𝜻∗) = (𝜗1, … , 𝜗𝑛2
) and 𝜗ℎ is defined as follows: 

𝜗ℎ = {
𝜃ℎ, if  𝜃ℎ ≤ 𝜁ℎ

∗   
0, otherwise   

, ℎ = 1,2, … , 𝑛2. 

If 𝑓ℎ
𝑍(𝑧|𝜃ℎ) and ℛℎ

𝑍(𝑧|𝜃ℎ) are the density and reliability functions of hard-type 

component ℎ, then the recursive formula for the expected values of interest, i.e. corrective and 

preventive replacement of hard-type components, as well as the expected number of 

opportunistic inspections for hard-type components are derived as follows: 

𝐺1,ℎ
𝐻 (𝜏, 𝜃ℎ , 𝜁ℎ

∗) = ∫{[𝜓(𝑧, 0, 𝜏) + 𝐺1,ℎ
𝐻 (𝜏 − 𝑧, 𝜃ℎ + 𝑧, 𝜁ℎ

∗)]𝑟ℎ
𝑍(𝜃ℎ + 𝑧, 𝜁ℎ

∗)

𝜏

0

 

+[𝜓(𝑧, 1, 𝜏) + 𝐺1,ℎ
𝐻 (𝜏 − 𝑧, 0, 𝜁ℎ

∗)]�̅�ℎ
𝑍(𝜃ℎ + 𝑧, 𝜁ℎ

∗)}𝑓ℎ
𝑍(𝑧|𝜃ℎ)𝑑𝑧 

+ℛℎ
𝑍(𝜏|𝜃ℎ)[𝜓(𝜏, 0, 𝜏)𝑟ℎ

𝑍(𝜃ℎ + 𝜏, 𝜁ℎ
∗) + 𝜓(𝜏, 1, 𝜏)�̅�ℎ

𝑍(𝜃ℎ + 𝜏, 𝜁ℎ
∗)],                         (B.4) 

and 

𝐺𝑖,ℎ
𝐻 (𝜏, 𝜃ℎ , 𝜁ℎ

∗) = ∫{[𝜓(𝑧, 0, 𝜏) + 𝐺𝑖,ℎ
𝐻 (𝜏 − 𝑧, 𝜃ℎ + 𝑧, 𝜁ℎ

∗)]𝑟ℎ
𝑍(𝜃ℎ + 𝑧, 𝜁ℎ

∗)

𝜏

0

 

+[𝜓(𝑧, 1, 𝜏) + 𝐺𝑖,ℎ
𝐻 (𝜏 − 𝑧, 0, 𝜁ℎ

∗)]�̅�ℎ
𝑍(𝜃ℎ + 𝑧, 𝜁ℎ

∗)}𝑓ℎ
𝑍(𝑧|𝜃ℎ)𝑑𝑧 

+{[𝜓(𝜏, 0, 𝜏) + 𝐺𝑖−1,ℎ
𝐻 (𝜏, 𝜃ℎ + 𝜏, 𝜁ℎ

∗)]𝑟ℎ
𝑍(𝜃ℎ + 𝜏, 𝜁ℎ

∗) 

+[𝜓(𝜏, 1, 𝜏) + 𝐺𝑖−1,ℎ
𝐻 (𝜏, 0, 𝜁ℎ

∗)]�̅�ℎ
𝑍(𝜃ℎ + 𝜏, 𝜁ℎ

∗)}ℛℎ
𝑍(𝜏|𝜃ℎ).                          (B.5) 
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For the number of minimal repairs of a hard-type component inside scheduled inspection 

intervals: 

𝜓(𝑧, 𝐼ℎ, 𝜏) = {
1, 𝑧 < 𝜏         
0, otherwise

 , 𝐼ℎ = 0. 

For the number of corrective replacements of a hard-type component inside scheduled 

inspection intervals: 

𝜓(𝑧, 𝐼ℎ, 𝜏) = {
1, 𝑧 < 𝜏         
0, otherwise

 , 𝐼ℎ = 1. 

For the number of preventive replacements of a hard-type component: 

𝜓(𝑧, 𝐼ℎ, 𝜏) = {
1, 𝑧 < 𝜏         
0, otherwise

 , 𝐼ℎ = 1. 

Since two failures cannot take place at the same time, the expected number of opportunistic 

inspections is the sum of the expected number of minimal repairs and the expected number of 

corrective replacements for all hard-type components. 
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Appendix C. Simulation flowcharts for the case of corrective maintenance of hard-

type components and opportunistic inspection of soft-type components 

Stage 1. Obtaining the optimal replacement ages for 𝑚2 hard-type components. 

Find Optimal 
Replacement Ages

Receive: βm, ηm, θ, 
Cost of minimal repair 
of hard-type comp. m, 
Cost of replacement of 

hard-type comp. m 

m = 1

m = m + 1

m   # hard-type 
comp.? 

Calculate: ζ*m from 
Equation (1) 

Yes

End

No

 
Figure C. 1: Flowchart for Stage 1 of Model 3. 

 

Stage 2. Obtaining the optimal number of minimal repairs before replacement for a given 

soft-type component 𝑗, inspection period 𝜏 and cycle length 𝜔. 
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Expected Values 
Required for Stage 2

Receive: τ, ω, 
βj, ηj, ζ*m, 
nj, tj, θ, # 

simul. runs 

i = 1

i   # simul. runs? 

Uptime of comp. j,
 # minimal repairs of 

comp. j,
# replacements of 

comp. j

Yes

No

One Simulation Run 
for Stage 2

i = i + 1

End

Output: Avg. uptime for 
comp. j,

Avg. # minimal repairs 
for comp. j,

Avg. # replacements for 

comp. j  

Figure C. 2: Flowchart for obtaining expected values required for Stage 2 of Model 3. 
 

 

Generate Next 
Failure Time

Receive:
βj, ηj, tj 

Generate z = random(0,1);
Generate next failure 
time for a given comp. 

j=1,  , m1+m2

End

 
Figure C. 3: Flowchart for generating failure times for Stage 2 of Model 3. 
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One Simulation Run 
for Stage 2

Generate z = random(0,1);
Generate next failure 

time sj for a given soft-
type comp. j

m   m2? 

m = 1

m = m + 1

Generate z = random(0,1);
Generate next failure time 

for hard-type comp. m

Yes

Initialise all 
variables

Simulation clock < ω 
and Time to next 
inspection > 0?

No

Smallest hard
failure time < Time to 

next inspection?

Smallest hard failure time 
= min{Next hard failures}

Yes

Yes

θ(earliest hard failure
 comp.)   ζ*(earliest hard 

failure comp.)?

Number of minimal repairs of comp. 
m = Number of minimal repairs of 

comp. m + 1

Yes

Number of replacements of comp. m = 
Number of replacements of comp. m + 1;

θ(earliest hard failure comp.) = 0

No

Next failure of earliest hard failure comp. 
= Generate Next Failure Time (Hard 

params., θ(earliest hard failure comp.);
Next hard failure = Next hard failure – 

Smallest hard failure time;
Next hard failure (earliest hard failure 

comp.) = Next failure of hard-type comp.;
 Time to next insp. = Time to next insp. – 

Smallest hard failure time;
Smallest hard failure time = min{Next hard 

failures}

sj < Time to next 
insp.?

No
# soft failures = # soft failures + 1;

Uptime of comp. j = Uptime of 
comp. j + sj

Yes

# soft failures   nj?

Yes

No

No

No

Receive: τ, 
ω, βj, ηj, βm, 
ηm, ζ*m, nj, 

tj, θ 

 1 5 6 7 2 3 4 

Figure C. 4: Flowchart for performing 1 simulation run for Stage 2 of Model 3. 
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# opportunistic inspections = 
# opportunistic inspections + 1

Yes

sj < Smallest hard 
failure time?

# soft failures = # soft failures + 1;
Uptime of comp. j = Uptime of comp. j + sj

Yes

Number of soft 
failures   nj?

tj = tj + sj;
# minimal repairs of comp. j = # minimal 

repairs of comp. j + 1

Yes

tj = 0;
# replacements of comp. j = # 
replacements of comp. j + 1;

# soft failures = 0

No

sj = Generate Next 
Failure Time

Generate Next 
Failure Time

Uptime of comp. j = Uptime of comp. 
j + Smallest hard failure time;

tj = tj + Smallest hard failure time;
sj = sj - Smallest hard failure time;

No

θ = θ + Smallest hard failure time;
Simulation clock = Simulation clock + 

Smallest hard failure time

tj = tj + sj;
# minimal repairs of comp. j = # 
minimal repairs of comp. j + 1

Yes

tj = 0;
# replacements of comp. j = # 
replacements of comp. j + 1;

# soft failures = 0

No

No

sj = Generate Next 
Failure Time (Soft 

params., tj)

θ = θ + Time to next insp.; 
Simulation clock = Simulation 

clock + Time to next insp.;
Next hard failure = Next hard 

failure – Time to next insp.

Uptime of comp. j = Uptime of 
comp. j + Time to next insp.;
tj = tj + Time to next insp.;
sj = sj – Time to next insp.

Simulation clock < ω?

σ = ω – Simulation clock

Yes

σ   τ? 

Time to next insp. = σ

Yes

Time to next insp. = τ No

Output: # minimal 
repairs of comp. j, # 

replacements of comp. 
j, Uptime of comp. j

No

End

No

 
Figure C. 5: Flowchart for performing 1 simulation run for Stage 2 of Model 3 (Continued). 

 

1 5 6 7 2 3 4 
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Stage 2 
Optimisation

Receive: 
Expected # 
failures for 

comp. j, τ, ω, 
βj, ηj, ζ*m, 
nj, tj, θ, ci 

j = 0

j < m1?

j = j + 1;
Expected # failures for 
comp. j = (ω/η j)^βj;

[LCLj;UCLj] = Confidence 
Interval

Yes

Confidence Interval

# soft-type comp. = j;
j = 0;

# hard-type comp. = m2;
ζ*m = Optimal Replacement Ages(βm,ηm,θ)

No

Optimal 
Replacement Ages

τ   ω?

τ = 1

j   m1?j = 1Yes nj = 0Yes
nj   

UCLj?

Calculate: Expected cost 
per comp. j per τ  from 

Equation (3)

Yes

Receive: Avg. 
uptime for comp. j,

Avg. # minimal 
repairs for comp. j,

Avg. # replacements 
for comp. j  

Expected Values 
Required for Stage 2

Store: Expected 
costs array = Total 
expected costs for 
each comp. j for 

each τ 

Sort:

Expect. costs 
array

Extract:
min{Total exp.

cost for comp. j}Output: Optimal # 
minimal repairs 

before replacement 
for comp. j for each τ

End

nj = nj + 1

No

j = j + 1
τ = τ + 1

No No

j = j + 1

Figure C. 6: Flowchart for performing Stage 2 optimisation of Model 3. 
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Confidence Interval

Receive: 
Expected # 
failures for 
comp. j, α

Cumulative probability of 
Nj on [0;nj] = 0;

nj = 0

Cumulative probability of 
Nj on [0;nj]   1–(1–α)/2?

Calculate: Probability of 
exactly nj failures,

Cumulative probability of 
up to nj failures

Yes

Cumulative 
probability of Nj on 

[0;nj] < (1–α)/2?
njYes

Cumulative 
probability of Nj on 
[0;nj] > 1-(1–α)/2?

No

njYes

nj = nj + 1

No

EndNo

 
Figure C. 7: Flowchart for calculating confidence interval on the expected number of soft-

type component failures for Stage2 of Model 3. 
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Stage 3. Obtaining the optimal inspection interval for the system. 

At this stage, since the soft-type components’ age at failure is unknown, 

𝑀𝑙,𝑗(𝜏, 𝑡𝑗 , 𝜽, 𝜻∗, 𝑛𝐶 , 𝑛𝑗
∗ ), 𝑅𝑙,𝑗(𝜏, 𝑡𝑗 , 𝜽, 𝜻∗, 𝑛𝐶 , 𝑛𝑗

∗ ) and 𝑈𝑙,𝑗(𝜏, 𝑡𝑗 , 𝜽, 𝜻∗, 𝑛𝐶 , 𝑛𝑗
∗ ) are obtained 

numerically from simulation for soft-type component 𝑗 = 1, … , 𝑚1. For brevity of notation, we 

further denote these functions 𝑀𝑙,𝑗,𝑛𝑗
∗, 𝑅𝑙,𝑗,𝑛𝑗

∗ and 𝑈𝑙,𝑗,𝑛𝑗
∗, correspondingly. Function “One 

Simulation Run for Stage 3 (𝜏, 𝜔, 𝛽𝑗, 𝜂𝑗, 𝛽𝑚, 𝜂𝑚, 𝜁𝑚
∗ , 𝑛𝑗 , 𝑡𝑗, 𝜽)” differs from function “One 

Simulation Run for Stage 2 (𝜏, 𝜔, 𝛽𝑗, 𝜂𝑗, 𝛽𝑚, 𝜂𝑚, 𝜁𝑚
∗ , 𝑛𝑗 , 𝑡𝑗, 𝜽)” in that the latter calculates the 

optimal number of minimal repairs before replacement marginally for each soft-type 

component, while the former calculates the optimal periodic inspection interval for the entire 

system based on the optimal number of minimal repairs before replacement. These expected 

values are then used for calculating 𝐸[𝐶𝑆,𝜏
𝑇 ] for 𝜏 = 1, … , 𝜔, which is then minimised to find the 

optimal inspection interval 𝜏∗. 
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Expected Values 
Required for Stage 3

Receive: τ, ω, βj, ηj, βm, 
ηm, ζ*m, tj, θ, # simul. 

runs, Optimal # minimal 
repairs before 

replacement for comp. j 
for each τ

j = 1

j   m1? 

j = j + 1

i   # 
simulation 

runs? 

Yes

i = 1

i = i + 1

Output: Avg. uptime of 
comp. j with optimal # 
minimal repairs, Avg. # 

minimal repairs of comp. j 
with optimal # minimal 

repairs, Avg. # 
replacements of comp. j 
with optimal # minimal 

repairs 

One Simulation Run 
for Stage 3

End

Yes

Uptime of comp. j with optimal # 
minimal repairs, # minimal repairs 
of comp. j with optimal # minimal 
repairs, # replacements of comp. j 

with optimal # minimal repairs 

No

No

 
Figure C. 8: Flowchart for calculating the expected values for Stage 3 of Model 3. 
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Figure C. 9: Flowchart for obtaining the optimal periodic inspection interval for the system in Stage 3 of 

Model 3. 

Find Optimal 
Periodic Inspection 

Interval

Receive: τ, ω, βj, ηj, βm, ηm, 
ζ*m, tj, θ, # simul. runs, 

Optimal # minimal repairs 
before replacement for comp. 

j for each τ, ci, # soft-type 
comp., # hard-type comp.

τ   ω? 

τ = 1

j = 1

j   m1? 

j = j + 1

Yes

τ = τ + 1

No

Optimal # minimal repairs before 
replacement for comp. j and insp. 

period τ = Stage 2 Optimisation

Yes
Stage 2 Optimisation

ζ*j = Optimal Replacement Ages 
Optimal 

Replacement Ages

No

τ   ω? 

τ = 1

Yes

τ = τ + 1

Receive: Avg. uptime of 
comp. j with optimal # 
minimal repairs, Avg. # 

minimal repairs of comp. j 
with optimal # minimal 

repairs, Avg. # replacements 
of comp. j with optimal # 

minimal repairs 

Expected Values 
Required for Stage 3

Calculate: Total expected 
cost per τ from Equation 

(8)

Store: Total 
expected costs array 

= Total expected 
cost per τ

Sort:

Total expect. costs 
array

Extract:
min{Total exp.

cost per τ}

Output: Optimal 
inspection period 
for entire system

End

No
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