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Abstract 
 
This research is focusing on the bending-torsion coupled free vibration modeling as well as the 

analysis of intact and defective pre-stressed beams subjected to combined axial force and end 

moment. In the recent years, many studies have been conducted in an attempt to investigate the free 

vibration of pre-stressed beams using numerical and analytical techniques. However, despite their 

numerous applications, there is limited research done on pre-stressed beams subjected to both axial 

force and end moment in addition to the coupled behavior caused by the latter one. In the present 

study, current trends in the literature are critically examined, new models are proposed, and 

numerical and semi-analytical formulations are developed to find the natural frequencies and mode 

shapes of different pre-stressed slender beam configurations. The proposed methods are compared 

in terms of accuracy and convergence. Furthermore, the effects of axial force, end moment and 

delamination defect on the vibrational behavior of each model are also investigated. 

Four different general types of thin beams, including isotropic, layered, composite and delaminated 

beams, are modeled using traditional Finite Element Method (FEM) and frequency-dependent 

Dynamic Finite Element (DFE) technique. The DFE formulation is distinct from the conventional 

FEM by the fact that the former exploits frequency-dependent basis and shape functions of 

approximation space, whereas the polynomial ones are used in the latter method. With regard to 

layered beams, a novel layer-wise method is introduced for both DFE and FEM. Delaminated beam 

is also modeled using both ‘free mode’ and ‘constrained mode’ models showing that the continuity 

(both kinematic and force) conditions at delamination tips, in particular, play a large role in 

formulation of ‘free mode’ model.  In this case, the defect is assumed to be a single-symmetric 

through the thickness delamination. However, the presented models and formulations could be 

readily extended to more general cases. Where available, the results were validated against existing 

limited experimental, analytical, and numerical data in literature. In addition, the investigated cases 
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are modeled in the commercial finite element suite ANSYS® for further validation. Finally, general 

concluding remarks are made on the performance of the presented models and solution techniques, 

where the advantages and disadvantages of the proposed formulations as well as possible future 

research works are highlighted. 

 
 
  



vi 
 

Table of Contents 

 Author's declaration ..................................................................................................... ii 
 Acknowledgements ..................................................................................................... iii
 Abstract ....................................................................................................................... iv 

1 Introduction ...................................................................................................................1  

1.1 Overview .......................................................................................................................................... 1  

1.2 Free vibration of layered beams ....................................................................................................... 5 

1.3 Free vibration of fiber-reinforced laminated composite beams ........................................................ 6 

1.4 Delaminated and defective layered composite beams ...................................................................... 7 

1.5 Motivation ...................................................................................................................................... 12 

1.6 Objectives ....................................................................................................................................... 13  

1.7 Thesis organization ......................................................................................................................... 14  

2 Free vibration of pre-stressed isotropic beams ...........................................................17 

2.1 Development of governing differential equations .......................................................................... 17 

2.2 Classical finite element method (FEM) .......................................................................................... 21 

2.3 Finite element numerical results ..................................................................................................... 26 

2.4 The dynamic finite element (DFE) ................................................................................................. 36 

2.5 DFE Numerical Results; Simple Beam .......................................................................................... 43 

2.6 Discussions and concluding remarks .............................................................................................. 53 

3 Free Vibration of Pre-stressed Layered Beams ..........................................................55 

3.1 Introduction .................................................................................................................................... 55  

3.2 Method of Homogenization ............................................................................................................ 56  

3.3 Layer-wise Formulation of Pre-stressed Layered Beams ............................................................... 58 

3.4 The Layer-wise Beam Finite Element (LBFEM) formulation ....................................................... 61 

3.5 The Layer-wise Beam Dynamic Finite Element (LBDFE) ............................................................ 63 

3.6 Method of Homogenization Numerical Results ............................................................................. 69 

3.7 Layer-wise formulation numerical tests; two-layer aluminium-steel beam ................................... 75 

3.8 Numerical tests; two-layer Glass/Epoxy composite beam ............................................................. 79 

3.9 Numerical tests; steel-rubber-steel layered beam ........................................................................... 81 

3.10 Numerical tests; fibre-metal laminated (FML) beam ..................................................................... 82 

3.11 Numerical tests; three-layered laminated composite beam ............................................................ 85 

3.12 Discussions and concluding remarks .............................................................................................. 88 

4 Modal analysis of laminated composite beams subjected to axial force and end moment 90 

4.1 Finite element formulation (FEM) ................................................................................................. 90 



vii 
 

4.2 Dynamic finite element (DFE) formulation ................................................................................... 95 

4.3 Numerical tests ............................................................................................................................... 99  

4.4 Conclusion .................................................................................................................................... 109 

5 Free vibration of pre-stressed delaminated beam .....................................................111 

5.1 Introduction .................................................................................................................................. 111  

5.2 Mathematical model ..................................................................................................................... 111 

5.3 Free mode delamination model .................................................................................................... 113 

5.4 Classical finite element method (FEM) ........................................................................................ 116 

5.5 Constrained mode model .............................................................................................................. 121 

5.6 Dynamic finite element ................................................................................................................ 122 

5.7 Numerical Results ........................................................................................................................ 124  

5.7.1 Validation of presented formulation ..................................................................................... 124 

5.7.2 Vibration analysis of delaminated pre-stressed beams ......................................................... 127 

5.8 Discussion and concluding remarks ............................................................................................. 133 

6 Discussion on the presented methods .......................................................................135  

7 Conclusion ................................................................................................................138 

7.1 Contributions ................................................................................................................................ 138  

7.2 Future work .................................................................................................................................. 141  

Appendices .......................................................................................................................142  

References ........................................................................................................................157  

 

 

  



viii 
 

List of Tables 

TABLE 1: COMPARISON BETWEEN THE ANALYTICAL [97] AND FEM RESULTS FOR THE FIRST THREE 

NATURAL FREQUENCIES WITH P=0 AND MZZ= 0. .................................................................................... 28 
TABLE 2: COMPARISON BETWEEN ANSYS AND FEM RESULTS OF FIRST NATURAL FREQUENCY WITH 

CANTILEVER BOUNDARY CONDITION, FOR THREE DIFFERENT LOADING CONDITIONS. .......................... 29 
TABLE 3: FUNDAMENTAL FREQUENCY FOR CLAMPED-CLAMPED BOUNDARY CONDITION WHEN FORCE AND 

END MOMENT ARE APPLIED. ................................................................................................................... 29 
TABLE 4: FUNDAMENTAL FREQUENCY FOR PINNED-PINNED BOUNDARY CONDITION WHEN FORCE AND 

MOMENT ARE APPLIED. ........................................................................................................................... 30 
TABLE 5: FUNDAMENTAL FREQUENCY FOR PINNED-CLAMPED BOUNDARY CONDITION WHEN FORCE AND 

MOMENT ARE APPLIED. ........................................................................................................................... 30 
TABLE 6: CRITICAL BUCKLING MOMENT FOR CANTILEVERED BOUNDARY CONDITION WITH VARYING AXIAL 

FORCE. .................................................................................................................................................... 31 
TABLE 7: CRITICAL BUCKLING COMPRESSIVE FORCE FOR CANTILEVERED BOUNDARY CONDITION WITH 

VARYING END MOMENT. ......................................................................................................................... 31 
TABLE 8: FIRST NATURAL FREQUENCIES OF DFE FOR CANTILEVER BOUNDARY CONDITION. ....................... 45 
TABLE 9: FIRST NATURAL FREQUENCIES OF DFE FOR CLAMPED-CLAMPED BOUNDARY CONDITION. ........... 45 
TABLE 10: FIRST NATURAL FREQUENCIES OF DFE FOR PINNED-PINNED BOUNDARY CONDITION. ................ 46 
TABLE 11: FIRST NATURAL FREQUENCIES OF DFE FOR PINNED-CLAMPED BOUNDARY CONDITION. ............ 46 
TABLE 12: CRITICAL BUCKLING MOMENT FOR CANTILEVERED BOUNDARY CONDITION WITH VARYING 

COMPRESSIVE FORCE. ............................................................................................................................. 47 
TABLE 13: CRITICAL BUCKLING COMPRESSIVE FORCE FOR CANTILEVERED BOUNDARY CONDITION WITH 

VARYING END MOMENT. ......................................................................................................................... 47 
TABLE 14: COMPARISON OF BUCKLING RESULTS FOR DIFFERENT METHODS. ................................................ 48 
TABLE 15: COMPARISON OF DIFFERENT METHODS (DFE, FEM AND ANSYS MODELS USING 5 ELEMENTS).

 ................................................................................................................................................................ 52 
TABLE 16: FIRST SIX NATURAL FREQUENCIES FOR END MOMENT MZZ=0 AND DIFFERENT VALUES OF 

COMPRESSIVE AXIAL FORCE P. ............................................................................................................... 70 
TABLE 17: FIRST SIX NATURAL FREQUENCIES FOR END MOMENT MZZ=0 AND THREE DIFFERENT VALUES OF 

TENSILE AXIAL FORCE. ........................................................................................................................... 71 
TABLE 18: FIRST SIX NATURAL FREQUENCIES FOR END AXIAL FORCE P=0 AND THREE DIFFERENT VALUES 

OF END MOMENT. .................................................................................................................................... 71 
TABLE 19: BUCKLING END MOMENTS FOR DIFFERENT VALUES OF AXIAL FORCE HOMOGENIZATION METHOD.

 ................................................................................................................................................................ 73 
TABLE 20: BUCKLING AXIAL FORCE FOR DIFFERENT VALUES OF END MOMENT HOMOGENIZATION METHOD.

 ................................................................................................................................................................ 74 
TABLE 21: FUNDAMENTAL FREQUENCIES FOR CLAMPED-FREE BOUNDARY CONDITION. .............................. 76 
TABLE 22: VARIATION OF BUCKLING MOMENT WITH AXIAL FORCE FOR TWO LAYERED ALUMINIUM-STEEL 

BEAM....................................................................................................................................................... 77 
TABLE 23: FUNDAMENTAL FREQUENCIES FOR CLAMPED-FREE BOUNDARY CONDITION (DFE AND FEM 

USING 5 ELEMENTS AND ANSYS USING 20 ELEMENTS) FOR TWO-LAYER COMPOSITE BEAM 

(MZZ=6.14MN.M, P=1.23MN). ............................................................................................................... 80 



ix 
 

TABLE 24: COMPARISON BETWEEN EXPERIMENTAL RESULTS [101], DSM [101], LBDFE, LBFEM AND 

HOMOGENIZATION METHODS WITH P=0 AND MZZ=0 WITH CANTILEVERED BOUNDARY CONDITION. .... 82 
TABLE 25: FUNDAMENTAL FREQUENCY OF PRE-STRESSED CANTILEVERED FML BEAM, SUBJECTED TO 

VARIOUS AXIAL LOADS AND END MOMENT OF 52.5KN.M. ..................................................................... 83 
TABLE 26: FIRST THREE NATURAL FREQUENCIES OF CANTILEVERED, PRELOADED, THREE-LAYER, 

UNIDIRECTIONAL COMPOSITE BEAMS (LAYUPS 1 AND 2) OBTAINED FROM 5-ELEMENT LBDFE AND 

LBFEM, AND 20-ELEMENT ANSYS® MODELS, SUBJECTED TO AN AXIAL LOAD OF 1.85MN AND END 

MOMENT OF  6.14MN.M. ......................................................................................................................... 85 
TABLE 27: COMPARISON OF FEM AND DFE NATURAL FREQUENCY RESULTS FOR MZZ=0 AND P=0 WITH THE 

ANALYTICAL DSM VALUES [64]. ......................................................................................................... 102 
TABLE 28: NON-DIMENSIONAL FIRST NATURAL FREQUENCY (Λ1

2) OF A CLAMPED–CLAMPED ISOTROPIC 

BEAM WITH A MID-PLANE DELAMINATION. .......................................................................................... 126 
TABLE 29: NON-DIMENSIONAL SECOND NATURAL FREQUENCY (Λ2

2) OF A CLAMPED–CLAMPED ISOTROPIC 

BEAM WITH A MID-PLANE DELAMINATION. .......................................................................................... 126 
TABLE 30: NON-DIMENSIONAL FIRST NATURAL FREQUENCY (Λ1

2) OF A CLAMPED–CLAMPED ISOTROPIC 

BEAM WITH A MID-PLANE DELAMINATION USING DFE FORMULATION. .............................................. 132 

 

  



x 
 

List of Figures 

FIGURE 1: SCHEMATIC AND COORDINATE SYSTEM OF THE PROBLEM. ........................................................... 17 
FIGURE 2: INFINITESIMAL ELEMENT OF A BEAM SUBJECTED TO AXIAL FORCE AND END MOMENT. .............. 18 
FIGURE 3: DISCRETIZED DOMAIN ALONG THE BEAM SPAN............................................................................. 23 
FIGURE 4: PERCENTAGE OF ERROR VERSUS NUMBER OF ELEMENTS REPRESENTING THE CONVERGENCE RATE 

OF FEM METHOD FOR FUNDAMENTAL FREQUENCY. .............................................................................. 27 
FIGURE 5: VARIATION OF FUNDAMENTAL FREQUENCY WITH APPLIED TENSILE FORCE AND END MOMENT, 

FOR CANTILEVERED BOUNDARY CONDITION. ......................................................................................... 32 
FIGURE 6: VARIATION OF FUNDAMENTAL FREQUENCY WITH APPLIED TENSILE FORCE AND END MOMENT, 

FOR CLAMPED-CLAMPED BOUNDARY CONDITION. ................................................................................. 32 
FIGURE 7: VARIATION OF FUNDAMENTAL FREQUENCY WHEN TENSILE FORCE AND END MOMENT ARE 

APPLIED FOR PINNED-PINNED BOUNDARY CONDITION. .......................................................................... 33 
FIGURE 8: VARIATION OF FUNDAMENTAL FREQUENCY WHEN TENSILE FORCE AND END MOMENT ARE 

APPLIED FOR CLAMPED-PINNED BOUNDARY CONDITION. ...................................................................... 33 
FIGURE 9: VARIATION OF CRITICAL BUCKLING COMPRESSIVE FORCE WITH END MOMENT. .......................... 34 
FIGURE 10: VARIATION OF CRITICAL BUCKLING END MOMENT WITH AXIAL FORCE. .................................... 34 
FIGURE 11: FIRST FIVE FEM BENDING COMPONENTS OF MODE SHAPES. ....................................................... 35 
FIGURE 12: FIRST FIVE FEM TORSION COMPONENTS OF MODE SHAPES. ....................................................... 35 
FIGURE 13: CONVERGENCE ANALYSIS FOR THE FIFTH NATURAL FREQUENCY RESULTS, OBTAINED FROM 

DFE METHOD FOR CANTILEVERED BEAM. .............................................................................................. 44 
FIGURE 14: COMPARISON OF CONVERGENCE EFFICIENCY BETWEEN DFE METHOD AND CONVENTIONAL 

FEM FOR CANTILEVERED BEAM, THE FIFTH NATURAL FREQUENCY. ..................................................... 44 
FIGURE 15: VARIATION OF NATURAL FREQUENCIES WHEN TENSILE FORCE AND END MOMENT IS APPLIED 

FOR CANTILEVERED BOUNDARY CONDITION. ......................................................................................... 48 
FIGURE 16: VARIATION OF NATURAL FREQUENCIES WHEN TENSILE FORCE AND END MOMENT IS APPLIED 

FOR CLAMPED-CLAMPED BOUNDARY CONDITION. ................................................................................. 49 
FIGURE 17: VARIATION OF NATURAL FREQUENCIES WHEN TENSILE FORCE AND END MOMENT IS APPLIED 

FOR PINNED-PINNED BOUNDARY CONDITION. ........................................................................................ 49 
FIGURE 18: VARIATION OF NATURAL FREQUENCIES WHEN TENSILE FORCE AND END MOMENT IS APPLIED 

FOR PINNED-CLAMPED BOUNDARY CONDITION. ..................................................................................... 50 
FIGURE 19: VARIATION OF CRITICAL BUCKLING END MOMENT WITH AXIAL FORCE FOR CANTILEVERED 

BOUNDARY CONDITION. .......................................................................................................................... 50 
FIGURE 20: VARIATION OF CRITICAL BUCKLING COMPRESSIVE FORCE WITH END MOMENT FOR 

CANTILEVERED BOUNDARY CONDITION. ................................................................................................ 51 
FIGURE 21: BENDING COMPONENT OF MODE SHAPES USING DFE. ................................................................ 52 
FIGURE 22: TORSIONAL COMPONENT OF MODE SHAPES USING DFE. ............................................................ 53 
FIGURE 23: SCHEMATIC AND COORDINATE SYSTEM OF THE PROBLEM, WITH AXIAL LOAD AND END-MOMENT 

APPLIED AT X=0, AND X=L. .................................................................................................................... 57 
FIGURE 24: N-LAYERED BEAM, WITH AXIAL LOAD AND END-MOMENT APPLIED AT X=0 AND X=L. .............. 59 
FIGURE 25: BENDING COMPONENTS OF THE NATURAL MODES FOR MZZ=3MN AND P=0.6MN 

HOMOGENIZATION METHOD. .................................................................................................................. 72 
FIGURE 26: TORSION COMPONENTS OF THE NATURAL MODES FOR MZZ=3 MN AND P=0.6 MN 

HOMOGENIZATION METHOD. .................................................................................................................. 73 
FIGURE 27: BUCKLING AXIAL FORCE VS. END MOMENT HOMOGENIZATION METHOD. .................................. 74 



xi 
 

FIGURE 28: BUCKLING END MOMENT VS. AXIAL LOAD USING HOMOGENIZATION METHOD. ......................... 75 
FIGURE 29: VARIATION OF NATURAL FREQUENCIES WITH TENSILE FORCE AND END MOMENT FOR 

CANTILEVERED BOUNDARY CONDITION. ................................................................................................ 77 
FIGURE 30: BENDING COMPONENTS OF MODE SHAPES (DFE) M=52.5 KN.M, P=17.5KN............................. 78 
FIGURE 31: TORSION COMPONENTS OF MODE SHAPES (DFE) MOMENT=52.5KN.M, FORCE=17.5KN .......... 78 
FIGURE 32: THE SCHEMATIC OF TWO-LAYER COMPOSITE BEAM. ................................................................... 79 
FIGURE 33: FUNDAMENTAL FREQUENCY VARYING BY DIFFERENT APPLIED AXIAL FORCE AND END MOMENT 

FOR TWO-LAYER COMPOSITE BEAM. ....................................................................................................... 80 
FIGURE 34: THE SCHEMATIC OF STEEL-RUBBER-STEEL SANDWICH BEAM ..................................................... 81 
FIGURE 35: THE CONVERGENCE STUDY FOR THE TWO PROPOSED LAYER-WISE LBFEM AND LBDFE 

FORMULATIONS; FUNDAMENTAL FREQUENCY OF CANTILEVERED FML THREE-LAYER BEAM 

SUBJECTED TO AN AXIAL LOAD OF 17.5MN AND END MOMENT OF 52.5KN.M. ..................................... 84 
FIGURE 36: FUNDAMENTAL FREQUENCY VS. TENSILE FORCE AND END MOMENT FOR THE CANTILEVERED 

THREE-LAYER FML BEAM. ..................................................................................................................... 84 
FIGURE 37: FUNDAMENTAL FREQUENCY OF CANTILEVERED, PRELOADED, THREE-LAYER, UNIDIRECTIONAL 

COMPOSITE BEAM (LAYUP 1) OBTAINED FROM A 5-ELEMENT LBDFE MODEL, SUBJECTED TO VARIOUS 

AXIAL LOADS AND END MOMENTS. ......................................................................................................... 86 
FIGURE 38: BENDING COMPONENT OF THE FIRST FIVE MODE SHAPES OF THE CANTILEVERED, PRELOADED, 

THREE-LAYER, UNIDIRECTIONAL COMPOSITE BEAM (LAYUP1) OBTAINED USING A 20-ELEMENT LBDFE 

MODEL, SUBJECTED TO AN AXIAL LOAD OF 1.85MN AND END MOMENT OF  6.14MN.M. ...................... 87 
FIGURE 39: TORSION COMPONENT OF THE FIRST FIVE MODE SHAPES OF THE CANTILEVERED, PRELOADED, 

THREE-LAYER, UNIDIRECTIONAL COMPOSITE BEAM (LAYUP1) OBTAINED USING A 20-ELEMENT LBDFE 

MODEL, SUBJECTED TO AN AXIAL LOAD OF 1.85MN AND END MOMENT OF  6.14MN.M. ...................... 88 
FIGURE 40: GEOMETRY AND COORDINATE SYSTEM OF THE MODEL ............................................................... 91 
FIGURE 41: POSITIVE DIRECTION OF FIBER ANGLE ....................................................................................... 100 
FIGURE 42: ERROR VERSUS THE NUMBER OF ELEMENTS FOR FIRST FIVE NATURAL FREQUENCIES (PERCENT 

ERROR IS RELATIVE TO THE EXACT VALUES OBTAINED FROM THE DSM [26]. .................................... 102 
FIGURE 43: VARIATION OF FIRST NATURAL FREQUENCY VS. AXIAL COMPRESSIVE FORCE FOR FEM AND 

DFE WITH MZZ=18.5MN.M AND K=0.1143 NM2. .................................................................................. 103 
FIGURE 44: VARIATION OF NATURAL FREQUENCIES WITH GLASS-EPOXY COMPOSITE PLY ANGLE, USING A 5-

ELEMENT DFE MODEL WITH MZZ=6.14 MN.M, P=1.23 MN AND K=0.1143 NM2. ................................ 104 
FIGURE 45: BUCKLING ANALYSIS FOR SINGLE LAYER GLASS-EPOXY COMPOSITE CANTILEVERED BEAM WITH 

FIBER ANGLE OF +15˚, USING A 5-ELEMENTS DFE MODEL. .................................................................. 105 
FIGURE 46: FIRST FIVE BENDING COMPONENTS OF MODE SHAPES USING DFE METHOD WITH MZZ=6.14 

MN.M, P=1.23 MN AND K=0.1143 NM2. ............................................................................................. 106 
FIGURE 47: FIRST FIVE TORSIONAL COMPONENTS OF MODE SHAPES USING DFE METHOD WITH MZZ=6.14 

MN.M, P=1.23 MN AND K=0.1143 NM2. ............................................................................................. 106 
FIGURE 48: THREE-LAYER FIBER-METAL LAMINATED (FML) BEAM SCHEMATIC ...................................... 107 
FIGURE 49: VARIATION OF FIRST NATURAL FREQUENCY VS. AXIAL COMPRESSIVE FORCE FOR THREE LAYER 

GLASS-EPOXY AND ALUMINIUM SANDWICH BEAM USING 5-ELEMENT DFE AND FEM MODELS WITH 

MZZ=18.5 MN.M. ................................................................................................................................... 108 
FIGURE 50: BUCKLING ANALYSIS FOR THREE LAYER GLASS-EPOXY AND ALUMINIUM SANDWICH 

CANTILEVERED BEAM USING 5-ELEMENT DFE. ................................................................................... 109 
FIGURE 51: SCHEMATIC OF A BEAM WITH SINGLE DELAMINATION UNDER AXIAL LOAD AND END MOMENT

 .............................................................................................................................................................. 112 



xii 
 

FIGURE 52: CONVERGENCE ANALYSIS FOR CLAMPED–CLAMPED ISOTROPIC BEAM, WITH P=0, MZZ =0, 
H2/H=0.3, AND L2/L=0.4. ..................................................................................................................... 125 

FIGURE 53: FUNDAMENTAL NATURAL FREQUENCY Λ2 OF AN ISOTROPIC HOMOGENEOUS BEAM WITH 

CLAMPED-CLAMPED BOUNDARY CONDITION, MZZ/MB=0.4 AND CENTRAL DELAMINATION LOCATED IN 

MID-PLANE H2/H=0.5, VERSUS NORMALIZED AXIAL FORCE IN ‘FREE MODE’ MODEL FOR DIFFERENT 

VALUES OF L2/L. ................................................................................................................................... 128 
FIGURE 54: VARIATION OF THE FIRST AND SECOND NATURAL FREQUENCIES (Λ2) WITH RESPECT TO 

NORMALIZED BUCKLING LOAD P/PCR FOR H2/H=0.3, MZZ/MB=0.4 AND DIFFERENT VALUES OF L2/L. .. 129 
FIGURE 55: TREND OF CHANGE IN FUNDAMENTAL NATURAL FREQUENCIES (Λ2) WITH RESPECT TO 

NORMALIZED BUCKLING LOAD P/PCR FOR BOTH CONSTRAINED AND FREE MODES WITH H2/H=0.5, 
MZZ/MB=0.4 AND DIFFERENT VALUES OF L2/L. ...................................................................................... 130 

FIGURE 56: FUNDAMENTAL NATURAL FREQUENCIES (Λ2) WITH RESPECT TO NORMALIZED APPLIED END 

MOMENT MZZ/MB FOR BOTH CONSTRAINED AND FREE MODES WITH H2/H=0.5, P/PCR=0.4 AND 

DIFFERENT VALUES OF L2/L. ................................................................................................................. 131 
FIGURE 57: THE FIRST OPENING MODE SHAPE FOR A DELAMINATED BEAM WITH A CENTRAL DELAMINATION 

ON THE MID-PLANE USING ‘FREE MODE’ MODEL. ................................................................................. 131 
FIGURE 58: FIRST AND SECOND NATURAL FREQUENCIES (Λ2) VERSUS NORMALIZED BUCKLING LOAD P/PCR 

FOR H2/H=0.3, MZZ/MB=0.4 AND DIFFERENT VALUES OF L2/L USING DFE METHOD. ............................ 133 
FIGURE 59: PERCENTAGE OF FUNDAMENTAL NATURAL FREQUENCY ERROR FOR DFE AND FEM WITH 

MZZ=6.14MN.M AND P=1.23MN USING 5 ELEMENTS INCLUDING THE FOUR DIFFERENT CASES WITH 

CANTILEVER BOUNDARY CONDITION. .................................................................................................. 137 
FIGURE 60: PERCENTAGE OF ERROR FOR CANTILEVER STEEL BEAM WITH P=1.23MN AND MZZ=0 USING 5 

ELEMENTS. ............................................................................................................................................ 137 
FIGURE 61: DIFFERENCE OF LBDFE AND LBFEM METHODS, USING 5 ELEMENTS, WITH EXPERIMENTAL 

RESULTS FOR FUNDAMENTAL NATURAL FREQUENCY OF STEEL-RUBBER-STEEL SANDWICH BEAM [101].
 .............................................................................................................................................................. 138 

 

  



xiii 
 

Nomenclature 

 Stiffness Matrix 

 Mass Matrix 

A  Beam cross-sectional area (m2) 

b Beam width (m) 

E Young's modulus (N/m2) 

F  Horizontal component of shear force (N) 

G  Shear modulus (Pa) 

H Height of the beam (m) 

 I Second area moment of inertia (m4) 

 Mass moment of Inertia per unit length 

IP  Polar moment of inertia per unit length 

J  Torsional constant (m4) 

K Material coupled bending-torsion stiffness (N/m) 

L Length of the beam (m) 

l  Element length (m) 

M(x)  Moment function  

Mb  Critical buckling moment (N.m) 

Mzz  Applied end moment (N.m) 

m Mass per unit length (ρ.A) 

Nf  Flexural shape function 

 Torsional shape function 

 K

 M

I

tN



xiv 
 

P   Static axial force (N) 

Pt   Perturbed axial force (N) 

Pcr  Critical buckling load (N) 

S  Vertical component of shear force (N) 

S(x)  Shear force function  

Sf           Transverse shear force (N) 

t  Time (s) 

W  Amplitude of bending displacement (m) 

WINT
 Internal virtual work 

WEXT External virtual work 

 Elemental work component corresponding to bending  

  Elemental work component corresponding to torsion 

w Bending displacement (m) 

x  Distance variable along the axis of beam  

 Root of characteristic Equation 

β   Root of the characteristic equation  

 Reference variable 

 Coefficient to the governing differential equation of motion for torsion 

f                   Denominator of flexural shape functions 

θ Angle of twist amplitude 

Λ  Coefficient of bending continuity equation 

Λ*  Coefficient of perturbation equation 

k
fW

k
tW



r





xv 
 

 Eigenvalue 

   Local mapping coordinate (x/l) 

 ρ  Mass density (kg/m3) 

τ   Root of the characteristic equation  

ϕ Angle of twist 

             Frequency of vibration (Hz) 

 

 

 

 

 

 







1 
 

1 Introduction 

1.1 Overview 

Vibrational analysis of beam-like structures is of great importance in aerospace engineering since 

vibration is one of the major causes of structural failure in this field and many important structures 

can be modeled as a simple beam or assemblies of beams. Based on the application of structures 

being studied, different geometries, loading and boundary conditions arise in modeling, which lead 

to a variety of different problems. A key example of these conditions is presence of pre-stress in 

structures subjected to axial force, end moment or both, which depend on its magnitude, can affect 

the dynamic behavior of structure significantly. There are many practical situations where pre-stress 

appears in the system. Helicopter and turbine blades, wing structures and rockets or missiles 

subjected to axial acceleration are some examples of these situations. End moments are commonly 

exerted on beams by the connections, which are expected to transmit various loads such as axial 

force, shear and moment between connecting members [1]. For example, welded connection 

behavior in structures is often semi-rigid with a resultant end moment upon the supporting members, 

beams, columns and plates, etc. [2], representing an example of a structure subjected to combined 

loading. Another good example of a structure subjected to combined end moment and axial force is 

a helicopter blade connected to a rotor by an inclined hinge. Other examples include, but not limited 

to, imperfect joints in beam-columns mainly used for framing or truss. 

The governing differential equations of motion for any system can be found using Euler-Lagrange 

or Hamilton's equations [3]. For the cases that beam is subjected to end moment acting about the 

vertical axis (i.e., causing the in-plane or lead-lag bending), there will be a coupling between the 

differential equations of motion governing Flexural (Bending) and Torsional (Twist) vibrations. This 
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physically means that applying a vertical force to beam, in addition to bending displacement would 

also results in some angular displacement. Similarly a torsion torque causes both angular and 

bending displacements. Some other examples of bending-torsion couplings are composite beams 

with non-zero ply angle (i.e., material coupling), beams with a cross-section that its shear and 

geometric (mass) centers are non-coincident (i.e., geometric coupling), or composite beams 

exhibiting both couplings. 

The vibrational analysis of a pre-stressed beam has been the focus of study over four decades, as 

columns and beams are continuously being used in a variety of engineering applications. Neogy and 

Murthy [4] carried out one of the earliest studies in this area and found first natural frequency of an 

axially loaded column for two different boundary conditions of pinned-pinned and clamped-

clamped. Prasad et al. [5] introduced an approximate solution using Rayleigh-Ritz principles in an 

iterative form. Gallert and Gluck [6] investigated the effect of applied axial force on the lateral 

natural frequencies of a clamped-free beam with transverse restraint. Pilkington and Carr [7] also 

introduced an approximation for non-iterative solution form of rotating bars subjected to end 

moment and axial force. Wang et al. [8] used Galerkin's formulation in their study while Tarnai [9] 

investigated lateral buckling of beams hung at both ends with the more generalized variational 

technique. However, most of these works that study either uncoupled lateral vibration or coupled 

vibration of rotating beams. Later, Jensen and Crawley [10] studied the application of frequency 

determination techniques for cases that coupling is caused by warping of composite laminate. They 

also compared the results of Rayleigh-Ritz and partial Ritz methods with their experimental results. 

Joshi and Suryanarayan [11] developed a closed-form analytical solution for vibrational analysis of 

a beam subjected to both end moment and axial load. Later, they unified their solution for different 

boundary conditions [12] and next they developed an iterative method for coupled flexural-torsional 

vibration of initially stressed beams in general [13]. Mohsin and Sadek [14] and Banerjee and Fisher 
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[15] implemented Dynamic Stiffness Matrix (DSM) method for finding natural frequencies of an 

axially loaded beam. DSM was first developed by Kolousek [16] and [17] for an Euler-Bernoulli 

beam who later published it in a text book [18]. Since then this method has been taken further by 

many researchers [19-27]. 

In the recent years, with development of computers, there is an increasing interest among researchers 

in using computational methods in structural vibration analysis mainly because experimental 

methods are expensive and analytical solutions are only applicable for simple cases. Finite Element 

Method (FEM), as the most popular computational method in structural mechanics, has been 

extensively implemented by researchers [28-34]. In FEM element matrices are developed by 

assuming fixed shape functions. Usually, because of their ease of manipulation, Hermite cubic shape 

functions are used to predict beam elements lateral deformations, and result in an approximate 

solution including mass and static stiffness matrices. In 1998, Hashemi [35] introduced a new 

Dynamic Finite Element (DFE) formulation, that bridged gap between DSM and classic FEM. DFE 

formulation is based on the same procedure as conventional FEM but instead of fixed shape 

functions it implements frequency-dependent trigonometric shape functions, which results in a 

frequency dependent stiffness matrix. Unlike DSM, DFE is applicable for all the cases that FEM is 

applicable and has much higher rate of convergence in comparison with FEM. Since its introduction, 

DFE has been used for solving various problems of beam-like structures [36-43] including a work 

by Hashemi and Richard [36], in which they found coupled bending-torsion natural frequencies of 

an axially loaded beam with DFE and compared them with those found by classic finite element, 

DSM [15], and Vlasov's theory [37]. 

In the present study, the free vibration of pre-stressed slender beams, subjected to a constant axial 

load and end moment and various boundary conditions, is examined. Based on the Euler-Bernoulli 

bending and St. Venant torsion beam theories, the differential equations governing coupled flexural-
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torsional vibrations and stability of a uniform, slender, isotropic, homogeneous, and linearly elastic 

beam, undergoing linear harmonic vibration, are first reviewed. The existing formulations are then 

briefly discussed and a conventional finite element method (FEM) is developed. Exploiting the 

MATLAB-based code, the resulting linear Eigenvalue problem is then solved to determine the 

Eigensolutions (i.e., natural frequencies and modes) of illustrative examples, exhibiting geometric 

bending-torsion coupling. Various classical boundary conditions are considered and the FEM 

frequency results are validated against those obtained from a commercial software (ANSYS) and 

the data available in the literature. A buckling analysis of the beam is also carried out to determine 

the critical buckling end moment and axial compressive force. Furthermore, the dynamic analysis of 

pre-stressed, bending-torsion coupled beams is revisited. The axially loaded beam is assumed to be 

slender, isotropic, homogeneous, and linearly elastic, exhibiting coupled flexural-torsional 

displacement caused by the end moment. Based on the Euler-Bernoulli bending and St. Venant 

torsion beam theories, the vibration and stability of such beams are explored. Using the closed-form 

solutions of the uncoupled portions of the governing equations as the basis functions of 

approximation space, the dynamic, frequency-dependent, interpolation functions are developed, 

which are then used in conjunction with the weighted residual method to develop the Dynamic Finite 

Element of the system. Having implemented the DFE in a MATLAB-based code, the resulting 

nonlinear eigenvalue problem is then solved to determine the coupled natural frequencies of 

illustrative beam examples, subjected to various boundary and load conditions. The proposed 

method is validated against limited available experimental and analytical data, those obtained from 

an in-house conventional Finite Element Method (FEM) code and FEM-based commercial software 

(ANSYS). In comparison with FEM, the DFE exhibits higher convergence rates and in the absence 

of end moment it produces exact results. Buckling analysis is also carried out to determine the critical 

end moment and compressive force for various load combinations. 
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1.2 Free vibration of layered beams 

Applications of sandwich structures continue to expand and diversify mainly because of their 

attractive characteristics, namely high strength, buckling resistance, excellent thermal and acoustical 

insulation, ease of mass production, and easy repairability [44]. Due to the many advantages 

sandwich construction offers over traditional aerospace materials, the analysis of sandwich beams 

has been investigated by a large number of authors for more than four decades. Sandwich beam 

construction can also offer energy and vibration damping when a visco-elastic core layer is used. A 

typical setup could be two aluminium, steel, or composite face layers bonded to a honeycomb, 

corrugated, foam, or viscoelastic polymer core. However, such systems are not the focus of the 

current work. 

The sandwich structure performance depends mainly on the properties of the core, adhesive, faces, 

and the geometrical shape of the core [45]. In the late 1960s, Di Taranto [45] and Mead and Marcus 

[46] performed investigation on the characteristics of viscously damped sandwich beams using 

classical methods to solve the governing differential equations of motion. In 1971, Ahmed [47] used 

FEM for a twisted sandwich beam with an elastic material as core. He compared performances of 

different formulations in determining the natural frequencies and mode shapes of different layer 

configurations. Later, more complex finite element models were developed by Baber et al. [48], 

Fasana and Marchesiello [49] and Sainsbury and Zhang [50]. Improvement on computational and 

analytical methods continued by Banerjee [51] and Howson and Zare [52], who used symbolic 

calculations to merge the coupled governing differential equations of sandwich beams and formed a 

single higher order equation, then solved it using DSM. Hashemi and his co-workers have also 

investigated the vibrations of sandwich configurations using DFE method. They used dynamic, 

frequency-dependent, trigonometric shape functions, derived from the solution of the uncoupled 
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equations to find element matrices for a three layered sandwich beam [53] and their results showed 

good agreement with those obtained from DSM [51]. They also investigated the free vibration of 

carved beams in other studies (see, e.g., [54], [55]). However, to the best of author's knowledge, the 

dynamics analysis of flexible pre-stressed sandwich beams has not been presented in the open 

literature. 

 

1.3 Free vibration of fiber-reinforced laminated composite beams 

There are many situations arising in various manufacturing sectors ranging from shipbuilding to 

aerospace, where materials or components built up in layers of composite material are used. The 

ever increasing application of such layered structural elements is primarily due to their many 

attractive features such as high specific stiffness, high specific strength, formability into complex 

shapes, longer fatigue life, designable stiffness, lighter density, good buckling resistance, corrosion 

resistance and higher strength, to name a few (see, Jones [56] and Berthelot [57], etc.). Changing the 

ply orientation and stacking sequence can lead to alteration of the composite material stiffness 

characteristics. For ply angles other than 0 and 90˚ bending and torsion deformations are coupled 

and this coupling will predominantly influencing the natural frequencies and modes shapes of free 

vibration (Hashemi and Borneman [58] and [59]). Abramovich and Livshits [60], Jaehong and Kim 

[61], Chen et al. [62] and Jung et al. [63] simplified a composite wing as a beam in their models and 

investigated the coupling between bending and torsion in free vibration using various numerical 

technics. They used numerical models based on Rayleigh-Ritz, Galerkin and Finite FEM as well as 

fixed interpolation functions to evaluate element matrices. In order to find element mass and stiffness 

matrices, FEM is commonly used as it provides a general systematic approach to formulate them. 
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Next, the natural frequencies and modes of free vibration can be found by solving the resulting linear 

eigenvalue problem from matrix form of the equations of motion. 

Modeling an isotropic metallic beam by finite element method is fairly simple but the composite 

material characteristics bring complexity to system. This complexity in addition to the time 

consuming nature of FEM models for meshing and solving the equations, have led many researchers 

into trying analytical and semi-analytical approaches for early stages of design and optimization. 

Dynamic Stiffness Matrix method can be employed to determine the free vibration response of a 

structure. The DSM was first developed by Kolousek [18] for isotropic Euler-Bernoulli beams and 

since been refined continuously. Banerjee and his partners extended this method to the vibration 

analysis of different isotropic and composite beam models. The DSM for a uniform Euler-Bernoulli 

beam was developed by Banerjee and Williams [64] and was later extended to the Timoshenko beam 

theory [26]. Banerjee [65] further extended the model to include axial force for many different 

composite beams. In all of these works, the DSM models for composite beams are based on the exact 

member theory [66], limited to simple geometries and special cases. Hashemi and his co-workers 

have also investigated the vibrations of layered composite beam configurations using DFE method 

(see, e.g., [67], [68], [58] and [59]). However, to the best of author's knowledge, the dynamics 

analysis of flexible pre-stressed composite beams has not been reported in the open literature. 

 

1.4 Delaminated and defective layered composite beams 

Despite all the advantages composite material have over their metallic/isotropic counterparts, they 

are vulnerable to a wide range of defects and damage. The most common amongst different types of 

defects that might happen during service is delamination which usually develops as a result of 

manufacturing imperfections or impact [69]. A reduction in the system's stiffness, resulting from 
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delamination, will affect certain design parameters, such as natural frequencies and modes. Natural 

frequencies decrease as a direct result of the stiffness reduction, which may cause resonance if the 

reduced frequency is close to the working frequency. It is therefore important to understand the 

influence of the delamination on the vibration characteristics of the structures. The delaminated sub-

laminate generally exhibits new vibration modes and frequencies that depend on the number, size 

and location of the delamination.  

Among several experimental methods developed to predict the onset, size and growth of 

delamination (as a failure mode in layered constructions) is the use of acoustic emission (AE) 

sensors, where different levels of amplitude signals emitted by the materials can be monitored [70]. 

Using this technique, continuous experimental monitoring of damage is possible. The acoustic 

emission has also been proven a viable and effective tool for identifying damage and distinguishing 

damage types in self-reinforced polyethylene composites [71]. More recently, further research has 

also been carried out to apply neural networks and unsupervised learning techniques to the data set 

of acoustic emission signals [72], leading to successful classification of AE patterns caused by 

different damage mechanisms in carbon-reinforced composites (delamination and matrix cracking). 

The time-domain stability of vibrating delaminated systems has also been studied and it has shown 

that time-dependent normal forces in the delaminated segments do not influence the global free 

vibration frequencies but may contribute to localized buckling [73 and 74]. Instability and critical 

dynamic forces can then be predicted, allowing for study of the onset of delamination opening. 

The vibration modelling and analysis of delaminated layered structural elements has been a topic of 

interest for many researchers. One of the earliest models for vibration analysis of composite beams 

with delamination was proposed by Kulkarni and Fredericks [75]. They investigated a one-

dimensional (1D) problem with a single delamination and considered a circular cylindrical shell with 

a circumferentially symmetric delamination crack of a small length at the middle surface. In their 
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analysis, flexural rigidity of the delamination region has been taken as the sum of the flexural 

rigidities of the delaminated layers. The frequencies computed through the presented analysis were 

found to be considerably lower than the experimental results. Ramkumar et al. [76] analyzed the 

vibration characteristics of through the width delaminated composite beams. They modeled a 

defective beam with one through-the-width delamination by simply using four Timoshenko beams 

connected at delamination edges. Natural frequencies and mode shapes were then evaluated by 

solving the system's boundary eigenvalue problem and, once again, the predicted natural frequencies 

were consistently lower than those measured experimentally. Authors attributed this discrepancy to 

the contact between the delaminated free surfaces during vibrations, suggesting that the inclusion of 

the contact effect might improve the analytical prediction. It was later discovered that the free mode 

under-predicted natural frequencies for off mid-plane delamination due to unrestricted penetration 

of the beams into each other. Wang et al. [77] developed a theoretical model to investigate the effect 

of through width split on free vibration characteristics of isotropic beams. They used the Euler beam 

theory to calculate natural frequencies by assuming that each beam segment vibrates freely without 

touching each other. However, they improved the analytical solution, found to be closer to 

experimental results, by including the coupling between flexural and axial vibrations of the 

delaminated sub-laminates. Mujumdar and Suryanarayan [78] proposed a solution for constrained 

mode to prevent opening modes predicted by Wang et al. [77]. Their solution was based on the 

assumption that the delaminated beam segments have identical transverse displacements. They 

developed a delamination model, known as the ‘constrained mode’ model to predict vibration 

behavior more accurately for off mid-plane delamination configurations. On the other hand, the 

constrained mode implementation results in additional system constraints, which increase system 

stiffness and sometimes causes over-prediction of natural frequencies. Furthermore, capturing 

opening delamination modes seen in experimental analysis [79] and [80], is not possible using the 



10 
 

constrained model. Tracy and Pardoen [81] also used the constrained model to assess the effect of 

delamination on natural frequency of symmetric laminated Euler beams containing mid-plane 

delamination. Their frequency results were compared with those obtained from experiments and the 

finite element method.  Based on both the classical and high-order shear deformation beam theories, 

Nagesh and Hanagud [82] used the finite element method to study the effects of delamination on the 

system's natural frequencies. Shen and Grady [83] performed experiments and observed the presence 

of opening modes, undetected by the constrained model. They also investigated the effects of 

delamination on the natural frequency and mode shape of composite laminated beams by using the 

Galerkin method. Stamos et al. [84] presented a delaminated composite beam model exhibiting 

coupling between longitudinal and bending motion. They also suggested an inverse method to 

determine position and size of delamination based on the degradation of the first two natural 

frequencies. Chen [85] investigated free vibrations relative to the static pre-buckled and post-

buckled states for delaminated isotropic plates using a constrained model and showed that the 

vibrational characteristics in these two states were quite different. Chen et al. [86] developed an 

analytical model for free vibration of a delaminated composite laminate in the pre-buckled state and 

presented a new constrained model, including both effects of compressive force and bending-

extension coupling. To validate their analytical model they have also performed experiments.  Della 

and Shu ( [87] and [88]) reported an analytical solution method and Erdelyi and Hashemi [89] used 

Dynamic Stiffness Matrix (DSM) and presented a FEM-based novel assembly technique [90] to 

investigate the behavior of a delaminated beam and compared their results with Wang et al. [77] and 

Lee [91]. Liu and Shu [92] implemented semi-analytical method of Joshi and Suryanarayan [12] to 

investigate the coupled vibration of a single delaminated beam subjected to static end moment and 

axial force and showed that the effects of delamination on reducing natural frequencies, critical 

buckling load and critical moment for lateral instability are aggravated by the presence of static end 
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moment. In a recent work, Szekrényes [93] performed stability analysis on axially loaded 

delaminated composite beams undergoing coupled flexural–longitudinal vibration. Timoshenko 

beam theory was first applied to solve the problem, then by reducing the model, the corresponding 

Euler–Bernoulli solution was presented, considering both free and constrained models. In addition, 

the equality of axial forces in the top and bottom beams was derived and shown in an exact way. 

Also, the continuity of the effective bending moments was related to the equilibrium equations and 

it was also concluded that delamination buckling can take place if the normal force is compressive 

in one of the half-periods of the vibration and reaches a critical value [93].  

The conventional Finite Element Method (FEM) has a long, well-established history and with the 

advent of digital computers is commonly used for structural analysis. The FEM is a general and 

systematic approach to formulate the element matrices for a given system and is easily adaptable to 

complex systems, such as non-uniform geometry, often modeled as a stepped, piecewise-uniform 

configuration. Exploiting polynomial interpolation (shape) functions, the FEM leads to constant 

element mass and stiffness matrices, and ultimately a linear eigenvalue problem from which the 

natural frequencies and modes of the system can be readily extracted. The FEM method for a single 

beam can be modified to accurately model delaminated multi-layer beams. Among others, Lee [91] 

used theory to investigate the free vibration of delaminated beams. In the recent years, layered, 

sandwich and composite elements have been integrated in certain commercial software and are used 

to analyze the vibration of composite structures. However, modelling a delaminated configuration 

in commercial software packages such as ANSYS in not straight forward and can involve 

cumbersome, complex, time-consuming and error-prone processes. It requires manual model 

creation, involving the use of, for example, Multipoint Constraint Rigid Link (ANSYS element type 

MPC-184) to enforce the displacement and slope continuity at the edges of delamination region [94]. 

Recently, Erdelyi and Hashemi used FEM, DSM and DFE to investigate the free vibration of single 
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and multiple delaminated beams (see, e.g., [89], [90] and [95]). However, to the best of author's 

knowledge, the dynamics analysis of flexible pre-stressed delaminated beams has not been reported 

in the open literature. 

 

1.5 Motivation 

 
The study of layered pre-stressed beams composed of advanced engineered materials, such as 

composites, is imperative for aerospace applications. As new materials are invented and new 

applications are introduced, analysis of these materials and new imposed conditions must follow, 

before they can be comfortably used in industry. To prevent or minimize damage to composite 

structures, investigation into behaviour of both intact and defective configurations is necessary. This 

research is focused towards the vibrational behaviour of pre-stressed defective beams subjected to 

end moment and axial force, exhibiting coupled bending-torsion behaviour. Conventional Galerkin-

type Finite Element Method (FEM) as well as frequency-dependent Dynamic Finite Element (DFE) 

formulations are developed and used to evaluate the free vibration modes and natural frequencies of 

various pre-stressed beam configurations, including isotropic, layered, and composite beams. The 

investigation is also extended to the free vibration analysis of delaminated layered beam 

configurations. 

This research is firstly motivated by the fact that the thorough information on the vibrational 

behaviour of various pre-stressed beam configurations are scarce, if not non-existing. The motivation 

for development and use of the DFE methodology in this research is that the technique has shown 

generally to have higher accuracy and convergence rates in the calculated natural frequencies and 

modes of beam structures when compared to other existing methods, and more specifically for cases 

with a higher degree of complexity (e.g., combined material and geometric coupling). The 
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development and implementation of conventional and layer-wise FEM formulations in the present 

study are to establish benchmark for comparison and validation of other methods, as well as to pave 

the road for the development of DFE formulations. The DFE has proven to be an excellent tool in 

the preliminary free vibration analysis of pre-stressed and composite beams. 

 

1.6 Objectives 

 
The general objective of this thesis is to develop and test a number of new highly convergent 

dynamic composite (frequency dependent) elements to more accurately capture the free vibrational 

response in defective layered sandwich and composite beams. The list of specific objectives 

includes:  

1) To develop the coupled differential equations of bending and torsion for pre-stressed, 

uniform, sandwich and layered composite beams from Hamilton principles. 

2) To provide FEM and DFE model for the free vibration of pre-stressed beams. 

3) To develop a novel numerical method for modeling the free vibration of pre-stressed 

sandwich and composite beams using both FEM and DFE. 

4) To introduce numerical solution for defective (delaminated) pre-stressed beams. 

5) To validate the numerical models with limited existing experimental results and those 

obtained from commercial software. 

6) To investigate the convergence rates of numerical models and introduce the most efficient 

method for predicting natural frequencies and mod shapes of free vibration. 
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1.7 Thesis organization 

In Chapter 2, the mathematical model is initiated by developing the equations of motion for a simple 

isotropic beam subjected to axial force and end moment undergoing coupled bending-torsion 

vibration. Next, Galerkin-type weighted residual formulation is applied to develop the integral form 

of these equations and to obtain FEM solution of the problem. Later, the frequency dependent shape 

functions as well as solutions of uncoupled equations are used to find DFE formulation. Further, the 

numerical results for simple uniform beams without any pre-stress effect as well as beams with only 

applied axial force are obtained after finding the optimum number of elements using the grid 

convergence study by both FEM and DFE and they are validated by comparison with existing results 

from literature. Next, the natural frequencies for beams subjected to both axial force and end moment 

are found and compared with ANSYS results or with existing literature results where available. The 

effect of increase or decrease in axial tensile or compressive force as well as end moment on the 

vibrational behavior and fundamental natural frequencies of uniform isotropic beams are also 

investigated. Finally, the results are discussed and in conclusion section and the rate of convergence 

of the two DFE and FEM methods are comparted. 

In Chapter 3, the natural frequencies of two-layered and three-layered sandwich beams subjected to 

end moment and axial force are first found using homogenization method and by finding properties 

of an equivalent single-layer beam. Next, in order to further improve the accuracy of the solution, a 

new method is implemented which considers each layer as a separated beam and then applies 

constraints for their motion. The solution has also been extended for different material and layups 

including: metal sandwich, glass-epoxy, metal-rubber-metal and GLARE. For all the cases 

numerical results are obtained using both FEM and DFE and each problem is modeled in ANSYS 

for validation purposes. Where available, the results are also compared with exact analytical solution 
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or experimental results. At the end of this Chapter, the numerical results are discussed and 

concluding remarks are made.  

Chapter 4 is dedicated to development of numerical models for free vibration analysis of pre-stressed 

composite beams with ply angle between 0º and 90º with applied axial force and end moment. The 

ply angles other than 0º and 90º create another coupling term between bending and torsion equations 

of motion in addition to the coupling term caused by end moment. This double coupling effect is 

modeled using both FEM and DFE method and the results are validated and discussed in the 

numerical test section. At the end of this chapter, a comparison between the suggested models is 

done and a discussion on the usefulness of these methods is presented.   

In Chapter 5, a mathematical model for free vibration analysis of single delaminated beams 

undergoing bending-torsion coupling is made, using traditional finite element technique as well as 

dynamic finite element method. The Galerkin weighted residual method is applied to convert the 

coupled differential equations of motion into to a discrete problem. The linear Eigenvalue problem 

resulting from the discretization along the length of the beam is solved to determine the natural 

frequencies and mode shapes of free vibration. Both ‘free mode’ and ‘constrained mode’ models are 

considered in formulation and it is shown that the continuity (both kinematic and force) conditions 

at delamination tips, in particular, play a large role in formulation of ‘free mode’ model. Current 

trends in the literature are critically examined, and insight into different types of modeling 

techniques and constraint types are introduced. In addition, the data previously available from a 

commercial finite element suite are also utilized to validate the natural frequencies of the systems 

analyzed here. Followed by, general concluding remarks on the usefulness of the presented theories. 

Finally, main contributions of this study are listed and a general conclusion is made in Chapter 6, 

considering all the presented formulations including a comparison between accuracy and 



16 
 

convergence rate of different formulations for each model. Possible future works, as natural 

extension of present study, are then introduced at the end of this chapter, followed by list of author's 

publications.  
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2 Free vibration of pre-stressed isotropic beams 

2.1 Development of governing differential equations  

Consider a linearly elastic, homogeneous, isotropic beam subjected to an end moment, Mzz, about z-

axis and an axial load, P, undergoing linear vibrations. Figure 1 depicts the schematic of the problem. 

Equations of motion for a beam subjected to axial force and end moment, and undergoing coupled 

Bending (about Y axis) and Torsion (about X axis) vibrations can be developed by defining an 

infinitesimal element (Figure 2), and by using the following assumptions: 

1. The beam is made of a linearly elastic material; 

2. The displacements are small; 

3. The stresses induced are within the limit of proportionality; 

4. The cross section of the beam has at least one axis of symmetry; 

5. The transverse cross sections of the beam remain plane during bending; 

6. The cross sectional dimensions of the beam are small compared to the span; 

7. The beam's torsional rigidity (GJ) is assumed to be very large compared with its warping 

rigidity (EГ), and ends are free to warp; i.e., state of uniform torsion. 

 

Figure 1: Schematic and coordinate system of the problem. 
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Figure 2: Infinitesimal element of a beam subjected to axial force and end moment. 

Let us replace the transverse shearing force Sf  with its components, S in the lateral direction and F 

in the longitudinal direction. Here w represents lateral displacement along z-axis, E is young 

modulus, I is the minimum second area moment of inertia of the beam's cross-sectional area (with 

respect to y-axis, in this case), Mzz is applied end moment and P is applied axial force. The density 

is represented by, ρ, and the cross-sectional area of the beam is denoted by, A. Summing the moments 

on the infinitesimal element and equating to zero gives: 

( ) ( ) ( ) ( ) sin( ) 0,zzM M M S x F w P w M            (1) 

But F(dw) being a product of two small dynamic terms is negligible. Also, δϕ is infinitesimal so 

sin(δϕ)=δϕ and as δx is also infinitesimal, this gives: 

.zz

M w
S P M

x x x

  
   

  
 (2) 

The net elastic action in the positive lateral direction is: 

( ) ,S S S S      (3) 

By using Equation 2: 
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(4) 

 

From mechanics of material one can write: 
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Using Equation 4, Expression 5 can be re-written as: 

2 2 2 2
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 (6) 

Since there are no external dynamic forces, this is the net lateral force. Applying Newton's second 

law in the lateral direction we get: 

2

2
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w
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 (7) 

By substitution of Equation 7 in 6: 

2 2 2 2 2
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 (8) 

This is the partial differential equation governing the lateral vibration of an Euler-Bernoulli beam 

subjected to axial force and end moment. For an isotropic, uniform beam this reduces to the 

following form: 

4 2 2 2

4 2 2 2
( ) 0.zz

w w w
EI P M A

x x x t

    
   
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 (9) 
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Using Newton's second law for torsion one can write: 

2

2
( ) ,PT I

t

 



 (10) 

Governing differential equation of torsional vibration can be developed following a procedure 

similar to Expressions (1 through 8), which for uniform beam can be written in the following form: 

2 2 2 2

2 2 2 2
0.P

zz P

PI w
GJ M I

x A x x t

     
   

   
 (11) 

where θ is the torsional twist about x-axis, G is shear modulus, J is torsion constant of the cross-

section, and Ip represents beam's polar moment of inertia. 

So the coupled governing differential equations for the free vibration of a uniform Euler-Bernoulli 

beam subjected to axial force and end moment are: 

0,zzEIw Pw M Aw        (12) 

0,P
zz P

PI
GJ M w I

A
          (13) 

where ()′ is derivative with respect to x (displacement) and (•) denotes derivative with respect to t 

(time). In order to separate variables t and x, harmonic motion assumption is used by following 

definitions for displacements w and θ: 

( , ) sin( ),w x t W t   (14) 

( , ) sin( ),x t t    (15) 

where ω denotes frequency. W and θ are flexural and torsion displacement amplitudes, respectively. 

Substituting equations 14 and 15, into equations 12 and 13 leads to: 

2 0,zzEIW PW M A W         (16) 

2 0.P zz PGJ PI M W I A            (17) 
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2.2 Classical finite element method (FEM) 

Using Galerkin weighted residual formulation, the integral forms of the governing differential 

equations (16, 17) are written as: 

2

0

( ) 0,
L

f zzW W EIW PW M A W dx           (18) 

2

0

( ) 0,
L

P
t zz P

PI
W GJ M W I dx

A
             (19) 

where δW and δθ are weighting functions associated with flexure and torsion, respectively. 

Performing integrations by parts twice on Equation 18 and once on Equation 19 leads to the weak 

integral form of the governing equation, written as: 

2

0

0 0

( )

[( ) ] [( ) ] 0,

L

f zz

L L

W EIW W PW W M W A W W dx

EIW PW M W EIW W

      

  

        

        

  
 

(20) 

2

0

0

( )

[( ) ] 0.

L
P

t zz P

LP

PI
W GJ M W I dx

A
PI

GJ MW
A

       

  

        

     


 

 

(21) 

 

The above expressions (20, 21) also satisfy the principle of virtual work which is: 

0,INT EXTW W W    (22) 

where for free vibrations, 

0.EXTW   (23) 

Therefore, 
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,INT f tW W W   (24) 

where ഥܹ  is total virtual work, ഥܹூே் is internal virtual work and ഥܹா௑் is external virtual work, and 

ഥܹ௙ and ഥܹ௧ denote virtual work components associated with flexure and torsion, respectively. 

Considering expressions of shear force, S(x), bending moment, M(x), and torsional torque, T(x): 

( ) ,M x EIW   (25) 

( ) ,zzS x EIW M PW      (26) 

( ) .P
zz

PI
T x GJ M W

A
       (27) 

It can be shown that for all the boundary conditions the boundary terms of equations 20 and 21 will 

be equal to zero. For example, zero displacements, 0w w  , and virtual displacements, 

0 w w     , at the clamped end (x=0) (i.e., where the displacements are imposed), and null 

resultant shear force, S(x), bending moment, M(x), and torsional moment, T(x) , at the free end (x=L), 

etc. As a result, the boundary terms in expressions 20 and 21 vanish for all boundary conditions. 

Then, the system is discretized along the beam span by a certain number of 2-node elements (see 

Figure 3) such that:  

. .

1 1
.

No ofElements No ofElementsk k k
INT f tk k

W W W W W
 

      (28) 

where k
fW  is element flexural virtual work, k

tW  is element torsional virtual work and they are with  

following expressions: 

1 2( )
j

j

xk
f zzx

W EIW W PW W M W A W W dx                  (29) 
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1 2( )
j

j

xk P
t zz Px

PI
W GJ M W I dx

A
                  (30) 

 

Figure 3: Discretized domain along the beam span. 

Using classical finite element formulation and exploiting cubic basis functions of approximation 

space for bending displacement and linear approximation for torsion displacement, the resulting 

cubic Hermite interpolation (shape) functions for bending are written in the following form [96]: 

3 2

1 3 2

2 3
( ) 1,

x x
N x

l l
    

(31) 

 

3 2

2 2

2
( ) ,

x x
N x x

l l
    

3 2

3 3 2

2 3
( ) ,

x x
N x

l l


   

3 2

4 2
( ) ,

x x
N x

l l
   

 

and the linear shape functions for torsional displacement are [96]: 

1( ) 1 ,
x

L x
l

   
(32) 

 
2 ( ) ,

x
L x

l
  

where l is the element length. Introducing the approximate flexural and torsional displacements 

expressed using interpolation functions 29 and 30 back into Expressions 20 and 21 results in the 

element matrices.  

The approximate flexural and torsional displacements are expressed as: 
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  1 2 3 4 1 1 2 2( ) N N N N W W WW Wx   , 

and,  

  1 2 1 2( ) L Lx    

The resulting element mass matrix is developed as follows: 

2 2

3 2 3

2

3

156 22 54 13
0 0

420 420 420 420

4 13 3
0 0

420 420 420

0 0
3 6[ ] ,

156 22
0

420 420

4
. 0

420

3

P P

k

P

ml ml ml ml

ml ml ml

I l I l

m
ml ml

ml
Sym

I l

 



 
 
 

 
 
 
 
 

  
 

 
 
 
 
 
 
  

 (33) 

where m represents the mass per unit length (pA). First term of bending equation will result in an 

uncoupled four by four matrix, as follows: 

3 2 3 2

2

3 2

12 6 12 6

4 6 2

[ ] .
12 6

4

bending

EI EI EI EI

l l l l
EI EI EI

l l lk
EI EI

Sym.
l l

EI

l

 
 
 

 
 

   
 
 
 
 

 (34) 

Second term of bending equation will result in the following geometric stiffness matrix, associated 

with the axial force, written as: 



25 
 

6 1 6 1

5 10 5 10
2 1

15 10 30[ ] ,
6 1

.
5 10

2

15

g

l l
l l

k P

Sym
l

l

 
 
 

  
 

   
 
 
 
 

 (35) 

and the first and second terms in the torsion equation (21) produce the following matrix: 

1 1
[ ] .

1 1
P

torsion

PIGJ
k

l Al

        
 (36) 

From third term of bending and third term of torsion equations, respectively, the bending–torsion 

and torsion–bending coupling stiffness matrices are generated (see Expressions 35 and 56 below). 

All the previous matrices are uncoupled matrices as they are generated from uncoupled terms in 

bending and torsion equations, but these latter two include coupling terms resulting from coupling 

terms in the equations. As can be seen, in the equations, coupled terms are the terms related to 

moment Mzz. This physically means that the coupling nature of vibration is a result of end moment 

and not axial force. The coupling matrices are as follows: 

1 0 1 0
[ ] ,

1 0 1 0
zz

BT

M
k

l

 
   

 (37) 

1 1

0 0
[ ] .

1 1

0 0

zz
TB

M
k

l

 
 
 
 
 
 

 (38) 

The final element stiffness matrix is sum of all the stiffness matrices: 
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3 2 3 2

2

3 2

12 6 6 12 6 6

5 10 5 10
4 2 6 2

0 0
15 10 30

0
[ ]

12 6 6
.

5 10
4 2

0
15

zz zz

P zz P

k

zz

P

M MEI P EI P EI P EI P

l l l l l l l l
EI Pl EI P EI Pl

l l l
PI M PIGJ GJ

l Al l l Alk
MEI P EI P

Sym
l l l l

EI Pl

l
PIGJ

l Al

     
 

    
    
  
  
 
 

 
 
 

  

 
(39) 

 

As the next step, the above element stiffness and mass matrices are assembled to form the global 

stiffness and mass matrices. Finally, once the boundary conditions are applied, the equations 20 and 

21 will form a linear Eigenvalue problem in the following form: 

  2 0,n nW K M W    (40) 

where K stands for the global stiffness matrix, and M is global mass matrix. This Eigenvalue problem 

is solved using a code developed in MATLAB. The code gives the natural frequencies and also 

generates mode shapes by extracting data from corresponding Eigenvectors. 

 

2.3 Finite element numerical results 

The following properties are chosen for case study. Young modulus E=200GPa, density 

ρ=7800kg/m3 (steel), beam length of 8m, width of 0.4m and depth of 0.2m. In order to optimize the 

number of elements, a convergence study (depicted in Figure 4) was first carried out. The error is 

found based on the exact values found from analytical closed form solution by Joshi and 

Suryanarayan [13]. The number of elements to have a reasonable accuracy is 40 with error less than 

0.005%. 
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Figure 4: Percentage of error versus number of elements representing the convergence rate of FEM method 

for fundamental frequency. 

 

Table 1 shows the results for the first three natural frequencies for various boundary conditions. Here 

c-f stands for clamped-free, p-p stands for pinned-pinned, c-c stands for clamped-clamped and p-c 

stands for pinned-clamped. In Table 1 there is no difference between the results as the accuracy of 

FEM using 40 elements is high for the first four natural frequencies. For the fifth natural frequency 

the error is 0.002 percent. 
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Table 1: Comparison between the analytical [97] and FEM results for the first three natural frequencies with 

P=0 and Mzz= 0. 

Boundary 

Condition 

Natural Frequencies (Hz) 

Mode 1 Mode 2 Mode 3 

Exact [97] FEM  Exact [97] FEM  Exact [97] FEM  

C - F 2.556 2.556 15.96 15.96 44.86 44.86 

C - C 16.27 16.27 44.86 44.86 87.97 87.97 

P - P 7.175 7.175 28.72 28.72 64.63 64.63 

P - C 11.21 11.21 36.36 36.36 75.61 75.61 

A pre-stressed model is also generated and analyzed using commercial software ANSYS to simulate 

the problem. SOLID-186 is used as element type, which is a 20-node element with six degree of 

freedom per node. Table 2 illustrates the comparison between 40 element-model created in ANSYS 

and FEM results for first natural frequency of cantilevered beam with three different loading 

conditions. Considering the buckling analysis that has been done, the values of these loadings are 

selected within the range of allowable axial force and end moment with reasonable intervals to 

almost cover the entire range. As can be seen from Table 1 and Table 2, FEM results are closer to 

the exact results, compared to the ANSYS simulation. This could be due to the shear and warping 

effect of the 3D element (SOLID-186) used in ANSYS that were not accounted for in the code 

developed in MATLAB based on present formulation. More details on the ANSYS model and 

geometry is presented in Appendix A. 
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Table 2: Comparison between ANSYS and FEM results of first natural frequency with cantilever boundary 

condition, for three different loading conditions. 

C-F 

End Moment 

0 (MN.m) 6.14 (MN.m) 9.21 (MN.m) 

Fundamental Frequency (Hz) 

Force 

(MN) 
ANSYS 

FEM Code 

(40 elements) 
ANSYS 

FEM Code 

(40 elements) 
ANSYS 

FEM Code 

(40 elements) 

0 2.555 2.556 2.241 2.234 1.749 1.727 

0.62 2.883 2.884 2.620 2.614 2.233 2.216 

1.23 3.168 3.169 2.939 2.934 2.614 2.600 

1.85 3.421 3.422 3.217 3.213 2.934 2.922 

 

Table 3 through Table 5 show the results for the fundamental frequency for different combinations 

of tensile force and end moment for the c-c, p-p and p-c boundary conditions, respectively. 

Table 3: Fundamental frequency for clamped-clamped boundary condition when force and end moment are 

applied. 

C-C 
End Moment (MN.m) 

0 6.14 9.21 

Force 

(MN) 
FEM Fundamental Frequency (Hz) 

0 16.266 16.141 15.984 

0.62 16.413 16.290 16.134 

1.23 16.559 16.437 16.283 

1.85 16.703 16.582 16.430 
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Table 4: Fundamental frequency for pinned-pinned boundary condition when force and moment are 

applied. 

P-P 
End Moment (MN.m) 

0 6.14  9.21 

Force (MN) FEM Fundamental Frequency (Hz) 

0 7.175 6.947 6.651 

0.62 7.440 7.220 6.935 

1.23 7.695 7.483 7.208 

1.85 7.942 7.736 7.471 

 

 

Table 5: Fundamental frequency for pinned-clamped boundary condition when force and moment are 

applied. 

P-C 
End Moment (MN.m) 

0 6.14  9.21 

Force (MN) FEM Fundamental Frequency (Hz) 

0 11.209 11.040 10.824 

0.62 11.408 11.242 11.031 

1.23 11.604 11.441 11.233 

1.85 11.796 11.636 11.432 

The critical buckling end moments and compressive forces are also determined for the cantilevered 

boundary condition and in Table 6 and Table 7 the results are shown. 
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Table 6: Critical buckling moment for cantilevered boundary condition with varying axial force. 

Force (MN) Buckling Moment (MN.m) 

-1.85 3.900 

-1.23 7.750 

-0.62 10.60 

0 12.28 

0.62 13.76 

1.23 15.57 

1.85 16.95 

 

 

 

 

 

Table 7: Critical buckling compressive force for cantilevered boundary condition with varying end moment. 

Moment (MN.m) Buckling Force (MN) 

0 -2.057 

3.07 -1.900 

6.14 -1.750 

9.21 -0.900 

 

Figure 5 through Figure 8 illustrate the variation of the fundamental frequency when both tensile 

force and end moment is acting on the beam, for various classical boundary conditions. 
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Figure 5: Variation of fundamental frequency with applied tensile force and end moment, for cantilevered 

boundary condition. 

 

 

 

Figure 6: Variation of fundamental frequency with applied tensile force and end moment, for clamped-

clamped boundary condition. 
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Figure 7: Variation of fundamental frequency when tensile force and end moment are applied for pinned-

pinned boundary condition. 

 

 

 

 

Figure 8: Variation of fundamental frequency when tensile force and end moment are applied for clamped-

pinned boundary condition. 
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Figure 9 shows the critical buckling axial force versus end moment. As can be seen, buckling force 

decreases as end moment increases. Figure 10 depicts critical buckling moment with respect to the 

change in axial force. Here as the axial compressive force decreases or tensile axial force increases 

the buckling moment increases. In this study negative sign of axial force means the force is 

compressive and positive sign means it is tensile. 

 

Figure 9: Variation of critical buckling compressive force with end moment. 

 

Figure 10: Variation of critical buckling end moment with axial force. 

In Figure 11 and Figure 12 the bending and torsion components of the first five natural modes for 

the cantilevered beam subjected to a tensile force of 1.85MN and end moment of 9.21MN.m are 
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shown, respectively. From Figure 12 it is inferred that the 4th mode shape is the first torsion dominant 

mode. 

 

Figure 11: First five FEM bending components of mode shapes. 

 
 

 

Figure 12: First five FEM torsion components of mode shapes. 
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2.4 The dynamic finite element (DFE) 

Dynamic Finite Element (DFE), as mentioned in introduction section, is an intermediate approach 

between Classic Finite Element (FEM) and Dynamic Stiffness Matrix (DSM) Methods, leading to a 

better finite element method with higher convergence rates. For this purpose, DFE implements 

frequency-dependent trigonometric shape functions from DSM and develops interpolation functions 

with averaged value parameters, if variable, over each element. In order to find the dynamic shape 

functions, the solutions of uncoupled governing differential equations are used as basis functions 

and then these frequency dependent shape functions are utilized to find the element dynamic stiffness 

matrix. In formulation development, geometric and material parameters are all assumed to be 

constant per element [41]. In what follows, the development of a new DFE formulation for the free 

vibration analysis of pre-stressed beams, subjected to combined axial force and end moment is 

presented. Starting with discretized element weak form equations from the conventional FEM (20 

and 21) repeated here: 

1 2( )
j

j

xk
f zzx

W EIW W PW W M W A W W dx                 (41) 

1 2( )
j

j

xk P
t zz Px

PI
W GJ M W I dx

A
                  (42)

two more integrations by parts will then be applied on the first two terms of the equation for flexure 

and one more integration by parts will be carried out on the first two terms of the torsion equation 

which result in the following form of the equations: 

 

1 1

1

2( )

,

j j

j j

j

j

x xk
f zzx x

x

x
EIW W EIW W

W EIW W PW W A

PW W

W W dx M W dx     





 

 

   

     

 

  
 (43) 
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1 1

1

2( )

.

j j

j j

j

j

x xpk
t p zzx x

x

p

x

PI
W GJ I dx M W dx

A

PI
GJ

A

     

 

 



       

 
   

 

 
 (44) 

Substituting, ߦ =
௫

௟
 in both equations above will results in their following non-dimensionalized form, 

written as: 

 
1 12

30 0

1

3

0

1 1 1
( )

1 1
,

k
f zzW W EI W P W A l W d M W d

l l l

EIW W EIW W PW W
l l

         

  



     

            


 

 


 (45) 

 
1 12

0 0

1

0

1 1 1
( )

1
.

pk
t p zz

p

PI
W GJ I l d M W d

l l A l

PI
GJ

l A

         

 



       

 
   

 

 


 (46) 

The interpolation functions, used to express element variables in terms of the nodal properties, are 

chosen to be evaluated in terms of the closed form solutions to the integral terms marked as (*) and 

(**), obtained respectively as:  

  1 2 3 4cos( ) sin( ) cosh( ) sinh( )W c c c c         (47) 

  5 6cos( ) sin( )c c      (48) 

Expressions 47 and 48 are used as the basis functions of approximation space. Thus, the non–nodal 

solution approximation functions, W, and θ, and the test functions, δW, and δθ, written in terms of 

generalized parameters〈ܽ〉,〈ܽߜ〉,〈ܾ〉 and 〈ܾߜ〉, are as follows: 

       ,          ,
f f

W P a W P a       (49) 



38 
 

       ,          ,
t t

P b P b         (50) 

where the basis functions are defined as: 

             
2 2 3 3

sin cosh cos sinh sin
cos ; ; ; ,

f
P

    
 

    
 


 

 (51) 

     cos ;sin / .
t

P      (52) 

with the roots, α, β, and τ, defined as: 

2 1,           ,X X  
2 2

.p

p

I l A

AGJ PI

 
 


 (53) 

and 

   2 2

1 2

4 4
,          , 

2 2

B B AC B B AC
X X

A A

     
   (54) 

where: 

2
3

,          ,          ( ).
EI P

B C ml
l l

A      
 

  (55) 

These basis function are the solutions to the characteristic equations (*) and (**). The Basis 

Functions (47) and (48) have been designed and defined as linear combinations of above-mentioned 

closed form solutions (53) and (54), such that when the roots, α, β, and τ, of the characteristic 

equations tend to zero, the resulting basis functions are similar to those of a standard beam element 

in the classical FEM, where flexure and torsion are approximated using cubic Hermite polynomials 

(31) and linear functions (32), respectively. 

Replacing the generalized parameters,〈ܽ〉, 〈ܽߜ〉, 〈ܾ〉 and 〈ܾߜ〉, in equations 45 and 46 with the nodal 

variables, 〈 ଵܹ ଵܹ
ᇱ

ଶܹ ଶܹ
ᇱ〉,  〈ߜ ଵܹ ߜ ଵܹ

ᇱ ߜ ଶܹ ߜ ଶܹ
ᇱ〉, 〈ߠଵߠଶ〉, and 〈ߠߜଵߠߜଶ〉, respectively, and re-writing 

equations 45 and 46 will result in the following Equations: 
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                     n n n nf f
W P a W P a    (56) 

                     n n n nt t
P b P b     (57) 

The matrices, ሾ ௡ܲሿ௙ and ሾ ௡ܲሿ௧, are defined as: 












































)(

)]cos()cosh([

)(

)]sin()sinh([
)cos()sin(

)(

)]sin()[sinh(

)(

)]cos()[cosh()sin(
)cos(

)(

)(
010

0001

][

3322

3322

33



















fnP  

 (58) 

 















 )sin(

)cos(

01
][ tnP  

(59) 

 

Thus expressions 56, 57 and the [Pn,f] and [Pn,t] matrices above are then combined in the following 

manner to construct nodal approximations for flexural displacement, W(ߦ), and torsion 

displacement, (ߦ)ߠ, written as: 

     1
( ) ( ) ( )n n nf ff

W P P W N W     (60) 

     1
( ) ( ) ( )n n nt tt

P P N        (61) 

In expressions 60 and 61, 〈ܰ(ߦ)〉௙ and 〈ܰ(ߦ)〉௧, are the frequency-dependent trigonometric shape 

functions for flexure and torsion, respectively. Expressions 60 and 61 can also be re-written as: 

  
( )

( ) n

W
N w


 

 
 

 
  (62) 
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where,  

1 2 3 4

1 2

( ) ( ) ( ) (0 0
[ ]

0 0 0 0

)

( ) ( )
f f f f

t t

N N N N

N N
N

   
 

 
  
 

 (63) 

and 

  ' '
1 1 1 2 2 2

T

nw W W W W   (64) 

The definitions of the frequency-dependent trigonometric shape functions for flexure, as also 

reported by [41] are as follows: 

1

( )
( ) { cos( ) cos( (1 )) cosh( ) cos( ) cosh( (1 ))

cosh( ) sin( (1 )) sinh( ) *sin( )*sinh( (1 ))},

f
f

N
D

       

       
 

        

      

 (65) 

 

 

2

1
( ) cosh( (1 )) sin( ) cosh( ) sin( (1 )) sin( )

cos( (1 )) sinh( ) cos( ) sinh( (1 )) sinh( ) ,

f
f

N
D

        

       

        

       
 (66) 

3

( )
( ) { cos( (1 )) cos( ) cosh( ) cosh( (1 )) cos( )

*cosh( ) sin( ) sinh( ) sin( ) sinh( )},

f
f

N
D

       

     
 

        

     

 
(67) 

 

 

 

4

1
( ) cosh( ) sin( ) sin( (1 )) cosh( ) sin( )

cos( ) sinh( ) sinh( (1 )) cos( ) sinh( ) .

f
f

N
D

       

      

        

       
 

 (68) 

where, 

2 2

( ) 2 (1 cos( ) cosh( )) sin( ) sinh( )fD
     


             
   

 (69) 

The trigonometric shape functions for torsion, as also presented in [35] are: 
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1

sin( )
( ) cos( ) cos( )t

t

N
D

       (70) 

2

sin(
(

)
)t

t

N
D

    (71) 

where, 

sin( )tD   (72) 

Using non-dimensionalized, element, virtual work expressions 45, 46, stating the approximate 

element displacements in terms of nodal values and the shape functions 65 through 72, the element 

dynamic (frequency-dependent) stiffness matrix is obtained. The resulting frequency-dependent, 

Dynamic element stiffness matrix, [ ( )]kK  consists of two coupled dynamic stiffness matrices, 

,[ ( )]k
BT cK   and ,[ ( )]k

TB cK  , symbolized collectively as [ ( )]k
cK  , and four uncoupled dynamic 

stiffness matrices, 1[ ( )]k
uK  , 2[ ( )]k

uK  , 3[ ( )]k
uK   and 4[ ( )]k

uK  , jointly denoted as [ ( )]k
uK  . The 

four uncoupled element stiffness matrices are as follows: 

 

' '' ' '' ' '' ' ''
1 1 1 2 1 3 1 4
' '' ' '' ' '' ' ''
2 1 2 2 2 3 2 4

' '' ' '' ' '' ' ''
3 1 3 2 3 3 3 4
' '' ' '' ' '' ' ''
4 1 4 2 4 3 4

1

1 3

0
4

[ ( )]k

f f f f f f f f

f f f f f f f f

f f f f f f f f

f f f f f f

u

f f

N N N N N N N N

N N N N N N N N

N N N N N N N N

N N N

EI
K

L

N N N N N



 
 
   
 
  

 (73) 

''' ''' ''' '''
1 1 1 2 1 3 1

1

2 3

4
''' ''' ''' '''

2 1 2 2 2 3 2 4

''' ''' ''' '''
3 1 3 2 3 3 3 4

''' ''' ''' '''
4 1 4 2 4 3 4

0
4

[ ( )]

f f f f f f f f

f f f f f f f f

f f f f f f f f

f f f f f f

k

f

u

f

N N N N N N N N

N N N N N N N N

N N N N N N N

EI
K

L N

N N N N N N N N



 
 

    
 
  

 (74) 



42 
 

' ' ' '
1 1 1 2 1 3 1 4

' ' ' '
2 1 2 2 2 3 2 4

' ' ' '
3 1 3 2 3 3 3 4

' ' ' '
4 1 4 2 4

1

3 4
0

4

3[ ( )]

f f f f f f f f

f f f f f f f f

f f f f f f f f

f f f f f f f

k

f

u

N N N N N N N N

N N N N N N N N

N N N N N N N N

N N N N N N N N

P
K

L


 
 
   
 
  

 (75) 

1

4

' '
1 1 1 2

' '
2 1 2 2 0

1
[ ( )] t t t t

t

k

t

u

t

P

t

PI
K GJ

L A

N N N N

N N N N


      
   

 (76) 

the two coupled element matrices are as follows: 

' ' ' ' ' ' ' '
1 1 1 2 1 3 1 4
' '

1

, ' ' ' ' ' '
2 1 2 2 2 3 2

0
4

[ ( )]  t f t f t f t f

t f t f t f
BT c

t f

k N N N N N N N N

N

M

N N N N N NL N
K d 

 
  

  
   (77) 

' ' ' '
1 1 1 2
' ' ' '
2 1 2 2

' ' ' '
3 1 3 2
' '

1

, 0

' '
4 1 4 2

[ ( )]  

f t f t

f t f t

f

k
TB

t f t

f t f t

c

N N N N

N N N N

N N N N

N N N

K

N

M
d

L
 

 
 
   
 
  

  
 (78) 

The element dynamic stiffness matrix [ ( )]kK  is determined by adding these six coupled and 

uncoupled sub-matrices and the global dynamic stiffness matrix [ ( )]K   is then obtained by 

assembling all the element stiffness matrices (this assembling process is done using a code developed 

in MATLAB). By applying the principle of virtual work, for arbitrary virtual displacement 〈ܷߜ௡〉, 

the resulting non-linear eigenvalue problem is obtained as follows: 

    ( ) 0 .nK U   (79) 

Applying the relevant boundary conditions, the system's natural frequencies ω, are then evaluated 

by setting the determinant of the global dynamic stiffness matrix, i.e., |K(ω)|=0. This is done by 

sweeping the frequency domain using visual inspection to find particular values of ω that produce a 

zero determinant, and mode shapes can be found by extracting data from corresponding eigenvectors 
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{Un}. Alternatively, the natural frequency can be found by any standard determinant search method, 

or Wittrick–Williams (W-W) algorithm [98]. 

 

2.5 DFE Numerical Results; Simple Beam 

In order to validate the developed DFE model, in the illustrative example cases studied below, the 

same properties as those used in the FEM examples presented earlier, are used; Young modulus 

E=200GPa, density ρ=7800kg/m3 (steel), beam length of 8m, width of 0.4m and depth of 0.2m. In 

order to optimize the number of elements, a convergence study for the 5th natural frequency is carried 

out, as depicted in Figure 13. The error is found in comparison with the exact values found from 

analytical closed form solution by Joshi and Suryanarayan [13]. A comparison between the DFE 

method and conventional FEM with regards to the efficiency in convergence is illustrated in Figure 

14. For the 5th natural frequency, the DFE method produces an error less than 0.2 percent, whereas 

FEM shows 1.3% error, compared to the exact result with just 5 elements or an error less than 0.1 

percent using 8 DFE elements and 0.3% error using the same number of FEM element, which shows 

that a specific degree of accuracy could be achieved with less number of elements using DFE. 

Table 8 through Table 11 represent the FEM and DFE results for the system's fundamental 

frequency, for different preloads and boundary conditions. As in absence of end moment the 

equations of motion are uncoupled, and as a result the DFE method in this case yields exact results. 

Therefore, for M=0, there is no difference between analytical method and DFE data. 

 



44 
 

 

Figure 13: Convergence analysis for the fifth natural frequency results, obtained from DFE method for 

cantilevered beam. 

 

 

 

Figure 14: Comparison of convergence efficiency between DFE method and conventional FEM for 

cantilevered beam, the fifth natural frequency. 
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Table 8: First natural frequencies of DFE for cantilever boundary condition. 

C-F 

End Moment (MN.m) 

0 6.14  9.21 

Fundamental Frequency (Hz) 

Force 

(MN) 

DFE  

(1 element) 

Exact 

[97] 

DFE 

(5 elements) 

FEM 

(5 elements) 

DFE 

(5 elements) 

FEM 

(5 elements) 

0 2.556 2.556 2.237 2.345 1.730 1.836 

0.62 2.884 2.884 2.617 2.710 2.219 2.327 

1.23 3.169 3.169 2.935 3.082 2.603 2.725 

1.85 3.422 3.422 3.213 3.306 2.925 3.047 

 

 
 
 
 

Table 9: First natural frequencies of DFE for clamped-clamped boundary condition. 

C-C 

End Moment (MN.m) 

0  6.14 9.21 

FEM Fundamental Frequency (Hz) 

Force 

(MN) 

DFE 

(1 element) 

Exact 

[97] 

DFE 

(5 elements) 

FEM 

(5 elements) 

DFE 

(5 elements) 

FEM 

(5 elements) 

0 16.266 16.266 16.157 16.243 16.019 16.082 

0.62 16.413 16.413 16.306 16.399 16.170 16.230 

1.23 16.559 16.559 16.451 16.530 16.316 16.386 

1.85 16.703 16.703 16.597 16.685 16.464 16.533 
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Table 10: First natural frequencies of DFE for pinned-pinned boundary condition. 

P-P 

End Moment (MN.m) 

0  6.14 9.21 

FEM Fundamental Frequency (Hz) 

Force 

(MN) 

DFE 

(1 element) 

Exact 

[97] 

DFE 

(5 element) 

FEM 

(5 elements) 

DFE 

(5 element) 

FEM 

(5 elements) 

0 7.175 7.175 6.955 7.058 6.669 6.783 

0.62 7.440 7.440 7.228 7.398 6.954 7.067 

1.23 7.695 7.695 7.488 7.552 7.223 7.370 

1.85 7.942 7.942 7.743 7.847 7.487 7.521 

  

 
 

Table 11: First natural frequencies of DFE for pinned-clamped boundary condition. 

P-C 

End Moment (MN.m) 

0 6.14  9.21 

FEM Fundamental Frequency (Hz) 

Force 

(MN) 

DFE 

(1 element) 

Exact 

[97] 

DFE 

(5 elements) 

FEM 

(5 elements) 

DFE 

(5 elements) 

FEM 

(5 elements) 

0 11.209 11.209 11.051 11.183 10.851 10.987 

0.62 11.408 11.408 11.254 11.321 11.058 11.163 

1.23 11.604 11.604 11.451 11.574 11.257 11.353 

1.85 11.796 11.796 11.646 11.724 11.456 11.556 
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In order to investigate the effect of combined axial force and end moment on the stability of beam, 

a buckling analysis is carried out. Table 12 represents the values of buckling moment for different 

applied axial forces and Table 13 shows the buckling forces for different applied end moments. 

 

Table 12: Critical buckling moment for cantilevered boundary condition with varying compressive force. 

Force (MN) 
Buckling Moment (MN.m)                   

DFE (5 element) 

-1.85 3.91 

-1.23 7.82 

-0.62 10.31 

0 12.33 

0.62 14.07 

1.23 15.59 

1.85 17.00 

 

Table 13: Critical buckling compressive force for cantilevered boundary condition with varying end 

moment. 

Moment 

(MN.m) 

Buckling Force (MN)       

DFE (5 elements) 

0 -2.06 

3.07 -1.93 

6.14 -1.55 

9.21 -0.91 

A comparison between different methods is also made for buckling loads (using 5 elements for DFE, 

5 elements for FEM, and 40 elements for ANSYS) and the results are presented in Table 14. 
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Table 14: Comparison of buckling results for different methods. 

Moment 

(N.m) 

Buckling Force (N) 

DFE FEM ANSYS 

0 707 708 698 

50 665 669 661 

100 539 551 549 

150 330 354 346 

205 0 47 35 

Figure 15 through Figure 18 are graphical representations of the results in Table 8 through Table 11. 

These figures illustrate the variation of the first fundamental frequency with tensile axial force and 

end moment. 

 

Figure 15: Variation of natural frequencies when tensile force and end moment is applied for cantilevered 

boundary condition. 
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Figure 16: Variation of natural frequencies when tensile force and end moment is applied for clamped-

clamped boundary condition. 

 

 

Figure 17: Variation of natural frequencies when tensile force and end moment is applied for pinned-
pinned boundary condition. 
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Figure 18: Variation of natural frequencies when tensile force and end moment is applied for pinned-

clamped boundary condition. 

 

Figure 19 illustrates how the critical buckling end moment varies with axial force, and Figure 20 

depicts the variation of the critical buckling compressive force with changing end moment. 

 

Figure 19: Variation of critical buckling end moment with axial force for cantilevered boundary condition. 
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Figure 20: Variation of critical buckling compressive force with end moment for cantilevered boundary 

condition. 

 
 
Figure 21 and Figure 22 show bending and torsion components of the system's first five mode 

shapes, respectively, for a cantilevered system subjected to a tensile force of 1.85MN and end 

moment of 9.21MN.m. 

For further validation, all methods are compared with the limited experimental data available in the 

open literature [99]. In this experiment, carried out in the absence of end moment, the beam is made 

of aluminium with ρ=2700 kg/m3, G=26GPa, E=70GPa, and beam dimensions are L×H×B= 

1290×75×35. It is worth mentioning that in this case, due to the absence of end moment, the two 

governing differential equations become uncoupled. As a result, and as it was mentioned earlier in 

this thesis, the DFE formulation results in exact values of the system's frequencies (within the limits 

of the theory). In other words, a 1-element DFE model becomes equivalent to the exact DSM model, 

leading to infinite natural frequencies. The results are shown in Table 15. 
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Table 15: Comparison of different methods (DFE, FEM and ANSYS models using 5 elements). 
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1962 36.0 35.9 36.1 36.1 93.1 92.8 94.0 94.1 177.0 176.2 180.3 180.5 

4022 40.0 39.9 40.1 40.1 98.9 98.5 99.8 99.8 184.0 183.3 187.7 187.7 

6671 44.5 44.3 44.6 44.6 106.6 106.3 107.4 107.4 193.9 192.2 196.5 196.7 

7750 46.4 45.3 46.5 46.5 109.6 109.4 110.5 110.6 197.6 196.8 200.9 201.2 

9810 49.5 49.4 49.6 49.6 114.9 114.7 115.7 115.6 204.4 203.8 207.4 207.4 

 

 

 

Figure 21: Bending component of mode shapes using DFE. 
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Figure 22: Torsional component of mode shapes using DFE. 

 

2.6 Discussions and Concluding remarks 

In this chapter, free vibration analysis of a pre-stressed isotropic beam was presented using 

conventional FEM and frequency dependent numerical method DFE. Later, the numerical results 

for a still beam with different loadings and boundary conditions was reported. Followed by, 

convergence tests and buckling analysis. 

For all the classical boundary conditions, using same number of elements, DFE was proven to have 

higher rate of convergence (e.g. see Figure 13). This higher rate of convergence in large scale designs 

can results in saving hours of processing time. DFE is especially advantageous at the preliminary 

design/analysis stage. For the detailed design and analysis stage, however, an elaborated FEM model 

will be a better option. Concerning buckling analysis, results show that the tensile forces increase 

the natural frequencies and stiffness of the beam while compressive forces and end moments reduces 

the natural frequencies and stiffness of the beam for all four investigated classical boundary 
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conditions. As expected, tensile axial load increases the natural beam frequencies, indicating an 

increase in the beam stiffness (see e.g. Figure 5). When the end moment is increased, the natural 

frequencies reduce, indicating a reduction in stiffness of the beam. If the end moment is held constant 

and the tensile load is increased, the natural frequencies increase indicating an increase in the beam 

stiffness. Conversely, if the tensile load is held constant and the end moment is increased, the beam 

stiffness reduces. A compressive axial load has the opposite effect and the critical buckling moment 

reduces with a progressive increase in the compressive load. 

Even though the trend of fundamental natural frequency versus axial force seems linear in Figures 

16 through 18 (for all boundary conditions except cantilevered), the curves fitted to the results are 

not linear. The linear look of the curves is due to the considered interval of axial force not being 

large enough to show the non-linear trend of the variations. However, by choosing a larger interval 

non-linear curves similar to those in Figure 15 (cantilevered beam) will be observed for all the classic 

boundary conditions. 

The coupled vibration of the beam is found to be predominantly flexural in the first few natural 

frequencies (the first four, for the case studied here) and torsion becomes predominant at higher 

natural frequencies. 
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3 Free Vibration of Pre-stressed Layered Beams 

3.1 Introduction 

In this Chapter, the free vibration of pre-stressed layered beams made of different materials, 

subjected to axial force and end moment is investigated. First, homogenization method which is a 

common method in dealing with layered beams, is introduced followed by its numerical results. 

Later, these results are used as a benchmark where both axial force and end moment are applied on 

the beam where there are no other results in open literature to be used as benchmark. Next, exploiting 

the layer-wise theory and the differential equations governing system's coupled flexural-torsional 

vibrations, a layered beam finite element is developed. The linear Eigenvalue problem resulting from 

the discretization along the length is solved to determine the Eigensolutions of two- and three-layer 

illustrative beam examples, exhibiting geometric bending-torsion coupling caused by the end 

moment, and various classical boundary conditions are investigated. The layered nature of beams 

are considered in the modeling using a novel layer-wise formulation by discretizing the beam along 

the thickness together with the method of homogenization. Natural frequencies and mode shapes 

resulting from the proposed method are found to be in good agreement with the results obtained 

from the homogenization method, and those found from FEM simulations in ANSYS. A preliminary 

stability analysis is also carried out to illustrate the effects of axial load and end moment on the 

system's stiffness and fundamental frequencies. Enforcing inter-element displacement continuity, 

the layers' matrices are then assembled through the beam thickness to form the Layered Beam Finite 

Element (LBFE) matrices. Assembly of the resulting LBFE matrices along the beam length and 

applying the boundary conditions then leads to the system's linear eigenvalue problem. The resulting 

eigenproblem is then solved to determine the natural frequencies and modes (eigensolutions) of the 

system. The application of the proposed LBFE method is demonstrated through the vibration 
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analysis of cantilevered two- and three-layer illustrative beam examples, exhibiting geometric 

bending-torsion coupling caused by the end moment. The axial load and end moment are varied and 

their effects on the beam stiffness and natural frequencies are examined.  The natural frequencies 

and mode shapes obtained from the LBFE are validated against those obtained from the 

homogenization method - Equivalent Single Layer (ESL) theory- and FEM simulations in the 

commercial software package ANSYS. The frequency results show good agreement with those 

obtained from both ESL theory and ANSYS. A preliminary stability analysis is also carried out to 

illustrate the effects of axial load and end moment on the system's stiffness and fundamental 

frequencies. The presented LBFE formulation is adaptable to many complex systems, including 

those with geometric variations, e.g., non-uniform geometry. 

A layer-wise beam DFE (LBDFE) formulation is also developed and tested against LBFE, method 

of homogenization and ANSYS. The investigated models include: two layer aluminium-steel, two 

layer glass/epoxy composite, steel-rubber-steel sandwich, fiber-metal laminate and three layer 

laminated composite beams. The frequency dependent LBDFE method is shown to have the highest 

convergence rates. Finally, in the discussions and concluding remarks section, a summary of Chapter 

3 as well as discussions on the numerical tests are presented. 

 

3.2 Method of Homogenization 

In this section, a two-layered, linearly elastic, homogeneous, isotropic slender beam subjected to two 

equal and opposite end moments, Mzz, about z-axis and an axial load, P is considered. Figure 23, 

depicts the schematic of the problem, where L, h and t stand for the beam's length, width and height, 

respectively. Homogeneous layers are considered to be made of different materials and classic 

lamination theory (CLT) [65] is implemented to find the equivalent properties of a single layer 
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equivalent beam. After finding the equivalent (i.e., apparent) properties one can then treat the 

problem as a uniform beam. The equivalent properties are found using following equations [65]: 

 

1 ,f f m mE E V V E   (80) 

2 ,f m

f m m f

E E
E

V E V E



 (81) 

12 ,f m

f m m f

G G
G

V G V G



 (82) 

12 .f f m mV V      (83) 

where  is the Poisson's ratio and indices m and f represent properties of layer 1 and layer 2 

respectively.  

 

Figure 23: Schematic and coordinate system of the problem, with axial load and end-moment applied at 

x=0, and x=L. 
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3.3 Layer-wise Formulation of Pre-stressed Layered Beams 

The differential equations governing the linear bending-torsion coupled vibrations of a pre-stressed 

single-layer beam subjected to end moment, was presented in the previous Chapter, where the 

development and application of conventional FEM and Dynamic Finite Element (DFE) formulations 

were demonstrated. In what follows, the presented theories are extended to an n-layer beam 

configuration, where each layer is, or can be readily modeled as an equivalent, homogeneous beam. 

The latter can be achieved by using the CLT briefly discussed in the previous Section (2.1). Consider 

an n-layered beam subjected to two equal and opposite end moments, Mzz, about z-axis and an axial 

load, P, loaded in the plane of greater bending rigidity, undergoing linear coupled torsion and lateral 

vibrations along z-axis. Figure 24 depicts the schematic of the problem, where L, h and t stand for 

the beam's length, width and height, respectively. Governing differential equations of motion can be 

developed by defining an infinitesimal element, and by using the following assumptions: 

1. The displacements are small; 

2. The stresses induced are within the limit of proportionality; 

3. The cross section of the beam has one axes of symmetry; 

4. The cross-sectional dimensions of the beam are small compared to the span. 

5. The transverse cross sections of the beam remain plane and normal to the neutral axis during 

bending, and  

6. The beam's torsional rigidity (GJ) is assumed to be very large compared with its warping rigidity 

(E), and ends are free to warp; i.e., state of uniform torsion.  
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Figure 24: n-layered beam, with axial load and end-moment applied at x=0 and x=L. 

Reminding from Chapter 2, Equations of motion for a prismatic Euler-Bernoulli beam (EI=constant) 

subjected to constant axial force (P) and end moment (Mzz), undergoing coupled flexural-torsional 

vibrations (caused by end moment), are as follows: 

0,zzEIw Pw M Aw        (84) 

0,P
zz P

PI
GJ M w I

A
          (85) 

where ()′, stand for derivative with respect to x and (•) denotes derivative with respect to t (time). 

With the beam's torsional rigidity (GJ) assumed to be very large compared with its warping rigidity 

(EI), and ends free to warp; i.e., state of uniform torsion. 

The Equations 84 and 85 are coupled by the end-moments, Mzz. Exploiting the simple harmonic 

motion assumption, displacements, w and θ, are written as: 
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ˆ( , ) sin( ),                      ( , ) sin( ),w x t W t x t t    


 (86-87) 

where ω denotes the frequency, W෡  and ߠ෠ are the amplitudes of flexural and torsional displacements, 

respectively. Substituting equations (86-87 into equations 84 and 85 leads to: 

2ˆˆ ˆ ˆ 0,zzEIW PW M A W         (88) 

2ˆ ˆ ˆˆ 0.P zz PGJ PI M W I A           (89) 

As there are n layers with different materials, one will have n sets of equations for the whole system, 

i.e., two for each layer and 2n equations in total, written as (i=1,2,3…,n): 

 (90) 

2
, , ,

ˆ ˆ ˆˆ 0.i i i i P i i zz i i i P i i iG J PI M W I A           (91) 

where i represent the properties, displacements and loadings of ith layer. Second moment of inertia 

and polar moment of inertia for each layer are calculated about the neutral axis of the whole (beam) 

cross section, and the applied axial load, P, and end moment, Mzz, can be written in terms of layers' 

contributions, Pi and Mzz,i, respectively, as follows: 

,
1 1

,   and .
n n

i zz zz i
i i

P P M M
 

    (92) 

Enforcing the interlayer linear continuity for lateral and torsional displacements, similar to ANSYS 

‘constraint rigid link’ element [100], the summation of n bending equations describes the bending 

equation of the whole beam and the summation of n torsion equations describes the torsion equation 

of the whole beam, resulting in the following two equations:  

E
i
I

i
Ŵ

i
'''' P

i
Ŵ

i
''M

zz ,i
̂ ''

i
 

i
A

i
 2Ŵ

i
 0,
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2
,

1 1 1 1

ˆˆ ˆ ˆ( ) ( ) ( ) ( ) 0,
n n n n

i i i zz i i i
i i i i

E I W P W M A W  
   

          (93) 

2
, , ,

1 1 1 1

ˆ ˆ ˆˆ( ) ( ) ( ) ( ) 0.
n n n n

i i i P i zz i i P i i
i i i i

G J PI M W I A    
   

          (94) 

It is worth noting that in the above expressions, (93) and (94), Ŵ and ̂  stand for the overall system's 

equivalent lateral and torsional displacements; i.e., those the entire system would undergo, if the it 

is modeled and treated as a single layer equivalent pre-stressed beam (similar to homogenization 

method). 

3.4 The Layer-wise Beam Finite Element (LBFEM) formulation 

The Galerkin method of weighted residuals is employed to develop the integral form of the above 

Expressions (93) and (94), written as: 

'''' '' '' 2
,

1 1 1 10

(( ) ( ) ( ) ( ) ) 0
L n n n n

f i i i zz i i i
i i i i

W W E I W P W M A W dx   
   

         (95) 

'' '' '' 2
, , ,

1 1 1 10

(( ) ( ) ( ) ( ) ) 0
L n n n n

t i i i P i zz i i P i i
i i i i

W G J P I M W I A dx     
   

         (96) 

where δW and δθ (i.e. weighting functions) represent the transverse and torsional virtual 

displacements, respectively. Performing integration by parts on equations 95 and 96 leads to the 

weak integral form of the governing equations, and by setting the boundary terms equal to zero based 

on the boundary conditions and definitions of shear force, bending moment and torsional torque, the 

beam is then discretized along its length, leading to the following element integral equations: 

'' '' ' ' ' ' 2
,

1 1 1 10

(( ) ( ) ( ) ( ) )
l n n n n

k
f i i i zz i i i

i i i i

W E I W W P W W M W A W W dx      
   

        (97) 
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' ' ' ' ' ' 2
, , ,0

1 1 1 1

(( ) ( ) ( ) ( ) )
n n n nlk

t i i i P i zz i i P i i
i i i i

W G J PI M W I A dx       
   

        (98) 

 

The total work satisfies the principle of virtual work (W Wf Wf  0 , with WEXT  0, for free 

vibrations), and 

W W
INT

 W k  W
f
k W

t
k

k1

No.ofElements
k1

No.ofElements  (99) 

The Layer-wise Beam FEM (LBFEM) formulation is attained by introducing linear and cubic 

Hermite polynomial interpolation functions to express the field and virtual variables (W, θ, δW and 

δθ), expressed in terms of nodal variables, subsequently introduced in expressions 97 and 98. This 

process leads to the LBFE, with through-the-thickness mass [m]k and stiffness [k]k matrices written 

as: 

[k]k  [k]k
flex
[k]

tor
k [k]k

Coupling  (100) 

where [k]k
flex and [k]k

tor are the element uncoupled flexural and torsional stiffness matrices, 

respectively, and [k]k
Coupling  is the element coupling stiffness matrix, resulting from the end moment, 

Mzz. Furthermore, each of the [k]k
flex  and  [k]k

tor  are written as: 

[k]k
flex  = [k]k

flex-Static + [k]k
flex-Geo     and    [k]k

tor= [k]k
tor-Static + [k]k

tor-Geo       (101) 

where [k]k
flex-Static and [k]k

tor-Static are the element uncoupled (constant) static flexural and torsional 

stiffness matrices respectively, and [k]k
flex-Geo  and  [k]k

tor-Geo  are the corresponding geometric 

stiffness matrices resulting from the axial load P, respectively.   

Assembly of the through-the-thickness mass [m]k and stiffness [k]k matrices along the beam length 

and the application of system boundary conditions leads to the following linear eigenvalue problem:  



63 
 

      
or     [K()]{Wn}  0,  where  K()  ([K ] 2[M ])      (102) 

where [K] and [M] are the system's (global) stiffness and mass matrices respectively, and [K(ω)] is 

the so-called system Dynamic Stiffness Matric (DSM). Finally, the system's eigenvalues (i.e., natural 

frequencies) and their corresponding eigenvectors (i.e., natural modes) are extracted by setting: 

det[K()] 0  (103) 

 

3.5 The Layer-wise Beam Dynamic Finite Element (LBDFE) 

As mentioned in the introduction Chapter, section 1.1, DFE is an intermediate approach between the 

conventional FEM and Dynamic Stiffness Matrix (DSM) Methods, with proven higher convergence 

rates. In the DFE formulation the frequency-dependent trigonometric shape functions adopted from 

DSM are used.  In order to develop the problem-specific dynamic shape functions, the solutions of 

uncoupled portions of the governing differential equations are used as the basis functions 

approximation space. The resulting frequency dependent shape functions are then utilized to find the 

element frequency dependent dynamic stiffness matrix. To this end, further integrations by parts are 

applied on the discretized (element) flexural integral Equation 97 and torsional integral Equation 98, 

leading to the following forms: 

1 1

1

2
,

1 1 1 1

1 1 1

(( ) ( ) ( ) ) ( )

( ) ( ) ( )
j

j j

j

j

j

n n n nx xk
f i i i i i zz ix x

i i i i

n n n

i i i i i
i i

x

xi

W E I W W P W W A A

W W W W

W W dx M W dx

E I E I P W W

      

  


 

   

  

      


      
 

    

  
 (104) 

   02  nn WMKW 
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 

 



   

 

       

    
 

 

 

  
 (105) 

Substituting, ߦ =
௫

௟
 in both equations above results in the non-dimensionalized element integral 

equations written as: 

  ,
1 1 1 1

1 1 1

1 12
30 0

1 1

3
0 0

1 1
( ) ( ) ( ) ( )

( ) ( (

1
)

1
)

1
)

(
n n n n

i i i i i zz i
i i i i

n n n

i i i i i
i i i

k
fW W W W l W d W d

l l l

W W W W

E I P A M

E I E I P W W
l l

        

  

   

  

     

          
   



   





 
 (106) 
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1 1 1 1
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0 0

1
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1
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)
n n n n
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tW l d W d
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G J PI I A M

G J P
l

I

l
        

 


   

 

       

    
 

   



 


 (107) 

The flexural and torsional basis functions used to develop the relevant dynamic interpolation 

functions are, respectively, the solutions to the first (uncoupled) integral terms in expressions 106 

and 107. Thus, the non–nodal solution approximation functions, W, and θ, and the test functions, 

δW, and δθ, written in terms of generalized parameters 〈ܽ〉, 〈ܽߜ〉, 〈ܾ〉 and 〈ܾߜ〉, are as follows: 

       ,          ,
f f

W P a W P a       (108-109) 

       ,          ,
t t

P b P b         (110-111) 

where the basis functions are defined as: 

             
2 2 3 3

sin cosh cos sinh sin
cos ; ; ; ,

f
P

    
 

    
 


 

 (112) 
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     cos ;sin / .
t

P      (113) 

with the roots, α, β, and τ defined as: 

2 1,     ,X X  
,
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and 

   2 2

1 2

4 4
,          , 

2 2

B B AC B B AC
X X

A A

     
   (115) 

where: 
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 
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 
  (116) 

The basis functions 112 and 113 are the solutions to the characteristic equations. When the roots, α, 

β, and τ, of the characteristic equations tend to zero, the resulting basis functions are similar to those 

of a standard beam element in the classical FEM, where flexure and torsion are approximated using 

cubic Hermite polynomials and linear functions, respectively. 

Replacing the generalized parameters, 〈ܽ〉, 〈ܽߜ〉, 〈ܾ〉 and 〈ܾߜ〉, in equations (108-109 and (110-111 

with the nodal variables, 〈 ଵܹ ଵܹ
ᇱ

ଶܹ ଶܹ
ᇱ〉, 〈ߜ ଵܹ ߜ ଵܹ

ᇱ ߜ ଶܹ ߜ ଶܹ
ᇱ〉, 〈ߠଵߠଶ〉, and 〈ߠߜଵߠߜଶ〉, respectively, 

and re-writing equations (108-109 and (110-111 will result in [41]: 

                     n n n nf f
W P a W P a  

 
(117-118) 
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                     n n n nt t
P b P b     (119-120) 

The matrices, ሾ ௡ܲሿ௙ and ሾ ௡ܲሿ௧, are defined as: 
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
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






 )sin(

)cos(

01
][ tnP  (122) 

Expressions equations (117-118), (119-120) and the [Pn,f], and [Pn,t] matrices above are combined 

in the following form to construct nodal approximations for flexural displacement, W(ߦ), and torsion 

displacement, (ߦ)ߠ. 

     1
( ) ( ) ( )n n nf ff

W P P W N W      (123) 

     1
( ) ( ) ( )n n nt tt

P P N         (124) 

In expressions 123 and 124, 〈ܰ(ߦ)〉௙ and 〈ܰ(ߦ)〉௧ are the frequency-dependent trigonometric shape 

functions for flexure and torsion, respectively. Equations 123 and 124 could be re-written as: 

  ( )

( ) n

W
N w


 
 

 
 

 (125) 

where,  
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 (126) 
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and 

  ' '
1 1 1 2 2 2

T

nw W W W W   (127) 

The definitions of the frequency-dependent trigonometric shape functions for flexure are: 
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3
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where, 

2 2

( ) 2 (1 cos( ) cosh( )) sin( ) sinh( )fD
     
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   

 (131) 

The trigonometric shape functions for torsion, as also presented in [41] are: 

1
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( ) cos( ) cos( )t
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)
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N
D

   (133) 

where, 

s in ( )tD   (134) 
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Using element integral expressions 106, 107 and the dynamic shape functions, 128 through 134, the 

element through-the-thickness Layer-wise Beam Dynamic Finite Element (LBDFE) matrix is 

obtained. The element stiffness matrix  consists of two coupled dynamic stiffness 

matrices,  and , symbolized collectively as , and four uncoupled 

dynamic stiffness matrices, , ,  and  jointly denoted as, 

. The four uncoupled element stiffness matrices are as follows: 

' '' ' '' ' '' ' ''
1 1 1 2 1 3 1 4
' '' ' '' ' '' ' ''
2 1 2 2 2 3 2 4

' '' ' '' ' '' ' ''
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The two coupled element matrices are as follows: 

' ' ' ' ' ' ' '
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The through-the-thickness element dynamic stiffness matrix [K(ω)]k is determined by adding these 

six coupled and uncoupled sub-matrices. Finally, the system's global dynamic stiffness matrix 

[K(ω)] is obtained by assembling all the through-the-thickness element matrices along the beam 

length and applying the system boundary conditions (using a code developed in MATLAB). This 

procedure, also satisfying the principle of virtual work, leads to: 

[KDFE ()]{Wn} 0  (141) 

which is solved using any standard determinant search method or Wittrick–Williams (W-W) 

algorithm [98], to obtain the eigenvalue ω and eigenmodes, {Wn} of the structure. 

 

3.6 Method of Homogenization Numerical Results 

To verify the validity of the homogenization method, a two-layer beam with length of 8 m and 

rectangular cross section is selected. The width is 0.4 m and height is 0.2 m. Layer 1 is aluminium 

with Young's modulus E=72GPa and density ρ=2800 kg/m3, and layer 2 is Steel with E=200GPa 

and ρ=7800 kg/m3. Thickness of aluminium and Steel layers are 0.0667 m and 0.1333 m, 

respectively, and the boundary conditions are clamped-free (cantilevered beam). 

In order to validate the results, the layered beam is modeled in ANSYS. The results of the code and 

ANSYS for first six natural frequencies, end moment Mzz=0, and three different values of 

compressive axial force are presented in Table 16. By increasing the axial load from 0 to 0.9 MN, 

the first natural frequency changes form 2.3 Hz to 0.56 Hz. Table 17 presents the first six natural 
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frequencies for end moment Mzz=0 and three different values of tensile axial force. Changing the 

tensile force from 0 to 0.9 MN increases the first natural frequency from 2.3 Hz to 3.11 Hz. The 

effect of end moment in absence of axial force is also investigated and the results are shown in Table 

18. Increasing the end moment from 0 to 4.5MN.m decreases the first natural frequency from 2.3 

Hz to 1.44 Hz. 

 

Table 16: First six natural frequencies for end moment Mzz=0 and different values of compressive axial 

force P. 

 P=0, Mzz=0  P=-0.3MN, Mzz=0  P=-0.6MN, Mzz=0  P=-0.9MN, Mzz=0  

 ANSYS  

20 

elements 

(Hz) 

Homog. 

FEM 5 

elements 

(Hz) 

ANSYS  

20 

elements 

(Hz) 

Homog. 

FEM 5 

elements 

(Hz) 

ANSYS  

20 

elements 

(Hz) 

Homog. 

FEM 5 

elements 

(Hz) 

ANSYS  

20 

elements 

(Hz) 

Homog. 

FEM 5 

elements 

(Hz) 

1st 2.301 2.302 1.927 1.928 1.434 1.435 0.558 0.559 

2nd 14.385 14.426 14.005 14.046 13.614 13.654 13.210 13.250 

3rd 40.124 40.393 39.804 40.073 39.481 39.750 39.156 39.425 

4th 74.474 74.705 74.540 74.699 74.601 74.694 74.672 74.688 

5th 78.693 79.155 78.534 78.853 78.374 78.551 78.214 78.247 

6th 128.370 130.850 128.080 130.559 127.780 130.267 127.490 129.975 
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Table 17: First six natural frequencies for end moment Mzz=0 and three different values of tensile axial 

force. 

 P=0.3MN, Mzz=0  P=0.6MN, Mzz=0  P=0.9MN, Mzz=0  

 ANSYS  

20 

elements 

(Hz) 

Homog. 

FEM 5 

elements 

(Hz) 

ANSYS  

20 

elements 

(Hz) 

Homog. 

FEM 5 

elements 

(Hz) 

ANSYS  

20 

elements 

(Hz) 

Homog. 

FEM 5 

elements 

(Hz) 

1st 2.610 2.611 2.876 2.878 3.113 3.114 

2nd 14.754 14.795 15.112 15.154 15.461 15.503 

3rd 40.441 40.711 40.756 41.026 41.068 41.339 

4th 74.410 74.710 74.345 74.716 74.280 74.721 

5th 78.852 79.455 79.011 79.754 79.169 80.052 

6th 128.660 131.140 128.950 131.429 129.240 131.718 

 

Table 18: First six natural frequencies for end Axial force P=0 and three different values of end moment. 

 P=0, Mzz=1.5 MN.m P=0, Mzz=3 MN.m P=0, Mzz=4.5 MN.m 

 ANSYS  

20 

elements 

(Hz) 

Homog. 

FEM 5 

elements 

(Hz) 

ANSYS  

20 

elements 

(Hz) 

Homog. 

FEM 5 

elements 

(Hz) 

ANSYS  

20 

elements 

(Hz) 

Homog. 

FEM 5 

elements 

(Hz) 

1st 2.195 2.226 1.936 1.976 1.361 1.441 

2nd 14.292 14.343 14.006 14.090 13.502 13.657 

3rd 40.010 40.322 39.664 40.108 39.070 39.749 

4th 74.770 74.706 73.426 74.710 71.739 74.716 

5th 78.693 79.087 79.416 78.885 80.181 78.546 

6th 128.330 130.784 128.220 130.586 128.030 130.256 
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In Figure 25 and Figure 26, the bending and torsion mode shapes, for first five natural frequencies 

are shown, respectively. The critical (buckling) loads are also found. In Table 19 buckling end 

moments for ten different values of axial force (tension and compression) and in Table 20 buckling 

axial force for five different values of end moment are presented. These results are also illustrated 

in Figure 27 and Figure 28. 

 
 

 

Figure 25: Bending components of the natural modes for Mzz=3MN and P=0.6MN homogenization method. 
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Figure 26: Torsion components of the natural modes for Mzz=3 MN and P=0.6 MN homogenization 

method. 

Table 19: Buckling end moments for different values of axial force homogenization method. 

Force  

(MN) 

Buckling Moment, 

(MN.m) 

-0.900 1.320 

-0.750 2.660 

-0.600 3.470 

-0.450 4.140 

-0.300 4.740 

0.000 5.690 

0.300 6.520 

0.450 6.900 

0.600 7.259 

0.750 7.610 
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Table 20: Buckling axial force for different values of end moment homogenization method. 

Moment  

(MN.m) 

Buckling Force 

(MN) 

0.000 -0.995 

1.500 -0.896 

2.250 -0.814 

3.000 -0.695 

3.750 -0.538 

 

 

 

Figure 27: Buckling axial force vs. end moment homogenization method. 
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Figure 28: Buckling end moment vs. axial load using homogenization method. 

 

3.7 Layer-wise formulation numerical tests; two-layer aluminium-steel beam  

In order to test the layer-wise theory a two-layered beam made of aluminium (E=70 GPa and 

ρ=2700kg/m3) and steel (E=200 GPa and ρ=7800 kg/m3), with 8 m length, 0.12 m width and 0.06 m 

height is considered. The thickness of steel and aluminium layers are the same and equal to 0.03 m. 

Table 21 represents the fundamental frequencies using clamped-free boundary condition for the new 

method, method of homogenization and ANSYS. For comparing the accuracy of the new method 

and method of homogenization, the ANSYS results using 20 elements are used as benchmark. 
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Table 21: Fundamental frequencies for clamped-free boundary condition. 

C-F 
End Moment 52.5 (KN.m)   

FEM Fundamental Frequency (Hz)   

Tensile Force 

(KN) 

DFE 

(5 elements) 

FEM 

(5 elements) 

Homogenization 

(5 elements) 

ANSYS 

(20 elements) 

 

0 0.306 0.308 0.313 0.306  

17.5 0.979 0.980 0.982 0.979  

34.9 1.299 1.300 1.301 1.299  

52.3 1.532 1.533 1.534 1.532  

The buckling analysis is also carried out to investigate the effect of axial force and end moment on 

the stability of beam. Figure 29 illustrate the variation of the first fundamental frequency with tensile 

axial force and end moment and Table 22 shows the variation of buckling moment with axial force 

for Mzz=52.5KN.m, P=17.5KN using DFE. 
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Figure 29: Variation of natural frequencies with tensile force and end moment for cantilevered boundary 

condition. 

 

Table 22: Variation of buckling moment with axial force for two layered Aluminium-Steel beam 

Force (KN) 
Buckling Moment (KN.m)                   

DFE (5 element) 

0 118.61 

0.62 135.33 

1.23 160.52 

1.85 183.32 
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Figure 30: Bending components of mode shapes (DFE) M=52.5 KN.m, P=17.5KN 

 

 

 

Figure 31: Torsion components of mode shapes (DFE) Moment=52.5KN.m, Force=17.5KN 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-2 0 2 4 6 8 10

N
or

m
al

iz
ed

 T
or

si
on

al
 D

is
pl

ac
em

en
t

Distance from Base of the Beam

1st

2nd

3rd

4th

5th

-1.5

-1

-0.5

0

0.5

1

1.5

-2 0 2 4 6 8 10

N
or

m
al

iz
ed

 B
en

di
ng

 D
is

pl
ac

em
en

t

Distance from Base of the Beam

1st

2nd

3rd

4th

5th



79 
 

3.8 Numerical tests; two-layer Glass/Epoxy composite beam 

Consider a uniform two-layered cantilever beam, made of unidirectional plies of glass/epoxy 

composite material, with fibre angles of +90˚ and 0˚ for layer 1 and 2 respectively. The beam has a 

length of L=0.1905 m, thickness of 3.18 mm, width of 12.7 mm and thickness of each layer is 1.59 

mm. The fibre properties include: Ef=275.6 GPa, Gf=114.8 GPa, νf=0.2, ρf=1900 Kg/m3 and matrix 

properties include: Em=2.76 GPa, Gm=1.036 GPa, νm=0.33, ρm=1600 Kg/m3 and the volume fraction 

of both layers is considered 0.8. The schematic of the problem is presented in Figure 32. The free 

vibration analysis of the system is performed using, FEM, DFE and ANSYS. 

 

 

Figure 32: The schematic of two-layer composite beam. 
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Table 23: Fundamental frequencies for clamped-free boundary condition (DFE and FEM using 5 elements 

and ANSYS using 20 elements) for two-layer composite beam (Mzz=6.14MN.m, P=1.23MN). 

Nat. Freq. [Hz] DFE FEM| ANSYS 

1st 76.45 76.51 76.42 

2nd 316.35 318.98 314.46 

3rd 758.84 763.78 755.71 

As it could also be inferred from Table 23, the DFE frequency values are in excellent agreement 

with those obtained from ANSYS and standard FEM code. Stability analysis is also carried out for 

variable axial force and end moments and the results using both FEM and DFE are in good 

agreement. Figure 33 illustrate the variation of the first fundamental frequency with tensile axial 

force and end moment for cantilever boundary condition. 

 

 

 

Figure 33: Fundamental frequency varying by different applied axial force and end moment for two-layer 

composite beam. 
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3.9 Numerical tests; steel-rubber-steel layered beam 

 
In order to validate the results of sandwich beam models with a better benchmark, an experimental 

study by Banerjee et al. [101], is selected. The schematic of the sandwich beam is shown in Figure 

34. The parameters of the steel-rubber-steel sandwich beam used in this study are as follows. 

Thicknesses are: steel (1.5 mm)–rubber (18 mm)–steel (2.4 mm), length of sandwich beam is 500 

mm and width 50 mm for each layer. Their experimental modal testing set up includes an impact 

hammer kit and an accelerometer. In all of their tests, the sandwich beam is cantilevered with one 

end fully built-in in order to prevent any displacements. The accelerometer is set at a fixed position 

which is considered as the reference point while the hammer impact point is changed to a number of 

points in order to create the excitation forces on the test sample, corresponding to the allowed degrees 

of freedom in their model. Banerjee et al. [101] also developed a DSM model and confirmed their 

results with experimental results. The comparison between the experimental results, DSM, LBDFE, 

LBFEM and method of homogenization are presented in Table 24. 

 

 

Figure 34: The schematic of steel-rubber-steel sandwich beam 
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Table 24: comparison between experimental results [101], DSM [101], LBDFE, LBFEM and 
homogenization methods with P=0 and Mzz=0 with cantilevered boundary condition. 

 
 
 
 
 

 

 

 

 

 

3.10 Numerical tests; fibre-metal laminated (FML) beam 

Numerical tests were performed to confirm the predictability, accuracy and practical applicability of 

the proposed methods. Both the LBFEM and LBDFE formulations were first validated using the 

numerical examples of pre-stresses single-layer beams presented Chapter 2. In what follows, free 

vibration analysis of a pre-stressed three-layered Fibre-Metal Laminated (FML) and two 

unidirectional laminated glass/epoxy composite beams is presented. 

The first numerical case is a three-layered (sandwich) Fibre-Metal Laminated (FML) beam of 

rectangular cross-section, length of 8m, width of 0.12m and 0.06 m of height (thickness).  The top 

and bottom layers are assumed to be glass epoxy composite with fiber angle of +90˚. The fibre 

properties include: Ef=275.6 GPa, Gf=114.8 GPa, νf=0.2, ρf=1900 Kg/m3 and matrix properties 

include: Em=2.76 GPa, Gm=1.036 GPa, νm=0.33, ρm=1600 Kg/m3 and the volume fraction of both 

layers is considered 0.8. The equivalent properties are found to be Ec=310 GPa and ρc=6100 kg/m3. 

The middle layer is assumed to be aluminium (EAl= 70 GPa and ρAl =2700 kg/m3).  The thickness of 

all the three FRP and Aluminium layers are the same and equal to 0.02m. Table 25 presents the 

Nat. Freq. 

No. 

LBDFE (Hz) 

(5 elements) 

LBFEM (Hz) 

(5 elements) 

Homogen. (Hz) 

(5 elements) 

Experiment 

(Hz) [101] 

DSM (Hz) 

[101] 

1 10.62 10.67 10.71 9.04 10.62 

2 33.88 36.12 38.48 29.38 33.88 

3 63.73 69.08 72.71 53.75 63.73 
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fundamental frequency of the system for clamped-free boundary condition, and various axial loads 

and end moment of 52.5KN.m, obtained from the proposed layer-wise DFE, FEM, homogenization 

method and ANSYS®. For comparison purposes, the ANSYS® results obtained using a 20-element 

model are used as benchmark. As can be observed from Table 25, excellent agreement is found 

between the LBDFE, LBFEM, and homogenization method and ANSYS® modeling results.  

 

Table 25: Fundamental frequency of pre-stressed cantilevered FML beam, subjected to various axial loads 

and end moment of 52.5KN.m. 

 

 

 

 

 

The convergence rates for the two proposed layer-wise LBFEM and LBDFE formulations are 

compared in Figure 35,  where the DFE's rates of convergence surpassing FEM by almost a factor 

of five. An analysis is also carried out to investigate the effects of both axial force and end moment 

(combined) on the fundamental frequencies of the beam. Figure 36 illustrates the variation of the 

first natural frequency with tensile axial force and end moment using DFE method.  

 

 

 

Tensile Force 

(KN) 

LBDFE 

(5 elements) 

LBFEM 

(5 elements) 

ANSYS® 

(20 elements) 

Homogenization 

(5 elements) 

0 0.254 0.258 0.254 0.260 

17.5 0.941 0.945 0.938 0.948 

34.9 1.251 1.254 1.249 1.259 

52.3 1.508 1.511 1.502 1.514 
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Figure 35: The convergence study for the two proposed layer-wise LBFEM and LBDFE formulations; 

fundamental frequency of cantilevered FML three-layer beam subjected to an axial load of 17.5MN and end 

moment of 52.5KN.m. 

 
 

 

Figure 36: Fundamental frequency vs. tensile force and end moment for the cantilevered three-layer FML 

beam. 
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3.11 Numerical tests; three-layered laminated composite beam 

In what follows, two cantilevered uniform three-layered composite beams made of unidirectional 

plies of glass/epoxy composite material, with fiber angles 0˚/+90˚/0˚ (layup 1) and +90˚/0˚/+90˚ 

(layup 2) are investigated.  The beams have a length of L=0.1905 m, total thickness of 3.18 mm, 

width of 12.7 mm, and thickness of all three layers are equal. The fiber properties include: Ef=275.6 

GPa, Gf=114.8 GPa, νf=0.2, ρf=1900 Kg/m3 and matrix properties include: Em=2.76 GPa, Gm=1.036 

GPa, νm=0.33, ρm=1600 Kg/m3 and the volume fraction of both layers is considered 0.8. The free 

vibration analysis of the system is performed using both LBFEM and LBDFE methods as well as 

ANSYS®. The first three natural frequencies of laminated composite beams are shown in Table 26.  

Table 26: First three natural frequencies of cantilevered, preloaded, three-layer, unidirectional composite 

beams (Layups 1 and 2) obtained from 5-element LBDFE and LBFEM, and 20-element ANSYS® models, 

subjected to an axial load of 1.85MN and end moment of  6.14MN.m. 

Nat. Freq. 

[Hz] 

LBDFE 

(5 Elements) 

LBFEM 

(5 Elements) 

ANSYS® 

(20 Elements) 

 layup 1 layup 2 layup 1 layup 2 layup 1 layup 2 

1st 79.84 72.35 79.90 72.42 79.84 72.35 

2nd 328.05 299.75 342.62 312.04 326.91 298.73 

3rd 765.28 736.82 790.48 754.44 757.86 729.74 

 

Based on the frequency results presented in Table 26, the LBDFE frequency values for both layups 

are in excellent agreement with those obtained from ANSYS® and LBFEM, with the DFE's rates of 

convergence surpassing FEM. As can be observed from Table 26, for the fundamental frequency the 

LBDFE and ANSYS® results match perfectly, whereas the LBFEM shows a minor difference of less 

than 0.1%. As expected, as the frequency number increases, the difference between the presented 
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methods and ANSYS® data increases. Finally, the maximum difference between the LBDFE and 

ANSYS® results (for the 3rd frequency) is less than 1%, whereas the LBFEM shows a larger 

difference of 3.3%. 

A study is also carried out to find the variation of system's natural frequencies in terms of axial load 

and end moment. Variation of the fundamental frequency of cantilevered, preloaded, three-layer, 

unidirectional composite beam (Layup1) obtained from a 5-element LBDFE model, subjected to 

various axial loads and end moments is presented in Figure 37. As can be observed, when the axial 

force is increased, the natural frequency decreases. However, as the end moment is increased, the 

system's frequency decreases. 

 

 

Figure 37: Fundamental frequency of cantilevered, preloaded, three-layer, unidirectional composite beam 

(Layup 1) obtained from a 5-element LBDFE model, subjected to various axial loads and end moments. 

 

Figure 38 and Figure 39, respectively, show bending and torsional components of the first five mode 

shapes of the cantilevered, preloaded, three-layer, unidirectional composite beam (Layup1) obtained 

using a 20-element LBDFE model, subjected to an axial load of 1.85MN and end moment of  
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6.14MN.m.  As it can be seen, the first three and fifth modes are predominantly bending with slight 

influence of torsion, whereas the third mode has a predominant torsional character. 

 

 

Figure 38: Bending component of the first five mode shapes of the cantilevered, preloaded, three-layer, 

unidirectional composite beam (Layup1) obtained using a 20-element LBDFE model, subjected to an axial 

load of 1.85MN and end moment of  6.14MN.m. 
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Figure 39: Torsion component of the first five mode shapes of the cantilevered, preloaded, three-layer, 

unidirectional composite beam (Layup1) obtained using a 20-element LBDFE model, subjected to an axial 

load of 1.85MN and end moment of  6.14MN.m. 

 
 

3.12 Discussions and concluding remarks 

Free vibration analysis of pre-stressed sandwich and layered beams including fiber-metal and 

unidirectional composite laminates, were presented in this Chapter. Method of homogenization, 

layer-wise Finite Element and layer-wise Dynamic Finite Element models were developed and used 

for numerical vibrational analysis of different configurations of layered, sandwich and composite 

beams. The results were compared to determine the method with highest rate of convergence and 

best accuracy. Based on the results shown in Table 25 and Figure 35, the presented layer-wise FEM 

method has higher rate of convergence comparing to method of homogenization while DFE has 

higher rate of convergence comparing to FEM method which makes DFE the most efficient method. 
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for DFE method using 5 elements along the beam length is almost zero. This error for layer-wise 

FEM method using 5 elements, is around 0.64% while for method of homogenization using same 

number of longitudinal elements it is 2.24%. As expected, and with reference to Figure 37 (three-

layer unidirectional glass/epoxy composite beam, layup 1), tensile axial load increases the natural 

frequencies of the beam, indicating an increase in the stiffness of the beam. When the end moment 

is increased, the natural frequencies reduce, indicating a reduction in stiffness of the beam. If the 

end moment is held constant and the tensile load is increased, the natural frequencies increase 

indicating an increase in the beam stiffness. Conversely, if the tensile load is held constant and the 

end moment is increased, the beam stiffness reduces. Considering Figure 38 and Figure 39, the 

coupled vibration of the cantilevered three-layer, unidirectional composite beam (Layup1), is found 

to be predominantly flexural in the first few natural frequencies (the first three, for the case studied 

here) and torsion becomes predominant at a higher natural frequency starting from the fourth mode 

of vibration.  
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4 Modal analysis of laminated composite beams subjected to axial force 
and end moment 

In this Chapter the free vibration analysis of a composite beam subjected to axial force and end 

moment is presented. In addition to the material coupling between bending and torsion 

displacements caused by end moment, encountered and treated in various cases of pre-stressed beam 

configurations studied the previous Chapters, a laminated composite beam (with general fibre angle) 

is characterized by another material coupling term appearing in the equations, which in turn, brings 

more complexity to free vibration analysis of composite beams. In what follows, the equations of 

motion are introduced and the mathematical models for FEM and DFE formulations are explained, 

followed by the numerical test for validation of results and comparison between the accuracy of 

proposed methods.  

 

4.1 Finite element formulation (FEM) 

Consider a laminated composite beam of length L and solid rectangular cross-section as shown in 

Figure 40. The material bending-torsion coupling behavior usually present in composite material is 

due to the unbalanced layup. The beam is characterized by the effective (equivalent) bending 

rigidity, EI, the torsional rigidity, GJ, and the bending-torsion coupling rigidity, K (see Appendix B 

for more information on coupling rigidity). A symmetric configuration consists of symmetry of fiber 

orientations and thickness with respect to the mid-plane of the laminate. 
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Figure 40: geometry and coordinate system of the model 

 
The rigidities can be determined using classical lamination theory (CLT) [45]. Neglecting the shear, 

rotary inertia and warping effects, the Euler-Bernoulli bending and St. Venant torsion beam theories 

are used, where the flexural displacement is denoted by ( , )w x t  whereas ( , )x t  is used to denote the 

twist angle. Governing differential equations of motion of the system can be developed by defining 

an infinitesimal element and assuming linearly elastic material, small displacements, rectangular 

cross-sectional area (i.e., two axes of symmetry), with dimensions small compared to the span and 

transverse cross sections of the beam remain plane and normal to the neutral axis during bending 

(Euler-Bernoulli bending beam theory). Further, the beam’s torsional rigidity (GJ) is assumed to be 

very large compared with its warping rigidity (EI), and ends are free to warp; i.e., state of uniform 

torsion. The differential equations of motion governing the free vibration of a pre-stressed materially 

coupled bending-torsion beam, subjected to axial load and end moment, can be written as (for 

equations derivation refer to Appendix C): 

4 2 3 2 2

4 2 3 2 2
( ) 0.zz

w w w
EI P K M A

x x x x t

      
    

    
 (142) 
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2 2 3 2 2

2 2 3 2 2
0.P

zz P

PI w w
GJ K M I

x A x x x t

      
    

    
 (143) 

where x represents the distance spanning the beam and t is the time. Based on the simple harmonic 

motion assumptions, the displacements can be assumed to have a sinusoidal variation with frequency

 as: 

( , ) sin ,    and   ( , ) sinw x t W t x t t      (144) 

 

The sinusoidal variations from 144 are then substituted into equations 142 and 143 leading to: 

0zzEIW PW K M AW           (145) 

0P
zz P

PI
GJ KW M W I

A
            (146) 

Based on the Galerkin weighted residual formulation, the weak integral forms associated with the 

equations 145 and 146, obtained after a number of integrations by parts, are then written as: 

2

0

0 0

( )

[( ) ] [( ) ] 0

L

f zz

L L
zz

W EIW W PW W K W M W A W W dx

EIW PW K M W EIW K W

        

    

           

            

  (147) 

2

0

0

( )

[( ) ] 0

L
P

t zz P

LP
zz

PI
W GJ KW M W I dx

A
PI

GJ KW M W
A

        

  

           

       


 (148) 

Both Field variable (solution) and test weighting functions are defined in the same approximation 

space and appropriate boundary conditions are imposed at beam extremities, 0  .x L   For example, 

zero displacements, 0W W    , and virtual displacements, 0,W W      at the clamped 

end (x=0) (i.e., where the displacements are imposed), and null resultant shear force, S(x), bending 

moment, M(x), and twisting moment T(x) at the free end (x=L), etc. Here, we have: 


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( )M x EIW K     (149) 

( ) zzS x EIW K M PW         (150) 

( ) P
zz

PI
T x GJ KW M W

A
         (151) 

Consequently, the bracketed boundary terms in the integral expressions 147 and 148 will disappear. 

It can also be verified that the same is true regardless of the type of boundary conditions. Expressions 

147 and 148 also satisfy the Principle of Virtual Work (PVW): 

0INT EXTW W W     (152) 

where 

,INT f tW W W   (153) 

and 0,EXTW   for free vibrations.  Then, the system is discretized along the beam span such that:  

Number of Elements Number of Elements

1 1

,k k k
INT f t

k k

W W W W W
 

      (154) 

where the bending contribution into the elemental virtual work is obtained as: 

 1 2j

j

xk
f zzx

W EIW W PW W K W M W A W W dx                      (155) 

and the torsion contribution is: 

1 2j

j

xk P
t zz Px

PI
W GJ KW M W I dx

A
                      

   (156) 

Each element is defined by nodes j and j+1 with corresponding coordinates and its length, l, where 

primes denote differentiation with respect to span wise Position x. 

The field and virtual variables, W, θ, δW and δθ, are then expressed in terms of nodal variables using 

the polynomial interpolation functions, and are subsequently introduced in expressions (155, 156). 
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This process leads to the Pre-stressed Composite Beam Finite Element (PCBFE) mass, [m]k, and 

stiffness, [k]k, matrices written as: 

[k]k = [k] k
Uncoupled + + [k]k

P-Geometric + [k]k
M-Coupling + [k]k

G-Coupling + [k]k
M-Geometric ,          (157) 

where: 

[k] k
Uncoupled is the conventional static flexural and torsional stiffness matrices evaluated from the first 

terms, in expressions (155, 156), respectively,  

[k]k
P-Geometric is the geometric stiffness matrix [80], caused by the axial force, P (2nd terms), 

[k]k
M-Coupling is the (Bending-Torsion and Torsion-Bending) material coupling stiffness matrices [47] 

resulting from the third terms including K factor, 

[k]k
G-Coupling is the (Bending-Torsion and Torsion-Bending) geometric coupling stiffness matrices 

[80] caused by the end moment, Mzz, and evaluated from the third terms, and lastly 

[m]k, element mass matrix, is evaluated from the last terms in integral expressions (155,156).  

Finally, assembly of the element matrices, [k]k and [m]k, and the application of the system's boundary 

conditions leads to the following linear eigenvalue problem: 

     2 0,n nW K M U    (158) 

where [K] stands for the global stiffness matrix, [M] is global mass matrix, and <δWn> represents 

the vector of arbitrary virtual displacements. The nontrivial solution to the linear Eigenvalue problem 

(158) is then obtained by setting the determinant of the system's so-called dynamic stiffness matrix 

(DSM), [K(ω)], to zero; i.e., 0)]([ det  ;0])[]det([ 2   KMK . 

The above FEM formulation and modelling, consisting of the assembly of element matrices, 

application of the system's boundary conditions, and solution of the resulting eigenproblem is carried 

on using a code developed in MATLAB. The code gives the natural frequencies and also generates 

mode shapes for pre-stressed doubly coupled (material and geometric) beams by extracting data 
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from corresponding eigenvectors. The linear eigenproblem (158) can be solved using an inverse 

iteration procedure, subspace or Lanczos Method [41]. In this study, however, “eig” function in 

MATLAB was used to extract the natural frequencies and mode shapes of example problems. 

 

4.2 Dynamic finite element (DFE) formulation 

Alternatively, a Dynamic (frequency-dependent) Finite Element (DFE) formulation can be 

developed to analyze the free vibrations of the system at hand. In general, the DFE and FEM methods 

follow the same formulation that means the DFE approach starts with Galerkin weak formulation 

and integral form of equations, followed by the same integrations by parts to satisfy the natural 

(force) boundary conditions which results in Eqs. (155,156). The major difference between the two 

methods is the basis functions from which the shape functions are calculated.  In the classic FEM, 

the cubic and linear polynomials shape functions are used for flexural and torsional displacements, 

respectively, which are the solutions of static deformation of a linear elastic beam. In the DFE, 

however, the solutions of the differential equations governing the uncoupled bending and torsion 

beam vibrations are chosen as the basis functions of approximation space, <P(ξ)>f and <P(ξ)>t , 

leading to frequency dependent shape functions obtained with averaged value parameters over each 

element, where applicable; i.e., when the system's mechanical, and/or geometric, and/or material 

parameters are not constant. Therefore, the DFE can be considered as an intermediate approach, in 

which the FEM is combined to the exact DSM, to obtain a better numerical model. 

In what follows, the DFE method is developed for the free vibration analysis of a pre-stressed, 

materially coupled, uniform composite beam element, where the geometric and material parameters 

are all assumed to be constant per element. The presented DFE can also be used to model the 

vibration behavior of piecewise uniform stepped composite beams. In addition, the present theory 
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can also be extended to include variable material and /or geometric parameters (e.g., tapered beam 

configurations), using the method presented by Hashemi, 1998 [19]. 

To obtain the DFE formulation, the element virtual work components Wk in expressions 155 and 156 

are written in the following equivalent form, obtained after another set of integration by parts: 

 
1 12

30 0
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1 1 1
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1 1 1
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 (159) 
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 (160) 

Then, the following non-nodal approximations (displacement functions) are introduced so that the 

integral terms (*) and (**) in the above equations vanish: 

   
   

( ) ;    ( ) ;

( ) ;    ( ) ,

f f

t t

W P a W P a

P b P b

   

    

   

   
 (161) 

where the flexural and torsional basis functions of approximation space are defined as: 

             
2 2 3 3

sin cosh cos sinh sin
cos ; ; ; ,
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 


 

 (162) 

     cos ;sin / ,
t

P      (163) 

with the roots, α, β, and τ, defined as: 

2 1,           ,X X  
2 2

.p

p

I l A

AGJ PI

 
 


 (164) 

and 
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1 2

4 4
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where: 
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l l
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 

  (166) 

The nodal approximations for element variables ( )w   and ( )  can then be rewritten as:  
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1
1 1 2 2

1
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
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   
 (167) 

Similar expressions are also written for the test functions. Expressions 166 can then be rearranged 

as:     ( ) ( ) ,
T

nW N u     where   1 1 1 2 2 2 '     ' T
nu W W W W    is the element displacements 

(i.e., degrees of freedom) and [N] represents the dynamic shape functions in matrix form as: 

1 2 3 4

1 2

( ) ( ) ( ) 0 ( ) ( ) 0
[ ]

( ) 0 0 ( ) 0 0 ( )
f f f f f

t t t

N N N N N
N

N N N

    
  

    
         

 (168) 

The four trigonometric shape functions, Ni(ω)f, pertaining to bending, and the two trigonometric 

interpolation functions, Nj(ω)t, pertaining to torsion, presented in (168) are then used to approximate 

the lateral and torsional displacements, respectively, introduced to the element integral expressions 

158 and 159, leading to element DFE matrices, written as:  

    [ ] [ ] [ ( )]k k k k
Uncoupled Coupled n nW k k U k U    (169) 

    [ ] [ ] [ ( )]k k k k
Uncoupled Coupled n nW k k U k U    (170) 

where [k(ω)]k is the DFE matrix for a pre-stressed laminated composite beam element, [k]k
Uncoupled  

stands for the uncoupled portion of the element dynamic stiffness matrix, including the axial load 
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effect, resulting from the boundary (bracketed) terms in (158, 159), and [k]k
Cncoupled  represents the 

element’s coupling matrix which, in turn, consist of two parts, written as:   

[k]k
Cncoupled  = [k]k

M-Cncoupled  + [k]k
G-Cncoupled ,                 (171) 

 

[k]k
M-Cncoupled is the (Bending-Torsion) material coupling dynamic stiffness matrix resulting from the 

third integral terms in (158, 159) including K factor, and 

[k]k
G-Cncoupled is the new geometric (Bending-Torsion) coupling stiffness matrix due to the end 

moment, Mzz, and evaluated from the second terms in (158, 159).  
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and, 
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The element matrices are then assembled to form the system's global dynamic stiffness matrix of the 

structure. The resulting nonlinear eigenvalue problem, found to be similar to Expression 79 from 

Chapter 2, is then solved to find the natural frequencies and modes of vibration of the system. 

 

4.3 Numerical tests 

Let us consider a uniform cantilever beam, composed of glass/epoxy composite material and made 

up of unidirectional plies and fiber angles in each ply set to +15˚ subjected to end moment and axial 

force. The positive direction for fiber angle is defined counter clockwise from positive direction of 

X axis, as shown in Figure 41. The beam is assumed to be 0.1905 m long, and 12.7 mm wide. Based 

on Appendix B, the beam can be considered equivalent to a single thick ply, with a thickness of 3.18 

mm and the following material and geometric properties are derived/considered: bending rigidity, 

EI=0.2865 Nm2; torsion rigidity, GJ=0.1891 Nm2; bending-torsion coupling rigidity, K=0.1143 
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Nm2; mass per unit length, m=0.0544 kg/m; and mass moment of inertia per unit length, and 

Iα=7.77×10-7 kg.m.  

 

Figure 41: Positive direction of fiber angle 

 

A free vibration analysis of the system is performed using FEM and DFE codes developed in 

MATLAB®, carrying out the assembly of the static (FEM) mass and stiffness and dynamic (DFE) 

matrices, application of the system's boundary conditions, and finally solving the resulting 

eigenvalue problems. There are no frequency data available in the open literature for such a pre-

stressed composite beam subjected to axial load and end moment. Therefore, both the FEM and DFE 

codes are first validated for an unstressed composite beam m (i.e., Mzz and P set to zero) reported by 

Banerjee and Williams [45], for which exact DSM reference values are available. In the DSM theory, 

the element frequency dependent stiffness matrix is developed from the closed form solution to the 

governing coupled differential equations and, therefore, are exact within the limits of the theory. The 

conventional FEM theory and the corresponding element mass and stiffness matrices, as mentioned 

in previous sections, are developed based on cubic Hermite and linear interpolation functions for 

flexural and torsional displacements, respectively. In contrast, the DFE matrices are evaluated using 
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frequency-dependent trigonometric interpolation functions derived using basis functions presented 

in (162, 163).   

The unstressed system’s first five natural frequencies evaluated from a five-element mesh modelled 

using the presented FEM and DFE formulations are presented in Table 27 along with the (exact) 

DSM data from [44].  As can be seen from Table 27, the FEM frequencies are in excellent agreement 

with the DSM values [43], with a maximum error of less than 0.4% for the fifth frequency, and an 

average error of less than 0.14%. As expected, the 5-element FEM model predicts higher natural 

frequencies than the DSM values and the error is found to increase with the mode number, except 

for the fourth natural frequency. This can be associated with the fact that, in this case, 1st, 2nd, 3rd, 

and 5th modes exhibit bending-torsion material coupling, predominated by flexural displacement, 

whereas the 4th mode is predominantly torsional; i.e., exhibiting the first torsional mode’s behavior. 

It is worth noting that all the DFE frequencies, in this case, are found to be in perfect match with the 

DSM data; i.e., 0% error. The FEM convergence test results for the unstressed beam's first five 

natural frequencies are shown in Figure 42. 

The bending-torsion coupling behaviour in this model is in part caused by the fiber angle and in part 

by the applied end moment. Depending on the end moment and fiber angle directions, these two 

coupling sources either intensify or diminish one another's effects. It is worth noting that in most of 

composite materials applications, the resulting coupling between different displacements are 

undesired.  Therefore, knowing the magnitude of the working end moment, the direction of fiber 

angle and stacking sequence can be tailored in such a way that resulting torsional displacement 

caused by the material coupling (K) is in the opposite direction of that resulting from end moment 

(Mzz), minimizing or ideally cancelling the coupling effects.   
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Table 27: Comparison of FEM and DFE natural frequency results for Mzz=0 and P=0 with the analytical 
DSM values [64]. 

Natural  
Frequency 

FEM Using 5 
Elements (Hz) 

DFE Using 5 element 
(Hz) 

Exact DSM 
(Hz) [64] 

1st 30.82 30.82 30.82 

2nd 192.87 192.72 192.72 

3rd 538.47 537.38 537.38 

4th 648.87 648.73 648.73 

5th 1053.87 1049.73 1049.73 
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Figure 42: Error versus the number of elements for first five natural frequencies (percent error is relative to 
the exact values obtained from the DSM [26]. 

 



103 
 

Once the validity of the FEM and DFE formulations for the unstressed composite beam is 

established, the vibrations of pre-stressed configurations subjected to combined axial load and end 

moment are investigated. The variation of the uniform cantilever composite beam's fundamental 

natural frequency versus axial compressive force obtained from 5-element FEM and DFE models 

for Mzz=6.14 MN.m and K=0.1143 Nm2 is shown in Figure 43. 

 

 

Figure 43: Variation of first natural frequency Vs. axial compressive force for FEM and DFE with 
Mzz=18.5MN.m and K=0.1143 Nm2. 

 
The effect of fiber angle on the vibrational behavior of the composite glass-epoxy beam is also 

investigated using a 5-element DFE model and the results are represented in Figure 44. As can be 

seen from Figure 44, at 45˚ fiber angle system exhibits the highest natural frequency, associated 

with the highest material bending-torsion coupling factor (Kmax) at this fiber angle.  
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Buckling analysis for single layer glass-epoxy beam is also carried out using a 5-element DFE 

model and the results are presented in Figure 45. As can be observed from Figure 45, at zero axial 

force, P=0, the critical (buckling) end moment is found to be MzzCr = 28.2 MN.m. An increase in 

the tensile (i.e., positive) axial force increases the critical (buckling) end moment. In contrast, 

increasing the compressive (i.e., negative) axial forces leads to a decrease in critical (buckling) end 

moment.   

 
Figure 44: Variation of Natural frequencies with glass-epoxy composite ply angle, using a 5-element DFE 

model with Mzz=6.14 MN.m, P=1.23 MN and K=0.1143 Nm2. 
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Figure 45: buckling analysis for single layer glass-epoxy composite cantilevered beam with fiber angle of 
+15˚, using a 5-elements DFE model. 

 
In Figure 46 the first five natural modes shapes for bending and in Figure 47 the first five natural 

mode shapes for torsion using DFE method with Mzz=6.14 MN.m, P=1.23 MN and K=0.1143 N.m2 

are presented. Based on results, in 1st, 2nd, 3rd and 5th natural modes the bending is predominant 

while for the 4th natural mode the torsion contribution is more considerable. 
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Figure 46: First five bending components of mode shapes using DFE method with Mzz=6.14 MN.m, P=1.23 
MN and K=0.1143 Nm2. 

 

Figure 47: First five torsional components of mode shapes using DFE method with Mzz=6.14 MN.m, 
P=1.23 MN and K=0.1143 Nm2. 
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3.2 Three-layer fiber-metal laminated (FML) beam  

In order to further investigate the applicability of the presented formulation, FEM and DFE 

approaches together with a simple layer-wise formulation are used to investigate the free vibrations 

of an illustrative example of a cantilevered pre-stressed three-layer fiber-metal laminated (FML) 

beam subjected to axial force and end moment. The FML construction at hand, also known as 

GLARE (glass-reinforced aluminum laminate), is assumed to consist of two composite face layers, 

made of glass-epoxy with +15˚ fiber angle (similar to the previous example),  and an Aluminium 

core, as shown in Figure 48. 

 

Figure 48: Three-layer Fiber-Metal Laminated (FML) beam schematic 

 
 
Similar to the composite beam in previous example, the overall beam dimensions are; thickness of 

t=3.18 mm, width of w=12.7 mm and length of the L=0.1905 m.  The Aluminium core has a mass 

density of ρ=2700 kg/m3, shear modulus of G=26GPa, and Young’s modulus of E=70GPa and 
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thickness of all the three layers are considered equal (one-third of the total thickness; t/3).  The pre-

stressed FML beam exhibits coupled bending-torsion behavior, partly caused by the fiber angle in 

the face-layer (leading to the bending-torsion coupling stiffness, K), and in part by the applied end 

moment. These two couplings, depending on their directions, either alleviate or intensify each other's 

effects.  In what follows, the simplified layer-wise formulation is briefly presented. 

The variation of first natural frequency versus axial compressive force for FEM and DFE, both using 

5 elements with Mzz=6.14 MN.m and K=0.1143 N.m2, for sandwich beam is shown in Figure 49 and 

buckling analysis results are presented in Figure 50. The regular FEM overestimation is once again 

observed in Figure 49. This is mainly due to the constraints that polynomial basis functions put into 

system. 

 

 

Figure 49: Variation of first natural frequency Vs. axial compressive force for three layer glass-epoxy and 
Aluminium sandwich beam using 5-element DFE and FEM models with Mzz=18.5 MN.m. 
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Figure 50: buckling analysis for three layer glass-epoxy and Aluminium sandwich cantilevered beam using 
5-element DFE. 

 
 

4.4 Conclusion 

The vibration of a composite beam subjected to axial force and end moment is modeled using both 

FEM and DFE methods and the results are validated with analytical DSM results. In this modeling, 

the composite nature of beam material introduces one coupling term between bending and torsion 

displacements in bending differential equation of motion and one term in the torsion differential 

equation of motion while the applied end moment creates another coupling term in each equation, 

leading to total of four coupling terms in the system of differential equations. Because of theses 

coupling terms between the two differential equations, the system has no analytical solution which 

leads us to use numerical methods for modeling purposes.  

Modeling results for the two numerical methods show that using same number of elements, DFE has 

higher rate of convergence compared to FEM method. Results also show that increase in tensile axial 

force and end moment increase the stiffness of system which leads to higher natural frequencies 

(Figure 43). All the vibration modes are coupled and include both torsion and bending components. 
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In the first three modes bending is dominant while in fourth one torsion becomes dominant (Figure 

46 and Figure 47). From Table 27 it is inferred that in absence of end moment (Mzz=0) and material 

coupling (K=0), a single-element DFE model yields same results as the DSM method. The reason 

behind this is that in absence of these coupling terms the frequency dependent stiffness matrix in 

DFE method (without discretization) results in exactly the same formulation as the DSM analytical 

solution. 

The effect of ply angle on the vibrational behavior of the composite glass-epoxy beam was 

investigated by the DFE method using 5 elements and based on Figure 44, all the first three natural 

frequencies increase from fiber angle of 0˚ to +45˚ and decrease from +45˚ to +90˚. This is justified 

by Equations A-10 to A-17 which estimates the highest rigidity for fiber angle of 45˚. 

The composite-aluminium sandwich beam compared to thick single layer composite, was show to 

have almost same stiffness and buckling resistance. Also over prediction of natural frequencies by 

FEM method was once again observed (Figure 49) and can be justified by extra constraints on 

displacements, introduced in system by polynomial basis functions.  
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5 Free vibration of pre-stressed delaminated beam 

5.1 Introduction 

In this Chapter, free vibration analysis of single delaminated beams subjected to axial force and end 

moment and exhibiting bending-torsion coupling is modeled using traditional finite element 

technique as well as DFE. The Galerkin weighted residual method is applied to convert the coupled 

differential equations of motion into to a discrete problem. The Eigenvalue problem resulting from 

the discretization along the length of the beam is solved to determine the natural frequencies and 

mode shapes of free vibration. Both ‘free mode’ and ‘constrained mode’ models are considered in 

formulation and it is shown that the continuity (both kinematic and force) conditions at delamination 

tips, in particular, play a large role in formulation of ‘free mode’ model. Current trends in the 

literature are critically examined, and insight into different types of modeling techniques and 

constraint types are introduced. In addition, the data previously available from a commercial finite 

element suite are also utilized to validate the natural frequencies of the systems analyzed here. 

Finally, general concluding remarks are made on the usefulness of the presented theories. 

 

5.2 Mathematical model 

Figure 51 shows a pre-stressed two-layer beam of length L and thickness H1 having a single through-

the-width delamination with a length L2, starting from x=x1. This delamination divides the beam into 

four segments, which are assumed to have a slenderness ratio of greater than 10 and, as a result will 

be analyzed as four interconnected Euler–Bernoulli beams. Beam segments 2 and 3 have H2 and H3 

thicknesses, respectively. The structure is subjected to axial force of P and constant end moment of 

Mzz, applied at its ends, x=0 and x=L.  
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Figure 51: Schematic of a beam with single delamination under axial load and end moment 

Assuming that each uniform beam segment is made of linearly elastic, homogeneous, isotropic 

material with constant mechanical, material and geometric properties, it can be shown that the partial 

differential equations of motion, governing free, linear, bending-torsion coupled vibrations of the ith 

Euler-Bernoulli beam segment subjected to axial force and end moment are as follows [102]: 

, 0 ( 1 4)i i i i zz i i i iEI w Pw M Aw i          (174) 

, , , 0 ( 1 4)i i i P i i zz i i i P i iGJ PI M w A I i            
(175) 

 

where w is the lateral displacement along z direction, ϕ stands for the torsional twist about x-axis, E 

is Young's modulus, G represents the shear modulus, J and Ip are, respectively, the torsion constant 

and the polar moment of inertia, and subscript i represents the beam segment's number, where 

i=1,2,3,4.  Pi
  and Mzz,i represent the components of axial force and end moment for ith beam segment, 

respectively. ()′ stand for derivative with respect to x and (•) denotes derivative with respect to t 

(time). The beam's torsional rigidity (GJ) is assumed to be very large compared with its warping 
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rigidity (E), and ends are free to warp; i.e., state of uniform torsion. As can be observed from 

equations 197 and 198, the system's bending and trorsional displacements are coupled by the end 

moment, Mzz,i. Exploiting the simple harmonic motion assumption and substituting 

( , ) sin( )i iw x t W t and ( , ) sin( )i ix t t    for lateral and torsional displacements, respectively, leads 

to: 

2
, 0 ( 1 4)i i i i zz i i i iEI W PW M A W i          (176) 

2
, , , 0 ( 1 4)i i i P i i zz i i P i i iGJ PI M W I A i            

(177) 

where ω denotes the frequency and Wi and θi are the amplitudes of flexural and torsional 

displacements, respectively, of the beam segment i.  

 

5.3 Free mode delamination model 

The ‘free mode’ delamination model assumption, unlike ‘constrained mode’, considers no constraint 

or interaction between the top and bottom layers in the delaminated zone, i.e., segments 2 and 3 ([95] 

and [88]).  The ‘Free mode’ model predicts the behavior of the beam more accurately but it also 

exhibits some physically impossible modes of vibration. In order to solve the four pairs of coupled 

equations as one system numerically, the boundary conditions at both ends of the beam and 

continuity conditions at the delamination tips are required. The continuity conditions for lateral 

deflection, slope, torsional displacement and axial force at the left delamination tip (x=x1) are 

expressed as: 

 

1 1 2 1 3 1

1 1 2 1 3 1

1 1 2 1 3 1

1 2 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

W x x W x x W x x

W x x W x x W x x

x x x x x x

P P P

  

    
      

    

 

 

(178) 

(179) 

(180) 

(181) 
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Similarly, continuity conditions for the right delamination tip are written as: 

4 2 2 2 3 2

4 2 2 2 3 2

4 2 2 2 3 2

4 2 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

W x x W x x W x x

W x x W x x W x x

x x x x x x

P P P

  
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      
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 

 

(182) 

(183) 

(184) 

(185) 

Additionally, the requirement for the delamination tip faces to remain planar after deformation, at 

the left delamination tip, results in:  

1
2 1 3 1 1 1( ) ( ) ( )

2

H
u x x u x x W x x      

where ui is the axial displacement of beam section i. Combining expression 186 with the similar 

expression from the right delamination tip leads to: 
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It was originally assumed by Mujumdar [78], and was later shown in an exact way by Szekrényes 

[93], that (for small deformations of a beam with constant material and geometric properties along 

the length of the beam) the axial displacement will behave according to the following expression: 

0

( )
( ) ( 0)

( )

iL

i i i i
i i i i i i

i i i i i

F x F L
u x L u x dx

E A x E A
      

where xi represents the local position along the length and Fi is the axial force induced in the segment 

i. Compressive force during vibration, P(x,t), is consisted of applied static axial force P and perturbed 

axial force, Pt(x,t), which is induced in the delaminated layers during vibration to prevent inter-

laminar slip. Knowing that the change in axial displacement for each segment is caused by induced 

perturbed component of axial force rather than its static component, substituting equation 188 into 

187 yields: 

P
2
t L

2

EA
2


P

3
t L

3

EA
3


H

1

2
W

4
(x  x

2
) W

1
(x  x

1
) 

 

(186) 
(13) 

(187) 

(188) 
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Taking the perturbation of equation 181 for continuity of axial force on the left delamination tip, one 

obtains: 

2 3 1
t t tP P P   

Since 1P P , and P is constant, 1 0tP  which means: P
2
t  P

3
t  0. Substituting 3 2

t tP P   into 

equation 189 results in: 

 3 4 2 1 1( ) ( )tP W x x W x x      
 

where the coefficient Λ* is defined as: 

2 31

2 3 22

EA EAH

L EA EA
  

      

At the left and right delamination tips, respectively, continuity of bending moments leads to: 

3 2
1 1 2 1 3 1 2 3( ) ( ) ( )

2 2
t tH H

M x x M x x M x x P P        

and 

3 2
4 2 2 2 3 2 2 3( ) ( ) ( )

2 2
t tH H

M x x M x x M x x P P        

From beam theory, it can be shown that resulting internal bending moment, M(x), shear force, 

S(x), and torsional torque, T(x), in each beam segment are related to displacements, through the 

following equations:  

( )i i iM x EI W   (195) 

,( )i i i zz i i i iS x EI W M PW      
(196) 

, ,( )i i i i P i i zz i iT x GJ PI M W       (197) 

Using equation 193 and 195, the following continuity of bending moments is obtained: 

(190) 

(191) 

(192) 
(19) 

(193) 
(20) 

(194) 
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 
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where the parameter Λ is defined as: 
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Likewise, to satisfy the continuity of shear forces (equation 196) at the left delamination tip, one 

should have: 

1 1 1

1 1 1 1 ,1 1 2 2 2 2 ,2 2 3 3 3 3 ,3 3zz zz zz
x x x x x x

EI W PW M EI W PW M EI W PW M  
  

                

and finally, the continuity of torsional torque (equation 197) at left delamination tip yields: 
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5.4 Classical finite element method (FEM) 

Using Galerkin weighted residual formulation, the integral forms of the governing differential 

equations 176 and 177, also representing the virtual flexural ( fW ) and torsional ( tW ) works are 

written as: 
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where δWi and δθi are weighting functions corresponding to flexural and torsional displacements, 

respectively, for beam segment i. Then, performing integrations by parts twice on Eq. 202 and once 

on Eq. 203 leads to: 
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(205) 

 

Considering expressions of shear force, Si(x), bending moment, Mi(x), and torsion torque, Ti(x), it 

can be shown that for all the system's global classic boundary conditions, i.e., at x=0 and x=L, the 

corresponding relationships in boundary terms (Δ) and (Δ*) will go directly to zero.  For example, 

for clamped-free boundary conditions, one has zero displacements, 1 1 1 0W W    , and zero virtual 

displacements, 1 1 1 0W W     , at the clamped end (x=0), and null resultant shear force, S4(x), 

bending moment, M4(x), and torsion torque T4(x) at the free end (x=L). This leads to: 
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The remaining terms in (Δ), corresponding to delamination edges (i.e., x=x1 and x=x2), can be 

resolved by applying the continuity conditions 198 and 200, with the following as a result: 

1
1 1 1

4 4

, 0 0
1 1

2 1 1 1 1 ,1 1 2 2 2 2 ,2 2 3 3 3 3 ,3 3

*

[( ) ] [( ) ]i iL L
i i i i zz i i i i i i

i i

zz zz zzx x
x x x x x x

EI W PW M W EI W W

W EI W PW M EI W PW M EI W PW M

W

  

   



 

   

      

                
 



 



1 1 1 1

2
2 2 2

2

2 1 1 2 2 3 3

2 4 4 4 4 ,4 4 2 2 2 2 ,2 2 3 3 3 3 ,3 3

**

2 4 4

x x x x x x x x

zz zz zzx x
x x x x x x

x x

EI W EI W EI W

W EI W PW M EI W PW M EI W PW M

W EI W

   



   

   



      
 
                 
 

 



2 2 2

2 2 3 3
x x x x x x

EI W EI W
  

     
 

 

The terms (*) and (**) go to zero directly as a result of shear force continuity conditions. The 

remaining terms, however do not vanish as the continuity of bending moment at the two 

delamination tips includes additional implicit bending-axial terms such that: 
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Likewise, the remaining terms in (Δ*) can be resolved by applying the continuity conditions 180 and 

184: 
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The terms (***) and (****) go to zero directly as a result of torsion torque continuity conditions for 

left delamination tip (see equation 201) and similar continuity condition for right tip.  With the 

boundary and continuity conditions satisfied and knowing that the expressions 201 and 202 must 

satisfy the principle of virtual work which leads to 0,f tW W   
the system can then be discretized into 

elements: 
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where n stands for the number of elements in beam segment i. Following the traditional Euler-

Bernoulli finite element development, cubic Hermite shape functions for flexural displacement and 

linear shape functions for torsion displacement is used to relate the displacement within each element 

(m) to their corresponding nodal displacements:  

Wi (x)  N (x) Wp , Wi (x)  N (x) Wp ,

  i (x)  L(x) Wp , i (x)  L(x) Wp ,
 

where, 〈N(ݔ)〉 and 〈L(ݔ)〉 are row vectors of cubic shape functions and linear shape functions, 

respectively. {ܹp}, {δܹp}, {θp} and {δθp} are vectors containing the nodal real and virtual 

displacements for each element (m), defined as:
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Substituting the above approximate displacements in 213:  
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where  nW   and  nW   are real and virtual nodal displacement vectors for the two nodes at the 

two ends of the delamination while W
n 

 
and W

n   are the elemental nodal vectors of real and 

virtual displacements 216 and 217 rewritten as:

 
   
       1 1 1 2 2 2 1 1 1 2 2 2,

T T

n nW W W W W W W W W W              

Frequency-dependent and non-frequency-dependent terms in 218 are assembled and the system's 

global boundary conditions are enforced to form the delaminated system's linear Eigenvalue 

problem, written in the following form: 

                               
W

n
K () W

n   0; with K ()  K
G
 2M



                                             

 

where KG  KB KBT KTB KT KD.   

In the last expressions, K() is also known as the system's Dynamic Stiffness Matrix (DSM). KB and 

KT are the global bending and torsion stiffness matrices, respectively. KBT and KTB are global 

bending-torsion and torsion-bending stiffness matrices, respectively, resulting from coupled terms 

in bending and torsion equations. KD is delamination stiffness matrix generated from the term outside 

the integral in equation 218, and KG and M are the global overall stiffness and mass matrices, 

respectively. Finally the system's natural frequencies and mode shapes are evaluated from 

Eigenvalues and Eigenvectors of Eigenproblem 220; i.e., for arbitrary <Wn>, |K()|=0.  The above 

procedure is achieved through a code developed in Matlab®. 
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5.5 Constrained mode model 

The ‘constrained mode’ model is simplified by the assumption that the delaminated layers are 

‘constrained’ to have the same transverse deformations ([77] and [89]) The delaminated beam is 

analyzed as three beam segments I, II and III. In Figure 51, 0≤x≤x1 is considered segment I, x1≤x≤x2 

is considered segment II, and x2≤x≤L is considered segment III. For beam segment I, the governing 

equations are: 
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where I2, I3, J2, J3, IP,2 and IP,3 are all calculated with respect to the overall cross-section's neutral 

axis. For segment II: 

   
     

2
2 3 2 3

2
2 3 ,2 ,3 ,2 2 ,3 3

0

0

II II zz II II

II P P II zz II P P II

E I I W PW M A A W

G J J P I I M W I A I A

  

    

      

       
 

and for segment III: 

2
4 4

2
4 ,4 ,4 4

0

0

III III zz III III

III P III zz III P III

EI W PW M A W

GJ PI M W I A

  

    

    

       

The continuity conditions for deflection, slope, shear force, bending moment and torsion torque at 

the left delamination tip, x=x1, are: 

1 1

1 1

1 1

( ) ( )

( ) ( )

( ) ( )

I II

I II

II II

W x x W x x

W x x W x x

x x x x 

  
   

  

 

(227) 

(228) 

 (229) 

 
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x x x x

EI W PW M E I I W PW M 
 

         
 

 
1 1

3 2
1 2 3 2 32 2

t t
I II

x x x x

H H
EI W E I I W P P

 

      

 

 

 

 

(225) 

 

 

 

 

(231) 

(222) 

(221) 

(223) 

(224) 

(226) 

(230) 
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   
1 1

1 ,1 2 3 2 ,2 ,3I P I zz I II P P II zz II
x x x x

GJ PI M W G J J P I I M W   
 

            

The continuity conditions at the right delamination tip are also written in a similar way to expressions 

227 through 232. The general solution steps, namely the assembly of element equations, application 

of boundary conditions, forming the system's linear Eigenproblem, and extraction of the natural 

frequencies and modes for the ‘constrained mode’ are identical to those stated above for the ‘free 

mode’ model. 

 

5.6 Dynamic finite element 

DFE is an intermediate approach between the conventional FEM and Dynamic Stiffness Matrix 

(DSM) Methods. In the DFE formulation the frequency-dependent trigonometric shape functions 

adopted from DSM are used. In order to develop the problem-specific dynamic shape functions, the 

solutions of uncoupled portions of the governing differential equations are used as the basis functions 

approximation space. The resulting frequency dependent shape functions are then utilized to find the 

element frequency dependent dynamic stiffness matrix. To this end, further integrations by parts are 

applied on the discretized equation 213, leading to the following forms: 

(232) 
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Reminding from Chapter 2, the interpolation functions, used to express element variables in terms 

of the nodal properties, would be the solutions to the integral terms marked as (*) and (**). Thus, 

the non–nodal solution approximation functions, W, and θ, and the test functions, δW, and δθ are 

written in form of equations 49 and 50. 

Following same procedure as explained in Section 4 of Chapter 2 for each equation, the frequency 

dependent stiffness matrix K(ω) is obtained and the natural frequencies are found by solving the 

eigenvalue problem |K(ω)|=0. In this study, frequency was swept, searching a particular frequency, 

ω, which would make the determinant of the global dynamic stiffness matrix equal to zero. 
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5.7 Numerical Results 

Numerical tests were performed to confirm the predictability, accuracy and practical applicability of 

the proposed delaminated FEM and DFE models. In the first example, the natural frequencies of the 

unloaded system (P=Mzz=0) with a central split, about the mid-section (L1=L4), of various lengths 

up to 60% of the span (0≤ L2/L≤0.6), occurring symmetrically along the mid-plane of the beam and 

surrounded by intact beam segments, are considered. This split beam configuration has also been 

presented and studied in [77] and [89]. The defective FEM and DFE models were then created and 

used to evaluate the natural frequencies and mode shapes of various pre-stressed delaminated beam 

configurations. As the benchmarks for comparison and validation purposes, the results from 

references [77] and [89] and reference [78] for the constrained mode were used. 

 

5.7.1 Validation of presented formulation 
 

Consider a steel beam with Young's modulus E=200GPa, density ρ=7800kg/m3, length of 8m, and 

a rectangular cross-sectional area of width of 0.4m and depth of 0.2m. The delamination is assumed 

to be on the mid-plane (H2=0.5H1) and have the length of 0≤ L2/L≤0.6. A sample of convergence 

study is presented in Figure 52 where the exact error of present solution is found using the analytical 

results of Wang et al. [77]. For validation of the present solution, the first two non-dimensional 

natural frequencies, λ2, of a defective clamped–clamped beam with a through-the-width 

delamination occurring symmetrically about the mid-section (L1=L4) on the mid-plane (H2=H3) for 

various delamination lengths are compared with the analytical results reported by Wang et al. [77] 

as well as the DSM [89] and FEM data [90] by Erdelyi and Hashemi, where:  


i
4 


i

2A
1

EI
1

L4;  i 1,2,... (234) 
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In the formulations presented by Wang et al. [77] and Erdelyi and Hashemi ([89] and [90]) no pre-

stress effect and torsional vibration is investigated. Therefore, for comparison purposes, only 

bending equation is solved and applied axial force and end moment are set to zero; P=0 and Mzz=0. 

Erdelyi and Hashemi [90] presented FEM-based defective beam models and the frequency data 

calculated from six- and ten-element meshes of 2-node FEM elements. Table 28 and Table 29 

summarize the system's first two natural frequencies obtained using the presented DFE method, in 

comparison with those reported in the literature [77], [79], [88] and [89]. Referring to Table 28 and 

Table 29 of reference [89], they show exact match between the 1st frequency values obtained from 

both meshes. The 2nd frequency values obtained from the 6- and 10-element meshes, however, are 

found to be slightly different. Therefore, in what follows frequency data obtained from the latter 

mesh are used for comparison. 

 

 

Figure 52: Convergence analysis for clamped–clamped isotropic beam, with P=0, Mzz =0, H2/H=0.3, and 

L2/L=0.4. 
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Table 28: Non-dimensional first natural frequency (λ1
2) of a clamped–clamped isotropic beam with a mid-

plane delamination. 

 

Delamination 

Length 

(L2/L) 

  1st Natural Freq. 

DFE 

10 

Elements 

Wang et al. 

[77] 

FEM 

[90] 

DSM 

[89] 

Della & Shu 

[88] 

Layer-wise 

FEM [79] 

0.00 22.39 22.39 22.39 -- 22.37 22.36 

0.10 22.37 22.37 22.37 22.37 22.37 22.36 

0.20 22.36 22.35 22.36 22.36 22.36 22.35 

0.30 22.24 22.23 22.24 22.24 22.24 22.23 

0.40 21.84 21.83 21.84 21.83 21.83 21.82 

0.50 20.89 20.88 20.89 20.89 20.89 20.88 

0.60 19.29 19.29 19.29 19.30 19.30 19.28 

 

 

Table 29: Non-dimensional second natural frequency (λ2
2) of a clamped–clamped isotropic beam with a 

mid-plane delamination. 

 

Delamination 

Length 

(L2/L) 

  2nd Natural Freq. 

DFE 

10 

Elements 

Wang et al. 

[77] 

FEM 

[90] 

DSM 

[89] 

Della & Shu 

[88] 

Layerwise 

FEM [79] 

0.00 61.61 61.67 61.67 -- 61.67 61.61 

0.10 60.76 60.76 60.80 60.76 60.76 60.74 

0.20 55.99 55.97 55.99 55.99 55.97 55.95 

0.30 49.03 49.00 49.00 49.03 49.00 48.97 

0.40 43.90 43.87 43.89 43.90 43.87 43.86 

0.50 41.55 41.45 41.52 41.55 41.45 41.50 

0.60 41.03 40.93 41.03 41.04 40.93 41.01 

 



127 
 

As can be observed from Table 28 and Table 29, natural frequencies obtained from the DFE method 

are in excellent agreement with the analytical results reported by Wang et al. [77], Della and Shu 

[88], as well as FEM [87] and layer-wise FEM [79] data, with discrepancies less than 0.1%.  

 

5.7.2 Vibration analysis of delaminated pre-stressed beams 

 
To further investigate the validity and practical applicability of the proposed formulation, and the 

effect of pre-load on the natural frequency of the defective beam structures, following illustrative 

examples of pre-stressed symmetrically delaminated beams, characterized by various delamination 

lengths, axial loads, and end moments are investigated. In each case, the change of normalized 

fundamental frequency, λ2, versus the normalized end moment, Mzz/Mb, compressive axial load, 

P/Pcr, for ‘free mode’ is investigated, where: 

4
2

14cr

P P
L

P EI


 

where Pcr and Mb, respectively, stand for the critical buckling load and buckling moment of an intact 

(non-delaminated) beam in absence of pre-load. 

Figure 53 shows the system's fundamental natural frequency, λ2, of an isotropic homogeneous beam 

with clamped-clamped boundary condition, Mzz/Mb=0.4, and central delamination located in mid-

plane H2/H=0.5, versus normalized axial force in ‘free mode’ model for different delamination sizes, 

L2/L. As can be observed, when the load P approaches the buckling load, the natural frequency, λ2, 

becomes zero, i.e., the structure has buckled.  Moreover, as expected, the larger the delamination 

size, the smaller Pcr and the fundamental frequency. This reconfirms the fact that structural stiffness 

decreases when the delamination size increased. 

 

 

 (235) 
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Figure 53: Fundamental natural frequency λ2 of an isotropic homogeneous beam with clamped-clamped boundary 

condition, Mzz/Mb=0.4 and central delamination located in mid-plane H2/H=0.5, versus normalized axial force in ‘free 

mode’ model for different values of L2/L. 

 

Figure 54 demonstrates the change in the first and second natural frequencies with respect to 

normalized buckling load P/Pcr for H2/H=0.3. Results are shown for different delamination lengths 

of L2/L=0.2, 0.3, 0.4 and 0.5. This figure reveals similar trends to those observed in Figure 53.  

Fundamental frequency results of ‘constrained mode’ are compared to ‘free mode’ data in Figure 

55. As can be observed, the difference between predicted frequencies from these two modes 

increases as the applied axial load increases. This is related to the difference in nature of constrained 

and free mode models. The ‘constrained mode’ model is more similar to an intact beam model while 

‘free mode’ model considers no constraints between beam segments II and III. This makes ‘free 

mode’ a better method for modeling delamination. Knowing that delamination causes stiffness 

reduction and that a larger pre-load makes this stiffness reduction bolder, increase in axial pre-load 

makes the difference between the predicted natural frequency results larger. Also inferred from 

Figure 54, for both natural modes, the larger the compressive axial load is the smaller the natural 
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frequency will be. It can be observed that as P increases, the natural frequency λ2 first decreases 

slowly, but by getting close to buckling load it decreases drastically and eventually goes to zero. As 

can also be seen from Figure 55, the ‘constrained mode’ comparing to ‘free mode’, over predicts the 

natural frequencies especially for compressive load values close to buckling load. Additionally, from 

the same trends observed in Figure 53 to Figure 55, it can be inferred that compressive axial load 

causes a reduction in the structural stiffness leading, in turn, to lower natural frequencies. Similarly, 

increasing the delamination length results in lower stiffness and natural frequencies. 

 

 

Figure 54: Variation of the first and second natural frequencies (λ2) with respect to normalized buckling 

load P/Pcr for H2/H=0.3, Mzz/Mb=0.4 and different values of L2/L. 
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variation of natural frequency versus buckling moment. Once again, it can also be observed that as 

the end moment increases, the stiffness decreases, leading to lower natural frequencies. 

Figure 57 shows the first opening mode shape for a delaminated beam with a central delamination 

on the mid-plane using ‘free mode’. As also reported in the literature ([89], [90] and [93]), not all 

the mode shapes obtained from ‘free mode’ model are admissible since unlike ‘constrained mode’ 

no constraints are imposed between the two delaminated layers, which results in some physically 

impossible mode shapes. It is also worth noting that the experimentally observed delamination 

openings have been reported to be significantly less than those calculated by the free model, which 

would rather justify the use of the constrained model for further analysis [93]. 

 

 

 

Figure 55: Trend of change in fundamental natural frequencies (λ2) with respect to normalized buckling 

load P/Pcr for both constrained and free modes with H2/H=0.5, Mzz/Mb=0.4 and different values of L2/L. 
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Figure 56: Fundamental natural frequencies (λ2) with respect to normalized applied end moment Mzz/Mb for 

both constrained and free modes with H2/H=0.5, P/Pcr=0.4 and different values of L2/L. 

 

 

 

Figure 57: The first opening mode shape for a delaminated beam with a central delamination on the mid-

plane using ‘free mode’ model. 
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In Table 30, the first two non-dimensional natural frequencies, λ2, of a clamped–clamped beam with 

a through-the-width delamination occurring symmetrically about the mid-section (L1=L4) on the 

mid-plane (H2=H3) for various delamination lengths using DFE formulation as well as the analytical 

results reported by Wang et al. [77], the DSM [89] and FEM data [90] by Erdelyi and Hashemi are 

reported and in Figure 58 the first and second natural frequencies variation with respect to 

normalized buckling load is presented. 

 

Table 30: Non-dimensional first natural frequency (λ1
2) of a clamped–clamped isotropic beam with a mid-

plane delamination using DFE formulation. 

 

Delamination 

Length 

(L2/L) 

  1st Natural Freq. 

DFE 

5 Elements 

Wang et al. 

[77] 

FEM 

[90] 

DSM 

[89] 

Della & Shu 

[88] 

Layerwise 

FEM [79] 

0.00 22.39 22.39 22.39 -- 22.37 22.36 

0.10 22.37 22.37 22.37 22.37 22.37 22.36 

0.20 22.36 22.35 22.36 22.36 22.36 22.35 

0.30 22.24 22.23 22.24 22.24 22.24 22.23 

0.40 21.83 21.83 21.84 21.83 21.83 21.82 

0.50 20.89 20.88 20.89 20.89 20.89 20.88 

0.60 19.30 19.29 19.29 19.30 19.30 19.28 
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Figure 58: First and second natural frequencies (λ2) versus normalized buckling load P/Pcr for H2/H=0.3, 

Mzz/Mb=0.4 and different values of L2/L using DFE method. 

 

Finally, it has been recently shown and experimentally verified [73] that the opening is amplitude 

dependent. In other words, the delamination opening takes place only at certain critical amplitudes.  

The mode shapes are asymmetric and can be approximated by the superposition of the global shape 

of the entire beam and the local buckling shape of the delaminated part based on a dynamic stability 

analysis [93]. Further investigation on this topic, however, is beyond the scope of this Chapter. 

 

5.8 Discussion and Concluding Remarks 

A systematic FEM-based formulation and a dynamic finite element solutions for the free vibration 

modelling and analysis of delaminated beams under axial compressive load and end moment were 

presented. The defective beam, containing a central through-the-width delamination was modeled 
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boundaries. Both the ‘free mode’ and ‘constrained mode’ delamination assumptions in buckling and 

vibration analysis were used and the solutions were verified and validated against the analytical and 

other numerical results presented in the literature. A parametric study is performed to analyze the 

effect of the axial load and end moment on the natural frequencies and mode shapes of the 

delaminated beam. The results showed a monotonic relation between the natural frequency and both 

axial compressive load and end moment. Both compressive axial load and end moment reduce the 

structural stiffness and results in lower natural frequencies. Similarly, increasing the length of 

delamination results in lower stiffness and natural frequencies. The present ‘free mode’ solution was 

also used to investigate the first and second mode buckling loads of the delaminated beams. It was 

shown that, when compared to ‘free mode’, the ‘constrained mode’ over predicts the natural 

frequencies specifically when compressive load approached to values close to buckling load. Finally, 

the difference between predicted frequencies from ‘free mode’ and ‘constrained mode’ increases as 

the applied axial load or end moment increases. 
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6 Discussion on the presented methods 

In this section a brief discussion on the methods developed in this study as well as comparisons 

between the convergence rate and accuracy of these methods are presented. 

In Figure 59, percentage of fundamental natural frequency errors for DFE and FEM, with 

Mzz=6.14MN.m and P=1.23MN using 5 elements and including all the four different cases with 

fixed-free boundary condition, are presented. As it can be observed from this figure, for all the four 

cases, DFE error is much less, i.e., minimum 50% of those of conventional FEM, which means DFE 

has at least twice as higher rate of convergence. The defective models have slightly larger error 

which can be linked to more complex nature of defective beam model and the fact that for single 

delamination in this model four segments are assembled and solved simultaneously. Figure 60, 

compares the percentage of error for the first five natural frequencies of a cantilever isotropic 

homogeneous beam subjected to P=1.23MN and Mzz=0 using 5 elements. As expected, the error is 

larger for higher natural frequencies for both conventional FEM and DFE with an exception of the 

fourth natural frequency where the error is even less than the error for the second natural frequency. 

The reason is that fourth natural frequency in bending-torsion coupled vibration is the first torsion 

dominant mode (as it can be also seen in Figure 12, Chapter 2, Section 3) and is equivalent to the 

first torsion mode shape of uncoupled system. So this fourth mode or fist torsion dominant mode 

shape needs less number of elements comparing to second and third bending dominant modes to 

acquire same accuracy. Similar convergence behaviors for coupled vibrations have also been 

previously observed and reported in literature (see, e.g., [41]). 

In Table 24 (Chapter 3, Section 9) the Layer-wise Beam Finite Element Method (LBFEM) results 

and Layer-wise Beam Dynamic Finite Element (LBDFE) method results for a cantilever sandwich 

beam were compared with homogenization method, DSM and experimental results [101]. Figure 61 
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shows the difference of method of homogenization, LBDFE and LBFEM methods, using 5 elements, 

in comparison with experimental results for fundamental natural frequency of steel-rubber-steel 

sandwich beam. Based on this figure, the LBDFE is more accurate than LBFEM and LBFEM is 

more accurate than method of homogenization. Although, there is a constant difference between the 

numerical and experimental results which could be related to the properties of the rubber material 

used in modelling. These properties are reported by Banerjee et al. [101], where it is mentioned that 

they might not exactly match the properties of the rubber specimen they used in their experiments. 

In summary, in all cases studied in this thesis, the convergence rates obtained from frequency-

dependent Dynamic Finite Element (DFE) formulation are found to surpass those found from the 

conventional FEM, which in turn surpass the method of homogenization. Further detailed 

discussions can be found in the concluding remarks sections in each of the previous Chapters. 

The higher convergence rate of DFE is mainly attributed to the application of the solutions to the 

uncoupled part of equations as the basis functions. These solutions are much better approximations 

for non-nodal displacements between two nodes in comparison with conventional FEM which uses 

simple polynomials to describe non-nodal displacements. 

It is also worth mentioning that the developed FEM here has advantages over FEM based software, 

ANSYS in modeling prestressed beams, since here the axial force and end moment are included in 

the equations of motion and the developed FEM gives the natural frequency and mode shapes of 

vibration directly while modal mode in ANSYS only solves the unstressed equations and in order to 

include the prestress effects the model needs to be solved statically first and then the results of  static 

analysis is used to find the new stiffness of prestressed beam which will be used later in modal mode 

to find natural frequencies. 
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Figure 59: Percentage of fundamental natural frequency error for DFE and FEM with Mzz=6.14MN.m and 
P=1.23MN using 5 elements including the four different cases with cantilever boundary condition. 

 
 
 

 
 

Figure 60: Percentage of error for cantilever steel beam with P=1.23MN and Mzz=0 using 5 elements. 
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Figure 61: Difference of LBDFE and LBFEM methods, using 5 elements, with experimental results for 
fundamental natural frequency of steel-rubber-steel sandwich beam [101]. 

7 Conclusion 

7.1 Contributions 

In what follows, the author's contributions in terms of new concepts and strategies for free vibration 

analysis of pre-stressed uniform, sandwich, composite and delaminated beams are summarized: 

1) Revisiting the dynamic analysis of flexible pre-stressed structural elements, and exploiting 

Hamilton principle, the differential equations governing coupled bending-torsion vibrations 

of beams caused by the end moment, are first developed. Cases considered in this 

development include, 

     a) single-layer pre-stressed beams, 

     b) multi-layer pre-stressed beams, 

     c) pre-stressed composite beams, exhibiting both coupling caused by the end moment, as 

well as the Material coupling associated with the fiber angle, and finally 
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     d) defective pre-stressed multi-layer beams including delaminations.  

2) Development of conventional Finite Element (FEM) formulations for the free vibration 

analysis of all the above-mentioned pre-stressed beam configurations, by exploiting the 

equivalent single-layer theory, tested and validated against limited existing analytical data, 

where applicable, method of homogenization and numerical tests.  

3) Exploiting the equivalent single-layer theory, new frequency-dependent Dynamic Finite 

Element (DFE) formulations for the free vibration analysis of all the above-mentioned pre-

stressed beam configurations, were devised, tested and validated against limited data 

available in the literature, where applicable, method of homogenization, and numerical 

(FEM) tests. 

4) Development of a novel layer-wise finite element formulation for bending-torsion coupling 

vibration analysis of pre-stressed layered and sandwich beams subjected to axial force and 

end moment. 

5) Deriving frequency dependent dynamic finite element model for pre-stressed layered and 

sandwich beams subjected to axial force and end moment using layer-wise formulation as 

well as performing numerical test on model. 

6) Modeling a pre-stressed composite beam with bending-torsion coupling rigidity with axial 

force and end moment using finite element method. 

7) Developing dynamic finite element model for a composite pre-stressed beam with double 

bending-torsion couplings, and finally 

8) Frequency dependent dynamic finite element modeling of a pre-stressed defective beam 

exhibiting bending-torsion coupling. 
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The motivation behind this study was the lack of established methods and formulation for free 

vibration modeling of pre-stressed defective beam-like structures subjected to combined axial force 

and end moment. This type of pre-stress effect arises in many structures and machines, for instance, 

imperfect joints in beam-columns which are mainly used for framing or truss structures. For this 

purpose, the equations of motion were first derived from Hamilton principles and in the absence of 

any analytical solution for the governing differential equations, the conventional finite element and 

a frequency dependent dynamic finite element formulations were developed. For different 

configuration, including the uniform isotropic, layered, composite and defective beams were 

modeled and for each case a number of numerical tests were conducted. Based on the results and for 

all the four cases studied, the DFE exhibits higher convergence rates than conventional FEM. This 

could potentially lead to considerable reduction in the modeling and analysis time, when it comes to 

large scale designs. Presently, the DFE technique is especially advantageous at the preliminary 

design/analysis stage. For the detailed design and analysis stage, however, an elaborated FEM model 

would be a better option. 

Concerning the pre-stress effect of axial force and end moment on the beam vibrational behavior, 

the results for all the cases show that, as expected, the tensile force increases the natural frequencies 

of the beam while they are reduced by compressive forces and end moments. The reason can be 

justified by taking a look at the developed stiffness matrices. In all the four cases, and for both 

methods, an increase in tensile axial force results in larger entry values in stiffness matrix while 

higher compressive axial force or higher end moment leads to smaller ones, where lower stiffness, 

in turn, means lower natural frequencies. For each case, four classical boundary conditions are 

considered and the results have been compared and validated against, where available, analytical, 

experimental data from literature. 



141 
 

7.2 Future work 

Future work includes but is not limited to: 

 Enhancing the defective model formulation to a more generalize form for a beam with n 

number of delamination. 

 Enhancing the beam models used, to incorporate the shear and rotary inertia effects; i.e., 

Timoshenko instead of Euler-Bernoulli beam bending theory. 

 To extend the models to thin-walled, symmetric, open cross-section beams, where the 

warping should be also included in the torsion equation. 

 To extend the latter to non-symmetric open cross-section beams with triple Bending-

Bending-Torsion couplings. 

 Experimentally testing all the investigated cases. 

 Expanding all the 1D (beam) formulations into 2D (plane) models. 

 Developing vibrational mode-based structural health monitoring approaches to predict the 

location, size, and number of delamination defects by comparing the experimental results 

with the numerical results of FEM or DFE. 
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Appendices 

Appendix A; Modeling in ANSYS: 

The vibrational mode of each beam configuration is solved using the commercially available 

software ANSYS. ANSYS is a powerful multipurpose analytical software package that is trusted in 

the industry. This software employs the conventional Finite Element Method (FEM). To account for 

axial loading and end moments the model is pre-stressed using ANSYS's static structural tool. 

SOLID-186 elements are used in the meshes of all the models generated for this report. SOLID-186 

is a higher order 3D, 20 node solid elements capable of 3 degrees of freedom (x, y, and z directions) 

per node.  

Models are developed for both homogenous and non-homogenous cross section as well as single 

delamination. Figure B-1 illustrates ANSYS model geometry and applied axial force and end 

moment. 

 

Figure A-1: ANSYS model geometry and applied axial force and end moment. 
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ANSYS 15 Workbench is capable of performing many analyses simultaneously. For example for 

modal analysis a pre-stressed beam requires ANSYS to first solve for the stiffness matrix in a static 

structural analysis. The results from the static structural analysis are directly linked to the modal 

analysis model. In what follows, the overall steps to perform pre-stressed modal analysis will be 

discussed.  

The first step involves, (1) setting up the analysis system; for the purposes of this report this involved 

linking a static structural analysis with a modal analysis. This is followed by (2) defining material 

properties; ANSYS 15 Workbench contains and Engineering Database where general material 

properties can be found for analysis. It also supports editing of existing materials as well as the 

capability to add new materials. The third step is to (3) Define the Geometry; ANSYS 15 Workbench 

contains a design model tool which provides the capabilities to create 2D sketches and 3D models. 

If the geometry is too complex ANSYS 15 has the option of importing CAD models created from 

other software. The next step is to (4) Define Part Behavior; this step involves adding the boundary 

conditions, contact constraints, and loading. The final step before an analysis can be performed is 

the (5) Meshing of the System.  

The element type used in this analysis is SOLID186. This element type is a high order 3D, 20 node 

solid element. This element exhibits quadratic displacement behavior. Each node in the element has 

three degrees of freedom, translation in the nodal x, y, and z directions. SOLID186 has the capability 

to support plasticity, hyper elasticity, creep, stress stiffening, large deflection and strain capabilities. 

SOLID 186 is subject to some restrictions and assumptions: 

 The element must not have a zero volume. 

 The element cannot be twisted such that the element contains two separate volumes. 

 The edge displacement varies linearly rather than parabolically if a midside node is 

removed. 
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 At least two elements should be used in each direction. 

In Figures A-2 through A-19 the selective modes of free vibration for isotropic, layered and 

defective beams with cantilevered boundary condition are presented  

 

 

 

 

Figure A-2: First mode for a steel beam under compressive load. 
 
 
 

 
Figure A-3: Second mode for a steel beam under compressive load. 
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Figure A-4: First mode for a steel - aluminum beam under tensile load. 

 

 

 

Figure A-5: Second mode for a steel - aluminum beam under tensile load. 

 

 

 

Figure A-6: First mode for a double layered steel beam under no load. 
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Figure A-7: Second mode for a double layered steel beam under no load. 

 

 

 

Figure A-8: First mode for a triple layered steel beam under end moment loading. 
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Figure A-9: Second mode for a triple layered steel beam under end moment loading. 

 

 

Figure A-10: First mode for the GLARE beam under compressive loading. 

 

 

 

Figure A-11: Second mode for the GLARE beam under compressive loading. 
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Figure A-12: First mode for the single delaminated steel beam with end moment loading at 50% 

delamination. 

 

 

 

Figure A-13: Second mode for the single delaminated steel beam with end moment loading at 50% 

delamination. 
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Figure A-14: First mode for the delaminated steel - aluminum beam with compressive loading and 

50% delamination. 

 

 

 

Figure A-15: Second mode for the delaminated steel - aluminum beam with compressive loading 

and 50% delamination. 
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Figure A-16: First mode for triple layered steel beam at 50% delamination and compressive 

loading. 

 

 

 

Figure A-17: Penetrated second mode for triple layered steel beam at 50% delamination and 

compressive loading. 
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Figure A-18: First mode for a GLARE beam at 50% delamination and end moment loading. 

 

 

 

Figure A-19: Second penetrated mode for a GLARE beam at 50% delamination and end moment 

loading. 
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Appendix B; Effective rigidities for a solid cross-section: 

The reduced stiffness constants in the material principle directions are: 

 

     (B.1) 

    (B.2) 

       (B.3) 

where, , is the elastic modulus is the longitudinal direction. , is the elastic modulus in the 

transverse direction. Poisson's ratio is denoted by  and the principal shear modulus is denoted 

by . For a plane stress state these reduced stiffness constants are sufficient to describe the 

stress-strain relationship as follows: 

 

    (B.4) 

 

In order to find the stresses and strains in the (x, y, z) coordinate system a simple rotational 

transformation is needed as: 

 

     (B.5) 

 

Then, the resulting transformed reduced stiffness constants for a unidirectional or orthotropic 
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  (B.6) 

 

Banerjee [65], the in-plane resultant matrix N(x, y) is: 

 

     (B.7) 

and the resultant moment is: 

 

     (B.8) 

 

Both equations (above) can be merged into a single equation commonly known as the “Constitutive 

Equation”. The constitutive equation describes the stiffness matrix of a laminate plate. The resultant 

forces and moments are functions of the in-plane strains and curvatures. 
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The stiffness coefficients are defined by the following expressions: 

        (B.10) 

where  is the distance from the mid-plane of the laminate (Figure B-1). Then, 

 

   (B.11) 

 

 

 

Figure A-1: Composite Laminate beam consisting of multiple plies, where is the distance from 

the mid-plane of the composite.  

 
 

For a bending-torsion coupling behavior the chord wise moment is assumed to be zero so that 

the  curvature can be eliminated from (above) and then the matrix (B.11) reduces to the following 

form: 
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The resulting matrix is then: 

 

   (B.13) 

 

The bending and torque intensities are related to the resultant moment and torque by Banerjee [65]: 

 

      (B.14) 

which results in: 

     (B.17) 

 

The EI, GJ and K represent the rigidities of the beam in the global coordinate system. EI, GJ, and K 
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Appendix C 

The governing differential equations of motion for a pre-stressed laminated composite beam can be 

derived using Hamilton's principle as follows: 

The total potential energy (U) of the beam is given by (coupling rigidity terms are from [103] 

energy term for end moment is from [104] and rest of the terms are from [65]): 
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using the rigidities definitions from B.17, equation C.1 can be re-written as: 
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The total kinetic energy (T) is given by [105]: 
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Based on Hamilton's principle, for Lagrangian (L=T-U), ׬ ݐ݀ ܮ
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 is stationary between any 

arbitrary intervals of time (t1, t2) which means: 
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where δ is the variational operator. By substituting C.2 and C.3 into C.4, integrating each term by 

parts, using δ operator, knowing that δh and δθ are arbitrary and finally collecting all the terms, the 

governing differential equations 142 and 143 are obtained. 
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