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Abstract 

Preliminary Analysis of the Effects of Different Machining Techniques on Carbon 
Fibre Epoxy Materials  

 
Master of Engineering 2012 

 
Diana Mollicone 

 
Mechanical Engineering 

 
Ryerson University 

 

 Composite materials present a potential alternative to traditional metallic alloys in 

aerospace structural components such that they have desirable mechanical properties 

while possessing low densities. These components are traditionally joined together 

through bolts, which require the materials to have machined holes. This inquiry 

compared the effects of different types of machining on carbon epoxy plates: drilling with 

a coated bit and waterjet machining, and how they impact the material’s behavior during 

load-bearing operations. Three forms of material testing were used: tensile testing, strain 

gauge, and infrared thermography analysis during cyclic loading. The results obtained 

do not demonstrate consistent patterns that would suggest that one machining method is 

beneficial over the other.  
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Chapter 1: Introduction and Scope 
 Composite materials possess several desirable properties when compared to 

conventional metals including higher specific strength, higher modulus, and better fatigue 

strength; all while maintaining a low density [1-3]. As a result, the use of composite materials 

has grown drastically, particularly in the fields of aerospace and aircraft for structural load-

bearing applications [4]. Components comprised from composite materials are usually moulded 

to near-net shape, and machining is necessary for the final part assembly as aerospace 

components are joined through bolts and fasteners [5-6].   

Conventional machining techniques such as drilling are used with composite materials 

because of the availability of equipment and knowledge of said methods [6-8]. However, when 

drilling composites, the main issue is the damage caused to the workpiece; the principal 

damage of concern is delamination and matrix cracking [7]. The focus of this paper is concerned 

with different forms of machining: drilling with a coated bit, and waterjet machining and how they 

behave in continuous load-bearing applications. Apparent advantages of waterjet machining 

include that it does not produce dust particles that are harmful when inhaled, it does not require 

finish sanding, and automation processes are easy to install [8-9]. 

The performance of the different machining methods have been evaluated through 

tensile testing, strain gauge testing, and infrared thermography. Tension tests were performed 

to gather basic mechanical properties of the materials as well as visual inspect the failure 

mechanism. Infrared thermography tests were used to gather a visual examination of the stress 

accumulation around the hole. Strain gauge tests were done to validate the numerical results 

obtained through infrared thermography. 
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Chapter 2: Literature Review 
Experiments leading up to this inquiry include: the effects of stress concentrators in 

composite materials (including machined holes), the effects of drill bit coatings on machining, 

the advantages of non-traditional machining methods, the use of infrared thermography in 

composites analysis and the effects of ply stack-up in composite materials.  

2.1 Stress Concentration in Composite Materials 

 Work done by S. D. Pandita et al. [10] investigated the tensile strain field of woven fabric 

composites in the presence of stress concentrations caused by geometrical defects, particularly 

circular and elliptical holes. Experiments were performed by placing plain woven composite 

plates in a tensile machine equipped with a strain mapping device and the plates were strained 

until failure. The experiments revealed that the strain concentrations are influenced by the 

tensile loading direction and the hole dimensions, which are defined as a height over width ratio 

or b/a [10].  

  

Figure 1: Labeled schematic of Pandita’s workpiece [10] 
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Pandita’s experiments [10] demonstrated that at lower shape parameters, the strain 

concentration is located at the tip of the elliptical holes. Increasing the shape parameter causes 

the stress concentration to become smaller because of the large perimeter for the stress to 

accumulate - allowing for higher stress value prior to fracture, as seen in Figure 2. When 

comparing failure modes though, it’s apparent that lower (b/a) values fractured at mid-plane of 

the hole because the concentration is very sharp. Higher (b/a) values caused failures at other 

locations around the hole, Figure 3 illustrates the final failures of the work pieces. Larger (b/a) 

values increased the net strength slightly but the failure became less predictable.  

 

Figure 2: Residual Strength of Pandita’s work pieces against the shape parameters [10] 

 

Figure 3: Final failure of elliptical holed specimens with different shape parameters after being 

subjected to uniaxial tension testing [10] 
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2.2 The Effects of Drill Bit Coatings 

 Experiments done by C. Murphy et al. [11] were concerned with the effect of coatings on 

the performance of traditional tungsten carbide (WC) drill bits used to drill carbon fibre-

reinforced epoxy plates. The experiments made use of three different types of WC bits: 

uncoated, titanium nitride coated (TiN), and diamond-like carbon coating (DLC). The 

performance of the coatings has been analyzed in terms of damage to the composite and the 

thrust force. 

Charles’ experiments concluded that the use of coatings in the drill bits were found to be 

of no benefit when machining carbon-epoxy composites [11]. The damage done to composite 

materials during machining with drilling procedures is induced through delamination as the bit 

protrudes the last ply [11]. The coating serves to prolong the life of the bit itself [12-13]. 

 

Figure 4: Schematic of delamination as the drill bit penetrates the last ply of a composite 

material [11] 

 

Figure 5: SEM image of delamination of the last ply caused by drilling [11] 
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2.3 Non-Traditional Drilling 

 Using C. Murphy’s [11] information as a jump-start, H. Hocheng et al. [7] sought to 

determine drilling methods that would result in zero delamination while drilling composite 

materials including waterjet machining. In drilling composite laminates, the uncut thickness to 

withstand the drilling thrust forces decreases as the drill approaches the last (exit) ply. The 

laminate at the bottom can be separated from the interlaminar bond around the hole edge. 

During this time, the loading from drilling exceeds the interlaminar bonding strength and 

delamination occurs, seen before in Figure 4 [11]. 

The main issue with waterjet machining is that damage is introduced into the working 

piece upon initial contact with the stream due to shock loading. Delamination can be eliminated 

by reducing the jet speed though, this in turn hinders the piercing capabilities. Hocheng’s tests 

concluded that waterjet machining creates the holes fast and fine for medium to large diameter 

sizes in general without creating delamination. However, the initial investment is relatively high 

compared with traditional drilling schemes [7].  

For all drilling schematics, the use of a back-up plate prevents the delamination caused 

by the drill exiting the piece; this is because the plate prevents the last ply from debonding as it 

adds an additional threshold force for delamination to begin in the first place [7]. 

 

Figure 6: Circular plate model for delamination analysis, with back-up plate [7] 

Drill 

Debonding Back-up Plate 



 6 

2.4 Thermographic Analysis of Fatigue Behaviour in Composites 

L. Toubal et al. [14] completed experiments to demonstrate the relationship between the 

dissipation of heat and the damage of composites during fatigue testing. He completed his 

experiments by placing his carbon fibre epoxy composite plates in a mechanical testing device. 

These plates were subjected to cyclic loading and unloading while an infrared camera equipped 

for thermographic inspection was recording the behaviour.  

 

Figure 7: A schematic of the work pieces used by Toubal (units in mm) [14] 

 

Figure 8: Graphic displaying the evolution of cumulative damage vs. number of cycles; ‘D’ 

represents the amount of damage damage, ‘E0’ represents the initial moduli of stiffness and ‘E’ 

represents the residual moduli of stiffness [14] 
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Based on Figure 8, one might believe lead to believe that the stiffness modulus reaches 

zero upon failure; this however isn’t true. The moduli of stiffness prior to fracture is Ef and a new 

parameter D’ which accounts for the total accumulated damages, incorporates it. Figure 9 below 

illustrates this, note that Nf is the number of cycles until failure and N is the number of cycles 

completed. [14] 

 

Figure 9: Toubal comprised 5 graphs that compare the evolution of damage for different load 

levels (as a percentage of the total strength of the material) [14] 
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His experimental results of the damage evolution demonstrate three different stages. 

The first stage, the fatigue damage grows rapidly due to the occurrence of multiple damage 

modes within the material. The damage increases steadily and slowly during the second stage. 

During the third and final stage, the damage grows rapidly due to the fracture of the fibres.  

IRT can be incorporated as part of a fatigue testing procedure. As a material becomes 

deformed due to repeated stress loading, it releases heat as the temperature varies 

proportionally to the sum of the stresses [15-17]. Thermography records these changes from the 

infrared radiation emitted by the object [18]. During a fatigue test, the area of the specimen 

placed close to the gauge responsible for the loading increases in temperature as the number of 

cycles increases [14].  

 

Figure 10: A schematic of the thermal evolution during a fatigue test [14] 

The evolution of the temperature also appears to follow three stages [14]. In the first stage, 

the temperature variation is due to the frictions as the load is being applied (fibre/fibre 

interactions). The second stage has a temperature plateau as the damage accumulation 

becomes saturated. Finally, there is an abrupt increase in temperature as the workpiece 

becomes close to rupture.  
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Figure 11: Comparison between the change of the temperature and the damage at 

different load levels (as a percentage of the total material strength), Toubal noticed that the 

patterns produced by both measurements were relatively similar [14] 

2.5 The Effects of Ply Stack-up 
 
 Pinned joint configurations are potentially problematic to designers due to stress 

concentrations such that the strength of the structural member is essentially the strength of the 

joint. A. Aktas and H. Durikolu looked into pin loaded carbon epoxy composite laminates with 

different stacking sequences to analyze their maximum strength during load-bearing 

applications. The laminates had the following stacking sequences: [90º/45º/-45º/90º] and 

[90º/45º/-45º/0º], whereby the angles indicate how the fibres of each ply were aligned; both had 

identical properties aside from ply alignment. The results of the tests are summarized in Figure 
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13. Note that the ratios used as the independent variables are summarized in figure below 

(Figure 12). In each case, [90º/45º/-45º/0º] stacking sequence proved to have more mechanical 

integrity [19].  

 

Figure 12: Schematic of the workpiece used by Aktas including defined variables [19] 

 

 

Figure 13: Graph comparing the safe net bearing strength between composites of different ply 

stack-up schematics [19] 
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Chapter 3: Materials and Procedures 
This section of the report will discuss the materials and procedures used in this 

investigation. 

3.1 Materials 

 Two woven 10-ply carbon-fibre epoxy plates with a stacking sequence of [+45º/-45º] 

have been provided by Hexcel Composites [20]. Both composite plates have the exact same 

dimensions, manufacturing processes, and save sized drill hole at the centre of each plate. For 

every plate, the length is 250 mm, the width is 25 mm, the thickness is 2.2 mm and the hole 

diameter is 6 mm.  

 

 

 

 

 

 

 

 

 

 

Figure 14-16: Various schematics, from left to right - dimensions of the workpieces, the fibre 

orientation, and the ply stack-up 
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The only differing factor between the plates is the hole itself: 1 plate was drilled using a 

tungsten carbide drill bit that had been coated with Titanium Nitride (TiN) and 1 plate was drilled 

using waterjet machining. The plate that had been machined use traditional drilling are 

referenced as Hexply T2H 268 150 EH25 NS 35% (noted as T2H-EH25) with a 59% fibre 

content and 0.25 mm thick ply. The plate that had been machined using waterjet drilling is 

referenced as Hexply T700GC 268 M21 34% (noted T700-M21) with a 58% fibre content and a 

0.26 mm ply [20].  

3.2 Strain Gauge Procedure 

 Prior to placing the gauges on the plates, both plates were scrubbed with 400-grit silicon 

carbide paper to remove any surface particles (such as dust, sand, or dirty), doing so ensures 

that the gauges are placed flat against the surface. M-Prep conditioner was applied to the plate 

surface to remove any residues and the conditioner was scrubbed off with cotton swaps. Four 

gauges were applied to the centre of each plate, approximately 10 mm from each side of the 

hole with M-Bond 200 Catalyst and allowed to dry for 30 seconds. The gauges were sealed to 

the plate by placing cellophane tape to the outside of each gauge. Colour-coded lead wires 

were used in this experiment (red, black and white), the black and white wires were exposed 

with pliers and soldered together. The four gauges were connected to each of the channels of a 

DSub-15-pin Connectors. The DSub-15-pin connectors were placed in the CRONOS-PL2 which 

was connected to a laptop that had been installed with FAMOS V5.0 to control the amount of 

strain induced; the plates were subjected to dynamic tensile loads of 2000 N and 2500 N.  

 

Figure 17: Gauge and wiring positioning on plate prior to testing 
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3.3 Infrared Thermography Analysis Procedure 

The plates were scrubbed with 400-grit silicon carbide paper to remove surface residues 

such as dirt and dust particles. An extensometer was fixed on the gauge-length section of the 

plate to record the value of the stress and store them directly into the acquisition system for 

further analysis. Each plate was locked into the Instron 8874 mechanical tester with its back 

side facing the camera. The thermal camera and its respective tripod were placed 

approximately 1 m away. The upper jaw of the Instron 8874 mechanical tester supplied the load, 

and cyclic loads of 2000 N and 2500 N at a frequency of 5 Hz and for 10,000 cycles. 

 

Figure 18: Labeled thermography experimentation set-up 
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3.4 Tensile Testing Procedure 

The tension tests were done by collaborators of the Bougherara group at the University of 

Québec at Trois Riviérés. The team used these plates and tested them until fracture to develop 

stress-strain curves. The purpose of these tests was to gain basic mechanical properties of the 

materials and determine the fracture direction.  
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Chapter 4: Results Analysis 
This section of the report will provide key quantitative results obtained through the 

various tests done to these plates. 

4.1 Strain Gauge Results 

 The plates that had been drilled with the coated drill bit and through waterjet underwent 

strain gauge testing. Figure 19 illustrates the results, which were tabulated by averaging the two 

readings received on the X-direction gauges (see Figure 17). At a higher load level, the waterjet 

drilled plate accumulated less stress. At a lower load level, the bit drilled plate accumulated less 

stress. Y-direction gauges were not analyzed as thermography analysis did not take that 

direction into consideration. 

Strain Gauge Results - x-direction
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Figure 19: Chart comparing the stress obtained by carbon epoxy plates during strain gauge 

testing - coated drill bit machined and waterjet machined 
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4.2 Infrared Thermography Results 

 The plates were analyzed through infrared thermography while undergoing cyclic loading 

at loads of 2000 N and 2500 N for a total of 10,000 cycles. Altair Software was used to analyze 

the images captured by the thermal camera; the technique can be seen in Figures 22 and 23. 

Altair allowed observation of the variation in both peak stress levels and temperature difference 

across the area of the plate with the machined hole. Below is a chart comparing the peak stress 

levels recorded for the two plates; the results obtained are very similar to that obtained by strain 

gauge testing. There appears to be no significant pattern in stress accumulation comparing the 

two plates.  

Infrared Thermography Results
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Figure 20: A chart comparing the maximum stress level achieved by the plates (closest to the 

hole) when loaded at 2,000 N and 2,500 N for 10,000 cycles 
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 When comparing the temperature variation across the machined plates, the highest 

temperature change was noted in the areas closest to the hole. Though, the temperature 

variation peak was similar in both peaks, as seen in Figure 21 below. 
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Figure 21: A chart comparing the maximum temperature increase achieved by the plates 

(closest to the hole) when loaded at 2000 N and 2500 N for 10,000 cycles (the values were 

identical for both load levels) 
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Figure 22: Sample thermograph obtained by Altair 
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Figure 23: Sample analysis technique used to compare the stress and temperature variation across the width of the plates containing 

a machined hole 
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4.3 Tension Tests Results 

 Below is the stress-strain curves produced by both plates undergoing tensile-testing until 

fracture. The tension tests results do not demonstrate a significant difference that may suggest 

that one machining method results in a more structurally resilient component. The workpiece 

machined with the coated bit did withstand a higher force and strain prior to fracture than the 

workpiece machined through waterjet. Images were captured during the process; interestingly, 

the images demonstrate that the fracture process did not occur adjacent to the holes in either 

workpiece, but rather with the ply orientation, seen in Figure 25. Prior to the fracture, both plates 

demonstrate fibre breakage near the hole, seen in Figure 26. 
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Figure 24: Results obtained from tensile-testing both workpieces until fracture 
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Figure 25: Final fracture of the waterjet machined plate demonstrating that the fracture pattern 

follows the ply alignment  

 
Figure 26: Fibre breakage prior to fracture 
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Chapter 5: Conclusion and Future Work 
 The purpose of this lab report was to compare the effects of machining methods on 

composite plates in terms of their behaviours in load-bearing conditions. The three testing 

methods utilized in this investigation do not demonstrate enough evidence suggesting one 

machining method is beneficial over the other thus far. The strain gauge testing and infrared 

thermography analysis during cyclic loading provided similar figures and minor differences 

between the workpieces. This validates the infrared thermography testing as a form of non-

destructive testing. Tension tests do not provide a significant basis of comparison between the 

two drilling mechanisms.  

 Aerospace applications rely on longevity of their components, as such, future work may 

want to analyze these materials through fatigue testing. Rather than investigating the stress 

concentrations at specific load levels, the plates should be tested at continuously increasing 

load levels at a specific number of cycles until fracture. Doing so would allow comparison of 

damage evolution and how the stiffness of the plates deteriorates with increasing load levels. 

The practice of IRT for these investigations should continue as it has the potential to supply 

information for the evaluation of the extension of the impact damage and detailed imaging that 

could lead into a better understanding of metal and fibre layers in material hybrids. 

 As of now, the only beneficial factor regarding waterjet machining is the speed and ease 

of automation and use. Future investigation may want to focus on the level of delamination and 

the economic feasibility of implementing non-traditional cutting techniques to create holes for 

bolted joint connections. Future work should continue to make use of infrared thermographic 

analysis as it provides colourful images of the stress accumulation and can provide vital hints 

towards where the fracture will occur and also make known of where fibre-breakage persists. 
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