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Abstract 

INTER-VEHICLE POSITION ESTIMATION FOR NLOS CONDITION IN THE 

PERSISTENCE OF GPS OUTAGES 

Meharoon Shaik 

MASc. Electrical and Computer Engineering, Ryerson University, 2009. 

The main focus of thesis work addresses one of the functional key points of Cooperative Col­

lision Warning application which is an accurate estimation of the range data of neighboring 

vehicles during persistent GPS outages under both line-of-sight (LOS) and non-line-of-sight 

(NLOS) situations. Cooperative Collision Warning, based on vehicle-to-vehicle radio com­

munications and G PS systems, is one promising active safety application that has attracted 

considerable research interest. One of the severe estimation error is due to NLOS that can 

be mitigated by applying biased Kalman filter on range measurements. For our algorithm 

these inter-vehicle distances are measured from using one of the radio-based ranging tech­

niques. Main objective is to establish an accurate map of positions for neighboring vehicles 

in the persistence of GPS outages. GPS outages can be possible in multipath environments 

where NLOS component is introduced to the true range measurements. These position esti­

mates mainly depend on two factors: (i) Preprocessed inter-vehicle distances (range data is 

processed from biased Kalman filter); ( ii) Road constraints (the vehicle uncertainty is more 

in the direction of road than the uncertainty in the direction opposite to the road); This 

thesis suggests smoothing and mitigating the NLOS for radio-based ranging measurements 

under multipath conditions. In order to find accurate positions of neighboring vehicles an 

extended Kalman filter is implemented along with road constraints. Unbiased Kalman filter , 

biased Kalman filter and extended Kalman filter performances are experimentally verified 

using Matlab simulation tool with random number of vehicles at unknown random distinct 

positions in some physical region along a section of road for vehicular environment. 
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Chapter 1 

Introduction 

This chapter provides an overview of the thesis. This chapter begins with an introduction 

on inter-vehicle communication in Section 1.1. Section 1.2 deals with the motivation behind 

thesis work. Section 1.3 describes the existing technology in position estimation for vehicular 

communications. Limitations due to current technology is listed in Section 1.4. In Section 

1.5 problem is formulated. Out of these challenges, the objective and scope of the thesis are 

established and narrowed down in Section 1.6. Section 1. 7 summarizes the contributions and 

provides outlines of this thesis. 

1.1 Introduction 

As a component of the Intelligent Transport Systems (ITS) and one of the concrete applica­

tions of mobile ad hoc networks, inter-vehicle communication (IVC) has attracted research 

attention from both the academia and industry. The term ITS refers to efforts to add infor­

mation and communication technology to transport infrastructure and vehicles in an effort to 

manage factors that typically are at odds with each other, such as vehicles, roads, and peo­

ple. Main goal of ITS is to improve safety, reduce traffic flow, congestion, provide alternate 

routes to travelers, enhance productivity and save lives, time, money and fuel usage. 

One of the earliest studies on IVC was started by JSK (Association of Electronic Technol-
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ogy for Automobile Traffic and Driving) of Japan in the early 1980s [1]. Later, well-known 

research results on platoon scenario has been demonstrated by California PATH [2] and 

Chauffeur of EU [3]. The cooperative driving systems of Japan in the late 1990s and 2000 

(e.g., DEMO 2000 [2] exhibit adaptive cruise control application of the IVC. Traditional so­

lutions to this issue involve mainly the automatic control systems for individual vehicles [4], 

but the IVC can help to make the coordination more efficient. The newly initiated European 

Project CarTALK 2000 [5] tries to cover problems related to safe and comfortable driving 

based on IVC. It focuses on the design, test and evaluation of co-operative driver assistance 

systems by taking into account both IVC and road-to-vehicle communication [6]. CarTALK 

2000 also co-operates with other projects like German FleetNet [7] for the development of 

IVC. 

1.1.1 Types of Vehicular Communications 

Two types of wireless communications are currently being proposed to help enable new 

vehicle control applications. These two types are distinguished based on the terminals for 

wireless signals. The first type comprises communication between vehicles and road side 

base units, while the second type comprises communications between vehicles. Vehicle­

to-infrastructure (V21) communications allow devices mounted on the side of the road 

to upload data from passing vehicles or download data to these vehicles. The messages 

uploaded from vehicles can for instance be used to estimate travel time between known 

points, thereby converting each passing vehicle into a probe vehicle. At the other side, the 

information reaching vehicles may provide travelers with local maps and business directions, 

inform travelers of construction zones and congested traffic conditions ahead, and propose 

alternative routes. 

In contrast, vehicle-to-vehicle (V2V) communications provide direct information be­

tween neighboring vehicles. This allows direct data sharing between vehicles. V2V com­

munications are being more versatile and cost efficient than applications requiring road side 

equipment. V2V helps to improve traffic flow and vehicle stability, efficiency of infrastructure 
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utilization and reduce air pollution. Fig.l.l illustrates these two types of communication. 

1.1.2 Applications of Vehicular Communication System 

The applications of inter vehicular communication system includes, 

• Data Dissemination: The manner in which pertinent information is disseminated 

throughout the vehicular environment is an important aspect of ITS and is critical to 

the successful operation of cooperative applications. Efficient and timely propagation 

of information among all vehicles is essential and highly dependant on the performance 

capabilities of the core communication platform and is more clearly described in [8] to 

provide "always on" connectivity for vehicles traveling at high speeds to help prevent 

accidents. 

• Cooperative Collision Warning ( CCW): This is an important class of safety ap­

plications that target the prevention of the vehicular collisions using V2V communica­

tions. The ultimate goal of the CCW is to realize the concept of "360 degrees driver 

situation awareness" [9], whereby vehicles alert drivers of impending threats without 

expensive equipment. The main application of the CCW is to identify the abnormal 

vehicles in the emergency situation. Disseminate actively emergency warning messages 

which include the geographical location, speed, acceleration and moving direction of 

that abnormal vehicles to all the neighboring vehicles. The CCW applications also in­

clude the forward collision warning, lane change assistance and an electronic emergency 

brake light. 

• Cooperative Sentient Vehicle: ITS utilizes inter vehicle cooperation without hu­

man assistance to provide autonomous vehicle navigation from a given source to a pre­

determined destination. The resultant sentient vehicles are context-aware autonomous 

cars that form cooperative "flotillas of peers using mobile ad hoc network environments 

(MANETs)". Each vehicle needs to build a real-time perception of its surrounding en­

vironment within some bounded error to make informed decisions regarding its next 
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move. The cooperation between vehicles is critical to avoid collisions, to follow a lead­

ing vehicle and to travel safely. The vehicles must obey external traffic signals and give 

way to pedestrians who cross the road by sensing their presence. The key research chal­

lenges include communication model , routing protocol, context-awareness, end-to-end 

Quality-of-Service (QoS) and fail-safety [10] for cooperative sentient vehicles. 

• Platooning: This is the technique of coupling two or more vehicles together electron­

ically to form a group. Platoon is defined as a group of vehicles heading in the same 

direction. The benefit of this technique is that the total headway for vehicles going in 

the same direction can be reduced, and the capacity of the road would consequently 

be increased [3], [11]. 

• Adaptive Cruise Control: Here vehicles are equipped with a V2V communication 

system which allows a vehicle to automatically adjust its speed to that of a vehicle 

ahead in order to improve the comfort of the driving task and avoids emergency ac­

cidents [12]. The range of information is extended to other vehicles than the vehicle 

just in front, yielding preview information that can be used for automated anticipatory 

braking or acceleration actions. It is meant that the follower vehicles can react sooner 

on, for example a braking action of a vehicle further in front, even before its direct 

predecessor starts to brake. This has as effect that the follower vehicle does not have to 

brake as severely compared to the case without communication. In this way, so called 

shock wave effects can be reduced, which has a positive effect on the traffic flow. 

• Automated Highway Systems (AHS): The concept of AHS is based on the belief 

that an appropriate integration of sensing, communication and control technologies 

placed on the vehicle and on the highway can significantly decrease the average lon­

gitudinal spacing between vehicles and hence lead to a large improvement in capacity 

and safety without requiring a significant amount of additional right-of-way which im­

proves the efficiency of automatic control systems for individual vehicles through V2V 

communication [13], [14]. 
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1.1.3 DSRC Wireless Technology 

The rapid evaluation of wireless data communication technologies witnessed, recently, creates 

an ample opportunity to utilize Dedicated Short Range Communications (DSRC) [15) for 

vehicular applications. DSRC is a proposed variant of IEEE 802.11a and the 802.11 MAC. 

It is targeted to operate over a 75MHz licensed spectrum in the 5.85 and 5.925GHz band 

allocated by the Federal Communications Commission (FCC) in 1999 for the support of low­

latency vehicular for operation within high-speed vehicular environments [16). Commercial 

applications are also allowed to operate in this spectrum, as long as they do not interfere with 

its primary purpose. DSRC related research is currently undergoing joint development by 

government and industry partners for adoption as the de-facto standard for communications­

based vehicular safety and non-safety applications. In general, the DSRC physical layer is 

adapted from the IEEE 802.11a standard using orthogonal frequency division modulation, 

and the DSRC medium access control layer is adapted, in part, from the original IEEE 

802.11 and IEEE 802.11e QoS [17) standards. 

Table 1.1: Wireless Communications Alternatives 

I Application Category I DSRC I WiFi I WiMAX I 
V2V communications based applications B - -

R2V active safety B - -

Highway information(secure payment transaction) A A -

Electronic payments(location-based warning control) A A A 

Active High way information A A A 

Driver information (location-based or tracking services) A A A 

Fleet management A A A 

Table 1.1 lists categories of applications that are currently being considered and the var­

ious communication standards that enable these applications [18). In Table 1.1: 'A' refers 

alternative communications available and 'B' stands for best suitable communication techno!-

ogy. Different applications have different choice of selecting an appropriate communication 
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standard to avoid large communication delays and frequent communication failures. For V2V 

and V21 communications, DSRC is currently viewed as the best choice due to a long com­

munication range (lOOOm), 27Mbps data transfer rate, and low likelihood of interferences. 

Long-range communications is possible through WiMAX to provide general information to 

the drivers. For shorter communications WiFi or DSRC standards are suitable (e.g., non­

safety applications). 

0.5 Mbps 

Safety Message Services 

0 
0 
N -

0 
0 
-.::t -
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Figure 1.2: Data rate versus range of DSRC 
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As shown in Fig.1.2, the performance envelope of the 5.9GHz band is designed to cover a 
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wide variety of applications not supported by the older 915 MHz standard. The new standard 

specifically extends the effective communication range from 30m to 1000m, when appropriate 

transmit power is used. This range allows long-range ITS applications. Data rates are further 

increased from 0.5 Mbps to a range of 6 to 27 Mbps. This increase enables the development 

of data-intensive real-time ITS applications in addition to providing opportunities for high­

speed in-vehicle Internet services [16]. 

1.2 Motivation 

Recently, vehicular active safety applications have attracted considerable research interest 

in ITS, due to the potential of saving tens of thousands of lives and hundreds of billions of 

dollars per year in the US alone. In 2002, these accidents accounted for $230 billion in dam­

aged property, 2,914,000 nonfatal injuries, and 42,850 deaths. Every year, 6 million traffic 

accidents occur in the United States [19]. In addition, increasing urban congestion in the 85 

largest cities in the nation is now estimated to account for $63 billion in lost productivity 

time and wasted fuel consumption [20]. In response to these problems, increasing efforts 

are being directed to improve the safety and efficiency of existing transportation networks. 

In recent years, these tasks have received significant help from advances in computer and 

communication technologies and the subsequent development of new ITS applications. 

1.2.1 Accident Causes 

A quarterly review prepared by the Japanese ITS committee [21] shows that approximately 

75% of traffic accidents are caused by driver behavior immediately before the accident. 

Fatalities have been on a downward trend since 1990, but accidents and causalities have 

continued to rise. Fig.1.3 shows a breakdown of the fatality causes and fatality rate in traffic 

accidents, the most common cause is late recognition around 4 7% of accidents, errors in 

judgement causing 16% of accidents and errors in operation another 12%, due to speeding, 

drinking and driving, etc. another 25%. 

8 
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Figure 1.3: Breakdown of fatalities causes and fatality rate in traffic accidents by age group 

In addition, looking at traffic fatality rates by age group from, the fatalities rate is 

markedly higher for drivers of age group 65 and older as shown in Fig 1.3.(b). This is not 

only because of vision declining with age, but also because of slower decision time. In an 

emergency situation, vehicle drivers rely on the brake lights of the vehicles immediately 

ahead of them to decide whether or not to apply their own braking system in order to avoid 

a collision or chain of collisions in a platoon. The typical time for a driver to stop a vehicle 

safely is around 0. 75s to 1.5s [22]. 

1.2.2 Solution to Avoid Accidents 

In order to reduce the driver mistakes in traffic accidents, it is therefore necessary to provide 

prior knowledge about error recognition, alarm and driving assistance functions during the 

vehicles operation. The intelligent cooperative collision warning system is an important 

class of safety applications that target the prevention of vehicular collisions and provide 

real-time alerts about hazards and accidents. The cooperative collision warning systems use 
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V2V and V2I communications for wireless vehicular networks to improve the level of safety, 

efficiency, and information availability by the periodic broadcast of short messages bearing 

status information (i.e., accurate estimations of location, velocity and control settings). 

In general, when an emergency event occurs, there are usually a group of vehicles affected 

by the abnormal situation. Fig.1.4 shows a model for the chain collisions in a platoon. All 

cars are cruising at a steady state speed of 72mph (32m/s), and an inter car separation of 1 

second (32m). If car-A has met an accident or become an abnormal due to the mechanical 

failure or by loosing its control over speed, immediately warning messages from Car-A has to 

be disseminated to all other following neighboring vehicles( i.e., Car-B and Car-C) in order 

to avoid the chain collisions in the platoon. 

If drivers react only on visual information as shown in Fig.1.5(a), all three cars in the 

platoon end up in chain collision. For the same platoon, the effects with the cooperative 

collision avoidance with wireless communication is illustrated in Fig.l. 5 (b). In this case, 

upon meeting the emergency event Car-A starts sending wireless warning messages to all 

cars behind it. Upon reception of warning messages, the driver reacts by decelerating even 

if the brake light in the car ahead is not lit to avoid collision. Similar platoon scenarios can 

also be considered and in general, using vehicle communication to send safety messages has 
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Figure 1.5: Without and with vehicle communication collisions 

been shown significantly reduce the probability of collision with a platoon [11], [3]. 

Fig.1.6 illustrates the importance of disseminating warning messages. A car is stalled on 

the road around a blind corner. By the time the driver of the following car sees the abnormal 

vehicle, it may be too late to react in order to avoid collision. If a driver receive forewarned 

messages containing position information prior to the emergency event occurs, he or she can 

take appropriate action in time to avoid collision. Both of these scenarios exemplify the 

importance of disseminating position information. In addition, these examples highlight the 

idea that when vehicles are equipped with dedicated short range communication devices, 

drivers can gain an expanded awareness of their surrounding, which enables them more time 

to react to the potential road hazards. 
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Figure 1.6: Collision at blind corners. 

1.3 Current Technology 

1.3.1 GPS 

Currently, the widely used positioning techniques are global positioning systems (GPS). GPS 

uses 24 satellites which orbit the earth. At any time, at least four satellites are "visible" ( 

i.e a signal can be received from the satellite) from any point on the earth. Each satellite 

transmits a unique signal that can be used by a ground receiver. A receiver triangulates 

the signals received from 4 or more satellites to accurately determine the position of the 

receiver on the earth's surface. This system has been used in vehicle navigation systems 

as well as dedicated hand held devices for some time, and now it is making its way into 

the Mobile Internet. The GPS system was originally developed and deployed by the United 

States for military purposes. Because of this, the signal which is currently transmitted by 

earth satellite is intentionally degraded via a process called Selective Availability (SA) to 
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prevent opposing forces from using the signal for military purposes. SA produces random 

positional errors which "drift slowly about within lOOm radius circle centered on the true 

GPS receiver location" [23]. Later US government removed SA mask in May 2000. This 

means that G PS now can achieve around 5m-40m accuracy provided there is a clear view of 

the sky. Chip makers have now reached an increasing level of integration of GPS chips, and 

there are now very power efficient, low cost one-chip solutions available. 

1.3.2 Assisted GPS 

Relative GPS is one of the approach to improve the accuracy in position estimation [24]. 

Since SA is the systematic error, the error experienced by two receivers is the same. Thus, 

when the positions of two GPS receivers are examined, the calculated position of each receiver 

can vary from the true position by as much as lOOm, but since each receiver's position varies 

by the same amount and has the same direction, the relative position between the receivers 

can be determined quite accurately. In fact, sub-meter relative positions and centimeter­

per-second relative velocities can be calculated [25]. Network Assisted GPS uses fixed GPS 

receivers that are placed at regular intervals of every 200km to 400km in order to fetch data 

that can complement the readings of the terminal. The assistance data makes it possible 

for the receiver to make timing measurements from the satellites without having to decode 

the actual messages. This assistance greatly reduces the time needed for a GPS receiver to 

calculate the location. Without the assistance information the Time-to-First-Fix (TTFF) 

could be in the range of 20-45 seconds. With assistance data the TTFF could be in the 

range of 1-8 seconds. The assistance data is broadcast around once each 1 hour. Existence of 

assistance data makes very little impact on the network. Assisted GPS [26] and differential 

GPS [27] can achieve an average accuracy of 3m to 10m in open flat areas. However, in 

reality, satellite signals are often disturbed or blocked when the vehicles are traveling through 

tunnels, under bridges and sky scrapers. Vehicles can also experience sustained GPS outages 

due to high solar activity, terrestrial interference and multipath fading. 
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1.3.3 Dead-reckoning System 

In persistent GPS outages, vehicles can use dead reckoning systems to obtain position infor­

mation [28], [25]. The dead reckoning systems can accurately determine its GPS coordinates 

with a permissible error of less than lOrn for approximately 30s outages if the vehicle is 

traveling at a speed of 60km/h [29]. This invention extends GPS coverage in an automotive 

environment without requiring direct interfaces to the vehicle's sensors in a unique and cost 

effective way. Since it removes all the required vehicle interfaces (except power), it produces 

a virtually portable navigation system with no installation requirements beyond that of the 

G PS receiver itself. It also removes the necessary "customization" of the navigation system 

to each particular vehicle. Fundamentally, the position of a vehicle is obtained by GPS re­

ceiver data augmented with a low cost gyro whereby the gyro accurately tracks the heading 

changes of the vehicle (in the absence of sufficient GPS information), and the GPS receiver 

includes an innovative algorithm for deriving speed information from Doppler measurements 

from just one or two GPS satellites. However, dead reckoning systems are prone to errors. 

1.4 Limitation of Current Technology and Research 

Objective 

Line-of-sight (LOS) between the object to multiple satellites is not always possible, therefore, 

GPS alone cannot be applied for vehicular safety applications in order to achieve higher 

accuracy in position estimates to avoid traffic accidents. The addition of radio-based ranging 

techniques in the absence of GPS signals can be applied as a promising technique [29]. Radio 

ranging techniques have a number of attractive properties. Received signal strength (RSS) 

is the least expensive to implement in the CCW systems. All that required is a wireless 

card to have access to the physical layer to interpret the RSS. Also, radio-based ranging 

techniques allow us to take full set of distance constraints between vehicles, therefore creating 

the potential to improve upon accuracy of GPS. RSS and time-of-arrival (TOA) ranging 
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technologies are most suitable for vehicular communications. Regardless of the radio-ranging 

estimation techniques used, the distance measurements are inherently noisy due to a number 

of factors, including the limitations of measurement device, multipath fading, shadow fading, 

and non-line-of-sight (NLOS) errors. In addition, vehicle mobility complicates the situation. 

Therefore, accurate positioning of vehicles cannot solely depend on inter-vehicle distance 

measurements using one of the aforementioned techniques. In Fig1.7, satellite signals are 

blocked due to high buildings by introducing NLOS in the measurements. As a result, vehicle 

deviates from its true position. 

• "' ~atellites ''" 

, 
Things blocking 

the signal 
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Figure 1. 7: Importance of position estimation 
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In summary, the main purpose of this thesis is to show that the accuracy and reliability 
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of position estimates provided by existing GPS can be improved by making use of inter­

vehicle distance measurements taken from a radio-based ranging technique. One of the severe 

estimation error is due to NLOS. NLOS can be mitigated by applying biased Kalman Filter 

on the range measurements. For our algorithm these inter-vehicle distances are measured 

from using one of the radio-based ranging techniques. Our algorithm includes 'N' number 

of vehicles at unknown random distinct positions in some physical region along a section of 

road. Our objective is to establish an accurate map of positions for neighboring vehicles in 

the persistence of GPS outages. GPS outages can be possible in multipath environments 

where NLOS component is introduced to the true range measurements. These position 

estimates mainly depend on two factors: (i) preprocessed inter-vehicle distances (range data 

is processed from biased Kalman filter); ( ii) road constraints (from the fact that the vehicle 

uncertainty is more in the direction of road than the uncertainty in the direction opposite 

to the road). 

1.5 Thesis Objectives 

Given the problem description from the previous section, the objective of this research is to 

show how the GPS can produce accurate position coordinates with the addition of radio­

based ranging techniques. 

We implement the biased Kalman filter for vehicular networks where vehicle mobility 

complicates the case. Among vehicles, noisy measurements can be misinterpreted as an 

observed motion and the effects of fading become prevalent for a road topology. Vehicles on 

the road are not uniformly distributed and the positions of the vehicles are not fixed. We 

consider the problem of NLOS identification and mitigation for vehicular communications 

in the absence of G PS signals to smooth the range data between randomly selected vehicles. 

A simple hypothesis test, based on standard deviation of the measured noise, is applied to 

distinguish between LOS and NLOS range measurements. If measurements contain NLOS 

error, then NLOS must be mitigated before position estimation takes place for accurate 
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results. NLOS error correction is possible by applying the biased Kalman filter instead of 

the unbiased Kalman filter where it can mitigate unexpected high erroneous NLOS data. 

IEEE 802.15.3a Ultra Wideband (UWB) model parameters are applied to model LOS and 

NLOS environments between vehicles for short-range communications [30]. 

These preprocessed range data is applied to the Extended Kalman Filter (EKF) along 

with road constraints to measure accurate position of vehicles. Cooperatively sharing range 

data among neighboring vehicles on a road can significantly improve position estimates even 

under multipath (NLOS) conditions. Simulation results show that the biased Kalman filter 

can easily track and effectively smooth the positively biased NLOS noise in the measured 

range data to mitigate NLOS errors and maintain high accuracy in the estimated range data. 

Position estimates can be improved with the implementation of road constraints along with 

smoothed inter-vehicle range data. 

1.6 Thesis Contributions and Outline 

1.6.1 Thesis Contributions 

The main contributions of this thesis are described below: 

• Inter-vehicle range smoothing for various noise levels: The main novel con­

tribution of this thesis is the algorithms applied to mitigate NLOS in the range mea­

surements in the persistence of G PS outages which are directly applicable to vehicular 

networks. The novelty of the work is based on the received signal strength. If the 

signal arrives stronger the measurement error decreases by improving accuracy in the 

estimated range data (refer Chapter 3 and Chapter 4). 

• Non-linear filter for position estimation: Thesis is further extended to find the 

accuracy in position estimates by applying non-linear filter. This non-linear filter 

makes use of inter-vehicle distance measurements, created using radio-based ranging 

17 



techniques, to allow a vehicle to drive an accurate and reliable position estimates under 

LOS and NLOS situations (refer Chapter 3). 

• Road Constraints : We focussed on the effect of road constraints, because, the 

vehicle uncertainty is more in the direction of road than the vehicle uncertainty in the 

direction orthogonal to the road (refer Chapter 3). We apply road constraints along 

with smoothed inter-vehicle range data to estimate position of a vehicle in order to 

achieve accuracy in estimates. 

• Error Models : Studied the effects of Additive white Gaussian noise distributions on 

the performance of our algorithms. Applied a compatible NLOS model for inter-vehicle 

communications for the short-range safety applications for MATLAB simulations (refer 

Chapter 4). 

1.6.2 Thesis Outline 

This thesis is organized as following: 

• Chapter 2 covers background information on position estimation techniques. This 

background involves a discussion of accurate position estimation and NLOS mitigation 

methods applied to smooth inter-vehicle range measurements for vehicular CCW safety 

applications. This chapter also provides a basic tutorial on radio ranging techniques 

and common statistical models used to identify or characterize the techniques. 

• Chapter 3 presents an analysis on the inter-vehicle distance and position estimation al­

gorithms. The study includes inter-vehicle distance measurement model, NLOS model 

and non-linear position estimation algorithms. This Chapter analyses the unbiased 

Kalman filter and biased Kalman filter to smooth range data. Nonlinear least square 

method and Extended Kalman filter are discussed to find vehicle accurate position 

estimates. 
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• Chapter 4 provides the simulation discussion of each algorithm applied. Here perfor­

mance metrics are listed, as well as provided insights into the run-time complexity of 

each of the algorithms. This Chapter provides complete discussion on algorithms with 

simulation results and compared the accuracy of applied algorithms with the previ­

ously proposed ones. Also, the study includes the performance of our algorithms in all 

different operating and environmental conditions. 

• Chapter 5 concludes our work and summarizes the future directions of the work. 
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Chapter 2 

Background 

The objective of this chapter is to provide some related work on the problem we are trying 

to solve and discuss some previous works related to ours. 

2.1 Related Work 

Radio based ranging techniques have a number of attractive advantages. For example, radio 

based ranging techniques allow us to take advantage of the full set of distance constraints 

between vehicles, therefore creating the potential to improve upon the accuracy of position 

estimates. The idea of using a radio based ranging technique to provide range estimation, so 

that node estimation can be performed is not new. Recently, this problem has been tackled 

by researchers for stationary sensor networks [31]. Instead of summarizing and analyzing 

each of the previously proposed algorithms in detail, in this section, we will mainly focus on 

providing an overview of the techniques and methods that are closely related to our work. 

Ranging and positioning accuracy could be limited by the presence of multipath fading, 

non-line-of-sight (NLOS) conditions, and extra propagation delay, due to the presence of 

obstacles. Thus, the accuracy of the estimated positio:q. depends on the accuracy of the 

range measurements. In a dense urban environment there may not always be a direct path 

between the vehicles. Due to reflection and diffraction, the range measurements tend to 
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be positively biased, which is known as NLOS error. This problem has been recognized by 

many researchers as a "killer issue" for accurate ranging and positioning (32]. Therefore, the 

NLOS problem must be taken into consideration. The NLOS error dominates the standard 

measurement noise, and tends to be the main cause of the error in the range estimation. 

The position estimation error linearly increases with the distance error (33]. 

There are many positioning approaches established for wireless nodes when LOS exists 

between the transmitter (Tx) and the receiver (Rx). A method of positioning neighboring 

vehicles is proposed along with the triangulation to determine the relative position coordi­

nates of vehicles in (29]. The inter-vehicle distance measurements made using the one of 

radio-based ranging technique. Here the position estimation may become very inaccurate 

since the distance measurements are noisy. 

Authors in (34] proposed a TDOA error minimizing localization method to estimate the 

location of group of blind nodes in LOS and NLOS propagations for fixed reference node 

positions. This is more appropriate for cellular mobile networks where the base stations are 

at fixed locations but not suitable for the inter-vehicle communication where the vehicles are 

moving randomly. 

To improve the accuracy of the ranging and positioning of the vehicles, NLOS mitigation 

techniques must be applied. A polynomial fitting was applied to all available measured range 

data to mitigate NLOS effects (32]. A method is proposed to correct and detect NLOS error. 

Authors also showed that it is possible to detect a NLOS environment by using the standard 

deviation of the measurement noise and history of the range measurements. This is not 

accurate due to the time delay in total data gathering. A different approach is presented 

in (35], which shows that if the NLOS measurements are unrecognizable, it is still possible to 

correct the position estimation errors, if the number of range measurements is greater than 

the minimum required. This algorithm is referred as Residual Weighting Algorithm(RWA). 

Two categories of NLOS mitigation techniques have emerged to render the localization 

without errors. First is residual weighting (35] and the second is called the LOS identification 

methodology (32], (36]. The former is to minimize the effect of NLOS, the latter focusses 
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on the identification of NLOS and discards them from positioning. Even though the LOS 

signal is present, it may not be the dominant path in the multipath environment. It has been 

shown that the performance of the positioning scheme is a function of signal-to-noise ratio 

(SNR) of the received signal [37]. The greater the SNR of the received signal, the smaller 

the positioning error. Therefore, it would be advantageous to be able to perform localization 

under the multipath environment with as few reference devices as possible while maintaining 

a good performance bound by using the paths of the received signal that have a maximum 

SNR even though they may not be the LOS path. 

A modified Kalman filter algorithm is presented in [38] to estimate NLOS bias for UMTS 

mobile positioning. The estimation of range bias in the · proposed algorithm improves the 

performance of location tracking in NLOS environments. NLOS mitigation with biased 

Kalman filter for range estimation in Ultra wideband (UWB) systems for wireless sensor 

networks was proposed in [39], where the mobility of users had not been considered. 

In [40], the author described a distributed, linear-time algorithm for localizing sensor 

network nodes in the presence of range measurement noise and demonstrates the algorithm 

on a physical network. They also introduced the probabilistic notion of robust quadrilaterals 

as a way to avoid flip ambiguities that otherwise corrupt localization computations. They 

formulated the localization problem as a two-dimensional graph realization problem, given 

a planar graph with approximately known edge lengths, recover the Euclidean position of 

each vertex up to a global rotation and translation. This formulation is applicable to the 

localization of sensor networks in which each node can estimate the distance to each of its 

neighbors, but no absolute position reference such as GPS or fixed anchor nodes is available. 

Robust quads algorithm supports noisy distance measurements, and is designed specifically 

to be robust under such conditions. It is fully distributed, requiring no beacons or anchors. 

It positions each node correctly with high probability, or completely mislocate. Thus, rather 

than produce a network with an incorrect layout, any nodes with ambiguous locations are not 

used as building blocks for further positioning. Cluster-based localization supports dynamic 

node insertion and mobility. 
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In [41], GPS free positioning . algorithm has been proposed in which each node uses 

the distances between the nodes to build a relative coordinate system. Range between 

the nodes can be obtained by using TOA method. As GPS is not used to know their 

geographic positions, relative positions of the nodes can be calculated with respect to the 

network topology. One most limitation to this algorithm is a large number of messages to 

be exchanged between nodes by increasing algorithm complexity. As a result, this algorithm 

is not suitable for vehicular networks where vehicle mobility changes frequently. 

Figure 2.1: Ambiguity in vehicle positioning 

In [42), an improved version of [41) was derived to tackle above problems, their algorithm 

improves scalability and convergence times of nodes. 

The authors proposed fixed radio beacons distributed over given geographical regions , as 

well as those that rely on known fixed positions coordinates of some nodes in the ad-hoc net­

work [43], [44). However, due to highly dynamic nature of the cooperative collision warning 

application, these relative positioning techniques cannot be used for vehicular environments. 
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In [29], authors created a method of localizing neighboring vehicles based on radio-range 

measurements. They proposed a novel system solution for achieving accurate estimation 

of relative positions of all neighboring vehicles based on real-time exchange of their GPS 

coordinates during persistent GPS outages. Their algorithm involves integration of three 

techniques. a) Clustering technique, which establishes master/slave associations to exchange 

information between vehicles. b )Ranging technique, whi~h stores inter-vehicle distance in­

formation between vehicle pairs, share and update this distance information for every time 

step. c) Positioning technique, which uses inter-vehicle distance tables based on their pri­

ority, applies triangulation method to establish individual position coordinates. The main 

limitation for this work is to maintaining master /slave relations for highly uncertain vehicu­

lar environments. Here, maintaining the relation between the vehicles becomes difficult and 

complexity increases with large number of vehicles. Also, it is difficult to ignore noise in dis­

tance measurements due to multipath condition. Another main draw back of the algorithm 

is to have two equally likely positions for a single vehicle with triangulation method as shown 

in Fig.2.1. Therefore, vehicles may have two possible same set of distance constraints. 

In [45], a novel cooperative-vehicle position estimation algorithm was proposed. This 

algorithm proves that the reliable and accurate position estimates can be achieved by adding 

extra information to the above mention algorithms. Their algorithm includes signal-strength­

based inter-vehicle distance measurements, GPS initial positions, vehicle kinematics and road 

maps to estimate the relative positions of vehicles in a cluster. The main limitation to this 

algorithm is noisy inter-vehicle distance measurements in multipath environments. 

Our proposed algorithm can work effectively under multi path conditions (i.e. in the 

persistence of GPS outages). Algorithm allows inter-vehicle range data to smoothing and 

preprocessing under NLOS conditions. For real-time vehicular environments, an accurate 

and reliable position estimate is possible with the proposed algorithm. 
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2.2 Types of Radio Ranging Techniques 

One of the fundamental steps for positioning is accurate ranging, i.e., an action of estimating 

the distance between the transmitter and the receiver. There are several main causations 

following for the positioning error of transportation system: the sender end error; the space 

propagation error caused by wireless link delay; the receiver end error. In addition, there 

are NLOS influence, the noise interference, the synchronism among the reference nodes and 

the error from solving equations etc. to reduce the accuracy of the estimation. 

Angle-of-~val 
(AOA) 

ime difference-of­
arri~al('PJ:).OA) _, 

Figure 2.2: Radio-ranging Techniques 

There are four common radio-based ranging techniques applied for position estimation 

[46]. These techniques are illustrated in Fig.2.2, Received Signal Strength (RSS), Time Of 

Arrival (TOA), Time Difference Of Arrival (TDOA) and Angle Of Arrival (AOA) [47]. 
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2.3 Received Signal Strength (RSS) 

2.3.1 Introduction 

Distance is measured based on the attenuation introduced by the propagation of the signal 

from Tx to Rx [48). Among the above techniques, RSS is the least expensive to implement in 

the cooperative collision warning systems in the vehicular communications as it uses known 

mathematical channel path loss models, therefore, special hardware is not required [49). 

Distance can be extracted by using free-space large scale path loss models between the 

vehicles for inter-vehicular LOS distances of less than lOOm. The primary source of error 

for RSS-based position systems is multipath fading and shadowing. Variations in the signal 

strength may be as great as 30-40dB over distances in the order of a half wave length. Signal 

strength averaging can help, but low-mobility vehicles may not be able to average out the 

effects of multipath fading, and there will still be variability due to shadow fading such as 

the attenuation of a signal due to obstructions (furniture, walls, trees, buildings, and more). 

RSS is defined as the voltage measured by a receiver's received signal strength indicator 

(RSSI) circuit. RSS is equivalently known as measured power (i.e., the squared magnitude 

of the signal (e.g., RF, acoustic, UWB, or other signals) strength. In free space, signal 

power decays proportional to d- 2
, where d is the distance between the transmitter and 

receiver. For real-world environment, the mean received power for an obstructed channel 

decays proportional to d-np, where np is the path-loss exponent (np varies between 2 to 4 

depending on the environment). 

RSS-based range estimates have variance proportional to their actual range. RSS is most 

widely used in high-density sensor networks. Vehicle mobility and unpredictable variations 

in the channel behavior can occasionally lead to large errors in distance evaluation. Thus, the 

RSS technique alone is not accurate method, and its adoption is confined to the applications 

that require coarse ranging. 
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2.4 Time Based Ranging Techniques 

TOA and TDOA are the time-based ranging techniques. Distance can be extracted from 

the time of arrival of the signals or time difference of arrival of the signals. These require 

high-resolution timing measurements, accurate real-time clock synchronization among nodes 

and LOS propagation conditions. TDOA has been a favorite for land-based positioning 

systems and TOA has been for space-based positioning systems [51). Although both of them 

rely on essentially the same measurements (TOA pseudo ranges and TDOA pseudo ranges 

can be converted to each other without ambiguity) and are proven to be equivalent [52), 

questions remain on their performance in practical situations where imperfect weights are 

used to calculate position solutions. A number of these techniques have been proposed in 

the literature [53), [54) for various ranging applications. However, all of them work in a 

controlled environment and require high-resolution timing measurements, accurate real-time 

clock synchronization among nodes and line-of-sight propagation conditions. Operability of 

these techniques is severely impaired in the presence of multi path interference and positioning 

becoming difficult if the circles or hyperbolas do not intersect in a single point due to timing 

measurement errors. In such cases, position can be accurately measured using linear least 

squares method [55). 

2.4.1 Time of Arrival (TOA) 

For time-of-arrival (TOA) method, the time of transmission, plus a propagation-induced 

time delay between transmitter(Tx) and receiver (Rx) is measured. Distance information is 

extracted from the propagation delay between Tx and Rx. This time delay can be used to 

find the distance between nodes since the distance is equal to the time delay multiplied by 

light velocity. This method works well with high resolution time measurements where there is 

a LOS between targets. However, this method is susceptible to both multipath and additive 

white Gaussian noise. This technique can be classified into TOA one-way-ranging (TOA­

OWR) and TOA two-way-ranging(TOA-TWR). The former requires perfect synchronization 
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between transmitter and receiver, while the later does not require synchronization between 

Tx and Rx. In TOA-TWR method, one sensor transmits a signal to the · second sensor 

which immediately replies with its own signal. At the first sensor, the measured delay 

between its transmission and its reception of the reply is twice the propagation delay plus a 

reply delay internal to the second sensor. This internal delay is either known, or measured 

and sent to the first sensor to be subtracted. Fig.2.3 shows these two classes of ranging. A 

unique two-way reciprocal time of arrival based ranging technique was proposed in (56). This 

technique provides high ranging accuracy of less than 3m even under multipath conditions. 

According to this technique, vehicles do not need to maintain clock synchronization among 

the transmitter-receiver vehicle pairs. 

Anchor Anchor 

Anchor 

(a) TOA- OWR (b) TOA-TWR 

Figure 2.3: Two classes of TOA ranging techniques 

The milestone of the TOA techniques is the receivers ability to accurately estimate the 

arrival time of the line-of-sight signal. This estimation is hampered both by additive white 

Gaussian noise and multipath signals. 

Cramer-Rao bound(CRB) provides a lower bound on the variance of the TOA measure­

ments in multipath-free channel. For a given bandwidth (Bw) and SNR, time delay estimate 
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can only achieve a certain accuracy, given as 

1 
var(TOA) ~ SIP B T f 2SN R w s c 

(2.1) 

where T
8 

is the signal duration in seconds and fc is the center frequency. Equation 2.1 

provides intuition about how the signal parameters like duration, bandwidth, and power 

affect on TOA estimates. This CRB on TOA variance is complementary to the bound that 

will be presented for location variance because the location variance requires TOA variance 

as an input. 

2.4.2 Time Difference of Arrival (TDOA) 

The difference between TOA's in several RXs is used to reconstruct a TX's position. This re­

quires highly precise synchronization between RXs, but not precise synchronization between 

Tx and Rx's. However, ranging and positioning accuracy can be limited by the presence of 

multipath, NLOS conditions and extra propagation delay due to the presence of the obstacles 

(e.g. , heavy trucks, under the sky scrapers etc.). TDOA is suitable for V2I communications. 

The hyperbola is a set of points at a constant range difference from two foci. Each pair 

gives an hyperbola where unknown user lies. Position of unknown user is the intersection 

of all hyperbolas. This method is more accurate with higher bandwidth and greater trans­

mit power. In LOS environments, TDOA systems can achieve greater accuracy than RSS 

systems. TDOA is best suitable for longer distances. 

2.5 Angle of Arrival (AOA) 

In AOA, the angles of the signals received from other vehicles are applied to extract range. 

This technique gives errors in the position estimation if the separation between vehicles is 

large, due to the severe interference between multipath components and the angle measure­

ments. As the distance between nodes increases, the performance degrades, particularly in 

scenarios where line of sight is not possible, since the antenna array may lock onto a mul-
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tipath component which would corrupt the angle measurements and introduce significant 

positioning errors . The AoA technique measures the angles between a given node and a 

number of reference nodes to estimate the location, this is done by means of antenna arrays, 

which increases the system cost [57]. 

The RSS based ranging technique and two-way reciprocal time of arrival based ranging 

technique can be applied in vehicular communications for LOS distances of lOOm. 
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Chapter 3 

Proposed Range and Position 

Estin1ation Algorithn1s 

In the previous chapters, we provided the motivation for our work, and reviewed the relevant 

previously proposed positioning algorithms. In this chapter, we introduce a system model 

followed by NLOS model. A complete flow chart of the thesis work is presented in Section 3.3. 

Two algorithms that work well to mitigate NLOS from inter-vehicle range measurements are 

presented and compared. We also introduce two positioning algorithms to find the position 

of vehicles along with road constraints. First is nonlinear least square method of finding 

position in Section 3.5.1. Second positioning technique will be discussed in Section 3.5.2 

(i.e. , extended Kalman filter). 

3.1 Inter-vehicle distance measurement model 

Vehicle range estimation problem can be formulated as follows. In the model, we consider 

a random number of vehicles at unknown random distinct locations at time t i . The range 

measurement between vehicles is random and can be modeled as: 

(3.1) 

31 



where r(ti) is the total measured range at sampling time ti; dr(ti) is the true range; dNLos(ti) 

is the range due to multipath, reflection and diffraction; dAwcN(ti) is the measurement noise, 

and modeled as additive white Gaussian random variable with zero mean and variance o-;. 
In the LOS scenario only Gaussian measurement noise will be present and distance error 

due to NLOS equals to zero. Measurement noise can vary depending on the signal strength. 

The true distance between vehicles can be determined from the initial positions noted by 

the GPS and is determined as following: 

(3.2) 

where (xN(ti), YN(ti)) are the Nth vehicle coordinates at time ti and (xv, Yv) are the coor­

dinates of the vth vehicle, which is a randomly selected vehicle from among all neighboring 

vehicles. 

3.2 NLOS model 

In general, exponential, uniform, or delta random distributions are applied to model NLOS 

error in wireless communications. To model excess distance added due to the NLOS compo­

nent, we used IEEE 802.15.3a UWB model parameters [30]. These parameters are compat­

ible to model LOS and NLOS noise components in vehicular environments for short-range 

communications between vehicles [63]. Saleh - Valenzuela (S-V) model was a good fit to 

define LOS and NLOS scenarios in the vehicular communications. According to S-V model 

as shown in Fig.3.1, the multipaths arrive in the form of clusters rather than in a continuous 

form [59]. For a dense multi path environment, the estimation of the arrival time of the 

first ray of the first path (To) can be directly related to the range data. Therefore, NLOS 

component can be modeled as an exponential distribution as follows [30]: 

p(T0 ) = Aexp[-A(T0 )] (3.3) 
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Figure 3.1: Schematic representation of NLOS model 
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where A is the cluster arrival rate, T0 x c gives an extra range added due to NLOS where c 

is the light velocity. 

3.3 Flow Chart of Thesis Work 

Fig.3.2 shows the complete structure of the thesis work. In this work we present two different 

classes of algorithms. First class of the algorithms solves the NLOS problem in the range 

measurements. Second class of the algorithms shows how to estimate the position of a 

vehicle for DSRC. The proposed algorithms effectively preprocess and mitigates the NLOS 

error in the inter-vehicle range measurements and help to estimate the position of a vehicle 

accurately. 

3.3.1 Approach 

Our algorithms includes N number of vehicles at unknown random distinct positions in 

some physical region along a section of road. True ranges are calculated from the true (x,y) 

coordinates of the vehicles by centering one vehicle as the common to all. These true ranges 

are randomly added with a LOS and NLOS components. NLOS is generally introduced in 

the persistence of GPS signals. The raw range data at consecutive time samples are tested to 

identify the presence of NLOS by applying hypothesis test which is the standard deviation of 

NLOS measurements is much larger than that of LOS measurements. In the LOS scenario, 

unbiased Kalman filter output converges to the true range and position estimation gives quite 

accurate results. However, the unbiased Kalman filter cannot track the sudden changes in 

the variance due to positively biased NLOS, thus, it can cause severe position error. Our 

proposed biased Kalman filter can effectively preprocess the inter-vehicle range data for both 

LOS and NLOS and also effectively track and smooth the measurement noise variations due 

to signal strength fluctuations when vehicle mobility is high. These processed range data is 

applied to extended Kalman filter to estimate the position of a vehicle. Further, we consider 

the road constraints to improve the accuracy of the position estimates. Our algorithm 
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performance is compared with the traditional Nonlinear Least Square method of finding 

positioning algorithm. Algorithms are developed to smooth range data and to estimate the 

position of a vehicle with and without NLOS.Unbiased Kalman filter and biased Kalman 

filter are applied to mitigate NLOS component to smooth range measurements. Results are 

compared with true results. 

3.4 Algorithms applied to smooth range data 

In this Section, we give a detail analysis of the unbiased Kalman filter and the biased Kalman 

filter algorithms [58]. These algorithms are developed to smooth range data and to mitigate 

the NLOS component from the inter-vehicle range measurements . A hypothesis test is also 

explained to identify which range measurements have NLOS component. 

3.4.1 Unbiased Kalman Filter (UKF) 

In order to smooth the inter-vehicle measured range data, it is preferred to define a dynamic 

system with a state vector. The state of the system can be estimated for every time step 

to track the behavior of the system and to compare it with the true state by reducing the 

variance between the estimated and the true range. This means that the estimated state from 

the previous time step and the current measurements are needed to compute the estimate 

for the current state. The Kalman filter is one of the estimation algorithm which satisfies 

the above criteria and allows a recursive set of operations by processing data from the inter­

vehicle distance estimates and incorporates this into a motion model with the addition of 

additive white Gaussian noise (AWGN) distribution to the measurement model. The model 

which we have used for distance estimation is defined as in [60]: 

Xk+l = AXk + BWk (3.4) 

where Xk is the input state vector with the size of 2 x 1 and defined as: 
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(3.5) 

where dN(k) is the true range; dN(k) is the first derivative of true range, which is the speed 

of the vehicle at time k6.t, with a sampling interval of 6.t. For our model we chose 6.t =1s. 

The matrix A in Eqn.3.29 relates the state at the current state k to the state at the future 

step k + 1 with the size (2 x 2). The matrix B with a size (2 x 1) relates the control input 

and::nr: a~tl B = [ ~J 
and W k is the process noise vector describing the mobility variations. We assumed that 

W k is an independent and additive white Gaussian random vector, with the following scalar 

covariance matrix: 

(3.6) 

The measurement process is the output scalar and it can be written as: 

(3.7) 

where H = [ 1 0 J is the observation model with the size of (1 x 2) which maps the true 

state space into the observed space and describes the relationships between the state Xk and 

the measurement Zk, V k is the observation noise, which is a zero mean Gaussian random 

vector with covariance matrix R which is scalar and describes the noise characteristics of the 

measurements, with the following covariance matrix: 

(3.8) 

However, considering the noises of inter-vehicle distances are continuous, independent 

and white Gaussian ones with unchanged distributions, Q and R are assumed to be constant 

in this thesis. 
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Define Xklk- 1 to be a priori state estimation at step k given knowledge of the process prior 

to step k- 1, and xklk to be a posteriori state estimation at step k given measurement zk· 

Thus the covariances of the priori and posteriori estimates are Pklk- 1 and Pklk respectively. 

The Kalman filter can be viewed as the following set of recursive relationships: 

........ ........ 

Xklk- 1 = AXk- 1lk- 1 (3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

........ ........ 

xklk = xklk- 1 + Kkzk (3.14) 

(3.15) 

zk is denoted with the difference (Zk - HXklk- 1) in the Eqn. (3.11) and named as the 

measurement innovation matrix, or the residual. It reflects the discrepancy between the 

predicted measurement HXklk- 1 and the actual measurement Zk. Kk is the Kalman gain 

from the Eqn. (3.13) that minimizes the posteriori error covariance, Sk is the innovation 

covariance, (·)T denotes matrix transpose and (·) - 1 denotes matrix inverse. 

The Eqn. (3.14) computes a posteriori state estimate Xklk as a linear combination of a 
........ 

priori estimate Xklk-1 and a weighted difference between an actual measurement Zk and a 
........ 

measurement prediction HXklk-1· 

The Kalman filter iterative process can be summarized in two distinct phases: predict 

and update. Equations (3.9) and (3.10) show the predict phase. Here, predict state uses the 

state estimate from the previous time step to produce an estimate of the state at the current 

time step. In the update phase from equations (3.11) to (3.15), measurement information 

at the current time step is used to refine this prediction to arrive at a more accurate state 

estimate, again for the current time step. The time update equations can also be thought 
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of as predictor equations, while the measurement update equations can be thought of as 

corrector equations. Indeed the final estimation algorithm resembles that of a predictor­

corrector algorithm for solving numerical problems as shown in Fig.3.3 

Time Update 
( "Predict" ) 

Measurement Update 
( "Correct" ) 

Figure 3.3: The ongoing Kalman Filter cycle. The time update projects the current state 

estimate ahead in time. The measurement update adjusts the projected estimate by an 

actual measurement at that time. 

3.4.2 Hypothesis Test 

For LOS situations, the UKF procedure, described from equations (3.9) to (3.15), can be 

applied and the filter output converges to the true range and gives accurate range results. 

When LOS transmission exists between a pair of transmitter and receiver, the signal arrival 

time may be correctly obtained if the signal to noise ratio (SNR) is high and the multipaths 

from the propagation channel are resolved properly. However, the UKF cannot track the 

sudden changes due to the NLOS component in the measured range data. The biased version 

of the Kalman filter can be applied for both LOS and NLOS scenarios. In order to identify 

the change in channel situation between LOS and NLOS, the hypothesis test is applied as 

following: 

HO : Civ < f3av LOS , HI : Civ ~ f3av N LOS (3.16) 
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where (3 > 1 is used to reduce the probability of a false alarm which is chosen experimentally 

[39]; CJv is the standard deviation of measurement noise in the LOS environment; and &v 

is the standard deviation of the estimated range data and is calculated over a block of L 

measured ranges as following: 

1 L 

L L[r(ti) - dr(ti)] 2 (3.17) 
i=1 

3.4.3 Biased Kalman Filter (BKF) 

NLOS error is considered the major error source in wireless vehicular position estimation. 

In most cases, the errors caused by NLOS effects cannot be ignored in the vehicular position 

systems where higher accuracy is demanded. UKF cannot follow an unexpectedly high 

erroneous data such as an NLOS error. When an NLOS situation is detected the dependence 

of the estimation on the measurements should be decreased. This is called biasing. This can 

be done by increasing the measurement error covariance matrix. 

In order to mitigate the NLOS range error, the BKF is employed. The BKF is proposed 

to process the range measurement according to the feedback identification result from the 

previous processed data. Before computing the Kalman gain in Eqn. (3.13) , the mea­

surement noise covariance (J; or the range prediction covariance Pklk- 1 is adjusted by the 

following rules. 

The positive bias error can be canceled by implementing the following two rules: 

1. Update priori error covariance matrix as follows when the Zk- HXk_1 < 0 condition 

is true: 
--- (Zk - HXklk- 1)2 

pkik - 1 = pkik- 1 + ____ _.:._ __ 
ry 

(3.18) 

where ry is the experimentally chosen scaling factor [39]. 

2. Increase the diagonal elements of the measurement noise covariance matrix as follows: 

(3.19) 
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The inclusion of Eqn. (3.18) is essential in compensating the range prediction covariance 

Pklk- l· The biased term avoids inaccurate estimation of the range rate dN(k) from the NLOS 

mitigation. 

The UKF can be modified to the BKF, by implementing the above two rules before 

calculating the Kalman gain, to decrease the dependence on the measurements as a biasing 

technique. Simulation results will show that the performance of the BKF can be improved 

significantly over the UKF in the NLOS condition. 

3.5 Position Estimation Algorithms 

We presented two distinct classes of positioning algorithms. The first position estimator class 

is a deterministic approach of finding the position of a vehicle i.e., Nonlinear Least Square 

method. Here the positioning process is repeated each time step and attempts to minimize 

the mean square error in the relative position estimate. For this class of estimator, we have 

formulated the position estimation problem, such that it can be solved using a Nonlinear 

Least Squares Optimization as shown in Section 3.5.1. 

Therefore, we have extended previous works so that positioning process includes the ad­

ditional information available to vehicles (e. g., vehicle road constraints). Second class of 

position estimator is the stochastic approach. Here we will extend upon the previous al­

gorithm so that each position estimate is a random variable with some probability density 

function (i.e., a level of uncertainty will be associated with each position estimate) while tak­

ing into account vehicle velocity and road boundaries, it can be solved by Extended Kalman 

Filter. The extended Kalman filter allows the seamless integration of velocity information 

and produces a set of position estimates that are minimized in the mean square sense. 

3.5.1 Nonlinear Least Squares Approach 

The Nonlinear Least Squares method is the more traditional to solve the positioning problem. 

However, traditional approaches are generally applied to the positioning problem where the 
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nodes are stationary. One of the limitation to this approach is that method provides only 

a single position estimate. Consider a set of N vehicles within a cluster. For each pair of 

vehicles ( i, j) a distance measurement is made, (h ,j where ( i, j)E{ 1, 2, .. . N}. These distance 

measurements contain noise; therefore, it is the goal of the algorithm to mitigate the noise in 

these range estimates and formulate an relative estimate of the position of a vehicle. Making 

use of the Pythagorean relationship in Fig 3.4, let the cost function be: 

(3.20) 

where (h,j is the inter-vehicle distance estimate between vehicle i and j; (xi, Yi) and (xj , yj) 

are the position of vehicle i and j, respectively; and Ji,j is the element of an N x N matrix, 

(where N is the number of vehicles on the road region), which has the form: 

(x, .Yz) 

(. v 2 -v . ~)~ 
. 1 • · J 

( 
2 2)2 ·'i -."\} 

Figure 3.4: Illustrating the Pythagorean theorem relationship. 

0 !1,2 

0 

fN- 1,1 fN - 1,2. fN - 3,3 0 fN - 1,N 

fN,1 fN,2 fN,3 0 

42 



If we let wi,j be a weighting function based on the relative distance between vehicle i and 

j, then we can formulate the optimization problem as follows: 

(3.21) 

Therefore, in Eqn.(3.21) our objective is to minimize the mean square error in the inter­

vehicle distance estimates. 

In general, the design of the weighting function, wi,j is a non-trivial task. It must take 

into account the relative uncertainty in the inter-vehicle distance estimates. If a model 

for the noise measurements available, then we can tailor the weights to the variance of 

the model. For example, if the measurement noise is Gaussian distributed with standard 

deviation linearly increasing with the true distance (i.e., a- = k * J(xi- xj)2 + (Yi- yj) 2 

where k is a constant) then one could select a weighting function: wi,j = (k*~2 .) . However, 
1,] 

if a reliable model for the errors is not available, then an independent adaptive weighting 

scheme can be used, such as the one presented in [61]. 

The optimization problem formulated in Eqn.(3.21) can be viewed as attempting to 

minimize the mean position error in the final position estimate. In general, there is no 

closed form solution for Eqn.(3.21), unless some nodes within a cluster have fixed known 

position (e.g., road side base units). However, for the purpose of this work, we assume that 

all the vehicles are mobile units. Thus there is no closed form solution of Eqn. (3.21) for our 

problem and numerical search methods are required. Classic estimation theory provides the 

gradient steepest descent method [62]. 

Consider, a vehicle moving with constant velocity over some time interval .D..t where .D..t 

denotes the update rate of our filter. This position evolves from one time period to the next 

according to the following motion model: 

(3.22) 
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where 

(3.23) 

(3.24) 

where N is the number of vehicles in the region at the kth time instant; (xi,k, Yi,k) is the 

position of the ith vehicle at the end of kth interval. tlt is the sampling interval; Vxi,k and Vyi,k 

are the velocity of the vehicle i in the x and y directions at time k respectively; superscript 

T denotes transpose; and W k is the process noise describing the mobility variations. We 

assume that W k ia a zero mean Gaussian random variable, with the following covariance: 

(3.25) 

where diag(.) denotes a matrix with values on the matrix diagonal equal to the argument of 

this function. 

Therefore the original optimization problem Eqn. (3.21) can be reformulated as: 

X"' . "'n "'N j2 k = argmznA L.....-i=l L.....-j=l wi,j i,j 

(3.26) 

where wi,j is the weighting function for the ith, jth term at tirne k; W k is a noise vector; 

d is vector of deterministic values that act as constraints on W k - l; Xk is a vector of the 

estimated x, y coordinates of the vehicle's positions and 

(3.27) 

where (L,j ( k) is the distance measurement between vehicle i and j at time step k 

There are multiple entries to solve Eqn.(3.26), one is to use recursive least squares(RLS) 

algorithm, which is an adaptive version of the Gauss-Newton search algorithm [62]. When 

we implemented this algorithm we calculated the gradient of Eqn.(3.26) analytically, since 

calculating the partial derivatives with respect to the xi,k term is: 
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8wi,j(k)fi~j(k) = 2w ·(k) (1- y'(xi,k- Xj,k)2) + (Yi ,k- Yj ,k)
2 

(x· k _ x. k) 
axi,k ~,] y'(xi ,k - Xj,k) 2 + (Yi ,k - Yj ,k) 2 ~, ], 

(3.28) 

and the other partial derivatives are calculated similarly. 

3.5.2 Extended Kalman Filter (EKF) 

The Kalman Filter is a tool that can estimate the variables of a wide range of processes. 

Kalman Filter estimates the state of a linear system. The standard Kalman Filter is an 

effective tool for estimation, however, it is limited to linear systems. Most real world systems 

are nonlinear, in which case Kalman Filters do not directly apply. If a nonlinear system can 

be linearized we can use kalman filter to estimate the states. To linearize a nonlinear system 

we apply a Taylor series expansion. However, in actual applications, the process to be 

estimated are usually nonlinear.Due to nonlinearities in our process model, an extended 

Kalman filter (EKF) [60] is defined from Kalman filter to solve the problem. 

By means of the Taylor series, the nonlinear relationships around the current time step 

can be linearized by using the partial derivatives of the process and measurement functions. 

To realize linearization of a nonlinear process some parts of the Kalman filter must be 

modified. 

Usually vehicles are the moving objects. The Extended Kalman filter nonlinear stochastic 

difference motion model can be described as follows: 

(3.29) 

where N is the number of vehicles in the cluster at the kth snapshot; the nonlinear function 

f can be used to compute the predicted state from the previous estimate and includes a 

driving function vk; (.)r denotes the matrix transposition; VxN,k and VyN,k are the velocities 

of vehicle n in the X and Y directions at time k, respectively; Xk+l is the position of the 
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vehicle at time k; and W k is the process noise describing the mobility variations. We assume 

that W k is a zero-mean Gaussian random variable, with the following covariance: 

(3.30) 

where diag(.) denotes a diagonal matrix. 

Eqn. (3.30) structure shows how the error covariance is traditionally defined for a mo­

tion model when the uncertainty in each direction is equiprobable; however, for a vehicular 

environment this is not the case. In general, vehicle motion is constrained to the roads. 

Therefore it is not convenient for us to define variance in terms of X and Y directions. 

• Enforced Road Constraints: 

Considering that the vehicles usually move along the direction of lanes on the road, the 

uncertainty in the direction orthogonal to the road is lesser than the uncertainty in the 

direction of lanes on the road. 

d:.=d 
XI U1 

+--------------
)( 

1' y 
I J J 
I()-. =if 
I .1l 1 ,0 

Figure 3.5: Road constraints 

Let us define the variance for the vehicle in the direction of road i to be O'l,a and the 

variance in the direction orthogonal to the road is O'l,
0

. Due to higher uncertainty of the 

motion along the road, O'l,a > > O'l,
0

. Thus for a road that runs in a direction that is B 

radians from theY-axis , the following transformation must be applied: 
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[a;; a~J = [ ~:::B ::::] [ a~o a~J [ ~:::B ::::] 
This can also be written as: 

2 2 e2 2 . e2 
(}"x i = (Ji ocos + (Ji aszn 

' ' 

Eqn. (3.32)and Eqn. (3.33) allow Qk to bias in the direction of the road. 

(3.31) 

(3.32) 

(3.33) 

Fig. 3.5 shows the variances in the X andY directions if the vehicle is making an angle 

of 90° with the road. 

The observations of the inter-vehicle measurements are expressed as: 

(3.34) 

where h(Xk) is a nonlinear equation describing the measurements at time k; the function 

h can be used to compute the predicted measurement from the predicted state and shows 

the relationship between the state vector Xk and the measurement vector Zk; and V k is 

the zero-mean Gaussian random vector with the covariance matrix Rk describing the noise 

characteristics of the measurement. 

The general form of Kalman filter requires that the measurement equation be in a linear 

form, therefore if we linearize the Eqn.(3.34) and Eqn.(3.29) using a first order Taylor series 

expansion around the current position estimates. State transition and observation matrices 

are defined to be the following Jacobian matrices: 

(3.35) 

(3 .36) 

Hk can be referred to as the observation Jacobian matrix and Ak can be referred as state 

transition Jacobian matrix. 
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One iteration of the EKF consists the following consecutive steps: 

,-.... 

1. Consider the last filtered state estimate Xklkl 

2. Linearize the system dynamics, Xk+1 = f(Xk , vk) + W k around Xklk , 

3. apply the prediction step of the Kalman filter to linearized system dynamics just ob-
,-.... 

tained, yielding xklk- 1 and pklk- 1, 

4. Linearize the observation dynamics, Y k = h(Xk + V k) around Xklk - 1 

5. Apply the filtering or update cycle of the Kalman filter to the linearized observation 

dynamics, yielding xklk- 1) and pklk· 

The extended Kalman filter algorithm can be viewed as the following set of recursive 

relationships: 

Predict Cycle: 

Filtered Cycle: 

,-.... ,-.... ,-.... 

xk/k- 1 = xklk- 1 + Kkzk 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

Here, EKF is not an optimal filter, but rather it is implemented based on a set of ap­

proximations. Thus the matrices Pklk and Pklk- 1 do not represent the true covariance of the 

state estimates. 
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The matrices Ak and H k depend on previous state estimates and therefore on measure­

ments, and the filter gain Kk and Pklk and Pklk- 1 cannot be compute off-line as occurs in 

the Kalman filter. 

Contrary to the Kalman filter, the EKF may diverge, if the consequent linearizations are 

not good approximation of the linear model in the associated uncertainty domain. 
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Chapter 4 

Simulation Results and Discussion 

4.1 'Iraffic Model 

In order to test the performance of the algorithms applied, we considered a road topology 

of a length of 4km and a width of 30m with six lanes, each with a width of 5m. There are 3 

east-bound and 3 west-bound lanes with vehicles entering from both directions. Vehicles are 

randomly selected with a minimum threshold distance of 30m between them, which was the 

minimum requirement in order to avoid collisions in an emergency situation. Vehicle speed 

limit was set to 30mjs. For simulations we tracked a single vehicle's ability to determine 

the range estimation with all other vehicles. We assumed each vehicle had 6 neighboring 

vehicles with 6 inter-vehicle range measurements at any given time as depicted in Fig.4.1. 

For simulations (3 is fixed to 1.1. 

4.2 NLOS Model 

UWB channel model parameters have been used to model the NLOS error for simulations [30] 

with a mean of 1/ A and a variance of (1/ A2 ). The NLOS error is modeled by equation (3.3) 

with A = 0.0667ns- 1
. The measurement noise V k is assumed to be AWGN with zero 

mean and variance 0.25m2 . It is also assumed that 1000 data samples are measured with a 
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Figure 4.1: Road topology for vehicles 

sampling period of 2ms. The true range is calculated by applying the performance metric 

I xi+ JYi - x1 - jy1 I with initial positions of the vehicles recorded by GPS. 

For simulations, LOS and NLOS have been applied randomly to the range measurements 

and a hypothesis test is used to determine which range measurements have LOS and NLOS. 

Basically, the true range with the addition of AWGN is known as the LOS condition. 

4.3 Performance Metrics 

There are four metrics we use for evaluating the effectiveness of the positioning algorithms. 

The first metric we used is the root mean square error (RMSE) in the inter-vehicle range 

measurements. RMSE was applied to determine the range error, which is very sensitive to 

the distance measurements: 
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1 N _..._ 
Erange = N L[dr(i)- dr(i)] 2 ( 4.1) 

i=l 

where dr(i) is the true range of the ith vehicle and dr(i) is the estimated range of the ith 

vehicle; N is the number of vehicles at the current time; 

Similarly we used RMSE in the final position estimates. The metric can be thought of as 

the average distance of the final position estimate from the actual position. We have defined 

RMSE in the final position estimate as: 

1 N 

Ejinal = N L {[Xjinalest.(i)- Xtrue(i)J2 + [YJinalest.(i)- Ytrue(i))2} (4.2) 
i=l 

where (xtruei, Ytruei) represents the true position of the ith vehicle; (x finalest.i, YJinalest.i) is the 

position estimate for the ith vehicle after running the positioning algorithm. 

The third metric we use to find the deviation in the X-direction from the actual. We 

defined RMSE in X-direction alone is as following: 

1 N 
EX-direction= N L[xfinalest.(i) - Xtrue(i))2 (4.3) 

i=l 

The fourth metric we used to find the deviation in the Y-direction from the actual. We 

defined RMSE in Y -direction alone is as following: 

1 N 

EY-direction = N L[YJinalest.(i) - Ytrue(i)J2 
i=l 

4.4 Simulation Results 

4.4.1 Unbiased Kalman Filter Output 

( 4.4) 

In Fig.4.2, the propagation situation changes from LOS to NLOS at each time instant of 1s. 

Simulation results show that the UKF can preprocess the range data with a RMSE of 0.05m 
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for only the LOS scenario; for the NLOS scenario, the RMSE could be too high. Therefore, 

NLOS needs to be filtered out for acceptable measurements. 

· 250~--~--~----~--~----~--~--~----.----,---, 
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c 
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Figure 4.2: Unbiased Kalman filter output for LOS and NLOS. 

Fig.4.3 shows a zoomed version of Fig.4.2 from the start to 0.6s. It shows that by using 

the UKF, the estimation is almost overlapped with the true range. However , the UKF cannot 

eliminate the positively biased NLOS data added for the time period of ls to 2s. 

4.4.2 Biased Kalman Filter Output 

Fig.4.4 shows the biased versus unbiased smoothed range data for the propagation situation 

changes from LOS to NLOS at time instant of ls. The inter-vehicle range data smoothed 

by the UKF cannot track the sudden changes due to NLOS from time instant of ls to 2s. 

However, the NLOS error from the range measurements is mitigated by using the BKF with 

a RMSE value of less than 0. 7m. 

Fig.4.5 shows the BKF smoothed output for a mixed LOS condition from Os to ls, the 
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Figure 4.3: Unbiased Kalman filter output ·for LOS in [0, 0.6]s. 

NLOS condition from ls to 2s, and again the LOS condition from 2s to 3s. The BKF can 

effectively mitigate the NLOS error even when the vehicle travels with an abrupt change 

between the LOS and NLOS conditions. 

4.5 Effect of Different Noise Levels on Measurement 

Range 

If we assume that the two Gaussian random variables with the standard deviations of lm and 

lOrn respectively describing the noise characteristics of the distance measurements , then we 

obtain the results as shown in Fig.4.6. The curve with higher peaks is the BKF performance 

to smooth the inter-vehicle range data over a time period of lOOs. Also, for reference we 

have included the average performance of the BKF (i.e the horizontal line with RMSE of 

approximately 1.5m). The bottom curve with lower peaks shows the BKF performance 
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Figure 4.4: Biased vs unbiased Kalman filter smoothed range data. 

for the measurement noise of lm. The dashed horizontal line shows the average RMSE of 

approximately 0.5m. Overall, the BKF can effectively smooth range data for various noise 

levels of strength. 

4.6 RMSE variation with different noise levels for inter-

vehicle range measurements 

Fig.4. 7 and Fig.4.8 show the variation of the RMSE with respect to the number of range 

measurements for two different levels of the measurement A WG N standard deviation (i.e. , 

lm and lOrn respectively at {3 = 1.1 and {3 = 1.6 respectively). A moving linear average 

fit of the data points is overlaid on each plot. Each data point on the plots represents a 

single run of the simulation for the inter-vehicle range measurements. The ability of the 

BKF performance goes down as the number of inter-vehicle range measurements increases. 
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Figure 4.5: Estimated range data with an abrupt change between LOS and NLOS. 

Interestingly, the algorithm is most effective with the AWGN standard deviation of 1m at 

(3 = 1.1. With higher measurement noise (i.e., AWGN) in the inter-vehicle range data, the 

algorithm is still effective, but the RMSE could be higher. 

The results of RMSE in the measurement range are summarized in Table 4.1 by selecting 

different standard deviation values for the AWGN. Since the Gaussian noise is the measure-

ment noise, if the signal arrives stronger, we can assume the measurement noise to be lower. 

For different values of AWGN standard deviation, the measurement range of less than 400m 

and less than 1000m on average is listed. It shows the maximum RMSE in the measured 

range after smoothing with the biased Kalman filter. The proposed algorithm can achieve 

an accuracy of less than 0. 7m in the inter-vehicle range data when the measured range is less 

than 1000m and the AWGN standard deviation is less than 0.1m. A maximum inter-vehicle 

distance of 1000m, based on the dedicated short-range communication (DSRC) standards 

listed in [19], is compatible for vehicular safety applications. 
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Figure 4.6: Biased Kalman filt er performance on diff'erent AWGN variance. 

Table 4 1· RMSE for different A WG N measurement noise .. 

AWGN Measurement range Measurement range 

Standard deviation (m) ( <400m) ( <lOOOm) 

lOrn < l.Om < 1.5m 

5m < 0.8m < 1.3m 

lm < 0.6m < l.lm 

O.lm < 0.3m < 0.7m 

57 



2 

1.8 

1.6 

:§: 
0 
l::: 1.4 
w 
~ 
co 
g. 1.2 

(/) 

c: 
co 
Q) 

~ 1 
0 
0 
~ 

0.8 

0.6 

a AWGN=1m 
-Avg. linear fit for AWGN=1m 

0 AWGN=10m 
-Avg. linear fit for AWGN=10m 

0 0 0 
0 

0 f'\ .... 

0 0 0 0 0 0 
0 

a 
A a a 

io. io. - -
a a a a a a a 

10 20 30 40 50 60 
Number of Range Measurements 

I 

() 

0 

v v 
0 0 0 

.h 

a 
A 

~ 

a a a 

70 80 90 100 

Figure 4.7: RMSE vs. number of inter-vehicle range measurements for (3 = 1.1. 

4.7 Sensitivity to Noisy Range Measurements Study 

For the following simulation results we assume that a Gaussian random variable with the 

standard deviation of lOrn describes the noise characteristics of inter-vehicle distance mea-

surements and the road length is of 200m. To see how well our EKF based algorithm 

performs in relation to the bound, we will first consider there is no smoothed range data 

to estimate final position. Further, we apply BKF to mitigate noise from the range data. 

These smoothed range is then applied to the EKF to estimate position. Finally, we compare 

the performance of EKF applied on smoothed range data along with road constraints. 

If we apply noisy inter-vehicle range measurements without smoothing to the EKF, then 

we get the estimated position as shown in Fig.4.9. Here true X-position deviates from 

estimated position with an error of approximately 5m to lOrn (shown by using green arrow). 

As well as true Y-position deviates with an error of 2m to 3m. 

Fig 4.10 shows the EKF performance on position estimates with the application of 
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Figure 4.10: EKF performance on estimated position with the application of smoothed range 

data. 

smoothed range data. Inter-vehicle distance measurements are smoothed by using BKF 

before applying to the EKF to mitigate noisy component in the range measurements. If we 

closely observe Fig.4.10, still there is approximately 2m to 3m error exists in the X-direction. 

This error is due to the high uncertainty in the X-direction compared to Y-direction. 

In Fig.4.11 we measure X-axis in the same position 100 times with EKF. Fig. 4.11 shows 

the deviation between true and the estimated position in X direction. 

As shown in Fig.4.12, we measured theY-axis in the same position 100 times to check the 

performance of the EKF. The difference between true and estimated position in Y-direction 

is shown in Fig.4.12. 

Fig.4.13 show the EKF algorithm with the application of road constraints. Simulation 

result show the deviation in X and Y direction can be reduced to approximately around 

<1m with the application of road bounds by choosing appropriate variances in X and Y 

directions. 
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4.8 RMSE performance on position estimates 

If we assume that a Gaussian random variable with standard deviation of 10m describes the 

noise characteristics of inter-vehicle distance measurements, then we get the results shown 

in Fig.4.14. The constant line with an error of approximately 5.45m is the Nonlinear Least 

Square approach implementation. The curve with square peaks is our EKF performance 

before applying the preprocessed range data. Also, we have included the average performance 

of the EKF, after applying EKF with noisy range measurements, results show the error 

of approximately 3m. We further compared the EKF performance with and without the 

application of road constraints. The curve with circles shows our algorithm performance 

with the application of only smoothed range data to estimate position. The average RMSE 

error is also shown in the Fig.4.14, which is approximately equal to 2m. Over all error varies 

between 2m to 3m. The bottom curve with stars shows reduced error compared to upper 

curve after applying the EKF approach along with smoothed range data in a~dition to road 

constraints. An average RMSE presented after the application of our algorithm is < lm. 
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Overall there is much variation in the RMSE levels of the Nonlinear Least Square ap­

proach versus applied EKF algorithm with the addition of road constraints along with 

smoothed inter-vehicle range data. 
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Chapter 5 

Conclusions and Future ·Directions of 

Work 

5.1 Conclusion 

In this thesis range and position estimation algorithms for typical GPS outages in the pres­

ence of NLOS error are presented. The BKF to mitigate the positive bias introduced by the 

NLOS component in the inter-vehicle range measurements is applied. These preprocessed 

range data is applied to the EKF to estimate position of the vehicle. The uncertainty in 

the direction of road is more than uncertainty in the opposite direction of road. These road 

constraints are applied to the EKF to get an accurate results. Simulation results show that 

the proposed algorithm for NLOS identification and mitigation with the BKF promises to 

achieve higher accuracy for vehicle positioning and tracking systems under different received 

signal noise levels. Position estimation is accurate with the application of s~oothed range 

data along with road constraints. 
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5.2 Future Directions 

We are confident this area of reseQ,rch will be an active broadening field. We just focussed 

on small part of positioning system which produces accurate and reliable estimates in the 

CPS outages. There are many more real time issues that need to be addressed. Some of 

them has been listed below: 

• In our work, we ignored malicious hosts that are trying to corrupt position accuracy. 

The role of security is one of the main concern. The idea of tolerating attacks and also 

eliminating them, by exploiting redundancies at various levels within wireless networks 

is an open issue for positioning systems. 

• This work could be extended upon examining how road side units (e.g. access points 

with fixed known position) could be incorporated into our algorithm. By making use 

of these road side equipments it may be possible to create a more accurate global map, 

instead of merely creating a position map. 

• We considered flat surface for vehicles, still work needs to be done when vehicle is 

moving on terrain regions. 

• In the future it may be possible to extend the localization algorithm for higher ac­

curacy localization with the method of visual pattern matching between navigation 

information and visual cues on the road. 

Vehicular Ad-hoc Networks characterized by extremely high mobility and rapidly chang­

ing topology. However, this mobility is constrained in motion due to the existence of road­

ways and can therefore be cleverly exploited for message propagation with low latency in 

message deli very. 
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Appendix A 

Abbreviation List 

ITS 

IVC 

V2I 

V2V 

ccw 
MANETs 

QoS 

AHS 

DSRC 

FCC 

GPS 

SA 

TTFF 

LOS 

NLOS 

RWA 

SNR 

Intelligent transportation System 

Inter-vehicle Communication 

Vehicle to Infrastructure 

Vehicle to Vehicle 

Cooperative Collision Warning 

Mobile Ad hoc Network Environments 

Quality of Service 

Automated Highway Systems 

Dedicated Short-range Communication 

Federal Communications Commision 

Global Positioning Systems 

Selective Availability 

Time-to-First-Fix 

Line-of-sight 

Non-line-of-sight 

Residual Weighing Algorithm 

Signal to Noise Ratio 
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UWB 

S-V 

RSS 

TOA 

TDOA 

AOA 

RSSI 

Tx 

Rx 

TOA-OWR 

TOA-TWR 

CRB 

BW 

AWGN 

RMSE 

UKF 

BKF 

EKF 

dBm 

Ultra Wideband 

Saleh - Valenzuela 

Received Signal Strength 

Time Of Arrival 

Time Difference Of Arrival 

Angle Of Arrival 

Received Signal Strength Indicator 

Transmitter 

Receiver 

TOA One-way-ranging 

TOA Two-way-ranging 

Cramer-Rao Bound 

Bandwidth 

Additive White Gaussian Noise 

Root Mean Square Error 

Unbiased Kalman Filter 

Biased Kalman Filter 

Extended Kalman Filter 

Milli Decibels 
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