Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2008
Importance analysis of fault trees by visual
inspection

Gurvinder Kaur Bains
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Bains, Gurvinder Kaur, "Importance analysis of fault trees by visual inspection” (2008). Theses and dissertations. Paper 289.

This Thesis Project is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and

dissertations by an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/289?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

A
\69
8

B0k

IMPORTANCE ANALYSIS OF FAULT TREES
BY
VISUAL INSPECTION

Gurvinder kaur Bains

A project presented to Ryerson University
in partial fulfillment of the
requirements for the degree of
Master of Engineering
in the program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2008

© Gurvinder kaur Bains 2008

PROPERTY OF
RYERGON UNMERGITY LIBRARY

Author’s Declaration

I hereby declare that I am the sole author of this project.
I authorize Ryerson University to lend this project to other institutions or individuals for

the purpose of scholarly research.

Gurvinder Kaur Bains

I further authorize Ryerson University to reproduce this project by photocopying or by
other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

Gurvinder Kaur Bains

il

IMPORTANCE ANALYSIS OF FAULT TREES
BY VISUAL INSPECTION

© Gurvinder kaur Bains
Master of Engineering
Department of Electrical and Computer Engineering

Ryerson University, 2008

Abstract

To achieve high reliability for any system, it is necessary to identify the components
and the subsystems that have the greatest impact on its reliability. Such items can be
identified using importance measures that rank the items quantitatively according to their
contribution to the system unreliability. Taking into consideration the complexity and
time involved in computing these measures'we have proposed an algorithm that can
pinpoint the most important component just by visually inspecting the fault tree.
Calculations whenever required, involve simple arithmetic. It gives the user freedom
from the complex calculations, save their time and performs the intended task without the
use of software tools. Then the generalization of this work has been proposed that ranks
the components of the fault tree. We have illustrated both the algorithms for the fault

trees without as well as with repeated events.

111

Acknowledgements

I express my deepest gratitude to my supervisor, Dr. Olivia Das, for her patient guidance,
encouragement and invaluable suggestions she has provided me throughout the time I
have been her student. I have been extremely lucky to have a supervisor who cared so
much about my work, and who responded to my questions and queries so promptly. I

have learned a lot from her.

I would like to thank my beloved husband Ranjit for providing me the opportunity to
study further. Without his support it won’t have been possible for me to pursue my
graduate studies. Thanks must also go to my in-laws family for their prayers and

encouragement, especially to my sister-in-law who is like an elder sister to me.

I would express a deep sense of gratitude to my parents (India), especially to my dearest
mom, who has always stood by me like a pillar in times of need and to whom I owe my
life for her unconditional love, encouragement, moral support and blessings. Special
thanks are due to my one and only loving brother, Harman (Australia) who always
strengthened my morale by standing by me in all situations regardless of the distance. I

welcome the newest addition to our family, my bhabhi Navdeep.

Above all, I would like to thank god for sending such wonderful people into my life and

helping me to climb one more step in the ladder of life.

v

Table of Contents

Chapter 1 - Introduction.......cccvveviiiiiiieiiiiiieiiiiieieeeenenmnonssssnnes 1
1.1 Introduction and Motivation............coiviinieiiiieieee e]
1.2 ContribUtIONSt et e, 4
1.3 Project Organization............c.iuvuiriiiii i e e e 5
Chapter 2 - Background........ccccoeiuiiiiniiiiiiiiiiiiiiiiiiieieiiiieeeneeeenans 6
2.1 Reliability DefInition.c.oiuiuiiiiii e, 6
2.2 Reliability MtrICS. .. vuee ittt e e, 7
2.3 Reliability MOA@ING. ...ttt 7
2AFAUIE TTEES. ... it e, 9
2.5 Fault Tree ANalysiS. . .oouiuirie i e e e 10
2.5 Reliability Importance MEaSUIESouiueiriiiie e, 11
Chapter 3 - Most Sensitive Component.......cccevevveeiieeineneeinennennennns 14
3.1 AlGOTIthIM OVEIVIEW .. .uutitii et 14
3.2 ASSUMPIIONS. « ettt tttte ettt ettt et et et e e ettt e eee e e e e e e 15
3.3 NOTAIIOMNS. L.ttt et e e e 15
3.4 AIOTITRIM .ot 15
3.5 SPECIAL CASES . euvtiiiieti it e e 17
3.0 EXAMPIES...ooniiii it 22
3.7 SUMIMIETY . i e e e e e e e 26
Chapter 4 - RanKing.....ccoiiiiniiiiiiiiiiiiiiiiiiiiiiiiieiieieeeenieneenns 27
4.1 Algorithm. ..., 27
4.2 SPECIAL CASES. ... uinet ittt e 27

4.3 EXAMPIES.....eutimiiiiiieisiesieiesie ettt et et e e e a2 29
44 SUMIMATY . .. oe it e et e e e e e et 38

Chapter 5 - ConcluSionsS......ccviveiiieieiierinneeerereeneeerneeenscessenns veee:39

5.1 Summary and Future w0k39
5.2 Advantages of Algorithms..........cccoviiiiiiiiiiiiiiii e e 040
5.3 Limitations of AlgOTithms.........couiriiiiiiii e, 40

g e 41

Vi

List of Tables

Table 1: Rules to create InputList of each gate

Table 2: Rules to arrange InputList of each gate

Table 3: Rules to find Gate value of each gate

Table 4: Rules for repeated events in a fault tree

Table 5: BIM for a fault tree with all OR gates in Figure 3.1

Table 6: BIM for the fault tree with all AND gates in Figure 3.2

Table 7: BIM for a fault tree with top OR gate with basic events, AND gates as its
inputs in Figure 3.3

Table 8: BIM for a fault tree with top OR gate with basic events, OR gates, AND gates
as its inputs in Figure 3.4

Table 9: Algorithm steps for a fault tree with non repeated events in Figure 3.5
Table 10: BIM measure for the fault tree in Figure 3.5

Table 11: Algorithm steps for a fault tree with repeated events in Figure 3.6
Table 12: BIM for a fault tree with repeated events in Figure 3.6

Table 13: Ranking of a fault tree with all AND gates in Figure 4.1

Table 14: Ranking of a fault tree with all OR gates in Figure 4.2

Table 15: Steps of Ranking Algorithm for a fault tree in Figure 4.3

Table 16: BIM for the fault tree in Figure 4.3

Table 17: Steps of Ranking Algorithm for a fault tree in Figure 4.4

Table 18: BIM for the fault tree in Figure 4.4

Table 19: Steps of Ranking Algorithm for a fault tree in Figure 4.5

Table 20: BIM for the fault tree in Figure 4.5

vii

List of Figures

Figure 2.1: A fault tree with repeated event M3

Figure 3.1: A fault tree with all OR gates

Figure 3.2: A fault tree with all AND gates

Figure 3.3: A fault tree with top OR gate with basic events, AND gates as its inputs
Figure 3.4: A fault tree with top OR gate with basic events, OR gates, AND gates as its
inputs

Figure 3.5: A fault tree with non repeated events

Figure 3.6: A fault tree with repeated events‘

Figure 4.1: A fault tree with all AND gates

Figure 4.2: A fault tree with all OR gates

Figure 4.3: A fault tree with top AND gate

Figure 4.4: A complex fault tree

Figure 4.5: A fault tree with lower AND gates having approximately same gate values

Viil

List of Acronyms

SA Sensitivity Analysis

IA Importance Analysis

FTA Fault Tree Analysis

SI Structural Importance

RI Reliability Importance

BIM Birnbaum Importance Measure
BDD Binary Decision Diagram
MCS Minimal Cut Sets

MTTF Mean Time to Failure

MTFF Mean Time to First Failure
MTTR Mean Time to Repair

MTBF Mean Time Between Failures

X

Chapter 1

Introduction

This chapter gives an introduction and overview of our project. It covers the

introduction and motivation, the main contributions and the project organization.

1.1 Introduction and Motivation

In today's technological world nearly everyone depends upon the continued functioning
of a wide array of complex machinery and equipment for their everyday health, safety,
mobility and economic welfare. People are interested in reliable systems; they expect
their cars, computers, electrical appliances, lights, televisions, etc. to function whenever
they need them - day after day, year after year. When these systems fail, the results can
be catastrophic: injury, loss of life and/or occurrence of costly lawsuits. More often,
repeated failure leads to annoyance, inconvenience and a lasting customer dissatisfaction

that can play havoc with the responsible company's marketplace position.

Reliability engineers are often called upon to make decisions as to whether to improve
a certain component or components in order to achieve minimum required system
reliability. Fault avoidance and fault tolerance are the two approaches to improve the
reliability of a system. Fault avoidance is achieved by using high-quality and high-
reliability components, and is usually less expensive than fault tolerance. Fault tolerance,
on the other hand, is achieved by redundancy. Redundancy can result in increased design

complexity and increased costs through additional weight, space etc.

Before deciding whether to improve the reliability of a system by fault tolerance or

avoidance, a reliability assessment for each component in the system should be made.

Once the reliability values for the components have been quantified, an analysis can be
performed in order to determine if system’s reliability goal is met, which component or
module is contributing the most to the unreliability, what is the most cost effective way to
improve the reliability? These questions require sensitivity analysis (SA) of the reliability

results.

Sensitivity Analysis (Importance Analysis) also referred as what-if analysis is simply the
study of the relationship or correlation between outputs of a model to its inputs. It is
defined as the partial derivative of the measure with respect to input parameters. SA can
prove very useful in understanding the behavior of a system. SA of system reliability can
be used to guide system optimization, identify the parts of system model sensitive to error

and find system reliability bottlenecks [28].

Several reliability models have been developed to evaluate the reliability of software
systems. SA can determine the most sensitive parameter and most sensitive component
for such models. Jung et al [S] studied the sensitivity analysis of the reliability of
component-based applications. They showed that SA can not only determine the
parameters and the components affecting the reliability of the system but can also find the
most sensitive interaction between the components and the most sensitive relative error
component. Gokhale [8] performed sensitivity analysis based upon the architecture of the

software.

SA analysis has also been defined in context of hardware reliability models (most
notably traditional fault tree analysis) as a way to assess the relative importance of a
component to the reliability of a system. Several measures have been defined to assess
the component importance. These importance measures [23, 31, 32] rank the items
quantitatively according to their contribution to system unreliability. They are used to
detect design weaknesses and component failures that are critical to the proper
functioning of a system. Overall, these measures assist in identifying the components

whose improvement is most likely to yield the greatest improvement in system reliability.

The importance [17, 23, 31, 32] measures are categorized into two types: Structural-
Importance (SI) and Reliability Importance (RI). In SI measures, the importance of a
component to the system is assessed by the virtue of its position in the system without
considering the reliability of the component. These measures can be used even if the
component reliability is unknown. On the other hand, the RI measures consider both the
position of the component and the component reliability, thus generally provide more
information for generating the ranked list than the SI measures interpretations. But the
probabilistic information required for their calculations might not be available in practice
and computations involved in quantifying these measures can become extensive for large

complex systems. In such situation SI measures must be used.

The currently applied SA procedure is based on three main steps:
e Ranking of components according to their importance to system failure.
e Definition of an improved design alternative.
.o Assessment of the effects of the adopted design solution to system failure

probability.

Step 1. Component Ranking

One of the most useful results in system analysis is the component importance index,
which represents a measure of the relative contribution to system failure probability, i.e.
the occurrence of a given system failure mode, due to component failure. Thus,
components can be ranked according to their importance in the system. Consequently, the
weakest system points, to be considered for subsequent design improvement, can easily
be identified on a rational and objective basis: they are made up of components whose

failure modes present the highest importance index.

Step 2. Design Modification
Having identified the weakest system points, the design can be improved by identifying
and implementing more reliable solutions. Following the design modification the system

model is updated.

Step 3. Re-analysis of the Model

The modified model is then re-analyzed to assess the improvements made.

In the above three steps, component ranking is the most critical. Ranking can be
performed by either of the two types of measures (RI, SI). But both have their own
drawbacks. SI measures do no take into account the reliability of component, and thus
they can not distinguish between components that occupy the similar structural positions
but have drastically different reliabilities. On the other hand RI measures are more

accurate; however, their computations involve complex calculations.

Since the computation of these measures involves complex calculations such as partial
derivates, they are computed with the help of software tools. This motivated us to find a
simpler way to identify the most significant component(s), as for improving the reliability
of the system the engineers are generally interested in finding the most “sensitive” or
“important” component to the system reliability. The improvement in this component will
lead to the maximum improvement in the system reliability. As a result we developed an
algorithm that performs the intended task with no or simple arithmetic calculations, thus

eliminating the need of any software tool.

1.2 Contributions

For sensitivity analysis of a fault tree model we have developed two algorithms. The
first is developed keeping in mind that to improve the reliability of the system we need to
find the component which affects the reliability of the system the most. The second is
developed to rank all the components of the system according to their importance in the
system reliability as sometimes the engineers may need to concentrate on more than one
component as these components may also be playing a significant role in the system

unreliability.

The principal contributions of this project are as follows:
" An algorithm to find the most sensitive component of a fault tree has been

proposed. This algorithm works for fault trees with non-repeated as well as

repeated events. Unlike the previous work done in this field, this algorithm
requires no or simple calculations. The user can find the most “sensitive”
component not only without using any software tool but just by looking at the tree
structure. The algorithm is shown to work accurately by comparing its results
with Birnbaum importance measure.

® Ranking algorithm has been developed which not only accurately finds the most
sensitive component for all the tree structures but also precisely ranks the
components of the system for most of them. The Ranking is also shown to work

by comparing it with the ranking of Birnbaum importance measure.

1.3 Project Organization

Chapter 2 provides the background needed for our project. It covers the basic
terminology related to reliability, the various reliability analysis models, fault trees

and the sensitivity analysis of fault trees.

Chapter 3 contains the proposed algorithm to find the most sensitive component of
the fault tree. It has been shown to work for the fault trees with repeated as well non-
repeated events. The results are compared with the Birnbaum importance measure

computed using the demo version of software, Aralia [39].

Chapter 4 contains the generalized algorithm, for ranking the basic events of the
fault trees according to their importance to the system reliability. This algorithm is
illustrated with the help of different fault tree structures. The results are compared

with the Birnbaum importance measure computed by Aralia WorkShop.

Chapter 5 includes the summary, conclusion, advantages and limitations of our

work.

Chapter 2
Background

This chapter introduces fhe preliminary concepts that form the foundation of our work.
In Section 2.1 reliability is defined. Section 2.2 deals with the reliability metrics. In
section 2.3 different reliability models are discussed. Fault tree, the model used in our
project is explained in section 2.4. Fault tree Analysis methods are covered in section 2.5.

Sensitivity analysis of fault tree analysis is addressed in section 2.6.

2.1 Reliability

Reliability [40] is a broad term that focuses on the ability of a product to perform its
intended function. The product could be an electronic or mechanical hardware product, a
software product, a manufacturing process, or even a service. Mathematically speaking,
assuming that an item is performing its intended function at time equals zero, reliability
can be defined as the probability that an item will continue to perform its intended
function without failure for a specified period of time under stated conditions. Reliability,

R(t) of a system S can be expressed as:
R(t) = Pr(S is fully functioning in [0, t])

System reliability, by definition, includes both parts of the system: hardware and
software. Different metrics are used to measure software and hardware reliability.
Moreover, due to different failure processes, separate reliability models had been defined
by various authors. Number of software reliability models had been proposed in [27, 28,

29, 30, 33]. But we are concerned only with hardware reliability.

2.2 Reliability metrics

The metrics [41] which are used for assessing the reliability are:

* Failure rate: The expected rate of occurrence of failure or the number of failures
in a specified time period. Failure rate is typically expressed in failures per
million or billion hours.

* MTTF (Mean Time to Failure): Average time it takes for a system to fail.

* MTBF (Mean Time between Failures): Number of hours that passes between
failures. It is expressed in hours.

* Reliability can be defined as the probability that the component or system
remains operating from time zero to time t, given that it was operating at time
zero. It answers the question: "How likely is it that my system will remain
operational over a period of time?” Because reliability is expressed as a
probability, it is always a value between 0 and 1.

- Availability of a component or system is defined as the probability that the
component or system is operating at time t, given that it was operating at time
zero. It answers the question: "How likely is it that my system is operating at X
hours?”

= Unreliability is the compliment of reliability. It indicates the likelihood that a
system cannot continuously operate up to a specified point in time.

* Unavailability of a component or system is defined as the probability that the
component or system is not operating at time t, given that is was operating at time

Z€ro.

2.3. Reliability Modeling

System reliability analysis refers to the evaluation of the reliability of a system based
on the reliabilities of its elements. It also includes computation of other measures such as
failure (hazard) rate, failure (occurrence) frequency, MTTFF (Mean Time to First
Failure), MTTF (Mean Time to Failure), MTTR (Mean Time to Repair), and MTBF

(Mean Time Between Failures).

There are many options [18] to predict the reliability of the system including, making
an educated guess based on experience with similar systems, using discrete-event
simulation such as Monte-Carlo simulation to model the system or construct analytical
models of the system. Discrete event simulation is a program that mimics the dynamic
behavior of the modeled system and provides measures of the system behavior. The
analytical approach involves the determination of a mathematical expression which
describes the reliability of the system, expressed in terms of the reliabilities of its
components. These models, which are an abstraction of the system, might not predict the
system behavior that well but under certain circumstances they can provide information

which cannot be obtained by any other methods.

There are a wide range of analytical models for the system designer to choose. Each
model has its strength and weakness in terms of accessibility, ease of construction,
efficiency, accuracy of solution algorithms, and availability of software tools. Reliability
modeling approaches can further be divided into two categories: non state space

analytical modeling and state space analytical modeling [12].

Non state space models: Models [18] like reliability block diagram, fault trees,
reliability graphs can be easily formulated and solved for system reliability, system
availability and system MTTF. Each component can have attached to it, probability
failure; failure rate; distribution of time to failure; steady state or instantaneous
unavailability. The two main assumptions used by these models are statistically
independent failures and independent repair units for the components. The limitation of
these models is that they can not represent dependencies occurring in the real time
systems [29, 30] such as imperfect coverage, correlated failure, repair dependencies,
transient and intermittent faults, standby systems with warm spares, and so forth. The
state space models which are discussed next, overcome this limitation of non-state space

models.

State space Models: Models such as Markov models [1, 9, 14, 21, 22] are capable of

representing important system behavior. The major drawback of Markov method is that it

is not always intuitive and markov diagrams for large systems are generally exceedingly
large, complicated and difficult to construct. However, Markov models may be used to

analyze smaller systems with strong dependencies requiring accurate evaluation.

Monte-Carlo simulation-It is difficult to find an exact analytical expression or
algorithm for every scenario. It is particularly difficult when complex dependencies exist.
Such dependencies may include warm standby components, shared repair resources,
repair actions based on the state of the system and so forth. To overcome the difficulties
in analyzing systems with complex dependencies, Monte Carlo simulation [26] can be
used to calculate system reliability by simulating the failure of components at times
distributed according to their failure rates. The disadvantage of this approach is that if the
number of simulations performed is not large enough, this method can be error prone. In
addition, performing a large number of simulations can be extremely time-consuming and

if minor changes occur the simulation must be rerun at a considerable cost.

2.4 Fault Trees

Among all the reliability models, Fault Trees [20] have been most widely used as they
provide a compact, graphical, intuitive method to analyze system reliability. The Fault
tree is a pictorial representation of the combination of events that can cause the
occurrence of an undesirable (system failure) event. By means of logic gates an event at
level i is reduced to a combination of lower-level events. This process is iterated until the
basic events (that cannot be reduced further) are reached. The occurrence of each event is

denoted by logic 1 at that node; otherwise the logic value of the node is 0.

Each gate has inputs and outputs. The input to a gate is either a basic event or output of
another gate. The two most commonly used gates are AND and OR gate. The output of
an AND gate is a logic 1 if and only if all its inputs are logic 1. The output of an OR gate
is logic 1 if and only if one or more inputs are logic 1. There is a single output called the
top event representing system failure. The recent developments in the modeling features

of fault trees include the concept of dynamic fault trees [1], which add the sequential

notion to the traditional fault tree approach. Hence, system failures can then depend on

component failure order as well as combination [15].

a
| Q\ \@ |
P1 P2
O = O =
| - | | - |
i M1 | M3 | l M3 | M2 |

Figure 2.1: A fault tree with repeated event M3

Consider a fault-tolerant computer system with two processors and three memory
modules. Assuming that one of the memory modules M3 is shared, M1 is private to
processor P1 and M2 is private to processor P2; the system will operate as long as there is
at least one operational processor with access to either a private or shared memory. This
system can be modeled by a fault-tree as shown in Figure 2.1. Module M3 is representing

a repeated event in this fault tree.

2.5 Fault tree Analysis

Analysis of fault tree begins with an enumeration of minimal cut sets i.e. the smallest
combinations of component failures which, if they occur, will cause the top event to
occur. A cut set is combination of primary effects sufficient for top event. Once the
minimal cut sets are obtained, probability analysis can be performed to obtain the top
event probability and quantitative importance of components. But the number of

minimum cut sets usually increases with the size of trees and this leads to a complexity in

10

the evaluation of a fault tree. Both static and dynamic trees can be analyzed by using the
Sum-Of-Disjoint-Products algorithm [19, 25, 31, 34]. The use of Binary Decision
Diagrams (BDDs) [3, 7] in fault tree analysis provides both an accurate and efficient
means of analyzing a system. This method does not analyze the fault tree directly, but
converts the tree to a binary decision diagram, which represents the Boolean equation for
the top event. The difficulty, however, lies with the conversion of the tree to the BDD.
For Complex fault trees, a Modular approach [15] has been proposed for the efficient
analysis of both static and dynamic fault trees. It provides a combination of BDD solution
for static fault trees and Markov chain solution for dynamic fault trees. For dynamic fault
tree, the occurrence of the top event depends on not the combination of basic events, but
also the occurrence order of the basic events. Cut sequence is a set of basic events that
fall in a particular order. Dong [2] uses cut sequence set for analysis of dynamic fault

trees.

2.6 Reliability Importance Analysis

Importance analysis (Sensitivity Analysis) has been defined in context to Fault trees as
a way to assess the relative importance of a component to the reliability of the system.
Several importance measures have been defined to assess component importance [24] in
order to capture the combined effect of structural and probabilistic contributions to the
system reliability from a basic component. These various measures have generally fallen
out of favor [24] as they counterintuitive or inconsistent results. However three measures

which remained most popular are discussed below.

Birnbaum importance measure: Birnbaum [38] measure determines the maximum
increase in risk when component is failed compared to when component is operating. It is
defined as a partial derivative of system reliability with respect to individual component
failure rate. This method can be considered as a form of sensitivity analysis, as the index
gives an indication of how system reliability will change with changes in component
reliability. While the Birnbaum importance measure is useful, it does not directly
consider how likely event is to occur. This measure is independent of the actual

unavailability of event, which can lead to assigning high importance measures to events

11

that are very unlikely to occur and may be very difficult to improve. Another issue
regarding this index is that it can not be used to predict several changes at the same time,
1.e. reliability changes in several components at a time [12]. However, the index can be

used to determine effects of changes, which is not possible for all indices.

Many new measures have been defined taking this measure as a base. Lee [16]
extended the Birnbaum importance measure to a subsystem level (gate-event level in a
fault tree). Beeson [6] developed an extension of Birnbaum measure for the analysis of
noncoherent systems. Butler [35] formulated an importance ranking among the
components based upon minimal cut sets of the system and showed that the so called cut-
importance ranking is consistent with the ranking induced by Birnbaum reliability
importance measures when component reliabilities are equal or close to 1. Meng [17]
proposed a new method to compute Birnbaum importance measure in terms of minimal
cut sets and minimal path sets. Yong [10] proposed a modular approach to sensitivity
analysis in which they perform sensitivity analysis of static modules using BDD and
sensitivity analysis of dynamic modules using markov chains. And then they combine the
sensitivity results into system-level sensitivity and calculate the measure of importance

with respect to different parameters such as failure rate and component type.

Criticality importance measure: Given that the top event occurs, it determines the
probability that the failure is a result of the failure of the component. While the Birnbaum
importance measure considers only the conditional probability that event is critical, the
Criticality importance measure [13] also considers the overall probability of the top event
occurrence due to event. It modifies the Birnbaum importance measure by adjusting for
the relative probability of basic event to reflect how likely the event is to occur and how
feasible it is to improve the event. These modifications enable the Criticality importance
measure to focus on truly important basic events and make it possible to compare basic
events between fault trees. Wang [4] modifies the Component criticality importance

measure to find Failure Criticality Index for ranking the components in complex system.

Fussell-Vesely importance measure: Fussell [37] introduced another importance

measure. Given that the system has failed, this measure determines the probability that

12

component has contributed to the system failure. It is the ratio of the probability of
occurrence of any cut set containing event and the probability of the top event. Therefore,
Fussell-Vesely importance measures are calculated quite differently than Birnbaum or
Criticality importance measures. It constructed using minimal cut sets. A drawback of
Fussell-Vesely’s index is that it does not take into account the component’s contribution

to system success.

There are some more authors whose work has also gained recognition in this field.
Barlow & Proschan [36] suggested that the most important component is that having the
highest probability of finally causing system failure by its own failure. Natvig [32] has
developed a theory supporting another measure. Here the component whose failure
contributes most to reducing the expected remaining lifetime of the system is the most
important one. Carot [11] proposed a new method for the reliability importance of the
components by studying how the system life improves when the mean life of a
component is improved. With this knowledge one can highlight which component (or
components) must be given greater attention, when all the components are independent of

each other.

The biggest issue with these importance measures is the complexity involved in their
computation. The calculations involved are hard and time consuming when performed
manually. Therefore software tools are generally required for their computation
measures. We have proposed a new method to overcome the limitations of these

measures. This method is discussed in the following chapters of the report.

13

Chapter 3

Most Sensitive Component

In this chapter we will discuss the algorithm proposed to find the most sensitive
component of the fault tree. It works for the fault trees without as well as with repeated
events. Section 3.1 contains the overview of the algorithm. Section 3.2 covers the basic
assumptions of the algorithm. In section 3.3 are some basic notations used in the
algorithm. The proposed algorithm is elaborated in Section 3.4. Section 3.5 deals with
some special cases of the algorithm. In Section 3.5 algorithm is shown to work for fault

trees with repeated as well as non repeated events.

3.1 Overview

Our main aim to develop this algorithm was to find the most sensitive component of the
fault tree by just visually inspecting it. It involves no or simple arithmetic calculations.
Following bottom-up approach, we compute two things for each event (basic and gate):
value and InputList. We start the computation from the basic events and go up in the fault
tree level by level. Level 0 are the basic events, level 1 gate is that whose inputs are basic

events & so on. The top gate has the highest level.

For the basic event value will be its failure probability and the InputList is NULL. For a
gate, value is computed using the values of the inputs (i.e. the children) & the type of
predecessor (parent) gate and /nputList is created from its inputs. These two things (value
& InputList) are stored in each event in the form of an entry (InputID, value, type,
InputList). InputID is the identifier of each event. The type indicates the type of input; it
can be a basic event (BE) or a gate (OR, AND).

14

For the fault tree with the repeated events the InputList of the top gate is checked and

action is taken according to its type.

The most sensitive component of the fault tree can be found from the InputList of the

top gate.

3.2 Assumptions

We developed the algorithm by making the following assumptions:

1. There are 2 states of each basic event: it occurs or it does not occur.
2. Occurrences of basic events are mutually s-independent.
3. Gates are either AND or OR.

4. Failure probabilities of all the basic events are known.

3.3 Notations

€ | basic event 1

G; gate event 1

E {e1,..., €m}: set of g;

G {Gi... Gp}: set of Gj

G, top gate

G input j to gate G;j

parent(G;) predecessor of G;

q(ei) failure probability of ¢;

t(Gj) type of gate G;j .It can have values {AND, OR}

t(Gi,i) type of input j to gate G; . It can have values {BE, OR, AND}
v(G)) value of gate G;

List(G;) InputList of gate G;

v(Gi,i) value of the input j of gate G;

3.4 Algorithm

Perform step 1 and Step 2 for all the gates, except step 2 for gate G1.Steps 3 and 4
performed at the top gate only.

15

Step 1. Create an InputList for each gate.

(a) Check t(G;j) and t(G;, ;), make the entries in the List(G;) according to the following

table. Each entry is of type: (InputID, value, type, InputList).

t(G;) t(Gj,i) ACTION

AND BE An entry will be made to List(G;) as
OR BE (ei,q(ei), BE, Null)

AND OR An entry will be made to List(Gj) as
OR AND (Gji, v(Giji), t(Gj,i), List(Gji))

AND AND List(G;;) is added to List(G;)
OR OR

Table 1: Rules to create the InputList of each gate

(b) Arranging the entries in the InputList

t(Gi)

ORDER

AND

List(G;) is arranged in the ASCENDING order of value of its entries.

OR

List(G;j) is arranged in the DESCENDING order of value of its entries.

Table 2: Rules to arrange the InputList of each gate

Step 2. Find the gate value

t(Gi) | parent(Gi) | v(Gi)

AND AND Value of the top entry in
OR OR

AND OR The product of value of the entries in the List(G;)..
OR AND The sum of value of the entries in List(G;).

Table 3: Rules to find the Gate value of each gate

16

Step 3. Check for the repeated events.

Examine List(G,), if there are no repeated events, go to step 4.

(Gy) | ACTION

OR If a basic event in an OR gate InputList is repeated in an AND gate InputList,
then all other entries of that AND gate (except this repeated event and the
ones which are repeated in InputList of another OR gate) will be considered

to have Zero importance.

If the basic event is repeated in other OR gates, it won’t affect its importance.

AND | If a basic event in an AND gate InputList is repeated in an OR gate InputList,
then all other entries of that OR gate (except this repeated event and the ones
which are repeated in InputList of another AND gate) will be considered to

have Zero importance.

If the basic event is repeated in other AND gates, it won’t affect its

importance.

Table 4: Rules for a fault tree with repeated events

4. Find the most sensitive component

We look for the #ype of top most entry of the List(G)). If it is of #ype BE, then that event
will be the most sensitive component. If the following entries are of type BE and have
same failure probabilities then these events will also have the same importance. But if the
topmost entry of List(G;) is a gate then the topmost entry of its InputList will be

considered. The process is continued until a basic event is hit.

3.5 Special Cases

The above algorithm is simplified for special cases of fault trees. In these cases we can

pinpoint the most sensitive component just by looking at the fault tree structure.

3.5.1: A Fault tree with all OR gates

The basic event with the highest failure probability will be the most sensitive.

v PROPERTY OF

]

Ty LIBRARY

In Figure 3.1, all the gates G1, G2, G3 and G4 are OR gates. Therefore, among all the
basic events, the most sensitive component will be the one with highest failure
probability. For example, if we consider the failure probabilities of E001, E002, E003,
E004, E005, E006, E0O07, E008 and E009 as .003, .007, .006, .001, .004, .008, .002, .005
and .003 respectively. The most sensitive component will be E006 which has highest
failure probability i.e. .008.

G2 c3
[I |]
[eoos | [eoos | [Eoos | E006

Figure 3.1: A fault tree with all OR gates

Table 5 shows the Birnbaum importance measure obtained by using Aralia. We can see
from the table that EO06 (highlighted) has the highest Birnbaum index. Therefore it is the

most sensitive component. The result thus matches with the outcome of our algorithm.

Basic Event Failure Probability BIM
E006 0.008 9.69E-01
E002 0.007 9.68E-01
E003 0.006 9.67E-01
E008 0.005 9.66E-01
E005 0.004 9.66E-01
E001 0.003 9.65E-01
E009 0.003 9.65E-01
E007 0.002 9.64E-01
E004 0.001 9.63E-01

Table 5: Birnbaum Importance measure for a fault tree with all OR gates

18

3.5.2: A fault tree with all AND gates

The basic event with the lowest failure probability will be the most sensitive event of the
tree.

For Figure 3.2, we considered the same failure probabilities as considered for Figure 3.1.
In this case, the most sensitive component will be E004 which has lowest failure

probability i.e. .001.

E001 E002
Q G2 Q G3
[Q] [C[3 |
[Eoos | [eooa | [Eoos] E006
3 O L5

Figure 3.2: A fault tree with all AND gates

Below is the Birnbaum importance measure of the basic events of the above fault tree. It
has been obtained using Aralia. Table 6 shows that E004 is the most important
component since it has the highest BIM.

Basic event Failure probability BIM
E004 0.001 1.21E-19
E007 0.002 6.05E-20
E001 0.003 4.03E-20
E009 0.003 4.03E-20
E005 0.004 3.02E-20
E008 0.005 2.42E-20
E003 0.006 2.02E-20
E002 0.007 1.73E-20
E006 0.008 1.51E-20

Table 6: Birnbaum Importance measure for the fault tree with all AND gates

19

3.5.3: A fault tree with top OR gate with basic events, AND gates as its inputs

Among the basic events which are inputs to the top gate, the one with the highest failure

probability will be the most sensitive component.

In Figure 3.3, top gate is an OR gate having basic events (E001, E002) and AND gates
(G2, G3) as its inputs. Among the basic events E001 and E002, the one with the highest
failure probability will be the most sensitive component. No need to consider the AND

gates.

E001 [Eoo2]
O = O 5
T HEE Eolos] | Eoloe
O 0 15

| | |

[eoor | [eoos | [Eooe
o 0O 0O

Figure 3.3: A fault tree with top OR gate with basic events, AND gates as its inputs

Considering the same failure probabilities as in the above two cases, E002 has highest
probability among the basic events which are inputs to the top gate. Therefore the most
significant component of this fault tree is E002. In Table 7 is the BIM obtained from
Aralia. We can see that E002 has the highest BIM, so it is the most sensitive event

according to this measure also.

Basic Event Failure probability BIM
E002 0.007 9.97E-01
E001 0.003 9.93E-01

E004 0.001 5.94E-03
E003 0.006 9.90E-04

20

E007 0.002 4.75E-10
E009 0.003 3.17E-10
E005 0.004 2.38E-10
E008 0.005 1.90E-10
E006 0.008 1.19E-10

Table 7: BIM for a fault tree with top OR gate with basic events, AND gates as its inputs

3.5.4: A fault tree with top OR gate with basic events, OR gates, AND gates as

its inputs

The basic events which do not have any AND gate above them will only be considered

and the event with the highest failure probability among them will be the most sensitive.

E001

G2

E003

E004

G4

A

g0z | | Eoos | [Eooe |

O O O

Figure 3.4: A fault tree with top OR gate with basic events, OR gates, AND gates as its inputs

In Figure 3.4, basic events E005, E006, E007, E008 and EO09 have an AND gate G3

above them. These events will not be considered. Now among the basic events E001,

E002, E003 and E004, the basic event with the highest failure probability will be the

most sensitive. Considering the same failure probabilities event as in the above discussed

cases, E002 will be the most important component. Table 8 shows the BIM computed for

this fault tree using Aralia, it also shows that E002 is the most important component.

21

Basic Event Failure Probability BIM
E002 . 0.007 9.90E-01
E003 0.006 9.89E-01
E001 0.003 9.86E-01
E004 0.001 9.84E-01
E005 0.004 7.84E-05
E006 0.008 3.92E-05
E008 0.005 3.13E-05
E009 0.003 3.12E-05
E007 0.002 3.12E-05

Table 8: BIM for a fault tree with top OR gate with basic events, OR gates, AND gates as its inputs

3.6 Examples

In this section, we will consider general cases. First we consider an example of a fault
tree without repeated events and then a fault tree with repeated events. The results of
these examples are also compared with the Birnbaum importance measure calculated

using Aralia.

3.6.1: A fault tree with non repeated Events

[Q |
E001 E002
Q G2 Q G3
| Q 1 | % |
| Eoos | [Eoosa | [Eoos | E006
5 0 O 10

O O

Figure 3.5: A fault tree with non repeated events

22

The fault tree in Figure 3.5 has basic events E001, E002, E003, E004, E005, E006, E007
and E008 with the failure probabilities .001,.004,.003,.007,.002,.006,.004 and .003
respectively Following the bottom up approach, steps 1-2 will be carried out for all the
gates of the tree, except step 2 for the top gate. Step 3 is skipped because there are no
repeated events. Step 4 is performed only for the top gate. The steps are shown in the

tabular (Table 9) form for simplification

Gate | Step 1- Create InputList Step 2- Gate
Value
G4 | t(G4) =OR, t(E007) =BE, t(E008) =BE t(G4) = OR,
t(G3)= OR
List(G4)(E007,.004,BE,NULL)
(E008,.003,BE,NULL) v(G4) =.004
G2 | t(G2) =AND, t(E003) =BE, t(E004) =BE t(G2) = AND
t(Gl)= AND
List(G2)(E003,.003,BE,NULL)
(E004,.007,BE,NULL) v(G2) =.003
G3 t(G4) =OR, t(E005) =BE, t(E006) = BE t(G3) = OR
t(G1)= AND

List(G3)(E006,.006,BE ,NULL)
(E007,.004,BE ,NULL)
(E008,.003,BE,NULL)
(E005,.002,BE,NULL) v(G3) = .015

Gl | «G1)=AND, t(E001)=BE, t(E002)=BE ,t(G2)=AND, t(G3)=OR

List(G1)(E001,.001,BE,NULL)
(E003,.003,BE,NULL)
(E002,.004,BE,NULL)
(E004,.007,BE,NULL)
(G3,.015,0R,(E006,.006,BE ,NULL)

(E007,.004,BE ,NULL)
(E008,.003,BE,NULL)
(E005,.002,BE,NULL))

Table 9: Algorithm steps for a fault tree with non repeated events in Figure 3.5
Step 4: Most sensitive event is the top most entry of List (G1).i.e. E001

Table 10 shows the Birnbaum measure for Figure. 3.5 computed by Aralia. This result
also shows that the most significant component is EOO1 as it has the highest BIM. Hence

- it has found the same component to be most sensitive as found by our algorithm.

23

Basic Event Failure probability BIM
E001 . .001 1.25E-09
E003 .003 4.18E-10
E002 .004 3.13E-10
E004 .007 1.79E-10
E006 .006 8.32E-11
E007 .004 8.31E-11
E008 .003 8.30E-11
E005 .002 8.29E-11

Table 10: BIM measure for the fault tree in Figure 3.5

Example 2: A fault tree with repeated Events

Now we consider an example of a fault tree with repeated events.

E001 E002
G2 G3

| E(j04 | | Eolos |

G4 G5
| Eoor || Eoor |[Ecos | [Eoos |[Eoo2][Eot0 |

o o o 0 0 O

Figure 3.6: A fault tree with repeated events

- In Fig. 3.6, the basic events E001, E002, E003, E004, E005, E006, E007, E008, E009 and
EO010 have failure probabilities .001, .004, .003, .007, .002, .006, .004, .003, .005 and.002
.In this example we have 2 repeated events EOO1 and E002 .E001 is an input to an OR
gate G4 as well as AND gate G1 whereas E002 is an input to both AND gates G1 and
G5. The top gate is an AND gate.

24

Steps 1 and 2 of the algorithm are shown in the tabular form (Table 11).

List(G1)(E001,.001,BE,NULL)
(E003,.003,BE,NULL)
(E002,.004,BE,NULL)
(E004,.007,BE,NULL)
(G4,008,0R,(E007,.004,BE,NULL)

(E008,.003,BE,NULL)

(E001,.001,BE,NULL))
(G3,.008,0R,(E006,.006,BE,NULL)

(E005,.002,BE,;NULL)

Gate | Stepl Step2
G4 | t(G4)=O0R, t(E007)=BE, t(E008)=BE, t(E001)=BE t(G4)=OR
t(G2)=AND
List(G4)(E007,.004,BE,NULL)
(E008,.003,BE,NULL)
(E001,.001,BE,NULL) v(G4)=.008
G5 | t(G5)=AND, t(E002)=BE, t(E009)=BE, t(E010)=BE t(G5)=AND
t(G3)=0R
List(G5)(E010,.002,BE,NULL)
(E002,.004,BE,NULL)
(E009,.005,BE,NULL) v(G5)=.000000040
G2 | t(G2)=AND, t(E003)=BE, t(E004)=BE, t(G4)=OR t(G2)=AND
t(G1)=AND
List(G2)(E003,.003,BE,NULL)
(E004,.007,BE,NULL)
(G4,.008,0R,(E007,.004,BE,NULL)
(E008,.003,BE,NULL)
(E001,.001,BE,NULL)) v(G2)=.003
G3 t(G3)=0R, t(E006)=BE, t(G5)=AND t(G3)=OR
t(G1)=AND
List(G3)(E006,.006,BE,NULL)
(E005,.002,BE,NULL)
(G5,AND,.000000040,(E010,.002,BE,NULL)
(E002,.004,BE,NULL)
(E009,.005,BE,NULL)) v(G3)=.008
Gl t(G1)=0R, t(E001)=BE, t(E002)=BE, t(G2)=AND, t(G3)=OR

(G5,AND,.000000040,(E010,.002,BE,NULL)
(E002,.004,BE,NULL)
(E009,.005,BE,NULL))

Table 11: Algorithm steps for a fault tree with repeated events in Figure 3.6

25

Step 2 is not required at the top gate; therefore it is not shown in the table.

Step 3. t(G1) =AND, event E001 is an input to an AND gate G1 and OR gate G4 . We
will traverse the List(G1), entries of the OR gate that contains the repeated basic event
will be considered to have zero importance. From List(G1) we can see InputList of G4
contains the repeated event EOO1 and any other event of this gate is not repeated in
another AND gate, therefore E007 and EOO8 will be have Zero importance .

Event E002 is repeated in both AND gates G1 and G5, therefore the importance of E009
and E010 is not affected.

Step 4. Most sensitive event is the top most event of List(G1) i.e. E001.

Table 12 contains the BIM measure computed using Aralia. According to BIM also, the

most important component is EQ01, as it has the highest BIM.

Basic Event Failure Probability BIM
E001 .001 6.72E-10
E003 .003 2.24E-10
E002 .004 1.68E-10
E004 .007 9.60E-11
E006 .006 8.38E-11
E005 .002 8.35E-11
E010 .002 4.17E-13
E009 .005 1.67E-13
E007 .004 0.00E+00
E008 .003 0.00E+00

Table 12: BIM for a fault tree with repeated events in Figure 3.6

3.7 Summary

In this chapter we have discussed the algorithm to find the most sensitive component of
the fault trees without as well as with repeated events. Some special cases of this
algorithm were also considered. The results of these cases were compared with the
Birnbaum importance measure. In the end we considered two examples one each for a
fault tree with repeated and without repeated events. These examples showed that our

algorithm finds the same most important component as the BIM computed using Aralia.

26

Chapter 4

Ranking

The algorithm for finding the most sensitive component described in chapter 3 has been

modified in this chapter to rank all the components of the fault tree.

4.1 Ranking Algorithm

The first 3 steps of the algorithm stay the same as algorithm discussed in chapter 3. The
modification has been done in step 4.

For ranking purpose we need to define a concept of layers. In List (G1), AND gate
indicates the beginning of next layer. Within this layer when further AND gate is hit, a
new layer starts.

First the events of the lowest layers are ranked followed by the higher layers. Once the
events of a lowest layer are ranked, the next higher layer gates are arranged in descending
(t(G1)) =OR or ascending (t(G1) =AND). The process is continued till the highest layer
of gates (see example in 4.3.1, 4.3.2 and 4.3.3)

When two gates (same type) in the same layer have almost same gate value, combine the
input lists of these to gate into one and arrange the events in ascending (AND gate) or

descending (OR gate) order.

4.2 Special Cases

4.2.1: A fault tree with all AND gates

Basic events of the fault tree will be ranked according to the increasing order of their

failure probabilities.

27

Let us consider the failure probabilities of basic events E001, E002, E003, E004, E005
and E006 in Figure 4.1 as .003, .004, .002, 005, .001 and .003 respectively. According to
the above mentioned rule the basic events are arranged in the increasing order of the

failure probabilities.

A
E001 E002
Q G2 O [
A [
[eoos | [eosa | [Eo0s | [Eoos |

O O O O

Figure 4.1: A fault tree with all AND Gates

The ordering according to the algorithm is shown in the 3™ column of the Table 13 and
the ranking by Birnbaum importance measure is shown in the 5™ column. From the table,

we can see that the ranking done by our algorithm is same as that obtained by ordering

the basic events based on their BIM.

Failure Algorithm BIM
Basic Event probability Ranking BIM Ranking
E005 0.001 1 3.60E-13 1
E003 0.002 2 1.80E-13 2
E001 0.003 3 1.20E-13 3
E006 0.003 3 1.20E-13 3
E002 : 0.004 4 9.00E-14 4
E004 0.005 5 7.20E-14 5

Tablel3: Ranking of a fault tree with all AND gates in Figure 4.1

2.2: A fault tree with all OR gates

Basic events of the fault tree will be ranked according to the decreasing order of their

failure probabilities.

28

E001 E002
O O ==
i A
| Eoos | | Eoo4 | | Eoos] | Eoos |

Figure 4.2: A fault tree with all OR gates

Considering the same failure probabilities as in section 4.2.1, the basic events will now
be arranged according to the decreasing order of their failure probabilities. The ranking
by our algorithm is shown in 3™ column of Table 14 and ranking by the Birnbaum
Importance measure is in the 5th column. 4™ column shows the BIM calculated by
Aralia. We find that the ranking of basic events done by our algorithm matches with the

one obtained by ordering the events based on their BIM measure.

Failure Algorithm
Basic Event Probability Ranking BIM BIM Ranking
E004 0.005 1 9.87E-01 1
E002 0.004 2 9.86E-01 2
E001 0.003 3 9.85E-01 3
E006 0.003 3 9.85E-01 3
E003 0.002 4 9.84E-01 4
E005 0.001 5 9.83E-01 5

Tablel4: Ranking of a fault tree with all OR gates in Figure 4.2

4.3 Examples

In this section we have considered 3 examples. First we will consider a simpler
example with top gate as AND gate to give reader the idea of layers. Then we will
elaborate the ranking algorithm for a complex fault tree. Finally we will consider a case

where our algorithm shows slight variation from Birnbaum importance measure.

29

4.3.1 A fault tree with top AND gate
The failure probabilities of events E001, E002, E003, E004, E005, E006 and E007 of
the fault tree in Figure 4.3 are .007, .003, .005, .002, .001, .004 and .006 respectively.

G1

A

Q G2 Q G3
\ !——L | @ x
eo] []
O L ® ®
a
O O

Figure 4.3: A fault tree with top AND gate

The steps of the Ranking Algorithm for fault tree in figure 4.3 are shown in table 15.

Gate | Step 1 —Create List Step 2 —Gate Value
G4 | t(G4)=AND, t(E006)=BE, t(E007)=BE t(G4)=AND
t(G2)=OR
List(G4)(E006,.004,BE,NULL)
(E007,.006,BE,NULL) v(G4)=.000024
G2 | t(G2)=OR, t(E003)=BE , t(G4)=AND t(G2)=0R,
t(G1)=AND

List(G2)(E003,.005,BE,NULL)
(G4,.000024,AND,(E006,.004,BE,;NULL)

(E007,.006,BE,;NULL) v(G2)=.0050024
G3 | t(G3)=OR, t(E004)=BE, t(E005)-BE t(G3)=OR,
t(G1)=AND

List(G3)(E004,.002,BE,NULL)
(E005,.001,BE,NULL) v(G3)=.003

Gl Step 1 & 4

t(G1)=AND, t(E001)=BE, t(E002)=BE, t(G3)==0R, t(G2)=0OR

List(G1)(E002,.003,BE,NULL)
(G3,.003,0R,(E004,.002,BE,NULL) 2

[

30

(E005,.001,BE,NULL))
(G2,.005,0R,(E003,.005,BE,NULL)
(G4,.000024,AND,(E006,.004,BE,NULL)

(E001,.007, BENNULL)

(E007,.006,BE,NULL))

3
4
6
7
5

Table 15: Steps of Ranking Algorithm for a fault tree with top AND gate in Figure 4.3

We now explain step 4 in the above Table 15. The List(G1) is shown in the last row of
this table. E002, G3, G2, E001 are in layer 1 and G4 is in layer 2.Therefore first the basic
events in layer 1 (E002, E004, E005, E003, E0O07) are ranked in the order they are
arranged followed by the basic events in layer 2 (E006, E007). We have shown ranking

along with the basic events in the List(G1).

Table 16 shows that ranking obtained from our algorithm matches exactly with the

ordering of basic events based upon their BIM computed using Aralia.

Failure Algorithm BIM
Basic Event probability Ranking BIM Ranking
E002 .003 1 1.05E-07 1
E004 .002 2 1.05E-07 2
E005 .001 3 1.05E-07 3
E003 .005 4 6.30E-08 4
E001 .007 5 4.52E-08 5
E006 .004 6 3.76E-10 6
E007 .006 7 2.51E-10 7

Table 16: BIM measure for a fault tree in Figure 4.3

4.3.2. A complex fault tree

Now we consider a complex example and show how this algorithm works efficiently for
complex trees also. The basic events of the fault tree in Figure 4.4 are E001, E002, E003,
E004, E005, E006, E007, E008, E009, E010, EO11, E012, E013, E014, E015 and E016
with the failure probabilities .003, .001, .002, .004, .001, .002, .003, .005, .001, .002,

.004,.003, .005, .005, .004 and .006 respectively.

31

Y | Eo2 | | Ecos | | Eoos | | E00s | | Eoos |

N A N
| |
E007 | Eoos | | Eoos | | eoto | [Eoz | [Eeos |
O O O O O O
G8 Ge
| eon | | ez | | eos | [Eots |

O 0O O O

Figure 4.4: A complex fault tree

The following table shows the steps of ranking algorithm for a fault tree in Figure 4.4.
The inputlist and value of the events is computed moving from the lowest level to the

topmost level i.e. G1.Step 4 at the top gate is explained after this table.

Gate | Step 1 Step2
G8 | t(G8) =AND, t(E011)=BE, t(E012)=BE t(G8)=AND
t(G6)=OR
List(G8)(E012,.003,BE,NULL)
(E011,.004,BE,NULL) v(G8)=.000012
G9 | t(G9) =AND, t(E015)=BE, t(E016)=BE t(G9)=AND
t(G7)=AND

List(G9)(E015,.004,BE,NULL)
(E016,.006,BE,NULL) v(G9)=.004

32

G5 | t(GS5) =OR, t(E007)=BE, t(E008)=BE t(G5)=0R
- t(G2)=0R
List(G5)(E008,.005,BE,NULL)
(E007,.003,BE,NULL) v(G5)=.005
G6 | t(G6)=OR, t(E009)=BE, t(E010)=BE , t(G8)=AND t(G6)=OR
t(G3)=AND
List(G6)(E010,.002,BE,NULL)
(E009,.001,BE,NULL)
(G8,.000012,AND,(E012,.003,BE,NULL)
(E011,.004,BE,NULL)) v(G6)=.003
G7 | t(G7)=AND, t(E013)=BE, t(E014)=BE, t(G9)=AND (G7)=AND
t(G4)=OR
List(G7)(E013,.002,BE,NULL)
(E015,.004,BE,NULL)
(E014,.005,BE,NULL) v(G7)=
(E016,.006,BE,NULL) .00000000024
G2 | t(G2)=OR, t(E001)=BE, t(E002)=BE, t(G5)=0OR t(G2)=0R
t(G1)=OR
List(G2)(E008,.005,BE,NULL)
(E001,.003,BE,NULL)
(E007,.003,BE,NULL)
- (E002,.001,BE,NULL) v(G5)=.005
G3 | t(G3)=AND, t(E003)=BE, t(E004)=BE, t(G6)=0OR t(G3)=AND
t(G1)=OR
List(G3)
(E003,.002,BE,NULL)
(G6,.003, OR,(E010,.002,BE,NULL),
(E009,.001,BE,NULL)
(G8,.000012,AND, (E012,.003,BE,NULL),
(E011,.004,BE,NULL)) | v(G3)=
(E004,.004,BE,NULL) .000000024
G4 | t(G4) =0R, t(E005)=BE, t(E006)=BE, t(G7)=AND t(G4)=0R
t(G1)=OR
List(G4)(E006,.002,BE,NULL)
(E005,.001,BE,NULL)
(G7,.000000000024,AND,(E013,.002,BE,NULL)
(E015,.004,BE,NULL)
(E014,.005,BE,NULL)
(E016,.006,BE,NULL)) | v(G4)=.002
Gl |Stepl,3and4

t(G2)=0R, t(G3)=AND, t(G4)=OR

List(G1)

(E008,.005,BE,NULL)
(E001,.003,BE,NULL)
(E007,.003,BE,NULL)

NN -

33

(E006,.002,BE,NULL)
(E005,.001,BE,NULL)
(E002,.001,BE,;NULL)
(G3,.000024,AND, (E003,.002,BE,NULL)
(G6,.003,0R,(E010,.002,BE,NULL)
(E009,.001,BE,NULL)
(G8,.000012,AND,(E012,.003,BE,NULL) 13
(E011,.004,BE,NULL)) 14

NN A AW

(E004,.004,BE,NULL) 8
(G7,.00000000024,AND,(E013,.002,BE,NULL) 9
(E015,.004,BE,NULL) 10

(E014,.005,BE,NULL) 11

(E016,.006,BE,NULL)) 12

Table 17: Steps of Ranking Algorithm for a fault tree in Figure 4.4

Now we explain step 4 for the fault tree in Figure 4.4 .The basic events E001, E002,

E005, E006, E007, E008 are in layer 1, gate G3 and G7 form layer 2 and gate G8 is layer
3. Therefore events E003, E004, E009, E010, E013, E014, EO15, E016 are in layer 2 are

ranked after the first layer basic events. The basic events in G8 i.e. EO11 and E012 are in

layer 3 are ranked in the end.

Table 18 shows that the ranking of the basic events of the fault tree in Figure 4.3 exactly

matches with the ordering of basic events according to the BIM calculated by Aralia.

Basic Event Failure Algorithm BIM BIM
Probability ranking Ranking
E008 0.005 1 9.90E-01 1
E001 0.003 2 9.88E-01 2
E007 0.003 2 9.88E-01 2
E006 0.002 3 9.87E-01 3
E002 0.001 4 9.86E-01 4
E005 0.001 4 9.86E-01 4
E003 0.002 5 1.19E-05 5
E010 0.002 6 7.87E-06 6
E009 0.001 7 7.86E-06 7
E004 0.004 8 5.93E-06 8
EO13 0.002 9 1.18E-07 9
EO015 0.004 10 5.91E-08 10
EO014 0.005 11 4.73E-08 11
E016 0.006 12 3.94E-08 12

34

E012

0.003

13

3.14E-08

13

EO11

0.004

14

2.36E-08

14

4.3.3 An Exceptional Case

Now we will discuss the case were our algorithm shows slight variation from the ranking
of Birnbaum importance measure. It is the case when two gates (same type) in same layer
have approximately same gate values. In such cases our algorithm may show slight
difference in ranking. The failure probabilities of basic events EQ01, E002, E003, E004,
E005, E006, E007, E008, E009, EO10, EO11, E012, EO13, EO14 and EO15 are .003, .001,
.002, .004, .001, .002, .003, .005, .001, .002, .004, .003, .005, .002, .004 and .006

respectively.

Table 18: BIM for the fault tree in Figure 4.4

G8

[Eot3

EO014

|

O

O

EO15

| E016

|

O

O

Figure 4.5: A fault tree with the lower AND gates having almost same gate values

35

Following table shows the steps of the algorithm for fault tree in Figure 4.5.

List(G4)(E006,.003,BE,NULL)

Gate | Step 1-create List Step2 —Gate value
G8 | t(G8) =AND, t(E013)=BE, t(E014)=BE t(G8)=AND
t(GS5)=AND
List(G8)(E014,.002,BE,NULL)
(E013,.005,BE,NULL) v(G5)=.002
GY9 | t(G9) =AND, t(E015)=BE, t(E016)=BE t(G9)=AND
t(G7)=AND
List(G9)(E015,.004,BE,NULL)
(E016,.006,BE,NULL) v(G5)=.004
G5 | t((E007)=BE,t(E008)=BE, t(G8)=AND ,t(G5)=AND t(G5)=AND
t(G2)=OR
List(G5)(E014,.002,BE,NULL)
(E008,.003,BE,NULL)
(E007,.005,BE,NULL) v(GS)=
(E013,.005,BE,NULL)) .000000000150
G6 | t(G6)=OR,t(E009)=BE,t(E010)=BE ,t(G8)=AND t(G6)=OR
t(G3)=AND
List(G6)(E010,.002,BE,NULL)
(E009,.001,BE,NULL) v(G6) =.003
G7 | t(G7) =AND, t(E011)=BE,t(E012)=BE and t(G9)=AND (G7)=AND
t(G4)=OR
List(G7)(E012,.003,BE,NULL)
(E011,.004,BE,NULL)
(E015,.004,BE,NULL) v(G7)=
(E016,.006,BE,NULL) .000000000288
G2 | t(G2) =OR, t(E001)=BE,t(E002)=BE,t(G5)=AND t(G2)=0OR
t(G1)=OR
List(G2)(E001,.003,BE,NULL)
(E002,.001,BE,NULL)
(G5,.000000000150,AND,(E014,.002,BE,NULL)
(E008,.003,BE,NULL)
(E007,.005,BE,NULL)
(E013,.005,BE,NULL)) | v(G2)=.003
G3 | t(G3)=AND, t(E003)=BE, t(E004)=BE ,t(G6)=0OR t(G3)=AND
t(G1)=OR
List(G3)(E003,.002,BE,NULL)
(G6,.003, OR,(E010,.002,BE,NULL),
(E009,.001,BE,NULL) v(G3)=
(E004,.004,BE,NULL) .000000024
G4 | t(G4) =0R, t(E005)=BE,t(E006)=BE and t(G7)=AND t(G4)=0R
t(G1)=OR

36

(E005,.001,BE,NULL)
(G7,.000000024,AND,(E012,.003,BE,NULL)
(E011,.004,BE,NULL)
(E015,.004,BE,NULL)

(E016,.006,BE,NULL)) v(G4)=.003
Gl |Step1,3and4
t(G2)=0R , t(G3)=AND, t(G4)=OR
List(G1)

(E001,.003,BE,NULL) 1
(E006,.003,BE,NULL) 1
(E002,.001,BE,NULL) 2
(E005,.001,BE,NULL) 2
(G3,.00000024,AND,(E003,.002,BE,NULL) 3
(G6,.003,0R,(E010,.002,BE,NULL), 4
(E009,.001,BE,NULL) 5
(E004,.004,BE,NULL) 6
(G7,.000000000288,AND,(E012,.003,BE,NULL) 7
(E011,.004,BE,NULL) 10
(E015,.004,BE,NULL) 10
(E016,.006,BE,NULL)) 12
(GS5,.000000000150 ,AND,(E014,.002,BE,NULL) 8
(E008,.003,BE,NULL) 9
(E007,.005,BE,NULL) 11
(E013,.005,BE,NULL)) 11

Table 19: Steps of Ranking Algorithm for a fault tree in Figure 4.5

Last row of table 19 contains List(G1).The layer 1 basic events E001, E002, E005, E006
are ranked first .Gates G3, G7, and G5 form the second layer. They are ranked in the
order they are arranged. But since G7 and G8 have approximately same value, the inputs

list of both can be combined and the basic events can be ranked in the increasing order of

their failure probabilities.

Failure Algorithm BIM
Basic Event Probabilities Ranking BIM Ranking

E001 .003 1 9.95E-01 1
E006 .002 1 9.95E-01 1
E002 .001 2 9.93E-01 2
E005 .001 2 9.93E-01 2
E003 .002 3 1.19E-05 3
E010 .002 4 7.93E-06 4

37

E009 .001 S 7.92E-06 5
E004 .004 6 5.95E-06 6
E012 .003 7 9.52E-08 7
E014 .002 8 7.44E-08 8
EO11 .004 10 7.14E-08 9
EO015 .004 10 7.14E-08 9
E008 .003 9 4.96E-08 10
E016 .006 12 4.76E-08 11
E007 .005 11 2.98E-08 12
E013 .005 11 2.98E-08 12

Table 20 shows that there is minor difference in the ranking of the basic events (E007,
E008, E011, E013, EO15 and E016) by our algorithm and the ordering done according the
BIM. But these basic events are of the least significance, therefore the slight difference in

their ranking do not affect an important decision.

4.4 Summary

In this chapter we have discussed the algorithm to rank the components of the fault
tree. We considered special cases of the algorithm where we can rank the components
just by looking at the tree structure. We then illustrated this algorithm with the help of
simple and complex fault trees. In the end we discussed an exceptional case where our

algorithm differs slightly from the ordering of the basic events based upon the Birnbaum

importance measure calculated using Aralia.

38

Table 20: BIM measure for the fault tree in Figure 4.5

Chapter 5

Conclusions

5.1 Summary and future work

In order to-improve the reliability of the system we first concentrated on finding the
most sensitive component whose improvement will lead to the maximum improvement in
the system reliability. For this purpose we developed an algorithm that finds such a
component easily and accurately. The engineer may want to focus on more than one
corﬁponent that may also be playing a significant role in the system unreliability. Thus
we extended our work by generalizing this algorithm for ranking all the components of
the fault tree. The components are ranked according to their significance in the system

unreliability.

When compared with computation of importance measures which involve finding
partial derivatives, this algorithm involves simple arithmetic. It is much simpler and easy -

to use. To deal with repeated events without much effort is another asset of our work.

Overall, we have made a contribution to ease the improvement of system reliability by
enabling the user to find the components which are affecting the reliability of the system

most, without relying upon the software packages.

The algorithm for finding the most sensitive component works accurately for all the
fault trees. The Ranking algorithm showed slight difference in few cases although it ranks
the components of most of the fault trees accurately. In our future work we would like to

refine our “Ranking” algorithm so that it works for all the tree structures.

39

5.2 Advantages of the proposed algorithms

Accuracy: The algorithm proposed in chapter 3 for finding the most sensitive component
gives the same result as to those derived from the Birnbaum importance measure under
the stated assumptions. The ranking algorithm proposed in chapter 4 is also accurate for

most of the fault trees.

Ease of Application: The proposed methodology is quite simple and elegant in the sense
that the user has only to follow a set of easy and clear guidelines to analyze and rank the

basic events of the fault trees.

Computational Simplicity: The calculations whenever required, involve simple
arithmetic. It cuts down a great deal of time. In certain cases such as the fault tree with all
OR gates, all AND gates we can not only find the most sensitive component but

accurately rank all the components of the tree just by looking at it.

Application to fault trees with repeated events: For a fault tree with repeated events,
calculation effort increases significantly if the importance measures are to be calculated.

But our algorithms handle the repeated events efficiently without an extra effort.

5.3 Limitations of proposed algorithms

The result of our ranking algorithm proposed in chapter 4 varies slightly from
Birnbaum importance measure in certain tree structures when the gates of same type in

the same layer have approximately same gate values (section 4.3.3).

Although we can argue for AND gates, as most of the fault trees consist of OR gates and
may be few AND gates. AND gates imply that there are redundancies in the system. In
most industries, redundancies are kept minimal unless necessary to avoid high
maintenance and cost. But in future we would like to overcome this issue for both type of

gates.

40

References

[1]Boudali H., Crouzen P., Stoelinga M., "Dynamic Fault Tree Analysis Using Input/Output
Interactive Markov Chains" 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN'07), pp.708-717, 2007.

[2]Liu D., Zhang C., Xing W., Li R., Li H., “Quantification of Cut Sequence Set for Fault Tree
Analysis” HPCC, pp 755-765, 2007.

[3]Remenyte R., Andrews J.D., “4 simple component connection approach for fault tree
conversion to binary decision diagram”, Proceedings of the First International Conference on
Availability, Reliability and Security 2006, pp. 449 - 457, 2006.

[4]Wang W., Loman J., Vassiliou P., “Reliability importance of components in a complex
system”, Proceedings of the Annual Reliability and Maintainability Symposium, 2004, pp 1-6,
2004.

[S]Jung-Hua Lo, Huang C.Y, Kuo S.Y, Lyu M. R. “Sensitivity Analysis of Software Reliability for
Component-Based Software Applications”, Proceedings of the 27th Annual International
Conference on Computer Software and Applications, pp. 500, 2003.

[6]Beeson S., Andrews J.D., “Birnbaum’s measure of component importance for noncoherent
systems,” IEEE Transactions on Reliability, vol. 52, issue 2, pp. 213 — 219 June.2003.

[7]1Reay K.A., Andrews J.D, “4 Fault Tree Analysis Strategy Using Binary Decision Diagrams”,
Reliability Engineering and System Safety, Volume 78, Number 1, pp. 45-56, October 2002.

[8]Gokhale, S.S., Trivedi, K.S, “Reliability prediction and sensitivity analysis based on software

architecture” Proceedings 13™ international Symposium on Software Reliability Engineering
ISSRE 2002 pp. 64 — 75, 2002.

[O]Trivedi K.S, “Probability and Statistics with Reliability, Queuing, and Computer Science
Applications”, 2nd Edition, Prentice Hall, Englewood Cliffs, NJ USA 2001.

[10]Yong Ou, Dugan, J.B. “Sensitivity analysis of modular dynamic fault trees” Proceedings of
the 4th Computer Performance and Dependability Symposium, pp. 35 — 43, 2000.

[11]Carot V.; Sanz J. “Criticality and sensitivity analysis of the components of a system”
Reliability Engineering and System Safety, Volume 68, Number 2, pp. 147-152 May 2000.

[12]Muppala K, Fricks RM., and Trivedi K.S, “Techniques For System Dependability

Evaluation”, Computational Probability, Kluwer Academic Publishers, The Netherlands, pp.445-
480, 2000.

41

[13]Amari S.V, Dugan J.B, and Misra R.B, “Optimal Reliability Design of Systems Subject to
Imperfect Coverage,” IEEE Transactions on Reliability, pp. 275-284, Sept. 1999.

[14]Bolch G, Greiner S., Meer H.D, Trivedi K.S, “Queueuing Networks and Markov Chains”,
New York: John Wiley & Sons, 1998.

[15]Gulati R, Dugan J.B, “4 modular approach for analyzing static and dynamic fault
trees” Proceedings of the Annual Reliability and Maintainability Symposium1997, pp.57 — 63,
1997.

[16]Lee H.S., Lie C.H., Hong J.S., “4 computation method for evaluating importance-measures
of gates in a fault tree”, IEEE Transactions on Reliability, Volume 46, Issue 3, pp, 360 — 365, Sep
1997.

[17]Meng F.C., “Comparing the importance of system components by some structural
characteristics”, IEEE Transactions on Reliability, Volume: 45, Issue; 1, pp.: 59-65, Mar 1996.

[18]Sahner R.A, Trivedi K.S., Puliafito A., “Performance and reliability analysis of computer
systems an example-based approach using the SHARPE”, Kluwer Academic Publishers, 1996.

[19]Rai S., Veeraghavan M., Trivedi K.S, "4 Survey of Efficient Reliability Computation using
Disjoint Products Approach", Networks, Vol. 25, pp. 147- 163, 1995.

[20]Boyd M.A . Iverson D.L, “Digraphs and fault trees: a tale of two combinatorial modeling
methods” Proceedings of the Annual Reliability and Maintainability Symposium 1993, Issue, 26-
28, pp. 220 —226 ,Jan 1993.

[21]Sharma T.C., Bazovsky L., “Reliability analysis of large system by Markov techniques”
Proceedings of the Annual Reliability and Maintainability Symposium, 1993. pp.260 — 267. Jan.
1993.

[221Boyd M. A, “Tutorial - What Markov Modeling Can Do For You: An Introduction”, Tutorial
Notes for the Annual Reliability And Maintainability. Atlanta, GA, 1993.

[23]Andrews J.D, Moss T.R., “Reliability and Risk Assessment”, Longman Scientific and
technical, Essex, 1993.

[24]Henley E.J., Kumamoto H., “Probabilistic Risk Assessment”, IEEE Press, 1992.

[25]Veeraghavan M., Trivedi K.S, "An improved Algorithm for Symbolic Reliability Analysis",
IEEE Transactions on Reliability, R-40(3), pp. 347-358 August 1991.

[26]Lewis E.E, Boehm F., “Monte Carlo simulation of complex system mission reliability”
Proceedings of the 21st conference on Winter simulation Washington, D.C., United States pp.
497 - 504 ,1989.

[27]Littlewood B., “Forecasting Software Reliability”. Lecture Notes in Computer Science, No.
341. Berlin: Springer-Verlag , 1989.

42

[28]Blake J.T, Reibman A.L.,K. S. Trivedi ,“Sensitivity analysis of reliability and performability
measures for multiprocessor systems” Proceedings of the 1988 ACM SIGMETRICS conference
on Measurement and modeling of computer systems,1988.

[29]Sahner R.A, Trivedi K.S, “Reliability Modeling using SHARPE” IEEE transaction on
reliability, R-36(2), pp.186-193, June 1987.

[30]Colburn C., “The combinatorics of Network Reliability” Oxford University Press, New York,
NY, 1987.

[31]Xie M., “On some importance measures of system components”, Stochastic Processes
“Applications 25, pp. 273-280, 1987.

[32]Natvig B., “New light on measures of importance of system components”. Scand. J. Star. 12,
pp-43-54, 1985.

[33]Goel A.L, Bastani F.B., “Foreword: Software Reliability”, IEEE Transactions on Software
Engineering, Volume 11, Issue 12, pp. 1409-1410, 1985.

[34]Abraham J.A, "An Improved Algorithm for Network Reliability", IEEE Transactions on
Reliability, vol. R-28, pp. 58-61, April 1979.

[35]Butler D., “An Importance Ranking for System Components Based upon Cuts”,
Operations Research, Vol. 25, No. 5 (Sep. - Oct., 1977), pp. 874-879, 1977.

[36]Barlow R. E. and Proschan F., “Importance of system components and failure tree events”.
Stochastic Process Applications 3, pp.153-173, 1975.

[371Fussell J., “How to hand calculate system reliability characteristics”, Transactions on
Reliability, vol. R-24, pp. 169-174, Aug. 1975.

[38]Birnbaum Z.W., “On the Importance of Different Components in a Multicomponent System”,
Multivariate Analysis — II, Edited by P. R. Krishnaiah, Academic Press, pp. 581-592, 1969.

[39]http://www.arboost.com/arlshop-page.htm
[40]http://www.relex.com/resources/overview.asp

[41]http://www .reliabilityeducation.com/ReliabilityPredictionBasics.pdf

43

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2008

	Importance analysis of fault trees by visual inspection
	Gurvinder Kaur Bains
	Recommended Citation

