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ABSTRACT  

This thesis explores the effectiveness of a novel interaction model for visualizing 3D 

image data. The interaction model is based on user-sketched line segments known as sketch-lines. 

This thesis shows that sketch-lines provide simple, fast and precise interactive image slice 

positioning and 3D region of interest (ROI) delineation in volume images. These two user 

interactions form the basis of many image visualization tasks, including image slice-based 

exploration and inspection, cutaway, surgical planning, and model-based segmentation. The 

sketch-line model is combined with the use of a subdivision surface as well as a new image slice 

rotation model to support the implementation of the user interactions. To evaluate the 

effectiveness of the sketch-line model, this thesis measures its performance and compares it to 

other interaction models with the aid of two user studies.  Several experiments applying the 

model to various 3D medical images are also performed to demonstrate its functionality and 

consistency. 
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Chapter I – Introduction 

 
This thesis explores the effectiveness of an interaction model for visualizing and 

analyzing 3D image data. The model is based on the use of user-sketched line segments known 

as sketch-lines, which can be quickly and precisely drawn, both in 2D on image slices and in 3D 

on the surface of volume rendered objects, and then used to position image slices or delineate 3D 

regions of interest. The effective and efficient visualization and analysis of objects and object 

spatial interrelationships in 3D data, such as volume images, remains a fundamental goal in the 

scientific, industrial, and medical fields. In medicine, examining, exploring, navigating,  

delineating, cutting away regions of, highlighting, measuring, and segmenting 3D images such as 

MRI or CT scans are a few of the many tasks that radiologists, technicians, and surgeons must 

rapidly perform, given the huge number and size of data sets generated today.  

Efficiently and intuitively generating useful views of objects in the 3D images, as well as 

delineating and segmenting 3D regions of interest for subsequent processing and analysis, 

requires the use of human-computer interaction models that are similar to familiar physical 

actions such as cutting, sketching, and sliding [27]. This direct human-computer interaction 

model is now well known and is important today due to the huge increase in touch and pen 

enabled screens and tablets. Furthermore, many view generation and region delineation tasks (for 

example, for surgical planning or for segmenting objects in noisy images) not only require 

efficiency and simplicity, but also precise control and accuracy. For this reason, image slice 

plane views of the 3D data, where all of the data on the projection plane is visible, are important 

for planning and analysis tasks [26].    



 

In medicine, volume images can be thought of as a stack of 2D image slices (Figure 1) 

with the anatomical structures “buried” inside. Traditionally medical visualization packages 

provide the radiologists and surgeons with one or more 2D windows displaying image slices, 

along with a slider or other controls to rapidly scan through the slices (Figure 2).  

   

Figure 1 –Example of stack of 2D (CT) image slices [46]. 

 

Figure 2 – Multiple 2D image slice views (bottom) and a 3D window (top) in 3DSlicer [13]. 
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In recent years, a 3D display of the data, often in a separate window, is also provided 

using volume rendering and surface rendering techniques to draw anatomical structures. The 3D 

window also often shows rotated image slices (Figure 2 top).  

That is, it is often useful to orient the image slices relative to the primary medial axis1 of 

an anatomical structure in order to examine and measure cross sections of the structure [41].  

Positioning of the image slice widget using standard volume-relative input actions (i.e. relative to 

the 3D scene usually defined by a bounding box that surrounds the volume image) can be tedious 

and time-consuming [19]. Object-relative positioning (i.e. relative to the surface of anatomical 

structures), on the other hand, is often more efficient and intuitive [1]. 

 

1.1 Contributions of this Thesis 

 

This thesis explores the effectiveness of an interaction model that is based on the use of user-

defined 2D and 3D line segments (and curve segments in 3D), known as sketch-lines, to perform 

object -relative image slice positioning and orientation as well as region of interest (ROI) 

delineation [29] (in both 2D and 3D).  Specifically, the contributions are:   

1) The extension and adaptation of the 2D sketch-line technique, first proposed in [1] [40], to 

3D to enable fast and precise object-relative positioning [23] of image slice planes. Slices can be 

quickly positioned and oriented so that they are approximately orthogonal to the target object 

surface in any desired direction and can also be smoothly dragged along the curving surface of a 

data object. 

                                                 
1 The primary medial axis of a closed three dimensional object such as the liver or kidney is, simply put, a space 

curve that defines the curving central axis of the object.     
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  A series of quick 3D sketch-lines can be used to create a smooth spline curve that is on, or 

very close to, the object surface. This spline curve can be used to automatically constrain the 

slice position and orientation, allowing it to slide along the surface and avoid too much user 

input.  

2) The development of a new image slice widget rotation technique that attempts to provide 

precise control of rotation while also minimizing input device movement and rotation interaction 

time.  

3) The extension and development of the sketch-line technique for use in 3D ROI delineation. 

The sketch lines are combined with a subdivision surface to quickly construct an editable 

geometric model of the region, which can then be used for cutaway operations to aid in 

visualization of hidden objects, or as input to geometric model-based segmentation algorithms 

[1]. 

 4) The conducting of two user studies to quantitatively measure the efficiency of the sketch-

line interaction technique compared to several other well known interaction models, as well as to 

qualitatively assess the effectiveness of the interaction model based on user feedback.  

 

1.2 Thesis Outline 

 

Chapter 2 begins with a brief explanation of volume rendering and surface rendering as 

an aid in understanding the thesis contributions. It then presents a review of several data 

visualization and object modelling applications that provide 3D object positioning and rotation 

techniques.  
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Specifically, many data visualization packages provide 3D image exploration using 3D 

image slice widgets. The second major section reviews 3D region delineation, region clipping 

and cutaway techniques.  A brief summary of interactive image segmentation techniques is also 

presented because segmentation is directly related to region delineation and region marking.  

Chapter 3 describes the algorithms used to implement the sketch-line based exploration 

tool. This includes descriptions of sketch-line construction, subsequent image slice construction 

and orientation control, and the use of sketch-lines combined with a subdivision surface to define 

regions of interest known as envelopes.  

Chapter 4 presents the results of several experiments demonstrating the use of sketch- 

lines for basic image slice positioning, as well as for data object surface-constrained image slice 

positioning. Experiments demonstrating the use of sketch-lines to create 3D regions of interest 

for cutaway and segmentation are also presented. Finally, the results of two user studies are 

presented that evaluate the effectiveness and efficiency of sketch-lines. The studies include both 

quantitative and qualitative information.  

Chapter 5 concludes and summarizes the thesis and presents directions for future work as 

well as suggestions to improve the sketch-line model. 
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Chapter II – Literature Survey 

 

This chapter is divided into three sections. The first section provides a brief explanation of 

volume rendering and surface rendering. The next section presents an overview of existing 3D 

data manipulation, exploration and navigation techniques, many of which can be found in 

commercial or academic medical visualization packages.  Since many volume image exploration 

techniques often have  2D and 3D image slice widgets, control of image slice  positioning [60] 

and slice rotation is an important part of volume image exploration (i.e. viewing cross-sections of 

the volume image from different positions and orientations) and navigation (controlling the view 

as the user “travels” through the volume image ) . For this reason, a review of 3D object 

positioning and rotation techniques is also included.  The final section presents a review of 3D 

region delineation, region clipping and cutaway techniques.  A brief review of interactive image 

segmentation techniques is also presented because segmentation is directly related to region 

delineation.   
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2.1 Volume Rendering and Surface Rendering 

 

Figure 3 – Example of a voxel grid [46]. 

A brief introduction to volume rendering (VR) [11] [66] [39] and surface rendering (SR) [37] 

will help explain and show how a 3D object inside a volume image is rendered by computer [53]. 

A volumetric dataset is an array of scalar values that have been obtained by means of a scanning 

process (e.g.  Magnetic Resonance Imaging (MRI), Computer Tomography (CT), Positron 

Emission Tomography (PET), etc.). The scalar values represent the intensity of a signal (e.g. x-

rays for CT images) in different parts of the body region being scanned. The scanning is 

performed in a slice-by-slice fashion, with the final volume being assembled by stacking up the 

2D slices into a regular grid of volumetric elements or voxels (Figure 3). 
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Figure 4 – A 2D illustrative example of finding an iso-contour of value = 5 in a 2D “voxel” grid. The numbers 
represent voxel intensity values. The algorithm “marches” through each square (cube in 3D) finding squares 
that contain voxel intensity values at the 4 corners that are higher and lower than the given value of 5. 
Interpolation is used along with a lookup table to construct line segments (triangles in 3D) within each of these 
squares [46].   

An object rendered by surface rendering is divided into a mesh of triangles using algorithms 

such as the well-known marching cubes algorithm [14]. This algorithm “marches” through each 

cube in the voxel grid looking for voxel intensity values at the 8 corner points of the cube that 

are higher and lower than the threshold intensity value given by the user. If a cube contains both 

higher and lower values, the object surface must pass through this cube (Figure 4). 
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Figure 5 – A lookup table used to construct triangles within each voxel of a voxel grid that contain intensity 
values higher and lower than a given value. The combined triangles form an isosurface [46]. 

In this case, the exact position of the given intensity value along the edges of the cube are 

determined using linear interpolation. Triangles are constructed using a pre-defined lookup table 

(Figure 5) such that the intensity values in the cube higher than the given threshold value are 

separated from lower intensity values by the constructed triangles. The collection of all triangles 

represents the iso-surface. The graphics cards on modern computers have evolved to optimize the 

rendering of triangle meshes and today several million triangles can be rendered per second. 
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Figure 6 –Example of a volume rendered head CT scan where the transfer function has been set to render 
opaque bones and translucent skin [46]. 

Volume rendering (Figure 6) is the now the most common way to render objects in 3D 

from volume images. There are several volume rendering algorithms but with today’s 

powerful graphics cards, ray casting is the most common algorithm as it is very easy to 

parallelize. Rays are cast into the volume from the current viewing point through each pixel 

on the screen window (Figure 7) and as voxels of the dataset are encountered by each ray, 

they are sampled. The sampled values are converted into RGBA (i.e. Red, Green, Blue, 

Alpha) values using a transfer function which is set by the user. The transfer function 

specifies the mapping of voxel intensity values to colors and opacities (i.e. 1 – transparency 

(Alpha) value). The sampled values are accumulated along each ray and blended to form the 

final color and opacity value at each pixel on the screen.  
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Figure 7 – Illustration of the ray casting algorithm [46]. 

 

2.2 3D Data Manipulation, Exploration, and Navigation 

 

There are many existing data visualization and object modelling software applications and 

systems, both commercial and non-commercial. Some example systems are VTK [33], ParaView 

[32], Amira [65], Maya [3], 3D Studio Max [4] and Blender [8].  

VTK (Visualization Toolkit) is an open source C++ class library designed for 3D graphics 

and visualization application development, mostly using the C++ programming language. VTK 

contains many classes which can be used to visualize and explore 3D image data, including 

volume and surface rendering as well as image slice widgets. Figure 8 is an example VTK 

application showing volume rendering of the skull from a CT scan along with several image 

slices. VTK was used as the base software platform in this thesis. 
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Figure 8 – VTK application demonstrating volume rendering combined with image slice display [33].  

ParaView is an open source data visualization and analysis application build on top of 

VTK. It is primarily designed for scientific visualization and provides 3D interaction using a 

well-defined GUI (Graphical User Interface) along with several widgets for viewing and 

processing cross-sections of the data. Figure 9 shows an example of the ParaView interface. 

 

Figure 9 – ParaView interface with a torus object rendered in 3D [32]. 
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Amira is designed for visualizing, manipulating and exploring scientific and medical datasets.  

It allows users to create, simulate, explore and analyze objects and images. It supports data 

slicing, volume rendering, and surface rendering. It also supports 3D image exploration and 

navigation using oriented image slices controlled using a widget (Figure 10).  

 

 

Figure 10 – Top: screenshot of Amira showing a 3D rendering of a CT scan of a head along with an image slice. 
The image slice can be oriented with the widget rotation handles shown in red [65]. 

Maya [3], 3D Studio Max, XSI, and Blender are all examples of 3D computer graphics 

packages designed for 3D object animation, modeling, simulation, and rendering.  They are 

mostly used in the movie special effects and video games industries.  An example interface of 

polygon mesh modeling in Maya is shown in Figure 11.  

 
 

13



 

  

Figure 11 – Screenshot of Maya’s interface showing an example of polygon mesh modeling [3].  

All of these programs provide rendering and object manipulation techniques [47] as part of 

their core functionality [38] and all support object positioning technique [60] using 3D widgets. 

In Figure 12, a depiction of the 3D widget handles commonly used by the modelling packages is 

shown. Typically the widgets show visual representations of individual axes and circles that can 

be “grabbed” by the user to perform scene navigation and object manipulation operations such as 

translation, scale, and rotation, thus allowing the user to create a desired view. 

 

Figure 12 – Various visual representations of 3D widgets provided by various modelling packages that are 
used to rotate and translate objects. From left to right: 3DS Max, Blender, XSI, Houdini, Modo and Maya 
(gray-shaded region), respectively [54].  

here are also many visualization application development systems (Figure 13) that are 

focussed on medical data, for example MeVisLab [43], ImageVis3D [61], Voreen [64] and 

3DSlicer [13]. These systems support volume rendering (using GPU accelerated ray casting) and 

surface rendering, image processing, and interaction widgets. 
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(a) (b) 

Figure 13 – Screenshots of (a) MeVisLab development environment [43], (b) Voreen’s user interface [64]. 

(a) (b) 

Figure 14 – Example rotation techniques: (a) virtual trackball/arc ball rotation technique with axes labelled 
[71]. (b) VTK virtual trackball style rotation (controlled via the red arrow handle) used to control image slice 
orientation.  

All of the visualization platforms provide the ability to rotate the entire scene and most 

provide widgets to translate and rotate image slice planes into arbitrary 3D orientations. The 

standard and familiar arc ball interaction model [18] (Figure 14(a)) is commonly used both for 

scene and image slice rotation, where the scene/object is surrounded by a virtual sphere and 

mouse movements over the surface of this sphere are mapped to rotations. 

 This technique is fairly intuitive and easy to use but can have side effects [18]. One 

disadvantage is that the user can orient the 3D object in such way that is difficult to return to a 

previous state.  
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Using this technique to rotate an image slice (Figure 14(b)) may be too unconstrained in 

nature, especially when the image slice is combined with a volume rendering of a 3D anatomical 

structure - a useful technique for exploring certain slice views of the 3D volume image [59] - 

because it can be difficult to control the image slice position with respect to the 3D volume 

rendered object. In addition, the rotation handles may be hidden by the volume rendering. For 

this reason, many rotation models in medical visualization programs only allow the 3D image 

slice to rotate around single rotation axis at a time. By separating and limiting the range of the 

rotational degrees of freedom, users gain more precise control of rotation. This precise control is 

also desirable in the modelling applications [54] mentioned before. On the other hand, more user 

interaction can be needed to rotate an object into some orientations. In chapter 4, the results of a 

user study are presented comparing the arc ball style rotation against two constrained rotation 

techniques.  

 

Figure 15 – Multiple 2D image slice views in 3DSlicer [13]. 
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Most of the visualization applications display standard orthogonal view image slices (i.e. 

XY, YZ, XZ planes) in multiple windows (Figure 15) and allow the user to use a slider to quickly 

scan through (and explore) the image slices. Image slices are used a lot for detailed analysis and 

measurement of objects. Rotated image slices are also often displayed along with a volume 

rendered data object in the same window, along with a cross-sectional view  in a separate 

window (Figure 16), to allow the user to explore the data using slices positioned with respect to 

the 3D rendered object [6]. Multiple 3D image slices can be used as well but as each image plane 

widget is often independent from the others, this can cause excessive interactions and visual 

clutter. Translating and rotating the image slice in the 3D world space with respect to the surface 

of the volume rendered object can also be a lot of work for the user.   

 

Figure 16 – (Left) image slice positioned orthogonally with respect to the jaw surface and (right) 
corresponding 2D cross section view of the volume.  

(a) (b) 

Figure 17 – (a) Object surface image slice positioning using a series of independent input actions. The user 
is forced to translate the image slice in world-space coordinates close to the new desired position on the jaw 
and then (b) rotate the slice, often in two directions, such that it is orthogonal to the jaw surface. 
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Typically, in most of the packages and systems, image slice widgets provide the ability to 

move the slice plane in a direction along its normal vector as in Figure 17(a). However, typically 

links between the slice plane manipulation and the 3D object do not exist. Orienting and 

positioning are performed only in “absolute” 3D world coordinates. If the user wants to translate 

and orient the slice plane so that it is orthogonal to the object surface (i.e. relative to the surface), 

such as the lower jaw region in Figure 17(b), they must perform a series of widget manipulations. 

They cannot specify the position and orientation in a direct way.   

 Furthermore, if the user desires to slide the image slice plane along the surface of the jaw 

such that it stays orthogonal to the surface (so they can examine relevant jaw cross sections in 

the associated 2D window), then a series of world-space translations followed by rotations to 

align the image slice will have to be performed.  That is, they will have to perform multiple 

interactions independently, an obvious inefficiency. In short, the common problem is that slice-

plane widget controllers do not allow object surface alignment, as the hinge-line based idea [39] 

attempted to provide.  

 

2.3 Region Delineation, Cutaway and Segmentation 

 

Selecting or surrounding arbitrarily shaped regions of interest in volumetric datasets in a 

simple and intuitive way and then representing the region with a geometric model, is a complex 

task.  The geometric model representation can be a triangle mesh, a set of voxels, or an implicitly 

defined function such as the well-known Metaballs [9] technique.  

 

 
 

18



 

Often the goal is to surround a 2D or 3D region of interest to form a closed contour (2D) 

or closed surface (3D) called an envelope2. An envelope can be used in cutaway operations to 

remove unwanted data in order to visualize hidden objects (Figure 18). In addition, an envelope 

can be used as input to a model-based segmentation algorithm which attempts to correctly label 

all the data voxels inside the envelope as belonging to a particular organ, such as the liver,  or 

other anatomical structure. 

 

Figure 18 – (a) basic rendering without cutaway in knee dataset. (b) Muscle region selected and rendered as 
transparent. (c) Muscle region cutaway excepts for a series of “ribbons” or (d) solid “slices” [42].  

Most visualization packages support the selection of simple rectangular box-shaped 

regions [21] for ROI selection.  Standard tools such as cropping boxes, controlled using widgets, 

are often GPU accelerated and can be used to select the box-shaped regions in real time [20]. 

Transfer functions, mentioned in the first section of this chapter, can be set by the user to select 

voxels with a similar intensity value. However, the results are often unpredictable, especially in 

noisy volume images, and are not spatially localized.    

 

 

                                                 
2 Other region delineation tasks require only a surface “patch” be selected. 
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(a) b) c) ( (

Figure 19 – Examples of (a) tracing[12] (b) painting[15]  and (c) sculpting [67] for 3D ROI delination. 

Most selection techniques [48] use some sort of interaction metaphor. Sketching [2] [51], 

tracing[12] [69], painting [15] [42], and sculpting [67] (Figure 19) are among the most common 

of these metaphors. Interactive segmentation techniques can be considered semi-automatic 

region selection and are described in Section 2.3.1. In the sketching metaphor, the user draws 

(using a mouse or pen or finger) lines or contours on the screen or directly on the object surface. 

These contours are then connected (extruded) or “inflated” to form a 3D envelope [2] [51]. The 

sculpting metaphor simulates cutting tools, often with a tool “tip” in the shape of a convex object 

such as a sphere or cube. The tool tip is positioned and/or moved along the data object surface 

and any voxels inside the tool are selected and sculpted away. Painting defines a 

surface/volumetric region, such as a circle or sphere, as the “brush” and as the “brush” is moved 

along the data object surface, the circles/spheres are combined to form the “paint” [15] [42]. 

Again, voxels inside the “painted” region are selected. Tracing [69] is similar to painting in that 

the user moves the cursor along the data object surface but draws a contour that outlines the 

region of interest.  Tracing can be performed directly in 3D or in 2D on a series of parallel image 

slices and the resulting contours connected together to form a 3D ROI. Finally, some 3D region 

selection techniques make use of 3D widgets that define one or more planes [39]. The planes are 

often connected along a “hinge” line, defining, for example, a “spreader” tool. The widgets can 

be interactively “grabbed” and positioned to select an ROI.  
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All of these region selection techniques must somehow define the depth of penetration 

into the data object. This is a difficult problem common to all 3D region selection techniques, 

especially when using a 2D input device such as a mouse or touch screen. The depth of the 3D 

region selection is often controlled using a separate button or key [42] or gesture in the case of 

touch screens. Input devices that provide more degrees of freedom (Figure 20) can be used to 

move around the 3D world space, for example force feedback devices [55][56], but these devices 

are not precisely controllable, especially in noisy images, and are tedious and tiring to use due to 

shoulder muscle strain. They are more commonly used in surgical simulations [30] [44] [31] [10].  

 

Figure 20 – Sensable Haptics device Phantom Omni [55]. 

The main uses of 3D ROI selection is to cut or clip away unwanted or occluding parts of 

the data object to reveal hidden structures, and for surgical planning or surgical simulation 

[67][28][70][34][35][58][39][68][25][17] (Figure 18).  Figure 21 is an example of a virtual 

resection (selection followed by cut away) in 2D and 3D of a portion of the liver [34].  
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Figure 21 – Virtual liver selection and resection in 2D and 3D [34]. 

As mentioned above, many of the 3D selection techniques [63] are designed for removing 

occluding structures to view the interior structures. Ideally, the interaction models should be 

close to real actions, such as cutting into, cutting open, spreading apart and peeling actions. The 

use of these familiar actions allows the expert users to focus on the specific visualization task 

rather than on the cutting tool interface. However, combining all the features necessary to quickly, 

intuitively and precisely define a 3D complex-shaped ROI, such as the ability to edit the selected 

region, undo selection actions, control the depth of penetration of the selection, is still a 

challenge.   

 

2.3.1 Interactive Segmentation 

 

Segmentation can be defined as classifying or labeling data voxels as to the particular 

anatomical structure that they belong to. It can be thought of as a more automatic method of 

region delineation that attempts to delineate an entire object. That is, the user interactively selects 

voxels inside the object and the algorithm attempts to label all the voxels belonging to the object.  
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As most volume images are very noisy, segmentation is a challenging task, especially if the 

goal is completely automatic segmentation. In this case, the use of artificial intelligence 

techniques is often required.  

There are many interactive semi-automatic segmentation techniques. Some of the more well-

known algorithms are region growing [15] [16] [57], Random Walker [24], GraphCut [36], 

Level-sets [49], and deformable surface models [1]. In most of these algorithms, the user selects 

one or more seed voxels, using an input device, inside the anatomical structure of interest. Some 

of the algorithms require the user to draw several “brush strokes” on the target structure.  

This type of information is used to transfer knowledge of the voxel intensity values (for 

example, the mean intensity, standard deviation etc.) of the target structure voxels to the 

algorithms, which then look at voxels neighboring the strokes or seeds and attempts to classify 

them as belonging to the target structure or not. This neighbor-voxel classification scheme 

continues until there are no more voxels that are part of the target structure. A more detailed 

explanation of these complex algorithms is beyond the scope of this thesis.  

The main disadvantage of many of these algorithms is that they can “leak” or spread into 

neighboring objects (especially in noisy images) or also not grow or spread into the entire target 

object. Some of these algorithms, on the other hand, such as the Level-Set technique [49] and the 

deformable model technique [1], can also make use of a user-defined envelope that surrounds the 

target object and use this envelope to constrain the segmentation. This constraint helps to prevent 

leaks into the neighboring structures and helps to make sure that all the voxels of the target 

object are correctly labeled. This user defined envelope constraining mechanism is one of the 

contributions of this thesis. 
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Chapter III – Methodology and Implementation 

 

Interacting with, visualizing and analyzing medical images are extremely important 

radiological and surgical planning tasks and many software packages [43] [61] [64] [13], 

research tools and algorithms have been developed over the past decade to support them.  

Radiologists and Medical technicians are very familiar with image slice planes.  Viewing 

standard slice planes – coronal (XZ), sagittal (YZ), and axial (XY), is still one of the most 

common methods to navigate, explore and inspect volume images. Volume rendering is also 

common and is a powerful visualization tool, especially for high contrast CT volumes and 

segmented volumes. One of the main problems with many visualization packages is the amount 

of functionality, complex interfaces and different interaction models that are provided. This 

thesis explores the use of a single sketch-line based interaction model, both for fast and simple 

image slice positioning and for region of interest delineation, that enables visualization, 

inspection, cutaway and segmentation.  This chapter will describe the use and implementation of 

the sketch-line technique to achieve these two operations. The sketch-line interaction model 

presented in this thesis is an extension of the 2D sketch-line model first proposed in [40] for use 

in image segmentation. The sketch-line model attempts to save time and effort by avoiding 

unnecessary manipulations of 3D objects. Only simple strokes directly on the volume rendered 

object surface or on an image slice are needed. Sketching lines is a simple and familiar action for 

users and the lines can be quickly and precisely drawn.   
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Enough information can be extracted from the sketch-line so that an image slice can be 

constructed relative to an object surface rendered in the 3D window, allowing cross sections of 

the object to be examined in a separate window.  

In addition, following [1], by combining the sketch-lines with a subdivision surface and a 

sketch-line connection (extrusion) process, envelopes can be constructed that delineate complex-

shaped regions of interest in an accurate way, both in 2D and 3D. These envelopes can then be 

used as a deformable model [1] and can be “snapped” [36] onto the ROI surface to segment all or 

part of a target data object.   

 

Figure 22 – Sketch-line system interface showing the 3D view (left) and the 2D cross-sectional view (right) of a 
segmented kidney dataset. The 3D view window contains a volume rendering of the data as well as an image 
slice plane (dark gray with green outline) that can be translated and rotated in 3D. The 2D view is automatically 
updated when the image slice plane is changed.  
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A combination of a 3D volume rendering view window and a 2D image slice window 

(Figure 22) is used to allow for navigation and exploration of a volume image [62]. Sketch-lines 

can be drawn in the same way both on the 3D object surface in the 3D view window and on the 

image slice in the 2D view window, resulting in a consistent interaction model. Simple 2D input 

devices, such as a mouse or pen and tablet, are all you need to draw the sketch-lines – there is no 

need for expensive and special 3D input devices. Furthermore, the result of the sketch-line input 

actions, either the construction and subsequent positioning of an image slice or the creation of an 

envelope, can be edited using 2D and 3D control “handles”.  

 

3.1  The Sketch-line System Interface 

 

The sketch-line system is built with VTK 5.6.0, Visual Studio 2010 and the C++ 

programming language under the Windows 7 environment. The sketch-line system GUI contains 

buttons, check boxes, radio buttons, sliders, and menus to activate various options (Figure 22). 

The sketch-line system interface is designed with two window views: the left window shows a 

3D view of the volume image and the right window shows a 2D image slice view. The 3D view, 

called the 3D window, contains a volume rendering of the dataset, an image slice plane (known 

as the 3D slice plane) that can be positioned, scaled and rotated using a widget, and the outline of 

the volume image bounding box. The 2D window’s camera and slice plane are linked to the 3D 

slice plane’s orientation. Rotation transformations that are applied to the 3D slice to orient it are 

also applied to the 2D slice plane and 2D window camera so that a consistent “up” direction is 

maintained.  
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3.2 Sketch-Lines in 2D 

 

The goal of a sketch-line is to maximize the amount of information (position, orientation, 

width, surface curvature, surface normal etc.) from the user to the algorithm with the least 

amount of effort. Sketch-lines are formed by positioning the mouse (on the surface of the object 

or on the 2D image slice) and pressing the left mouse button to establish the first endpoint of the 

line segment. The user then drags the mouse (while holding the left mouse button) to another 

location. In the 2D window (i.e. for a 2D sketch-line), as the user drags the mouse a line will be 

drawn from the first endpoint to the second endpoint defined by the current mouse position. The 

sketch-line is terminated by releasing the left mouse button. The process of sketching a 2D 

sketch-line is shown in Figure 23 (a) and (b).  

 

Figure 23 –2D Sketch-line: (a) Click and drag in 2D window. (b) A sketch-line is formed by click, drag and 
release in the 2D window. (c) A contour and control points are formed when two or more sketch lines are drawn.  

A 2D sketch-line provides position, orientation and object width information. Sketch-lines 

can be connected together to form a closed contour (Figure 23 (c)). To maximize the amount of 

user information needed to create a contour envelope that accurately delineates an object cross-

section, sketch-lines should ideally be drawn across the object cross-section so that they are 

approximately orthogonal to the primary medial axis of the object cross section.  
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(a) (b) 

Figure 24 – Delineating an object cross section using 2D sketch lines: (a) the red curve is the approximate 
medial axis of the object cross section. (b) For optimal results, the user draws sketch-lines across the object 
approximately orthogonal to the medial axis.  

Figure 24 and 25 illustrate this idea. In Figure 24(a), the red curve represents the 

approximate primary medial axis of this liver cross-section. The medial axis is the “center line” 

of the object; lines drawn across the object that intersect the medial axis at right angles will 

intersect two points on the object surface – one on either side of the axis. The distance from each 

of these two points to the medial axis is equal. In Figure 24(b), the user has sketched 8 line 

segments (blue) that roughly intersect the medial axis at right angles. The endpoints of the 

sketch-lines can then be connected and interpolated using a spline curve. As is clear in Figure 25, 

the resulting spline curve forms a closed contour that accurately delineates the object cross-

section.  

    

Figure 25 – Result of sketching 7 lines on an object cross section to form a closed contour. The spline control 
points (red) can be used to edit the spline shape.  
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This sketching process has a short learning curve – after some practice, it is often clear 

where to place the lines and how many to use. As the user adds another sketch-line, the spline 

curve is updated so the user can see the partial result. Based on experiments [2] a user can sketch 

each line in less than a second. Typically for a complex curving shape as in Figure 25, 5 to 8 

sketch-lines are enough, depending on how much accuracy the user wants and what the 2D 

spline envelope will be used for.  

To avoid local self-intersection of the resulting spline curve, the intersection of 2D sketch-

lines is prevented. The light blue line in Figure 25 is called the active edge. When a new line is 

sketched, its endpoints are connected to the active edge endpoints and a new spline contour is 

created. The user can click on the spline contour in another location to change the active edge.  

This allows the user to create more complex shapes. Finally, the red dots in Figure 25 indicate 

the spline contour control points. These points can be selected and dragged to a new position. 

The smooth spline contour will be continuously updated with the new shape.  

 

3.3  Sketch-lines in 3D 

 

A 3D sketch-line is drawn on the surface of the volume rendered object using a similar left 

mouse click and drag input as in the 2D case. Because the surface of objects is curving, a 3D 

sketch-line is visually represented as a spline curve so that it appears to take on the approximate 

curvature of the object surface (Figure 26(a)). One of the main uses of a 3D sketch-line is to 

position and orient an image slice plane so that it is approximately orthogonal to the object 

surface (Figure 26(b) and (c)).  
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Object surface points and object surface normal vectors are sampled along the 3D sketch-

line and this information is used to construct the necessary 3D coordinate system for the image 

slice. Furthermore, as in the 2D case, multiple sketch-lines can be drawn quickly on the object 

surface along the length of the region of interest. These 3D spline curves can be connected to 

form a mesh of triangles (Section 3.7). This “control” mesh is fed into a subdivision surface 

algorithm [1] which finely subdivides the triangles to form a smooth surface (Section 3.7).  

(a) (b) (c) 

Figure 26 – 3D Sketch-line: (a) Sketching 3D “line” on volume rendering of liver from segmented volume 
image. (b) Positioning slice plane using 3D sketch-line. (c) Image slice showing how the sketch-line conforms 
to the liver surface.  

This smooth surface delineates and/or surrounds the region (i.e. envelopes it) and can be 

used to either cut away the region or be converted to a deformable surface model [1] and 

“snapped” down onto the region to take on its shape (i.e. segment it). In short, 3D sketch-lines 

are used to analyze, measure, and examine data.  
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3.3.1 3D Sketch-Line Construction 

 

As mentioned, a spline curve is used to visually represent the 3D sketch-line. 

Constructing the curve proceeds as follows. The first point picked on the object surface is 

labelled point1 (Figure 27). As the user drags the mouse and moves the cursor along a path on 

the object surface, surface points and surface normals are gathered using a 3D object “picker” 

class in VTK and are stored into an array (blue points in Figure 27).  The current picked point 

under the cursor is labelled as point2. All of the picked surface points are averaged together to 

form the average pick point (Figure 27 (b)). In addition, all of the surface normals at the picked 

points are averaged together to form an average surface normal. Then, each picked point is 

subtracted, in turn, from the average pick point to form a direction vector (Figure 27 (c)).  

  (a) (b) (c) (d) 

Figure 27 –2D illustration of 3D sketch-line construction. (a) the blue points are the sampled object surface 
points (and surface normals) “picked” as the cursor slides over them. (b) the red point is the average picked 

and the average surface normal (scaled for emphasis) is also shown. (c) vectors from the average picked 
point to each sampled surface point are formed. The vector most parallel to the average surface normal is 
chosen as the “middle” point of the 3D sketch line. (d): the chosen middle point (green) along with point1 

and point2 are used to form the spline curve).  
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The picked point with a direction vector that is closest in direction to the positive average 

normal direction is chosen as the midpoint of the spline. That is, the 3 points (point1, point2, and 

the calculated midpoint) are used as spline control points and a smooth spline curve is 

constructed and displayed as the 3D sketch-line.  

Basically, this 3D sketch-line construction attempts to create a spline curve that is always 

visible on the surface and conforms approximately to the surface shape. If the 3D sketch-line is 

drawn over part of the object surface that has an indentation (Figure 28 (e)), the sketch-line will 

still remain convex and go over the indentation.  

(a) (b) (c) (d) (e) 

Figure 28 – Finding the middle point of the picked points when the sketched line goes over an indentation in the 
surface (as in the eye socket of the skull in (e)). (a) – (d) The sketch-line construction algorithm attempts to create a 
convex spline curve in order to remain visible to the user and also so that an envelope created using this sketch-line 
covers the surface indentation. 

 

Figure 29 – 3D Sketch-line showing the path formed by the user when freely dragging point2 around (green) and the 
resulting sketch-line (red) constructed from the surface points sampled by projecting screen points between point1 
and point2 onto the surface. The figure on the right shows how the accuracy of the constructed spline could be 
improved by picking more points to the left and right of the sampled points and averaging.    
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As the user drags the cursor over the surface a new point2 position is continuously 

updated, as is the calculated midpoint, and a new spline is rendered in real time. This allows the 

user to sketch more freely without too much concern about sketching exactly along a straight 

path over the object surface. However, to allow this sketching freedom, the path formed by user 

can be different than the expected curve path as shown in Figure 29.  

The surface normal vectors of the picked points obtained may be clustered around one 

small area of the surface and therefore may not be a good sampling of surface normals along the 

expected path. This may result in an inaccurately oriented image slice plane. To avoid this 

problem, 2D screen window points corresponding to point1 and point2 are used to form a line in 

screen coordinate space. Points are sampled along this screen space line and are projected along 

a ray from the user’s viewpoint (the camera position) onto the surface using VTK 3D object 

picker class. This algorithm generates a better sampling of surface points and normals along the 

path sketched by the user. From experiments, 5-10 points sampled surface points and surface 

normals are enough to form an accurate average surface normal. To increase accuracy, the 

number of sample points can be increased and/or surface points to the “left” and “right” of the 

sampled points can also be included (Figure 29 right).  

 

3.4 Slice Plane Construction from 3D Sketch-lines 

 

As stated previously, the 3D sketch-line contains enough information to position and 

orient an image slice plane that is roughly orthogonal to the object surface. First, the image slice 

is centered at the sketched spline curve midpoint.  
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Then, the image slice coordinate system is constructed using the average surface normal 

and the line segment formed from point1 and point2. Specifically, the normal vector of the slice 

plane is calculated from the cross product of the point1-point2 line and the average surface 

normal vector (Figure 30).  

 

Figure 30 – Image slice normal vector is constructed by taking the cross product of the average surface 
normal and the point1-point2 line.  

The “up” vector of the image slice (i.e. the “spin angle” around the image slice normal 

vector) is calculated so that the boundary edges of the image slice are parallel to the sides of the 

volume image bounding box. This image slice “spin angle” constraint makes image slices that 

appear “upright” in the 3D window from the user’s perspective.  As most volume images have an 

idea of an “up” and “down” direction, for example the top of the head in a CT scan of the head 

which corresponds to the sense of “up” and “down” in the human body, this image slice spin 

adjustment helps the user make sense of the image slice view in the 3D window. It also helps to 

set an up and down direction in the 2D window view of the image slice. Finally, the image slice 

is translated with respect to the ‘x’ and ‘y’ axis of the slice plane so that it is centered within the 

volume image bounding box. 
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3.5 Slice Plane Position and Orientation Editing 

 

Once the user sketches a line on the object surface and the image slice is instantaneously 

constructed and drawn, the user may want to edit or “fine-tune” the image slice position or 

orientation. As mentioned in Chapter 2, there are several possible rotation models that can be 

used to adjust the image slice orientation [5]. Since the “unconstrained” arc-ball style rotation 

model allows changes to two rotation directions at the same time and also often results in 

unpredictable image slice “spin angle” orientations, the user can spend extra time adjusting the 

spin angle of the image slice to an upright orientation.  In this thesis, a new constrained rotation 

model was developed that uses a torus as a rotation “handle” (Figure 31 top).  

 

      

Figure 31 – Top: example of the torus slice rotation handle and cylinder marker that slides along the torus. 
Bottom: the user can select the marker and rotate the image slice in one direction, then press a key and the torus 

orientation changes (bottom middle) and the user can then rotate in the other direction. A third direction change (not 
shown) allows the user to spin the image slice around its normal vector. 

 
 

35



 

A small cylindrical marker is also rendered which can be selected by the user and slides 

around the torus as the user moves the cursor along the torus. The torus model is a constrained 

rotation model that separates the rotational degrees of freedom to provide precise image slice 

orientation control as well as to prevent unwanted “spin angle” side effects.  

To change the torus orientation and hence change the image slice rotation direction, the user 

presses the “Shift” key (Figure 31). That is, the user can instantly toggle between the two 

rotation directions and the mouse is always very close to the cylinder marker so the user can 

fluidly continue a rotation in a different direction. The torus acts as a guide and gently forces 

the user to move the cursor along the torus during the rotation adjustment, keeping the cursor 

close to the cylinder. If the cursor goes off the torus guide too much, the rotation will be 

deselected.  Some flexibility is built-in to prevent the user from having to be too precise in their 

mouse positioning but still gaining the benefit of keeping the cursor close to the cylinder 

marker. Other rotation models that separate the rotational degrees of freedom do not provide 

this capability and the user can move the cursor far from the rotational control handle, forcing 

them to return the cursor to another handle or area on the slice plane when a change in rotation 

direction is desired. In chapter 4, the results of a user study comparing the torus model with an 

arc-ball style rotation model and an image slice “margin” constrained rotation model is 

presented. Another advantage of the torus rotation model is that the torus and cylinder can 

always be selected regardless of the current orientation of the image slice. 

 

 

  

 
 

36



 

In summary, the torus rotation model main advantages are: 1) the torus/cylinder is always 

visible and selectable for rotation no matter the current slice plane orientation, 2) attempts to 

minimize mouse movements and mouse clutching [52] during switches in the direction of 

rotation therefore prevent unnecessary scene rotation. Other adjustments to the image slice can 

also be made. The user can select a point anywhere on the slice (other than the corner points) 

and “push” or translate the slice along its normal vector direction (Figure 32(a)). The user can 

also scale the slice using a slider as well as translate the slice using the mouse the two directions 

parallel to the edges of the slice by first pressing the “F1” function key (Figure 32(b)).  

 

Figure 32 – Slice Positioning: (a) “pushing” the slice along its normal vector. (b) Translating the slice plane 
with 2 directions parallel. 

 

3.6 Slice Plane Sliding 

 

If the user wishes to look at the image cross-sections along a curving part of the object 

surface, many rotation techniques would force them to repeatedly and tediously “push” and 

rotate the image slice in 3D world coordinates so the slice is orthogonal to the surface. Using 

sketch-lines, this examination process can be quickly done. The user can quickly sketch a series 

of sketch-lines along the curving section (Figure 33) and enter into an image slice “snap” mode 

using a button press.  
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In this case, the midpoint of each sketch-line is connected and these points are used to 

form an interpolating spline (Figure 33). That is, the midpoints of the sketch-lines are connected 

to form a smooth curve and the curve goes through the midpoints. In addition, the average 

surface normal of each sketch-line is also smoothly interpolated using the same spline curve. 

Now when the user “pushes” the image slice the slice center point automatically follows the 

spline path and the slice normal is automatically interpolated. The result is the slice can slide 

back and forth along the curving section of the object surface while keeping itself approximately 

orthogonal to the surface (Figure 34).     

  

Figure 33 –Smooth spline path formed by connecting the midpoint of multiple 3D sketch-lines. 

 

 

Figure 34 – Automatically sliding the image slice along the spline curve so that it is always roughly orthogonal 
to the object surface. The right images show the corresponding object cross sections. 
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3.7 Region Delineation Meshes and Region Envelope Meshes 

 

As mentioned, both 2D and 3D sketch-lines can be connected to form a “control” mesh of 

triangles. A control mesh can then be input to an interpolatory subdivision surface algorithm [1] 

to form a smooth mesh of subdivided triangles. This subdivision surface mesh can be used to 

delineate, cutaway, or segment regions of interest.  

   

Figure 35 – Patch type of envelope. Left: 3 sketch lines (red) are connected and triangles are formed to create a 
control mesh. Middle: the control mesh can be subdivided into smaller triangles making a smooth surface patch. 
Right: the surface patch can be copied and moved inward and connected to the top patch to form an envelope. 

The sketch-line system currently supports 3 types of subdivision surface meshes: a closed 

surface mesh, a cylindrical mesh known as a “sleeve”, and an open surface mesh known as a 

“patch” (Figure 35). A patch is a smooth open surface mesh that can be used to delineate a 

curving region of the data object surface. The patch can be copied and moved inward to form a 

closed “thin shell” mesh envelope (Figure 35 middle and right). This type of envelope is useful 

for cutting away thin shell structures such as the skin or the top of the skull. A sleeve is an open 

cylinder mesh that can be used to “delineate” a section of a curving cylindrical structure such as 

an artery. The sleeve can be snapped down onto the artery section, using the deformable surface 

model segmentation algorithm [1], to segment the artery section. The open cylinder sleeve mesh 

can also be capped at the ends of the cylinder to form a closed cylindrical mesh which can then 

be used as an envelope to cutaway the data object inside.   
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Figure 36 – Sleeve type of envelope. Left: 3 sketch lines are connected to form a cylindrical control mesh. 
Right: the control mesh can be subdivided into smaller triangles to form a smooth open-ended cylindrical mesh. 

Finally, the closed surface mesh envelope can be constructed in two ways. A closed 

contour called a profile curve can be sketched in 2D on a series of image slices that show cross 

sections of a data object. The profile curves can be connected together to form a closed surface 

which can then be used to segment the data object [1] or used as an envelope to cut away the data 

object from the volume image.  

 

Figure 37 – Two types of profile curves construct from a single 3D sketch-line. Left: a sketch line can be 
copied and moved inwards (a user-defined distance) along the negative average surface normal vector direction. The 

two curves can be connected to form a closed profile curve. Right: in this type of profile curve, the middle point 
(pointmn) has been reflected in the copied curve so that its distance from the line joining point1n and point2nis the 

same as the distance of the original middle point from the line joining point1 and point2. 

A profile curve can also be constructed from a 3D sketch-line (Figure 37). The 3 control 

points of the 3D sketched spline curve are copied and moved inwards (i.e. in the direction of the 

negative average surface normal vector) a user-definable distance (using a slider) into the object 

(Figure 37 left). A surface mesh constructed from a series of these profile curves is useful for 

cutting away thin shell type objects such as the top of the skull.   
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The copied spline curve can also be reflected across an axis formed by the line joining 

point1 and point2 (Figure 37 right). The copied spline curve is connected to the sketched spline 

curve to form the profile curve. This style of profile curve is used for all other object shapes. 

An example of a closed surface mesh created from a series of 3D sketch-lines is shown in 

Figure 38. Three sketch lines have been converted to profile curves (Figure 38 left and right) and 

are then stitched together to form a closed control mesh. The mesh is once again input to the 

subdivision surface algorithm to create the smooth closed surface mesh (Figure 38 middle).  

    

Figure 38 – Envelope mesh formed by connecting profile curves constructed from 3 sketch lines. 

 

3.7.1 Envelope and Patch Editing 

 

The envelope or patch meshes can be edited in several ways. The 3D sketch-lines are 

highlighted in red after the sketching process and drawn on top of the envelope mesh (Figure 39). 

The user can click on these red profile curves in the 3D window and the image slice will 

immediately be repositioned and re-oriented and the 2D window cross-section view updated. In 

addition, the profile curve will be displayed in the 2D window along with control points (Figure 

39 and Figure 40) which can be selected and repositioned. These edits update the envelope/patch 

mesh in real time.  
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Figure 39 –Example of envelope editing. Top left: 2 sketch lines are used to create a closed surface 
envelope. The profile curves are shown in red in the 3D window and the user has selected one of them. The 
corresponding profile curve (yellow) is shown in the 2D window (top right) and the user can select the 
control points (red). Middle Image: the user has moved the control points and changed the shape of the 
profile curve to ensure the envelope surrounds the jaw region. Bottom Image: the user can also move the 
slice plane in its normal vector direction (or rotate it) and the envelope is attached to it and will be stretched. 
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In this way, if the initially sketched envelope does not quite cover the region of interest 

after the sketching process or if the depth of the mesh is not enough to cover the back side of the 

ROI, the user can edit the profile curves in 2D and see the results in the 3D window.  

 

 

Figure 40 – Example of patch envelope editing in a segmented liver dataset. The profile curve constructed 
from a sketch line can be manipulated in the 2D window. 

An undo operation is a very important part of any interaction model - the ability to return 

to a previous state [45]. When sketching lines in the 2D window and creating a contour, the “u” 

key can be used to undo the last sketch-line and return the contour to the previous state. Similarly 

in the 3D window the “u” key is use to undo sketch-lines in the 3D window. Users can click on 

“U/u” key to undo any mistakes. When “U” is pressed with the mouse in the 3D window, a 3D 

sketch-line will be undone. If there is a surface envelope, the undo will remove the last profile 

curve and return the envelope to the state it was in before the new line was sketched.   
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Chapter IV –Evaluation and Results 

 

In this chapter several experiments demonstrating the uses of the sketch-line interaction 

model are presented. Then the results of two user studies, comparing sketch-lines and the torus 

image slice rotation technique to other interaction models, is presented. 

 

4.1 3D Sketch-Lines for Image Slice Positioning 

 

   

 

 

Figure 41 – A simple example of the image slice positioning after sketching on the skull surface in a CT scan of 
the head (top left). The image slice is instantly positioned (top right) and the skull cross-section is also 
displayed in a 2D window (bottom).  
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Two experiments were performed to demonstrate the basic idea of using sketch-lines to 

automatically position and orient an image slice position so that it is roughly orthogonal to the 

surface of a volume rendered object. Figure 41 demonstrates basic image slice positioning after a 

single sketch-line is drawn. In Figure 42, several sketch-lines were drawn along the curving 

surface of a segmented image of a liver. The image slice was initially positioned at the first 

sketch-line and can be “pushed” or “pulled” to slide along the liver surface, interpolating 

orientations between the sketch-lines and forcing it to remain approximately orthogonal to the 

liver surface.  

   

 

    

Figure 42 – Top left: a series of sketch-lines are drawn along the curving surface of a segmented liver dataset. 
An image slice is automatically positioned at the first sketch-line. Top right and bottom left: the slice can be 
“pushed” with the mouse and the slice will slide along the liver surface interpolating orientations between the 
sketch-lines and remaining approximately orthogonal to the liver surface. The lower right image shows the 
image slice with volume rendering turned off to reveal the cross section of the liver.  
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4.2 Cutaway 

 

In the next series of experiments, the sketch-line interaction model was combined with a 

subdivision surface [1] and a sketch line connection process to create envelopes that surround 3D 

regions of interest of a volume rendered object. In Figure 43 a CT scan of a head was used and 

the skull was volume rendered (Figure 43 top left).  Three sketch-lines were drawn on the 

forehead region and connected together and subdivided to form a smooth patch that conforms to 

the shape of the forehead (Figure 43 top middle). The sketch-lines can be edited in the 2D 

window (Figure 43 lower left) to stretch or shrink the sketch-line (and hence the patch). The 

patch was then extruded inward a user-defined distance (using the 2D image slice window as a 

guide (Figure 43 lower right) and the resulting envelope is shown in Figure 43 lower middle. The 

envelope was then used as a mask to cut a hole in the skull revealing the structures inside (Figure 

43 top right).  

      

 

      

Figure 43 –Three sketch-lines are drawn on the forehead of a CT head scan [50] (top middle) forming a surface 
patch. The sketch-lines can then be edited in the 2D window (lower left). The patch can be extruded inward to 
form an envelope (lower middle and lower right) and a hole can then be cut in the skull (upper right).  
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In a second cut away experiment, 3 lines were sketched along the jaw of a low resolution CT 

scan of the head (Figure 44). Each sketch-line was converted to a profile curve (Section 3.7) with 

a user-defined depth. The profile curves were connected to form a cylindrical mesh (a “sleeve”) 

and the mesh was subdivided (Figure 44 middle). The 2D window can be used to make sure that 

sleeve is surrounding the target jaw region. The open ends of the sleeve were then “capped” 

resulting in a closed cylindrical mesh and the envelope was used to cut the jaw region away 

(Figure 44 right). 

   

Figure 44 – 3 sketch-lines are drawn on a target jaw region in a CT scan of the head. A profile curve is 
constructed from each sketch-line, with a user-defined depth, and the profile curves are connected and 
subdivided to form a smooth “sleeve” mesh (middle). The sleeve, an open cylindrical mesh, is then “capped” 
and the envelope is used to cut the jaw region away (right).  

For the final cutaway experiment, an envelope editing featured is demonstrated. In Figure 45, 

2 sketch-lines were drawn on the surface of the liver. Profile curves were constructed and 

connected then subdivided to form a closed surface envelope (Figure 45 left). The user can select 

a profile curve and an image slice will be positioned there. The user can edit the profile curve in 

the 2D window or alternatively, translate and/or rotate the image slice automatically pulling on 

the profile curve and hence stretching/shrinking the envelope (Figure 45 middle). The envelope 

was used to cut away a portion of the liver (Figure 45 right). 
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Figure 45 – Two sketch-lines are drawn on the surface of the liver. A profile curve is constructed from each 
sketch-line, with a user defined depth, and the curves are connected and subdivided to form a closed envelope 
(left). A profile curve can be selected and an image slice is positioned. The curve can be edited in the 2D 
window or the image slice can be translated and rotated (middle) to stretch/shrink the envelope.  The envelope 
can be used to cut away the voxels inside it (right).   

4.3 Segmentation 

 

In this section several experiments were performed to demonstrate the use of sketch-line 

constructed envelopes for volume image segmentation. The subdivision surface envelopes are 

input to a deformable model segmentation algorithm developed in [1]. In the first experiment, 

similar to the jaw cutaway in the previous section, a sleeve model was constructed with 3 sketch-

lines along a portion of the jaw (Figure 46 top left). In Figure 46 top right, the sketched sleeve 

model is fairly accurately surrounding the jaw. With many segmentation algorithms, including 

deformable surface model algorithms, the better the initial model, the better chance that the 

segmentation will perform well and “snap” or fit onto the correct object boundaries. This is 

especially true in noisy medical images where the chance of the deformable model incorrectly 

snapping onto the boundaries of neighbouring objects is much higher. Figure 46 lower left and 

right shows the result of the model fitting onto the jaw region.         
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Figure 46 – 3 sketch-lines are drawn on a target jaw region in a CT scan of the head. A profile curve is 
constructed from each sketch-line, with a user-defined depth, and the profile curves are connected and 
subdivided to form a smooth “sleeve” mesh (upper left). The accuracy of the initial sleeve mesh is apparent in 
the 2D window showing the sleeve cross section (upper right). The sleeve mesh is input to a deformable model 
fitting algorithm and is fitted to the jaw boundary (lower left and right).  

In the next experiment, another sleeve model was constructed using 5 sketch-lines along a 

portion of the right femoral artery in a contrast-enhanced CT scan of the lower body (Figure 47). 

The initial model is again fairly accurate (Figure 47 top) and the deformable model fitting 

algorithm was able to accurately segment the artery portion (Figure 47 bottom). The 

segmentation was validated through visual inspection only. 
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Figure 47 – 5 sketch-lines are drawn on a portion of the right femoral artery in a contrast-enhanced CT scan of 
the lower body [50]. An accurate sleeve model is constructed (top) which is then fitted to the artery surface 
(bottom) resulting in an accurate (via visual inspection) segmentation.  

4.4 User Study 1: Sketch-Lines and Torus Rotation for Image Slice Positioning 

 

The goal of the first user study was to determine the effectiveness and efficiency of the 

sketch-line technique for image slice positioning and also to determine the effectiveness and 

efficiency of the torus image slice rotation algorithm. The study was divided into two parts. The 

first part compared the torus rotation technique against two other common image slice rotation 

techniques. One rotation technique, labelled the “margin” technique in this study, is similar to 

torus rotation where rotation is performed in only one direction at a time.  
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In margin rotation (Figure 48(a)), the user selects either the top or bottom margin region of 

the slice plane (the red margin lines in Figure 48(a)) and “pushes” or “pulls” on this region with 

the mouse to rotate the slice about the vertical and horizontal axis of the slice. 

(a) (b) 

Figure 48 – Depiction of slice plane rotation “handles” for: (a) “margin” rotation (b) “pivot” rotation.  

The four corner regions defined by the red margin lines can be selected and are used to 

“spin” the slice about its normal vector. The amount of rotation is determined by how far the 

mouse is dragged. In this technique, the mouse can be dragged far from the initially selected 

margin region. When the user wishes to change rotation direction, the mouse has to be dragged 

back to the opposite margin. Furthermore, if the user is viewing the whole scene such that the 

image slice is viewed “on edge” then the user must rotate the entire scene (know as scene 

rotation) so that the margins are visible and can be selected. As mentioned before, the torus 

rotation technique was designed to overcome these limitations.  

A second rotation technique, labelled “pivot” rotation, is an unconstrained technique that 

allows the user to change the orientation in two directions.  
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The user selects and pulls/pushes on the pivot axis handle (the red line in Figure 48(b)) and 

the handle is designed to be always perpendicular to the slice plane. To spin the slice plane, the 

shift key is pressed and held as the mouse is moved.  

The unconstrained nature of the pivot technique means that the users can often overshoot the 

desired rotation or correctly align one rotation direction but not both. Also, this model often 

results in a “spin” side effect and the user must spend time correcting the spin angle.     

A total of 11 people, 10 male and 1 female, were recruited from the undergraduate and 

graduate computer science student body using an advertisement on the department bulletin board 

as well as in-class announcements. They were on average 20 years old with an average of 39 

hours of mouse usage per week and 9 hours of video game playing per week. 6 of the 

participants reported being familiar with 3D graphics packages such as 3D Studio Max, Maya, 

and Blender. A mouse was used as the input device due to its familiarity (not all participants had 

experience with touch screen or pen input devices). The trials performed in the study required 

approximately 1 hour.  

 

Figure 49 – In the first part of the study users were asked to rotate the green slice plane, initially in a standard 
orientation, so that its orientation matched (within a tolerance) a target slice plane (red).  
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In the first part of the within-subjects study, users were asked to orient a slice plane, 

using a randomly assigned rotation technique, from a standard position so that it matches the 

orientation of target slice plane (Figure 49) within a tolerance.  

Once the target was matched, a new target appeared. The time taken to perform the 

matches as well as the number of mouse clicks etc. was measured. Each user was instructed on 

the required task and each of the 3 rotation techniques was demonstrated.  

In addition, a user was allowed to practice the rotation techniques for a few minutes each 

and then performed a practice trial. Each trial consisted of 10 slice matching tasks. Each user was 

assigned the 3 rotation techniques in random order and the 10 target slice plane orientations were 

presented to each user in a random order. A total of 3 trials were performed for the 3 rotation 

techniques for a total of 90 matching tasks. Once the users finished the trials, they were asked to 

fill out a form asking some qualitative questions about the rotation techniques.  

Since the torus rotation technique was designed to be useable regardless of the 3D scene 

orientation (i.e. would rarely require an initial scene rotation to select the torus and begin rotation) 

a hypothesis was formed that torus rotation would require less user scene interaction, measured 

by the number of mouse clicks and scene rotation time required, than the other two techniques. 

Also, since the torus rotation was designed such that the mouse was always close to the cylinder 

control handle when the user changed rotation direction, a second hypothesis was formed that 

torus rotation would require fewer mouse clicks and less rotation time than the other two 

techniques. Finally, a third hypothesis was formed that torus rotation would require less spin 

rotation time and fewer mouse clicks than pivot rotation due to the spin angle side effects of the 

pivot technique. Table 1 shows the results of the study.  
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As for the results, the first hypothesis was proven to be partly true by a statistical analysis 

(T-Test and P-Test). Torus rotation requires fewer scene rotation mouse clicks (Two-tailed p < 

0.04) than margin rotation.  

However, while torus rotation required less scene rotation time and mouse clicks than 

pivot rotation, the results were not statistically significant. Similar results were observed for the 

second and third hypotheses. That is, torus rotation required statistically significant less rotation 

time and spin mouse clicks and time than margin rotation but not statistically significant less 

clicks and time than pivot rotation.  

 Torus vs. Margin and Pivot  
Scene 
Rotation 
Time 

Scene 
Mouse 
Clicks 

Slice 
Rotate 
Time 

Rotate 
Mouse 
Clicks 

Slice 
Spin 
Time 

Spin 
Mouse 
Clicks 

Total 
AVG 
Time 

Total 
Mouse 
Clicks 

AVG: Margin 1.22 1.79 2.48 2.48 0.65 0.55 4.33 5.1 

AVG: Pivot 1.13 1.47 2.31 1.69 0.4 0.37 3.83 3.87 

AVG: Torus 0.79 1.07 1.84 1.97 0.37 0.35 2.99 3.46 

STD: Margin 0.77 1.17 0.85 0.79 0.36 0.25 1.55 2.12 

STD: Pivot 1.07 1.4 1.58 0.57 0.37 0.35 2.35 2.15 

STD: Torus 0.43 0.58 0.39 0.23 0.25 0.18 0.74 0.75 

T-TEST: Torus vs. Margin -2.14 -2.43 -2.50 -2.22 -4.54 -2.98 -3.17 -2.72 

P-TEST: Torus vs. Margin 0.06 0.04 0.03 0.05 0 0.02 0.01 0.02 

Probability: Torus vs. Margin 95.26 97.06 97.35 95.83 99.89 98.81 99.1 98.17 

T-TEST: Torus vs. Pivot -1.31 -1.22 -0.97 1.60 -0.22 -0.31 -1.20 -0.74 

P-TEST: Torus vs. Pivot 0.22 0.25 0.36 0.14 0.83 0.76 0.26 0.48 

Probability: Torus vs. Pivot 82.8 80.46 73.01 88.89 42.73 46.45 79.9 64.37 

T-TEST: Pivot vs. Margin -0.34 -0.99 -0.45 -4.55 -1.51 -1.51 -0.86 -1.93 

P-TEST: Pivot vs. Margin 0.74 0.35 0.66 0 0.16 0.17 0.41 0.09 

Probability: Pivot vs. Margin 47.65 73.63 52.58 99.89 87.29 87.22 68.8 93.33 
 

Table 1 – User study 1 measurements: Torus rotation vs. Margin and Pivot rotation. 

 

 

 

 
 

54



 

Upon completion of all trials the participants were asked to fill out the questionnaire and 

indicate their level of agreement or disagreement with each statement using a 5-point Likert scale. 

The questionnaire asked the participants whether each rotation technique was easy to control and 

whether it was easy to learn. The results are presented in Table 2 and Figure 50. On average, 

torus rotation obtained the highest scores.  

The participants were also asked to state their favourite rotation technique. The results 

were that 3/11 listed the pivot technique as their favourite, 2/11 listed margin as their favourite 

and 6/11 listed torus as their favourite.  

Participants were also asked to comment on the techniques. 3 users commented that pivot 

rotation was easy to control, intuitive, natural, and fast. 5 users commented that the torus 

technique “makes sense”, was easy to use, and that the visual cue provided by the torus allowed 

them to understand the effect of the rotation. The 2 users who liked the margin technique liked it 

for its simplicity and liked that no key presses were required for spin.  

Participants were also asked to list their least favourite technique. The results were that 

6/11 disliked pivot, mostly due to the difficulty in controlling the rotation to achieve the expected 

result. Next, 4/11 disliked margin the most and commented that it was slow to achieve the 

rotation result and also that it was non-intuitive as well as requiring more scene rotation. Only 1 

user disliked the torus technique the most and the comment was that it felt “unnatural”.  

5-Point Likert Scale Margin Pivot Torus

AVG: Easy to Learn 4.00 3.36 4.27

STD:  Easy to Learn 0.77 1.21 1.19

AVG: Easy to Control 3.45 3.36 4.27

STD:  Easy to Control 1.04 1.21 0.79
 

Table 2 – User Study 1: Torus rotation vs. Margin and Pivot questionnaire results. 
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Figure 50 – User Study 1: Torus rotation vs. Margin and Pivot questionnaire results. The bar shows the median 
value, the thin black line shows the minimum and maximum. 

The second part of the study compared the sketch-line slice plane positioning and orienting 

technique with a standard “push”/rotate technique. The low resolution CT dataset of the skull 

was used as the target object slice positioning as it is clearly rendered and very fast to rotate. In 

the “push”/rotate technique the user simply selects any point on the slice plane and moves the 

mouse to “push” and “pull” the slice plane in a direction parallel with its normal vector. Since 

the torus technique was considered precise, it was the only technique made available to the users 

to rotate the slice plane.  

 

Figure 51 –In the second part of the study users were asked to sketch on the surface of the skull for slice plane 
positioning.  
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The second part of the study proceeded similarly to the first. A target slice plane was 

presented to the users, positioned and oriented relative to the skull surface. For the push/rotate 

technique, a slice plane in a standard position was provided and the users had to manipulate it to 

match the target plane. For the sketch-line technique (Figure 51), the user had to sketch a line 

near the target slice in order to match it. The users were permitted to fine-tune the sketch-line 

result using the standard push/rotate technique. Each trial consisted of 10 test cases. A total of 3 

trials were performed for both techniques for a total of 30 test cases each. Once again, users were 

allowed to practice the two techniques.  A questionnaire was filled out at the end. 

The basic hypothesis in this part of the study was that the sketch-line technique would 

need fewer mouse clicks and less time to position and orient the slice plane with respect to the 

skull surface. The push/rotate technique requires significant user input to slide and orient the 

slice. Table 3 summarize results. The hypothesis was verified (p < 0.05). A breakdown of the 

amount of push, rotate, spin, and scene mouse clicks and time is also included for completeness.    

Sketch vs. Push 
Scene 
Rotation 
Time 

Scene 
Mouse 
Clicks 

Slice 
Push 
Time 

Push 
Mouse 
Clicks 

Slice 
Rotate 
Time 

Rotate 
Mouse 
Clicks 

Slice 
Spin 
Time 

Spin 
Mouse 
Clicks 

Total 
AVG 
Time 

Total 
Mouse 
Clicks 

AVG: Push 2.07  2.47  0.70 0.75  3.07  2.62  0.57 0.50  6.40 6.46  

AVG: Sketch 2.52  2.41  0.39 0.49  0.61  0.66  0.11 0.11  5.30 4.89  

STD: Push 0.69  1.18  0.46 0.52  0.65  0.44  0.42 0.34  1.60 2.06  

STD: Sketch 0.79  0.86  0.41 0.54  0.41  0.32  0.12 0.08  1.47 1.27  

T-TEST 1.52 -0.20 -2.86 -2.38 -11.97 -13.66 -3.79 -3.52 -2.61 -3.67 

P-TEST 0.16  0.84  0.02 0.04  0.00  0.00  0.00 0.01  0.03 0.01  

Probability 87.49  42.02  98.55 96.80 100.00 100.00 99.67 99.50  97.81 99.60 
 

Table 3 – User Study1measurments: Sketch-line vs. Push/Rotate. 

 

The questionnaire asked the participants whether the sketch-line and push/rotate 

techniques were easy to control and whether they were easy to learn.  
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The results are presented in Table 4 and Figure 52. On average, the results were roughly 

equal. The participants were also asked to state their favourite. The results were that 2/11 listed 

push/rotate as their favourite while 9/11 listed sketch-line as their favourite. The 2 users who 

preferred push/rotate commented that it was difficult to predict the position and orientation of the 

slice plane after sketching.  

5-Point Likert Scale Push/Rotate Sketch-Line 

AVG: Easy to Learn 4.64 4.18 

STD:  Easy to Learn 0.67 0.75 

AVG: Easy to Control 4.18 3.91 

STD:  Easy to Control 0.87 0.54 
 

Table 4 – User Study 1: Sketch-lines vs. Push/Rotate questionnaire results. 

 

  

Figure 52 – User Study 1: Sketch-lines vs. Push/Rotate questionnaire results. The bar shows the median value, 
the thin black line shows the minimum and maximum. 

 

4.5 User Study 2: Sketch-Line versus Tracing and Painting for 2D Region Delineation 

 

The second user study is a comparison of sketch-line region delineation against two other 

common region delineation techniques: tracing and painting. 
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 Users were asked to delineate 2D contours using one of the 3 techniques. The time taken 

to delineate, the editing time required, as well as some other model specific quantities were 

measured.  

A 2D delineation task was chosen for several reasons. The most basic reason was that an 

implementation of 3D tracing and 3D painting was not available. However, if the 

implementations were available, there would be no guarantee that the software used the same 

type of input device or that all implementations would support real-time delineation. In addition, 

the implementations may also each require different input actions (e.g. a key press and/or mouse 

wheel) to control envelope depth. A 2D contour delineation task, on the other hand, can be 

performed in real time for all three models, has no depth control requirement, and uses 

essentially the same interactions as the 3D delineation task. Also, the 2D task is very simple to 

explain and to grasp by naive users. Finally, designing target contours and measuring delineation 

time as well as delineation precision was all simplified in 2D.   

First, a simple explanation of tracing and painting is in order. Tracing is exactly as it 

sounds – the user uses a mouse or some other input device and moves the cursor along the target 

contour, tracing out a smooth spline curve in an attempt to match the given contour (Figure 53).  

           

Figure 53 – Contour Outlining: Tracing a spline curve around a target contour in a 2D window. The control 
points are shown in green.  
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The user can, at any time, stop and select a spline control point and edit the shape of the 

spline by repositioning the control point. The user may also use a slider to change the distance 

between control points as the tracing proceeds.  

In painting, the uses moves a circle (a “paint brush tip”) around the interior of the target 

contour and the circles are blended together (the blended circles are the “paint”) forming a closed 

contour (Figure 54 top).  To edit the painted contour, the user holds down the right mouse button 

and the circle becomes an “eraser” (Figure 54 bottom). The user may also use a slider to change 

the size of the paint circle (i.e. brush tip). Tracing and Painting were chosen as the two 

alternative interaction models as they are both common and familiar to users, even from 

childhood, and both are simple to learn.  

         

   

Figure 54 – Contour Outlining: Top - painting the interior of the target contour using a circular “brush tip”. 
Bottom – pressing and holding the right mouse button changes the circle to an “eraser” or “paint remover” 
allowing the painted contour to be edited.  
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Finally, it should be noted that although the task of delineating a contour in a “clean” (i.e. 

noise-free) image can be automatically performed using well known segmentation algorithms, 

for noisy medical images (which is the norm), automatically or semi-automatically delineating a 

region of interest is an open research question. Many existing segmentation algorithms use a 

user-drawn region as a starting point.  

Similar to user study 1, 11 people (undergraduate and graduate computer science students) 

participated in the within-subjects study. The 11 students in this study were different than the 

students in the first user study. Out of 11 users, 8 were male and 3 were female with an average 

age of 22 years, 35 hours of mouse usage per week and 8 hours of video games per week. The 

study took approximately one hour to complete. Each trial consisted of 10 contour matching 

tasks, with contours of different shapes and lengths and shape complexity (Figure 55). The users 

were asked to delineate each target contour as quickly and as precisely as possible. In one trial, 

the users could edit their result. Each user performed 3 trials and the delineation technique 

(sketch, trace, paint) as well as the presentation order of the contours was randomized. Each user 

was allowed to practice each of the 3 techniques. Once the trials were completed, users were 

asked to fill out a questionnaire.  

   

Figure 55 – User Study2: Contours used for test cases for users to trace/sketch/paint on.  
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Due to the nature of the sketch-line technique, the first hypothesis formed was that the 

sketch-line model would be more precise (without editing) than paint and trace. Precision was 

measured by calculating the 2-sided Hausdorff distance [7] between the user contour and the 

exact contour. A second hypothesis was that sketching would be faster (with editing) than paint 

and trace and that the editing time would be less. A final hypothesis was that sketching would 

require fewer control points to form the spline curve than tracing. The results summarized in 

Table 5 and Table 6. 

 In the first trial, users were asked to delineate the target contour as quickly and accurately 

as possible but were not allowed to edit their results. The delineation technique (sketch-line, 

tracing, and painting) as well as the order of presentation of the target contours was randomized.  

Sketch vs. Trace and Paint 
Control 
Points 

Number of 
Parameter 
Changes 

AVG 
Time 

Precision 
Error (mm) 

AVG: Trace 26.53 0.00 15.41 5.33 

AVG: Paint 0.00 1.11 23.12 5.47 

AVG: Sketch 13.84 0.00 14.10 3.89 

STD: Trace 2.26 0.02 7.55 1.58 

STD: Paint 0.00 0.72 9.96 1.36 

STD: Sketch 1.62 0.00 4.19 1.38 

T-TEST: Sketch vs. Trace -16.88 N/A -0.70 -3.62 

P-TEST: Sketch vs. Trace 0.00 N/A 0.50 0.00 

Probability: Sketch vs. Trace 100.00 N/A 62.92 99.63 

T-TEST: Sketch vs. Paint N/A N/A -3.51 -3.90 

P-TEST: Sketch vs. Paint N/A N/A 0.01 0.00 

Probability: Sketch vs. Paint N/A N/A 99.56 99.77 

T-TEST: Trace vs. Paint N/A -5.09 -3.01 0.26 

P-TEST: Trace vs. Paint N/A 0.00 0.01 0.80 

Probability: Trace vs. Paint N/A 99.96 98.97 44.35 
 

Table 5 – User Study2: Sketch-lines vs. Tracing and Painting without editing. Parameter changes refer to 

changes in the control point spacing for Trace and changes in the brush tip radius for Paint. 
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The results of the first trial are presented in Table 5. The first hypothesis was validated 

(p< 0.005 for sketch vs. trace and p< 0.003 for sketch vs. paint). The sketched contour was more 

accurate than the traced or painted contour. In Table 5, the total time taken to perform the 

contour delineations is presented when the users were not permitted to edit their results. In this 

case, sketch-lines were faster than either trace or paint but this result was only statistically 

significant for sketch vs. paint (p < 0.02).  

Sketch vs Trace and Paint 
Control 
Points 

Number 
of 
Parameter 
Changes 

Edit 
Time 

AVG 
Time 

AVG: Trace 27.87  0.01  16.37 33.66  

AVG: Paint 0.00  0.94  14.70 41.29  

AVG: Sketch 14.50  0.00  8.88  25.39  

STD: Trace 4.37  0.02  7.18  9.33  

STD: Paint 0.00  0.77  4.25  11.19  

STD: Sketch 1.83  0.00  4.95  6.36  

T-TEST: Sketch vs. Trace -11.67 N/A -4.12 -5.53 

P-TEST: Sketch vs. Trace 0.00  N/A 0.00  0.00  

Probability: Sketch vs. Trace 100.00 N/A 99.84 99.98  

T-TEST: Sketch vs. Paint N/A N/A -4.60 -7.21 

P-TEST: Sketch vs. Paint N/A N/A 0.00  0.00  

Probability: Sketch vs. Paint N/A N/A 99.92 100.00  

T-TEST: Trace vs. Paint N/A -3.97 0.82 -3.18 

P-TEST: Trace vs. Paint N/A 0.00  0.43  0.01  

Probability: Trace vs. Paint N/A 99.80  67.49 99.23  
 

Table 6 – User Study2: Sketch-lines vs. Tracing and Painting with editing. 

 

The second hypothesis was also validated. The results are presented in Table 6. Both the 

average time required to delineate the contours using sketch-lines as well as the average editing 

time required were significantly less for sketch-lines than trace (p < 0.003) and paint (p < 0.001).  
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The final hypothesis was also validated and the results are presented in Table 5 and Table 

6 (under the column heading “Control Points”). Sketch-lines required significantly fewer control 

points to delineate the contours than tracing (p < 3.9E-07). 

Upon completion of all trials the participants were asked to fill out the questionnaire and 

indicate their level of agreement or disagreement with each statement using a 5-point Likert scale. 

The questionnaire asked the participants whether each rotation technique was easy to control and 

whether it was easy to learn. The results are presented in Table 7 and Figure 56. All participants 

scored Tracing and Sketching both “easy to control” and “easy to learn”.  

Painting scored slightly lower on “easy to control”.  The participants were also asked to 

state their favourite technique. The expectation here was that since tracing and painting 

techniques are similar to simple pen tracing and painting on paper and almost everyone has 

experience with this in childhood, then sketch-lines would not be chosen as the favourite 

technique despite its superior performance. However, 4/11 users preferred sketching while 2/11 

liked painting and 5/11 preferred tracing.  

Some comments were that painting is easy to use for a quick rough outline of a target 

contour. People who liked sketch commented that it was fast, precise, easy to edit, easy to learn, 

easy to visualize and convenient. Those who liked tracing commented that it was efficient and 

easy to focus resulting in fewer mistakes. Participants were also asked to name their least 

favourite technique. The results were that 7/11 disliked painting commenting that painting was 

hard to predict and control precisely without making mistakes. Only one user disliked sketching 

because it required the user to sketch precisely. For tracing, 3/11 disliked it and commented that 

it was hard to trace using the mouse and get an accurate result. 
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5-Point Likert Scale Trace Sketch Paint

AVG: Easy to Learn 4.91 4.82 4.36

STD: Easy to Learn 0.30 0.40 0.92

AVG: Easy to Control 4.09 4.27 3.18

STD: Easy to Control 0.94 0.79 1.33
 

Table 7 – User Study2: Sketch-lines vs. Tracing and Painting questionnaire results. 

   

Figure 56 – User Study2: Sketch-lines vs. Tracing and Painting questionnaire results. 
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Chapter V – Conclusion and Future Work 

 

This thesis presented a sketch line interaction model for visualizing and analyzing 3D 

images. The sketch-line model provides a single consistent interaction model that can be used for 

several common volume image visualization and analysis tasks. Specifically, it overcomes 

existing problems of image slice positioning and 3D region delineation found in many medical 

visualization packages due to overly complex GUI’s and multiple and limited interaction models 

that are based on volume-relative input actions rather than object-relative input. It provides a 

more seamless bridge between a 3D volume rendering view of the data and 2D image slice views 

for cross section views. Furthermore, by combining the interaction model with a spline curve, a 

subdivision surface and an extrusion process, the user is able to create accurate and editable 

geometric meshes that delineate and surround 3D regions of interest. The sketch-line model is 

simple to learn and is precise. The torus rotation model works with the sketch-line image slice 

placement to provide precise editing of slice orientation.  

Sketch-lines are designed to be drawn with a mouse or pen or touch screen input device – 

there is no need for expensive high-degree-of-freedom devices which can be uncomfortable to 

use and lead to shoulder strain and fatigue [22]. Its aim is to avoid tedious manual editing and 

manipulation of objects that are manipulated based on volume coordinates rather than relative to 

data object surfaces. The results of two user studies support the effectiveness and efficiency of 

the sketch-line interaction model when compared to other interaction techniques.  
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Furthermore, several experiments were performed in an effort to demonstrate the potential 

uses of the sketch-line model when it is combined with volume rendering and used in a multiple 

window system for image slice exploration of volume images, and when it is combined with a 

subdivision surface and an extrusion process for 3D region delineation.  

 

5.1 Future Work 

 

There are several areas for improvement and extension to the sketch line system. Firstly, it is 

currently somewhat difficult to sketch on narrow anatomical structures, such as small arteries. 

An accurate zoom feature would be beneficial in these situations.  Also, in noisy medical images, 

the volume rendering of objects results in “fuzzy” surfaces are also difficult to sketch. More 

surface samples within a larger region around the cursor need to be taken as the user sketches. To 

further reduce the noise, a simple convolution operation with a Gaussian blurring could be used 

on the collected samples. Currently VTK does not support a transfer function GUI and volume 

rendering values are all hard-coded. In addition, the volume rendering quality in VTK is rather 

poor. A possible solution would be to port the sketch-line system to MeVisLab [43] which 

supports interactive, high-quality volume rendering as well as many VTK C++ classes. 

Furthermore, currently the envelopes can be created and manipulated in real time. However, both 

the cutaway operation and the deformable model segmentation algorithm are slow by today’s 

standards and need to be GPU accelerated. Fortunately, both of these algorithms can be readily 

parallelized. 
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 Finally, currently there is no prevention of local and global self intersection of the various 

envelopes. This is a common problem of parametric surface representations. Additional 

constraints need to be imposed to prevent local intersection of sketch-lines and profile curves.    

Useful extensions to the system include the ability to add a new sketch line between two 

existing sketch lines as well as adding new sketch lines to an existing sketch line defined region 

in oredr to form protrusions or branches. Finally, further user studies are needed that directly 

compare GPU accelerated versions of 3D sketch lines, 3D tracing and 3D painting techniques 

using different kinds of input devices (pen, tablets and force feedback input devices).  Ideally 

these studies would have medical professionals as participants. 
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