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Abstract

The purpose of this study is to detect stock switching points from historical stock data and analyze

corresponding financial news to predict upcoming stock switching points. Various change point detec-

tion methods have been investigated in the literature, such as online bayesian change point detection

technique. Prediction of stock changing points using financial news has been implemented by different

types of text mining techniques. In this study, online bayesian change point detection is implemented

to detect stock switching points from historical stock data. Relevant news to detected change points are

retrieved in the past and Latent Dirichlet Allocation technique is used to learn the hidden structures

in the news data. Unseen news are then transferred to the trained topic representation. Similarity of

relevant news and unseen news are used for prediction of future stock change points. Results show that

stock switching points can be detected by historical stock data with better performance comparing to

random guessing. It is possible to predict stock switching points by only fraction of financial news and

with good result in terms of common performance metrics. According to this research, traders can take

advantage of financial news to enhance prediction of future stock switching points.
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Chapter 1

Introduction

Price movements in the stock exchange are important as they have direct effects on investment gains

and losses [7]. Traders take positions in the market according to changes in the price signals. As it leads

to early action among stock market traders and economists, detecting change points in the stock market

data is crucial. Considering the efficient-market hypothesis, all types of information about a company

affect its stock price [67]. In order to accurately predict a stock price, a lot of information should be

processed in a limited amount of time. One of the richest sources of information is textual news data

[40, 69, 81]. Although there is some debate in the literature on the value of news information, it is

believed that studies which show that financial news is a good indicator of price changes in the market

[4, 21, 52, 88] outweigh studies that argue the alternative point of view.

In order to detect the changes in stock price signals, it is crucial to have a clear definition of stock

change points and a method to detect them. Segmenting time series is central to a wide range of

applications. Many real-world data streams consist of consecutive partitions separated by an abrupt

change [27, 51]. In such situations, the underlying model produces data switches multiple times among

partitions. This particular issue arises in contexts ranging from speech recognition to medical monitoring

[16, 24, 27, 51, 74]. In statistics, a conventional way to detect changes in point is to fit probability

distributions over the partitions using past and present data to check whether there is a significant

difference between these two intervals [16, 44]. In this study, OBCD is used, which defines an auxiliary

variable ”run length” to detect stock switching points by comparing distributions of two consecutive

partitions. Run length, defined as the time elapsed since the last change point, helps to detect abrupt

changes in stock prices since it diminishes to zero when a change point occurs.

News media produces a huge number of news on a daily basis. As [21] shows, there is a significant

relationship between stock price movements and textual news. Therefore, using an appropriate source

of news and extracting only relevant information may help to overcome the complexity of text mining

for switching points detection. This study aims to identify the relevant news items that are related to a

stock price switching point. In particular, this study uses one of the richest financial news sources, the

Dow Jones dataset, which can be used to find news items related to a specific stock or company. Using

a subset of the news items in the dataset, news relevant to switching points are detected in the training
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CHAPTER 1. INTRODUCTION

set. In the testing phase, document similarity is measured between test news and relevant news.

The LDA model captures the underlying hidden structure of documents in natural language pro-

cessing [19, 25, 48, 49, 77]. It helps to decrease the number of features to obtain a set of meaningful

features, and as a result, decrease the overall complexity of text mining process. Application of the

LDA for stock price movement is used in the literature [64, 89]. In this research, the performance of

this method is tested in a new setting. First, stock switching points are detected from historical stock

data by the OBCD technique. Second, only the news related to previously detected switching points are

captured. Third, the LDA model with variational Bayesian inference is trained to the captured news

items to detect their topics and words distributions. Topics distribution shows the distribution of topics

for each news and words distribution shows the distribution of words for each topic. Learning these two

distributions helps to represent news by the distribution of their topics rather than distribution of their

words. Fourth, the distribution of words within detected topics can help to transform test news into

learned topics representation. Finally, the similarity value between test and relevant news is measured

by their topic representation to test the similarity value’s performance as a prediction indicator of stock

switching points.

Measuring the similarity of news topic representation by combining various types of similarity met-

rics such as cosine similarity, Kullback Leibler divergence, Jenson-Shannon divergence, and Euclidian

distance helps to cover all aspects of their equality. Furthermore, evaluation of this method is completed

in two phases: the performance of the change point detection technique by OBCD, and the evaluation

of stock change points prediction by financial news. To have an exact evaluation, different metrics are

measured to compare detected and predicted stock switching points. Detection of stock switching points

by using historical stock data provides better performance compared to random guessing in terms of dif-

ferent measured metrics. It can be concluded by this result that it is possible to predict stock switching

points by analyzing only a fraction of financial news with strong results in the defined performance met-

rics. Traders can take advantage of financial news to enhance their predictions of future stock switching

points in real-word applications.

The rest of this dissertation is organised as follows. The next section will include a review of related

works on change point detection techniques, predictions of stock exchange behaviour using different text

mining approaches and the LDA method. In section 3, the methodology is discussed in detail, including

algorithms implemented, dataset and experiment design. In section 4, results and threats to validity

of the results are reported. Section 5 will include the results, conclusion, and suggestions for future

research.
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Chapter 2

Background

According to the purpose of this study as detection of stock switching points from historical stock data

as well as analyzing related financial news to predict future stock switching points, it is of interest to

provide some literature review about change point detection techniques and text mining approaches to

predict stock switching points.

2.1 Change point detection

Change point detection techniques have been used in other studies in the literature for different fields,

ranging from medical monitoring to speech recognition [16, 24, 27, 51, 74]. These techniques aim to

detect one or more abrupt changes in a signal of data that segments the data into some partitions

[87]. Data within each partition are homogeneous and are non-homogeneous among partitions.Figure

2.1 illustrates an example of change point detection problem which is of interest to detect timestamps

t1 and t2. Methods available for detection of such points might vary by four different aspects.

Figure 2.1: Change point detection example

3



2.1. CHANGE POINT DETECTION CHAPTER 2. BACKGROUND

First, the cost function measures the goodness of fit for each partition. Different types of cost function

might be determined by assuming a piecewise constant distribution [1, 26, 27, 28, 51, 56, 66], liner model

[8, 9, 10, 11, 12], kernel change point detection [5, 31, 46, 47] or mahalanobis-type metric [58, 90].

Piecewise constant distribution might detect change points through maximum likelihood estimation.

It chooses a distribution for the data in each partition according to some prior knowledge about the data.

More often, a Gaussian distribution [6, 57, 60] or other exponential family distributions [33, 35, 65] is

assumed to be the underlying distribution for the data. Exponential family distributions is a set of

distributions which can be represented by same form and have a large number of properties that make

them extremely useful for statistical analysis.

Linear models are useful when there exists a linear relationship between dependent and independent

variables and the coefficients among these two sets of variables change abruptly at change points, while

Kernel change point detection relies on mapping the data to high dimensions by a kernel function.

Mapping to high dimensions will transform the data to a piecewise constant signal. Similarly, the

mahalanobis-type metric relies on mahalanobis distance which measures the distance between a data

point and the mean of a distribution. Mahalanobis-type metric detect change points by going through

each data point and measuring the distance of the data point and the mean of the data points in the

same partition.

Another cause of differences among change point detection techniques is the assumption sometimes

made regarding the number of change points. They might be different in the sense that the number of

change points can be initialized as the input of the method [27, 28, 42, 54, 56], or that the method is

free of this setting, which can result in a number of various detected change points [17, 22, 91]. When

the number of change points is fixed, the purpose is to minimize the cost function by setting the number

of detected change points. In contrast, when it is not fixed, it minimizes the cost function as well as the

complexity of the segmentation with a proper penalty.

Furthermore, underlying search methods used to optimize the cost function can be different in change

point detection techniques. Choosing an appropriate search method requires the number of change

points whether it is set to be a fixed number or if it is unknown. When the number of change points is

initialized as the input of the method, an optimal detection technique [13, 42, 53] or its fast-approximate

alternatives, such as window sliding [16, 28, 55], binary segmentation [27, 56] or bottom-up segmentation

[28, 36, 54] can be used. When the number of change points is unknown in the process of change point

detection, search methods like the Pelt (Pruned Exact Linear Time) algorithm can be applied to use a

linear penalty for controlling the trade-off between complexity and goodness-of-fit.

The last but not least aspect that can be different among change point detection techniques is the

way that they receive and analyze the data for processing. Offline or retrospective algorithms try to

detect change points when a particular realization of the signal is observed [16, 35, 46, 47, 56]. Common

methods for offline learning are maximum likelihood estimation, regression and kernel methods. On

the other hand, online algorithms processes data points one-by-one in a serial manner [31, 59, 63]. As

opposed to offline algorithms, online algorithms do not need to access the entire input and update

its parameters after learning from each training instance. Choosing the way the data is received and

analyzed depends on the underlying question.

4
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While earlier approaches have considered the problem of change point detection through maximum-

likelihood estimation [43] or novelty detection [68], more recent approaches further expand the applica-

bility of change point detection problems from a Bayesian point of view.

Bayesian methods play an important role in the change point detection literature and have been used

for various applications, such as in speech recognition [78], brain imaging [2], video segmentation [76]

and bioinformatics [14, 32, 33]. Bayesian inference methods are statistical inference techniques which use

prior beliefs about change point location distribution and update unknown parameters as more evidence

or information becomes available to deduce properties of an underlying probability distribution. In

contrast, frequentist inference techniques achieve the same purpose by considering repeated sampling of

a population distribution to produce datasets similar to the original datasets.

Even though earlier Bayesian approaches consider the problem of detecting change points as a retro-

spective segmentation problem in an offline fashion [15, 29], the pioneer work of [2] has considered the

same problem in an online fashion by estimating the posterior distribution over an auxiliary variable

run-length, with rt defined as the time elapsed since the last change point. As in this paper, some

researchers have also considered expanding the methodology described in [2], in various ways, such as by

applying it to human-machine interaction systems [59] and geoacoustic inversions [85]. The underlying

Bayesian nature of this method makes it easy to be understood and be extended for any setting. Table

2.1 summarizes the characteristics of the change point detection literature as explained.

On\Offline # of change points Cost function Search method
Ko, Chong, and Ghosh [57] Offline Not fixed Piecewise constant Bayesian

Frick, Munk, and Sieling. [35] Offline - Piecewise constant Binary segmentation

Arlot, Celisse, and Harchaoui. [5] Offline - Kernel Optimal

Harchaoui and Cappé. [46] Offline Fixed Kernel Optimal

Desobry, Davy, and Doncarli. [31] Online Not fixed Kernel Window sliding

Birgé and Massart. [17] Offline Not fixed Linear model Optimal

S. Chib. [29] Offline Not fixed Piecewise constant Bayesian

Bai and Perron. [13] Offline - Linear model Optimal

J. Bai. [8] Offline - Linear model Optimal

Basseville and Nikiforov. [16] Offline - Linear model Optimal

L.R. Rabiner. [78] Offline Not fixed Linear model Bayesian

Y.-C. Yao. [91] Offline Not fixed Linear model Pelt

Prescott Adams and MacKay. [2] Online Not fixed Piecewise constant Bayesian

Table 2.1: Summary of change point detection literature

2.2 Text mining for change point prediction

The efficient market hypothesis states that stock prices are always influenced by all available information.

As a result, correlating textual news data with stock market data is a popular method to study price

signal behaviours [37, 62]. Text mining is the process of extracting information from the unstructured

5
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text documents. It is used in various domains such as natural language processing and information

retrieval. Figure 2.2 gives a general overview of text mining process.

Figure 2.2: Text mining process

There are four main categories of text mining techniques which has been discussed for stock switching

points prediction in the literature such as: text classification, semantic and sentiment analysis, text

summarization and text similarity techniques.

Text mining techniques, such as text classification, implement machine learning algorithms on textual

data using supervised learning techniques. Supervised learning analyze labeled dataset to predict class

labels for unseen instances. These methods are applied for the purpose of stock switching point prediction

by [40, 82, 86]. Some researchers have implemented supervised machine learning techniques such as the

Naïve Bayes classifier, the Support Vector Machine, K-nearest neighbor and the Genetic Algorithm to

classify labelled documents for stock change point prediction. There is no optimal classification technique

to predict stock change points. The performance highly depends on the related stock exchange, news

sources and the way classes are defined.

Another technique which has frequently been under investigation is semantic and sentiment analysis

[62, 73]. Semantic and sentiment analysis is the process of computationally identifying and categorizing

opinions expressed in a piece of text to determine whether the writer attitude towards a particular topic

is positive, negative, or neutral. Researchers have used this technique to find the subjective information

behind contents to illustrate future stock price behaviour. For example in [20], two mood tracking tools,

OpinionFinder and GPMOS, are used to track the mood of a Twitter user in terms of polarity (positive-

negative) and degree of certain attributes, including calmness, alertness, confidence, vitality, kindness,

and happiness to predict upcoming stock change points.

On the other hand, in a text corpora that contains numerous documents, it is essential to develop

another text mining technique to summarize all the content. Text summarization techniques, like topic

modelling, try to discover abstracts or hidden structures within the bodies of texts. These hidden

structures are called topics, unobservable groups that gather specific words to create documents related

to different subjects. This technique results to represent documents by their contained topics which

6
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are quantitatively less than the total number of words in the document. A document might talk about

multiple topics and words might appear in different topics. The great advantage of text summarization

techniques essentially topic modeling techniques is their freedom of labeling the dataset.

The last main category of text mining techniques that has been used in the literature for the purpose

of studying stock switching points is text similarity, which aims to estimate the degree of similarity

between texts [3]. Evaluating the similarity among corpora, documents, paragraphs, sentences or words

is important in different applications ranging from information retrieval to automatic essay scoring.

There are two main types of text similarity algorithms: string-based, corpus-based and knowledge-

based. String-based algorithms split into two main categories: character-based and term-based with the

purpose of comparing similarity or dissimilarity among text strings [41]. On the other hand, corpus-based

algorithm captures the similarity among words by analyzing large corpora. Further more, knowledge-

based algorithms find the same relation by using information derived from semantic networks.

The above-mentioned techniques can be combined together to create a hybrid method. Hybrid

methods use multiple techniques to improve the performance. For example, two different text mining

techniques, topic modelling and sentiment analysis, are used together in the literature to predict stock

market prices [71]. It is proved in [71] that combination of these two techniques helps to improve

the performance of stock switching points prediction significantly comparing to using any of these two

techniques individually. In this study, the topic modelling and text similarity techniques are combined

to predict stock switching points by using financial news.

While there are different topic modelling techniques like latent semantic analysis [75], probabilistic

latent semantic analysis [50] and latent dirichlet allocation, LDA generally works best due to its gener-

ative nature. This property leads LDA to not only have the concern of detecting the hidden structures

of documents, but also understand the process of new documents generation.

Latent semantic analysis assumes that words that are close in meaning will occur in similar pieces of

documents. It implements mathematical technique called singular value decomposition to capture most

of the variance in a corpus on a lower dimension [75]. Singular value decomposition is a factorization of

a matrix into three different matrix. LDA and probabilistic latent semantic analysis both assume topics

as distribution over words and are based on mixture decomposition. However LDA takes into account

an extra assumption: it considers documents as mixture of topics with dirichlet prior [19, 25, 48, 49, 77].

LDA can be assumed as a generalization of the probabilistic latent semantic analysis model under a

uniform Dirichlet prior distribution. LDA assumes that documents cover only a small set of topics and

that topics use only a small set of words. Table 2.2 summarized the characteristics and limitations of

the above mentioned topic modeling techniques.

The Bayesian nature of LDA leads to have three different distributions to be estimated: the likelihood,

prior and posterior distributions. To solve the underlying posterior distribution of hidden variables given

a textual data and its contained words in LDA method, there are two main approaches: sampling methods

[25, 83] and optimization methods [19, 48, 49].

In sampling methods, like Markov chain Monte Carlo (MCMC), there is no need to explicitly set the

parameters and thus it is simpler in terms of implementation. In this method, the posterior distribution

is estimated by repeated sampling from the probability distribution. On the other hand, optimization

7
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Techniques Attributes and Constraints

Latent semantic analysis

Attributes:
• Reduce dimensionality by using singular value decomposition
• Retrieve synonyms of words

Constraints:
• Incapable to detect the number of topics
• Difficult to interpret three resulted matrices of decomposition

Probabilistic latent semantic analysis

Attributes:
• Each word is generated from a single topic
• Different words may be generated from different topics

Constraints:
• Incapable to generate new documents
• Incapable to detect distribution of topics in each document

Latent dirichlet allocation

Attributes:
• Provide generative model for words and topics in documents
• Applicable for long-length documents

Constraints:
• Incapable to detect relations among topics

Table 2.2: Attributes and Constraints of topic modeling techniques [61]

methods like variational Bayesian methods are guaranteed to converge to the posterior probability by

detecting a family of distributions with simpler form called a variational distribution.

As it is mentioned in [48], MCMC sampling methods like the Gibbs sampling method have higher

time complexity. Gibbs sampling method tries to generate independent samples from the posterior to

update document-topic and topic-word distributions. It results to not be efficient for applying on large

scale datasets [18, 23]. Since sampling and optimization methods have comparable results in terms of

performance, it is beneficial to use optimization methods for large scale dataset. In this study, variational

Bayesian posterior estimation is applied to capture the hidden structures of the financial text news by

retrieving the variational distribution and its related parameters.
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Chapter 3

Methodology

3.1 Online Bayesian Change Point Detection

Defining change points as the abrupt changes in the generative parameters of a sequence of data, Online

Bayesian Change point Detection (OBCD) aims to detect such points by estimating the posterior dis-

tribution over an auxiliary variable run-length, defined as the time elapsed since the last change point

[2].

If the sequential data is denoted by x1, x2, x3, ..., xT , the underlying change points divide the

observations into partitions represented by ρ. Data within each partition is driven from a probability

distribution as P (xt|ηρ). Between time i and j, adjacent group of samples are denoted as xi:j . The length

of the partitions are represented by g with a prior probability as Pgap(g). The defined variable run length

at each time is denoted by rt. Run length diminishes to zero when there is a change point detected

and incrementally increases until the second change point is encountered. The set of observations in the

recent partition corresponding to time t is notated by x
(r)
t . The notations can be better understood by

Figure 3.1.

The assumption made in OBCD is that the data in each of the segments are independent and

identically distributed. Additionally, the set of parameters ηρ, ρ = 1, 2, ... are independent and identically

distributed.

The posterior probability over run length can indicate the change point positions. According to the

definition of rt as the time since last change point, detecting timestamps with run length equal to zero is

our targeted change point. To achieve an online procedure, the run length posterior probability should

be estimated given the observations from the start, prior to the designated timestamp.

P (rt|x1:t) =
P (rt, x1:t)

P (x1:t)
(3.1)

9
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Figure 3.1: This figure illustrates how a change point model is expressed in terms of run lengths. (A)
shows hypothetical univariate data divided by change points on the mean into four segments of lengths
g1 = 6, g2 = 3, g3 = 4 and g4 = 6. (B) shows the run length rt as a function of time. rt drops to zero
when a change point occurs [2].
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The numerator of equation 3.1 can be estimated recursively as follows:

P (rt, x1:t) =
∑

rt−1

P (rt, rt−1, x1:t) =
∑

rt−1

P (rt, xt|rt−1, x1:t−1)P (rt−1, x1:t−1)

=
∑

rt−1

P (rt|rt−1)P (xt|rt−1, x
(r)
t )P (rt−1, x1:t−1)

(3.2)

According to this equation, the joint probability can be estimated recursively by knowing two state-

ments: the prior over the current run length given the previous run length and the predictive distribution

over the current datum, given the data since the recent change point. In the following estimation, these

two statements are explained.

3.1.1 Run length prior

According to the definition of run length, run length incrementally increases as time passes or it might

diminish to zero when a change point occurs. As a result, P (rt|rt−1) is not zero only if rt = rt−1 + 1

or rt = 0. On the other hand, the probability of an increase in run length given the exact previous run

length is completely in line with the concept of Hazard function. Hazard function points to conditional

density, given that the event in question has not yet occurred prior to time t [30]. Assume T as the

waiting time until the occurrence of an event, Survival function is the probability of not having the event

by time t : S(t) = P (T > t). In other words, the survival function is the complement of the Cumulative

distribution function. As a result, hazard function can be expressed as:

H(t) =
f(t)

S(t)
(3.3)

Using the concept of the hazard function helps summarize the prior over the current length given the

previous run length as follows:

P (rt|rt−1) =





H(rt−1 + 1) rt = 0

1−H(rt−1 + 1) rt = rt−1 + 1

0 otherwise

(3.4)

On the other hand, it can be assumed that the length of intervals between change points (g) follows

a discrete exponential (geometric) distribution. It is a valid assumption for two reasons. First, the

length of interval is a discrete variable due to the nation of run length. Second, geometric probability

distribution relies on a number of Bernoulli trials to have one success ( or in this case, to have a change

point). The waiting time until an occurrence of an event in an exponential and geometric distribution

does not depend on the time that has already elapsed. This key property is called memoryless and can

be proved as follows [34]:

P (T > s+ t|T > s) =
P (T > s+ t ∩ T > s)

P (T > s)
=

P (T > s+ t)

P (T > s)
=

e−λ(s+t)

e−λs
= e−λt = P (T > t) (3.5)

11
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Assume that the geometric distribution for the length of intervals between change points and its

memory-less property creates a hazard function constant of H(t) = 1/λ. As a result, the change point

prior can be simplified as:

P (rt|rt−1) =





1

λ
rt = 0

1−
1

λ
rt = rt−1 + 1

0 otherwise

(3.6)

3.1.2 Predictive Probability

The second statement of the equation 3.2 aims to measure the predictive distribution over the current

data point by knowing the observations since the last change point. This part can be estimated by

assuming one of the exponential family distributions for the observations. Exponential family distribu-

tions include many common distributions such as normal, exponential, Bernoulli, gamma, categorical,

geometric and Poisson distributions. Two main properties of this class of distributions are [72]:

• Sufficient statistics: Exponential family distributions can summarize arbitrary amounts of inde-

pendent and identically distributed data using a fixed number of values, which are named sufficient

statistics. These statistics can be updated incrementally as data arrives.

• Conjugate prior: Exponential family distributions have conjugate priors. In Bayesian statistics,

if a likelihood function have a conjugate prior, the posterior and prior are from same probability

distribution family. It makes the inference easier since posterior at each iteration act as the prior

for the next iteration.

P (θ|X,α) =
P (X|θ)P (θ|α)

P (X|α)
: Posterior =

Likelihood ∗ Prior

Marginal likelihood
(3.7)

According to these important properties, exponential family likelihoods can be expressed in the same

form:

P (x|θ) = h(x)exp(η(θ).T (x)−A(θ)) (3.8)

Where T (x), h(x), η(θ), and A(θ) are known functions for each probability distribution family and θ

is the parameter of the family. The parameter of the family can be summarized and updated by sufficient

statistics. Assume that the time series data follows a normal distribution, a member of exponential family

distributions. It aims to estimate its parameters, the mean and variance, using Bayesian inference and

conjugate priors. Depending on the question studied, any of these parameters might be unknown. It

leads to have three different cases [70]:

12
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• Unknown mean - Unknown variance: The conjugate prior is in the form of a Normal-

inverse-Gamma distribution with parameters µ0 , α0 , β0 and κ0. It can be proved that the

posterior predictive for a new observation follows a T-distribution: t2αn
(x|µn,

βn(κn + 1)

αnκn

). Ac-

cordingly, parameters can be updated as follows [70]:

αn+1 = αn + 1/2 (3.9)

κn+1 = κn + 1 (3.10)

βn+1 = βn +
κn(x− µn)

2

2(κn + 1)
(3.11)

µn+1 =
κnµn + x

κn + 1
(3.12)

Figure 3.2 illustrates this case with a set of artificial data and its predefined change points.

Figure 3.2: Artificial data with change in mean and/or variance. Vertical green lines point to detected
change points by OBCD.
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• Known mean - Unknown variance: The conjugate prior is in the form of a Gamma dis-

tribution with parameters α0 and β0 . It can be proved that the posterior predictive for a new

observation follows a T-distribution: t2αn
(x|µ,

βn

αn

). Accordingly, parameters can be updated as

follows :

αn+1 = αn + 1/2 (3.13)

βn+1 = βn +
(x− µ)2

2
(3.14)

Figure 3.3 illustrates this case with a set of artificial data and its predefined change points.

Figure 3.3: Normal distribution with change in variance and constant mean at 0. Vertical green lines
point to detected change points by OBCD.
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• Unknown mean - Known variance: The conjugate prior is in the form of a Normal dis-

tribution with parameters µ0 and σ0
2. It can be proved that the posterior predictive for a new

observation follows a Normal distribution: N(x|µn, σn
2 + σ2). Accordingly, parameters can be

updated as follows:

σn+1
2 =

1
1

σ2
+

1

σn
2

(3.15)

µn+1 =
σ2µn + σn

2x

σ2 + σn
2

(3.16)

Figure 3.4 illustrates this case with a set of artificial data and its predefined change points.

Figure 3.4: Change in mean with constant variance at 0.5. Vertical green lines point to detected change
points by OBCD.

Combining the previous two sections can help provide the estimate equation 3.1. Algorithm 1

summarizes the steps toward developing an OBCD method.
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Algorithm 1 Online Bayesian Change Point Detection [2]

1. Initialize

P (r0 = 0)=1

ν
(0)
1 = νprior

χ
(0)
1 = χprior

2. Observe New Datum xt

3. Evaluate Predictive Probability

π
(r)
t = P (xt|ν

(r)
t , χ

(r)
t )

4. Calculate Growth Probabilities

P (rt = rt−1 + 1,x 1:t) = P (rt−1,x 1:t−1)π
r
t (1−H(rt−1))

5. Calculate change point Probabilities

P (rt = 0,x 1:t) =
∑

rt−1
P (rt−1,x 1:t)π

r
tH(rt−1)

6. Calculate Evidence

P (x 1:t)=
∑

rt
P (rt,x 1:t)

7. Determine Run Length Distribution

P (rt|x 1:t) = P (rt,x 1:t)/P (x 1:t)

8. Update Sufficient Statistics

ν
(0)
t+1 = νprior

χ
(0)
t+1= χprior

ν
(r+1)
t+1 = ν

(r)
t + 1

χ
(r+1)
t+1 = χ

(r)
t + u(xt)
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3.2 Latent Dirichlet Allocation

Latent Dirichlet allocation is a generative statistical topic modelling technique [19]. Topic modelling

methods aim to summarize a set of documents by capturing their hidden semantic structures. Since

each document is about specific topics, it is acceptable to assume that some words to occur more within

a topic area. This means that documents can be represented by topics which are quantitatively less than

all the words contained in each of the documents, while the essential relationships between documents

remains the same. A statistical inference using an LDA method leads to a representation of a corpus

of documents by distribution over topics for each document and a probability distribution over words

associated with each topic. Figure 3.5 illustrates this decomposition.

Figure 3.5: Latent dirichlet allocation decomposition

Just as other common topic modelling techniques, such as latent semantic indexing and probabilistic

latent semantic indexing, LDA relies on bag-of-words assumptions that assume a document as a vessel for

words. This method does not account for the grammar or order of words in a document, but focuses on the

frequency and occurrence of words. The novelty of LDA is introducing a Dirichlet prior distribution over

document-topic and topic-word distributions. A Dirichlet distribution makes the underlying problem of

statistical inference easier because it acts as a conjugate prior for the multinomial distribution.

If the vocabulary is denoted by {1, 2, ..., V }, words are represented by a V -vector w with only one

component equal to one and the remaining components equal to zero. A document with N number

of words is denoted by w = (w1, w2, ...wN ) where the subscript words refer to their order within the

document. And a corpus with M number of documents is denoted by D = {w1,w2, ...,wM}.

3.2.1 Generative process

The generative process of LDA aims to investigate how the documents in a corpus are produced or how

a new document can be produced according to the topics discovered from a particular corpus. Each

word in a document is generated by first sampling topics from the topic distribution, then by choosing

words from the topic-word distribution. The mathematical explanation of this process is as follows [19]:

1- Set the number of topics k

2- Choose N ∼ Poisson(ξ)

3- Choose θ ∼ Dirichlet(α)

4- For each word wn:

- Choose a topic zn ∼ Multinomial(θ)
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- Choose a word wn ∼ Multinomial(β|zn)

In this notation, θ and z are k-dimensional random variables. θ indicates which topics are important

for a particular document (topics distribution) and z points to the assigned topic for each word. β is a

k×V matrix indicates word distributions in each topic. Graphical representations of the LDA generative

process is shown in Figure 3.6.

Figure 3.6: Graphical model for LDA. It shows dependencies among defined variables. Plates refer to
repetition of sampling and arrows indicate conditional dependencies between variables [19, 84].

The joint distribution over topic distribution θ, assignments of topics to N words z, and a set of N

words in a document w, given the parameters α and β, can be measured according to this process. On

the right-hand side of Equation 3.17, the first statement follows a Dirichlet distribution and the last two

statements refer to multinomial distributions.

P (θ, z,w|α, β) = P (θ|α)

N∏

n=1

P (zn|θ)P (wn|zn, β) (3.17)

3.2.2 Statistical inference

LDA tries to make sense of large collections of unstructured documents by inferring the probability

distribution over topics in each document (θ) and the topic responsible for the generation of each word

(z). This inference problem can be represented in the following posterior distribution:

P (θ, z|w, α, β) =
P (θ, z,w|α, β)

P (w|α, β)
(3.18)

There are two main types of approximate posterior inference algorithms for this question. The

first type relies on sampling techniques, such as Markov Chain Monte Carlo (MCMC), and the second
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one is based on optimization techniques, mainly variational inference. According to the literature,

optimization techniques have greater speed and comparable results as the sampling techniques, which

makes variational inference a better solution to use when there are massive datasets.

Variational inference approximates the posterior probability in Equation 3.18 by detecting a family

of distributions with simpler forms and their related free parameters. This family is called a variational

distribution and can be represented as follows:

q(θ, z|γ, φ) = q(θ|γ)

N∏

n=1

q(zn|φn) (3.19)

In order to determine the free variational parameters, a Kullback Leibler (KL) divergence can be

used as the cost function between the variational distribution q(θ, z|γ, φ) and the actual posterior

P (θ, z|w, α, β). Minimizing the Kullback Leibler divergence will lead to an update in the free varia-

tional parameters as follows:

φni ∝ βiwn
exp{Eq [log(θi) |γ ]} (3.20)

Eq [log(θi) |γ ] = Ψ(γi)−Ψ(
k∑

j=1

γj) (3.21)

γi = αi +

N∑

n=1

φni (3.22)

Ψ is computed via a Taylor approximation and is the first derivative of the log Γ function. The

variational inference technique for LDA is summarized in Algorithm 2.

Algorithm 2 Variational inference for LDA [19]

1. For all i and n initialize φ0
ni := 1/k

2. For all i initialize γi := αi +N/k
3. Repeat
4. For n = 1 to N
5. For i = 1 to k
6. φt+1

ni := βiwnexp(Ψ(γt
i ))

7. Normalize φt+1
n

8. γt+1 := α+
∑N

n=1 φ
t+1
n

9. Until convergence
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3.3 Experiment Design

In this study, it is of interest to detect stock switching points from historical stock data and to analyze

the corresponding financial news to predict upcoming stock switching points.

For the purpose of stock switching points detection, an OBCD is implemented, which is explained in

section 3.1. The input in this method is the daily stock prices related to a company whose stock switch-

ing points are of interest. Due to its online nature, the stock price data arrives as a stream and the

days that correspond to detected switching points will be specified (Fig 3.7). According to Algorithm 1,

the distribution of the input data should be assumed to determine the predictive probability. A normal

distribution is assumed for historical stock data between each two consecutive switching points. Further-

more, according to the definition of change points as the abrupt changes in the generative parameters

of the data, which parameters of interest must be defined: either the mean or the variance in case of a

normal distribution. Contacting domain experts helps to define change points either as the changes in

mean and/or the changes in the variance of the data distribution. This leads to the scenario Unknown

mean - Unknown variance as explained in section 3.1. The controllable factor is λ, which is the

general parameter in all types of probability distributions for OBCD Detection. Furthermore, assuming

a normal distribution for the time series and looking for the changes in mean and/or variance causes to

have the conjugate prior in the form of a Normal-inverse-Gamma distribution with parameters µ0 ,

α0 , β0 and κ0. Since changing these parameters does not affect the performance of the experiment, the

parameter are set by using the original papers setting [2].

Figure 3.7: Online change point detection

Results of OBCD is the probability over run length at each time. Detecting the points where the run

length diminishes to zero create the detected timestamps as change points through this algorithm. Figure

3.8 illustrates this process for artificial data. X-intercepts of the slashes that correspond to run lengths

with the highest probability are detected as the output of this algorithm for change points timestamps.

The performance of this method is compared with a grant truth provided by the domain experts. This

grant truth is a timestamp of change points related to time period and stock companies of our study.
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Figure 3.8: The top plot shows artificial data with defined changes in mean and/or variance as green
lines. The bottom one is posterior probability of the current run P (rt|x1:t) at each time step, using a
logarithmic color scale. Darker pixels indicate higher probability [2]. As it is shown, time steps with run
length as zero matches with defined change points.

Detecting the change points by OBCD leads us to the second purpose of this study, finding the

relation between stock switching points and financial news. For this purpose, the proposed method is to

learn about the topics from relevant news sources for 5 previous change points by LDA method using

100 topics. Relevant news related switching points is defined by comparing the display date of news and

switching points time of occurrence within a three day window of the news coverage. News appearing

on the same day as a switching point or the day before and after a switching point will be considered

“relevant news”. The experiment design has a rolling window process so that in each iteration, topics are

discovered through the previous relevant news training phase and the current news will be summarized

under the same topic representations using the word distributions developed from the relevant news

testing phase. In the testing phase, the similarity between topic representations of current news and

previous relevant news can act as an indicator for predicting stock switching points. It is assumed that

news relevant to stock switching points will act as an indicator for the switching points, and as a result,

news with similar topics to previous relevant news should cause a change point. The similarity of these

k-dimensional vectors can be measured by different criteria such as [84]:

• Cosine Similarity: It measures the similarity of two non-zero vectors (e.g.
−→
A and

−→
B ) by their

dot products and magnitude as follows:

CS(
−→
A ,

−→
B) = 1−

−→
A .

−→
B

‖
−→
A‖‖

−→
B‖

(3.23)
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• Kullback Leibler Divergence: It measures the similarity of two non-zero vectors (e.g.
−→
A and

−→
B ) by comparing their elements as follows:

D(
−→
A ,

−→
B) =

k∑

i=1

Ai log2
Ai

Bi

(3.24)

KL(
−→
A ,

−→
B) =

1

2
[D(

−→
A ,

−→
B) +D(

−→
B ,

−→
A)] (3.25)

• Jenson-Shannon Divergence: It measures the similarity of two non-zero vectors (e.g.
−→
A and

−→
B ) by comparing their elements as follows:

JS(
−→
A ,

−→
B) =

1

2
[D(

−→
A , (

−→
A ,

−→
B)/2) +D(

−→
B , (

−→
A ,

−→
B)/2)] (3.26)

• Euclidian Distance: It measures the similarity of two non-zero vectors (e.g.
−→
A and

−→
B ) by

comparing their elements as follows:

d(
−→
A ,

−→
B) =

√
(A1 −B1)

2
+ (A2 −B2)

2
+ ...+ (Ak −Bk)

2
(3.27)

For all of these metrics, the smaller values point to greater similarity. Each of the above-mentioned

metrics measure the similarity by specific criteria. In order to include all of them, the last three metric

can be normalized by the exponential cumulative probability distribution and then the average of all

four metrics can be considered as the similarity value.

Similarity(
−→
A ,

−→
B) =

CS(
−→
A ,

−→
B) + (1− e−KL(

−→

A ,
−→

B)) + (1− e−JS(
−→

A ,
−→

B)) + (1− e−d(
−→

A ,
−→

B))

4
(3.28)

As with all text mining techniques, text normalization and tokenization steps take place for each piece

of news coverage before the LDA model is utilized. These steps include removing special characters like

#, expanding contractions like changing it’s to it is (123 contractions - Appendix 1), case conversions

(convert to lower case), removing stop words like itself or which (153 words), correcting words with

misspelling or repeating characters, stemming and lemmatization [80]. After text normalization and

tokenization, the features of textual content are extracted to create the vector space model for each

piece of news coverage. Weights for the features (words) are measured based on the frequency of words

due to the nature of the VB inference technique [19]. The cleaned, vectorized news pieces are then used

as the input for the LDA method.
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3.3.1 Experiment Dataset

According to the design of this experiment, there is a need for two types of data: the source of historical

stock prices to detect the switching points, and the source of financial news to test the predictive power

of financial news for stock switching points. In the following section, these data sources are explained

and appropriate exploratory analysis of them is provided.

• Historical stock prices: Implementation of this experiment covers three different stocks: Apple

(AAPL), Microsoft (MSFT) and Facebook (FB). Yahoo finance provides historical stock prices

through a free Application Programming Interface (API). Historical closing price of these compa-

nies are retrieved from the first day of October 2012 to the first day of October 2017 to provide

data from over a five-year span (Fig 3.9). Statistics from these time series is reported in Figure

3.12 and a seasonal pattern is investigated in Figures 3.10 and 3.11.pa ga ig

Figure 3.9: Closing Prices of three tech companies Apple, Microsoft and Facebook from Oct 1st, 2012
to Oct 1st, 2017.

Figure 3.10: Box plot for weekday closing price for five years data. As it is shown, there is no weekly
seasonality for these stocks as they have same distributions among weekdays.
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Figure 3.11: Box plot for monthly closing price for five year data. As it is shown, there is no monthly
or yearly seasonality for these stocks.

Min Q1 Mean Median Q3 Max Std
AAPL 55.79 77.71 102.74 103.07 119.22 164.05 26.63
MSFT 26.37 37.24 47.07 46.10 55.69 75.44 12.74

FB 18.98 55.21 85.66 80.55 117.69 173.51 40.87

Figure 3.12: Statistics of Historical Stock Closing Price Data

24



CHAPTER 3. METHODOLOGY 3.3. EXPERIMENT DESIGN

• Financial news: Dow Jones has recently begun to provide a new version of financial news. This

dataset is in standard XML format (DJNML) and has valuable meta-data. The most data provided

in this source are: display dates of the news (which can help to determine concurrency of switching

points and news) and names of the companies related to news pieces (which makes it possible to

easily filter relevant news for a given company). As a result, XML files of the news pieces from this

Dow Jones dataset are parsed. From each news piece, four important elements are captured: the

display date, the related companies, the headline and the text of the news. The retrieved elements

are then structured in a PostgreSQL database to create a record for each news piece with four

different columns to make it possible to query easily. The dataset used for the experiment belongs

to the same time window as the historical stock closing price: the first day of October 2012 to

the first day of October 2017. Same as historical stock price data, news pieces relevant to AAPL,

MSFT and FB stock are selected. The number of news pieces related to each of these stocks is

reported in Table 3.1 and an average length of the news pieces in terms of number of characters

or words is summarized in Table 3.2. Figures 3.13, 3.14 and 3.15 illustrate most frequent words in

news related to these stocks.

2012 2013 2014 2015 2016 2017 Sum
AAPL 2681 7744 3463 3576 2426 3101 22991
MSFT 1885 5804 2245 1798 1176 1344 14252

FB 1856 5837 2480 2106 1693 2136 16108

Table 3.1: Number of news related to each stock from 2012/10/01 to 2017/10/01

Avg # Chars Sum # Chars Avg # Words Sum # Words
AAPL 2901.29 66703558 452.11 10394475
MSFT 3142.26 44783431 480.67 6850500

FB 3301.53 53181043 497.50 8013742

Table 3.2: Length of news related to each stock from 2012/10/01 to 2017/10/01
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Figure 3.13: Wordcloud for Apple stock. Most frequent words in news related to AAPL. Words with
larger size points to higher frequency

Figure 3.14: Wordcloud for Microsoft stock. Most frequent words in news related to MSFT. Words with
larger size points to higher frequency

Figure 3.15: Wordcloud for Facebook stock. Most frequent words in news related to FB. Words with
larger size points to higher frequency
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3.4 Performance Measurement

To measure the achievement and applicability of an algorithm, several performance measures are used

in machine learning studies. The type of measures used depend on the definition of the problem that is

being explored. This study aims to test which component of a timeseries dataset is related to a stock

switching point. Even though the literatures in this domain mainly reports the performance visually by

picturing the concurrency of detected switching points and some micro-economic events [2, 79, 38, 39, 87],

there are a few studies which assess the performance mathematically [16, 45]. To consider all aspects of

the experiment, the success rate of the algorithm in this study is measured by using following metrics:

• Compare probability distribution: Change points are the points at which generative parame-

ters change significantly before and after. To test the performance of the detection of such points,

an appropriate statistical test can be used. Since this study focuses on the detection of timestamps

with changes in mean or variance, a t-test and an f-test can be used respectively.

• False positive rate: Suppose that τ =(τ1,τ2,...,τJ) is the location of a detected change point

in our experiment. τi is a true positive if there exists a true change point in a window size of h.

Otherwise, it is a false positive. The false positive rate is the number of false positives divided by

total number of detected change points.

• Mean time between false alarms: This metric measures how frequently the algorithm predicts

a false change point. It can show the reliability of the system for use by traders.

• Mean delay for detection: The mean delay for detection can be measured by finding the closest

actual change point to each predicted one and by taking the average of these distances for all change

points. This metric can provide insights about detection delay of the system.

• Probability of non-detection: It is also important to determine how many of the actual change

points are predicted by this methodology. True positives are defined as if there exists a predicted

change point in a window size of h from the actual change point, all remaining actual change points

are false negatives. The probability of non-detection is the number of false negatives divided by

the total number of actual change points.

• Number of predicted change points: It is also important to compare the number of predicted

and actual change points so as not to overestimate or underestimate the performance by increasing

or decreasing the number of detected change points.
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Algorithm 3 Experiment Pseudocode

Require: Initialize α0, β0, κ0, µ0

1: for each xt do ⊲ Iterate through price of each day

2: π
(r)
t = P (xt|α0, β0, κ0, µ0) ⊲ Predictive probability

3: P (rt = rt−1 + 1,x 1:t) = P (rt−1,x 1:t−1)π
r
t (1−H(rt−1)) ⊲ Probability of growth for run length

4: P (rt = 0,x 1:t) =
∑

rt−1
P (rt−1,x 1:t)π

r
tH(rt−1) ⊲ Probability of getting zero for run length

5: P (rt|x 1:t) = P (rt,x 1:t)/P (x 1:t) ⊲ Run length distribution for the day
6: αt+1 = αt + 1/2 ⊲ Update hyperparameters
7: κt+1 = κt + 1
8: βt+1 = βt + (κt(x− µt)

2)/(2(κt + 1))

9: µn+1 =
κnµn + x

κn + 1
10: if rt : max(P (rt)) = 0 then
11: change points.add(t)
12: end if
13: end for
14: for each yt do ⊲ Iterate through news of each day
15: Recent_change points = Choose(5 recent, change points)
16: Relevant_News = yz : z ∈ Recent_change points ±1
17: Normalize and Tokenize Relevant_News and yt
18: ŷt = Transform(yt|LDA(Relevant_News))
19: if Similarity(ŷt, LDA(Relevant_News)) < threshold then
20: Predicted_change points.add(t)
21: end if
22: end for
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Chapter 4

Results

4.1 Change points Detection

Change points for three stocks, AAPL, MSFT and FB, are first detected by OBCD by using their

historical closing price data from the first day of October 2012 to the first day of October 2017. The run

length representation of this method and its detected change points are visualized in figures 4.1 and 4.2.

Figure 4.1: OBCD for AAPL stock.Darker pixels indicate higher probability. Run length equal to zero
represent change points. Vertical green lines are timestamps related to detected change points by OBCD.
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Figure 4.2: OBCD for MSFT and FB stock respectively. Darker pixels indicate higher probability. Run
length equal to zero represent change points. Vertical green lines are timestamps related to detected
change points by OBCD.
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These visualizations help to represent the signal of closing price by the defined variable, run length.

Further more, they show how the intersections of run length slopes and x-intercept are detected to retrieve

the detected change points. The performance of OBCD technique can be understood by comparing the

position of vertical green lines and the closing price signal.

Change points are defined as abrupt changes in the generative parameters of a sequence of data. In

this study, both mean and variance are considered as the generative parameters that is of interest to

detect their changes. As a result, to have a good metric of measuring the performance of the implemented

technique, it is beneficial to apply appropriate statistical tests. Data points between each two consecutive

change points can be considered as a partition. A T-test or an F-test can show if there is a significant

difference between mean and variance of each two consecutive partitions respectively. The P-value results

for T-test and F-test are reported for each three stock: AAPL, FB and MSFT and for each detected

change point in table 4.1.

# AAPL,T_test AAPL,F_test FB,T_test FB,F_test MSFT,T_test MSFT,F_test
1 6e−23 9e−2 2e−21 2e−2 5e−29 1e−4
2 9e−41 1e−2 5e−15 3e−5 2e−24 4e−1
3 6e−14 1e−1 8e−71 5e−1 3e−38 2e−25
4 7e−1 2e−2 1e−85 1e−14 1e−2 0
5 9e−17 5e−2 3e−32 0 3e−64 5e−2
6 2e−111 1e−21 2e−93 0 7e−62 5e−1
7 7e−77 2e−5 8e−142 0 3e−72 2e−9
8 5e−139 1e−1 2e−49 0 3e−9 1e−4
9 1e−26 2e−3 5e−47 0 8e−127 1e−2
10 5e−4 1e−2 5e−43 0 2e−71 4e−4
11 1e−21 3e−2 4e−39 0 3e−34 1e−6
12 3e−163 5e−18 3e−87 0 8e−24 2e−1
13 - - 6e−151 0 5e−52 4e−19

Table 4.1: T_test and F_test P_values for datapoints before and after each change point. Considering
α_level as 0.05, for all of the change points at least one of the mean or the variance has changed. Red
cells are p_values larger than α_level which point to not a significant abrupt change in terms of the
corresponding parameter.

The results show that at each detected change point, at least one of the generative parameters: mean

or variance are changed significantly. It points that OBCD was totally capable to detect change points

in this experiment.

The last type of results are related to the comparison of the detected change points of OBCD and

the grant truth values provided by domain experts. To improve the comparisons, the same metrics are

measured for random change point detection. The random change point detection multiplied by 1000

with same number of detected change points as OBCD is implemented and the average performance is

measured. Different metrics are explained in section 3.4 and reported in tables 4.2, 4.3, 4.4, 4.5 and 4.6.
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Numebr of Actual change points Number of detected change points by OBCD
AAPL 16 12
MSFT 13 13

FB 16 13

Table 4.2: Comparing number of detected change points in grant truth and OBCD

h=10 days h=20 days h=35 days
AAPL - OBCD 0.75 0.58 0.25

AAPL - Random 0.81 0.66 0.42
MSFT - OBCD 0.62 0.62 0.46

MSFT - Random 0.85 0.73 0.57
FB - OBCD 0.70 0.46 0.15

FB - Random 0.82 0.66 0.50

Table 4.3: Comparing false positive rate of OBCD and random guessing with different window sizes (in
days).

h=10 days h=20 days h=35 days
AAPL - OBCD 170.5 213.5 640.5

AAPL - Random 172.1 209.54 303.36
MSFT - OBCD 231.43 231.43 306.6

MSFT - Random 157.18 185.9 250.16
FB - OBCD 185.25 296.4 1210

FB - Random 160.35 200.29 256.56

Table 4.4: Mean time between false alarms for OBCD and random guessing with different window sizes
(in days).

OBCD Random
AAPL 54 75.38
MSFT 27.1 65.64

FB 34.8 68.54

Table 4.5: Mean delay for detection for OBCD and random guessing.

h=10 days h=20 days h=35 days
AAPL - OBCD 0.81 0.69 0.38

AAPL - Random 0.87 0.76 0.61
MSFT - OBCD 0.62 0.62 0.31

MSFT - Random 0.86 0.74 0.59
FB - OBCD 0.75 0.65 0.25

FB - Random 0.86 0.75 0.59

Table 4.6: Probability of non-detection for OBCD and random guessing with different window sizes (in
days).
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In table 4.2 comparison between total number of detected change points and grant truth change

points is reported. It shows that these two numbers are in same range for the three investigated stocks.

The highest difference belongs to AAPL with four less number of detected change points and the lowest

difference belongs to MSFT with same number of detected change points as the actual number in the

grant truth. According to this metric, OBCD perform enough good for all of the three stocks.

Table 4.3 is reporting the performance of OBCD by measuring the false positive rate. False positive

change points are the detected change points with no actual change point in h days before or after

their time of occurrence. False positive rate refers to the proportion of false positive instances to the

total number of detected change points. Due the dependency of this metric to the window size, h, it

is beneficial to measure it with different setting. Further more, to have a good comparison, 1000 times

of random guessing is implemented and the false positive rate is measured. As reported in table 4.3,

increasing the window size helps to have a better false positive rate for all stocks and window sizes.

Performance of OBCD is better comparing to random guessing by having lower false positive rate for

all three stocks in this study.

In addition to comparing number of change points and false positive rate, it is informative to measure

the time distance between actual and detected change points. Table 4.4 shows the average time between

each two consecutive false positive detected change points by the above mentioned definition of false

positive instances. Same as false positive rate, increasing the window size improve the performance. In

addition, mean time between false alarms is larger for OBCD technique comparing to random guessing.

It points out that OBCD outperform random guessing by taking mean time between false alarms as the

metric.

Table 4.5 is reporting the delay of the system for detection of change points. It is beneficial to

capture how fast the system can detect the change points. Comparing the suggested technique, OBCD,

and random guessing can helps to illustrate the capability of OBCD to detect change points. For all the

stocks which are investigated in this study, OBCD has less delay to detect the change points comparing

to random guessing.

The last metric which is measured to understand the performance of OBCD is to find the probability

of non-detecting the change points. This metric tries to report the reliability of the system to detect the

change points. For each actual change point, there are two possibilities, even there is a detected change

point in an h days window, or there is no detected change point related to this actual change point. This

metric is in line with the above mentioned metrics and prove the power of OBCD comparing to random

guessing.
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4.2 Change points Prediction

Change points for the three stocks AAPL, MSFT and FB are predicted by using historical stock data

as well as news related to each stock. The performance of the whole experiment is reported in tables

4.7, 4.8, 4.9 and 4.10. These sets of results points to the performance of change point prediction by

detecting the last five change points from historical stock data through OBCD and then learn the topics

of news relevant to detected change points through LDA. Similarity of news related to past detected

change points and the test news is acted as an indicator of future stock switching points. The similarity

threshold is set to 10−6. If the similarity between a current news and relevant news is larger than the

specified threshold, the system is predicting a new change point. The predicted and detected change

points are compared to evaluate the performance of the whole experiment.

h=10 days h=20 days h=35 days
AAPL 0.85 0.675 0.475
MSFT 0.75 0.61 0.5

FB 0.79 0.61 0.46

Table 4.7: False positive rate of stock switching points prediction by financial news. It is reported by
assuming different window sizes (in days). The similarity threshold is set to 10−6.

h=10 days h=20 days h=35 days
AAPL 21.57 27.38 38.72
MSFT 35.81 44.04 53.47

FB 20.63 23.26 30.48

Table 4.8: Mean time between false alarms for prediction of stock switching points by financial news
with different window sizes (in days). The similarity threshold is set to 10−6.

AAPL MSFT FB
Mean delay for detection 108.83 82.31 80.15

Table 4.9: Mean delay for detection in days for stock switching points prediction by financial news. The
similarity threshold is set to 10−6.
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h=10 days h=20 days h=35 days
AAPL 0.67 0.5 0.5
MSFT 0.46 0.38 0.38

FB 0.38 0.31 0.31

Table 4.10: Probability of non-detection for stock switching points prediction by financial news with
different window sizes (in days). The similarity threshold is set to 10−6.

Table 4.7 is reporting the performance of the change point prediction by measuring the false positive

rate. False positive change points are the predicted change points with no detected change point in h

days before or after their time of occurrence. False positive rate refers to the proportion of false positive

instances to the total number of predicted change points. Due the dependency of this metric to the

window size, h, it is beneficial to measure it with different setting. As reported in table 4.7, increasing

the window size helps to have a better false positive rate for all stocks and window sizes. The values of

this table are reported by setting the similarity threshold to 10−6.

As a next metric to measure the performance of the proposed technique, it is informative to measure

the time distance between predicted and detected change points. Table 4.8 shows the average time

between each two consecutive false positive predicted change points by the above mentioned definition of

false positive instances. Same as false positive rate, increasing the window size improve the performance.

According to this metric, the proposed method has been able to best predict change points for Fb stock

and then AAPL.

Table 4.9 is reporting the delay of the system for prediction of change points. It is beneficial to

capture how fast the system can detect the change points. Comparing the result of proposed method

for the three investigated stocks: AAPL, MSFT and FB shows the proposed method outperform for FB

by having less delay to predict the change points comparing to AAPL and MSFT stocks.

The last metric which is measured to understand the performance of the implemented techniques is

to find the probability of non-predicting the change points. This metric tries to report the reliability of

the system to detect the change points. For each detected change point, there are two possibilities, even

there is a predicted change point in an h days window, or there is no predicted change point related to

this detected change point. This metric is in line with the above mentioned metrics and shows better

performance results for FB stock.

4.3 Threats to Validity

Threats to validity of this research involves internal, external, construct and statistical conclusion threats:

• Internal Validity:

Internal validity concerns about the causal relationships that are concluded in an experiment. The

measures which are used, the research setting, and the whole research design effects on the internal

validity. In this study, a complete method for stock switching points prediction first requires a
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change point detection technique that is applied using historical stock data to develop a clear defi-

nition about change points. Detected change points help ensure that only relevant and informative

news, not irrelevant news, will be retrieved. A topic modelling technique is applied on relevant

news pieces during the training phase to uncover the topics of interest that will be used in the

model. The testing phase will assess whether the current news pieces discuss the same topics as the

training news pieces. The degree of similarity between the topic representation of training news

and the testing news is measured based on an ensemble similarity technique which combine vari-

ous similarity techniques, such as cosine similarity, Kullback Leibler divergence, Jenson-Shannon

divergence and Euclidian distance. This similarity technique helps to cover all aspects of similarity

and to ensure confidence about the degree of similarity. Furthermore, performance is measured

not only by one criteria, but by different metrics and time windows that might be of interest for

different stakeholders having different purposes. The effects of extraneous variables have also been

taken into consideration in this study. For example, concerns about seasonal patterns in historical

stock data is mitigated by performing exploratory data analysis.

• External Validity:

This type of validity refers to the degree to which the results of an experiment can be generalized

to the population. While this study explores three stocks, AAPL, FB and MSFT, the methods

have the capability to be implemented to study other companies as well. The LDA implementation

is designed in two phases. The first phase trains the model to discover which topics will be used

in the test. The second phase transforms unseen news under the same topic headings discovered

in the test phase. Applying LDA for test news and measuring the performance based on unseen

news, make this model and its results generalizable. But as visible in the results, the performance

of this method may be different from stock to stock.

• Construct Validity:

Construct validity is the degree to which an experiment measures what it claims to be measuring.

To achieve this validity, first, the change points are detected using stock specific historical data.

Then, the relevant news pieces for the specific stock are selected according to the concurrency of

the news pieces and the detected change points. LDA training is implemented to determine the

similarity between relevant news and unseen news by their topic representations.

• Statistical Conclusion Validity:

Statistical conclusion validity refers to the degree to which conclusions about the relationship

among variables are correct. To measure the performance of change point detection, appropriate

statistical tests are used to test the equality of mean or variance for two samples, one with data

points before a change point and the other with data points after the same change point. The

underlying assumptions of a two-sample t-test and f-test, such as a normality assumption, are

met before applying the tests. It is important for a statistical test that the measuring process is

reliable. In this case, the data points are historical stock data selected from reliable sources and

the samples are homogeneous, so the measuring process should be reliable.
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Conclusion

Prediction of stock switching points is an important asset for stock market traders. Traders need to

make trading decisions with high stakes and high benefits. In this research, a new approach is suggested

to solving the problem of predicting stock switching points. The proposed technique first detects stock

change points from historical stock data by using an OBCD technique. Second, the technique determines

what news is relevant to past detected stock switching points and then trains an LDA model using these

news pieces to determine what underlying topics are associated with earlier detected stock switching

points. Using these topics helps to determine how much news pieces that discuss the same topics can

be used as a predictor for future stock change points. The whole experiment is implemented for three

different stocks (AAPL, MSFT and FB) and include five years of data. The well-structured Dow Jones

data set is used as the source of financial news.

The results show that OBCD technique is able to detect the change points as verified by the p-values

of a t-test and an f-test. For each detected change point, at least one of the generative parameter, mean

or variance, has changed significantly. The visualized stock price signals and their corresponding run

lengths show how the method is able to detect change points precisely. It is also clear from the results

that the performance of the OBCD is better compared to the average performance of random guessing

for all reported metrics, for all stocks studied and for all different window sizes.

The results also show that combining OBCD, LDA model and text similarity measures can help

to best capture stock price switching points. The combination has the advantage of detecting stock

switching points from historical stock data and training the text mining technique to use only relevant

news. Relevant news consists of news published close to the time of switching points. The hidden

structure inferred from a set of relevant news items can be used to predict future switching points. This

will result in reducing the storage cost of news for text mining platforms which aim to predict stock

market movements.

Even though the performance is not same for all the investigated stocks, all of them increase the

desired window sizes, leading to better results for all reported metrics. It is clear that when the system

lets the method predict change points in a wider range, the performance becomes better. On the other

hand, different metrics might be of different degrees of importance for different traders and stakeholders.
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These metrics are related to each other and improving one metric might worsen the others. Parameters

of this technique can be modified according to the importance of any of these metrics.

Contributions: The proposed method has the advantage of using only historical stock data and

news related to historical changes to predict future stock switching points. Previous proposed methods

have mainly focused on only one part of these whole process: change point detection or change point

prediction. Combining a change point detection technique and text mining approaches for the purpose

of stock switching points prediction is a novel technique explored in this research.

Future works: Future researchers can implement this method for different companies using a larger

datasets. Furthermore, the LDA model may be applied for other settings and contexts. The model

roposed in this study can be used as the baseline model for comparing the results of the extended LDA

algorithms, or for comparing other types of topic modeling techniques, such as matrix factorization or

its extended version, tensor factorization.
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Expand contraction [80]

CONTRACTION_MAP = {

"ain’t’": "is not",

"aren’t": "are not",

"can’t": "cannot",

"can’t’ve": "cannot have",

"’cause": "because",

"could’ve": "could have",

"couldn’t": "could not",

"couldn’t’ve": "could not have",

"didn’t": "did not",

"doesn’t": "does not",

"don’t": "do not",

"hadn’t": "had not",

"hadn’t’ve": "had not have",

"hasn’t": "has not",

"haven’t": "have not",

"he’d": "he would",

"he’d’ve": "he would have",

"he’ll": "he will",

"he’ll’ve": "he he will have",

"he’s": "he is",

"how’d": "how did",

"how’d’y": "how do you",

"how’ll": "how will",

"how’s": "how is",

"I’d": "I would",

"I’d’ve": "I would have",
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"I’ll": "I will",

"I’ll’ve": "I will have",

"I’m": "I am",

"I’ve": "I have",

"i’d": "i would",

"i’d’ve": "i would have",

"i’ll": "i will",

"i’ll’ve": "i will have",

"i’m": "i am",

"i’ve": "i have",

"isn’t": "is not",

"it’d": "it would",

"it’d’ve": "it would have",

"it’ll": "it will",

"it’ll’ve": "it will have",

"it’s": "it is",

"let’s": "let us",

"ma’am": "madam",

"mayn’t": "may not",

"might’ve": "might have",

"mightn’t": "might not",

"mightn’t’ve": "might not have",

"must’ve": "must have",

"mustn’t": "must not",

"mustn’t’ve": "must not have",

"needn’t": "need not",

"needn’t’ve": "need not have",

"o’clock": "of the clock",

"oughtn’t": "ought not",

"oughtn’t’ve": "ought not have",

"shan’t": "shall not",

"sha’n’t": "shall not",

"shan’t’ve": "shall not have",

"she’d": "she would",

"she’d’ve": "she would have",

"she’ll": "she will",

"she’ll’ve": "she will have",

"she’s": "she is",

"should’ve": "should have",

"shouldn’t": "should not",
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"shouldn’t’ve": "should not have",

"so’ve": "so have",

"so’s": "so as",

"that’d": "that would",

"that’d’ve": "that would have",

"that’s": "that is",

"there’d": "there would",

"there’d’ve": "there would have",

"there’s": "there is",

"they’d": "they would",

"they’d’ve": "they would have",

"they’ll": "they will",

"they’ll’ve": "they will have",

"they’re": "they are",

"they’ve": "they have",

"to’ve": "to have",

"wasn’t": "was not",

"we’d": "we would",

"we’d’ve": "we would have",

"we’ll": "we will",

"we’ll’ve": "we will have",

"we’re": "we are",

"we’ve": "we have",

"weren’t": "were not",

"what’ll": "what will",

"what’ll’ve": "what will have",

"what’re": "what are",

"what’s": "what is",

"what’ve": "what have",

"when’s": "when is",

"when’ve": "when have",

"where’d": "where did",

"where’s": "where is",

"where’ve": "where have",

"who’ll": "who will",

"who’ll’ve": "who will have",

"who’s": "who is",

"who’ve": "who have",

"why’s": "why is",

"why’ve": "why have",
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"will’ve": "will have",

"won’t": "will not",

"won’t’ve": "will not have",

"would’ve": "would have",

"wouldn’t": "would not",

"wouldn’t’ve": "would not have",

"y’all": "you all",

"y’all’d": "you all would",

"y’all’d’ve": "you all would have",

"y’all’re": "you all are",

"y’all’ve": "you all have",

"you’d": "you would",

"you’d’ve": "you would have",

"you’ll": "you will",

"you’ll’ve": "you will have",

"you’re": "you are",

"you’ve": "you have"
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OBCD for Normal distribution

1- Normal distribution with Known mean and Unknown variance:

def inference_Knownmean_Unknownvariance(x, hazard_func, mu0, alpha0, beta0):

# MATRIX THAT HOLD THE PROBABILITY OF CURRENT RUNLENGTH

R = np.zeros([(len(x)+1), len(x)])

# INITIALIZE

R[0, 0] = 1.0

mu0 = np.array([mu0])

alpha0 = np.array([alpha0])

beta0 = np.array([beta0])

# TRACK THE CURRENT SET OF PARAMETERS.

muT = mu0

alphaT = alpha0

betaT = beta0

# KEEP TRACK OF THE MAX

maxes = np.zeros([(len(x))])

# LOOP OVER THE DATA

for t in range(len(x)-1):

# PREDICTIVE PROBABILITIES

predprobs = studentpdf(x[t], muT, betaT / alphaT, 2 * alphaT)

haz = hazardfunc(np.arange(t+ 1))

# GROWTH PROBABILITY

R[1:t+2,t+1] = R[0:t+1,t] * predprobs * (1 - haz)

# change point PROBABILITIES

R[0, t+1] = (R[0:t+1, t] * predprobs * haz).sum()

R[:, t+1] = R[:, t+1] / (R[:, t+1].sum())

# UPDATES

muT0 = np.concatenate([mu0,muT])
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alphaT0 = np.concatenate([alpha0, alphaT + 0.5])

betaT0 = np.concatenate([beta0, betaT + ((x[t] - muT) ** 2) / 2])

muT = muT0

alphaT = alphaT0

betaT = betaT0

maxes[t] = R[:, t].argmax()

return R, maxes

2- Normal distribution with Unknown mean and Unknown variance:

def inference_Unknownmean_Unknownvariance(x, hazard_func, mu0, kappa0, alpha0, beta0):

# MATRIX THAT HOLD THE PROBABILITY OF CURRENT RUNLENGTH

R = np.zeros([(len(x)+1), len(x)])

# INITIALIZE

R[0, 0] = 1.0

mu0 = np.array([mu0])

alpha0 = np.array([alpha0])

beta0 = np.array([beta0])

beta0 = np.array([kappa0])

# TRACK THE CURRENT SET OF PARAMETERS.

muT = mu0

kappaT = kappa0

alphaT = alpha0

betaT = beta0

# KEEP TRACK OF THE MAX

maxes = np.zeros([(len(x))])

# LOOP OVER THE DATA

for t in range(len(x)-1):

# PREDICTIVE PROBABILITIES

predprobs = studentpdf(x[t], muT, betaT * (kappaT + 1) / (alphaT * kappaT), 2 * alphaT)

haz = hazardfunc(np.arange(t+ 1))

# GROWTH PROBABILITY

R[1:t+2,t+1] = R[0:t+1,t] * predprobs * (1 - haz)

# change point PROBABILITIES

R[0, t+1] = (R[0:t+1, t] * predprobs * haz).sum()

R[:, t+1] = R[:, t+1] / (R[:, t+1].sum())

# UPDATES

muT0 = np.concatenate([mu0,muT])

alphaT0 = np.concatenate([alpha0, alphaT + 0.5])

betaT0 = np.concatenate([beta0, betaT + ((x[t] - muT) ** 2) / 2])

kappaT0 = np.concatenate([kappa0, kappaT + 1])
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muT = muT0

alphaT = alphaT0

kappaT = kappaT0

betaT = betaT0

maxes[t] = R[:, t].argmax()

return R, maxes

3- Normal distribution with Unknown mean and Known variance:

def inference_Unknownmean_Knownvariance(x, hazard_func, mu0, sigma20, SIG2):

# MATRIX THAT HOLD THE PROBABILITY OF CURRENT RUNLENGTH

R = np.zeros([(len(x)+1), len(x)])

# INITIALIZE

R[0, 0] = 1.0

SIG2 = np.array([SIG2])

mu0 = np.array([mu0])

sigma20 = np.array([sigma20])

# TRACK THE CURRENT SET OF PARAMETERS

muT = mu0

sigma2T = sigma20

# KEEP TRACK OF THE MAX

maxes = np.zeros([(len(x))])

# LOOP OVER THE DATA

for t in range(len(x)-1):

# PREDICTIVE PROBABILITIES

predprobs = normaldis(x[t], muT, sigma2T + SIG2)

haz = hazardfunc(np.arange(t+ 1))

# GROWTH PROBABILITY

R[1:t+2,t+1] = R[0:t+1,t] * predprobs * (1 - haz)

# change point PROBABILITIES

R[0, t+1] = (R[0:t+1, t] * predprobs * haz).sum()

R[:, t+1] = R[:, t+1] / (R[:, t+1].sum())

# UPDATES

sigma2T0 = np.concatenate([sigma20, (1 / ((1 / SIG2) + (1 / sigma2T)))])

muT0 = np.concatenate([ mu0, ((SIG2 * muT + sigma2T * x[t]) / (sigma2T+SIG2))])

muT = muT0

sigma2T = sigma2T0

maxes[t] = R[:, t].argmax()

return R, maxes
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Appendix 3

Performance metrics

1- False positive rate:

def performancebyfprate(predictdata,actualdata,h):

TP = 0

f = False

for i in predictdata :

for j in actualdata:

if abs((i-j).days) <= h :

f=True

if f==True:

TP += 1

f = False

return (1-(TP/len(predictdata)))

2- Mean delay for detection:

def performancebymean_delay_detection(predictdata,actualdata):

delay=0

for j in actualdata:

x = float("inf")

for i in predictdata:

if abs((i-j).days) <= x :

x = abs((i-j).days)

delay = delay+x

meandelay = delay/len(actualdata)

return (meandelay)
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APPENDIX 3. PERFORMANCE METRICS

3- Mean time bet en false alarm:

def performancebymean_time_false_alarm(predictdata,actualdata,h):

false_alarms = []

f=False

for i in predictdata :

for j in actualdata:

if abs((i-j).days) <= h :

f=True

if f==False:

false_alarms = false_alarms + [i]

f = False

false_alarms.sort()

diff = 0

for i in range(len(false_alarms) - 1):

diff += (false_alarms[i + 1] - false_alarms[i]).days

if len(false_alarms)==1:

mean = 0

else:

mean = diff / (len(false_alarms) - 1)

return (mean)

4- Probability on non-detection:

def performanceby_probability_of_nondetection(predictdata,actualdata,h):

TP = 0

f = False

for i in actualdata :

for j in predictdata:

if abs((i-j).days) <= h :

f=True

if f==True:

TP += 1

f = False

return (1-(TP/len(actualdata)))
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