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Abstract
Amir Ali Khatibzadeh

A 1.8 V 1.1 GHz Novel Digital Multiplier

Master of Applied Science in 
Electrical & Computer Engineering 

Ryerson University 

Toronto, Ontario, Canada, 2004

This thesis presents the design of an 8 x 8-bit novel multiplier, which can provide a better 

performance than its counterparts in the sense that it has a fraction of the silicon area, 

delay and power consumption of the common architectures such as the conventional 

linear array multipliers.

A t the system-level high performance is obtained by implementing a pair-wise 

multiplication algorithm. Also, parallel addition algorithm is used to add up partial 

products. Combining these two algorithms results in an efficient cell-based circuit 

realization. In the circuit-level, pseudo-NMOS full adder cell is chosen amongst the 

several existing full adder cells due to its superior speed and power performance.

The performance of this design has been evaluated by comparing it to those of the 

recently reported multipliers. The results o f the comparison, both in theory and 

simulation, prove the superiority of the proposed multiplier.
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Chapter 1

Introduction

1.1 Motivation

The core of every microprocessor, digital signal processor (DSP), and data processing 

application-specific integrated circuit (ASIC) is its data path. It is often the crucial circuit 

component if die area, power consumption, and especially operation speed are of 

concerns. At the heart of data path and addressing units are arithmetic units, such as 

comparators, adders, and multipliers. Finally, one of the basic operations found in most 

arithmetic components is binary multiplication. Besides simply multiplying two numbers, 

multipliers are also used in more complex operations like address calculation and 

division. Also, simpler operation like magnitude comparison is based on binary 

multiplication.

Multiplication is also very critical if  implemented in hardware because it involves an 

expensive carry-propagation step, when partial product addition is performed. The 

efficient implementation of multiplication operation in an integrated circuit is a key 

problem in VLSI design. Designing fast and power-efficient multiplier has been of great 

theoretical and practical interest for computer scientists and engineers. Several 

algorithms and various VLSI implementations have been proposed [1,2,3, 4, 5, 6, 7] and 

practically used.



In order to achieve high performance multiplier, it is necessary to operate very efficiently 

in terms o f speed and power trade-off in all design levels. Increasing the operating speed 

of the circuits to make more computations with lower power consumption is the main 

motivation in multiplier design.

The recent progress in use of Ultra Deep Sub-Micron Devices (UDSM) helps to 

overcome the area constraint. Employing advanced cell-based architectures constantly 

improves productivity in ASIC design. Taking all o f these into account, implementing 

low-power circuit techniques based on a fast multiplication algorithm is still a cost- 

effective and feasible alternative for increasing the performance of the multipliers 

substantially. Therefore, this thesis deals with designing a novel multiplier with inherent 

high-speed characteristic and power efficient performance.

1.2 Applications

Wireless communication systems, including third generation cellular radio systems and 

wireless Local Area Network Systems (LANS), have become tremendously popular in 

recent years. These systems can be implemented using various platforms, such as digital 

signal processors, ASICs and Field Programmable Gate Arrays (FPGAs). Most digital 

signal processing systems incorporate a multiplication unit to implement algorithms such 

as correlation, convolution, filtering and frequency analysis. These algorithms are used in 

applications such as finite impulse filters (FIR), infinite impulse filters (HR), discrete 

cosine transforms (DCT), and fast Fourier transforms (FFT). Moreover, there has been a 

rapid increase in the popularity of portable and wireless electronic devices, such as laptop 

computers, portable video players and cellular phones, which rely on embedded digital 

processors. Since the desire is to design digital systems for communication applications



at the best performance without scarifying power, high performance and low power 

multipliers are inevitable.

1.3 Original Contributions

This thesis presents the design of novel multiplier architecture, with superior 

performance in speed, power consumption and area compared to traditional array 

multipliers.

In order to achieve architecture with high performance several foremost parallel 

multiplication algorithms have been studied and compared. Braun, Baugh-Wooley, 

Wallace and pair-wise algorithms have been reviewed in detail. Among these algorithms 

pair wise algorithm has been chosen due to its superiority in speed of operation.

The 8 X 8-bit multiplier based on this algorithm operates by:

1) generating four 8-bit (Xg, X„, Yg, numbers using even and odd positions of 

the multiplicand (X) and multiplier (f).

2) multiplying these four 8-bits numbers to generate the four 15-bit numbers 

(Pgg, Pgo, Poe, Poo) known as the even and odd elements of the partial products

iP)-

3) adding the result o f the multiplication of elements of partial products. The 

addition is performed in four steps by using 3-to-2 adding technique which 

results in two 15-bit numbers.

4) adding two final 16-bit numbers (Pg, Po) and thus generating the product of 

multiplication via a fast carry lookahead.

In the first step of design flow, topology selection, six full adder cells based on CMOS 

static logic styles are redesigned and examined at transistor-level in standard 0.18p 

CMOS technology. The results o f the extensive evaluation, which are further presented in



Chapter 3, prove that 14-transistor pseudo-NMOS full adder cell offers a better speed and 

power trade-off with less numbers o f transistors [8, 9, 10].

The validity of the design strategy is by proven by testing the complete multiplier and 

measuring the speed and power. All the designs are simulated using Cadence Computer 

Aided Design (CAD) Tool in 0.18pm CMOS technology at 1.8V supply voltage.

In summary a speed/power efficient novel multiplier for medium bit width applications is 

designed in this thesis. Leading by a quantitative analysis of the characteristics of static 

CMOS logic adders, several topologies are examined to support the final circuit design. 

The major contributions of the thesis are summarized as follows:

• An in-depth comparative analysis of the characteristics o f  static CMOS adder 

cells is conducted, and useful insights are obtained.

• Power reduction through algorithm selection is achieved by:

a) Minimizing the number of operations and, hence, the number of 

hardware resources (half adder cells used anywhere possible)

b) Reducing the number of complex operations by transforming 

mathematic expressions (cascading four 4-bit carry lookahead adders 

instead of implementing a 16-bit carry lookahead structure, which 

requires complex logic operation)

• Power reduction through circuit/logic is achieved by using static style rather than 

dynamic style. This causes the architectural level to be free from clock and 

related clocking issues such as clock skew and high dynamic power.

• Flexibility in delay modeling in system-level in such a way that modifying the 

entire multiplier for different speed requirements is straightforward.

• The performance of the proposed multiplier is well enhanced by considering 

transistor chaining, grouping, and signal sequencing in the adder layout which is



proven to provide substantial power saving and speed improvement at no area 

penalty.

These original contributions have been published in two conference proceedings [9, 10].

1.4 Thesis Organization

This thesis consists of 5 chapters and is organized as:

Following the introductory Chapter 1, Chapter 2 describes the basic concept of two’s 

complement multiplication. The most known parallel multiplication algorithms used in 

VLSI implementation along with the pair-wise multiplication algorithm are introduced 

and a brief qualitative comparison of these algorithms is presented.

In Chapter 3, first the top-level design of pair-wise multiplier is presented. Topology 

selection of the main elements as a result o f an extensive performance analysis on adder 

cells further reviewed. The circuit design of the required cells for pair-wise structure is 

also discussed.

Chapter 4, is dedicated to the simulation results of individual circuits and cells as well as 

the final simulation results o f the proposed multiplier. Layout considerations are also 

discussed.

Finally, Chapter 5 presents the features of the Designed Multiplier. A comparative study 

of the previous works on multipliers is presented to better evaluate on this work. Drawing 

conclusion, summarizing the contributions of this thesis, and outlining the directions for 

the future investigations bring this chapter to an end.



Chapter 2

Basic Concepts of Multiplication

Multiplication is one of the main arithmetic operations. Multiplier represent a 

fundamental building block which is being widely used in many Very Large-Scale 

Integrated (VLSI) systems such as application-specific Digital Signal Processing (DSP) 

architectures, microprocessors and systems which implement filtering, encryption, 

security processing and image processing. In addition to their main task, which is 

multiplying two binary numbers, multipliers are the nucleus o f many other useful 

operations such as division and address calculation. In these systems the multipliers are 

the part o f the critical path that determines the overall performance of the system. That is 

why enhancing the performance of multiplier is a significant goal.

Parallel to high-speed system design [II], low-power systems [I] are highly in demand 

because of the fast growing technologies in mobile communication and computation. The 

battery technology does not advance at the same rates as the microelectronics technology. 

There is a limited amount of power available for mobile systems. Thus, designers are 

faced with more constraints; high-speed, high throughput, small silicon area and at the 

same time, low-power consumption. Therefore, low power, high-performance multiplier 

is of great interest.

Current architectures range from small, low performance array to tree multipliers. 

Conventional linear array multipliers achieve high performance in a regular structure, but 

require large area o f silicon. Tree structures achieve even higher performance than linear



arrays but the tree interconnection is more complex and less regular, making them even 

larger than linear arrays. Ideally, one would wish the speed benefits of a tree structure, 

the regularity of an array multiplier, and the small size of a shift and add multipliers.

The first section of this Chapter explains the basics of binary multiplication. A review on 

the most known parallel multiplication algorithms is presented in Section 2.3. The pair­

wise multiplication algorithm that has been used in the proposed multiplier is also 

described. These algorithms are, then, briefly compared against each other at the end o f 

this Chapter.

2.1 Multiplication Definition

Multiplication is defined as “a mathematical operation that at its simplest fonn is an 

abbreviated process of adding an integer to itself a specified number of times.” A number 

(multiplicand) is added to itself a number of times as specified by another number 

(multiplier) to form a result (product). Multiplication starts with placing the 

multiplicand on top of the multiplier. The multiplicand is then multiplied by each digit o f 

the multiplier beginning with the rightmost. Least Significant Digit (LSD). Intermediate 

results (partial products) are placed one atop the other, offset by one digit to align digits 

o f the same weight. The final product is determined by summation of all the partial 

products. This technique applies equally to any base, including binary.

2.2 Binary Multiplication

In the binary number system the digits, called bits, are limited to the set [0, 1]. The result 

o f multiplying any binary number by a single binary bit is either 0, or the original 

number. This makes forming the intermediate partial products simple and efficient.



Summing these partial products is the time-consuming task for binary multipliers. One 

logical approach is to form the partial-products one at a time and sum them as they are 

generated. This technique works fine but is slow. For applications where this approach 

does not provide good enough performance, another approach is used which is known as 

parallel multiplication algorithms. In this latter approach all bit-products are generated in 

parallel and a multi-operand adder (i.e., an adder tree) is used for their accumulation. 

Multipliers that operate based on these algorithms are called parallel multipliers. Parallel 

multipliers are becoming the key components in Reduced Instruction Set Computers 

(RISCs), DSP and graphic accelerators due to their inherent higher speed of operation. 

This brings parallel multiplication to the main focus of our discussion.

2.3 Review o f Parallel Multiplication Algorithms

Since multiplication is one of the most critical operations in many computational 

systems, many algorithms have been proposed to perform multiplication, each offering 

different advantages and having tradeoffs in terms of speed, circuit complexity, area and 

power consumption. Among the multipliers reported parallel multipliers have been of 

great theoretical and practical interests for VLSI designers not only for their speed of 

operation but also for their ease o f  implementation.

The structure of all parallel multipliers can be partitioned into three parts performing 

three major tasks:

a) Partial product generation.

b) Carry-free addition.

c) Cany-propagation addition.



These three parts can be implemented using different schemes such as simple AND gate 

or Booth algorithm to generate partial products. The carry-free addition task is often 

implemented by using a Wallace tree or redundant binary addition tree.

In the following section four well-known parallel algorithms as well as pair-wise 

algorithm, which have been used in VLSI implementation of digital multipliers, are 

briefly presented. The readers can consult references [11,12] for more details on parallel 

multiplication algorithms.

2.3.1 Braun Algorithm

Consider two unsigned numbers X  = XjXo and Y  = ¥„./ ...Y/Yq, where

A = X ' x , 2 ' ,  (2.1)
/=0

y  = % 2 ' .  (2.2)
1=0

The product P  =  PiPo, which results from multiplying the multiplicand X  by

the multiplier 7, can be written in the following form

/=n-l 7 =n-l

% (Z ,y ,.)2 '+ \ (2.3)
i=0 j=o

Each of the partial product terms P*= XtYj is called a summand. Fig.2.1 shows an 

example of an 8 x 8-bit multiplication.

The summands are generated in parallel with AND gates. Fig. 2.2 shows the Braun’s 

array multiplier [4]. Such a n n x n  multiplier requires n x (n -1) adders and n  ̂AND gates. 

The delay o f such a multiplier is determined by the delay of the full adder cell and the 

final adder in the last row. In the multiplier array a full-adder with balanced carry and



sum delays is desirable because the sum and carry signals are both on the critical path. 

For the large arrays, the speed and power of the full adder are both very important.

^8 ^7 ^6 ^5 ^4 ^3 X,

Ys Y Ye Ya Y Y Y

^sY XJ, X,Y, XJ, X J, ^lY
X,Y, x ,Y 6̂1̂ 2 X,Y, XJ, X3Y2 X J, X,Y, 0
X,Y, n X,Y, X,Y, X,Y, 0 0

X,Y, ^eY, 3̂î 4 X,Y, x.y. 0 0 0

ŝYs X,Y, x ,Y x ,Y x,Y 0 0 0 0

n ŝYe ^sYe ^2^ ^̂ Ye 0 0 0 0 0
X,Y, X J, X,Y, X,Y, 0 0 0 0 0 0

ŝY> ^,Y, ^,Ys

■̂ 6 -̂ 5 4̂ ^3 P̂2 Pu ^ 0 4 n 4 Pe Ps Pa Pz P2 Pi

Fig. 2.1 Partial products of an 8 x 8-bit unsigned integer multiplication

Carry Propagation Adder

’15

Fig. 2.2 Braun’s array multiplier

2.3.2 Baugh-Wooley Algorithm

Baugh-Wooley is one of the developed algorithms for parallel multiplication, which has 

been used in VLSI architectures [12]. Multipliers based on this algorithm are used for
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direct multiplication of two’s complement numbers. This direct approach does not need 

any two’s complementing operations prior to multiplication. Using the Baugh-Wooley 

algorithm, the product o f two numbers X and Texpressed in two’s complement,

i~ n - l

X  = - X , . a ' - ' + ' Z x , 2 ‘ , (2.4)
1=0

y  =  - y „ . ,2 " - '+ '5 V ,2 ',  (2.5)

is given by

7=0 y=o 1=0 /=o
(2.6)

In order to avoid the use of subtractor cells and use only adders, the negative terms 

should be transformed. So

-X„_y 2  ^2"+'-' =X „_,(-2 '''-'+2 '’-' + J i '2 ''-^ '- ') .  (2.7)
1=0 /=o

Using this property in equation (2.5), the product P becomes

\2 n - \  , / TF , V I V' V \a t = - 2 " - ' + ( x ._ ,  + r . . ,  + x . . ,y . . , ) . 2 " - '  + 

" S  'Ë x , x ,  2 '* /+ (X ,., + r . _ , ) . 2 - + X . . , ' % 2 ' « - ' + ' % x , 2" ' - '
f=o y=o 1=0 /=o

(2.8)

From Equation 2.8, it can be seen that the multiplication of two numbers, expressed in 

two’s complement representation, can be written in a form which involves only positive 

bit products. The product is, then, obtained by adding a constant to the final result. All the 

partial product terms to generate the above product are explicitly shown in Fig. 2.3. A 

simple reorganization of Fig. 2.3 results in the array o f partial product shown in Fig. 2.4, 

which is a modified version of the original Baugh-Wooley algorithm.

11



It can be seen that half adder, full adder, NAND and AND gates are the required elements 

by Baugh-Wooley algorithm to perform two’s complement multiplication.

y. Y, Ye Ye Y. Ye Ye 1Î
Xs ^7 Xe Xe X, Xe Xe

X.y, xr , X /, X,Y,

X,Y,

X,Y, 

X,Y, X,Y,

X,Y,
X,Y,
X,Y,
X,Y,
X,Y,

X^Y,
X,Y,

X^Y,
X,Y,
X,Y, X,Y, X/3

X,Y,
X,Y,

X̂ Y,
X,Y,

X,Y, X,Y,

X,Y,
X J ,
X,Y,

X,Y,
XeY2
X,}^

XsY,
Xei;

0

X,Y,
X,Y,

X J 2

XsY, 0
0
0

X,Y,
X,Y,

0
0
0
0

x j ,  X,};
0X2Y,

0
0
0
0
0

0
0
0
0
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 W i % 1 1 1 1 1 1 1
1 1 XeYs XeYe 4̂>̂ 8 ^ 31̂8 2̂Î̂ 8 ,̂î 8 1 1 1 1 1 1 1
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Fig. 2.3 Illustration o f the partial product terms in Baugh-Wooley algorithm

1 XX,

.̂1̂ 8 X X XX XXe XX, X,}̂

2̂>̂8 X X XeYe XXe X X , XXe x^r̂
XeYe XjF, XeYe X X XX, XeYe XeYe X X

XJs X Je XXe X X , XXe X,Y, X41Î
XeYe X X XeYe XeYe XX, XeYe X X X X

6̂>̂ 8 XeYe XeYe XeYe XeY, XeYe XeYe X X
x ,r . XeYe XeYe X X XXe XXe X X
X»Y, XXe X X XXe XXe XX,

X,Y,
XX,

X,};

Fig. 2.4 Reorganization of the partial product terms o f  Fig. 2.3

This algorithm is suitable for applications where operands with less than 16 bits are to be 

processed. Digital filters where small operands are used (e.g. 6, 8 and 12), are examples 

of such applications.

Fig. 2.5 shows the array architecture of an 8 x 8-bit Baugh-Wooley two’s complement.
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For operands equal to or greater than 16-bits, the Baugh-Wooley scheme becomes area 

consuming and slow. Hence, techniques to reduce the size of the array, while maintaining 

the regularity, are required.

T, u  h  h  T, '

i

i

m

f i i  f , ,  r'l» ' l i  I'm *1# f t  h  T t Tt f i

Fig. 2.5 8 X 8-bit Baugh-Wooley tw o’s complement regular array
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2.3.3 The Modified Booth Algorithm

For operands equal to or greater than 16-bits, the modified Booth algorithm [13] has been 

extensively used. It is based on encoding the two’s complement operand (i.e., multiplier) 

in order to reduce the number o f  partial products to be added.

This makes the multiplier faster and uses less hardware (area). For example, the modified 

Radix-2 algorithm is based on partitioning the multiplier into overlapping groups of 3- 

bits, and each group is decoded to generate the correct partial product.

The multiplier, Y, in the two’s complement can be written as:

(2.9)
f = 0

This can be rewritten as:

T  =  X W ,  with ¥., = 0 . (2.10)

In Equation 2.10, the terms in brackets assume values from the set (-2, -1, 0, +1, +2}. 

The encoding o f Y, using the modified Booth algorithm, generates another number with 

the following five signed digits, -2, -1, 0, +1, +2. As illustrated in Table 2.1, each 

encoded digit in the multiplier performs a certain operation on the multiplicand X  

The bits of the multiplier (f) are partitioned into groups of overlapping 3-bits and each 

group permits the generation o f certain partial products. The five possible multiplies of 

the multiplicand are generated based on the procedure given in Table 2.2.

The general partial product is related to the multiplicand for each encoded digit by the 

relationships presented in Table 2.3. PF, is the partial product and PP, is also the sign bit 

o f the partial product with P„=P„./ when no shifting of the partial product is performed. 

Note that the partial product is requested on (n +1) bits.
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Table 2.1. Partial products selection

Y2M Y2, Recoded Digit Operation on X

0 0 0 0 O x%

0 0 1 + 1 +1 X %

0 1 0 + 1 +1 X %

0 1 1 +2 +2 X X

1 0 0 -2 - 2 x X

1 0 1 -1 -1 \ X

1 1 0 -1 -1 x X

1 1 1 0 OxAT

Table 2.2. Partial product generation process

Recoded Digit Operation on X

0 Add 0 to the partial product

+1 Add % to the partial product

+2 Shift left X  one position and add it to the partial

product

-1 Add two’s complement of% to the partial product

-2 Take two’s complement o f % and shift left one position

Table 2.3. Partial product generation relation

Recoded Digit Operation on X Added to LSB

0 PPi = 0 for i = 0, .. .,n 0

+1 PP, = X, for i = 0, .. .,n 0

+2 PPi=X,., for i = 0 ,.. .,n 0

-1 PPi = X, for i = 0, .. .,n 1

-2 PPi = X,., for i = 0 , .. .,n 1

Bits are grouped into 3-bit groups overlapping by one bit. A bit with a value of zero is 

added on the right side of Y  as K,. So the multiplication of two 8-bit numbers generates 

only 4 partial products. The number of partial products is then reduced by half.
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In order to make the array rectangular and thus more regular for VLSI implementation, 

the problem o f the sign extension must be addressed. This problem is more crucial when 

the operand lengths are wide, where each partial product must be sign-extended to the 

length of the product. The basic idea is to use two extra bits in the partial product. For the 

first partial product, the two additional bits, PPn+/ and PP„+z are equal to the sign bit of 

the partial product

PP„+2 = PPn+J — PPn • (2.11)

For the second partial product, if the first partial product was positive, then the two 

additional bits for this second partial product are given by the Equation 2.11, otherwise 

we have two different cases

PP„^2 = PPn^,= l if  PPn=0, (2.12)

and

PP„^2 = PPn^,= l if  PPn=0. (2.13)

So it is more interesting to use a third bit F  as a flag to indicate whether there is, from the 

previous partial, a negative sign bit to be propagated. F, is the flag generated by the first 

partial product to the next one. This flag is expressed by the following Boolean equation

F j„= Fj + PP„j, (2.14)

where PP„ j is the sign bit o f the j"' partial product.

Fig. 2.6 shows the block diagram of an n x n modified Booth multiplier. Furthermore, the 

figure gives an idea about the floorplan of this subsystem.

The diagram is composed of the following blocks:

a) The multiplier array containing partial product’s generation and 1-bit adders.

b) The Booth encoder and the sign extension bits (PP„+2 , PPn+i, E).

c) The Booth encoder generates the five signals (0, +1, +2x, -Ix, and -2x) for

each group of 3-bit o f 7.

d) The final stage adder performs 2n bits addition.
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Booth
decoder

n-brt
adder

Partial product generator 
& Adder’s array

Y<n-1 P <n-1:0>signs bits 
extension

n-bit adder
Cany

P<2n-1 m>

Fig. 2.6 Block diagram of the n x n multiplier using modified Booth algorithm

The Booth multiplier exhibits some glitches. The main reason for glitches is the race 

condition between the multiplicand and the multiplier due to the Booth encoder.

2.3.4 Wallace Tree Algorithm

As seen in the previous section, applying the Booth algorithm reduces the number of 

partial products by half. However, for large multipliers such as 32-bit and over, the 

number of the partial products is over 16 bits. In such cases, better performance is 

achieved by adopting the Wallace tree using 4-2 compressors [12]. A 4-2 compressor 

accepts 4 numbers and a carry in, and sums them to produce 2 numbers and a carry out. 

Fig. 2.7 shows an example of such a tree on partial products of an unsigned 8 x 8-bit 

multiplier. Eight partial products are produced. Using 4-2 compressors, two levels of 

additions (stages) are needed. The final two summands are added using a fast 16-bits 

adder. Some zeros are added to the array. This example shows that the bits which are not
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used in this T* stage (level) jump to the next stage to be combined with the ones produced 

by the compressors.

□
PtrtiilpioAKl 

A Bigmertttd

X,  ....
i'/........... .... Y,

□ □
□
■ ■

■ ■ ■ □

□
1“ stage

- a
□ □ □ □ A A A A A A A A A A ÀÀ "
□ □ □ □ À A A A A A A A A A ▲
A A A A A A A A A A À ▲

Stage
yA A A A A A A A A A ▲□

A A A A A A A A A A A A  A A A A
A A A A A A A A A A A A A  A A

Two summands 
To be added

Fig. 2.7 Construction o f Wallace’s tree for an 8 x 8-bit multiplier, reduction o f the 8 partial
products with 4-2 compressors

Fig 2.8 shows the architecture of the 8 x 8-bit multiplier. As one can see for the first stage

of the tree two blocks, A and B, are required.

1*̂  stage

J l
!•* stage 
(blockB)

2*̂  stage 
(block C)

4x8 Paxtial Product Generatois

8 4-2 compressors

4x8 Partial Product Generators

8 4-2 compressors

/ I --------------<^^ x ^ x , x , x .

11 4-2 compressors

16-bit adder 

^ -PfC... Pn

Fig.2.8 Architecture of Wallace’s tree for an 8 x 8-bit multiplier



The block A of the compressor would group the first (last) four partial products, 

respectively.

To further enhance the performance of Wallace tree multiplier, the modified Booth 

algorithm can be used to reduce the number of partial products by half in a carry-save 

adder array. This architecmre exhibits some irregularities in the layout since it has a

complicated interconnection scheme. Hence, the interconnection wires affect the speed

and power consumption of the adder.

2.3.5 The Proposed Pair-Wise Algorithm

This algorithm is based on generating n-bit numbers using even and odd positions o f the 

two n-bit numbers [14]. Then, parallel addition algorithm is used to add up partial 

products.

If we assume the two multiplicands X and Y are 8-bit numbers as follow:

X = < Ys, ^7, Xj, X„ Xj, X:, X,>, (2.15)

Y = < fg, y  7, y  5, Y s, Y,, Y 3, Y 2. Y,>, (2.16)

each can be represented by the sum o f  two numbers, namely,

X = Xe + Xo and Y = Yg + Yo, which are defined as follows;

Xe = < X5, 0, Xtf, 0, X,, 0, X2 , 0 >, (2.17a)

X„ = < (?, X 7 , 0, Xs, 0, X3 , 0, X, >, (2.17b)

Ye = < Yg, 0, Yg, 0, y,, 0, Y2, 0 >, (2. 18a)

Yo = < 0, Yj, 0, Ys, 0, Yj, 0, Y, >. (2.18b)

Consequently, the product X x Y can be written as

X X Y =  (Xe + Xo)(Ye +  Yo) =  XeYe + XgY» +  XgYg +  XgYo

= Pee+Peo + Poe + Poo • (2.19)
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Expanding these terms allows one to see the advantages o f writing the multiplication in 

the form o f Equation 2.19.

P e e =  ( T O  X 2'“ +  0 X 2" +  (XsYs+XJs) X 2'" +  0 X 2"+(XsY,+X6Y6 + X,Ys)

X 2'“+ 0 X 2®+ {XaY2 +X 6 Y4 + XJe+XiYs) x 2®+ 0 x 2̂  + (% + Z ,X ,+  

XiYi) X 2® + 0 X 2̂  + {X4 Y2 +X 2 Y4) X 2' + 0 X 2̂  + {X2 Y2) x 2^+ 0 x 2 ' + Ox

2“ (2.20)

Poo= 0 x 2 ' " +  0 x 2 '^ +  {X7Y7) X 2 '^  +  0 X 2 "  +  (XSY7+X7YS) X 2 '° +  0 X 2" +

{X}Y7+XjYs +  X7Y3) X 2« +  0 X 2" + {X,Y7+X3Ys + X^Yi +  X7Y,) x 2^ + 0 x  

l^ + iXYj+XjYj+XsY,) X 2" +  0 X 2^+ (XjYi+XjY,) x  2  ̂+  0 x 2 '+  {X,Yi) 

x2°  (2.21)

P e o  = 0 x 2 ' "  + (XsY7) X 2'  ̂ +  0 X 2" + {XgYs +  T O )  x 2 "  +  0 x 2 ' " +  (X^F  ̂+

XgYs + v^F;) X 2" + 0 X 2* +  (XgY, + T O  +  + X2 Y7) x 2  ̂+ 0 x 2" +

(XtfF/ + T O  +2G lj) X 2  ̂+  0 X 2" + {X4 Y1 + X 2 Y3) X 2̂  +  0 X 2̂  + (X^Fy) x

2 '+  0 x 2 °  (2.22)

Poe= 0 x2 ' "  + (TO) X 2'^ + 0 X 2 '  ̂+ (TO  + T O )  X 2" + 0 X 2'° + (X^F  ̂+

X 3Y6 + 2GF,) X 2° + 0 X 2* + (X,Yg+X3 Y6 + A}F, + TO^) x 2’ + 0 x 2° + 

(ylGFg+TO + ^ j l 2) X 2  ̂+ 0 X 2" + (2GF, + X 3 Y2) X 2̂  + 0 X 2̂  + (%,13) x 

2 ' + Ox 2° (2.23)

Note that the zero positions in the bit pattern alternate with non-zero summations. The 

zero position can be used to hold the carry from corresponding summation in the non­

zero position. A full adder can be used to calculate each o f the sums and the carry out o f 

the full adder generates the bit in the zero positions. Here, we have considered (A^F  ̂x 2®) 

separately. Spares bits are collected together to form one or two distinct numbers. That is,
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we have x 2® + (X2Y7 + X 7Y2) x 2’ + {XyYj) x 2®]. These numbers are treated

separately. The propagation of carry is preserved in the body of multiplication and 

postponed at the last stage. This algorithm uses adder to convert three t-bit numbers to 

two (k + i)-bit numbers. By using this technique, partial product numbers are, then, 

summed together via adder planes repeatedly to generate two distinct numbers. At the last 

stage the final two partial products are added by a fast adder to speed up multiplication 

operation. This approach is discussed in more details in Section 3.1.2.

\ / \ 7
AND

Generator

FuN 
Adder 
Plane 

(1** Level)

Full 
Adder 
Plane 

{r* Level)

Fun 
Adder 
Plane 

(3" Level)

FuH 
Adder 
Plane 

(4^ Level)

Carry
Loolc

Ahead
Adder

Product

Fig. 2.9 Block diagram for the 8 x 8-bit pair-wise multiplier
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2.4 Qualitative Comparisons of Parallel Algorithms

In order to choose the appropriate algorithm for the required applications one has to have 

a clear view of advantages and drawbacks of different algorithms that have been 

introduced. In the following a brief comparison of parallel algorithm is presented.

The basic array multipliers, such as the Baugh-Wooley scheme, consume low power and 

exhibit relatively good performance. However, they are limited to applications with the 

process operands with less than 16 bits. For operands o f 16 bits and over, the modified 

Booth algorithm reduces the partial product’s numbers by half and hence the speed of the 

multiplier is increased. In this case power consumption is comparable to that of Baugh- 

Wooley multiplier due to the circuitry overhead in Booth algorithm. However, by using 

circuit techniques one can make this multiplier have low-power characteristic. The fastest 

multipliers adopt the Wallace tree with modified Booth encoding. Due to its 

interconnecting wiring a Wallace tree would generally lead to larger power consumption 

and area. Hence, it is not recommended for low-power applications. Finally, the pair-wise 

multiplier shows faster operation by preventing the carry propagation in the intermediate 

stages of multiplication. This multiplication algorithm postpones the carry-propagation to 

the last stage where 2(n-l)-bit numbers are added. By using a fast addition circuitry such 

as carry lookahead adder (CLA) at the last stage o f pair-wise multiplier one can 

accelerate the multiplication operation performance. Besides high-speed characteristic 

and simplicity of architecture of this algorithm, employing low power techniques [1] in 

circuit-level designs makes pair-wise algorithm a viable candidate for high performance 

multiplier. Baugh-Wooley algorithm is shown to be suitable for medium size (6  or 8) bit 

words [10]. It can be concluded that Baugh-Wooley multiplier is a suitable candidate to 

be used as test vehicle for the purpose of quantitative evaluation of pair-wise multiplier.

2 2



However, the entire Baugh-Wooley architecture should be redesign in order to perform a 

fair comparison.
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Chapter 3

Multiplier Design

In this Chapter, the design of novel 8 x 8 -bit multiplier is described in the circuit level. 

The building blocks are identified and the design o f the cells based on these building 

blocks is, then, discussed. This Chapter begins with a brief description of some o f the 

terms used hereafter in order to assess the circuits’ performance.

Propagation delay of digital cells: duration from the moment that the first signal (50% 

transition point on input waveform) reaches the inputs o f the cell to the moment that the 

last output signal (50% transition point on output waveforms) reaches the output nodes 

[21].

Power consumption of digital cells: The value of the power consumption of one cell is 

measured individually during testing the circuits. It means that the power consumed by 

the other cells in the test circuit is not included in the final measured value. This has been 

done by inserting a power meter in the form of Analog Hardware Description Language 

(AHDL) block in Cadence CAD tool in the route o f the main supply to measure the 

power dissipation. This approach has been used as standard power measurement method 

throughout this work.

3.1 Pair-Wise Multiplier

Based on the pair-wise algorithm described in Chapter 2, the top level design o f the 

proposed multiplier is built as shown in Fig 2.9. The following decisions were made in
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order to implement pair-wise algorithm. First, Due to inherent speed characteristic of 

pair-wise algorithm, a frequency o f multiplication over IGHz is targeted in this design. 

The power consumption of each element has been taken into account in topology 

selection. These points are discussed further in this Chapter where the circuit-level design 

of the proposed multiplier is reviewed. Also several low-power techniques are applied in 

layout extraction in order to achieve the power efficient design. These techniques are 

discussed in Section 5 of Chapter 4 where the layout considerations are reviewed.

3.1.1 Circuit-Level Review

In this Section first the elements required in pair-wise multiplier are introduced and then 

topology selection for the key elements is briefly presented. The architecture o f the pair­

wise multiplier (Fig. 2.9) shows that full adder, half adder, carry lookahead adder, AND, 

NAND, OR and XOR gates are the building blocks of the multiplier.

3.1.1.1 Full Adder

Full adder (FA) is the most critical circuit for two reasons. First, full adders cause a large 

percentage of the core propagation delay. Second, full adders ultimately consume the 

large percentage of power in the whole multiplier architecture. In order to select the best 

FA suited for high-performance application, a study was done on the existing FA circuits 

[2]. The result of this extensive study has directed to the selection the most speed/power 

efficient circuitry for the pair-wise multipliers. A summary o f topology selection is 

provided next. First, note that the Boolean expression for a half adder (HA) is:

S = A ® B ,  (3.1)

Co,„=A.B, (3.2)

and for full adder (FA) is:
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s  = A ® B ®  Cf„,

Table 3.1(a) Truth table of a full adder (b) Truth table o f a half adder

(3.3)

(3.4)

A B Cm Sum Cou, A B Sum Co„,
1 1 1 1 1 1 1 1 1
1 1 0 1 0 1 0 1 0
1 0 1 1 0 0 1 1 0
1 0 0 1 0 0 0 0 0
0 1 1 0 1
0 1 0 1 0
0 0 1 0 1
0 0 0 0 0

The above Boolean expressions can be realized by different circuitries, each with their 

own advantages and disadvantages. In the following a brief review of the result o f the 

study o f  six most well known CMOS full adder structures is presented. These adders 

have been compared in a wide range o f static logic styles, which is viable candidate for 

low-power circuit design.

They include:

1. Complementary CMOS full adder cell

2. Complementary pass-transistor full adder cell

3. Double pass-transistor full adder cell

4. Transmission gate CMOS full adder cell

5. Pseudo-NMOS full adder cell

6 . XOR and transmission gate full adder cell

The HA circuits are then generated from the optimized FAs by eliminating the circuitry 

which implements the function of the input carry.
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Transistor Sizing: Sizing of the transistors in the full adder cells has been carried out in 

an iterative process consisted o f the following steps.

1) Set all the transistors (NMOS and PMOS) to the minimum length (/,»,/«) and the 

minimum width size

(L„i„ -ISOnm, W„i„ = 660nm in 0.18pm CMOS process).

2) Simulate the circuit with all possible input pattern transitions (16 transitions).

3) Consider the transitions with the highest delay and mark the transistors involved 

in those transitions.

4) Size one o f the transistors in this critical path.

5) Repeat Steps 2, 3 and 4 until the power-delay product for the cell continues to 

increase.

6 ) Record the transistor sizes corresponding to the minimum power-delay product. 

This method guarantees that only the right transistors (in the critical path) are sized in a 

proper way. No over-sizing or under-sizing will be incurred, which makes it optimal for 

power-delay product performance. Although this is a lengthy process, it is guaranteed to 

give excellent transistor sizing results, especially for small circuits. Following the same 

method with larger circuits will take much longer.

It should be mentioned that the above transistor sizing method is a time consuming task 

for the structure such as double pass-transistor. This structure is already out of interest 

due to high numbers of transistors. Therefore, not much effort has been taken to optimize 

the size of the transistors for this adder.
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Complementary CMOS full adder

Complementary CMOS full adder (CMOS) [15] has 28 transistors and its operation is 

based on the regular CMOS structure, pull-up & down networks (Fig.3.1). One o f the 

advantages of the complementary CMOS full adder cell is high noise margins and thus, 

reliable operation at low voltages and arbitrary transistor sizes (ratio-less logic). The 

layout of CMOS gates is straightforward due to the complementary transistor pairs. An 

often mentioned, the disadvantage of complementary CMOS full adder cell is the 

substantial number o f large PMOS transistors resulting in high input loads, more power 

consumption and larger silicon area. This adder uses Com signal to generate Sum, which 

produces an unwanted additional delay. Another drawback of CMOS is the relatively 

weak output driving capability due to series transistors of the output stage.

I, J  Mj J  M,
1̂3 iJ 1̂4 1̂  Mij I

i-A

M,

Mr

$

Fig. 3.1 Schematic o f complementary CMOS full adder 

Table 3.2 Transistor dimension in complementary CMOS full adder

Ml, M], M3, M4, M5, Mii_M|3 
M |4, Mij, Mi6, M21, M22, M23. M28

2.14 0.18

Me, M 7, Ms, Mg, M]o, M |2_Mn, Mis, 
Ml 9, M20, M24, M 25, M26. M27

1.44 0.18

M24, M25 1.8 0.18
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Complementary pass-transistor full adder

Complementaiy pass-transistor full adder cell has 32 transistors (Fig. 3.2). Using pass- 

transistor logic with CMOS inverters, this circuit features complementary inputs and 

outputs. This adder generates many intermediate nodes and their complements in order 

to generate the final signals (Sum and Com). Having a signal and its complement together 

produces high rate of switching activities. Therefore, complementary pass-transistor full 

adder cell is not a suitable option for low power applications. In order to lower the power 

consumption o f complementary pass-transistor, two circuit styles are used. These circuits 

have output levels restored with cross-coupled inverters [16] and latches [17].

Due to irregular transistor arrangements and high wiring requirement, layout of this full 

adder cell family is also not straightforward and efficient

a _ L m ,3A_LM<

Fig. 3.2 Schematic of complementary pass-transistor full adder
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Table 3.3 Transistor dimension in complementary pass-transistor full adder

KWfwmy m s m i
M|, M2, M3, M4 , M5 , Mô, M7 , Mg, M9 , Mio, M||, Mi2  

_____ M|3,M|4, Mis, Mie, M|ç, M20, M 2U M22_____
7.2 1.8

Mi7,M|g, M23, M24 1.8
M25, M26, M 27, M30, M32 14.4 1.8

M2S, M29,M3| 18 1.8

Double pass-transistor full adder

Double pass-transistor full adder cell has 48 transistors and its operation is based on the 

double pass-transistor logic in which both NMOS and PMOS logic networks are used 

(Fig.3.3.a & b)[18]. The structure of this cell is similar to its complementary pass- 

transistor counterparts, but it uses complementary transistors to keep full swing operation 

and reduces the power consumption.

This eliminates the need for restoration circuitry. One disadvantage of this cell is the 

large area used due to thé presence of PMOS transistors.

‘10

Sum

Fig. 3.3(a) Schematic of double pass-transistor full adder (Sum)
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Table 3.4 Transistor dimension in double pass-transistor full adder (Sum)

m (iim ) Wfiim);
M2, M4, M&, Mg, Mg, M||, M |3, M |5, M|8, M20 0.77 0.18
Ml, M3, Ms, M 7, M |0, Mi2, M |4, Mi6, M|7, Mi9 1.08 0.18

B
' i '

M,

B

M,

j JL B\
Mj

B
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fit
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Â n M, Â
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'h

1---- «»— T

i M,

M,,

' i
B
H |Z M „ 
B

H|M»

B

MjJ M24

1#“

Fig. 3.3(b) Schematic of double pass-transistor full adder (Cou,) 

Table 3.5 Transistor dimension in double pass-transistor full adder (Cou,)

|E(|ïm)ï
M 2 ,  M 4 ,  Ms, Mg, M | 0 ,  M |2 ,  M|4, M|6, M|7, Mi9, M 2 1  

M 2 3 ,  M26, M 2 8

0.77 0.18

M l8,  M 2 0 ,  M 2 2 ,  M 2 4 0.9 0.18
M | ,  M 3 ,  M s ,  M 7 ,  M g ,  Mil, M|3, Mis, M 2 5 ,  M 2 7 1.08 0.18

Transmission gate CM OS full adder

Transmission gate full adder has 20 transistors (Fig. 3.4). This circuit generates (A+B) 

and uses this and its complement as selected signals to generate the output signals (Sum 

& Cou,)[19]. It also requires complementary input signals (A, B, Cm) similar to the
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complementary CMOS ftill adder. However, it exhibits better speed than CMOS full 

adder with the same power consumption due to the small transistor stack height [2 0 ].

Sum

J i

out

Fig. 3.4 Schematic of transmission gate full adder

Table 3.6 Transistor dimension in transmission gate full adder

M 2 , M 4 , M&, M g, M i 2, M |4, M |6 , M |8 , M 20 0 .7 0 .1 8
M 5, M 7, M ]3 , M i5, M |7, M i 9 0 .9 0 .1 8

M i, M j , M |o, M |i 1 .4 4 0 .1 8
M g 1 .8 0 .1 8

Pseudo-NM OS full adder

Pseudo-NMOS full adder operates based on pseudo logic, referred to as ratioed style. 

This cell uses 14 transistors to realize the negative addition function (Fig. 3.5). The 

advantage o f pseudo-NMOS adder is its higher speed (compared to complementary full 

adder) and low transistor count. On the negative side is the static power consumption of
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the pull-up transistor as well as the reduced output voltage swing, which makes this cell 

more susceptible to noise. In order to increase the output swing two CMOS inverters are 

added to this circuit, which increases the total transistors o f this cell to 18 transistors.

H

out

il
H

Fig. 3.5 Schematic o f pseudo-NMOS full adder

Table 3.7 Transistor dimension in pseudo-NMOS full adder

M 7, M|2,M|3, Mi4 0 .6 6 0.18
Mi, M 2, M3, M4, M5, Me, Mg 0.77 0.18

Mg, M|o,M||, M |6, M |8 1 0.18
M i5, M|7 2 0.18

XOR and transmission gate full adder

This adder shown in Fig. 3.6 has been developed based on an XOR gate [21] combined 

with transmission gate, which requires a total of 14 transistors [22]. XOR gate generates 

the sum. Using the transmission gate the second half of the circuit produces the carry out. 

This cell occupies less area compared with complementary CMOS full adder cell. In

33



terms of power consumption this adder has a better performance. This is due to its low 

activity factor and passing a strong signal in fewer number of pass-logic gates, unlike the 

other cells where the signal had to go through more number of logic gates. Having 

discussed the high performance of this novel logic, one should note that the irregularity in 

layout of transmission gate and large average size of transistors are the considerable 

drawbacks o f this circuit.

Sum

Fig. 3.6 Schematic of XOR & transmission gate full adder

Table 3.8 Transistor dimensions in XOR & transmission gate full adder

i M O S T # # m a i

M g, M 7, Mg, M io 0.7 0.18
M j, M4, M |2, M|4 0.7 0.18

M , „ M ,3 0.9 0.18
M |,  M ;, M9 1.44 0.18

M 2 1.8 0.18

3.1.1.1.1 Simulation Strategies

In the following the techniques for simulations with regards to input patterns o f full adder 

and output loading are presented.
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Input Pattern and Output Loading: In order to compare different adders, input 

patterns should be in such ways that fairly test all cases. An input pattern which 

maximizes the power consumption for a given cell, could exhibit less power for another. 

While another input pattern could have the reversed situation due to different distribution 

of capacitances in both circuits.

M U L TiPiC R _PA inw sr_SC H  rULl_ADDEB_lEST.SCH schemotlc : Feb 18 23:23:09 2001 
’Trônèrent Response Q

£ 9B0m O
g.0

i . a  / n e l f f l 3

£û 930m .

0.0

I .a

900m.

0.0
2,0 n 4.0n 

time { s  )
6.0 n 9.0 n

Fig. 3.7 (a) Input patterns used to evaluate the performance o f  the adders
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Fig. 3.7 (d) Input patterns used to evaluate the performance of the adders

A good input pattern for power consumption leading to a fair comparison o f adder cells 

should alternate the high frequency at the input and intermediate nodes. A good example 

is the concatenation of the four patterns shown in Fig 3.7 (a, b, c, d).
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Table 3.9 Characteristic of the input signals

iPatterns ' . IT
Inputs T(ns) P.W. (ns) T(ns) F.W.(ns) T(ns) P.W.(ns) T(ns) P:w4ris)

2 1 4 2 8 4 4 2
B . 4 2 8 4 2 1 4 2
e,„ 8 4 2 1 4 2 8 4

P. W. =  Pulse width, T =  Period, Rise time =  50ps, Fall tim e =50ps

As for speed, the input patterns should have all the required input-pattem-to-input-pattem 

transitions. The delay of the cell should be measured for each transition. The input pattern 

used for the simulation process is a concatenation of the four-input patterns shown in Fig. 

3.7 (a, b, c, d).

The test bench used for simulating the adder cell is shown in Fig. 4.1 of Chapter 4, where 

the simulation result of the selected adder cell is discussed. The inputs are applied 

through buffers (two cascade inverters), which load adder cells with more realistic inputs 

in terms of slope and driving strength. Outputs are also applied to another adder to 

evaluate the driving capability of each cell.

3.1.1.1.2 Power Consumption Performance

Results o f the comparison among adders, sorted by power consumption are shown in 

Table 3.10. The power performance of the second and third adder cells (Fig. 4.1) in the 

cascade configuration seems to be more realistic because in such a case, the high driving 

capability of the adder is a must in order to provide the next cell with the clean inputs. 

Therefore, the power values of either second or third full adder can be considered as the 

basis for our comparison. These results show that XOR and transmission gate full adder 

exhibit the lowest power consumption and transmission gate CMOS pseudo-NMOS, 

complementary CMOS, double pass-transistor and complementary pass-transistor are 

ranked respectively after it.

PAopmr/o=
RYERSOfJ Um/tRSirf usmpy
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One can see that ranking is not necessarily related to the transistor count. It should be 

also pointed out that this evaluation corresponds to a 1.8 V power supply, and this point 

has slightly rearranged the previously reported adder ranking. The impact o f supply 

reduction is an incomplete voltage swing at some internal nodes leading to a constant 

current drain. This, in turn, results in higher power consumption in circuits such as 

complementary pass-transistor and double pass-transistor.

Table 3.10 Simulation results for the full adders sorted by power consumption

, x d d m c e ii( i :8vy =EowrT(inW)î
XOR and transmission gate 0.0203
Transmission gate CMOS 0.0305

Pseudo-NMOS 0.0341
Complementary CMOS 0.0504
Double pass-transistor 0.0861

Complementary pass-transistor 0.0967

3.1.1.1.3 Delay Performance

The experimental results of the comparison among adders sorted by speed are presented 

in Table 3.11. The delay values are measured from the moment A, B and Qn signals 

reach the adder inputs till the last o f the Sum and Cout signals reach the next adder cell 

inputs. The cell with the lowest-delay values is Complementary pass-transistor.

Table 3.11 Simulation results for the full adders sorted by propagation delay

w m m m a m c e o m m m i D ë i m # !
Complementary pass-transistor 0.057

XOR and transmission gate 0.066
Transmission gate CMOS 0.074

Pseudo-NMOS 0.080
Double pass-transistor 0.091
Complementary CMOS 0.140

Fig. 3.8 shows the delay of an adder. This measurement is based on the definition of the 

propagation delay o f digital cells, explained at the beginning of this chapter. The inputs
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signais are as = 1 ,5 =  1, and C,„ = 1, therefore, the adder response will be as Sum = 1 

and Co,„ = 1. Then, the delay between the earliest input signal (C,„) and Sum has been 

measured. The delay is also measured between C,„ and Co,,,- This measurement has been 

performed at 50% transition point of the signals (which is 0.9 V in our case of V,u= 1.8 

V). The delay values o f pseudo-NMOS adder are shown in Fig. 3.8. It can be seen that 

delay o f Sum and is very close in this cell, which avoids any data hazard, and race 

effects that may occur later in the proposed architecture.
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Fig. 3.8 Propagation delay measurement

3.1.1.1.4 Performance Comparisons

The following criteria have been considered in performing the comparison amongst 

different adder:
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Power-delay product: The power-delay product is defined as a compromise between 

speed and power consumption. The values of the power-delay are presented in Table 

3.12. The measurements are performed in identical conditions as it is recorded in Tables 

3.10 and 3.11.

Area: The transistor count, showing area efficiency and layout productivity must be 

taken into account for choosing the best adder.

Table 3.12 Simulation results for the full adder cells sorted by power-delay product

AdaèrlCën i r î ^ i s t ô H »
XOR and transmission gate 0.00133 14
Transmission gate CMOS 0.00222 20

Pseudo-NMOS 0.00272 14
Complementary pass-transistor 0.00551 32

Complementary CMOS 0.00702 28
Double pass-transistor 0.00783 48

The measurement shows that pseudo-NMOS full adder has average values in both power 

consumption and delay, while providing a sum signal in good logic level. This leads to 

average o f value in power-delay products.

Pseudo-NMOS adder also has small area occupancy not only due to the number of 

transistors but also because of the size of PMOSs, which are the main issue when it turns 

to layout extraction level. These properties make the pseudo-NMOS circuit amenable to 

use of a lower supply voltage to further reduce the power and at the same time 

maintaining a specific speed of the multiplication operation.

It is timely to mention that the comparison of the performance of the adder cells based on 

different logic is a very broad area of study and it is impossible to appreciate fully in a 

small section. Here, identical conditions such as uniform input pattern, capacitive load 

and constant Vjj have been used during simulation in order to achieve a fair comparison.
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However, other factors such as selecting different geometry and physical designs and 

process variations could be considered as well.

3.1.1.2 Carry Lookahead A dder

The carry lookahead adder is a viable candidate to resolve the propagation delay problem 

by calculating the carry signal in advance based on the input signals. It relies on the fact 

that a carry signal will be generated in two cases:

a) when both input bits (A,-, B,) are “1”,

b) when one of the two bits is “ 1” and the C,„ (carry-in of the previous stage) is “ 1”. 

Thus, one can write

C„u, = C,+| = A/.Bi + {Ai ® Bi).Ci . (3.5)

The above expression can be rewritten as

Cj^f=Gi +Pj.Ci, (3.6)

in which

Gi=Aj.B, ,  (3.7)

Pi={Ai®Bi) .  (3.8)

Gi and Pi are called generate and propagate terms, respectively [23].

Note that propagate and generate terms only depend on the input bits. If one uses the

above expression to calculate the carry signal, s/he does not need to wait for the carry to

ripple through all the previous stages to find its proper value. Thus, comes the main 

advantage of the carry lookahead adder: reducing the propagation delay.

In the following the generate and propagate terms are derived for a 4-bit adder.

C| = Gq + Pq.Cq (3.9)

C j =  G f  =  G | + P i .Gq + P i .Pq .C q (3 .1 0 )
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C3=G 2+P2-G ,+P2.P,.Go+P2 - î-^o-Co (3.11)

C4 =C?3 +P3.G2 4- i 3.P2.G1 4-P3 .P2 .C|.Go + (3.12)

Note that Co„, bit and C,+/ of the last stage will be available after four delays (two gate 

delays to calculate propagate signal and two delays due to AND and OR gates). The sum 

signal (5/) can be calculated as follows;

S i= A i®  Bi © C, = P i®  G,. (3.13)

Thus, the sum bit will be available after two additional gate delays (due to the XOR gate) 

or total of six gate delays after the input signals At and P, have been applied. The 

advantage is that these delays will be the same and independent of the number of bits one 

needs to add, as opposed to the case of ripple counter.

The carry lookahead adder can be broken up in two modules;

1) The partial full adder, PFA, which generates G„ P,- and P, as defined by 

Equations 3.7, 3.8 and 3.13.

2) The carry lookahead logic, which generates Com bits according to Equations 

3.9 to 3.12. The 4-bit adder can then be built by using four PFAs and the carry 

lookahead logic block.

The disadvantage o f carry lookahead adder is that the carry logic tends to get quite 

complicated for more than 4 bits. Therefore, carry lookahead adders are usually 

implemented as 4-bit modules and are used in a hierarchical structure to realize adders 

that have multiples o f 4-bits. High fan-in OR gate is an unavoidable problem in designing 

a 16-bit carry lookahead adder. This is shown in Equation 3.12 when C4 is calculated. 

Using high fan-in in logic gate would not only increase the propagation delay, but also 

contributes to additional power consumption. In order to resolve these issues the cascade 

of four 4-bit carry lookahead adders have been employed in design of 16-bit carry 

lookahead adder. The propagation delay of 16-bit carry lookahead adder in this
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architecture is approximately equal to that of the 4-bit ripple carry adder. This is because 

of Corn signals that have to ripple from one module to the next one. This is repeated four 

times until the final Co,„ arrives at the output. Despite the amount of delay, this approach 

is more power-efficient.

In the following the overview of the sub-cells of the 4-bit carry lookahead adder are 

described. Figure 3.9 shows the block diagram of 4-bit carry lookahead adder.

PFA P.C,

PFA p,c,

PFA

PFA

Fig. 3.9 Block diagram of 4-bit carry lookahead adder

As seen in Fig. 3.9 partial full adder (PFA) is the first block where inputs are fed. As it is 

mentioned earlier, this block generates, propagate, generate and sum signals. Fig. 3.10 

shows the gate-level implementation of PFA. Sum signal is also generated in this block 

according to Equation 3.13. In order to generate Q», signal another XOR gate is needed.

Fig. 3.10 Gate-level implementation of partial full adder (PFA)
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The delays of signals in the highlighted block of carry lookahead adder (Fig. 3.9) are 

measured and shown in Table 3.13.

Table 3.13 Delay of the generate, propagate and sum signals of PFA

B u tp u tI melaWfns):
Gi 0.0552
Si 0.0385

CiPi 0.08

The block diagram o f the 16-bit carry lookahead adder is shown in Fig. 3.11. Four 4-bit 

carry lookahead modules have been used to implement the final stage of the pair-wise 

multiplier. The labels on this diagram are based on the outputs of the previous stages.
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Fig. 3.11 Block diagram o f the 16-bit carry lookahead adder implemented by cascading four 4-bit
carry lookahead modules
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3.1.1.3 A ND, NAND, O R  and XOR Gates

AND, NAND, OR and XOR are the fundamental logic gates, used in most logic circuits 

to realize the arithmetic operations. The Boolean expressions for two-input AND, 

NAND, OR and XOR gates, followed by their truth tables are shown in Table 3.14.

A.B, (3.5)

A + B , (3.6)

A ® B .  (3.7)

Table 3.14 Truth table o f AND, NAND, OR and XOR

A.B A.B A + B

The Boolean expressions representing AND/NAND/OR/XOR operation can be realized 

by different circuitries. However, the varieties of these structures are not as many as 

adder circuits. Therefore, very common configurations have been used to implement the 

required logic tasks. Figure 3.12(a, b) shows the schematics of AND, NAND gates that 

have been optimized for the required speed in the proposed multiplier [22]. NAND gate 

is composed o f two NMOSs and PMOSs. An inverter is added to the circuit to generate 

the AND function. Several designs of OR and XOR gates have been reported. Each has 

its own advantages such as less delay and drawbacks such as poor response to some 

particular inputs [20]. Figure 3.12 (c, d) shows schematics o f the OR and XOR circuits 

Dimension of NMOS and PMOS transistors have been modified for the required rise and 

fall times in the pair-wise multiplier.
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Fig. 3.12 Schematic of (a) AND (b) NAND 
(c) XOR (cf) OR gates

Table 3.15 Transistor dimensions of AND, NAND, 
XORandORg^tes

m s m m
MOST W(|un) 1 L(|im)

1.4 0.18
M„Mt 1.8 1 0.18

MOST W((un) I L(tmi)
0.7 1 0.18

MOST W(|uiO L(|im)
3.5 0.18
13 0.18

Mji,
2 0.18

3 0.18

MOST w W L(pm)

Mj,h 251 0.18
M„M» 0.7 0.18

Mj 2 0.18
Mg 0.75 0.18



3.1.2 Cell Design

In order to increase the productivity in ASIC design, cell design techniques are highly 

critical. In cell deign, a basic concept is to design uniform circuits that can perform the 

same task. In the following the top-level and the circuit-level of the required cells in each 

stage are described.

1** Adder 
Level

2™* Adder 
K Level

yd Adder 
Level

-V-Adder 
Level

Final
Adder
Level

Full
A dder
P lane

Full
A dder
P lane

Full
A dder
Plane

AND
Generator Carry

Look
Ahead
Adder

Full
Adder
Plane

Product
-y

Full
A dder
P lane

Sparse bit ------

Fig. 3.13 Block diagram of the proposed 8 x 8-bit multiplier showing detail of the required cells

AND Generator: As seen in the block diagram of the pair-wise 8 x 8-bit multiplier (Fig. 

3.13) the first stage of this architecture is an AND generator. In order to execute the first 

step of the pair-wise algorithm discussed in Section 2.3.5 AND combinations of all odd 

and even positions of two 8-bit multiplicand and multiplier are required. This task is 

performed by the AND generator. The block diagram of the AND generator is shown in 

Fig. 3.14. This stage consists o f four AND planes known as:

XeYe: generating AND combination of all even bits of the both multiplicand and 

multiplier. The results are: X 2 Y2, X2Y4, AjTg, X 2YS, X4Y2, X 4Y4, X4Y6, X4YS, XgY2, X ^ 4, XgYg, 

X Js. XsY2. XsY4. XsY6, XsYs..

XeYo: generating AND combination of even bits of the multiplicand and odd bits of the 

multiplier. The results are: X 2YJ, AjT/.AiT/, Ŷ T?, YsT;, Y^F), X^Yj,
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X6Y7.XsY,. XsYj, X sYs, XsYj.

XoYet generating AND combination of odd bits o f the multiplicand and even bits of the 

multiplier. The results are: X,Y2, X1Y4, XiYg, X,Ys, X3Y2, X3Y4, X3Y6, X3YS, X5Y2, X5Y4, X5Y6, 

XsYs, X 7Y2, X 7Y4, XrY,, X,Y4.

XoYot generating AND combination of all odd bits of the both multiplicand and 

multiplier. The results are: X,Yj, X,Y3, X J s , X Y 7, X3Y,, X3Y3, JGT* X3Y7, X3Y,, X,Y3, XsY,,

XeYe

XeYo

XoYe

XoYo I
Fig. 3.14 Block diagram o f AND generator
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Fig 3.15 shows the gate-level implementation of the AND plane. Combination of four 

planes consequently constructs AND generation stage. The AND circuit discussed in 

Section 3.1.1.2 (Fig. 3.12a) is used in the circuit level.

‘1+2

Fig. 3.15 Gate level o f  the AND plane ( XjYj Cell)

First A dder Plane: The second stage o f the multiplier is the first adder plane where 

partial products (?», ?eo, Poe, Poo) are generated. Equations 2.20, 2.21, 2.22 and 2.23 show 

the different AND combinations of multiplicand and multipliers’ bits required for 

generating each of partial products. Fig 3.16 shows the block diagram of this stage.
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Fig. 3.16 Block diagram of partial products generator
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This stage consists of four blocks of the partial product generators known as:

P e e : generating partial products resulted by multiplication of the even bits o f both 

multiplicand and multiplier. is a 15-bit number shown by bit number in parentheses as 

follows:

^ e e ( l )  =  0  P e . ( 2 )  =  0  P e e ( 3 )  P e e ( 4 )  =  0

P e e  (5) = Sum [X4Y2 + X 2Y4] P e e  (6) = Qw [X4Y2 + X 2 Y4]

P e e  (7) = Sum [ X J 2  +  X 4 Y 4 +  X2Y6] P e e  (8) = Qu. W 2  + X 4 Y 4 +

P e e  ( 9 )  =  S u m  [ X s Y 2 +  X 6 Y 4 +  X J 6 +  P e e  ( 10)  =  Q u ,  7 , +  +  X 2 Y 8 ]

P e e i l  1)  =  Sum [ X s Y 4 +  X s Y ^ + X J s ]  P e e ( 12)  =  Q u ,  { X g Y 4 +  X e Y 6 + X J g ]

P e e  a v  =  Sum [ X s Y e  +  X J ^ I  & e  a v  =  C „ u , [ X s Y e  +  X e Y J  P e e  (15) =  X s Y g  

P eo : generating partial products resulted by multiplication of even bits of the multiplicand 

and odd bits of the multiplier. P eo  is a 15-bit number shown by bit number in parentheses 

as follows:

P e o ( l )  = 0  P e o ( 2 ) = ^ y ,  PecO) = 0 Pe„(4) = Sum

P e o  (5) = C o u , [X4Y, + X 2Y3] P e o  (6) = Sum [XgY, + X 4Y2+ X2Ys]

P e o  (7) = C o u , [X^Y, + X 4YS+ X 2Ys] P e a  (8) = Sum [XgY, + XsYs+XJs]

P e o  ( 9 )  =  C o m  [ X s Y ,  +  X 6 Y 3 +  X 4 Y 3  +  X 2 Y 2 ]  P e o  (10) =  Sum [ X g Y s  +  X 6 Y s +  X 4 Y 2 +  X 2 Y 2 ]

P e o  (11) =  C o m  [ X s Y j  +  X , Y s +  X 4 Y 2 ]  P e o  (12) =  Sum [XsY3+ X J t]

P e o ( 1 3 )  =  C o m  [ X s Y s + X c Y t ]  P e o ( 1 4 )  =  X ^ Y y

P e o ( 1 5 )  = 0

P o « : generating partial products resulted by multiplication of odd bits of the multiplicand 

and even bits of the multiplier. P „  is a 15-bit number shown by bit number in parentheses 

as follows:

P o e ( l )  =  0  P o e ( 2 ) ^ X , Y 2 P o e ( 3 )  =  0  P o e { ^ )  =  S u m [ X , Y 4  + X 3 Y 2 ]

P o e  ( 5 )  = C o m  [XiY4 + X 3Y2] P o e  (6) = Sum [X,Y6 + X 3Y4+ XsY2\

P o e (7) = C o m  [X,Y6 + X 3Y4+ X 5Y2] P o e  (8) = Sum [%,1^ +
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Poe (9 ) =  Cou, [ X ,  Y s  +  X 3 Y 6 +  X i Y . + X r Y ^ ]

P o e  ( 11)  =  C o u ,  [ X ^ Y s  +  X 3 Y 6 +  X 7 Y 4 ]  

foX13) = C o u , [ % + % ]

Poe (10 ) =  S u m  [X3YS +  X s Y 6+  X 7Y4] 

P o e(12) = S u m [ X 3Y s + X 7Y6] 

P œ ( 1 4 ) = X 7 Y a  P o e (1 5 ) =  0

P o o ;  generating partial products resulted by multiplication of the odd bits of both 

multiplicand and multiplier. P o o  is a 15-bit number shown by bit number in parentheses as 

follow;

P o o ( l ) = X , Y ,  P o o ( 2 )  =  0  P o « ( 3 )  =  S u m [ X ; 7 , +  J G 7 / ]

Poo (4) = Cou, [XjY3+X3Y,) P oo(5) = Sum [X,Ys + X 3Y3+ X3 Y,]

Poo (6) = Cou, [X,Ys + X3Y3+ XsY,] Poo (7) = Sum [XjYy + X3YS+ XsY3 + X 7Y2]

P o o  ( 8 )  =  C o u ,  [ X / Y y  +  X 3 Y S +  X S Y 3 + X 7 Y 2 ]  P o o  ( 9)  = Sum [ X 3 Y 7  +  X s Y s +  X 7 Y 3 ]

P o o ( 10)  =  C o u ,  [ X 3 Y j  +  X s Y s +  X 7 Y 3 ]  P o o (11) =  Sum [ X s Y ,  +  X y Y s ]

P o u  ( 12)  =  C o u ,  [ X s Y y  +  X y Y j ]  P o u  ( 13)  =  X y Y y

P o o  ( 1 4 )  =  0  P o o ( 1 5 )  =  0

All P e e ,P e o ,  P o e ,  P o o  blocks perform a similar task and have the same number of inputs and

outputs. This makes it possible to employ the same cell for all four partial products ( P e e ,  

P e o ,  P o e , P o o )  generators. This cell has been constructed by two half adders and five 

adders.

 ̂ Half i 
Adder

Adder!:

Adder

Half  ̂5

î:îâ®ï®S

Fig. 3.17 Gate-level of one partial product generator (PP Cell)
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Fig 3.17 shows the gate-level diagram of the partial product generator cell. In circuit- 

level pseudo-NMOS adder has been used to realize these cells. Using adder to convert 

three k-bit numbers to two (k + 1) numbers avoids the carry propagation delay in body of 

the multiplier. The following is description of this technique.

In order to use 3-to-2 adding technique it is necessary that not more than three inputs be 

used for generating any elements o f partial product (Pÿ). This condition is not met when 

the partial product elements are generated by four terms as it happens in Pet(9), FeeOO), 

P e o ( 9 ) ,  P e o ( l O ) ,  P o e ( S ) ,  P o e ( 9 ) ,  P o o ( 7 ) ,  P<w(8) (the fourth terms are highlighted in the 

relevant equation). To deal with these extra terms called spares terms they are taken out 

of the equations and collected together to form two distinct numbers which are called N 

and M. N(i) is a 15-bit number with zero in all even and odd positions except for the 

seventh [#(7)], eighth [//(8)] and ninth [7/(9)] positions 

(0,0,0,0,0,0.^7Yi,X2Y7,X2Ys,0,0,0,0,0,0). M(\) is the second 15-bit number with zero in all 

even and odd positions except for the eighth position [M(8)j (0,0,0,0,0,0,0, 

X jY2,0,0,0,0,0,0,0 ). These two numbers are shown in the block diagram o f partial 

products generator (Fig. 3.16).

Now outputs of the first adder plane are six 15-bit numbers called ( P e e ,  Pco> P o e ,  P o o ,  N, 

M).

Second & Third A dder Planes: In order to generate the final product of multiplication 

( P )  of 8-bit X  (multiplicand) and 8-bit Y  (multiplier) all the individual partial products 

( P e e ,  P e o ,  P o e ,  P o o )  generated from summation of even and odd bits o f the multiplicand and 

multiplier and two distinct numbers generated by sparse bits (M, N) in the previous stage 

should be added together.

P e e  +  P e o + P o e + P o o  + M + N = P  (3.6)

This task requires the second and third adder planes. This addition operation has to be 

performed bit-by-bit resulting in carry out propagation. In order to postpone the carry
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propagation delay to the last stage of the multiplier a 3-to-2 adding technique has been 

used. To facilitate this technique adding o f four partial products (P«, Peo, Poe, Poo) and two 

extra numbers (M, N) is broken up into two steps as shown in Equation 3.7. These six 

numbers are divided to two batches of three numbers.

Pee + Peo+ Poe+ Poo + M + N = (Pee + Peo + Poe) + (Poo+ M + N) (3.7)

At this stage three 15-bit numbers ( P e e ,P e o ,P o e )  are converted to two 16-bit numbers ( P e œ o ,  

Peoec) and so are the fourth partial product (Poo) and two distinct numbers (M, N) which 

generate (PooSe, PooSo).

This task can be performed by using a similar structure shown in Fig. 3.17 with a total of 

14 adders. Note that due to the power and area constraints of the entire architecture using 

half adder is preferred whenever only two inputs signals need to be added (i.e. no C,„ 

signal exits). The result o f this 3-to-2 adding is shown as follows;

Peoto: result o f adding all the odd positions o f Pee, Peo, Poe-

-P e e « > ( l)  =  0  P e o e o ( 2 )  =  0  P e o eo  0 )  =  P e e  ( ? )  P e o e o ( 4 )  =  0

Peoeo ( 5 )  =  S u m  [P e e  ( 5 )  +  Peo ( 5 )  +  Poe ( 5 ) ]  Peoeo ( 6 )  =  C o m  [Pee ( 5 )  +  Peo ( 5 )  +  Poe ( 5 ) ]

Peoeo ( 7 )  =  Sum [P e e  ( 7 )  +  P e o  ( 7 )  +  Poe ( 7 ) ]  Peoeo ( 8 )  =  C o m  [P e e  ( 7 )  +  P e o  ( 7 )  +  P o e  ( 7 ) ]

P e o e o  ( 9 )  =  S u m  [ P e e  ( 9 )  +  P e o  ( 9 )  +  P o e  ( 9 ) ]  P e o eo  ( 1 0 )  =  C om  [ P e e  ( 9 )  + P e o  ( 9 )  + P o e  ( 9 ) ]

P e o e o ( l  1 )  =  S u m  [ P e e ( l  1 )  +  P e o ( l  1 )  +  P o e ( l  1 ) ]  P e o e o (  1 2 ) = C o m [ P e e (  1 l ) + P e o ( l  l ) + P o e ( l  1 ) ]  

P e o e o ( 1 3 )  =  Sum [ P e e ( 1 3 ) + P e o ( 1 3 )  +  P o e ( 1 3 ) ]  P e o e o ( 1 4 ) = C o m [ P e e ( 1 3 ) + P e o ( G )  + P o e ( 1 3 ) ]  

P e o e o  ( 1 5 ) =  P e e  ( 1 5 )

Peoee: result o f adding all the even positions o f Pee,, Peo and Pœ.

Peoee(l) = 0

Peoee (2) = Sum [Peo (2) + Pœ (2)] Peoee (3) = Com [Peo (2) + Poe (2)]

Peoee (4) = Sum [Peo (4) + Pœ (4)] Peoee (5) = Com [Peo (4) + Poe (4)]

P e œ e  (6) = Sum [ P e e  (6) + P e o  (6) + P o e  (6)] P e o e e  (7) = C o m  [ P e e  (6) + P e o  (6) +  P œ  (6)]

P e o e e  ( 8 )  =  S u m  [ P e e  ( 8 )  +  P e o  ( 8 )  +  P o e  ( 8 ) ]  P e o e e  ( 9 )  =  C o m  [ P e e  ( 8 )  +  P e o  ( 8 )  +  P o e  ( 8 ) ]
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P.o..(10) = Sum [P..(10) + P,<,(10) + P^(10)] P.«.,(ll)=Co„,[P..(10)+P«,(10)+/>o,(10)]

Pecee{l2) = Sum [P ,,( 12) + ?,„( 12) + P„e(12)] P,„,,(13)=Cou.[Pee(12)+P«.(12)+P^(12)]

PooSg: result of adding all the even positions of Poo, M and N.

Poo5,(I) = 0 Po„5’,(2) = 0 Po«*î.(3) = 0

P o o S e { ^ )  =  P o o ( 4 )  ^ « ^ , ( 5)  =  0  P « A ( 6 )  =  P „ ( 6 )

P o o S e i J )  =  0  P o o 5 ’. ( 8)  =  Sum [ P o o  ( 8 )  +  X 2 Y 7  +  X 7 Y 2  ]

P J S e { 9 )  =  C ou , [ P o o ( 8 )  + X 2 Y 2 + X 2 Y 2 ]  P o o ^ . ( l O )  =  P o o ( l O )

Poo5o(ll) = 0 P„o5'o(12) = Poo(12) Poo6"o(13) = 0

Poo5'o(14) = Poo(14) Poo5o(15) = 0

PooSo: result of adding all the odd positions of Poo , M and N.

P o o 5’o ( l ) = P o o ( l )  Poo5o(2) = 0 Poo5'„(3) = Poo(3)

Poo‘S'o(4) = 0 Poo^o(5) = P o o (5 )  PooSo(fi) = 0

PoJSoil) = Sum [Poo (7) + XjY,] Poo5o(8) = Cou, [Poo (7) + XjY,]

PooSo{9) = Sum [Poo (9) +X2YS] Poo5'„(10) = Cou, [Poo(IO) +

Poo5'o(ll) = Poo(ll) Poo5o(12) = 0 PooSo(13) = Poo(13)

Poo5-o(14) = 0 PooSoi 15) = P o o (  15)

Addition process is completed at this stage and four 16-bit numbers (Peœe, Peoeo. PooSe, 

PooSo) result of 3-to-2 addition of Pee,Peo,P«, M and N are the outputs of this level. 

Equation 3.7 is rewritten as:

Pee + Peo+ Pœ+ Poo + M + N = Peoee. + Peoeo + PooSe + PooSo- (3.8)

At the next stage addition of the four numbers is broken to two steps as shown in 

Equation 3.9.

Peoee. + Peoeo + PooSe + PooSo = ( Peoee. + Peoeo + PooSe) + PooSo. (3.9)

The same technique as the previous stage is used two more times to convert the three 

numbers (Peœe., Peœo, PooSe) to two numbers (PSU , PSIo ) as following:

PS le: result ofadding all the even positions of Peœe., Peœo and PooSe.
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P S h ( l )==0

PSh.(2) = Sum [P,.,U2) +  Peo.o(2)+ P „ ^ ,(2 )]

P S J , ( 3 )  =  C o u , [ P e o e e (2 )  +  P e o e o (2 ) +  P „ o S e ( 2 ) ]

PSI,(4) =  Sum [ C . / 4 )  +  C m (4 )+  P „ A (4 )]

P S 1, ( 5 )  =  C o u . [ P e o e e (4 )  +  P e o e o (4 ) +  P o M 4 ) ]

PS1^(6) = Sum [Pe„ee{̂ ) + ^tow(6)+ P„oSe{())\

P S  1 ^ (1 )  =  Cout [/’«,re(6) +  Peoeo{(>)+ P o „ S e {6 ) ]

P S l e i S )  =  Sum [P«w^(8) + Pf<,«,(8)+ f»o^g(8)]

PSle(9) = C o u . [ P . w . . ( 8 )  + Ceu(8)+ fo«5',(8)]

P S  h i  10) =  Sum [P eoee i 10) + Peoeoi 10)+ P o o S e i 10)]

P S h i l  1) =  Cou. [ P e o e e m  +  C .o (1 0 )+  P„,A(10)]

PS1,(12) = Sum [P e ,U i2) + p«,™(12)+ PoM l2)]

P S I X  1 3) =  Cou. [Peoeei 12) + Peoeoi 12)+ P o o S e i 12)]

P S h i \4 )  =  Sum [Peoeeil4) + P „ U 1 4 )+

P 5 /,(1 5 ) =  Cou. [P .U 1 4 )  + P.„«,(14)+ Po,A(14)]

PSlo: result o f adding all the odd positions o f Peœe., Peœo and PooSe 

P S l o i  1 ) =  Sum [Peoeei 1 ) + Peoeo ( 1 )+  P o o S e i 1 )]

PSloi2) =  C o u . [ P . w e ( l )  +  P « H „ ( I ) +  P „ A . ( 1) ]

PSloi^) =  Sum [P«.ee(3) + Peoeo (3)+ P,«,5'e(3)]

PSloi4) =  C o u . [ P e o e e (3 )  +  P e o e o  ( 3) +  P o o ^ e ( 3 ) ]

PSloiS) =  Sum [ P e „ e e (5 )  + P e o e o  ( 5) +  P o o ^ e ( 5 ) ]

PSloi6) =  C o u . [ P e o e e (5 )  +  P e o e o  ( 5) +  P o o 6"e(5 ) ]

PSl o il)  = Sum [ P e o e e (7 )  + P e o e o  (?)+ P.nXil)]

PSloiS) =  C o u . [ P e o e e (7 )  +  P e o e o  ( 7) +  P « , 5 ' e (7) ]

PSloi9) =  Sum [ P e o e e (9 )  + P e o e o  ( 9) +  P o o ^ e ( 9 ) ]

P S l o i  10)  =  C o u . [ P e o e e (9 )  +  P e o e o  ( 9) +  P o o ^ e ( 9) ]
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PSJ„{11) = Sum 1) + P«,,„ (1 1)4- P„A (11)]

PSIo{l2) = Cou, 1) + P.w,,(I 1)+ W ( 1  ])]

P57o(13) = Sum [P„w(13) + P„«„(13)+ P,vA(13)]

PS]„il4) = Cou, [PeoeÀ 13) + (13)+ P.SÀ  13)]

PSloi 15) = Sum [Po«r( 15) + Pooeo (15)+ PoM  15)]

PSloi 16)  =  C o u , [PeoeX 15) +  P̂ oeo (15)4- Po.SX 1 5)]

At the next parallel adder plane the two new words from previous adder plane (PSlc, 

PSlo) are added to (PooSo) via another 3-to-2 adder stage to complete the Equation 3.9. 

This addition process is carried out similar to the one in the previous level. The three 

input numbers at this level are converted to two new 15-bit numbers called Pc and P„. 

Arithmetic

Pg: result of adding all the even positions of PooSo, PSh, PS1„

Po (2) = Sum [P„,A (2) + P e o a , (2) + P e o e e  (2)]

P e Q )  =  C o u . [ P o o S o  (2) +  P e , . o i 2 )  +  P e o e e i ^ ) ]

Pei4) = Sum [^«.^(d) + PSIX4) + P S h m  

PeiS) = C o u . [ f « , Æ ( 4 )  4- PSIX4) +  f % ( 4) ]

Pc (6) = Sum [PooS'o(6) -f PSIeiS) 4- P% (6)]

Pc(7) = C o u , [P«A(6) +  PSIeiS) +  PSIoiG)]

Pc (8) = Sum [P„o5'„(8) 4- P5/c(8) 4- P5/„(8)]

Pc (9) = Cou, [Pco ,̂X8) + P5/c(8) 4- PSlo (8)]

Pc (10) = Sum [PooSoi 10) + PSIei 10) + PSlo (10)]

Pei 11 ) =  C o u , [ P o o ^ o (  10)  4- PSIX10)  +  PSlo (  10) ]

Pc ( 12) = Sum [PooSoi 12) + PSIei 12) + P%  ( 12)]

Pc( 13) = C o u ,[PoA( 12) +  P S I e i  12) +  P S l o  i  12)]

P c  (14) = Sum [PooSoi 14) + PSIei 14) + PSh, ( 14)]

P X 1 5 )  =  CoAPooSoi 1 4 )  +  PSIX 1 4 )  +  PSlo (  1 4 ) 1
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Pg: result o f adding all the odd positions of PooSo, PSIe, PSlo 

Po{\) = Sum [Poo5o(l) + PSIei.1) +

Po(2) = Coo, [P«X(1) + PShU ) + P% (1)]

Po (3) = Sum [Poo^oO) + PShO ) + PSlo (3)]

Po (4) = Cou, [f,^o(3) + f% (3 )  + PSlo (3)]

Po (5) = Sum [Poo^o(5) + PSh{5) + PSlo (5)]

Po (6) = Cou, [f«o^o(5) + PSIX5) + PSlo (5)]

Po (7) = Sum [Po^oÇ) + P S W )  + PSlo (7)]

Po (8) = Cou, [Poc^oÇ) + P S W )  + PSlo (7)]

Po (9) = Sum [Pooi'o(9) + P S W )  + PSlo (9)]

Po (10) = Cou, [Pm^o(9) + P S W )  + PSlo (9)]

Po (11) = Sum [Poo^o(l 1) + P S W  1) + P % ( 1 1)]

Po(12) = Cou,[PoA(l 1) + P S W  1) + PSIo{\ 1)]

Po(13) = Sum [Poo5’o(13) +PS7,(13) + P5fo(13>]

Po(14) = Cou,[Poo^o(13) + P% (13) + P% (13)]

Po(15) = Sum [PooSoilS) + P S W 5 )  + P % (15)]

Po(16) = Cou,[Poo6'o(15) + f% (1 5 )  + P % (15)]

In the last stage of multiplication process, these two final numbers (Pe,Po) need to be 

summed as it is shown in Equation 3.10. This equation is summarized form of Equation 

3.6.

Pe + Po = P (3.10)

At the last step final two numbers (P„ Po) are simply added to generate the final product. 

This addition needs to be performed fast. Therefore, carry lookahead structure, known as 

a fast adder, has been used to speed up the multiplication.

In the next Chapter the simulation of the major block as well as the final simulation 

results are presented.
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Chapter 4

Simulation Results & Layout Considerations

This Chapter presents the simulation results for the major designed cells and circuits. The 

simulation results of the final stage of the proposed multiplier for certain given inputs are 

further discussed. Layout considerations are explained later in this Chapter.

All circuits including individual cells and entire design have been simulated in Cadence 

environment.

4.1 Simulation Results of the Individual Circuits

Before presenting the simulation results of the individual circuit and designed cells, we 

need to introduce the circuit structure that have been used for simulation purposes. 

Arranging the proper test circuits has significant impact in increasing the ASIC 

productivity.

Sim ulation C ircu it S tru c tu re : In regular multipliers such as the proposed 

architecture that uses full-adder cells as the building block, a cascade of full adders is 

usually utilized. In such cases, the high driving capability of adder is a must for providing 

the next cell with input signal with proper logic level. Having this point in mind, the 

circuit structure used to simulate the adder is illustrated in Fig. 4.1. A cascade of four full 

adder cells is utilized; the inputs are fed from buffers (two cascaded inverters) to give
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more realistic signals and outputs are loaded with buffers to give proper loading 

conditions [28].

B

'InL

Full
Adder

Cell

Full
Adder

Cell
Adder Adder

Fig. 4.1 Circuit structure used for simulation of full adder cell

The parasitic effects are, therefore, included in the simulation results. The same structure 

has been used to compare the adder cells discussed in topology selection.

B
AND/NAND

OR/XOR

B -V

AND/NAND
OR/XOR

AND/NAND
OR/XOR

Full
Adder

Cell

Sum

= >

Fig. 4.2 Circuit structure used for simulation of AND/NAND/OR/XOR gates 

Full Adder Simulation Results

Here are the simulation results for pseudo-NMOS full adder using the test circuit 

structure of Fig. 4.1 corresponding to four different input patterns. The input patterns
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were already introduced in Chapter 3 when describing simulation strategy of adder cells. 

These patterns fairly cover most of the possible input combinations.

Fig. 4.3 shows Sum and signals of pseudo-NMOS full adder to input pattern shown in 

Fig. 3.7 (a). This pattern covers 6 transitions o f the input signals (A, B, C<„). These 

transitions are also shown in Table 4.1 corresponding to those in Fig. 4.3.

MUniPLIER_RAm»ISr_SCH FUa.ADDrR_Trsl.SCH achemolic : Mor 13 01:27:07 2004 

Tfonsient Response

1 90 —: /n«t24

g 900m
0

- 100m

1.90

1 900m 
to

— 100m

1.90

c 900m 
Cj

-  100m

=: /net 58

r ~ T ~ ^
. . . . .  j . ...........j .........._ 1 . ,

=: /n e t0301

CÛ 950m  

0.0 

1.9

950m
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1............................... . a-- -----------,-- --- ---L-i
a: /n e t01+B

0.0 2.0 n
time f 3 )

4.0r» B.0n

Fig. 4.3 The simulation waveforms showing respond of the pseudo full adder to the input
pattern (a)

Table 4.1 Transitions covered by input pattern (a)

h p u ts# f O u t |p m
A B C,n Sum ^out
0 1 1 0 1
1 I 1 1 I
0 0 1 1 0
1 0 1 0 1
0 I 0 1 0
1 1 0 0 1
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Fig. 4.4 shows Sum and C<,„, signals o f  pseudo-NMOS full adder to input pattern shown in

Fig 3.7 (b). This pattern covers 6 transitions of the input signals (A, B, C,„). These

transitions are shown in Table 4.2 corresponding to those in Fig. 4.4.

MUniPLIER_PAIRWSE’_SCH njLL.ADDCP_lE?ST_SCH aehema«ic : Mor U <31 21 06 2004
tronsienl Response 0

1 90 r-"' /nct2+
900m

-  100m i
E

1.90 /netGB 

900m

-  100m

o

1.90 /nfit0301

900m 

- 100m

1.9 /n e t0303

950m.

■j g «=»] /net01+B 

950m.

0.0
0.0 2.0  n 4..0n

trme ( s  )
B.0n

Fig. 4.4 The simulation waveforms showing respond o f the pseudo full adder to the input
pattern (b)

Table 4.2 Transitions covered by input pattern (b)

Ü lapÜ tsf® tO uflp u t #
A B C,n Sum Cout
0 1 1 0 1
0 1 0 1 0
1 1 1 1 1
1 1 0 0 1
0 0 1 1 0
0 0 0 0 0
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Fig. 4.5 shows Sum and Co,„ signals of pseudo-NMOS full adder to input pattern shown in

Fig. 3.7 (c). This pattern covers 6 transitions of the input signals (A, B, C/„). These

transitions are shown in Table 4.3 corresponding to those in Fig. 4.5.

MULliPLIE:R_PAIRWISr_SCH FULL.ADDCR_Trsi_SCH sclwndlc : Mor 13 01:30:30 300i 
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Fig. 4.5 The simulation waveforms showing respond of the pseudo full adder to the input
pattern (c)

Table 4.3 Transitions covered by input pattern (c)

:npu t#? sçoïït p s î«
A B C,„ Sum Coul
0 1 1 0 1
0 0 1 1 0
0 1 0 1 0
0 0 0 0 0
1 1 1 1 1
1 0 1 0 1
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Fig. 4.6 shows the Sum and Com signals of pseudo-NMOS full adder to input pattern

discussed in Fig. 3.7 (d). This pattern covers 6 transitions of the input signals (A, B, C,„).

These transitions are shown in Table 4.4 respectively as it is seen in Fig. 4.6.

E

MUniPLIEP.PMRWISE_$CH FULL.ADDCP.TEST.SCH schemoUc : Mor 13 01:32:11 2004 
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Fig. 4.6 The simulation waveforms showing respond of the pseudo full adder to the input
pattern (d)

Table 4.4 Transitions covered by input pattern (d)

Inputs r Out]
A B Cm Sum Com
0 0 1 1 0
0 1 1 0 1
1 1 1 1 1
1 0 1 0 1
0 0 0 0 0
0 1 0 1 0
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AND/NAND/OR/XOR Gates Simulation Results

AND/NAND/OR/XOR gates have been described in more details in Chapter 3. 

Schematics are shown in Fig. 3.15. The test structure used for the simulation is shown in 

Fig. 4.2. The input signals have 50% duty cycles with period of 2ns. Figures 4.7 to 4.9 

show the results of the simulation for these gates.

MULTIPLieP_PAiPWlSC_SCH AND_TE:ST_SCH schem ollc : Mor 19 02:02:43 200 *
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Fig. 4.7 The simulation waveforms showing respond o f the AND/NAND gate
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MULTIPLIER.PAIRWISET_SCH OR.TEST.SCH sch em a tic  : Mor 19 02:10:38 2004-
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Fig. 4.8 The simulation waveforms showing respond o f OR gate

MULTIPLIER-PAIRWISE-SCH XOR-TEST_SCH schem atic : Mor 19 02:19:02 2004
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Fig. 4.9 The simulation waveforms showing respond o f XOR gate
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4.2 Final Simulation Results

In order to evaluate the performance of the proposed multiplier three dimensions have to 

be measured. These dimensions are speed, power consumption and area. In this section 

speed and power consumption are estimated.

Speed: Speed of the multiplier is translated to the minimum interval (frequency) between 

two sequential multiplication operations (8-bit x 8-bit) for which the results of 

multiplication are successful. To determine the frequency of multiplication, worst-case 

(maximum) delay of the entire design should be measured. By having the worst-case 

delay the minimum operating frequency of multiplier can be calculated according to 

Equation 4.1.

fm in ~~ (d« 1)

where f„,i„ is minimum operating frequency of multiplication, Tm,, is the worst-case delay 

of the multiplier.

As shown in Fig 4.10 the operation of the proposed multiplier can be divided to 6 stages 

as:

1) AND generation 2) 1** Adder level 3) 2"“* Adder level

4) S'** Adder level 5) 4* Adder level 6) Final adder level (Carry lookahead)

Due to parallel operation (AND and addition) in stages 1 to 5 the delay of one AND gate 

can represent the delay o f the first stage (AND generation) and so does the delay of one 

pseudo-NMOS adder for each of stages 2 to 5 (Adder levels). Delay o f carry lookahead 

adder is separately measured.

In order to evaluate the worst-case delay of the entire design first the worst-case delay of 

each stage has been measured and, then, the final worst-case delay of the proposed 

multiplier can be calculated by Equation 4.2:
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65 — 75ps ; : 7J ~ 12Cps Ib'^nOps :: 75~120ps 75^l20ps 240~277ps :

Approximate worst case delay (result or pre-iayout simulation) = AND Generator + 4 x  Full Adder + Carry Lookahead
= 75ps + 4 X 120ps + 277ps = 832ps

Fig. 4.10 The critical path o f the proposed multiplier

'^Tolal '^AND Generator 'F 4 X X^dder level "F Xpiugi adder stage > (4 .2)

where Xjotai is the worst-case delay o f  the multiplier, xand Generator is the worst-case delay of 

the AND generator stage which is equal to the delay of an AND gate, xAdder levei ̂ s worst- 

case delay of one adder stage which is equal to the worst-case delay of one pseudo- 

NMOS full adder cell, and Xfi„aiadder stage '̂ s worst-case delay of the final adder stage which 

is equal to the worst-case delay o f the 16-bit carry lookahead. Delay of AND gate can be 

simply measured according to propagation delay definition. Fig 4.11 shows the delay of 

AND gate.

The worst-case delay has a better meaning for pseudo-NMOS full adder due to possibility 

o f different input combinations. The delay of pseudo-NMOS adder has been measured 

with all input combination. The worst-case delay has been occurred when A = 1 , 5 = 1  

and Cin = 1 as shown in Fig 4.12.
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In order to measure the worst-case delay o f  16-bit carry lookahead adder, the same 

method has been taken. Different input transitions have been applied and delay has been 

measured between the input and the last output signals at 50% of transition point. The 

worst-case delay has been seen when “1111111111111111” and “ 1111111111111111” 

are added as it was expected due to rippling signal between every 4-bit cany 

lookahead adder modules (remember that the 16-bit carry lookahead adder constructed by 

four 4-bit carry lookahead adder modules).

Fig. 4.13 shows the input and output signals in composite format. The delay occurring 

between input and output signals is clearly seen in this figure.

Table 4.5 shows the values of worst-case delay o f AND gate, pseudo-NMOS full adder 

and 16-bit carry lookahead adder.
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Fig. 4.13 The worst-case delay o f 16-bit carry lookahead adder
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Table 4.5 The results of the worst-icase delay measurement
T h ë w o r s m s ë m i e m i

AND generation (One AND gate) 75
Adder stage (One pseudo-NMOS adder) 120

16-bit carry lookahead adder 1 1 1

'^Total — 832ps

It should be pointed out that he worst-case delay that has been measured and shown in 

Table 4.5 is the results of examining each blocks (AND, Adder plane and Final adder 

stage) separately. It gives an estimation of the worst-case delay of the entire design but as 

one may notice applying the pattern causing the worst case delay is under control only for 

the first two multiplier stages which are “AND Generator” and “First Adder Level”. By 

applying pattern “U l I l I H ”as X and “ 11111 llT 'as Y, AND generator creating “ 1” at 

all of its outputs. Therefore, all the input of the next stage which is the first adder level 

are “ 1”. It means the worst-case delay definitely occurs in this stage. So it can be 

guaranteed that the first two stages operate with their slowest speed (worst-case delay) 

but this is not necessarily the case in the other stages. However, it is not expected that the 

entire multiplier’s delay exceeds the total worst-case delay {xrotai ) that have been 

measured. This has been examined by applying X = “ 11111111” and Y = “ 11111111” to 

the proposed multiplier. Fig 4.14 shows this input signals applied to the proposed 

multiplier. The first curve from the top is the current drawn from the node. Fig 4.15 

shows post-layout simulation result corresponding to the applied input (Fig.4.15).
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In order to measure the delay occurring during “ 11111111” x “ 11111111” the composite 

simulation of the input and output waveforms are used. Then, the delay has been 

measured in the same manner as previously defined. Fig 4.16 shows the input and output 

waveforms. The delay (xroiat) is also shown in Fig 4.16. The measured delay is 793ps and 

it is less than 835ps as it was expected. So now it is fair to assume that the delay of the 

proposed 8 x 8-bit multiplier in worst case is less than summation of worst-case delay of 

its individual blocks. This worst-case delay may never occur, but it is used to set a point 

for maximum delay of the multiplier. It is translated to the minimum operating frequency 

o f the proposed multiplier, which is determined as 1.19GHz. That is, the frequency of the 

proposed design is guaranteed at 1.19GHz.
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Power: the estimation of power consumed by large digital circuit is a complex task. 

Measuring the power consumption is critical for low-power design as it permits the 

designer to optimize power, to meet requirements, and to know the power distribution 

through the chip. Several heuristic algorithms, statistical, and probabilistic methods have 

been introduced [24,25,26]. These methods become less accurate when the size of the 

circuits increases. It is better to decompose the large circuit into smaller modules and use 

this method to estimate the power consumption of each module. These methods are also 

very helpful approaches to optimize the performance of the decomposed modules. One of 

these approaches has been employed in the circuit-level design of this work in order to 

meet the power efficiency as one of the objective. The practical aspect of the method is 

explained more in detail in the topology selection and transistor sizing of full adder 

circuitry in Chapter 3.

Nevertheless, in case o f complex systems it is wise to use CAD tools for accurate power 

consumption measurement.

Generally power estimation refers to the techniques o f estimating the average power 

dissipation of circuits. There are several power analysis techniques and tools at the 

circuit, gate, architectural, and behavioural level of abstraction. The most straightforward 

method o f power estimation is done through circuit simulation; i.e., performing a circuit 

simulation of the design and measuring the average current drawn from the supply. 

Therefore, the average power can be estimated which is the average o f summation of the 

three major components as shown in Equation 4.3:

Ptotal =^Ps+ Pd-^ Psc. (4.3)

where is static power consumption and it is the power consumed due to leakage and 

static currents, is short-circuit power consumed because of the current flowing from 

power supply to ground during transistors switching and Pj is referred to as dynamic
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power consumption which constitutes the majority of the power consumed in CMOS 

VLSI circuits.

The method used by CAD tools to measure the power consumption is strongly dependent 

on the input patterns (pattern-dependent technique). The technique is also called dynamic 

power simulation, which should not be confused with dynamic power. Equation (4.4) 

shows the dynamic portion o f the total power consumption of the digital circuit. This 

equation is very similar to the algorithm that has been driven to compute the power 

consumed by digital circuits in CAD tools such as Spice [27]:

■ (4.4)

where TT, = Q is load capacitance at node i, V,- is the voltage swing at node i, a,- is

known as switching activity factor at node is the system clock frequency, is the 

power supply voltage, V, is transistor threshold voltage, is the gain factor of the 

transistor. The summation is over all the nodes of the circuit, which makes the power 

estimation a very complex calculation. Changing any of the components in Equation 4.4 

would result different power consumption values. Some o f the components o f Equation 

4.4 are process-dependent such as F, and Vjj. Other components such as Q/oad, Visning are 

predetermined by to the design requirements.

Two components in Equation 4.4, which depend only on input pattern, are clock 

frequency (/^«) and the switching factor («;). The input frequency of the entire system has 

been limited at lower level by the delay of the critical path. It means that by taking into 

account the approximate SOOps delay of the critical path that has already been measured, 

the characteristics of the input signals are determined. The required period for input 

signal is SOOps at minimum value. By considering 50% duty cycle as a standard for the 

input signals the lower input pulse width of 400ps is required. Thus, the frequency of the
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input signals is set at the minimum value of 1.1 GHz. This brings the first condition for 

power consumption evaluation.

Switching factor («,) is the underlying factor of transistors switching. For N periods of 0 

and Vdj —*0 transitions, the switching activity a/ determines how many 0 —* Vjj 

transitions occur at the capacitive nodes. In the other words, the «/ represents the 

probability that a transition 0 will occur during the period T  = 1/f, where f  is the 

period of the input signals at the node. Considering all internal nodes’ transition is a 

complex task, which is out of the scope of present discussion. However, it is clear at this 

point that choosing the pattern that makes the high number of transitions in one period of 

multiplier is a contributing factor to power consumption value. Hence, this brings another 

condition for the input patterns.

Therefore, due to using Cadence to measure power consumption of the proposed 

multiplier the two following conditions are considered to govern the power performance;

1) Applying the input signals with the operating frequency of approximate! .2GHz.

2) Applying the input pattern causing the maximum switching activity in entire 

design.

The power consumed by the entire system has been measured by changing the inputs 

from X, = 00000000 -*>^2 = 11111111 and Y, = 00000000 - ^ ¥ 2  = 11111111. The 

transition occurring by these input patterns guarantees o f charging the load capacitances 

at all nodes of the circuits to maximum (Fig. 4.17). So one can expect to observe the 

maximum power consumed by the multiplier by applying this pattern. This pattern is 

shown in Fig. 4.14. The waveform of the current drawn by Vjj node during applying this 

pattern is shown in Fig 4.17. The average of this current computed by Cadence is 10.5 

mA and the power consumption is measured as 18.09 mW. Many different patterns have 

been applied to the proposed multiplier and delay and power consumption have been 

recorded (Table 4.6 and 4.7). The maximum power consumption observed belongs to the
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pattern multiplication o f “11111 111” x “ 11111111”, which is expected according to the 

switching activity definition in complex digital system.
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Fig. 4.17 The waveform of current drawn by Vj^node ("111I I 111” X “11111111”)

In order to further examine the effect o f switching activity in a complex system such as 

the proposed design another random pattern has been chosen. The power consumed by 

the entire system has been measured by applying a pattern causing transitions o f X/ = 

00000000 —X 2 = 10101010 and Ty == 00000000 = 01010101. It is expected that the

value of the power consumed by the multiplier under this pattern is almost the mean 

value of the power consumed by the system when all inputs are set to “0” which is called 

the “power down” or “minimum power consumption” value and the maximum power 

consumption of the system which occurs by applying “111111 II” x “ 11111111”. This is 

shown in Equation (4.5).

P ■ + P_   ̂mm ~  ^ max
average (4.5)

where is the power down value measured as 19.314 nW when no inputs applied and 

fmax is the power consumed by applying pattern “ 11111111” x “ 11111111” which is
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measured as 10.5 mW. The reason for such an assumption is equal random density of “0” 

and “ 1” in the pattern “ 101010101” and “01010101” which makes possible to assume 

that capacitance at 50% o f all the nodes in entire system will be charged. So the assumed 

value for the power consumption by applying this pattern from Equation 4.5 is 9.054 

mW. The actual power consumption measured by Cadence during applying this pattern is 

10.347 mW. The difference about 12% has been seen between the assumed power 

consumption and the actual power consumption, which is measured by Cadence. This 

difference is mainly due to power consumed by the interconnections and routing paths. 

Fig 4.18 shows the current drawn by Vjj node during applying pattern “10101010” X 

“01010101”. The average of this current is computed by Cadence as 5.74 mA.
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Fig. 4.18 The waveform of current drawn by F^^node (“10101010” X “01010101”)

Fig 4.19 shows the simulation waveform of the input patterns by assumption of 50% 

switching activity compared to the pattern “11111111 ” x “ 11111111”. Fig 4.20 shows the 

multiplication product o f the input patterns of Fig 4.19.
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A total number 100 patterns have been examined as inputs to validate the operation of the 

proposed design. These patterns included 80 random patterns and the 20 intentional 

patterns propagate the cany from O"* bit to 16“' bit.

Tables 4.6 and 4.7 present the delay and power consumption of the proposed multiplier as 

results of the applying some of the random and intentional patterns.

Table 4.6 The numerical results of several intentional multiplications

' ; 
Dec. Y7...Ÿ2Y, Dec. , ;pi7...P5P4P3P2P1 “ ^Dec.- Delay

(ns)

PoSyêrl f  
Consumptipn 

(mW) f
“00000000” 0 “00000000” 0 “0000000000000000” 0 0 0.9504
“00000001” 1 “11111111” 255 “0000000011111111” 255 0.78 7.542
“00000011” 3 “11111111” 255 “0000001011111101” 765 0.749 10.71
“00000111” 7 “11111111” 255 “0000011011111001” 1785 0.791 10.962
“00001111” 15 “11111111” 255 “0000111011110001” 3825 0.666 12.456
“00011111” 31 “11111111” 255 “0001111011100001” 7905 0.78 16.362
“00111111” 63 “11111111” 255 “0011111011000001” 16065 0.78 16.936
“01111111” 127 “11111111” 255 “0111111010000001” 32385 0.78 17.744
“11111111” 255 “11111111” 255 “ 1111111000000001” 65025 0.78 18.09

Table 4.7 The numerical results of several random multiplications sorted by delay

111# {--'p,;. .P5P4P3P2P1
■' : '

..Dec.; v / 'Delay
v(ns)

Power. %  
Consumption] 
. (m m

“10110100” 180 “00101000” 40 “0001110000100000” 7200 0.662 2.54
“10011101” 157 “00101100” 44 “0001101011111100” 6908 0.662 5.17
“10100101” 165 “00001100” 12 “0000011110111100” 1980 0.662 3.91
“10101101” 173 “00110100” 52 “0010001100100100” 8996 0.670 4.42
“00111101” 61 “00101100” 44 “0000101001111100” 2684 0.689 6.93
“10111101” 189 “00111100” 60 “0010110001001100” 11340 0.703 5.92
“10111001” 185 “00111100” 60 “0010101101011100” 11100 0.703 5.99
“10110101” 181 “00111000” 56 “0010011110011000” 10136 0.704 4.50
“00001100” 12 “00011000” 24 “0000000100100000” 288 0.711 7.23
“00111101” 61 “00111100” 60 “0000111001001100” 3660 0.711 9.83
“00110000” 48 “00010000” 16 “0000001100000000” 768 0.711 9.46
“00011001” 25 “00110100” 52 “0000010100010100” 1300 0.712 7.16
“10100101” 165 “00001100” 12 “0000011110111100” 1980 0.712 3.90
“00111101” 61 “00011100” 28 “0000011010101100” 1708 0.714 4.55
“00100100” 36 “00001000” 8 “0000000100100000” 288 0.716 7.13
“10110001” 177 “00110000” 48 “0010000100110000” 8496 0.729 6.84

... X 2X 1 = Binary representation o f multiplier, Y j... =  Binary representation o f
multiplicand, P 1 7 ...P2P1 =  Binary representation o f  the multiplication product, Dec.= Decimal 

representation o f the multiplicand and multiplier
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In regard to design robustness, effects of noise have to be evaluated. Noise is the main 

factors determining the stability of the system. In the following the main sources of the 

noise have been described and the performance o f the proposed design has been 

examined by considering the noise effects.

Noise: One of the main degrading factors in performance of high-speed VLSI system is 

noise, which comes from different sources. Noise can be induced through supply and 

ground o f the system during switching transitions. This noise is known as Simultaneous 

Switching Noise (SSN). Another type of noise is thermal noise. However, this noise is 

not dominant source, it is inevitable [23].

Following by definition of the SSN and thermal noise the robustness of the proposed 

multiplier has been examined by considering the effects of these noises on the 

performance of the entire design.

One o f the main sources of the noise in digital system is Simultaneous Switching Noise 

(SSN). The effects of SSN is getting more attention as a result of the continuous increase

in integration level on a single chip and the operating speed. This noise is caused by the

large instantaneous current, due to the switching of multiple drivers and switches, 

through the parasitic inductance at the ground and power node. SSN can have dramatic 

impacts on the system by:

a) generating glitches on the ground and power supply interconnections

b) decreasing the effective driving strength of the circuit

c) generating output signal distortion

d) reducing the overall noise margin of the system.

The quantify ground bounce or noise is given by Equation 4.6 as:
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where , V„ is ground bounce, L^s is bond wire parasitic inductance and /  is the current 

flow in the bond wire inductor.

Equation 4.6 shows that SSN can be lowered by reducing parasitic inductance. In order to 

reduce parasitic inductance a multiple pads and pins for power supply (VjJ) and ground 

(F„) are needed. Allocating the extra pins to Vjj and reduces L̂ ss to Lyss effective due to 

the parallel configuration of parasitic inductors as shown in Fig 4.21.
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Fig. 4.21 Adding two extra pins to Vjj and reducing the parasitic inductance

The standard package No. 68PGA offered by CMC has 36 pins which allows us to assign 

32 pins to the inputs (two 8-bit multiplicand and multiplier) and the outputs (16-bit 

multiplication product). Therefore, the 2 extra pins are specified to and Vss (one extra 

for each) and this has been done at no extra cost. These multiple pads reduce the parasitic 

inductance to half.

Not having glitches also strong driving capability of the output signals validate our 

approach to reduce the impact of SSN. This proves the robustness of the proposed design 

against the switching noise.

Thermal noise is another source of noise, which is generated by thermal agitation of 

electrons in conductors. Equation 4.7 shows the power of this noise as:
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(4.7)

where P  is noise power, k is Boltzmann’a constant, T  is the conductor temperature and A f  

is the bandwidth. It is often preferred to represent this noise in noise voltage as shown in 

Eqaution 4.8.

n {Therm al)
k m  

A /
(4.8)

where Ji is the parasitic resistance. Thermal noise power, per Hz, is equal throughout the 

frequency spectrum, depending only on k and T. So to simply examine the effect of this 

noise on performance of the entire system the voltage of the final outputs could be 

simulated within operating temperature ranged from -40C to 135C. The voltage variation 

within this temperature range with capacitive load (Q) of 5pf is 0.15 %. This shows the 

system is quite robust against the temperature variation. Fig 4.22 shows the simulation 

results o f the final outputs against temperature variation.

MLnrpilCR.P/URWlSC-WPROVCD.SCH TCST.SCW whenviKc Apr 8 82:39 A1 20CA
DC Response

= P15 P14. P13 -  P12
=.' P7 P6 P5 =' P4

Pit
P3

« P10 
-• P2

PIG

110 140

Fig. 4.22 The simulation results of the final outputs against temperature variation
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4.3 Layout Considerations

The proposed 8 x 8-bit multiplier has been laid out in 0.18pm CMOS technology. In the 

following the layout issues such as floor planning, routing, pads and packaging o f  the 

adder cell are explained.

4.3.1 Layout Strategies

Considering transistor chaining, grouping, and signal sequencing in our proposed adder 

layout, has been shown to bring substantial power saving and speed improvement at no 

area penalty [9].

The following measures have been taken to reduce parasitic effects:

1) Minimizing the use of diffusion as a routing layer to reduce the overall 

parasitic by using metal II layer.

2) Placing the transistors switched by Q„ signal close to the output.

3) Minimizing the capacitive load on Cout signal by minimizing the size o f those 

transistors in Sum gate whose gate signals are connected to Gout-

4) Using matching transistor structure to reduce area.

5) Making the transistor connecting to Qn closer to the input of the circuit, 

therefore, reducing input capacitance.
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Fig. 4.23 Layout o f the pseudo-NMOS full adder (die size of 22 x 8.5 pm )̂

;;<<<«««<♦»> I »«<;• ♦«<••«<««•«««««««••««««<*«••

Fig. 4.24 Layout of AND gate (die size of 7.9x 5.6 pm̂ )
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Fig. 4.25 Layout of NAND gate (die size of 5.4 x 5.6 nm^)

.#S55§

\4 '

Fig. 4.26 Layout of XOR gate (die size of 10.2 x 20.7 pm^)
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Fig. 4.27 Layout o f core of the 8 x 8-bit proposed multiplier core (die size of 0.275 x 0.38 mm )̂

4.3.2 Pads, Package and Chip Size

Following are some details on the routing, pad, package and chip size of the proposed 

multiplier.

Routings: To reduce parasitic capacitances, local interconnections use metal # 2, metal # 

3 and metal # 4. The input and output signals go through metal # 5. Avoiding long 

overlap between neighbouring metal layers will reduce the coupling capacitances.
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Pad: I/O digital pads o f  TSMC library “tpz973q” from cell “PDIDGZ” have been used 

for connecting the core to the output. Dummy layers are also added to satisfy the density 

requirement.

Package: Package 68PGA is used for the chip. This package provides the core chip with 

36 pins (9 pins in each side). The total area including the area occupied by pads is 1.395 x 

1.37 mm^. The core area of the chip is 0.275 x 0.38 mm^. Fig 4.28 shows the layout the 

entire chip.

X, H j

Xj X ,X s Y,Y2Y3Y4Y5Ys

Fig. 4.28 The proposed 8 x 8-bit multiplier chip
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Chapter 5

Conclusion

Digital multipliers are one o f the crucial blocks of real-time Digital Signal Processing 

(DSP) application ranging from digital filtering to image processing. However, speed of 

the operation is not the only considerations; low power dissipation and small chip area 

are also needed because of the dense packing of transistors in today’s system on-chip 

(SoC) applications.

This thesis focuses on an application specific integrated circuit (ASIC) implementation of 

a digital multiplier with speed of operation over IGHz. The three main considerations for 

the design are high multiplication speed, low power consumption, and a small rectangular 

chip area.

5.1 Features of the Designed Multiplier

The performance of the proposed multiplier has met the objectives of this work. The 

high-performance of the proposed multiplier has been achieved by an efficient design 

strategy as follow;

• Several multiplication algorithms have been reviewed. Considering speed as the 

priority in system-level, pair-wise algorithm has been chosen.

• The critical building blocks of pair-wise algorithm have been identified and 

ranked by their impacts on speed, power and area on the entire design. This 

emphasizes the full adder importance.
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An extensive study on performance of the main six static full adders has been 

performed in order to select the most power-speed efficient full adder topology. 

Six full adders haven been re-designed through an iterative approach in sake of 

proper transistor sizing (this approach has been used in design of the other 

required elements to avoid under-sizing and over-sizing transistors). This 

approach guaranteed power reduction in the circuit design level. The full adders 

have been examined under equal conditions by a realistic circuit structure.

Speed and power are treated as same importance during topology selection by 

using power-delay product as a measuring factor. Area and driving capability are 

also taken into account. The comparison results in choosing pseudo-NMOS full 

adder.

Table 5.1 Performance of the proposed multiplier

Device Characteristics
Process Five-Metal 0.18pm Digital CMOS

Power Supply (V^d) 1.8 V
Chip Characteristics

Multiplier & Multiplicand 8 bits
Product 16 bits

Multiplication delay 666 ~ 793 ps
Power Consumption (power down) 19.314 nW
Power Consumption @ Input Frequency l.lGHz 18.09 mW

Average Power Consumption 10.347 mW
Core size 0.1045 mm^

Operating Temperature -40C to+135C

The designed multiplier is suitable for high speed and low power applications, which 

provides multiplication product of two 8-bit numbers in approximate SOOpsec. Accurate 

functioning in supply ranged from 1.8 V to 0.09V has proved the suitability of the 

proposed architecture. The power consumption is 18.09 mW for 1.1 GHz. The design is 

implemented in TSMC 0.18pm CMOS technology and analyzed using Cadence’s Spectre 

with BSIM3v3 device models.
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The proposed 8 x 8-bit multiplier is laid out in 0.18p CMOS technology and was verified 

for design rules and matched with schematics. The total area is 1.395 x 1.37 mnf. The 

results of post-layout simulations are in reasonable consistency with those found in the 

design process.

5.2 Comparison Results

In this section the summarized results of investigation in the recent works on digital 

multipliers are provided in Table 5.2. This selection has been made based on the novelty 

o f the works. Data are extracted form IEEE Journal of the Solid-State circuits and the 

results are based on measurement of the actual chips.

As it is seen in this Table, the reported multipliers are implemented in different CMOS 

technologies with different bit words. This can have dramatic impacts on criteria of 

comparison such as power, speed and silicon area.

As it is seen, different approaches in designing multipliers are taken based on different 

design dimensions such as area, power consumption, and speed throughput. However, it 

will not be fair if the results of the conducted survey on digital multiplier are directly 

compared, as the technology, bit width, target frequency, and simulation methodologies 

vary widely. The following discussion provides some indications of multiplier results and 

this leads us to evaluate the performance of the proposed multiplier.

When speed is the main concern Booth encoding scheme and Wallace tree reduction 

show their abilities for large throughput multiplier. However, combination of these 

methodologies with GaAs device results in high-speed multiplier, which is not feasible 

for CMOS device to reach. From this point of view the proposed multiplier shows its
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superiority for the medium bit width (4 to 8 bits) applications in speed and power trade 

off.

Table 5.2 Summary of the performance of the recent publications on digital multiplier
Author, : 

Year/Refo.
^Multiplier
Structure

Bit-
Width

-Technology 
. Tpm)

Power
Supply

Speed
(MHz)

/Core
Ar?a
(mm )

'.'Power 
.Consumption 
.'1 ' (m\V)

N. Itoh 
(2001)[28]

Rectangular- 
Styled 

Wallace Tree

54 0.18 1.8 600 0.98

J. Butas 
(2001)[29]

Asynchronous 
Cross- 

Pipelined

16 0.6 1.5-5 59-251 40.59

S. Kim 
(2001)[30]

True Single- 
Phase 

Adiabatic

0.5 2.7 220 0.47

J.Lim
(2000)r311

NRERL
Serial

0.6 2.5 0 . 1-1 2.37

J.S. Wang 
(2000)r321

TSPC Flip- 
Flops

0.6 3.3 300 0.3 52.4

A. Smith 
(1997)1331

GaAs 16 0.6 0.9 416 1.98 1700

J. Mori 
(1991)1341

4-2
Compressor

54 0.5 3.3 100 12.4 870

K. Yano 
(1990)1351

Pass-
Transistor

54 0.25 2.5 227 12.7

M. Hatamian 
(1986)136]

Parallel
Pipelined

2.5 2.5 75 250

In terms of power consumption, asynchronous circuitry and adiabatic logic are viable 

approaches for applications where speed is not the prime concern. Nevertheless, pass- 

transistor logic has properties o f both higher speed and lower power consumption (Table 

3.12). Also NMOS reversible energy recovery logic, which is a new reversible adiabatic 

logic circuit, is employed in ultra-low-power applications. The serial multiplier, which 

has been implemented by this logic, is suitable for the applications where energy 

consumption is the top priority [30]. The proposed multiplier still stands ahead in power 

consumption compared to other designs. However, this structure could be more power 

efficient specifically for large bit words if pipelining technique is employed.
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Where area is the prime concern, the recent progress in use o f Deep Sub-micron Devices 

can help to overcome this constraint. It is also possible to reduce the silicon area by 

tighter layout style such as rectangular Wallace tree [28].

Therefore, it has been recommended that in multiplier performance and area tradeoffs, 

combinations of several parameters feature size, encoding scheme should be well 

considered. Encoding scheme has significant effect in the area of implementation. In 

design of the proposed multiplier the area is considered as one of the criteria in choosing 

the building blocks. Pseudo-NMOS shows significant area saving due to having only 14 

transistors with maximum transistor width size of 2pm.

5.3 Future Work

To further improve the performance of pair-wise multiplier one needs to consider a way 

to reduce the critical path delay of the multiplier for longer bit width with better trade off 

between speed and power consumption.

A well-known technique to reduce the critical path in digital architectures is to place 

pipeline latches at appropriate places so that the functionality of the circuit remains 

unchanged and no appreciable reduction in the throughput occurs, however it takes a very 

accurate time scheduling for pipeline tasks.

This methodology can be considered as an alternative design of pair-wise due to the 

absence of any feedback loop in this architecture (Fig 2.9). The advantages of this 

methodology are many-fold. Since the proposed architecture permits pipelining, the 

operation speed can be considerably increased. This increased speed can be traded for 

reduction in supply voltage to achieve a considerable reduction in power consumption. 

This approach makes the pair-wise architecture qualitatively a viable configuration for 

constant data stream in DSP applications, however, extensive quantitative evaluation
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based on the proper simulation arrangements is required to show the speed and power 

trade off.
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