ANALYSIS OF NATURAL GAS CONSUMPTION AND ENERGY SAVING MEASURES FOR POWDER COATING AND FOOD PROCESSING COMPANIES IN THE GREATER TORONTO AREA (GTA)

By

Md Maniruzzaman Akan

M.Eng (Industrial and Production Engineering)

Bangladesh University of Engineering and Technology, Dhaka, 2002

A thesis

presented to Ryerson University

in the partial fulfillment of the requirements for the degree of

Master of Applied Science

in the program of Mechanical and Industrial Engineering

Toronto, Ontario, Canada, 2015

© Md Maniruzzaman Akan, 2015

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

ANALYSIS OF NATURAL GAS CONSUMPTION AND ENERGY SAVING MEASURES FOR POWDER COATING AND FOOD PROCESSING COMPANIES IN THE GREATER TORONTO AREA (GTA)

Md Maniruzzaman Akan

Master of Applied Science

Department of Mechanical and Industrial Engineering

Ryerson University, Toronto, Ontario, Canada, 2015

Abstract

Small and medium industries (SMEs) savings analysis and meaningful performance indicators can help Enbridge Gas Distribution Inc., and individual SMEs make effective decisions to improve facility performance. For this study, information on 11 SMEs' energy consumption has been provided. This entails: preliminary benchmarking, separation of process and seasonal energy consumption, heating degree days, individual facilities owned reference temperature, normalized annual energy consumption, normalized process and seasonal energy consumption, oven energy consumption, energy balance of oven, energy intensity of oven, and non-productive energy consumption. The most appropriate performance indicator is energy intensity of oven-in bake ovens, cure ovens, and dry-off ovens. The results observed energy intensity in terms of natural gas consumption of bake ovens are from 24m³/ft³ to 30m³/ft³, where the intensity of ovens with finishing process companies are from 8m³/ft³ to 36m³/ft³. Potential natural gas savings from the facilities processing powder coating and baking are 19% to 53% of total oven energy consumption by reducing exhaust energy loss. In the same study observed in analyzing production scheduling, that 8% to 69% of energy consumption can be saved by proper shutdown operation and scheduling.

Acknowledgements

Special thanks to my supervisor, Dr. Alan S Fung, P.Eng., FCSME, Department of Mechanical and Industrial Engineering, who gave me the opportunity to further my education and contributed to my program, thesis, and academic goals.

This would not have been possible without Alan's guidance, support, and trust in my personal work and innovation, and the opportunity he offered me to further my passion for industrial energy savings analysis beyond the university walls.

I would like to thank and acknowledge Paul Morrison, P.Eng. CEM, Energy Solution Consultant, Industrial Sector, Enbridge Gas Distribution Inc. and Peter Goldman, P.Eng. CEM, Energy Solution Consultant for their help and support. I would also like to acknowledge all funding partners: Enbridge Gas Distribution Inc., Connect Canada, and OCE Talent Edge.

I would like to thank Farzin Rad and Altamash Baig for their support in arranging energy audits and educating me in energy analysis calculation.

I would like to thank my fellow project partner, Tamima Ahmed, for her support in energy auditing, data collection, and the preparation of Excel-based calculating tools.

I give my immense appreciation, love, and sincere thanks to my parents and my wife for their unconditional support, love, and encouragement during my study. I would also like to thank my sons for sacrificing their summer tours due to my research work. Last but not least, I would like to thank my present supervisor Amanda Martin, CEM and Director, Sustainability Department, Graham Seaman, P.Eng., LEED AP, CEM of the City of Markham for their constant support and sacrifice by sparing me during the city's busy schedule.

iv

Dedication

My mother – Anwara Begum

My father – A K Abdul Mannan Akan

My wife – Ishrat Begum

My Son - Mubituzzaman Samir

My Son - Sabit bin Zaman

Table of Contents

Abstractiii
Acknowledgementsiv
Dedicationv
Table of Contents
List of Tables xii
List of Figures xiv
Abbreviations xvii
Nomenclature xx
Greek Lettersxxiii
Chapter 1: Introduction 1
1.1 Introduction
1.1.1 Background1
1.1.2 Definition of SMEs
1.1.3 Category of SMEs
1.1.4 Current Situation of SMEs 4
1.1.5 Benefits of SME Energy Management and Savings Programs
1.1.6 Barriers to Implementing Energy-Saving Programs
1.1.7 Energy Audits
1.1.8 Goals of the Energy Audit
1.1.9 Steps in the On-site Energy Audit
1.1.10 Equipment List for Energy Audit9
1.1.11 Major Systems to Consider for Energy Audit

1.1	.12 Difference Between Energy Audit, Energy Conservation, and Energy Efficience	cy 10
1.1	.13 Demand-Side Management	11
1.2	Energy Management Plan and Related Code	12
1.3	Thesis Objective	13
1.4	Structure of Thesis	14
Chapter	2: Literature Review	15
2.1	Energy Benchmarking	15
2.2	Benchmarking Methods	16
2.3	Benchmarking Methodology	16
2.4	Gas Fired Oven and Heat Engineering	17
2.5	Industrial Powder - Coating Process	19
2.6	Cure Dynamics of Powder Coating and Reducing Energy Use	19
2.7	Reducing energy use in powder coating system	21
2.8	Curing Oven Basics	22
2.9	PRISM Analysis	23
2.10	Simple Ratio-Based Weather Normalization Method	25
2.11	Shipping and Receiving Door-Related Energy Consumption	26
2.12	Square-Foot Area Energy Consumption Method	28
2.13	Estimating Non-productive Energy Consumption	28
2.14	Production Scheduling and Shift Optimization for Energy Optimization	29
2.15	HVAC Energy Optimization	30
2.16	Thermal Comfort	30
2.17	Ventilation Analysis	32

2.18 Case Stu	dy on Energy Management	. 33
2.18.1 Adv	ancing Opportunity in Energy Management in Ontario Industrial and	
Management	Sector	. 33
2.18.2 Bott	om Line Improvement of Natural Gas Consumption Through Process Ovens	s:
A Case Study	by Enbridge Gas Distribution Inc. in Canada's Greater Toronto Area	. 35
2.18.3 A C	ase Study: Improving Energy Performance in Canada	. 40
2.18.4 A C	ase Study: An Energy-Efficiency Program for Swedish Industrial Small and	
Medium-Size	d Enterprises	. 41
Chapter 3: Method	d and Methodology	. 42
3.1 Research	Methodology	. 42
3.2 Process I	Flow of Powder Coating Company	. 44
3.3 Energy A	Audit	. 44
3.4 Primary	Data Collection and Site Selection	. 45
3.5 Data Syn	ithesis	. 45
3.6 Process a	and Seasonal Energy Consumption	. 46
3.7 Estimate	d Reference Temperature by Regression Analysis and Estimated Normalized	d
Annual Consum	1ption	. 49
3.8 Energy E	Salance in Ovens	. 57
3.9 Mathema	atical Model and Energy Balance of Oven	. 59
3.9.1 Estima	ated Product Energy Consumption	. 60
3.9.2 Estima	ated Energy Produced by Rated Flow Capacity	. 60
3.9.3 Exhau	st Requirement Calculation	. 61
3.9.4 Purge	Rate	. 61

3.9.5 Operating Ventilation	62
3.9.6 Exhaust Volume at Constant Volume Flow Rate	62
3.9.7 Dwelling Time to Cure Products	62
3.9.8 Energy Loss From an Oven	63
3.9.9 Shell Loss	64
3.9.10 Opening Loss	64
3.9.11 Miscellaneous Energy Loss	64
3.9.12 Total Energy Losses from Oven	64
3.9.13 Actual Energy Consumed by Oven	65
3.10 Productive vs. Non-productive Hours Energy Consumption	65
3.11 Savings Calculation	65
3.11.1 Oven Savings	65
3.11.2 Operating Ventilation Savings	66
3.11.3 Heat Recovery Savings	67
3.11.4 Productive vs. Non-productive Hours Savings Calculation	67
3.12 Simple Payback Calculation	67
Chapter 4: Analysis of SMEs Energy Consumption and Potential Savings Opportunities	69
4.1 Energy Consumption by Ovens and Percentage of Total Process Consumption	69
4.2 Energy Intensity of an Oven	70
4.3 Energy Intensity Analysis with Different Oven Parameters	73
4.4 Energy Consumption Analysis with oven Volume, Area and Operation Hours	79
4.5 Energy Balance of Ovens	81
4.5.1 Bake ovens	82

4.5.2	2 Energy Balance of Dry-off Oven	84
4.5.3	3 Energy Balance of Cure Oven	87
4.6	Exhaust Loss Analysis with Different Parameters	90
4.7	Shell Energy Loss Analysis with Different Parameters	94
4.8	Radiation Energy Loss Analysis	99
4.9	Productive and Non-productive Hours Natural Gas Consumption Analysis	. 100
4.10	Non-Productive Hours Energy Consumption Analysis	. 105
4.11	Non-Productive Hours Energy Consumption Analysis Based on Summer Months	. 107
4.12	Savings Analysis	. 110
4.12	.1 Energy Savings from Oven Exhaust	. 110
4.12	.2 Energy Savings Opportunity from Oven Shell Energy Loss Through Improving	5
Insu	lation Thermal Resistance (R)	. 111
4.12	.3 Exhaust Savings and Estimated Cost Savings Through Retrofits (Installation of	f
VFD	D) 113	
4.12	.4 Cost Savings Analysis from Shell Energy Loss	. 115
4.13	Maximum Potential Natural Gas Savings Analysis	. 118
4.14	Natural Gas Savings Analysis with Hours of Operations	. 119
Chapter :	5: Result and Discussion of SMEs' Energy Consumption	. 121
5.1	Savings from installing Variable Frequency Drive (VFD)	. 122
5.2	Savings from Insulation Correction	. 123
Chapter	6: Conclusion and Recommendations	. 124
6.1	New findings in this research	. 125
6.2	Limitations of this study	. 125

6.3 Possible Future Work
Appendix A 127
ample calculations:
Appendix B
Appendix C 132
Appendix D134
Appendix E 135
Appendix F 136
Appendix G142
Appendix H143
Appendix I 144
Appendix J 145
Appendix K
Appendix L
Appendix M 151
Appendix N 152
Appendix O 153
Appendix P154
leferences

List of Tables

Table 2.1: Heat loss factor on panel thickness	38
Table 3.1: Sample R^2 values based on different reference temperatures in linear regre	ssion
analysis	55
Table 4.1: Summary of energy balance of audited companies	70
Table 4.2: Energy intensity of Ovens.	71
Table 4.3: Oven ranking based on energy intensity by oven volume	72
Table 4.4: Oven consumption and oven area/oven volumn multiply hours of operation	79
Table 4.5: Energy balance of ovens	81
Table 4.6: Percentage energy balance of ovens	82
Table 4.7: Exhaust energy loss and temperature difference.	91
Table 4.8: Oven shell loss per unit area of envelope and per unit volume of ovens	94
Table 4.9: Oven shell loss and temperature difference	96
Table 4.10: Oven shell loss and oven area	98
Table 4.11: Radiation energy loss from oven	100
Table 4.12: Summary of natural gas consumption of productive and non-productive hours	101
Table 4.13: Productive time's consumption as a percentage of total annual consumption	104
Table 4.14: Percentage non-productive hours and non-productive consumption	106
Table 4.15: Productive and non-productive hours consumption analysis (summer months)	108
Table 4.16: Exhaust requirements and current exhaust of ovens	111
Table 4.17: Shell energy loss of ovens with different loss factors.	112
Table 4.18: Exhaust savings from different percentage of exhaust reduction	114
Table 4.19: Percentage savings and payback period	115

Table 4.20: Cost of energy savings with reduced oven envelope loss factors	116
Table 4.21: Payback analysis based on different oven envelope loss factors	117
Table 4.22: Maximum potential savings of total natural gas consumption	119
Table 4.23: Natural gas savings per hour of operation	

List of Figures

Figure 1.1: Canada's secondary consumption by sector, 2009
Figure 2.1: Typical heat transfrer of an oven
Figure 3.1: Flow diagram of research program to investigate energy-saving opportunities of
SMEs in the GTA
Figure 3.2: Process flow digram of powder coating company (AAWIL)44
Figure 3.3: Separation of process and seasonal energy consumption
Figure 3.4: Typical industrial layout with HVAC network, process flow, and ovens
Figure 3.5: Sankey diagram of total energy balance of an industrial plant
Figure 3.6: Regresion analysis of outside average temperature and normalized energy
consumption
Figure 3.7: Sample analysis by PRISM and NAC value
Figure 3.8: Sample linear regression analysis in Excel and R ² value
Figure 3.9: Reference temperatures (°F) with corresponding R ² value in Excel
Figure 3.10: Separation of normalized process and normalized seasonal energy consumption56
Figure 3.11: Time-temperature relation of curing
Figure 3.12: Process flow of a continuous flow gas fired finishing company
Figure 3.13: Simple process flow and energy balance of ovens
Figure 4.1: Energy intensity of oven73
Figure 4.2: Energy intensity in terms of volume vs. oven volume
Figure 4.3: Energy intensity in terms of volume vs. oven envelope area
Figure 4.4: Energy intensity in terms of area vs. oven volume
Figure 4.5: Energy intensity in terms of area vs. oven operating hours

Figure 4.6: Energy intensity in terms of volume vs. temperature difference	77
Figure 4.7: Energy intensity in termd of area vs. temperature difference	
Figure 4.8: Oven consumption with operating hour x oven envelope area	80
Figure 4.9: Oven consumption with operating hour x oven volume	80
Figure 4.10: Energy balance of bake ovens	83
Figure 4.11: Percentage energy balance of bake ovens	84
Figure 4.12: Energy balance of different dry-off ovens	85
Figure 4.13: Percent energy loss due to exhaust from different dry-off ovens	86
Figure 4.14: Percent shell loss from different dry-off ovens	86
Figure 4.15: Percent product energy consumption from different dry-off ovens	87
Figure 4.16: Energy balance of different cure oven	88
Figure 4.17: Percent exhaust energy loss from different cure ovens	88
Figure 4.18: Percent shell loss from different cure ovens	
Figure 4.19: Percent product energy consumption from different cure ovens	90
Figure 4.20: Exhaust energy loss vs. temperature difference	92
Figure 4.21: Exhaust energy loss vs. oven envelope area	92
Figure 4.22: Oven CFM vs. exhaust loss	93
Figure 4.23: Energy loss per unit area of ovens	95
Figure 4.24: Energy loss per unit volume of oven	95
Figure 4.25: Shell loss vs. temperature difference	97
Figure 4.26: Shell loss vs. ΔT/R _{total}	98
Figure 4.27: Shell loss vs. oven envelope area	99
Figure 4.28: Natural gas consumption per hour of production of audited companies	102

Figure 4.29: Productive hours energy consumption index	103
Figure 4.30: Productive index of process energy of the audited plants	103
Figure 4.31: Percent natural gas consumption of productive hours	105
Figure 4.32: Energy consumption during non-productive hours	107
Figure 4.33: Energy consumption during non-productive hours (Summer months average)	109
Figure 4.34: Payback period of investment savings based on different insulation loss factors	118
Figure 4.35: Natural gas savings per hour of operation	120

Abbreviations

A/C	Air Conditioner
ASHRAE	American Society of Heating, Refrigerating and Air Conditioning Engineers
ACH	Air Change Per Hour
ACFM	Actual Cubic Feet Per Munity
ANSI	American National Standard Institute
CaGBC	Canada Green Building Council
CDD	Cooling Degree Days
CF	Correction Factor
CRA	Canada Revenue Agency
СО	Cooling Only
DHW	Domestic Hot Water
DSM	Demand Side Management
FEA	Federal Energy Efficiency Act
GDP	Gross Domestic Product
GHG	Green House Gas Emission
GTA	Greater Toronto Area
НС	Heating and Cooling
HDD	Heating Degree Days
HDDa	Actual HDD of the Billing Period
HDD _L	Long-term Annual HDD
НО	Heating Only

HVAC	Heating, Ventilation, and Air Conditioning
IESNA	Illuminating Engineering Society of North America
IEA	International Energy Agency
IEQ	Indoor Environment Quality
IESNA	Illuminating Engineering Society of North America
ISO	International Organization for Standardization
LEED	US Green Building Council's Leadership in Energy and Environmental
	Design
MBP	Management Best Practice
MEPS	Maximum Energy Performance Standard
NAC	Normalized Annual Energy Consumption
NRCan	National Resources Canada
NAICAS	North American Industry Classification
NBC	National Building Code
NECB	National Energy Code of Canada for Buildings
NEPA	National Fire Protection Association
NPV	Net Present Value
OEE	Office of Energy Efficiency
PRISM	Princeton Scorekeeping Method
PDCA	Plan, Do, Check, Act
RU	Ryerson University
SCFM	Standard Cubic Feet Per Minute
SWRN	Simple Ratio-Based Weather Normalization

TAU	Heating and Cooling Reference Temperature
TBP	Technical Best Practice
TSSA	Technical Standard and Safety Authority
USGBC	U.S. Green Building Council
VFD	Variable Frequency Drive
VAV	Variable Air Volume

Nomenclature

h	Heat transfer co-efficient [Btu/hr ft ² °F]
R	Over all thermal resistance [°F ft ² hr/Btu]
q_c	Rate of heat transfer by convection [Btu/ft ² °F]
A	Surface area to the direction of fluid flow [ft ²]
ΔT	Temperature difference [°F]
\mathbf{q}_{cd}	Rate of heat flow through conduction [°F hr/Btu]
k	Thermal conductivity [Btu/hr ft °F]
Ts	Surface temperature in Rankin [°R] scale
T_{∞}	Ambient temperature on Rankin [°R] scale
t _{DT}	Overall duel time, is the time parts remain inside oven [min]
t _{BUT}	Oven bring up time [min]
t_1	New cure time after temperature change [min]
Е	Normalized annual energy consumption [m ³ /year]
Ea	Actual energy consumption [m ³ /year]
HDDa	Actual HDD of the billing period [°F day]
HDDL	Long-term annual HDD [°F day]
T _{base}	Base temp [°F]
T _{mean}	Mean outside air temperature [°F]
k	Constant [0.7]
Q	Air flow rate [CFM]
C _A	Air flow co-efficient[CFM(ft ² -in. water) 0.5]

- R_P Is a pressure factor (in. of water 0.5)
- M Rate of metabolic heat production [W/m²]
- W Rate of mechanical work accomplished $[W/m^2]$
- q_{sk} Rate of heat loss from skin [W/m²]
- q_{res} Rate of heat loss through respiration [W/m²]
- E_{NG input} Energy input of natural gas through burner [Btu/hr]
- E_P Energy consumption by product [Btu/hr]
- E_c Energy consumption by conveyor [Btu/hr]
- E_{Exh} Exhaust energy loss [Btu/hr]
- E_{Shell} Energy loss through shell [Btu/hr]
- E_{open} Energy loss through oven opening [Btu/hr]
- m_{f produc} Mass of product [lb/hr]
- C_p Material specific heat capacity [Btu/lb °F]
- E_{MH} Energy required by the material handling equipment [Btu/hr]
- m_{MH} Mass of material handling equipment [lb/hr]
- Q_{open} Flow rate of dry flue gas from the oven opening in CFM
- U Overall heat transfer co-efficient of oven shell material [Btu/ft² °F]
- $Q_{Exhaust}$ Flow rate of dry flue gas from exhaust from oven in CFM
- t_{purge} Purge time in minute
- V_{oven} Volume of oven [ft³]
- VF_{exh} Exhaust volume [SCFM]
- CF Conversion factor

- T_{ref} Facility reference temperature [°F]
- NAC Normalized annual consumption [m³/year]
- M Heating or cooling slope obtained in the regression line in the scatter plot
- X HDD corresponds to optimal reference temperature [°F day]
- C Is the fixed value on the regression line on the scatter plot $[m^3]$
- m_{fp} Production throughput [lb/hr]
- V_{line} Velocity of conveyor [ft/min]
- PBP Payback period [year]
- At Sum of annual return [CAD]
- Co Capital investment [CAD]

Greek Letters

σ	Stefan Boltzmann constant $[1.714 \times 10^{-9} \text{ Btu/hr ft}^2 \text{ R}^4]$
---	--

- ε Emissivity (assumed value of one as ideal emitter)
- α Base-level consumption [HO, CO, HC][m³/year]
- β_h Heating slope [HO, HC] [m³/°F year]
- β_c Cooling slope [CO, HC] [m³/°F year]
- δ_h 1 for heating only (HO) and combined heating and cooling (HC) model, otherwise zero
- δ_c 1 for cooling only (CO) and combined heating and cooling (HC) model, otherwise zero
- τ_h Heating reference temperature [HO, HC] [°F]
- τ_c Cooling reference temperature [CO, HC] [°F]
- $H_0(\tau_h)$ Long term average heating degree day per year to the PRISM to estimate reference temperature
- $C_0(\tau_c)$ Long term average cooling degree day per year to the PRISM to estimate reference temperature

Chapter 1: Introduction

1.1 Introduction

Business is a dynamic and complex process with challenges such as globalization and climate change. Business changes rapidly and frequently. The manufacturing sector faces new competition every day; to survive in the market, manufacturing companies must manage challenges such as manufacturing technology, product features, production partners, and working style. These are the major research fields of manufacturing companies aside from energy consumption optimization. In addition to competition, studies continue to investigate managing energy resources and reducing harmful environmental effects such as greenhouse gas (GHG) emissions and global warming. Large-scale manufacturing industries are capable of keeping pace with this changing environment, but small and medium-scale manufacturers lag behind. Small and medium-scale enterprises (SMEs) provide support to large-scale businesses; few operate independently. SMEs have limited capability and skilled workers to implement new and competitive trends. As a result, they are struggling to survive these obstacles. Therefore, the sustainable development of SMEs is not encouraging as energy management and savings measures reduce production costs, which results in reduced operating costs, advantages heretofore available mainly to large companies that maintain internal energy management departments [1].

1.1.1 Background

Industrial energy use has been growing in recent decades. The growth rate varies between large and small industries. The fastest growth in industrial energy demand has been in emerging economies, although efficiency has improved substantially in all the energy-intensive manufacturing industries over the last 25 years in every region [1]. Basic industrial processes and products are similar across the globe, which enables the use of universal indicators such as break-even analysis, profitability ratio analysis, and other tools. However, the greatest challenge in establishing precise indicators lies in detailed analysis. In order to make a proper comparison between similar types of companies, their system boundaries should be identical. Reliable indicators can be obtained from a good data set from detailed analysis collected through energy audits of the companies. Good data sets are more accurate in best-practice companies. A report by the International Energy Agency (IEA) showed that small-scale manufacturing plants using outdated processes, low-quality fuel and feedstock, and weak transportation infrastructure contribute to industrial inefficiency [2]. This report shows that the profitability opportunity is there for industries in which energy is not the main operating cost. However, energy-intensive SMEs have a potential opportunity to reduce operating costs through energy-saving programs.

1.1.2 Definition of SMEs

Industry Canada defines a business as a registered establishment that has at least one paid employee, with payroll deductions remitted to the Canada Revenue Agency. Also, the business must have reported annual sales revenue of \$30,000 and must have filed for a federal corporate income tax return at least once in the previous three years. For SME research and statistics, Industry Canada uses a definition based on the number of paid employees (excluding indeterminate employees, i.e., contract and self-employed workers). Also excluded from the definition of SMEs from the industrial sector are public administration institutions, including schools and hospitals, public utilities, and nonprofit associations. More specifically, Industry Canada defines types of businesses based on paid employees in the following categories [3]:

- 1. A small business that has 1 to 99 paid employees
- 2. A medium business that has 100 to 499 paid employees
- 3. A large business that has 500 or more paid employees

1.1.3 Category of SMEs

SMEs are defined as firms with fewer than 500 employees. This is an acceptable definition by Statistics Canada, Industry Canada, the Small Business Association of Canada, the World Bank, and the Organization for Economic Co-operation and Development. They are subdivided into three major categories [3]:

- 1. Micro-sized enterprise, which has fewer than 5 employees
- 2. Small-sized enterprise, which has at least 5 but fewer than 100 employees
- 3. Medium-sized enterprise, which has at least 100 but fewer than 500 employees

There are other types of classifications based on revenue or shipments. Industries or businesses with revenue under \$25 million or a volume of manufacturing shipments less than \$25 million can be categorized as an SME firm. This categorization is not widely used because the value of revenue and shipments is affected by inflation. All industries are classified as per their processes or economic activities in North America through the North American Industry Classification System (NAICS). The goods-processing sector is limited to the following NAICS codes [4]:

- 11 Forestry
- 21 Mining
- 22 Utilities

- 23 Construction
- 31-33 Manufacturing

The manufacturing sector (NAICS 31-33) is the major concern of this research work.

1.1.4 Current Situation of SMEs

The sustainable growth rates of Canada's small, medium, and large businesses are 82%, 63%, and 60%, respectively, over the period 2000-2010 [1]. The sustainable growth rate defines the maximum growth a company can sustain without additional investment [5]. SMEs are categorized in different sectors based on businesses that are mainly goods (primary, construction, and manufacturing), services (wholesale trade, retail trade, professional, scientific, and technical), and producing sectors. Of all subsectors, the primary and manufacturing sectors had growth rates of 2% and 3%, respectively. The growth rates in the service sectors were 5% to 7% [1]. The overall correlation coefficient between actual growth and sustainable growth was -0.16 in that period. These findings raise the question of capabilities and limitations of SMEs in Canada [1]. At the same time, energy consumption is escalating, although energy remain limited.

In Canada, the manufacturing sector accounted for largest share (67.8%) of energy consumption within the industrial sector (37%) [5]. In 2011, energy consumption in the manufacturing sector grew 1.8% over 2010, where the output grew 2.9% in the same period of time [5]. Overall consumption rose from 28% to 29.8%. Overall energy consumption in different sectors is presented in Figure 1.1 [5].

Source: National Resource Canada 2012

Figure 1.1: Canada's secondary consumption by sector, 2009 [5]

Approximately 3.5 billion tons of crude oil are consumed in a year; within this consumption data, the transportation sector consumed the most, followed by the industrial sector [3]. It is commonly recognized by business owners that efficient energy use can reduce operating costs and harmful environmental effects [4].

The SME sector is a significant part of the Canadian economy, with almost 250,000 establishments in 2003 [4]. These SMEs are consuming significant amounts of energy. However, energy consumption data specific to this sector is sparse. This shortage of energy consumption data is a drawback to energy-management programs, keeping them from addressing the specific needs of SMEs.

1.1.5 Benefits of SME Energy Management and Savings Programs

The Canadian Industrial Energy End-Use Data Analysis Center studied SME energy-saving opportunities in 2003 for 11,000 SME industries. It found cost-saving opportunities of 35% in the categories of lighting, air compressors, and motors [4].

The Canadian manufacturing sector had an energy-saving opportunity of \$1.532 billion in 2003. Individual establishments accounted for energy-saving opportunities of an average of \$24,000 annually [4,5]. This was the result in 2003 (without any previous research ever being done on this aspect of SMEs). Beginning then, Natural Resources Canada (NRCan) started working to provide more potential data sets for energy consumption analysis. NRCan identified that the manufacturing sector consumed the most energy and held the highest potential for energy savings. Therefore, energy-saving programs in SMEs will help reduce operating costs and further investigate sustainable improvements.

1.1.6 Barriers to Implementing Energy-Saving Programs

Energy audits are the preliminary stage of energy-saving programs. However, there are barriers that SME companies face, including economics, technology, and resources. These barriers restrict the actual realization of energy-saving potential. In recent decades, there has been apparent improvement because of continuous research on energy-saving opportunities. Although there is gradual progress, there are also factors that limit actual improvement [6,7,8]:

- Conflict of priority between energy conservation and capacity expansion
- Shortage of funds for energy-conservation projects
- Shortage of human capital and lack of information on technological options
- Lack of production management and inefficient products

1.1.7 Energy Audits

Energy audits are the process of verifying, monitoring, and analyzing energy uses in a facility. An energy audit is the first step to understanding how energy is being used in a firm [10]. Costbenefit analysis and steps to reduce energy consumption are major parts of energy audits [11]. There are two major types of energy audits: macro and micro. Both macro and micro audits depend on the scope of work and requirements by potential customers. A macro audit starts at relatively higher levels and involves a broad physical scope and less detail. A micro audit has a narrow scope that often begins where a macro audit ends. In-depth analysis is conducted in micro audits. Individual equipment energy-efficiency analysis is a major part of micro-energy audits. Generally, micro-level analysis requires expertise in the field of engineering and technology. Therefore, energy-consumption analysis and identification of specific energy-saving measures are the main focus of energy audits [12]. These have different levels and depths, which are listed below [13]:

- 1. Level I analysis: walkthrough analysis which is inspection of the facility to identify maintenance, operation, or deficient equipment issue and to also identify area which need further appraisal.
- Level II analysis: where performing cost-effective calculations and may include performing, monitoring, metering, testing to identify actual energy consumption and losses. ASHRAE-level-II energy survey and analysis includes in this type.
- 3. Level III analysis: where performance of detail analysis through computer modeling to determine the actual yearly energy consumption. ASHRAE-level-III energy survey and analysis includes in this type.

7

The type of audit depends on the funding, cost and potential of the energy conservation opportunity, accuracy of the information, type of facility, and processes within a facility.

1.1.8 Goals of the Energy Audit

The goals of an energy audit are:

- 1. Determine the type and cost of energy use.
- 2. Identify how energy is being used and where it is wasted.
- 3. Identify and analyze more cost-effective ways to use energy.
- 4. Perform an economic analysis on those cost-effective energy uses alternatives.

1.1.9 Steps in the On-site Energy Audit

The step-by-step progression of an energy audit is:

- 1. Data collection and review
- Plant survey and system measurements, including layout and operating schedule for facility
- 3. Equipment inventory
- 4. Building use pattern to show annual needs for heating, cooling, and lighting
- 5. Observation and review of operating practices
- 6. Data analysis

This information is necessary to determine where, when, why, and how energy is being used.

1.1.10 Equipment List for Energy Audit

Before conducting an energy audit, some information and review of equipment in the facility are important:

- 1. Identify all large pieces of energy-consuming equipment such as heaters, Heating, Ventilation, and Air Conditioning (HVAC), and specific process-related equipment.
- 2. List all major energy-consuming equipment, their annual hours of use, and energy ratings or efficiency.

1.1.11 Major Systems to Consider for Energy Audit

Major equipment depends on function and type of the facility. However, there is common major equipment to consider during an energy audit:

- 1. Building envelope
- 2. HVAC system
- 3. Electrical supply system
- 4. Lighting
- 5. Boiler and steam system
- 6. Hot/Cold water system
- 7. Compressed air system
- 8. Motors
- 9. Special purpose process equipment
- 10. Water and sewer system

1.1.12 Difference Between Energy Audit, Energy Conservation, and Energy Efficiency

An energy audit is a systematic analysis of energy consumption in a facility, which provides an energy use depiction in the field of energy management [14]. The purpose of an energy audit in energy management is to balance total energy input with its use.

Energy conservation is the reduction of energy consumption in a process or by an organization through economy, reduction of waste, and more efficient use. Energy conservation is separate from energy efficiency, but they are related concepts. Energy conservation is achieved when utilizing new technology and improved processes and is measured in physical terms. Therefore, energy conservation can be the result of several improved processes or developments, such as productivity increases or technological progress, for example, opening a window in the summertime instead of turning on an air conditioner.

Energy efficiency is the percentage of total energy input to produce useful output. Energy efficiency is achieved by reducing energy intensity of equipment, processes, or areas of production without affecting output, or comfort levels. One specific example is replacing traditional light bulbs with compact fluorescent lamps. The light level is better, and energy costs are reduced.

The difference between energy conservation and energy efficiency is that energy conservation means less energy use through behavioral change while energy efficiency means reducing energy consumption through effective use of equipment without changing the comfort standard. Energy conservation can sometimes affect comfort level [15]; for example, lowering the thermostat in the winter is energy conservation, but installing an energy-efficient heater and insulation is energy efficiency [15].

1.1.13 Demand-Side Management

Demand-side management (DSM) is also known as demand management. The purpose of DSM is to reduce consumers' energy demand or shift energy demand to off-peak hours through various methods [16] such as financial incentives and education. The goal is not to reduce overall energy consumption but to shift demand to off-peak hours, such as nights and weekends. When peak demand is increased, the system requires higher production capability and reliability, which incurs more costs. If some peak demand is shifted to off-peak hours, then peak demand can be reduced. The concept of DSM appeared after the energy crises in 1973 and 1979. DSM was introduced by the Electric Power Research Institute in 1980 [16]. The basic concept is to store energy during off-peak hours and deliver it during peak hours to balance the overall demand load. DSM has a major role in high investments in generation, transmission, and distribution networks. DSM also reduces harmful greenhouse gas emissions and provides significant economic and environmental benefits [17]. The objectives of DSM are:

- Reduction of customer energy bills
- Reduction in the need for new natural gas sources
- Stimulation of economic development
- Increase in the competitiveness of local enterprises
- Reduction in air pollution
- Reduced dependency on foreign energy sources

1.2 Energy Management Plan and Related Code

Energy management plans are roadmaps to maximize industrial facilities' productivity while minimizing energy use. Energy management plans reach their goals for reducing energy consumption and achieve cost savings. Components of an energy management program are [18]:

- 1. Company energy strategy
- 2. Energy cost and use, tracking, profiling
- 3. Energy audit of facility
- 4. Analysis of operation and maintenance
- 5. Energy economics analysis
- 6. Implementing energy projects
- 7. Monitoring energy conservation measures
- 8. Company training

An energy management plan has to maintain several codes and standards for safety and comfort. There is no difference between codes and standards. A code is broad in scope and covers a wide range of issues while a standard is narrow in scope and covers a limited range of issues. Both are enforceable through legislation [18].

- 1. National Model Construction Code
 - (a) National Building Code of Canada (NBC): addresses the design and construction of new buildings and the substantial renovation of existing buildings
 - (b) National Energy Code of Canada for Buildings (NECB): addresses technical requirements for the construction of energy-efficient buildings

2. ASHRAE/IESNA 90.1-2010: addresses building compliance of HVAC, energy trade off with cost budget method, building envelope, and lighting

3 ASHRAE/IESNA standard 189.1: addresses high-performance green buildings

4. ANSI/ASHRAE/IESNA 100-2006: addresses potential energy-saving measures for existing buildings

5. Energy Performance Standard (MEPS): addresses the maximum amount of energy that may be consumed by a product

6. Federal Energy Efficiency Act (EEA): addresses regulating energy efficiency for products in some provinces

7. Standard 55-2004: addresses thermal environmental conditions for human occupancy

8. Standard 62.1-2007: addresses ventilation for acceptable air quality

9. Standard 62.2-2007 addresses ventilation and acceptable indoor air quality in low rise residential buildings

10. Indoor Environment Quality (IEQ) level: addresses lighting level, noise, and controllability of indoor environment management systems

11. National Fire Protection Association (NFPA) 86: addresses safe operation standards for ovens and furnaces

1.3 Thesis Objective

Potential energy-saving analysis and process energy-consumption analysis are the major methods of this research. This research has made an effort to identify indicators by which industry facilities and processes can be benchmarked. Industries can be categorized by high-potential energy-saving opportunities and low-potential energy-savings opportunities from different subsectors. This research also identifies two indices: 1) an index of oven energy intensity by
which industrial plants can be benchmarked; 2) productive hours index, which can also be used to benchmark industrial plants.

Major analysis focused on powder-coating and food-processing companies. Approximately 11 companies' data sets from each subsector with actual hourly production output provided realistic energy-consumption trends. A payback analysis was performed with cash flow (e.g., payback with a simple interest rate, benefit-cost ratio, and net present value).

1.4 Structure of Thesis

The work is organized into five chapters:

Chapter 1: Introduction and background on the research, and outline of the overall objective of the study

Chapter 2: Literature review on small and medium-sized enterprises' current features, energyconsumption trends, and benchmarking

Chapter 3: Energy audit method and methodology for energy consumption, and energy-savings analysis and payback analysis in order to update or modify system operations and/or processes to reduce energy consumption in SMEs

Chapter 4: Analysis of SMEs energy consumption and potential savings opportunities.

Chapter 5: Results and discussion of energy consumption and savings in audited companies, analysis of trends of process energy consumption of SMEs in the Greater Toronto Area (GTA), and discussion of energy indicators in process energy consumption

Chapter 6: Conclusion and recommendations

Chapter 2: Literature Review

Published research papers and reports are the basis of this literature review. Actual energy data sets used for this thesis were done through an energy audit of SMEs arranged by Enbridge Gas Distribution Inc. Many case studies on energy audits and benchmarking were reviewed to enhance this research work.

2.1 Energy Benchmarking

Benchmarking is the process of determining a baseline of energy consumption to compare with other companies. Companies can see how well they are performing in comparison with others through the benchmarking process and can determine ways in which to become more competitive with other companies [15].

In the past, surveyors used to mark on hard surfaces and place indentations on items to help other craftsmen with a point of reference to continue building. This process was known as benchmarking. Companies use benchmarking as a point of reference in the present business world, but they utilize statistical tools instead of physical benchmarking. Therefore, benchmarking is a process of comparing manufacturing operations to other similar companies. A practical example is a school report card or a standardized test, by which one student is compared to his/her peers. The benchmarking process also provides some indicators, such as revenue, production amount, energy consumption, employee productivity and quality, etc. [15].

2.2 Benchmarking Methods

Benchmarking is the most effective method of analysing organizational activities, including finance, production, energy consumption and quality, etc. It marks comparative trends of one or more types of activities achieved within the same type of company by in-depth analysis and study. Benchmarking starts one on the way to a deeper understanding of the internal processes. Then, competitors or the same types of organizations are comparatively analyzed. Benchmarking focuses on practices, and its main purpose is to learn from those practices that support the best results. There is a clear trend in developing specific characteristics and the need for benchmarking. It is widely practiced as a structured process of improvement. This generally follows the Deming continuous improvement cycle: plan, do, check, act (PDCA) [17].

2.3 Benchmarking Methodology

Energy performance benchmarking/rating methodology is suitable for product energy consumption (unit product). Exhaust emission performance benchmarking is used to analyze exhaust emission levels. Environmental impact analysis is used to identify environmental pollution and climatic change. There are a few ratings, such as ISO 14001 and ISO 1403, and the Global Reporting Initiative provides guidance for benchmarking direct and indirect energy use [17]. A key performance indicator is another type of benchmarking methodology that helps to indicate a company's annual achievement target over goals.

2.4 Gas Fired Oven and Heat Engineering

Heat transfer is a key principle in the process of powder-coating and curing for finishing companies, as well as baking food products in a gas fired oven for food companies. The basic principle is heat transfer, which includes conduction, convection, and radiation. Among these heat transfer principles, convection and conduction play the major role in the process, while radiation contributes much less. Convection is a process by which heat energy is transferred between a solid and fluid flowing past it. The rate of heat transfer through convection is determined by Newton's law [19]:

Figure 2.1: Typical heat transfer in an oven

$$q = hA(\Delta T) [Btu/hr]$$

(2.1)

Where,

q = rate of heat transfer by convection [Btu/hr]

h = average convective heat transfer co-efficient. The value of convective heat transfer co-efficient depends on: physical properties of a fluid, geometry of the surface, and temperature difference [Btu/hr ft² °F].

A = surface area normal to the direction of fluid flow $[ft^2]$.

ΔT = Temperature difference between the surface and the fluid [°F]

Conduction heat transfer (wall) in an oven is determined by Fourier's law:

$$q = -k A \frac{dT}{dx} [Btu/hr]$$
(2.2)

Where,

q = rate of heat flow in X direction (or Y/Z direction) through conduction

k = thermal conductivity of material [Btu/hr ft °F]

 $\frac{dT}{dx}$ = temperature gradient (positive when heat flows from higher temperature to lower temperature and negative when opposite.) [°F/ft]

Radiation heat transfer in an oven is determined by Stefan-Boltzmann's law:

$$q = \varepsilon \,\sigma A(T_s^4 - T_\infty^4) \tag{2.3}$$

Where,

q = rate of heat flow by radiation [Btu/hr]

 T_s = surface temperature on Rankin (°R) scale [°R = °F + 459.67]

 T_{∞} = ambient temperature on Rankin (°R) scale

A = surface area of radiation [ft²]

 σ = Stefan Boltzmann constant (1.714 x10⁻⁹ Btu/hr ft² R⁴)

 ε = emissivity (assumed value of one as ideal emitter)

2.5 Industrial Powder - Coating Process

Powder-coating processes involve the cleaning, rinsing, phosphating (improving corrosion protection), rinsing, drying, powder-coating, and curing of parts [20]. The cleaning to drying steps are part of the pre-treatment process, then a part goes into the actual coating processes, followed by the powder application, which requires a spray device with a powder delivery system. The final stage of coating is the curing of the powder-coated parts. Thermal energy is applied for a certain amount of time in order to produce a chemical reaction and form a film on the surface. Powder materials melt when exposed to heat, flow into a level film, then chemically reform and reach the full cure. Heat energy contributes to the chemical reaction and curing. There are several types of ovens, depending on the curing processes, namely convection ovens, infrared ovens, and combination ovens [21]. Heat transfer takes place from the article or paint film to the surrounding air inside the heated chamber throughout the convection oven. Air is heated up in the heated chamber and circulated by fans. This method is suitable for large and irregular-shaped objects. Radiation ovens are known as infrared ovens. In this method, infrared radiation is emitted, which heats up the paint film or surface of an object. Infrared bulbs or infrared electric heaters work as a source where suitable reflectors directed this infrared emission to the object. This surface-heating process is suitable for objects that have simple and straight geometric shapes. Combination ovens are a combination of convection and infrared ovens [22].

2.6 Cure Dynamics of Powder Coating and Reducing Energy Use

The oven is a major piece of processing equipment in powder-coating and food-processing companies. The processing time depends on the curing dynamics. Curing dynamics is a changing process through chemical reactions and kinetics of the organic binder between paint and substrate metal [23]. Another dependent variable is temperature. Therefore, temperature and time are two important variables of the curing process. Other variables include concentration, particle size, and catalyst. Bruno Fawer developed a mathematical formula [23] for this based on the trial-and-error method. This formula is widely used in convection ovens, though it is not fully supported by the cure dynamics theorem. The formula is:

$$t_{DT} = (t_{BUT} + t_1) = t_{BUT} + \frac{t_0}{1.024^{[\pm \Delta T(^{\circ}F)]}}$$
(2.4)

Where,

 t_{DT} = oven dwell time [min]

t_{BUT} = oven bring-up time (known or assumed) [min]

 $t_1 =$ new cure time after temperature change [min]

 t_0 = cure time after temperature change [min]

 ΔT = new temperature minus initial (base) temperature [°F]

The processing time, called the dwell time, is defined as the total time a part remains in the cure oven. The total time is made up of two parts: bring-up time and cure time. The bring-up time is the time it takes for a part to reach the cure temperature, while the cure time is the time it takes to cure and settle. There is still confusion with respect to defining dwell time because people in a laboratory environment have stated that oven dwell time and cure time are essentially the same [23]. The bring-up time is a known or assumed parameter determined through trial and error. Therefore, only cure time can be calculated by this formula. Dwell time is a critical phenomenon that can balance conveyor speed (material handling speed), setup temperature, and energy

consumption. Therefore, to minimize heat requirements, dwell time for quality parts with specific coatings or specific food processing is required [24].

2.7 Reducing energy use in powder coating system

Ovens are the major processing equipment in powder coating companies. The finishing process consumed half the total plant's energy [25]. Natural gas is the highest energy used followed by electricity. Therefore, energy cost is a major concern in production price of powder coating companies. Raising energy costs significantly affects production cost and profitability of this finishing process companies [25]. From 2002 to 2006, the cost of energy increased from \$39,500 to \$107,576, which is a 275% increase from 2002 from a single shift coating company [25]. High energy prices significantly increased the importance of minimizing energy use in the powder-coating process. Energy savings can be achieved by following by these strategies [25]:

- a. Minimizing high-temperature operation
- b. Retain heated air
- c. Automate and control

A 75 degree (°F) cuts energy consumption by 700,000 Btu per day, which is \$16,000 annually [25]. Retaining heated air can cause products to process faster, which will increase oven efficiency. This increases production rate, shortens oven time, and reduces oven temperature. Thus, upgrading or existing ovens with air barrier heat seals provides multiple benefits. Heat sealing ovens can reduce energy usage by half, which provides less than one year's payback period. Upgrading control ensures effective product cleaning and coating, which ensures consistent high-quality finish. A study found that applying the improvement measures described above can reduce plant's energy usage by 25% [25].

2.8 Curing Oven Basics

The curing oven is the major processing equipment at powder coating companies, and consumes the majority of the plant's energy. This is the final process of painting and coating. The curing oven raises the temperature of the product being cured and holds it at the required temperature for an amount of time suggested by coating suppliers. The time and temperature are determined by coating manufacturers or suppliers based on chemical composition and metal substrate. There are other factors affecting curing time and temperature, including line speed, product size, hanger spacing, product and conveyor weight, and oven windows. The average time required to achieve curing is 20 minutes [26]. However, time and temperature are not the only variables for curing; many other variables affect curing quality and energy consumption. Parameters to consider when estimating energy consumption include: product energy consumption, radiation energy loss through enclosed panels, energy consumption by conveyor and hanger, energy loss through air seals or openings, fresh air requirements for burners, continuous exhaust for safety requirements, and release of coating materials (if any volatile material is being used with the coating material) [26]. To estimate moving product and conveyor load weight, the following equations can be used.

Assumptions:

A production rate of 600 parts per hour.

Each carrier holds two parts.

Required number of carriers per hour is 600/2 = 300 carriers per hour (2.5)

Required number of carriers per minute = 300/60 = 5 carriers per minute (2.6)

Carrier spacing of 36 inches or 3 feet.

Five carriers per minute x 3 ft. = 15 ft/min (2.7)

Example:

Conveyor length = ware center x required production. = 3 [ft.] x 1,000[number per shift] = 3,000 [ft/shift] (2.8) Conveyor speed = 3,000 [ft per shift] / 7.5 [hrs. per shift] = 400 [ft/hour] = 6.67[ft/min]

Assumptions:

Product weight = [lb] Unit carrier weight = [lb] Conveyor weight = [lb] Design conveyor speed = [fpm] Unit product per hour = conveyor speed [fpm] x 60/ware center [ft.] = [number per hr.] (2.10) Lbs product per hour = units product per hr. [number per hr.] x product weight [lb] = lb/hr.]

(2.11)

(2.9)

Lbs hanger per hour = unit hanger weight [lb] x unit per hour [unit/hr.] = [lb/hr.] (2.12)

Lbs conveyor per hour = conveyor weight/ft. [lb] x conveyor speed fpm x 60 = [lb/hr.] (2.13)

2.9 PRISM Analysis

The Princeton Scorekeeping Method (PRISM) is a reliable method of energy data analysis for potential energy savings. It is a dependable tool with which to evaluate the effectiveness of retrofits or energy-conservation methods implemented on buildings in the United States. The software and methods were designed by Princeton University in 1984 and then later modified to best utilize the available utility data. Heating and cooling models and automated data correction were added subsequently [27].

The PRISM method is a procedure that uses utility billing data from periods before and after installation of industry retrofit measures and average daily temperature data from local weather stations to determine whether there are adjusted energy savings. This results in weatherization programs. This method uses regression analysis to produce pre-weatherization and post-weatherization normalized annual consumption values for each industry analyzed, and the difference between these values provides the normalized annual savings for that particular industry [27, 28, 29].

PRISM assumes that the energy consumption base load remains the same for the whole year. This base load includes lighting, appliances, and domestic hot water. The seasonal load with respect to non-heating has been ignored in PRISM analysis. Usually the highest non-heating consumption occurs during winter, which is caused by increasing demands in water heating, cooking, lighting, clothes drying, etc. A study shows that the difference between non-heating consumption between winter and summer can be up to 20% [30, 31, 32]. Those changes are linked with seasonal changes similar to space heating and cooling [30, 31, 32]. Therefore, non-heating consumption methodically adds onto the space heating or cooling loads [30, 31, 32].

Because it analyzes a set of data through nonlinear regression, PRISM is an important tool for research. It's a simple method that can represent a curve in a single step. PRISM is a good tool for getting many folds of output from a single selected equation. PRISM does this automatically through the given equation and displays the results as a table, i.e., draws a curve on the graph and interpolates unknown values [28]. PRISM provides weather-adjusted normalized annual consumption (NAC) [33]. This gives two indices at the same time: one being the NAC index, and the other being the best reference temperature of the building being analyzed. In this regression analysis, there are two variables: NAC, which is a dependent variable, and

HDD/cooling degree day (CDD), which is the independent variable. The correlation between these two variables is expressed by the coefficient of correlation R^2 . The correlation coefficient explains the behavior of one variable with another. The R^2 value ranges from 0 to 1. The value 0 indicates no relation between these variables, and the value 1 indicates a perfect relationship between these two variables. It is evident that an R^2 value of more than 0.7 is the more reliable relation between these two variables [33]. This method is utilized for many purposes, including reference temperature, energy-consumption trends, and weather-adjusted normalized annual energy consumption.

2.10 Simple Ratio-Based Weather Normalization Method

Simple ratio-based weather normalization (SRWN) is another method of estimating heating energy requirements. In this method, HDDs are used for the analysis. HDDs are a simplified form of historical weather data. They commonly include monitoring, targeting, and modeling the relationship between energy consumption and outside air temperature. HDDs are commonly used to calculate the weather normalization of energy consumption. Weather normalization or weather correction can show energy consumption from different periods and places with different weather conditions.

The estimated energy consumption is calculated using the Equation 2.14 [33].

$$E = \frac{Ea}{HDDa} X HDD_L$$
(2.14)

Where,

E = normalized annual natural gas consumption [m³/year or Btu/year]

Ea = actual natural gas consumption [m³/year or Btu/year]

HDDa = actual HDD of the billing period [°F day]

$HDD_L = long-term annual HDD [^{\circ}F day]$

In the degree-day, the base temperature, balance point, or reference temperature of a building is the outside temperature above which the building doesn't require heating. Different industry buildings have different base temperatures [34]. For the purpose of calculating normalized energy consumption, HDD is essential. If for any reason it is not obtained with a suitable base temperature, it can be obtained with mean air-temperature data (e.g., monthly readings of the mean air temperature) and an assumed base temperature (set-up temperature); these results approximate degree day. This degree day can be obtained by using Hitchin's formula, which is shown in Equation 2.15 [35].

Average degree days per day =
$$\frac{T_{base} - T_{mean}}{1 - e^{-k(t_{base} - t_{mean})}}$$
 (2.15)
Where,

 $T_{base} = base temperature [°F]$

 T_{mean} = mean outside air temperature [°F]

k = constant (0.71)

This is an alternative methods of calculating degree days from the mean daily temperature where limited data are available. The relation can be plotted in Excel, which provides a trend and R^2 value. From this value, conclusions about energy efficiency can be drawn.

2.11 Shipping and Receiving Door-Related Energy Consumption

The shipping and receiving door location, opening time, and opening frequency also play an important role with respect to energy-saving opportunities. This activity is important for every

industry. A model of air infiltration through the door opening was developed to estimate the energy-saving impacts as stated in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers' (ASHRAE) energy standard ASHRAE 90.1-2007. The energy-saving opportunity regarding door openings can be calculated where air flow rates have already been estimated [36]. The door-opening frequency for different types of buildings was estimated based on available data and occupancy data. In ASHRAE 90.1-2007, the energy savings for each building and each climatic location were estimated. The research shows that strip malls, standalone retail businesses, quick service restaurants, and sit-down restaurants have a larger percentage of energy savings as compared to other buildings which have less frequency of door opening [36, 37]. Air infiltration through door openings can be determined by type of door, usage of buildings, door openings, wind speed, and building pressure differences. The air infiltration can be determined by the Equation 2.16 [36]:

$$Q = C_A A R_p \tag{2.16}$$

Where,

Q = is air flow rate (cubic feet per minute, or CFM) $C_A = \text{is air flow coefficient (CFM/ft²-(in. of water) 0.5)}$ A = is area of the door opening (ft²) $R_p = \text{is a pressure factor (in. of water 0.5)}$

Energy loss due to air infiltration through a shipping and receiving door can be determined through ventilation energy consumption analysis.

2.12 Square-Foot Area Energy Consumption Method

Shape and size are important considerations in energy-efficient building designs due to their significant impact on energy performance. This decision has to be made during the conceptual stage. A building that is well-shaped, is well-oriented, has a good envelope, is well-configured, and has a high-quality design can consume 40% less energy than a poorly designed one [38]. The building shape and orientation are two of the most important factors during the conceptual stage of the design process. This design and orientation of the envelope satisfies two performance criteria: maximum daylight use and minimum operating energy consumption. There is a case study in which a typical pentagon-shaped floor showed optimum energy usages than a multi-objective generic algorithm [38, 39]. Analysis of square footage could provide an easier way to compare and benchmark the energy efficiency of a similar type of processing facility.

2.13 Estimating Non-productive Energy Consumption

The non- productive energy determined for each facility is the energy extrapolated to zero production in these regression models. Non-productive energy consumption is an important aspect in analyzing the potential saving opportunities in the manufacturing sector. From this research, an important technique for estimating the non-productive energy (also known as overhead energy) in industrial and manufacturing buildings will be analyzed [40]. This process is based on regression analysis on monthly building energy use versus the monthly production rate. The monthly average production data of each facility corresponds to average total building energy use (productive and non-productive). The energy at zero production as a percentage of the average production energy is the non-productive energy percentage [40]. The non-productive

energy consumption and productive energy consumption (identical facility) can be determined and used for benchmarking the energy-efficiency of facility units.

2.14 Production Scheduling and Shift Optimization for Energy Optimization

Meeting due dates and reducing tardiness have always been important objectives of scheduling in manufacturing companies. Both tardiness and earliness have direct and indirect penalties on a company's profitability [41] and add more costs as a result of increased energy consumption. There are many algorithms for operation hour optimization and scheduling of jobs in single or Nmachines [42]. Among them, a single machine with no tardiness issues would be the best method of utilizing productive time. However, decision makers face the issue of selecting which algorithm is best suited to solving their scheduling problems [41]. The first is an "n" job, a sequencing algorithm for one machine for minimizing the number of late jobs, which is the simplest to reduce late jobs [43]. Another popular algorithm is for scheduling one machine to minimize the maximum earliness and the number of tardy jobs [44], which is more appropriate for scheduling in powder-coating and food-processing companies. This algorithm provides a minimized maximum earliness and a minimum number of tardy jobs for an industrial plant. An oven is considered one machine. Shift changes, product changes, and color changes can be considered in this algorithm. Energy consumption is minimized as a result of an optimal production schedule. Fray et al. pointed out that job earliness creates inventory costs and contributes to additional energy consumption [44]. This could be another field of research based on process type and identity. However, the process time and schedule of production can be analyzed in order to establish a potential index on scheduling or shift of operation.

2.15 HVAC Energy Optimization

Heating, ventilation, and air conditioning (HVAC) systems maintain thermal comfort and air quality in buildings. A survey in the U.S. Department of Energy and ASHRAE Standard 62.1 User's manual showed that of the around 40% of the building energy utilized by HVAC systems, an air-handling system is one of the most energy-intensive components which takes 41.4% of HVAC energy usages [45]. HVAC demand management cuts down on rising energy demand and costs. Building-management software or an intelligent energy-management device can make this decision automatically. As a result, energy savings can be achieved [46].

2.16 Thermal Comfort

The main purpose of HVAC design is to provide indoor thermal comfort for humans. The definition of thermal comfort is "the condition of mind that expresses satisfaction with the thermal environment" (ASHRAE standard 55) [47, 48]. In short, it is these inputs that have an influence on humans physically, physiologically, and psychologically [47]. Human thermal comfort depends on many factors, including temperature and moisture sensation through the skin, deep body temperature, and regular body temperature [48]. Comfort also depends on activity, changing locations, changing thermostat settings, open windows, and indoor spaces. All these factors influence body temperature, skin moisture, and physiological efforts. In general, comfort is achieved when these parameters are minimized. Winslow et al. defined the body as "a skin wittedness index of thermal discomfort indicators." The human body is considered to be two concentric cylinders: a core cylinder, and the skin as a thin cylinder surrounding it [47]. Metabolic activities dissipate heat and are regulated to maintain a normal body temperature.

insufficient heat dissipating from the body, and hypothermia, in which excessive heat dissipates, resulting in the cooling of the body. A study showed that a skin temperature greater than 45 degrees centigrade or less than 18 degrees centigrade causes pain [48]. Usual comfortable skin temperatures are 33 degrees centigrade to 34 degrees centigrade and decrease with increasing activity [48]. As a result, internal temperatures rise with activity. The comfort temperature in the brain is about 36.8 degrees centigrade. It increases to 37.4 degrees centigrade when walking and 37.9 degrees centigrade when jogging. An internal temperature of less than 28 degrees centigrade can cause serious cardiac arrhythmia and greater than 43 degrees centigrade can cause irreversible brain damage. Considering these facts, the comfort regulation of HVAC design is important. Another factor to be considered is that an adult produces 100W of heat when he or she is at rest. This is about 58W/m² and called 1 met. The average skin surface area of a male is about 1.8m², and the average skin surface of a female is 1.6m² (ASHRAE, 2013) [48]. A person walking is considered to have five times the metabolic rate compared to when in a resting position (about 5 met).

The energy balance equation for humans is shown in Equation 2.17 [48].

$$\mathbf{M} - \mathbf{W} = \mathbf{q}_{\mathrm{sk}} + \mathbf{q}_{\mathrm{res}} + \mathbf{S} \tag{2.17}$$

Where,

 $M = \text{rate of metabolic heat production } [W/m^{2}]$ $W = \text{rate of mechanical work accomplished } [W/m^{2}^{2}]$ $q_{sk} = \text{rate of heat loss from the skin } [W/m^{2}]$ $q_{res} = \text{rate of heat loss through respiration } [W/m^{2}]$ $S = \text{Surplus or deficit stored energy } [W/m^{2}]$

The net heat produced by a human is transferred to the environment through the skin's surface (q_{sk}) and respiratory tract (q_{res}) , with the surplus or deficit stored (S), resulting in the body

temperature rising or falling. In this research study, occupants and their activities were considered in order to standardize the reference temperature setting.

2.17 Ventilation Analysis

Ventilation is a process of maintaining indoor air quality in order to achieve human comfort. This is done by changing or replacing air in a space through quality air transfer. Quality of air depends on its temperature, oxygen content, and moisture content, odor, smoke, heat, and carbon monoxide content.

The definition of ventilation is "the intentional movement of air from outside of a building to the inside" (ASHRAE Standard 62.1). Another definition for this in the ASHRAE handbook is "the air used to provide acceptable indoor air quality."

Enbridge Gas Distribution Inc. follows a rule of thumb which is one cubic meter natural gas required for space heating of one square foot facility area in year. This rule of thumb is used for ventilation analysis and this result can be utilized to calculate air changes per hour (ACH). This calculation uses ASHRAE standard 62.1, 2013 [50], where ACH used for ventilation of an industrial plant is 0.18 CFM/ft².

The following method can be used to calculate ventilation. Initially, the total plant's natural gas consumption is calculated:

Total natural gas consumption $[m^3/year] = average process load <math>[m^3/year] + average seasonal load <math>[m^3/year]$ (2.18)

Then,

Total seasonal load = space heating $[m^3/year]$ + ventilation $[m^3/year]$ (2.19)

Space heating = rule of thumb by Enbridge Gas Distribution Inc.

1 square foot requires 1m³ of natural gas per year

So, ventilation = total seasonal load $[m^3/year]$ – space heating $[m^3/year]$ (2.20) Therefore,

ventilation
$$[m^3/year] = operational hrs [hr/yr] x 1.08 [Btu-min/ft3 °F hr]x CFM x ΔT [°F]$$

(2.21)

Now, air changes per hour (ACH) = (CFM x 60)/volume (2.22)

2.18 Case Study on Energy Management

2.18.1 Advancing Opportunity in Energy Management in Ontario Industrial and Management Sector

Canadian Manufacturing & Exporters, in conjunction with the consulting services of Stantec Consulting, Marbek, and ODYNA, conducted a study to examine energy management opportunities in the manufacturing sector in Ontario. This research report was published on March 17, 2010. The objective of the study was to assess energy-management performance to estimate the economic potential for energy management. Extended research objectives included the benchmarking of greenhouse-gas emissions and the reduction of air contaminants. The reference year for this analysis is 2007 [51].

Five objectives were set in this research project study: (a) reduce operating costs, (b) increase productivity, (c) retain manufacturing jobs and value addition, (d) reduce air emissions, and (e) defer or avoid new energy infrastructure [51]. The scope of work encompassed three performance indicators: energy intensity, technical best practices (TBP), and management best practices (MBP). Energy intensity is the amount of energy used to produce output – for example,

a kilowatt-hours per ton of product produced. TBP is the production system and efficiency measure that assesses reduction in energy use per unit of production. An example is the installation of a heat recovery boiler, which exhausts gas from the generator in order to reduce process energy. MBPs relate to a manager's actions to reduce energy use. Examples include company policies and plans to reduce energy use.

Energy benchmarking was investigated over selected companies in the GTA. The area of investigation included energy intensity, TBPs, and MBPs. The results showed very low implementation of the TBP method. Thirty-one percent to 42% of the firms in the sample implemented TBPs and achieved the 75th percentile. Fifty-eight percent of the firms had the opportunity to implement TBPs. Large plants were 10% more likely to implement TBPs compared to SMEs. TBPs were grouped into three different fields: lighting, process specification, and indirect-process heating. TBP implementation rates on lighting large firms and SMEs were 33% and 3%, respectively; 43% and 14% on process-specific heating, respectively; and 37% and 21% on indirect-process heating, respectively. Results showed that fewer than 48% of the plants implemented MBPs and achieved the 75th percentile. Fifty-two percent of the firms had to implement MBPs. Large firms were 30% more likely to implement MBPs compare to SMEs. MBPs were divided into three different fields: financing, policy and planning, and monitoring. Large firms and SMEs implemented MBPs at the following rates: 70% and 20%, respectively, in the financing field; 42% and 7%, respectively, in policy and planning; and 46% and 12%, respectively, in the monitoring field. A correlation existed between TBPs and MBPs. Research showed that the higher the degree of MBPs implemented, the higher the degree of TBPs implemented [52]. Overall, 22% of the selected plants implemented both TBPs and MBPs. Individually, TBPs were implemented 40% more often than MBPs. Sixty-three percent of the

TBPs and MBPs implemented were in large plants. Two-thirds of SMEs implemented TBPs at a rate of less than 40%. Therefore, a large potential exists for further research in this sector.

2.18.2 Bottom Line Improvement of Natural Gas Consumption Through Process Ovens: A Case Study by Enbridge Gas Distribution Inc. in Canada's Greater Toronto Area

Powder-coating ovens or process ovens provide decorative or protective finishes applied on a surface without the aid of solvents or carrier liquids [53, 54, 55]. Dwelling time is the main feature of this process. Dwelling time involves bring-up time and cure time. These processes require heat energy or thermal energy. The low thermal efficiency of an oven is the major concern of this research [23].

A team from Toronto, Canada's Enbridge Gas Distribution Inc. examined industrial process ovens to assess DSM and energy savings. Industrial ovens are usually used for baking, drying, powder-coating, and curing. Enbridge's energy team studied a case on powder-coating companies wherein two types of ovens - dry-off ovens and cure ovens, both of which are heat convection-type ovens-were involved. George Koch Sons, LLC, shows the percentage of energy consumption of ovens by different uses, including pre-treatment heating (38%), pre-treatment motor (7%), air handler (13%), oven heating (38%), oven motors (3%), and lights or miscellaneous motors (1%). The energy balance of ovens is shown in Equation 2.23 [55, 56].

$$E_{\text{NG input}} = E_p + E_c + E_{\text{Exh}} + E_{\text{Shell}} + E_{\text{Opening}} \quad [Btu/hr]$$
(2.23)

Where,

E_{NGinput} = energy input of natural gas through burner [Btu/hr]]

 E_p = energy consumed by product [Btu/hr]]

E_c= energy consumed by conveyor [Btu/hr]]

 $E_{Exh} = exhaust energy loss [Btu/hr]]$

E_{Shell} = energy loss through shell [Btu/hr]]

E_{Open} = energy loss through oven opening [Btu/hr]]

Heat loss from an oven is a major concern in this analysis. This happens in many ways, namely through conveyor (material handling) losses, oven opening losses, shell losses, and exhaust losses. Energy required by the product can be determined by the Equation 2.24.

 $E_{\text{Products}} [\text{Btu/hr}] = m_{\text{f products}} [\text{lb/hr}] \times C_{\text{p}} [\text{Btu/lb }^{\circ}\text{F}] \times \Delta T[^{\circ}\text{F}]$ (2.24)

Where,

E_{Products} = energy required by the product to cure or process [Btu/hr]

 $m_{f products} = mass of the product [lb/hr]$

C_p = material's specific heat capacity [Btu/lb °F]

 ΔT = temperature difference of material between before and after the process [°F]

Conveyor energy loss or material handling (MH) loss contributes in two ways: firstly, through conveyor chain loss, and secondly, through conveyor hanger loss. Both losses can be named MH loss. This MH energy loss is determined by the Equation 2.25.

 $E_{MH} [Btu/hr] = m_{MH} [lb/hr] \times C_p [Btu/lb F] \times \Delta T [F]$ (2.25)

Where,

 E_{MH} = energy required by the material handling equipment [Btu/hr]

 m_{MH} = mass of the material handling equipment [lb/hr]

 C_p = material's specific heat capacity [Btu/lb °F]

 ΔT = temperature difference of material handling equipment before and after the process [°F]

Continuous flow dry-off ovens and cure ovens usually have two openings. One is at a beginning of a process, and the other is at an exit of a process side. There is a definite loss of heat energy, which is approximately 1% to 3% of the total energy consumption of an oven. This is calculated by the Equation 2.26.

$$E_{open} = Q_{open} [CFM] \times 1.08 \times \Delta T [^{\circ}F]$$
(2.26)

Where,

E_{open} = energy loss due to opening of oven [Btu/hr]

Q_{open} = flow rate of dry flue gas from opening in CFM

 ΔT = temperature difference between the opening part of an oven and indoor temperature of a facility [°F]

(Explanation of 1.08. In general for standard air $\rho = 0.075$ lb/ft³. For dry air C_p = 0.24 Btu/lb °F.

Therefore, the constant's value is

 $= \frac{0.75 \, lb}{f \, t_3} \, \mathrm{x} \, \frac{0.75 \, B t u}{l b \, {}^{\circ} F} \, \mathrm{x} \, \frac{60 \, min}{hour} = 1.08 \, \mathrm{Btu}\text{-min/ft}^3 \, {}^{\circ} \mathrm{F} \, \mathrm{hr})$

The shell is an enclosure of an oven, and it can be made in different geometric shapes and have more than one layer. The geometric shape and number of layers depend on its uses. Shells usually protect heat loss. Shell energy loss can be calculated by the Equation 2.27.

 $E_{\text{shell}} = A_{\text{shell}} [ft^2] \times U [Btu/ft^2 \, {}^{\circ}F] \times \Delta T [{}^{\circ}F]$ (2.27)

Where,

E_{Shell} = energy loss from oven shell [Btu]

U = overall heat transfer co-efficient of oven shell material [Btu/ft² $^{\circ}$ F]

 ΔT = temperature difference between the opening part of an oven and indoor temperature of a facility [°F]

 Table 2.1: Heat loss factor on panel thickness [57]

Panel thickness (inches)	3	4	5	6	8
Loss factor (these insulation factor assume that the insulating material is rated as 4-pound density)	0.40	0.35	0.30	0.25	0.20

Exhaust contributes to heat loss in an oven. Burnt gases travel through the exhaust system as a result of combustion. Theoretically, waste created through combustion is expelled from the oven, where useful heat energy and toxic gas are present. Energy loss through exhaust can be calculated by Equation 2.19, where the exhaust flow rate and temperature differential between exhaust air temperature and ambient temperature are required. The exhaust energy can be found through Equation 2.28.

$$E_{Exhaust} = Q_{Exhaust} [CFM \text{ or } SCFM] \times 1.08 \times \Delta T [^{\circ}F]$$
(2.28)

Where,

 $E_{Exhaust} = energy loss due to exhaust from oven [Btu/hr]$

Q Exhaust = flow rate of dry flue gas from exhaust from oven in CFM or SCFM

 ΔT = temperature difference between the opening part of an oven and indoor temperature of a facility [°F]

Purge is another kind of energy loss from an oven. This is a definite requirement to maintain safety and expel partially burned gases before an oven reached to operating temperature. Different manufacturers recommended different purge times and purge frequencies, which depend on oven volumes and operating temperatures. Usually there were 4-6 purge observed in an oven of audited industrial plants. This purge time can be calculated by Equation 2.29.

$$t_{\text{purge}} [\min] = \frac{4 \times V_{\text{Oven}}}{VF_{\text{exh}}}$$
(2.29)

Where,

 $t_{purge} = purge time in minute$

 $V_{\text{oven}} = \text{volume of oven [ft}^3]$

 $VF_{exh} = exhaust volume [SCFM]$

Another requirement is to calculate the exhaust ventilation while the oven is running. This calculation requires the correction factor (CF) at the running temperature. CF can be estimated by Equation 2.30.

Oven CF =
$$\frac{(T_{\text{Oven}} + 460)}{(T_{\text{ref}} + 460)}$$
 (2.30)

Where,

$$T_{ref}$$
 = facility reference temperature [°F]

Exhaust at constant volume can be estimated by Equation 2.31.

$$Q(SCFM) = \frac{\text{number of purge x oven volume}}{\text{purge time}}$$
(2.31)

Most gas meters measure the volume of gas at the existing pressure and temperature. The value of the gas (i.e., heat content) is referred to in gas measurement as the standard volume or volume at standard conditions of pressure and temperature. Charles' Law describes the effect of temperature on volume, stating, "At constant pressure, a volume of a given mass of ideal gas increases or decreases by the same factor as its temperature on the absolute temperature scale" [58]. In other words, as the temperature increases, the gas expands, and as the temperature decreases, the gas contracts. Expanding temperature using the Charles' Law temperature correction factor can be calculated as [58]:

Temperature Correction Factor (CF) =
$$\frac{\text{Base Temperature+460}}{\text{Flow Temperature+460}}$$
 (2.32)

(Absolute temperature conversion are ${}^{\circ}R = {}^{\circ}F + 460$)

2.18.3 A Case Study: Improving Energy Performance in Canada

The research performed aimed to improve energy efficiency in earliest possible time in Canada. This research showed the most affordable and most effective way to control energy costs. [59] An energy-efficiency program was implemented through a regulation named the Energy Efficiency Act [59], helping to control energy costs in homes, buildings, industries, and vehicles. At the same time, renewable energy production was encouraged for clean energy production. Energy intensity was the outcome by which changes in the energy uses can be estimated. This research found that 38% of total secondary energy used was consumed in the industrial sector, 29.5% was consumed in the transportation sector, 16.5% was consumed in residential sector, 14% was consumed in the commercial sector, and 2% was consumed in the agricultural sector. The Energy Efficiency Act gives an enforcement power to government of Canada to become overall energy efficient. [59]

2.18.4 A Case Study: An Energy-Efficiency Program for Swedish Industrial Small and Medium-Sized Enterprises

Research was performed in Sweden to fulfill the 20-20 target energy-efficiency program created by the European Union. [60] As part of this research, SMEs reduced their energy use to 700 to 1400 GWh annually. [60] This energy efficiency was achieved through energy audits and longterm agreements. Programs helped guide potential energy savings after an ex-ante evaluation program. The European Commission's Council Regulation No. 1083/2006 defines an ex-ante evaluation as the process of developing a policy program performed before the implementation of main programs to stakeholders. [60] After implementing the ex-ante program, an annual savings of 700 to 1400 GWh was achieved by Swedish SMEs. The cost effectiveness achieved by the ex-ante evaluation was 0.25 to 0.50 eurocent/kWh. [60] The methodology is based on utility bills and other available data collected through energy audits. The purpose was to perform process energy consumption analysis and develop meaningful indicators, which estimate consumption patterns and potential savings.

3.1 Research Methodology

Figure 3.1 shows the research flow diagram. The energy consumption during different parts of processes is analyzed to identify trends.

3.2 Process Flow of Powder Coating Company

Powder coating is a dry finishing process that became trendy due to its high quality, durability, maximum production, improved efficiency, and environmental compliance. Powder coating is based on polymer resin systems including curative, pigments, leveling agents, flow modifiers, and other additives. These melt after mixing, and then cool to make a uniform powder. These powders are used as a coating on metal substrate through an electrostatic spray deposition. The process usually observed in the powder coating process is presented in Figure 3.2.

Figure 3.2: Process flow diagram of powder coating company (AAWIL)

The cleaning process typically uses an alkaline cleaner based on substrate. Some of the plants observed use phosphating to protect from corrosion. In this process, drying and curing are the energy-intensive operations.

3.3 Energy Audit

Energy audits provide accountability of energy use [61]. Energy audits quantify the amount of energy consumption in different systems in a firm. The evaluation of the consumption pattern is the objective of energy-management activities achieved through energy audits [61]. This accountability provides a baseline for comparison. Comparing energy information illuminates the performance of firms. Furthermore, energy audits provide options to reduce energy consumption or become energy efficient.

3.4 Primary Data Collection and Site Selection

The first step of energy consumption analysis is to collect required information, or conduct primary data collection. This includes data on energy consumption, production, and facilities. Data from a few other related categories were gathered through on-site energy audits. They are listed here and in Appendix B:

- Specifications of ovens and other production equipment (rated capacities, purge times, exhaust rates, dimensions, conveyor lengths, conveyor speeds, oven materials, etc.)
- Burner capacities
- HVAC specifications and design capacities
- Annual production schedules
- Types of products (dimensions and weights)
- Product and color changes over time

Site and facility selection were based on a screening process by Enbridge Gas Distribution Inc. within the GTA.

3.5 Data Synthesis

The synthesis process depends on estimated analysis outcomes. Data from plant managers and on-site audits were gathered for use in subsequent analyses. Other data were gathered from the National Fire Protection Association (NFPA) and Technical Standards and Safety Authority (TSSA) to calculate oven exhaust, and minimum purge time assessment [62, 63].

3.6 Process and Seasonal Energy Consumption

Utility bills were collected for pre-benchmarking, and process energy consumption and seasonal energy consumption were separated. To evaluate the process energy consumption, summer months' average consumption was considered. The summer month defines "in the Northern Hemisphere the usually warmest season of a year, occurring between spring and autumn and constituting June, July, and August" [64]. To obtain seasonal energy consumption, process energy was subtracted from total utility bills. The vertical axis (y-axis) is the average monthly energy consumption in cubic meters of natural gas, and the horizontal axis (x-axis) is the year and month. The color blue represents seasonal energy consumption, and red represents the average process load in a year. June, July, and August are considered summer months, during which it is assumed no space heating is required [65]. The separation of process and seasonal load is identified in Figure 3.3. In this thesis, 11 audited companies' energy consumption data were used to investigate potential energy-saving opportunities. These analyses were based on published methodology from journals and established heat transfer principles. Major analysis was focused on process energy consumption and industrial ovens. The overall potential savings (cost and energy) from oven has been analyzed in this research.

Figure 3.3: Separation of process and seasonal energy consumption (AASPEC)

Figure 3.4 shows an approximation of the oven location, energy losses, process flow, and HVAC flow found during the on-site energy audits. Yellow arrow indicates heat energy loss from a facility.

Figure 3.4: Typical industrial layout with HVAC network, process flow, and ovens (simulated based on AASPEC)

Natural gas consumption, collected from utility bills, was separated into process energy consumption and seasonal consumption. Process energy consumption, marked in yellow in Figure 3.5, was again subdivided based on audit findings:

- Energy consumption by production equipment.
- Energy consumption by boiler/major equipment.
- Oven energy consumption.
 - Oven exhaust energy loss.
 - Oven process energy consumption.
 - Shell energy loss.
 - Material handling (MH) energy loss.
 - Oven's door opening energy loss.
 - Miscellaneous energy consumption

Figure 3.5: Sankey diagram of total energy balance of an industrial plant (AASPEC)

3.7 Estimated Reference Temperature by Regression Analysis and Estimated Normalized Annual Consumption

Energy-savings calculation in engineering does not always correlate with real-world performance. Weather is one of the important differences between engineering energy-savings calculation and real-world performance [66, 67]. Weather varies from year to year and continues to change. As a result, it is becoming difficult to forecast weather effectively. Therefore, in energy-savings calculation, it is vital to remove the energy consumption due to weather from the total energy consumption, because does not have control. Calculating energy consumption due to weather relies on a reference temperature of individual buildings and can be normalized with historical weather data for realistic estimation. Linear correlation exists between energy consumption and average mean daily outdoor temperature. This shows the performance of space heating systems in a facility. The normalized energy consumption is plotted on the Y-axis and outdoor temperature on the X-axis. A custom Excel analysis shows a line graph with a downward slope. This indicates that as outside temperatures increase, space heating energy consumption decreases.

Internal process heating influences space heating; a variation of HVAC set point temperature and space reference temperature was observed. Figure 3.6 shows that few points close to temperature 67°F to 75°F (19°C to 24°C) which shows a different trend than other points. From this different trend a reference temperature can be estimated if the reference temperature cannot be calculated by other method. This was used to estimate a new reference temperature for a facility, requires calculating process energy consumption analysis. This shift of reference temperature from set point temperature occurs because of internal heat gain by process machinery.

Figure 3.6: Typical regression analysis of outside average temperature and normalized energy consumption (AASPEC)

Other approaches for determining reference temperature include using PRISM and Excel [68]. PRISM is commercially available software based on statistical procedures that converts common utility billing data into useful weather-adjusted estimates of annual energy use [68, 69, 72-75]. In these methods, actual utility billing data were collected from industrial plants. These billing periods' weather data (outdoor temperature) have been taken from Environment Canada (1984-2013) [69]. Research analysis was performed in both Excel and PRISM software to verify results. PRISM calculates a reference temperature in order to achieve optimized linear regression [70]. This reference temperature obtained from the statistical approach is influenced by a few factors: facility envelopes, HVAC, production machinery, and appliances. Therefore, optimum reference temperature is a characteristic of a facility [71]. Higher reference temperatures in heating-dominated facilities indicate higher space heating requirement at lower outdoor temperatures.

Obtaining the reference temperature in PRISM requires two important data files for each company: daily average outside temperature in Fahrenheit, and monthly energy consumption in any unit (in this analysis, m³ of natural gas is used), showing respective billing dates. These files must be converted to the Windows' Notepad format as described in the PRISM user manual or prepared in an Excel or Notepad.txt file and converted to a Notepad file by PRISM through a readable temperature file (file ends with .TPS in PRISM) and meter file (file ends with .MTR), which are described in Chapter 1 of the PRISM Users' Guide: Reference Manual [68, 70, 73]. After the data file has been successfully prepared, PRISM uses the data to get the heating and cooling reference temperature (TAU, τ), NAC, and correlation coefficient (R²).

PRISM calculated the NAC value through estimated consumption under average weather conditions [68], which is shown in Equation 3.1. Fels and Reynolds defined "heating–only (HO), cooling-only (CO), and heating-and-cooling (HC) automated models in PRISM" [68].

$$NAC = 365 \alpha + \delta_h \beta_h H_0(\tau_h) + \delta_h \beta_c C_0(\tau_c) [m^3/year]$$
(3.1)

(base level) + (heating part) + (cooling part)

Where,

NAC = Normalized annual consumption $[m^3/year]$

 α = base-level consumption [m³/day] [HO, CO, HC]

 β_h = heating slope [m³/°F-day] [HO, HC]

 $\beta_c = \text{cooling slope } [\text{m}^3/\text{°F-day}] [\text{CO, HC}]$

 $\delta_h\!=\!1$ for heating only (HO) and combined heating and cooling (HC) model, otherwise zero

 δ_h = 1 for cooling only (CO) and combined heating and cooling (HC) model, otherwise zero

 τ_h = heating reference temperature [°F] [HO, HC]

 τ_c = cooling reference temperature [°F] [CO, HC]

 $H_0(\tau_h)$ = Long term average heating degree day per year to the PRISM to estimate reference temperature

 $C_0(\tau_c)$ = Long term average cooling degree day per year to the PRISM to estimate reference temperature

In Equation 3.1, $\delta_h = 1$ is estimated for HO and HC models and $\delta_c = 0$, while $\delta_c = 1$ is estimated for the CO and HC models and $\delta_h = 0$. Long-term heating and cooling degree days per year can be determined by H₀ (τ_h) and C₀ (τ_c), respectively. Therefore, base temperature τ_h and τ_c are determined by PRISM. A coefficient of correlation (R²) of linear regression between energy consumption and HDDs demonstrates the reliability of the model. A good model has an R² value close to 1.

Figure 3.7: Sample analysis by PRISM and NAC value (AASPEC)

Another approach for determining reference temperature and NAC has been performed in Excel using simple mathematical and statistical methods. HDDs are calculated by Equation 3.2. ASHRAE defines HDDs as measures of how much in degrees and for how long in days the outside air temperature was below a certain level [66].

$$HDD = (reference temperature - outdoor temperature) * number of days in a month (3.2)$$

This analysis was performed several times using variable reference temperature data to determine the best R^2 value. Outdoor temperatures were gathered from monthly weather data from Environment Canada. HDDs were determined for each month using Equation 3.2. A regression line was obtained by using the scatter plots in Excel where HDDs are presented on the x-axis, while monthly consumption is presented on the y-axis. From this scatter plot, an R^2 value is found. Maximum R^2 value can be determined by varying the reference temperature in HDD Equation 3.2 and in the scatter plot. This maximum R^2 value and corresponding reference temperature is the base temperature of this analysis through Equation 3.2 [72]. To calculate NAC in Excel, Equation 3.3 is used, where this reference temperature is used as the base temperature. The monthly average temperature over a 31-year period was used instead of over the billing periods [73].

$$NAC = MX + C \tag{3.3}$$

Where,

NAC = Normalized annual consumption $[m^3/year]$

M = heating or cooling slope obtained in the regression line in the scatter plot

X = HDD obtained from Equation 3.2 corresponds to optimal reference temperature [°F-day]

C = is the fixed value on Y intercept in the regression line on the scatter plot $[m^3]$

Figure 3.8: Sample linear regression analysis in Excel and R² value (AASPEC)

The normalized energy consumption value can be estimated by Equation 3.4, which can be obtained by regression analysis.

$$y = 43.778x + 6394.7 \tag{3.4}$$

The value of "y", calculated by Equation 3.4, results in a maximum R^2 value obtained through varying reference temperatures. These repeated approaches of determining reference temperature and corresponding maximum R^2 value are presented in Table 3.1.

R ² Value	0.9319	0.9371	0.9390	0.9449	0.9488	0.9494	0.9492	0.9483	0.9473	0.9447
Reference temperature (°F)	56	58	60	62	64	65	66	67	68	70
Reference temperature (°C)	13	14	16	17	18	18	19	19	20	21

Table 3.1: R² values based on different reference temperatures in linear regression analysis

Results obtained through Excel analysis by varying reference temperature value have been plotted in another Excel graph, presented in Figure 3.9., to estimate the precise reference temperature.

Figure 3.9: Reference temperatures (°C) with corresponding R² value from Excel (AASPEC)

Weather corrected consumption was calculated after obtaining best reference temperature by Equation 3.4. The same methodology was applied to evaluate process energy consumption, where summer months' average consumption was considered. To obtain seasonal energy consumption, process energy was subtracted from normalized energy consumption. The vertical axis (y-axis) is the average monthly weather normalized energy consumption in cubic meters of natural gas, and the horizontal axis (x-axis) is the year and month. Blue represents seasonal energy consumption, and red represents average process load in a year. June, July, and August are considered summer months, during which it is assumed no space heating is required [64, 65]. The separation of process and seasonal load is identified in Figure 3.10.

Figure 3.10: Separation of normalized process and normalized seasonal energy consumption (AASPEC)

3.8 Energy Balance in Ovens

Thermodynamics in ovens is focused on energy balance [77]. This energy balance depends on the physicochemical properties of adsorption. Spontaneous adsorption is a process that can be concluded by a thermodynamic consideration called Gibbs free energy [78], which is an indicator of spontaneous chemical reaction. This chemical reaction contributes to powder coating and curing. According to the second law of thermodynamics, the heat energy produced depends on temperature and entropy [79], which are analyzed for energy balance.

Proper curing and energy application are important to powder coaters. Convection and conduction heat transfer are major modes of thermodynamic applications in ovens. Air is the medium in the convection heat transfer. Air heats the metal substrate, and the substrate heats the coating by conduction [80]. The oven must maintain the appropriate temperature for the proper duration of time to cure 100%. Proper curing depends on the time-temperature relation. Figure 3.11 shows the time-temperature relation to curing. Time in the oven must include the time required to bring the part up to temperature.

Figure 3.11: Time-temperature relation of curing [19]

Convection gas-fired ovens are continuous flow ovens. A gas-fired convection oven is an insulated enclosure with the heat source located within the unit. Ducting maintains inlet air and exhaust flue gas. The physical shape and design of ovens depends on their usage. The burner capacity depends on the heat requirements. A burner box with an air blower inside distributes heated air inside the oven chamber.

A simple oven configuration is shown in Figure 3.12. Direct gas-fired convection is used by powder-coating companies. Energy consumption relates to three factors: (1) product loading, (2) oven-panel radiation loss, and (3) exhaust loss. There are other factors contributing to natural gas consumption. These are calculated and analyzed in the subsequent subsection.

(Source: Hangzhau Color Powder Coating Equipment Co. Ltd)

Figure 3.12: Process flow of a continuous flow gas fired finishing company [81]

Figure 3.13 shows the energy balance through a Sankey diagram

Figure 3.13: Simple process flow and energy balance of ovens (AASPEC)

3.9 Mathematical Model and Energy Balance of Oven

This is a mathematical model based on the heat transfer principle, a case study of a company in the GTA, and published journal literature. NFPA 86 [62] and TSSA standards [63] are considered because of safety factors and minimum protection standards. Oven energy consumption is simulated based on current production data and information gathered from discussions with the plant manager.

Data collected from plant manager,

Consumption of dry-off oven = $[m^3/year]$

Exhaust flow rate $(Q_{exh}) = CFM$

Dimension of dry-off oven = $L \times W \times H$ [ft³]

Velocity of conveyor = $[V_{line}]$ [fpm]

Average product mass and dimensions = $[m_p]$ [lb]

Average product dimensions = $[ft^2]$

Actual annual production = [pcs]

Operation hours = [shift hours per day] x [working days/week] x [working weeks per year] = hours in a year (3.5)

3.9.1 Estimated Product Energy Consumption

(a) Product throughput

$$m_{\rm fp} [lb/hour] = m_p \times V_{\rm line} \times 60 \times Loading/h_s$$
(3.6)

= [lb/hour], and

 $= [lb/hour]/[m_p] [lb] = pcs product per hour$

(Relevant parts per hook spacing =
$$50\%$$
; hook spacing = 1 ft)

Annual estimated production = [pcs] x [hours per shift] x [working days in a year]

= estimated annual production [pcs](3.7)

(b) Opportunity loss = estimated annual production [pcs] - actual annual production [pcs] =

(3.8)

(c) Energy required per product = $[m_p]$ [lb] x [C_p] [Btu/lb °F] x [Δ T] [°F] (3.9)

(d) Estimated product energy required = [Btu required per product] x [qty. of product throughput per hour] x [number of operation hours] = [Btu/year] (3.10)

= converted to $[m^3/year]$

3.9.2 Estimated Energy Produced by Rated Flow Capacity

Oven efficiency = 80%

Rated flow capacity, q = 1,200,000 [Btu/hr], $\eta = 80\%$,

Total estimated energy produced = 1,200,000 [Btu/hr] x (0.8) = $1.2x10^{10}$ Btu/year = 1,20,000,000 ft³/year = 330,600 m³/year (3.11)

3.9.3 Exhaust Requirement Calculation

(a) Oven volume consists of
Oven volume (A) = L x W x H = [ft³]
Combustion chamber volume = B [ft³]
Air sealed = C [ft³]
Exhaust stack = D [ft³]
Total oven volume = A+B+C+D [ft³]
(b) Exhaust requirement = combustion volume [ft³] + turnover volume [ft³] (3.12)

3.9.4 Purge Rate

Oven volume = $L \times W \times H [ft^3]$

NFPA 86 requires four purges before lighting = 4×10^{-10} x oven volume

Existing fan design purge time =
$$\frac{4 \text{ x oven volume}}{\text{Design at constant flow rate (SCFM)}}$$
 (3.13)

If the oven kicks out at temperature, TSSA requires full purge, with the correction factor.

Correction factor (CF) =
$$\frac{T+460}{Ref \ temp+460}$$
 [T is the oven temperature in °F] (3.14)

Therefore, the minimum purge time should be set at operating temperature = CF x calculating purge time [minute]

3.9.5 Operating Ventilation

To calculate standard cubic feet per minute (SCFM) using the NEPA 86 standard which used by Enbridge Gas Distribution Inc to their "Activity Book-Process ovens workshop" convert [MBtu/hr] to standard cubic feet per minute (SCFM)

$$= 183 \text{ x [MBtu/hr]} = \text{total [SCFM]}$$
(3.15)
Convert to actual CFM (SCFM) by CF @ T [°F] = total [SCFM] x CF = total [ACFM] (3.16)
Existing exhaust fan operating at [SCFM]
Convert to ACFM by CF @ T [°F] = ACFM/CF = design [ACFM] (3.17)
Opportunity to reduce = design [ACFM] - total [ACFM] = [ACFM] savings (3.18)
Heat required bringing up to T [°F] from reference facility temperature [°F] = reduced CFM x
1.08 x Δ T = [Btu/hr] = converted to [m³/year] (3.19)

3.9.6 Exhaust Volume at Constant Volume Flow Rate

Exhaust at constant volume flow rate
$$= \frac{oven \, volume}{purge \, time} = [CFM]$$
 (3.20)

Exhaust energy loss =
$$\frac{4 x \text{ oven volume}}{purge \ time}$$
 = [SCFM] (3.21)

Energy loss due to purge = $\frac{4 x \text{ oven volume}}{purge \ time} = x \ 4 \ x \ 1.08 \ x \ \Delta T = [Btu/hr]$ (3.22)

3.9.7 Dwelling Time to Cure Products

Oven dwelling time = bring-up time + cure time (3.23)

(Dwelling time depends on the chemical nature of the powder, concentration, particle size, and catalyst.)

$$t_1 = \frac{t_0}{1.024^{[\pm\Delta T(\ \circ F)]}} \tag{3.24}$$

Where,

 t_1 = new cure time after temperature change [min]

 $t_0 = cure time after temperature change [min]$

 ΔT = new temperature minus initial (base) temperature [°F]

3.9.8 Energy Loss From an Oven

Part of input energy to oven has been loosed with material handling process. This energy loss due to continuous flow of chain and hangers which takes the product inside the oven and brings out after process.

Conveyor material handling (MH) loss

Assume, chain weight = $[m_c]$ [lb/ft]

Assume, hook weight = $[m_h]$ [lb/ft]

Conveyor weight = chain weight $[m_c]$ [lb/ft] + hook weight $[m_h]$ [lb/ft]

Weight of material handling per hour = [conveyor weight] x [conveyor speed fpm] x [60]

 $= [lb/hr] \tag{3.25}$

 $E_{mat hand} =$ [weight of material handling (chain and hook) per hour] x [material's specific heat capacity] x ΔT

$$= Btu/hr$$
(3.26)

(This loss depends on material's specific capacity and temperature differences.)

3.9.9 Shell Loss

Oven shell act as heat seal, cause to rise temperature. Thus increasing temperature is the requirement for the drying and curing process. Maximum heat seal enabling the production rate and oven efficiency.

$$E_{\text{shell}} [\text{Btu/hr}] = A_{\text{shell}} [\text{ft}^2] \text{ x loss factor x } \Delta T [^\circ\text{F}]$$

$$= \text{converted to } [\text{m}^3/\text{year}] [49]$$
(3.27)

3.9.10 Opening Loss

Continuous flow oven had two opening for process flow in and out from the oven which cause energy loss.

This is approximately 1% to 3% of the total energy [51, 53]:

= [0.03] x [total oven energy consumption] = $[m^3/year]$

Or, = [opening CFM] x [1.08] x $[\Delta T]$ = [Btu/hr] (3.28)

3.9.11 Miscellaneous Energy Loss

Miscellaneous energy loss can be estimated to be 1% of the total oven energy consumption [55, 57]. Miscellaneous energy loss includes radiation, fan motors etc.

3.9.12 Total Energy Losses from Oven

Total energy losses from oven = [exhaust energy loss by oven] + [shell energy loss by oven] + [MH loss by oven] + [oven opening loss by oven] + [miscellaneous energy loss] (3.29)

3.9.13 Actual Energy Consumed by Oven

Actual product energy consumption [Btu/hr] = total energy consumed by oven [Btu/hr] – total energy losses from oven [Btu/hr] (3.30)

3.10 Productive vs. Non-productive Hours Energy Consumption

Productive hours natural gas consumption is defined as the energy consumed in number of hours when a plant is producing [86]. Energy intensity is defined as the energy consumed over a given area [86, 87, 88]. It can be expressed in a facility as energy used per unit area. On the other hand, non-productive hours energy consumption is defined as the energy consumed when a plant is not producing. Non-productive hours include scheduled weekends, declared statutory holidays in Ontario, scheduled annual shut-down periods, and before and after work hours [89, 90, 91]. An analysis was performed on energy consumption during productive and non-productive hours to determine indices for benchmarking a plant and potential savings opportunities. The indices were natural gas consumption per unit area, process energy consumption per hour, energy intensity of a plant, and production energy index.

3.11 Savings Calculation

3.11.1 Oven Savings

There were potential savings identified in these analyses: operating ventilation savings and heat recovery savings.

3.11.2 Operating Ventilation Savings

If an oven was equipped with a 1.5-inch diameter burner, then the estimated savings were calculated:

As per NEPA 86 [62, 80], 1.5 inch burner produces 1.5 MBtu/hr and converts to SCFM $_{\text{burner}} = 183 \times 1.5 = 275 \text{ SCFM}$

This SCFM burner can be converted to actual CFM by a CF.

The CF can be determined by Equation 2.10, because when an oven starts running at operating temperature, then operating ventilation CFM requirement changes to purge CFM, which is described in NEPA 86. Therefore, the NEPA 86 standard was utilized to investigate savings potential instead of constant volume ventilation.

$$Correction factor = \frac{\text{oven setpoint temperature} + 460}{\text{inlet temperature of oven} + 460}$$
(3.33)
Burner (ACFM)_{burner} = (SCFM)_{burner} x CF

Oven current SCFM can be converted to ACFM divided by CF.

(Oven CFM is 928, collected from specification plate during energy audit.)

Convert to ACFM by CF at operating temperature of oven $=\frac{\text{oven CFM}}{\text{CF}} = (\text{ACFM})_{\text{oven}}$ (3.34)

Opportunity to reduce =
$$(ACFM)_{burner} - (ACFM)_{oven} = (ACFM)_{Savings}$$
 or $(ACFM)_{Savings} \times CF$

Energy required for bringing up oven setup temperature from inlet temperature (⁰F)

$$= (ACFM)_{Savings} \times 1.08 \times \Delta T$$
(3.36)

3.11.3 Heat Recovery Savings

The majority of input energy losses found in this thesis analysis were through exhaust, shell, and oven opening. Exhaust and opening loss can be reused by a heat exchanger or heat recovery wheel. A negative pressure vacuum pump controlled by a temperature sensor can be used to recover heat loss through oven opening. This excess heated air can be used to the inlet path of air flow to burner. However, shell energy loss can be reduced through improvements to the insulation. These require a major rebuild and investment of the oven. Thus, heat recovery was calculated from available sources of losses by using simple heat transfer principles.

3.11.4 Productive vs. Non-productive Hours Savings Calculation

It is obvious that when a plant is producing, it requires energy. However, after analyzing daily and hourly data, potential energy savings were found. This was calculated from the productive and non-productive schedules and energy consumed during the non-productive hours [89, 90, 91]. These non-productive hours consumption savings can be achieved through proper scheduling and automation. Demand side management is the part of scheduling which can be done through proper production planning. There are different algorithm available to schedule the process. While process automation can reduce energy consumption when plant is operating.

3.12 Simple Payback Calculation

The payback period of an investment is defined as the number of years required to recover the capital investment through project return [93, 96, 101,]. Capital investments are strategic investments which have a long term effect aside from routine ongoing operational expenses. This

simple payback is a popular indicator for investment decisions which is used in economic analysis. A simple approach to calculate payback period:

PBP = the smallest m such that $\sum_{t=1}^{m} A_t \ge C_o$ (3.37)

Where,

PBP = Payback period [year]

 $A_t = Sum of annual return [CAD]$

Co = Capital investment [CAD]

It is estimated that if PBP is less than or equal to a pre-determined time then the investment is attractive. However, this type of payback calculation ignores the time value of money.

4.1 Energy Consumption by Ovens and Percentage of Total Process Consumption

This study analyzed the process energy consumption of eleven SMEs, which are involved in the food and finishing process industries, within the GTA. Specifically, two of the eleven companies are bakeries and use bake ovens, while the nine remaining SMEs are finishing process companies which use two types of ovens: Dry-off and Cure ovens. The acronym of the company followed by the letters B, D, and C, which refer to bake oven, dry-off oven, and cure oven, respectively.

Table 4.1 column 1 shows the type of oven, column 2 shows the type of company, column 3 shows the plant area, column 4 shows the normalized annual energy consumption, column 5 shows the normalized process energy consumption, column 6 shows the normalized seasonal energy consumption, column 7 shows the total consumption by each type of oven, and column 8 the percentage consumption of energy of normalized process energy consumption.

The study observed that bakeries have major process consumption wherein their ovens consumed 47% and 73% of total process energy respectively. The remaining process energy was consumed for other processes before and after baking. In the same study, each type of ovens from the finishing process industries consumed 26% to 68 % of normalized process energy. Finishing process industries regularly employed processes of powder coating and curing which require higher temperatures and longer operating times than bake ovens. Maintaining the internal thermal condition of the oven and removing moisture from parts coated from direct fired powder coating and curing require thermal energy from burning a mixture of natural gas and oxygen.

Company Name	Type of Production	Plant Area (ft²)	Total Yearly Natural Gas Consumption (m ³)	Process Consumption (m ³)	Seasonal Consumption (m³)	Total Oven Consumption by Each Type of Oven (m ³)	Oven Consumption as Percentage of Process Consumption (%)	Oven Consumption as Percentage of Total Consumption (%)
AAGF-B	Food	188,290	3,372,327	2,781,456	590,871	1,300,000	47	39
AASN-B	Food	188,045	546,832	483,924	62,908	355,280	73	65
AAAL-D	Finishing	66 1 4 2	594 007	465,608	119,880	120,184	26	21
AAAL-C	Finishing	00,142	384,907	465,608	119,880	150,275	32	26
AABN-D	Finishing	08 370	363 076	251,124	112,852	119,317	48	33
AABN-C	Finishing	98,370	303,970	251,124	112,852	171,134	68	47
AACF-D	Finishing	16 796	137 383	403,590	34,185	108,000	27	25
AACF-C	Finishing	40,780	437,383	403,590	34,185	163,000	40	37
AAMP-D	Finishing	67 604	514 025	345,588	168,437	129,000	37	25
AAMP-C	Finishing	07,004	514,025	345,588	168,437	168,509	49	33
AAACT-D	Finishing	10 227	161 692	134,316	27,684	42,565	32	26
AAMP-C	Finishing	10,327	101,082	134,316	27,684	57,809	43	36
AASPEC-D	Finishing	60 713	360 364	76,736	292,628	39,500	51	11
AASPEC-D	Finishing	00,713	509,504	76,736	292,628	37,000	48	10
AAWIL-D	Finishing	110 270	208 800	187,836	110,973	68,243	36	23
AAWIL-C	Thirsting	110,270	298,809	187,836	110,973	100,394	53	34
D-78-D	Finishing	220 453	051 007	190,896	761,011	58,714	31	6
D-78-C	rinnsning	230,433	931,907	190,896	761,011	90,361	47	9
D-225-D	Finishing	213 668	1 306 121	448,308	857,813	121,134	27	9
D-225-C	rinnsning	213,000	1,300,121	448,308	857,813	140,804	31	11

Table 4.1: Summary of energy balance of audited companies

4.2 Energy Intensity of an Oven

The International Energy Agency (IEA) defines "energy intensity as the amount of energy consumed per activity or output for subsectors and end uses" [85]. An oven processing the same amount of product with less energy consumption can be considered more efficient. Energy intensity in terms of volume of oven is calculated by dividing the oven's total energy consumption by the volume of the oven and, likewise, energy intensity in terms of area of oven is calculated by dividing the oven envelope.

Columns 5 and 6 in Table 4.2 show the energy intensity of different ovens of the companies studied and, therefore, provides an idea of which ovens are the most and least efficient. Table 4.2 shows that among the audited companies AAWIL's cure oven is the most energy efficient oven by energy intensity in terms of volume and AAMP's dry-off oven is the least efficient oven in the same category. On the other hand, AASPEC's cure oven is the most efficient oven by energy intensity in terms of area.

Company Name	Total Oven Consumption	Oven Envelope Area (ft ²)	Oven Volume (ft ³)	Energy Intensity of Oven by Volume (m ³ /ft ³)	Energy Intensity of Oven by Area (m ³ /ft ²)
AAGF-B	325,000	5,044	13,520	24	64
AASN-B	355,280	4,640	12,000	30	77
AAAL-D	120,184	4,200	10,000	12	29
AAAL-C	150,275	5,080	13,200	11	30
AABN-D	119,317	2,680	4,800	25	45
AABN-C	171,134	3,760	9,600	18	46
AACF-D	108,000	1,960	4,000	27	55
AACF-C	163,000	2,880	7,200	23	57
AAMP-D	129,000	2,040	3,600	36	63
AAMP-C	168,509	2,600	6,000	28	65
AAACT-D	42,565	1,400	2,400	18	30
AAMP-C	57,809	2,000	4,800	12	29
AASPEC-D	39,500	2,360	4,200	9	17
AASPEC-C	37,000	2,320	4,800	8	16
AAWIL-D	68,243	3,576	6,480	11	19
AAWIL-C	100,394	5,520	14,400	7	18
D-78-D	58,714	2,808	5,040	12	21
D-78-C	90,361	3,936	10,080	9	23
D-225-D	121,134	4,032	9,216	13	30
D-225-C	140,804	5,760	18,432	8	24

 Table 4.2: Energy intensity of ovens

Table 4.3 shows oven ranking by energy intensity in terms of volume. The audited companies were categorized according to the energy intensity of their ovens. These categories are, high-performing, regular-performing, and low-performing companies. Table 4.3 shows that energy intensities in terms of volume ranging from 7-10 were classified as high-performing companies, energy intensities ranging from 10-20 were regular-performing companies, and energy intensities ranging from 20-36 low-performing companies. This benchmarking done based on eleven companies data where twenty ovens were considered. Result of this benchmarking would be more reasonable if this analysis performed by more data set (approximately 50 companies' data)

Company Name and Oven Type	Oven Volume	Energy Intensity by	Benchmarking Based on Oven
		Oven Volume	Energy Intensity
	(m ³)	(m ³ /ft ³)	intensity
AAWIL-C	14,400	7	
D-225-C	18,432	8	High
AASPEC-C	4,800	8	performing
D-78-C	10,080	9	industrial plants
AASPEC-D	4,200	9	
AAWIL-D	6,480	11	
AAAL-D	13,200	11	
D-78-D	5,040	12	Regular
AAAL-C	10,000	12	performing
AAACT-C	4,800	12	industrial plants
D-225-D	9,216	13	
AAACT-D	2,400	18	
AABN-C	9,600	18	
AACF-C	7,200	23	
AAGF-B	13,520	24	Low performing
AABN-D	4,800	25	industrial plants
AACF-D	4,000	27	
AAMP-C	6,000	28	
AASN-B	12,000	30	
AAMP-D	3,600	36	

Table 4.3: Oven ranking based on energy intensity by oven volume

Figure 4.1 provides a comparative analysis of the energy intensity of different ovens used by the audited companies. The X-axis shows the acronym of the company followed by the letters B, D, and C, which refer to bake oven, dry-off oven, and cure oven, respectively. The Y-axis shows the energy intensity. The most efficient oven is AAWIL-C while the least efficient is AAMP-D.

Figure 4.1: Energy intensity of oven

4.3 Energy Intensity Analysis with Different Oven Parameters

"Oven energy intensity" refers to the energy consumption in a unit volume (energy intensity by volume), or per unit area (energy intensity by area of oven envelope) [85]. Energy intensity with different parameters was analyzed to identify the potential factor/factors on which energy intensity depends. The considered parameters are; oven volume, oven envelope area, and temperature difference. Data for these parameters were collected during energy audit.

Figure 4.2 displays energy intensity and oven volume. Energy intensity decreases when the oven volume increases. Low R^2 value shows that there is no significant correlation between energy intensity and oven volume. AAMP-D shows higher energy intensive oven while AAWIL-C is the lowest energy intensive.

Figure 4.2: Energy intensity in terms of volume vs. oven volume

Figure 4.3 displays the oven envelope area, on the X-axis. Oven energy intensity in terms of volume is plotted on the Y-axis. A statistical analysis shows that the correlation between these parameters is not very strong. Graph shows that energy intensity decreases with the increase of oven envelope area. AAMP-D shows the highest energy intensive oven while AAWIL-C is the lowest energy intensive among the others.

The graph shows that points are widely dispersed in a scattered plot from the trend line because temperature differences and operating hours are not same for each type of oven and facility. On the other hand, improper burning affects energy intensity.

Figure 4.3: Energy intensity in terms of volume vs. oven envelope area

Figure 4.4 displays the oven envelope area, on the X-axis. Oven energy intensity in terms of area is plotted on the Y-axis. A statistical analysis shows that there is no significant relationship between two parameters. The graph shows that an increase in the oven envelope area results in a very insignificant decrease in energy intensity. Analysis shows that AASN-B is the highest energy intensive oven while AASPEC-D is the lowest.

Only a few points are dispersed in the scattered plot from the trend line due to of dissimilar temperature differences, operating hours, and production types. Improper combustion is another cause of higher energy intensity.

Figure 4.4: Energy intensity in terms of area vs. oven envelope area

Figure 4.5 displays oven operating hour times, on the X-axis while the oven energy intensity in terms of area is plotted on the Y-axis. Analysis shows that the correlation between these parameters is very strong. Oven operating hour affect energy intensity. Study shows that AASN-B is the highest energy intensive and AASPEC-C is the lowest among the ovens.

Figure 4.5: Energy intensity in terms of area vs. oven operating hour

On the X-axis of Figure 4.6, the differences in operating temperatures of ovens are displayed. Oven energy intensity in terms of volume is plotted on the Y-axis. Low R^2 shows that the correlation between energy intensity in terms of volume and temperature difference is not strong. Energy intensity in terms of volume increased with operating temperature differences. Result of this analysis shows that AAMP-D is the highest energy intensive and AAWIL-C is the lowest energy intensive ovens.

Figure 4.6: Energy intensity in terms of volume vs. temperature difference

On the X-axis of Figure 4.7, the differences of operating temperature of ovens are displayed. Oven energy intensity in terms of area is plotted on the Y-axis. Analysis shows the correlation between energy intensity by area and temperature is not strong.

Figure 4.7: Energy intensity in terms of area vs. temperature difference

In Figures 4.2 to Figure 4.7, oven energy intensities are plotted on the Y-axes while other parameters are plotted on the X-axes. It is found that intensity does not have strong relation with oven volume, oven envelope area, and operating temperature difference, while energy intensity increases with operating temperature difference and oven volume. This means that energy intensity is affected by other factors such as exhaust loss, shell loss, radiation loss, and loss with product etc.

Points are scattered in the plot area because the ovens are not all the same size, and don't all have the same operating hours or burner capacity. Processing parts inside the oven aren't the same size and shape, which causes different energy consumption. Therefore, few of the points stray from the trend. However, the graph shows that with the increase of temperature differences, energy consumption also increases.

4.4 Energy Consumption Analysis with oven Volume, Area and Operation Hours

Table 4.4 displays the oven energy consumption and ft^2 hr and ft^3 hr. Column 2 displays the energy consumption of an oven while Column 6 and 7 shows oven area multiply by operation hours and oven volume multiply by operation hours.

Company	Total Oven	Oven	Oven	Workings	Oven Area	Oven Volume
Name	Consumption	Envelope	Volume	Hours in a	and	and Operation
	_	Area		Year	Operation	Hour
					Hour	
	(m ³ /year)	(ft ²)	(ft ³)	(hr)	ft² hr	ft ³ hr
AAGF-B	325,000	5,044	13,520	6,000	30,264,000	81,120,000
AASN-B	355,280	4,640	12,000	7,488	34,744,320	89,856,000
AAAL-D	120,184	4,200	10,000	2,500	10,500,000	25,000,000
AAAL-C	150,275	5,080	13,200	2,500	12,700,000	33,000,000
AABN-D	119,317	2,680	4,800	4,080	10,934,400	19,584,000
AABN-C	171,134	3,760	9,600	4,080	15,340,800	39,168,000
AACF-D	108,000	1,960	4,000	5,125	10,045,000	20,500,000
AACF-C	163,000	2,880	7,200	5,125	14,760,000	36,900,000
AAMP-D	129,000	2,040	3,600	6,000	12,240,000	21,600,000
AAMP-C	168,509	2,600	6,000	6,000	15,600,000	36,000,000
AAACT-D	42,565	1,400	2,400	2,250	3,150,000	5,400,000
AAMP-C	57,809	2,000	4,800	2,250	4,500,000	10,800,000
AASPEC-D	39,500	2,360	4,200	2,000	4,720,000	8,400,000
AASPEC-C	37,000	2,320	4,800	2,000	4,640,000	9,600,000
AAWIL-D	68,243	3,576	6,480	2,000	7,152,000	12,960,000
AAWIL-C	100,394	5,520	14,400	2,000	11,040,000	28,800,000
D-78-D	58,714	2,808	5,040	2,000	5,616,000	10,080,000
D-78-C	90,361	3,936	10,080	2,000	7,872,000	20,160,000
D-225-D	121,134	4,032	9,216	2,000	8,064,000	18,432,000
D-225-C	140,804	5,760	18,432	2,000	11,520,000	36,864,000

Table 4.4: Oven consumption and oven area, and oven volume multiply hour of operation

On Y axis of Figure 4.8, the oven operating hour multiply with oven area are plotted and energy consumption of ovens are plotted on the X axis. The value of R^2 0.9794 shows a strong correlation observed between these two variables. Therefore it can be estimated that oven consumption increases with the increases of oven operating hours and oven area.

Figure 4.8: Oven consumption with operating hour x oven envelope area

The value of R^2 0.9675, in the Figure 4.9 shows a strong co-relation observed between these two variables. Therefore it can be estimated that oven consumption increases with the increases of oven operating hours and oven volume.

Figure 4.9: Oven consumption with operating hour x oven volume

4.5 Energy Balance of Ovens

Eleven SMEs and their oven energy consumptions were studied. A preliminary study of energy balance was conducted by simple heat transfer principles. The temperature inside the ovens and the set-up temperatures of the facilities were taken during on-site audit. Oven length, width, height, oven exhaust CFM, and product data were collected from the facility managers. The specific heat of oven and product material (mild steel - 0.12 Btu/lb °F) was obtained from literature [55, 56, 57]. This is estimated because of limited information about the oven shell and product from the facility.

Company Name	Exhaust	Oven	Product	Material	Miscellaneous
and Oven Type	Energy Loss	Shell	Energy	Handling	Loss
		Energy	Consumption	Loss	
		Loss			
	(m ³ /year)				
AAGF-B	206,508	71,337	28,512	9,750	8,893
AASN-B	228,748	81,897	23,722	10,658	10,255
AAAL-D	57,857	22,500	34,714	3,606	1,507
AAAL-C	76,371	27,214	34,714	4,508	7,467
AABN-D	43,057	22,259	48,439	3,580	1,982
AABN-C	86,114	31,229	48,439	5,134	218
AACF-D	45,071	20,449	38,310	3,240	930
AACF-C	81,127	30,047	38,310	4,890	8,625
AAMP-D	49,989	26,229	45,360	3,870	3,553
AAMP-C	83,314	33,429	45,360	5,055	1,351
AAACT-D	13,580	7,335	17,202	1,277	3,171
AAACT-C	27,160	10,479	17,202	1,734	1,234
AASPEC-D	17,811	10,485	9,213	1,185	806
AASPEC-C	16,181	9,147	8,176	1,110	2,385
AAWIL-D	25,494	13,027	12,590	2,047	15,085
AAWIL-C	56,654	20,109	12,590	3,012	8,030
D-78-D	22,939	11,834	20,390	1,761	1,789
D-78-C	45,878	16,587	20,390	2,711	4,794
D-225-D	42,657	17,280	25,920	3,634	31,643
D-225-C	85,314	24,686	25,920	4,224	660

 Table 4.5: Energy balance of ovens

Energy balance in terms of percentage is presented in Table 4.6.

Company Name and Oven Type	Percent Exhaust Energy	Percent Oven Shell	Percent Product	Percent Material Handling	Percent Miscellaneous
	Loss	Loss	Consumption	Loss	LUSS
	(%)	(%)	(%)	(%)	(%)
AAGF-B	63	22	9	3	3
AASN-B	64	23	7	3	3
AAAL-D	48	19	29	3	1
AAAL-C	51	18	23	3	5
AABN-D	35	19	41	3	2
AABN-C	50	18	28	3	1
AACF-D	42	19	35	3	1
AACF-C	50	18	24	3	5
AAMP-D	39	20	35	3	3
AAMP-C	49	20	27	3	1
AAACT-D	33	17	40	3	7
AAACT-C	47	18	30	3	2
AASPEC-D	45	27	23	3	2
AASPEC-C	44	25	22	3	6
AAWIL-D	38	19	18	3	22
AAWIL-C	56	20	13	3	8
D-78-D	39	20	35	3	3
D-78-C	51	18	23	3	5
D-225-D	35	14	21	3	26
D-225-C	60	18	18	3	1

 Table 4.6: Percentage energy balance of ovens

4.5.1 Bake ovens

Of the eleven SMEs studied, two companies have bake ovens. The bake ovens consume most of the plant's energy. Significant energy losses were observed in different processes, specifically exhaust, through the shell, during material handling, energy absorbed by the product and miscellaneous energy loss. Studied bakeries were observed running 24 hours a day without limited halts. Energy loss with flue gas as exhaust was observed to be the major loss. Data from only two companies bake oven are not enough for analysis and determining performing

parameters. Figure 4.10 presents the energy balance of bake ovens where exhaust loss is the highest, shell loss is second highest, and product energy consumption is third highest.

Figure 4.10: Energy balance of bake ovens

The study revealed that major energy loss occurred due to exhaust from the ovens. The energy loss from oven exhaust was from 63% to 64%. Oven shells had the second highest energy consumption from 22% to 23%. The third major energy consumption was for the product, which accounted for 7% to 9%. These findings are presented in Figures 4.11. A significant result from this analysis could not be done due to imitated data. Both bake ovens are found identical in this analysis.

Figure 4.11: Percent energy balance of bake ovens

4.5.2 Energy Balance of Dry-off Oven

Nine out of the eleven audited sites were finishing process industries that had dry-off ovens and cure ovens. Energy consumption of dry-off ovens are presented in the subsequent sections. This study observed that dry-off ovens consumed 26% to 48% of the total process energy depending on the oven size, the type of production, and the hours of operation. A comparative study of the energy consumed by the ovens of different companies is presented in Figure 4.12. Each cluster in Figure 4.12 represents the type of loss from dry-off ovens of each company.

Figure 4.12: Energy balance of different Dry-Off Oven

The first cluster of bars represents energy loss through exhaust, the second cluster of bars is energy loss through the shell, the third cluster of bars represents material handling energy consumption, the fourth cluster of bars is product energy consumption, and the fifth cluster of bars represents miscellaneous loss. Miscellaneous includes radiation loss and shell opening loss, among others.

Figure 4.13 displays the percent exhaust loss of the audited companies' dry-off ovens. As seen in Figure 4.13, company AACF displayed the highest exhaust loss (53%).

Figure 4.13: Percent energy loss due to exhaust from different dry-off ovens

Figure 4.14 displays the percent shell loss of the audited companies' dry-off ovens. As can be seen, company D-225 displayed the lowest shell loss (14%) while company AASPEC displayed the highest shell loss (27%).

Figure 4.14: Percent shell energy loss from different dry-off ovens

Figure 4.15 displays the percent product energy consumption of the audited companies' dry-off ovens. Product energy consumption includes the amount of energy required to process the product. Of all the companies, AAWIL displayed lowest consumption (18%) while AAACT and D-78 displayed the highest consumption (45%).

Figure 4.15: Percent product energy consumption from different dry-off ovens

4.5.3 Energy Balance of Cure Oven

This study observed that cure ovens consume 31% to 68% of the process energy depending on the oven size, production type, and hours of operation. A comparison of the energy consumption of cure ovens at the audited sites is presented in Figure 4.16. The first cluster of bars in the diagram represents energy loss due to exhaust, the second cluster of bars is energy loss through the shell, the third cluster of bars represents energy consumption from handling material, the fourth cluster of bars is product energy consumption, and the fifth cluster of bars represents miscellaneous losses.

Figure 4.16: Energy balance of different cure ovens

Figure 4.17 displays the percent exhaust loss of the audited companies' cure ovens. As seen in Figure 4.17, company D-225 displayed the highest exhaust loss (61%) and company AASPEC displayed the lowest exhaust loss (44%).

Figure 4.17: Percent exhaust energy loss from different cure ovens

Figure 4.18 displays the percent shell loss of the audited companies' cure ovens. As can be seen, company AAAL, AABN, AACF, AAACT, D-78, and D-225 had the lowest shell loss (18%) while company AASPEC displayed the highest shell loss (25%).

Figure 4.18: Percent shell loss from different cure ovens

Figure 4.19 displays the percent product energy consumption of the cure ovens of the audited companies. AAWIL had the lowest (13%), while AAACT had the highest product energy consumption loss (30%).

Figure 4.19: Percent product energy consumption from different cure ovens

Oven efficiency can be estimated using different parameters - exhaust energy loss, shell energy loss, and miscellaneous energy loss - which account for energy consumption. It was observed that although one oven might be efficient in terms of exhaust loss, it could, at the same time, experience more losses through shell envelope. Therefore, all parameters of energy consumption and their comparative consumption indicators should be used to identify the overall best performing oven.

4.6 Exhaust Loss Analysis with Different Parameters

Based on analysis, 33% to 64% of oven energy input is wasted as exhaust. In the subsequent section, the causes of this major loss and potential savings were analyzed. Exhaust losses from ovens are presented in Table 4.7.

Company Name and Oven Type	Exhaust Energy Loss	Temperature Difference	Temperature Difference
	(m ³ /year)	(°F)	(°C)
AAGF-B	206,508	330	183
AASN-B	228,748	330	183
AAAL-D	57,857	300	167
AAAL-C	76,371	300	167
AABN-D	43,057	285	158
AABN-C	86,114	285	158
AACF-D	45,071	285	158
AACF-C	81,127	285	158
AAMP-D	49,989	300	167
AAMP-C	83,314	300	167
AAACT-D	13,580	326	181
AAACT-C	27,160	326	181
AASPEC-D	17,811	311	173
AASPEC-C	16,181	276	153
AAWIL-D	25,494	255	142
AAWIL-C	56,654	255	142
D-78-D	22,939	295	164
D-78-C	45,878	295	164
D-225-D	42,657	300	167
D-225-C	85,314	300	167

 Table 4.7: Exhaust energy loss and temperature difference

Figure 4.20 displays exhaust energy loss with operating temperature difference of ovens. Analysis shows that AASN-B had the highest, while AASPEC-D had the lowest, exhaust energy loss. It can be seen that operating temperature difference is a major factor in exhaust loss. Other contributing factors are burner capacity, proper burning of gas, air flow inside the oven, and oven volume.

Figure 4.20: Exhaust energy loss vs. temperature difference

Figure 4.21 displays exhaust energy loss with oven envelope area. Analysis shows that AASN-B had the highest, while AAACT-D had the lowest exhaust energy loss.

Figure 4.21: Exhaust energy loss vs. oven envelop area

Figure 4.22 displays oven CFM verses exhaust loss. The R^2 value shows that there is no significant correlation between these two parameters; however, an increasing trend of exhaust energy loss was observed with increasing of CFM.

Figure 4.22: Oven CFM vs. exhaust loss

Figures 4.20, 4.21, and 4.22 show that only a few points are widely dispersed in the scattered plot from the trend line. Oven envelope area, oven volume, operating temperature, and CFM contributed energy loss. Excess air combustion is a major cause of exhaust energy loss which results in longer processing time and higher operating temperature. The reasons why there are outlying points in those graphs are dissimilar oven sizes, operating temperatures, and products.

4.7 Shell Energy Loss Analysis with Different Parameters

Table 4.8 displays the summary of shell loss by unit area of envelope and unit volume of oven. Column 5 displays the energy loss per unit area while column 6 displays the energy loss per unit volume. Potential savings opportunities are there of those ovens that have high values of energy loss per square footage and unit volume of oven.

Company Name	Oven Area	Oven Volume	Shell Energy Loss	Energy Loss per Square Footage of Oven Envelope	Energy Loss per Unit Volume of Oven
	(ft ²)	(ft ³)	(m ³ /year)	$(\mathbf{m}^3/\mathbf{ft}^2)$	$(\mathbf{m}^3/\mathbf{ft}^3)$
AAGF-B	5,044	13,520	71,337	14.14	5.28
AASN-B	4,640	12,000	81,897	17.65	6.82
AAAL-D	4,200	10,000	22,500	5.36	2.25
AAAL-C	5,080	13,200	27,214	5.36	2.06
AABN-D	2,680	4,800	22,259	8.31	4.64
AABN-C	3,760	9,600	31,229	8.31	3.25
AACF-D	1,960	4,000	20,449	10.43	5.11
AACF-C	2,880	7,200	30,047	10.43	4.17
AAMP-D	2,040	3,600	26,229	12.86	7.29
AAMP-C	2,600	6,000	33,429	12.86	5.57
AAACT-D	1,400	2,400	7,335	5.24	3.06
AAACT-C	2,000	4,800	10,479	5.24	2.18
AASPEC-D	2,360	4,200	10,485	4.44	2.50
AASPEC-C	2,320	4,800	9,147	3.94	1.91
AAWIL-D	3,576	6,480	13,027	3.64	2.01
AAWIL-C	5,520	14,400	20,109	3.64	1.40
D-78-D	2,808	5,040	11,834	4.21	2.35
D-78-C	3,936	10,080	16,587	4.21	1.65
D-225-D	4,032	9,216	17,280	4.29	1.88
D-225-C	5,760	18,432	24,686	4.29	1.34

Table 4.8: Oven shell loss per unit area of envelope and per unit volume of oven

volume. AAMP-D shows the highest and D-225-C is the lowest on energy loss per unit volume

while AASN-B shows the highest and AAWIL-D and AAWIL-C shows the lowest energy loss per square footage of oven envelope.

Figure 4.23: Shell energy loss per unit area of oven

Figure 4.24: Shell energy loss per unit volume of oven

Table 4.9 displays shell loss and temperature difference. Audited companies ovens were found operating temperature differences from 255°F to 330°F (142°C to 183°C). AASN-B shows the highest shell loss while AAACT-D shows the lowest shell loss among the ovens. Highest temperature difference does not show the highest shell loss, on the other hand lowest temperature difference does not shows the lowest.

Name of	Shell Energy Loss	Temperature Difforence	Temperature
Company	$(m^3/y_{00}r)$		
AAGE-B	(III / year) 71 337	330	183
AASN-B	81 897	330	183
AAAL-D	22,500	300	167
AAAL-C	27.214	300	167
AABN-D	22,259	285	158
AABN-C	31,229	285	158
AACF-D	20,449	285	158
AACF-C	30,047	285	158
AAMP-D	26,229	300	167
AAMP-C	33,429	300	167
AAACT-D	7,335	326	181
AAACT-C	10,479	326	181
AASPEC-D	10,485	311	173
AASPEC-C	9,147	276	153
AAWIL-D	13,027	255	142
AAWIL-C	20,109	255	142
D-78-D	11,834	295	164
D-78-C	16,587	295	164
D-225-D	17,280	300	167
D-225-C	24,686	300	167

 Table 4.9: Oven shell loss and temperature difference

There might be other factors contributing to shell loss. Those are: oven insulation, panel thickness, and oven opening etc. Analysis performed with available data and presented in the

following sections. This analysis was performed because shell loss found the second contributing factor of oven's energy loss.

Figure 4.25 displays shell loss vs. temperature difference. R^2 value shows that the correlation between these two parameters is not strong. Analysis shows AASN-B has the highest while AAACT-D has the lowest shell loss among others.

Figure 4.25: Shell loss vs. temperature difference

Figure 4.26 displays shell loss with the ration of temperature difference and overall thermal resistance of oven shell. Analysis shows that AASN-B had the highest, while AAACT-D had the lowest shell loss with the ration of this two variables. Operating temperature difference and thermal resistance are the factors contributed to exhaust loss. Graph shows a shell loss has an increasing trend with the ration of temperature difference and overall thermal resistance.

Name of Company	Shell Energy Loss	Oven Envelope Area
	(m ³ /year)	(ft ²)
AAGF-B	71,337	5,044
AASN-B	81,897	4,640
AAAL-D	22,500	4,200
AAAL-C	27,214	5,080
AABN-D	22,259	2,680
AABN-C	31,229	3,760
AACF-D	20,449	1,960
AACF-C	30,047	2,880
AAMP-D	26,229	2,040
AAMP-C	33,429	2,600
AAACT-D	7,335	1,400
AAACT-C	10,479	2,000
AASPEC-D	10,485	2,360
AASPEC-C	9,147	2,320
AAWIL-D	13,027	3,576
AAWIL-C	20,109	5,520
D-78-D	11,834	2,808
D-78-C	16,587	3,936
D-225-D	17,280	4,032
D-225-C	24,686	5,760

Figure 4.27 displays shell loss vs. oven envelope area. The R^2 value was 0.2143, meaning that the correlation between these parameters is not significantly strong. AASN-B shows the highest shell loss while AAACT-D shows the lowest among others.

Figure 4.27: Shell loss vs. oven envelope area

4.8 Radiation Energy Loss Analysis

Transfer of heat energy to facility space caused energy loss through radiation. Table 4.11 displays radiation heat loss from oven skin. Column 2 shows facility reference temperature, and Column 3 shows the oven skin temperature. Thermal emissivity determined one as an ideal emitter and the Stefen Boltzman constant as 1.714 x 10-9 Btu/hr ft2 R4. The result of radiation loss is presented in Column 6 of Table xxx. The calculations show from 2% - 4% oven energy loss through radiation, which is higher than the percentage of miscellaneous heat loss as 1- 2% in George Koch Sons, LLC [55, 56, 57]. This radiation heat loss contributes to higher operating than the standard described by George Koch Sons, LLC.

Company Name	Facility Reference	Facility Reference	Oven Skin	Oven Skin	Oven Area	Operation Hour	Radiation Energy	Radiation
Tranic	Temperature	Temperature	Temp	Temp	mca	nour	Loss	Percentage
		(0.0)	(0)	(4.0)	(0,2)		(3)	of Total
	(°F)	(°C)	(°F)	(°C)	(ft²)	(hr/year)	(m³/year)	(%)
AAGF	70	21	80	27	5044	6000	9062	2.79
AASN	70	21	80	27	4640	7488	10404	2.93
AAAL	70	21	80	27	4200	2500	3144	2.62
AABN	70	21	80	27	5080	2500	3803	2.53
AACF	65	18	75	24	2680	4080	3183	2.67
AAMP	65	18	75	24	3760	4080	4466	2.61
AAACT	70	21	80	27	1960	5125	3008	2.78
AASPEC	70	21	80	27	2880	5125	4420	2.71
AAWIL	70	21	80	27	2040	6000	3665	2.84
D-78	70	21	80	27	2600	6000	4671	2.77
D-225	70	21	80	27	1400	2250	943	2.22
AAAL	70	21	80	27	2000	2250	1347	2.33
AABN	69	21	80	27	2360	2000	1550	3.92
AACF	69	21	80	27	2320	2000	1524	4.12
AAMP	65	18	75	24	3576	2000	2082	3.05
AAACT	65	18	75	24	5520	2000	3214	3.20
AASPEC	65	18	75	24	2808	2000	1635	2.78
AAWIL	65	18	75	24	3936	2000	2292	2.54
D-78	65	18	75	24	4032	2000	2348	1.94
D-225	65	18	75	24	5760	2000	3354	2.38

 Table 4.11: Radiation energy loss from oven

4.9 Productive and Non-productive Hours Natural Gas Consumption Analysis

Productive hours natural gas consumption is defined as the consumption during the hours when a plant is producing [97]. The acronym of the company followed by the letter F and P, which refer to food and finishing process company in Table 4.12, Column 1. Eleven audited plants run five days per week. The usual weekends are Saturday and Sunday. Plant AASN-F maintain one day, Sunday, as the weekend.

The results of the analysis are presented in Table 4.12. Calculated non-productive hours in a year based on the information from schedule, while non-productive hours energy consumption was

extracted from daily and hourly utility bill and presented in column 6. Process energy consumption analysis was performed on eleven audited companies. Food companies consumed process energy per unit hour of operation from 65 m³/h to 452 m³/h, and finishing process industries at 12 m³/h to 429 m³/h. These are presented in Table 4.12. Productive hours index was calculated by total consumption / (plant area x yearly operation hour) and presented in Table 4.12, Column 8. This index indicated energy uses in productive hours.

Company Name	Yearly Operation Hours	Yearly Non-productive Hours	Total Consumption (m ³ /year)	Productive Hours Consumption (m ³ /year)	Yearly Non-productive Consumption (m ³ /year)	Process Energy Consumption Per Unit Hour of Operation (m ³ /hour)	Productive Hours Index (m ³ /ft ² hr)	Percentage Non-productive Hours in a Year (%)	Percentage Non-productive Consumption Over Total Consumption
AAGF-F	6,000	2,760	3,372,327	2,709,881	662,446	452	2.99E-03	32	20
AASN-F	7,488	1,272	546,832	486,991	59,841	65	3.88E-04	15	11
AAAL-P	2,500	6,260	584,907	496,858	88,049	199	3.54E-03	71	15
AACF-P	5,125	3,635	437,383	403,590	33,793	79	1.82E-03	41	8
AAMP-P	6,000	2,760	514,025	168,437	345,588	28	1.27E-03	32	67
AABN-P	4,000	4,760	363,976	112,852	251,124	28	9.25E-04	54	69
AASPEC-P	3,000	5,760	369,364	292,628	76,736	98	2.03E-03	66	21
AAWIL-P	2,000	6,760	298,809	110,973	187,836	55	1.35E-03	77	63
D-78-P	2,000	6,760	951,907	761,011	190,896	381	2.07E-03	77	20
D-225-P	2,000	6,760	1,306,121	857,813	448,308	429	3.06E-03	77	34
AAACT-P	2,250	6,510	161,682	27,366	134,316	12	6.96E-03	74	83

Table 4.12: Summary of natural gas consumption of productive and non-productive hours

Figure 4.28 shows the upper and lower limits of two types of audited companies. Process energy consumption analysis was performed to draw significant upper and lower limits or range of process energy consumption for similar types of companies. Among these eleven companies, food companies have a lower limit of 65m³/hr and upper limit of 452m³/hr, AASN and AAGF

respectively. Finishing process industries have a lower limit of 12m³/hr and upper limit of 429m³/hr, AAACT and D-225 respectively. Company AAACT has the lowest consumption while AAGF has the highest energy consumption based on process energy consumption per hour.

Figure 4.28: Natural gas consumption per hour of production of audited companies

Figure 4.29 displays the energy consumption index for productive hours. The productive hours consumption index was calculated as the ratio of productive hours consumption and the product of facility area and number of productive hours.

Figure 4.29: Productive hours energy consumption index

The finishing process industries show a decreasing trend with the increase of plant area. No conclusion can be drawn about the food companies because of limited data (only two companies). AAACT-P shows the highest productive hours index while AABN-P shows the lowest among finishing companies.

Facility area (ft²)

Figure 4.30: Productive index of process energy of the audited plants 103

Table 4.13 shows the percentage of natural gas consumption for production. The lower limit was close to 17% and the upper limit was 92%.

To maintain indoor quality some of the heating and ventilation equipment were left running during non-productive hours which contributed non-productive hours energy consumption. It is assumed that only the required equipment were running during non-productive times. Column 3, Table 4.13 shows that AAACT has opportunity to improve percentage of productive time's consumption.

Company Name	Type of Company	Natural Gas Consumption of Productive Hours Consumption as a Percentage of Total Consumption
		(%) · · ·
AAGF	Food	80
AASN	Food	89
AAAL	Finishing	85
AACF	Finishing	92
AAMP	Finishing	33
AABN	Finishing	31
AASPEC	Finishing	79
AAWIL	Finishing	37
D-78	Finishing	80
D-225	Finishing	66
AAACT	Finishing	17

Table 4.13: Productive time's consumption as a percentage of total annual consumption

Figure 4.31 presents percent natural gas consumption during productive hours at audited companies. The percent productive hours energy consumption of total plant's consumption of all the audited companies was found to be between 17% to 92%. The higher percent energy consumption signifies that most of the energy is used for production. Company AAACT had the

lowest natural gas consumption during productive hours while company AACF had the highest natural gas consumption.

Figure 4.31: Percent natural gas consumption of productive hours

4.10 Non-Productive Hours Energy Consumption Analysis

Reduction of misuse and loss can improve energy consumption per unit of production. Therefore, identifying areas of misuse and loss is an important step in creating an energyefficient plant.

An analysis was performed, on energy consumption during non-productive hours, to investigate potential savings in the natural gas consumption of industrial plants. Non-productive hours include scheduled weekends [103, 104], declared statutory holidays in Ontario [103, 104], and scheduled annual shut-down periods. Daily and hourly utility consumption data were used in the analysis of energy consumption during non-productive hours. The analysis was necessary

because it was suspected that plant machinery was running idly during non-operational hours, which eventually led to energy loss.

Table 4.14 displays percentage non-productive hours and non-productive consumption. These analysis were performed to estimate energy consumption in non-productive times over the total consumption and total year. This analysis shows that AABN-P has an opportunity to reduce non-productive hours consumption while D-78-P, AAWIL-P, and D-225-P has an opportunity to reduce non-productive hours.

Company name	Percentage of Non-productive Hours Over Total Hours in a Year (%)	Percentage Non-productive Consumption Over Total Consumption (%)
AAGF-F	32	20
AASN-F	15	11
AAAL-P	71	15
AACF-P	41	8
AAMP-P	32	67
AABN-P	54	69
AASPEC-P	66	21
AAWIL-P	77	63
D-78-P	77	20
D-225-P	77	34
AAACT-P	74	83

Table 4.14: Percentage non-productive hours and non-productive consumption

To determine how much energy was consumed during non-productive hours, daily and hourly consumption data were analyzed. The yearly average non-productive hours and corresponding consumption were obtained by summing up the consumption data for the weekends of billings years, and consumption during non-productive hours. The percentage of non-productive hours over annual hours was calculated. The resulting energy consumption during non-productive hours over annual consumption was calculated and plotted on the X-axis and Y-axis respectively. A graph is drawn considering ideal situation where R^2 value assumed 1, shows black in Figure 4.32. Plants shows above the ideal line represents inefficient while plants are below the trend line are efficient plants.

Figure 4.32: Energy consumption during non-productive hours

4.11 Non-Productive Hours Energy Consumption Analysis Based on Summer Months

An analysis was performed on energy consumption during non-productive hours based on summer months to investigate potential savings and in natural gas consumption of industrial plants. Heating and ventilation units are not usually working during summer months. Therefore a clear non-productive hour's loss can be estimated without natural gas consumption to maintain indoor air quality. The summer months (June, July, August) consumption, productive hours, nonproductive hours, percentage non-productive consumption over total, and percentage nonproductive hours over productive are presented in Table 4.15. Column 2 shows the nonproductive hours consumption, column 3 shows productive hours consumption, column 5 shows non-productive hours, and column 6 shows productive hours during the summer months.

Study shows that AAGF-F has an opportunity to reduce non-productive hour's consumption, while AAWIL-P, D-78-P, and D-225-P have the opportunity to reduce non-productive hours in their schedule.

Company Name	Non-productive Hours Consumption (m ³ /vear)	Productive Hours Energy Consumption (m ³ /vear)	Total Consumption (m ³ /year)	Non-productive Hours (hr)	Productive Hours During Summer Months	Percentage non- Productive Consumption Over Total Consumption (%)	Percentage non- Productive Hours Over Total Hours (%)
AAGF-F	131,281	432,802	564,083	576	1,440	23.27	27
AASN-F	13,563	107,418	120,981	288	1,728	11.21	13
AAAL-P	11,884	104,518	116,402	816	1,200	10.21	38
AACF-P	2,150	98,748	100,898	786	1,230	2.13	36
AAMP-P	12,632	73,765	86,397	576	1,440	14.62	27
AABN-P	96	62,685	62,781	1,056	960	0.15	49
AASPEC-P	5,635	41,324	46,959	1,296	720	12.00	60
AAWIL-P	5,567	41,392	46,959	1,536	480	11.86	71
D-78-P	4,964	42,760	47,724	1,536	480	10.40	71
D-225-P	2,112	17,072	19,184	1,536	480	11.01	71
AAACT-P	3,245	30,334	33,579	1,476	540	9.66	68

 Table 4.15: Productive and non-productive hours consumption analysis (summer months)

Figure 4.33 shows different than Figure 4.32 though the same concept applied in both cases. Study observed that in the summer months non-productive hours consumption less than when this was considered for the total year. At the same time non-productive hours observed less in summer months.

Figure 4.33: Energy consumption during non-productive hours (summer months average)

Scattered points in the non-productive hours energy consumption show that the percentage of non-productive hours are not the same for all the plants. This percentage depends on facility area, hours of operation, and product type. Non-productive hours consumption signifies that the machines are ideally running during non-productive hours. Therefore, different plans have different non-productive hours consumption, which is the cause of stray points on the graph. If the non-productive hours consumption can be reduced, then operating cost can be reduced a significant amount. On the other hand, there is a decreasing trend during the summer months when the out production is more. When the gap between production output and the scope of non-productive hours consumption is reduced, operating equipment has a smaller scope of slackness or tardiness.

4.12 Savings Analysis

Energy costs are important in industrial sectors like bakery and finishing process industries. This study revealed that major energy losses are caused by the ovens' exhaust. Savings could be achieved by reducing ovens exhaust; however, the exhaust flow rate should not be decreased below that required for safe operation of oven. For this purpose, the exhaust requirement methodology presented by Enbridge Gas Distribution Inc. [55, 56, 57] could be used to determine the flow rate for safe operation.

4.12.1 Energy Savings from Oven Exhaust

The study showed that companies operated their oven exhaust fans continuously and at high velocities even when they were not required. It is important to operate exhaust fans at the appropriate velocity only when it is necessary.

Exhaust flow is an important criterion for determining the operational safety of an oven. Better control of exhaust fans can save costs in terms of operating electricity and heated air. The percent savings from operating exhaust are presented in Table 4.16, column 7. It can be seen that exhaust savings can range from 19% to 53% depending on the size, exhaust CFM, operating temperature, and production type.

Company name and type of oven	Oven Exhaust Base Case (SCFM)	Ventilation Required as per Burner Capacity (SCFM)	Opportunity to Reduce in SCFM (column 1 - column 2)	Percentage SCFM Savings of Oven Exhaust (%)	Energy Savings Opportunity by Reduce SCFM (m ³ /year)	Savings Percentage of Total Oven Consumption (%)
AAGF-B	3,380	549	2,831	84	172,966	53
AASN-B	3,000	549	2,451	82	186,887	53
AAAL-D	2,500	641	1,859	74	43,023	36
AAAL-C	3,300	824	2,476	75	79,764	53
AABN-D	1,200	275	925	77	29,696	25
AABN-C	2,400	641	1,759	73	52,041	30
AACF-D	1,000	275	725	73	30,956	29
AACF-C	1,800	549	1,251	70	49,459	30
AAMP-D	900	183	717	80	39,824	31
AAMP-C	1,500	549	951	63	47,539	28
AAACT-D	600	183	417	70	8,106	19
AAACT-C	1,200	366	834	70	15,055	26
AASPEC-D	928	275	653	70	12,493	32
AASPEC-C	950	366	584	61	9,991	27
AAWIL-D	1,620	458	1,162	72	19,004	28
AAWIL-C	3,600	1,098	2,502	70	39,374	39
D-78-D	1,260	183	1,077	85	19,608	33
D-78-C	2,520	275	2,245	89	38,101	42
D-225-D	2,304	549	1,755	76	32,493	27
D-225-C	4,608	1,098	3,510	76	61,736	44

Table 4.16: Exhaust requirements and current exhaust of ovens

4.12.2 Energy Savings Opportunity from Oven Shell Energy Loss Through Improving Insulation Thermal Resistance (R)

This research observed that 10% to 31% of oven consumption was lost through the oven shell. This can be remedied with the internal and external surface of the oven and the insulation condition of the shell. In this research the loss factor is considered as a flat value as 0.25%, (estimated U value and estimated average panel thickness 6 inch) [57] which can be changed based on the "R" value. On the one hand, the internal surface reflectivity can reduce absorption of heat by the shell plates and increase internal air heating. On the other hand, the R value can affect heat conduction through shell plates. A simulated value calculated using different percentage of reduced loss factors and presented in Table 4.17. In the same table presents actual energy loss through the shell with its current estimated configuration. From columns 3 to 7, the simulated values are based on 10% reduction of loss factor from base case.

Company Name	Shell Loss as Base Case (m³/year)	Shell Loss Reduced If Factor Reduced by 10 % (m ³ /year)	Shell Loss Reduced If Factor Reduced by 20 % (m ³ /year)	Shell Loss Reduced If Factor Reduced by 30 % (m ³ /year)	Shell Loss Reduced If Factor Reduced by 40 % (m ³ /year)	Shell Loss Reduced If Factor Reduced by 50 % (m ³ /year)
AAGE-B	71 337	64 203	57 069	49 936	42.802	35 668
AASN-B	81 897	73 708	65 518	57 328	49.138	40 949
AAAL-D	22 500	20,250	18,000	15 750	13 500	11 250
AABN-D	27.214	24,493	21.771	19.050	16.329	13.607
AACF-D	22.259	20.033	17.807	15.582	13.356	11,130
AAMP-D	31.229	28,107	24,984	21.861	18,738	15.615
AAACT-D	20.449	18,404	16.359	14.314	12.269	10.224
AASPEC-D	30,047	27,042	24,038	21,033	18,028	15.024
AAWIL-D	26,229	23,606	20,983	18,360	15,737	13,114
D-78-D	33,429	30,086	26,743	23,400	20,057	16,714
D-225-D	7,335	6,602	5,868	5,135	4,401	3,668
AAAL-C	10,479	9,431	8,383	7,335	6,287	5,239
AABN-C	10,485	9,437	8,388	7,340	6,291	5,243
AACF-C	9,147	8,233	7,318	6,403	5,488	4,574
AAMP-C	13,027	11,724	10,421	9,119	7,816	6,513
AAACT-C	20,109	18,098	16,087	14,076	12,065	10,054
AASPEC-C	11,834	10,650	9,467	8,284	7,100	5,917
AAWIL-C	16,587	14,929	13,270	11,611	9,952	8,294
D-78-C	17,280	15,552	13,824	12,096	10,368	8,640
D-225-C	24,686	22,217	19,749	17,280	14,811	12,343

Table 4.17: Shell energy loss of ovens with different loss factors

Suitable insulation material of appropriate thickness can minimize heat loss. Shell loss calculated based on estimated loss factor. Considering that shell loss, thermal insulation values were calculated and found similar.

4.12.3 Exhaust Savings and Estimated Cost Savings Through Retrofits (Installation of VFD)

Research found that exhaust loss from ovens accounted for 33% to 64% in the audited companies, of which 61% to 89% can be reduced by maintaining the minimum requirement. This research finding was developed to minimize possible fires and other risks. Therefore, after maintaining the ventilation requirement, energy savings potential was observed in the audited companies. Potential energy savings in different simulated situations are presented in Table 4.18. Table 4.17 shows the different percentages of savings to be gained through the installation of a variable frequency drive (VFD) fan in the air inlet (oxygen) system of ovens, which can be controlled by exhaust mixture properties [100].

The estimated cost involved to install one VFD system in an oven is:

Price of one VFD (Capital cost) = \$3,857.12 plus HST (@13%) = \$4,358.55

Labour cost = \$520.00 (@\$65 per hour and estimated 8 hrs)

Other material costs = \$200.00

Total cost to install one VFD = \$5,078.55

The primary function of VFDs is to vary the speed of a three-phase AC induction motor. This piece of equipment also provides non-emergency start and stop control, acceleration and deceleration, and overload protection. This device also reduces motor start-up rush current by accelerating the motor gradually. For this reason, VFDs are suitable for devices where variable speed is required.

Selection of VFDs is based on the operating profile of the load it will drive. The choice also depends on constant or variable motor speed run by the VFD, frequency of start and stop of motor, and whether the motor runs continuously. Another major selection criterion will be the maximum current requirement of the motor at peak torque demand. In the current market VFD of required SCFM reduction rating could be difficult to arrange, therefore a simulated cost saving showed in different percentages in Table 4.18.

ompany Name	Company Type	Exhaust Loss (m ³)	Exhaust Savings 100% (m ³)	Estimated Cost Savings Through Exhaust (\$)			
5				100%	75%	50%	25%
AAGF-B	Food	206,508	172,966	43,242	32,431	21,621	10,810
AASN-B	1000	228,748	186,887	46,722	35,041	23,361	11,680
AAAL-D		57,857	43,023	10,756	8,067	5,378	2,689
AAAL-C		76,371	79,764	19,941	14,956	9,970	4,985
AABN-D		43,057	29,696	7,424	5,568	3,712	1,856
AABN-C		86,114	52,041	13,010	9,758	6,505	3,253
AACF-D		45,071	30,956	7,739	5,804	3,870	1,935
AACF-C	-	81,127	49,459	12,365	9,274	6,182	3,091
AAMP-D		49,989	39,824	9,956	7,467	4,978	2,489
AAMP-C		83,314	47,539	11,885	8,914	5,942	2,971
AAACT-D	F ' ' 1 '	13,580	8,106	2,027	1,520	1,013	507
AAACT-C	Finishing	27,160	15,055	3,764	2,823	1,882	941
AASPEC-D		17,811	12,493	3,123	2,342	1,562	781
AASPEC-C		16,181	9,911	2,478	1,858	1,239	619
AAWIL-D		25,494	19,004	4,751	3,563	2,375	1,188
AAWIL-C		56,654	39,374	9,844	7,383	4,922	2,461
D-78-D		22,939	19,608	4,902	3,676	2,451	1,225
D-78-C		45,878	38,101	9,525	7,144	4,763	2,381
D-225-D		42,657	32,493	8,123	6,092	4,062	2,031
D-225-C		85,314	61,736	15,434	11,575	7,717	3,858

 Table 4.18: Exhaust savings from different percentages of exhaust reduction

Table 4.19 displays the percentage savings and payback analysis. Column 2, Table 4.19 shows the cost of installation of VFD, while on the subsequent column from 3 to column 6 shows simulated payback periods with 100%, 75%, 50% and 25% savings respectively. The natural gas billing rate was considered as 0.25/m³. This rate was considered as flat rate to estimate payback analysis. This rate was based on the flat rate of billing for commercial and industrial usages years 2014.

Company Name	Estimated Cost of Retrofits through Installing VFD (\$)	100 % Exhaust Savings and Payback Period (Year)	75% Exhaust Savings and Payback Period (Year)	50% Exhaust Savings and Payback Period (Year)	25% Exhaust Savings and Payback Period (Year)
AAGF-B	5,079	0.12	0.16	0.23	0.47
AASN-B	5,079	0.11	0.14	0.22	0.43
AAAL-D	5,079	0.47	0.63	0.94	1.89
AAAL-C	5,079	0.25	0.34	0.51	1.02
AACF-D	5,079	0.68	0.91	1.37	2.74
AACF-C	5,079	0.39	0.52	0.78	1.56
AAMP-D	5,079	0.66	0.88	1.31	2.62
AAMP-C	5,079	0.41	0.55	0.82	1.64
AABN-D	5,079	0.51	0.68	1.02	2.04
AABN-C	5,079	0.43	0.57	0.85	1.71
AASPEC-D	5,079	2.51	3.34	5.01	10.02
AASPEC-C	5,079	1.35	1.80	2.70	5.40
AAWIL-D	5,079	1.63	2.17	3.25	6.50
AAWIL-C	5,079	2.05	2.73	4.10	8.21
D-78-D	5,079	1.07	1.43	2.14	4.28
D-78-C	5,079	0.52	0.69	1.03	2.06
D-225-D	5,079	1.04	1.38	2.07	4.15
D-225-C	5,079	0.53	0.71	1.07	2.13
AAACT-D	5,079	0.63	0.83	1.25	2.50
AAACT-C	5,079	0.33	0.44	0.66	1.32

 Table 4.19: Percentage savings and payback period

4.12.4 Cost Savings Analysis from Shell Energy Loss

This study investigated how the insulation R value affects energy savings. Calculated energy loss is displayed in Table 4.17, column 2 while other simulated energy losses presented from column

3 to 9 are based on different R values. The same loss can be reduced with adding more insulation on oven shell envelope. Table 4.20 presents another simulated savings in terms of cost and represent from column 2 to 7 based on the simulated energy savings. According to the data, energy savings through shell envelope loss have the most significant effect on optimizing the thermal insulation R value.

Company Name	Amount of Energy Savings in \$ if Loss Factor Reduced by 10% (\$)	Amount of Energy Savings in \$ if Loss Factor Reduced by 20% (\$)	Amount of Energy Savings in \$ if Loss Factor Reduced by 30% (\$)	Amount of Energy Savings in \$ if Loss Factor Reduced by 40% (\$)	Amount of Energy Savings in \$ if Loss Factor Reduced by 50% (\$)
AAGF-B	1,783	3,567	5,350	7,134	8,917
AASN-B	2,047	4,095	6,142	8,190	10,237
AAAL-D	563	1,125	1,688	2,250	2,813
AABN-D	680	1,361	2,041	2,721	3,402
AACF-D	556	1,113	1,669	2,226	2,782
AAMP-D	781	1,561	2,342	3,123	3,904
AAACT-D	511	1,022	1,534	2,045	2,556
AASPEC-D	751	1,502	2,254	3,005	3,756
AAWIL-D	656	1,311	1,967	2,623	3,279
D-78-D	836	1,671	2,507	3,343	4,179
D-225-D	183	367	550	734	917
AAAL-C	262	524	786	1,048	1,310
AABN-C	262	524	786	1,049	1,311
AACF-C	229	457	686	915	1,143
AAMP-C	326	651	977	1,303	1,628
AAACT-C	503	1,005	1,508	2,011	2,514
AASPEC-C	296	592	888	1,183	1,479
AAWIL-C	415	829	1,244	1,659	2,073
D-78-C	432	864	1,296	1,728	2,160
D-225-C	617	1,234	1,851	2,469	3,086

Table 4.20: Amount of energy savings with reduced oven envelope loss factors

Table 4.21 presented return on investment by simple pay back calculation. Insulation cost per square footage was estimated through online available resources (Appendix F) and standard unionize license labour wages based in year 2015. In the Table 4.21 shows the payback period considering the savings calculation presented in the Table 4.20.

Loss Factor Increased in Percent From Base Case	Payback
(%)	(year)
10 %	8.4
20%	4.2
30%	2.8
40%	2.1
50%	1.7

 Table 4.21: Payback analysis based on different oven envelope loss factors

A simple payback analysis performed to investigate the estimated return on investment. This analysis performed to check the feasibility of retrofit by adding more insulation on oven shell. It gives an estimated assumption of investment for energy savings measures. In the Figure 4.34 shows the payback period with investment on adding more insulation which in turn reduce loss factor on oven shell while the payback was presented in Table 4.20.

Figure 4.34.displays the payback period and insulation cost. Increased cost of insulation estimated at 20% increase in insulation value. Result shows that with the increase of insulation value, payback period decrease because of increasing savings.

Figure 4.34: Payback period of investment savings based on different insulation loss factors (AASPEC)

4.13 Maximum Potential Natural Gas Savings Analysis

This research has quantified the maximum natural gas savings from oven consumption from 8% to 42% of total natural gas consumption in audited facilities. Columns 3, 4, and 5 show the savings potential from exhaust, shell, and miscellaneous energy savings. As shown in the research of George Koch Sons, LLC, miscellaneous loss can be 1% of the total consumption [55, 57], radiation loss included. The radiation loss has been calculated and presented in Table 4.22, Column 6. It was observed that the radiation loss of the audited facilities is from 2% to 4%, which is higher than the research by George Koch Sons, LLC. Potential savings from miscellaneous loss have been calculated from existing loss by deducting the results of Column 6 of Table 4.5 from the radiation loss shown in the Table 4.22 of Column 6. Miscellaneous energy savings in Column 5, Table 4.22 are less than the radiation energy loss from ovens. Calculated maximum shell energy savings have been considered, as presented in Column 7 of Table 4.17.

Company	Total	Exhaust	Shell	Miscellaneous	Total	Percentage	
Name	Consumption	Savings	Savings	savings	Savings	of Total	
						Savings	
	(m ³ /year)	(%)					
AAGF-B	3,372,327	172,966	35,668	0	834,536	25	
AASN-B	546,832	186,887	40,949	0	227,836	42	
AAAL-D	594 007	43,023	11,250	0		26	
AAAL-C	384,907	79,764	13,607	3,664	151,308	20	
AABN-D	262 076	29,696	11,130	0		20	
AABN-C	363,976	52,041	15,615	0	108,482	50	
AACF-D	127 292	30,956	10,224	0		25	
AACF-C	437,383	49,459	15,024	4,205	109,868	23	
AAMP-D	514 025	39,824	13,114	0		22	
AAMP-C	514,025	47,539	16,714	0	117,191	23	
AAACT-D	161 682	8,106	3,668	2,228		21	
AAMP-C	101,082	15,055	5,239	0	34,296	21	
AASPEC-D	360 361	12,493	5,243	0		0	
AASPEC-D	509,504	9,991	4,574	861	33,162	7	
AAWIL-D	208 800	19,004	6,513	13,003		31	
AAWIL-C	298,809	39,374	10,054	4,816	92,764	51	
D-78-D	051 007	19,608	5,917	154		8	
D-78-C	951,907	38,101	8,294	2,502	74,577	0	
D-225-D	1 206 121	32,493	8,640	29,295		11	
D-225-C	1,300,121	61,736	12,343	0	144,507	11	

Table 4.22: Maximum potential savings of total natural gas consumption

4.14 Natural Gas Savings Analysis with Hours of Operations

Based on analysis 15 m³/hour to 139m³/hour of natural gas input can be saved through proper addressing the exhaust loss, shell loss, and radiation loss. The natural gas saving are presented in Table 4.23.

Company Name	Hour of Operation	Estimated Total Natural Gas Savings	Natural gas Savings Per Hour of	
	(hour)	(m ³ /year)	(m ³ /hour)	
AAGF	6000	834,536	139	
AASN	7488	227,836	30	
AAAL	2500	151,308	61	
AABN	4080	108,482	27	
AACF	5125	109,868	21	
AAMP	6000	117,191	20	
AAACT	2250	34,296	15	
AASPEC	2000	33,162	17	
AAWIL	2000	92,764	46	
D-78	2000	74,577	37	
D-225	2000	144,507	72	

Table 4.23: Natural gas savings per hour of operation

Figure 4.35 displays natural gas savings per hour of operation of the audited companies. Analysis shows AAGF have the highest opportunity for hourly saving, while AAACT have the lowest. It can be seen that savings opportunity increases with the increase of hour of operation.

Figure 4.35: Natural gas savings per hour of operation

This study has several findings regarding energy savings. First, this study estimates that by using the ventilation requirement methodology by Enbridge Gas Distribution Inc. [53, 55, 56, 57] that prevents exhaust energy loss, ovens can consume between 19% and 53% less energy. These estimates are presented in Table 4.15.

Second, around 14% to 27% energy savings can be realized from oven consumption by limiting oven shell loss. These estimates were presented in Figure 4.14 and 4.18.

This study observed that for two bakeries, 82% and 88% of the energy is consumed for processing their products. The data are and presented in Table 4.1. Plant AASPEC and D-78 usages less natural gas energy in process oven because the process equipment runs on electricity and the plant has a large area. Of the process energy consumption, 26% to 73% was used for direct-fired ovens, which was shown in Table 4.1.

The eleven companies audited for this study all use ovens. Two use bake ovens, while the rest use dry-off and cure ovens. It was estimated that bake ovens use 47% to 73% of process energy, while ovens in the finishing companies use 26% to 68%. These were presented in Table 4.1.

Natural gas was the main source for maintaining indoor air quality for most of the large facilities. Research found that the energy intensity by area in bake ovens is around $24 \text{ m}^3/\text{ft}^2$ to $30 \text{ m}^3/\text{ft}^2$ (Table 4.2), whereas for dry-off and cure ovens it is $7 \text{ m}^3/\text{ft}^2$ to $36 \text{ m}^3/\text{ft}^2$ (Table 4.2). This same study found that energy intensity by volume in bake ovens is around $64 \text{ m}^3/\text{ft}^3$ to $77 \text{ m}^3/\text{ft}^3$, whereas for dry-off and cure ovens it is $16 \text{ m}^3/\text{ft}^3$ to $65 \text{ m}^3/\text{ft}^3$. The same oven does not always exhibit have the same energy intensity by volume and energy intensity by area (e.g., AASPEC-D).

This study also observed that the suitable methodologies for benchmarking are: (a) energy
intensity index which estimates energy consumption per square footage (m^3/ft^2) ; (b) energy consumption per unit volume (m^3/ft^2)) (Table 4.2 and Table 4.3); and (c) production hours index (Table 4.11, column 8 and Figure 4.28)

The research observed that potentially around 8% to 83% of energy loss during non-productive hours could be saved and thus help lower production costs (Table 4.13). This is conclusion was reached because there were more non-productive hours. There were less non-productive hours during summer, and energy consumption during non-productive hours decreased (Table 4.13, Table 4.14 and Figure 4.31)

Potential savings can be realized from many retrofits such as the addition of a VFD controller, insulation (Table 4.15, Table 4.16, and Table 4.17). Depending on the investment and the type of estimated retrofits, return on investment can be realized in less than a year or in ten years (Table 4.18, Table 4.19, Table 4.20, and Table 4.21).

The research observed that potentially around 8% to 42% of total natural gas loss can be saved through different retrofits thus help to lower the production cost (Table 4.22). Natural gas savings per hour of operation observed from $15m^3$ /hour of $139m^3$ /hour.

5.1 Savings from installing Variable Frequency Drive (VFD)

Variable frequency drive (VFD) is an electro-mechanical device that controls the speed of AC motors and the torque by varying the motor input frequency and voltage. Variable Frequency Drive (VFD) plays an important role in energy management with regards to technology. It was observed that major energy savings form Eddy-current and hysteresis loss accounted for 15-25% of the overall losses. It was also observed that the starting current of a motor was too high, usually between 3 to 8 times the full-load current. As a result, the voltage surges in the power

system. On the other hand, if full torque is applied instantly at the start of the process, the mechanical shock can eventually damage the drive system, including the motor or fan mount shaft. Therefore, VFD is suitable where mechanical considerations like variable torque, constant torque, and constant horsepower are involved. It was proven that VFD can help realize direct savings in electrical energy consumption and indirect savings from exhaust losses. Electrical energy is saved by varying the motor speed and torque, while exhaust energy can be saved through the proper mixing of natural gas and oxygen ratio. At the exhaust duct, companies can install an oxygen sensor which would measure the percentage of oxygen gas in the exhaust flue gas. The percentage of oxygen gas in the exhaust flue can control the motor speed at the inlet duct of the oven. A potential savings can be achieved from 19% to 61% of oven energy consumption after installing VFD with controller.

5.2 Savings from Insulation Correction

Insulation reduces the exchange of heat through a surface; that is, an insulated surface lessens the amount of warm air escaping through the surface. It acts as a barrier for heat loss and gain. Therefore, the amount of energy needed for this purpose could be reduced. Insulation is the most practical and cost-effective way to make an oven more energy-efficient [111,112,113]. Insulation can be selected based on R-value and cost analysis. In this study, it was observed that shell loss calculated from 18% to 31% can be reduced based on insulation properties having an loss factor reduced from 10% to 50% and simulated energy savings potential is addressed in Table 4.18.

Chapter 6: Conclusion and Recommendations

Burners are devices which mix molecules of fuel with molecules of air. An efficient oven depends on burner performance. A poorly designed oven with an efficient burner may perform better than a well-designed oven with a poor burner. Burners are designed to maximize combustion efficiency while minimizing the release of emissions.

An efficient natural gas burner requires only 2% to 3% excess oxygen or 10% to 15% excess air in the gas, to burn fuel without forming excess carbon monoxide.

A natural gas burner can be more efficient if it is provided with 2% to 3% excess oxygen or 10% to 15% excess air in the flue gas, to burn fuel without forming carbon monoxide. Therefore, a proper air-to-fuel mixture is important for burner efficiency without constant adjustment. Usually burners with complex linkage designs can't maintain air-to-fuel setting over time. This is a cause of inefficiency. So a burner using servomotors with parallel positioning which independently control the quantities of fuel and air delivered to the burner head can improve efficiency more than complex linkage designed burners. An advantage of servomotors with parallel positioning burners is that they don't have complex linkages, which allows for easy tune-ups and minor adjustments, while eliminating hysteresis, or lack of retrace ability, and provide accurate point-to-point control. These are the reasons for consistent performance and repeatability, adjusting burners for different firing rates. Other alternatives are burners with a single drive or jackshaft.

In assessing overall efficiency and potential for oven energy savings, the parameters of significant importance are temperature, flow rate of inlet air and dry flue gas, processing material flow rate, and insulation of shell, etc. The temperature can be measured by a laser temperature gun, or thermocouple probe. The installation of economizer or flue-gas air pre-heaters are

practical ways of reducing stack temperature while reusing oven inlet air. Studied companies observed exhaust gas temperatures of 350°F to 450°F (177°C to 232°C).

6.1 New findings in this research

Research work was accomplished with the contribution of Enbridge's University Partnership Program (UPP) to identify natural gas savings in small and medium-sized industries. In this respect, the author has accomplished the following tasks and achieved the following goals:

- Development of Excel based calculating tool by which oven energy balance can be calculated through required data sets without on-site energy audit
- Development of code in Visual basic to create a portable version of calculating tools
- Consolidation of energy data (natural gas) from 11 small and medium-sized industries within the GTA
- Energy consumption analysis of ovens of small and medium-sized industries within the GTA and identifying major losses and potential savings (such as exhaust loss, shell loss, miscellaneous loss, etc.)
- Development of a few indices by which industries that have ovens can be classified based on their efficient use of natural gas
- Assessment of financial and environmental benefits in terms of natural gas savings and greenhouse gas emissions

6.2 Limitations of this study

At the beginning of this project, the goal was to aim for a minimum of 50 companies whose audited energy data could be obtained from SMEs through Enbridge Gas Distribution Inc. to draw a statistical analysis. However, based on available data, this project study analyzed data from 11 SME companies. Among them two are bakeries, and the remaining 9 are finishing companies. These results are a sample analysis, but could not be tested for robustness due to data limitation. These results would have been highly accepted if they had been obtained from the minimum required companies (at least 50 companies' data). Therefore, a research opportunity is there to test this methodology.

Energy audits largely rely on accurate information from facilities. These are: temperature readings from different energy served systems, air-flow rates of HVAC system and ovens, energy data from sub-metering and major equipment, and more. This study relies on very limited data. These are: utility bills, schedules, some of the data from ovens, and some data collected from internet searches. Due to limited resources of measuring equipment and tools, that accurate information could not be retrieved. Many of the results are based on estimation and discussion with experts. The same results were obtained for savings calculations. The prices were taken from the internet and were included in payback calculations.

6.3 **Possible Future Work**

Plenty of potential for future research work was identified during this research, which is energy savings potential based on design parameters of ovens and retrofits. Another opportunity was observed to analyze oven burners with optimized thermal capacity design.

Appendix A

Sample calculations:

1. Production throughput (AAAL)

 m_p = Product mass = 15 [lb]

 $V_{line} = Conveyor speed = 15 [ft/min]$

Loading per hook spece = Loading/ $h_s = 2$

Production throughput = m_p x V_{line} x 60 [hr/min] x Loading/h_s

= 15 [lb] x 8 [ft/min] x 60 [hr/min] x 2 = 13500 [lb/min]

2. Energy required per hour (AAAL)

= m_p [lb] x C_p [Btu/lb°F]x ΔT [°F]

= 12 [lb] x 0.12[Btu/lb°F] x 330 [°F]

= 540[Btu/pcs]

3. Exhaust requirement (AAAL)

Burner capacity = 3.5 inch

= 3.5 x 183 = 640.5 = 651 MMBtu [SCFM]

= 12 [lb] x 0.12[Btu/lb°F] x 330 [°F]

= 540 [Btu/pcs]

4. Correction factor (CF) = $\frac{\text{Exhaust temperature}+460}{\text{Inlet temperature}+460} = \frac{370+460}{70+460} = 1.57$

5. ACFM required = 641[SCFM] x 1.57 [CF] = 1,006 ACFM

6. Exhaust at constant volume = $\frac{\text{Oven volume } [\text{ft}^2] \times 4}{\text{purge time}} = \frac{10,000 \times 4}{16} = 2,500 \text{ [SCFM]}$

7. Exhaust energy loss = [SCFM] x 1.08 [Btu/lb°F]x 300 [°F]x 2500 [Year/hr]/35000

= 2500 x 1.08 x 300 x 2500/35000

 $= 57857 \text{ m}^{3}/\text{year}$

8. Exhaust savinngs = Conatant volume exhaust - require exhaust

= 2,500 [SCFM] – 651 [SCFM]

= 1849 [SCFM]

9. Product energy consumption (AAAL)

Actual product in a year = 1,500,000 pcs

Energy required per product = 540 Btu/pcs

Product energy required = Energy required per product x No of product in a year

= 540 [Btu/pcs] x 1,500,000 [pcs]/35000

 $= 23,143 \text{ m}^{3}/\text{year}$

10. Materail handling loss (AAAL) = 3% of the total oven consumption

= 0.03 x 120184 [m³/year] = 3606 [m³/year]

11. Shell loss (AAAL)

= Shell area [ft²]x loss factor x ΔT[°F] x operating hour [year/hr]
/35000
= 4200 [ft²] x 0.25 x 300 [°F] x 2500 [year/hr] /35000
= 22,500 m³/year

11. Oven energy intensity in terms of area

Oven area = $4,200 \, [ft^2]$

Oven consumption = $120,184 \text{ [m}^3/\text{year]}$

Energy intensity in terms of area = oven consumption $[m^3/year]$ / oven area $[ft^2]$

 $= 120,184 \text{ [m}^3/\text{year]} / 4,200 \text{ [ft}^2 = 29 \text{ [m}^3/\text{ft}^2 \text{]}$

12. Oven energy intensity in terms of volune

Oven volume = 10,000 [ft³]

Oven consumption = $120,184 \text{ [m}^3/\text{year]}$

Energy intensity in terms of area = oven consumption $[m^3/year]$ / oven volume $[ft^3]$

= 120,184 $[m^3/year] / 10,000 [ft^3] = 12 [m^3/ft^3]$

13. Payback calculation after improving loss factor

Oven area = 5044 [ft²]

Insulation cost = \$15,435 (@3.06 per square footage)

Doller savings after improving of insulation value of 10% than base case

Savings = 7,350 x 0.25 = \$1,838

Payback period = 15,438/1,838 = 8.4

Appendix B

1. Collected data for ovens from energy audit

X ≣ FI	LE H	OME II	NSERT	PAGE LAY	OUT FO	RMULAS	DATA	REVIEW	VIEW DE	VELOPER		Excel-	MAScProje	ct - Excel						`U				M DM	? 📧 Maniruzzama	– ∂ X an Akan *
Pas	Le Cut	py * mat Painte	Calibri er B I	• <u>U</u> • E	11 • / - <u>&</u> •		= <u>-</u> 8	e eze 📴	Wrap Text Merge & Cente	Gen er • \$	eral % %	◆0 .00 C	Conditional prmatting *	Format as Table *	Normal Neutral	chd	Bad Calculat	tion	Good Check Ce	۵ ۱۱	Insert	Delete Fo	rmat γ	AutoSum Fill • Clear •	Sort & F	ind & elect •
		- <u>-</u> -	-	FOR	L	a l		Alignment		14	Number	12				Styl	65					CEIS			alung	~
	<u> </u>																									
A2		• i	Xv	f _x	AAGF																					^
	A	В	С	D	E	F	G	н	L J	K	L	М	N	0	Р	Q	R	S	Т	U	V	w	х	Y	Z	AA / A
1	Name of the Company	Area of the Company(ft)	NAC (m ³) (Linked IXI	NAC (m ³) Process	NAC Seasonal (m ³)	No of Oven	Type of Oven	Type of Production	Lengh(L-ft) Laidh (L-ft)		Thermal Loss Factor	Parts inlet temperature (T ₆ ⁰ F)	Oven Temperature (Tp ² F)	Burner Capacity (MMBtu)	Parts Surface area(f ²)	Parts Weight/mass (lb)	Specific Heat Capacity of Parts(CP) [BtuAb ⁰ F]	Hanger Mass(lb)	Production Rate per hr (assumøgiven from specification)	Loading Per Hook Space(Loading/h)	Carrier Spacing(ft)	Carrier Hold no of Parts	Shift Hours	No of Shift	No of working days	No of workings week in a year
2	AAGF	188290	3372327	2781456	590871	1 Bak	e Foo	d	104 1	0 1	3 0.25	70	400	3	4	4	0.28	1.5	450	0.5	1	1	8	3	5	50
3 /	AASN	188045	546832	483924	62908	1 Bak	e Foo	d	100 1	0 1	2 0.25	70	400	3	4	4	0.28	1.5	300	0.5	1	1	8	3	6	52
4 /	AAAL	66142	584907	465608	119880	1 DO	Fini	shing	100 1	0 1	0 0.25	70	370	3.5	12	15	0.12	3	600	2	3	2	10	1	5	50
5	A 4 D N	00270	584907	465608	119880	1 00	Elect	ala ta a	110 1	0 1	2 0.25	70	370	4.5	12	15	0.12	3	600	2	3	2	0	1	5	50
7	HADIN	96570	363976	251124	112852	100	FINE	sning	80 1	0 1	0 0.25	65	350	3.5	10	10	0.12	3	450	2	3	2		2	5	51
8	AACF	46786	437383	403590	34185	100	Fini	shing	50 1	0 1	8 0.25	70	355	1.5	17	17	0.12	3	300	2	3	2	10.25	2	5	50
9			437383	403590	34185	1 CO			60 1	0 1	2 0.25	70	355	3	17	17	0.12	3	300	2	3	2	10.25	2	5	50
10	AAMP	67604	514025	345588	168437	1 DO	Fini	shing	60 1	D	6 0.25	70	370	1	14	14	0.12	3	350	2	3	2	8	3	5	50
11			514025	345588	168437	1 CO			60 1	0 1	0 0.25	70	370	3	14	14	0.12	3	350	2	3	2	8	3	5	50
12	AAACT	10327	161682	134316	27684	1 D0	Fini	shing	40 1	0	6 0.25	70	396	1	18	18	0.12	2	380	0.5	1	1	9	1	5	50
13	AASPEC	60713	161682	134316	27684	100	Fini	ching	40 1	0 1	2 0.25	70	396	15	18	18	0.12	2	380	0.5	1	1	9	1	5	50
15	MOPLE	00715	369364	76736	292628	1 00	Fille	sning	60 1	n	8 0.25	69	345	2	12	12	0.12	2	360	0.5	1	1	- 8	1	5	50
16	AAWIL	110270	298809	187836	110973	1 00	Fini	shing	108 1	D	6 0.25	65	320	2.5	18	18	0.12	2	400	0.5	1	1		1	5	50
17			298809	187836	110973	1 CO			120 1	0 1	2 0.25	65	320	6	18	18	0.12	2	400	0.5	1	1	8	1	5	50
18	D-78	230453	951907	190896	761011	1 DO	Fini	shing	84 1	0	6 0.25	65	360	1	14	14	0.12	2	720	1	1	1	8	1	5	50
19			951907	190896	761011	1 CO			84 1	0 1	2 0.25	65	360	1.5	14	14	0.12	2	720	1	1	1	8	1	5	50
20	D-225	213668	1306121	448308	857813	1 DO	Fini	shing	96 1	2	8 0.25	65	365	3	18	18	0.12	2	700	1	1	1	8	1	5	50
211		Data Ir	1306121 100t Pi	448308 rimary C	85/813 alculation	Result	Sheet	Oven Ana	961 1 Ilvsis-1 Ва	zi 1 ke Oven	DO Ov	i 65 en ∣Cur	e Oven	Shell Los	18I S (+)	18	0.12	21	7001	1	1	1		1 1	51	501 *
DEAD	w 💷			., =					,		1				. (COUN	m-11 B	# B	Ш		• oss:
		3						•) 🛛	w	X										COUN	······································		• 10	ENG US	9:50 PM 2015-09-02

Excel-MAScProiect - Excel

- 🛃 📝 Normal

General

X≣

FILE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW DEVELOPER

K Cut Calibri • 11 • A A ≡ ≡ ₩ Wrap Text

? 📧 — 🗗 🗙 Md Maniruzzaman Akan ~ 🐖

Good

Bad

Appendix C

1. Calculated data for ovens

X ∎ Fi	LE HO	IME IN	SERT PAGE LAYOUT FORMULAS	DATA REVIEW VIEW D	EVELOPER	Excel	-MAScProject - Exe	cel					? 📧 — 🗗 🗙 Md Maniruzzaman Akan -
Pas	te Clipboard	nat Painter	Times New Ro \cdot 12 \cdot A A \cdot 3 B I U \cdot \square $:$ \square \square $:$ \square $:$ \square $:$ \square $:$ \square $:$ \square \square \square $:$ \square \square \square \square	= = = ≫ • ₽ Wrap Text = = = € € € I I I I Merge & Cen Alignment	General ter - \$ - %	* * 0.00 +0 F iber 5	Conditional Forma ormatting ▼ Table	Normal t as e *	Bad Calcul Styles	ation	Good Check Cell	Insert Delete	∑ AutoSum ~ Ar Fill ~ Sort & Find & Clear ~ Filter * Select * Edding ~
	5 • ∂	4											
E1	9	•	$\times \checkmark f_x$ 0										*
	А	В	С	D	E	F	G	Н	1	J	К	L	M
4	NEX Name of the Company	Type of Oven	Production Throughput (m _p x V _{Has} x 60 x Loading/h ₀ [54*AK4*60*AE4][lb/ borr]	Yearly Production Throughput[lb/year]	Actual Production[l b/year]	Opportunity Loss in Production (D6- E6)[lb/year]	Energy Required Per Product (mp x C _p x ∆T)[btu/pcs]	Exhaust Requirement As NFPA-86	Exhaust at Conatant CFM	Exhaust savings	Energy savings for exhaust savings[m ³ /year]	Exhaust Loss[m ^{3/} year]	Shell (Shell Area x Loss Factor X &T)[m ² /year]
6	AAGF	Bake	1800	11520000	0	11520000	370	891	2083	1192	280662	206508	71337
7	AASN	Bake	1200	8985600	0	8985600	370	891	1849	958	303250	228748	81897
8	AAAL	DO	13500	33750000	0	33750000	540	1003	1596	593	67393	57857	22500
9		CO	13500	33750000	0	33750000	540	1290	2107	818	89755	76371	27214
10	AABN	00	12150	52876800	0	52876800	616	424	1/8	504	51235	43057	22259
12	AACE	0	7650	47047500	0	47047500	591	422	650	228	50282	45071	20449
13	MCr	00	7650	47047500	0	47047500	581	844	1171	326	86703	81127	30047
14	AAMP	DO	7350	45360000	0	45360000	504	287	575	288	62366	49989	26229
15		со	7350	45360000	0	45360000	504	860	958	98	82720	83314	33429
16	AAACT	DO	6840	14580000	0	14580000	704	296	371	76	15244	13580	7335
17		CO	6840	14580000	0	14580000	704	591	743	152	30487	27160	10479
18	AASPEC	DO	4320	8640000	0	8640000	448	436	584	149	19917	17811	10485
19		CO	4320	8640000	0	8640000	397	557	624	67	15137	16181	9147
20	AAWIL	DO	7200	15120000	0	15120000	551	680	1090	411	27180	25494	13027
21		CO	7200	15120000	0	15120000	551	1631	2423	792	58499	56654	20109
22	D-78	00	10080	20160000	0	20160000	496	286	807	521	30625	22939	11834
23	0225	DO	10080	20160000	0	20160000	490	429	1015	602	03854	45878	1038/
25	0223	0	12600	25920000	0	25920000	648	1725	2932	1207	102120	+4037	24686
26			12000	25520000		20020000	040		27.52	0/	102120	00014	24000 T
-	•	Data Inp	ut Primary Calculation Res	ult Sheet Oven Analysis-1 B	ake Oven D	O Oven Cu	re Oven Shell	Loss (+)	E 4				Þ
REAL	ру 🔠												■ ■ ■+ 85%
H	I (é			🚍 🗖 🧔 🔯	Ew	XI							▲ 🗮 🏲 🗊 🖬 🐠 ENG 9:56 PM

X I	ile ho	ME INSERT	PAGE LAYOUT FORMULAS DATA R	EVIEW VIEW DEVEL	OPER	Excel-MA	AScProject - Exce	4					? E Md Maniruzzan	E – 🗗 X nan Akan - 📑
Pa	Cipboard	at Painter	es New Ro \cdot 12 \cdot A A $=$ $=$ \Rightarrow \Rightarrow f	Wrap Text	General \$ • % • Number	• 0 .00 .00 • 0 Form	ditional Format natting ▼ Table	Normal as Neutral	Bad Calcula Styles	Good tion Check	Cell •	Insert Delete F	The second seco	Find & Select *
	5 - 0	- € = - =												
E1	19	• E X	$\sqrt{f_x}$ 0											^
	A	L	М	N	0	Ρ	Q	R	S	Т	U	V	W	X Y
4	Name of the Company	Exhaust Loss[m ³ /year]	Shell (Shell Area x Loss Factor X ∆T)[m ³ year]	Material Handling Loss (2-3% of toal as per KLLC (m ³ /year)	Energy Loss From Oven I Losses (m ³ /y	Product energy consumption	Misc Consumptio n (m ³ /year)	Total Aggregated	Total Oven Consumptio n (m ³ /year)	Savings from operating ventilation (m³/year)	GHG Emission (kg)	Percentage consumed by Oven over NAC Process	Savings Percentage of total Oven Consumption	
6	AAGF	206508	71337	9750	287595	28512	8893	316107	325000	280662	1.06E+06	11.68%	86.36% 4	Oven
7	AASN	228748	81897	10658	321303	23722	10255	345025	355280	303250	1.17E+06	73.42%	85.36%	
8	AAAL	57857	22500	3606	83963	34714	1507	118677	120184	67393	2.96E+05	25.81%	56.07%	
10	AARN	/05/1 //2057	27214	4508	68806	34/14 48420	1082	142000	110217	51235	2.20E+05	52.20% 47.51%	12 04%	
11		86114	31229	5134	122477	48439	218	170916	171134	97404	4 40E+05	68 15%	56.92%	
12	AACF	45071	20449	3240	68759	38310	930	107070	108000	50282	2.30E+05	26.76%	46.56%	
13		81127	30047	4890	116064	38310	8625	154375	163000	86703	4.15E+05	40.39%	53.19%	
14	AAMP	49989	26229	3870	80087	45360	3553	125447	129000	62366	2.55E+05	37.33%	48.35%	
15		83314	33429	5055	121798	45360	1351	167158	168509	82720	4.26E+05	48.76%	49.09%	
16	AAACT	13580	7335	1277	22192	17202	3171	39394	42565	15244	6.94E+04	31.69%	35.81%	
17		27160	10479	1734	39373	17202	1234	56575	57809	30487	1.39E+05	43.04%	52.74%	
18	AASPEC	17811	10485	1185	29481	9213	806	38694	39500	19917	9.10E+04	51.48%	50.42%	
19		16181	9147	1110	26439	8176	2385	34615	37000	15137	8.27E+04	48.22%	40.91%	
20	AAWIL	25494	13027	2047	40568	12590	15085	53158	68243	27180	1.30E+05	36.33%	39.83%	
21		56654	20109	3012	79774	12590	8030	92364	100394	58499	2.90E+05	53.45%	58.27%	
22	D-78	22939	11834	1761	36534	20390	1789	56925	58714	30625	1.17E+05	30.76%	52.16%	
23		45878	16587	2711	65177	20390	4794	85567	90361	63852	2.34E+05	47.34%	70.66%	
24	0225	42657	17280	3634	63571	25920	31643	89491	121134	51060	2.18E+05	27.02%	42.15%	
25		85514	24686	4224	114224	25920	660	140144	140804	102120	4.56E+05	51.41%	/2.53%	
	•	Data Input	Primary Calculation Result Sheet C	Iven Analysis-1 Bake	Oven DO C	ven Cure (Oven Shell I	(+)	÷ •					•
REA	NDY 🛗												■ ■ ■	+ 85%
E	1 <i>(</i>		i 🗋 🖻 🚍 🗖		w] X								- 📢 🏴 🔞 🗐 🔐	9:57 PM

Appendix D

1. Summary result of dry-off ovens

X ∎ FILE	ŀ	HOME	INSERT	PAGE LAY	OUT F	ORMULAS	DATA	REVIE	W VIEV	V DEV	ELOPER		Б	cel-Project	t - Excel										Md	? (Maniruzzar	函 — r man Akan	ð X
Paste	X Cu Co ✓ Fo Clipbos	t ipy * irmat Pain ard	Calibri ter 5	• <u>U</u> • : Fon	11 • • <mark>2</mark> •	A A =	= 	&∕r €E #E Alignr	🔐 Wrap 💼 Merge nent	Text & Center	Gene r * \$ *	ral % 9 Number	v €0 .00 00 €0	Conditiona Formatting	I Format * Table *	Normal Neutral	l Styl	Bad Calculatio	n	Good Check Ce	- - - -	Insert	Delete Fo Cells	imat δ	AutoSum Fill * Clear *	Sort & Filter •	Find & Select •	^
A13) • d	•• % • • 1	× v	fx	AAAL																							^
4	A	В	с	D	E	F	G	н	1	J	К	L	М	N	0	Р	Q	R	S	T	U	٧	W	Х	γ	Z	AA	F 🔺
1	1	Facility Are	Type of Over	NAC (m ³)	NAC (m ³) Process NAC (m ³)	Exhaust Loss [m ³ /year] Exhaust Loss	Shell Loss [m ³ /year] Shell (Shell Area x Loss Factor X ΔT)	Material Handling Loss [m ³ /year] Material Handling Loss (2-3% of toal as	Total	Product energy consumpt ion [m ³ /year] Product energy consumpt	Misc Consump tion [m ³ /year] Misc Consump		Total Oven Consumo	Savings from Savings from operating ventilatio n	GHG Index	Savings Perc Savings Percentage	Percentage Percentage consumed	Percentage consumed by Oven over	y Oven	NAC			Exhaust	Shell	Material Handling	Product energy consumpt	Misc	
2 Cor	mpany II	Facility Ar	Type of Over	(m³)	Process	[m³/year]	[m³/year]	per KLLC	Losses	ion	tion	Total Aggr	tion	(m³/year)	GHG Index	of total	by Oven	process		Intensity		Company	Loss	Loss	Loss	ion	tion	
3 AA	AL	66142 98370	00	58490	7 465608	57857	24900	3606	86363	23143	10678	109506	120184	21504	1.91E-03 8.67E-04	25.81%	17.89%	20.55%				AAAL	57857	24900	0 3606 2 3580	23143	10678	
5 AA	CF	46786	DO	43738	403590	42699	8323	2550	53572	24196	7233	77767	85000	14983	1.22E-03	21.06%	17.63%	19.43%				AACF	42699	832	3 2550	20055	7233	
6 AA	MP	67604	DO	51402	345588	49989	26753	3870	80612	30240	18148	110852	129000	25061	1.26E-03	37.33%	19.43%	5 25.10%				AAMP	49989	2675	3 3870	30240	18148	
7 AA	ACT	10327	DO	16168	2 134316	11664	6233	1277	19173	14774	8617	33948	42565	2384	8.46E-04	31.69%	5.60%	6 26.33%				AAACT	11664	623	3 1277	7 14774	8617	
8 AA	SPEC	60713	DO	369364	1 76736	17754	10485	1185	29424	9183	893	38607	39500	4512	2.29E-03	51.48%	11.42%	5 10.69%				AASPEC	17754	1048	5 1185	9183	893	
9 AA	WIL	110270	DO	29880	9 187836	26494	14049	2047	42590	13083	12570	55673	68243	9978	2.05E-03	36.33%	14.62%	22.84%				AAWIL	26494	14049	9 2047	/ 13083	12570	
10 D-7	25	230453 213668	DO	130612	190896 L 448308	42657	12034	3634	64262	20390	30952	90182	121134	14811	1.2/E-03 1.84E-03	27.02%	25.23%	9.27%				D-78 D-225	42657	12034	1 3634	20390 4 25920	30952	
12		66140	20	50400					00000	10	01/	100505	120104	24504	1.015.03	25.01%	17.00%	20.55%										
14 AA	RN	98370	00	36397	251124	40	18	3%	63036	24	23%	91929	119317	17547	8.67E-04	47.51%	14.71%	32,78%										
15 AA	CF	46786	DO	43738	403590	50	10	3%	53572	28	9%	77767	85000	14983	1.22E-03	21.06%	17.63%	19.43%										
16 AAI	MP	67604	DO	51402	345588	39	21	3%	80612	23	14%	110852	129000	25061	1.26E-03	37.33%	19.43%	5 25.10%										
17 AA	ACT	10327	DO	16168	2 134316	27	15	3%	19173	35	20%	33948	42565	2384	8.46E-04	31.69%	5.60%	26.33%										
18 AA	SPEC	60713	DO	369364	1 76736	45	27	3%	29424	23	2%	38607	39500	4512	2.29E-03	51.48%	11.42%	10.69%										
19 AA	WIL	110270	DO	29880	9 187836	39	21	3%	42590	19	18%	55673	68243	9978	2.05E-03	36.33%	14.62%	22.84%										
20 0-7	8	230453	00	95190	/ 190896	39	20	3%	36735	35	3%	57125	58714	14811	1.27E-03	30.76%	25.23%	6.17%										
21 D-2 22	25	213668	DO	130612	448308	35	15	3%	64262	21	26%	90182	121134	17557	1.84E-03	27.02%	14.49%	9.27%										
22																												-
	•	Data	Input In	nput she	et Res	ult Sheet	Over	n Analysis	-1 Sh	eet10	Bake Ov	en DO	Oven	Cure Ov	ren Ov	en A 🤆	•											Þ
READY	H	_		_	_	_	_	_	_	_	_	_		_	_		_	AVERAGE:	72573.73	05 COUN	JT: 162 SL	JM: 104506	17.56				+	83%
	6	3							0		XI	w											· •		• 10 4		i 10:56 2015-(PM 08-13

Appendix E

1. Summary result of cure ovens

X ∎ FIL	E H	IOME INSER	T PAGE L	AYOUT	FORMUL	AS DA	TA REV	IEW V	iew d	EVELOPEF	{		Excel-Pro	oject - Exce	èl										Md Mani	? 🛧	– ♂ ×
Paste	Cut Co For Clipboa	t C py * I rmat Painter I	alibri 3 I ∐ -	• 11	• A A • <u>A</u> •	= =	■ & • = €= + Aiç	P Wra Me	ap Text rge & Cen	ter + \$	eneral - % Numb	• 0 .00 .00 • 0 er 5	Condit Format	≢ ional Form ting * Tal	nat as Ne	ormal eutral	Bad Calcu Styles	ulation	Good	k Cell	*	Insert Del	lete Forma	∑ Auto Fill • at Clea	oSum * * ar* F Editir	AT I	d & ect *
A13	יי כ	∼ar÷ ⊐∃:⊠	√ f	r AAA	d																						^
			÷ .,																								
4	A	B C	D	E	F	G	Н	1	J	К	L	М	N	0	Р	Q	R	S	T	U	V	W	Х	Y	Z	AA	AB
			NAC	NAC (m ³)	Exhaust Loss	Shell Loss	Material Handling Loss		energy consumpt ion	Misc Consump tion																	
1	F	acility An Type o	fOv (m³)	Process	[m³/year]	[m³/year]	[m³/year]		[m³/year]	[m³/year]			Savings fro	GHG Index	Savings Pe	Percentage	consumed b	y Oven									
					Evhaurt	Shell (Shell Area x Loss	Material Handling Loss		Product			Total	Savings from operating		Savings	Percentag	Percentage consumed					E-h-u-t	ch all	-	Product		90 80 70 60
			NAC	NAC (m ³)	Loss	ΔT)	toal as	Total	energy consumpt	Misc Consump		Oven Consump	n		Percenta ge of	e consumed	over		NAC Energy			Exhaust Loss	Loss	Handling	energy consumpt	Misc	50
2 Co	ompany F	acility Ar Type o	fO∖(m³)	Process	[m ³ /year]	[m ³ /year]	per KLLC	Losses	ion	tion	Total Aggr	tion	(m ³ /year)	GHG Index	total	by Oven	process		Intensity		Company			LOSS	ion .	tion	40
3 A/	AAL	66142 Cure	584907	465608	73826	28303	3908	106037	22371	1867	128408	130275	28644	1.69E-03	27.98%	21.99%	22.27%		9		AAAL	73826	28303	3908	22371	1867	20
5 A/	ADIN	46786 Cure	437383	403590	71000	2/1/5	3934	95820	20027	2392	128742	131134	19840	2.03E-03	29.49%	19.75%	27.21%		9		AABN	71000	2/1/5	3934	2002/	2392	10
6 A/	AMP	67604 Cure	514025	345588	3 74983	37886	4785	117654	27216	14639	144870	159509	7678	1.90E-03	46.16%	4.81%	31.03%		8		AAMP	74983	37886	4785	27216	14639	
7 AJ	AACT	10327 Cure	161682	134316	5 21662	10607	1734	34003	13719	10087	47722	57809	4428	1.57E-03	43.04%	7.66%	35.75%	2 Oven	16		AAACT	21662	10607	1734	13719	10087	
8 A/	ASPEC	60713 Cure	369364	76736	5 16123	11434	1110	28667	8146	187	36813	37000	1739	2.08E-03	48.22%	4.70%	10.02%		6		AASPEC	16123	11434	1110	8146	187	
9 A/	AWIL 78	230453 Cure	298809	18/836	5 0054	25234	3012	84900 64597	12590	2904	97490	90361	31403	4.39E-03 2.37E-03	53.45% 47.34%	18.44%	33.00%		3		AAWIL D.78	42768	25234	3012	12590	2904	
11 D-	225	213668 Cure	1306121	448308	8 81048	28800	4224	114072	24624	2108	138696	140804	33359	3.49E-03	31.41%	23.69%	10.78%		6		D-225	81048	28800	4224	24624	2108	
12																											
13 A/	AAL	66142 Cure 98370 Cure	584907	465608	57	22	3%	106037	17	1%	128408	130275	28644	1.69E-03	27.98%	21.99%	22.27%										
15 AJ	ACF	46786 Cure	437383	403590) 60	18	3%	95820	20	1%	118224	119000	19840	2.03E-03	29.49%	16.67%	27.21%										
16 A	AMP	67604 Cure	514025	345588	3 47	24	3%	117654	17	9%	144870	159509	7678	1.90E-03	46.16%	4.81%	31.03%										
17 A/	AACT	10327 Cure	161682	134316	i 37	18	3%	34003	24	17%	47722	57809	4428	1.57E-03	43.04%	7.66%	35.75%										
18 A/	ASPEC	60713 Cure	369364	76736	5 44	31	3%	28667	22	1%	36813	37000	1739	2.08E-03	48.22%	4.70%	10.02%										
19 A/	AWIL 70	110270 Cure	298809	187836	56	25	3%	84900	13	3%	97490	100394	18512	4.39E-03	53.45%	18.44%	33.60%										
20 0-	225	230453 Cure 213668 Cure	1306121	190896	4/	21	3%	0459/	17	1%	138696	140804	31403	2.37E-03 3.49E-03	47.34%	34./5%	9.49%										
22		22000 0010	1500121			20	3/8	224012	1/	±/0	100070	240004	55333	3.472.03	VA-12/0	25.037	10.10/0										
23		Data las 1	I Internet 1		Danulk Cl		an And		Ch	Dele		00.00	- C-		0	0											
	•	Data Input	Imput s	neet	kesult Shi	eet O	en Analy	SIS-1	Sheet10	Ваке	oven	DO Oven	Cure	oven	Oven A	(+) :	•										Þ
READ	/ 🔛																AVE	ERAGE: 77	830.3322	COUNT: 1	62 SUM:	11207567.8	4 🖽			1.	
E	l	۱				–		0		X		v]	-				:							1 P il	i 🖌 🌘	ENG US a	10:57 PM 2015-08-13

Appendix F

Utility bill collected during energy audit

1. AAAL

2. AAGF

X ∎ FILE		HOME	INSE	RT PA	GE LAY	TUC	FORMUL	AS DATA	REVI	EW	VIEW	DEVELO	PER		AA	GF CON	IPANY -	Excel												Md P	? Maniruzza	🖭 🗕 ıman Aka	8 X
Paste	X Ci Ilin Ci ≪ Fo	ut opy * ormat Pa	ainter	Calibri B I	• ⊒ • ⊟	11 •	ĂĂ	= = =	89- €≣ #≣	₽w EM	rap Text erge & 0	t Center *	Genera \$ - 9	1 %	v 00. 0.0 0.€ 00.	Condit Format	≓ ional Fo ting * 1	ormat as Table *	Normal Neutral		Bad	ulation	G	ood heck Cell		· ↓ ↓ Ins	ert Dek	ete Forma	j ΣAu ∎ Fir	utoSum II * iear *	Sort 8	Find &	
	Clipbo	ard	5		Font		5		Alig	nment		5	1	lumber	5						Styles						Cel	ls		E	diting		^
9.2	• · ·	2 × 4	÷÷																														
046		w	1 2	$\langle \checkmark$	f_x	=(B40)*36)/3																										^
													_		_																		
1	F	G	н	1	J	К	L	M	N	0	P	a	В	5	T	U	v	W	×	Y	2	AA	AB	AC	AD	AE	AF	Als	AH	A	AJ	AK	AL
2 2 JAN		ED	MAD	ADDII	MAY	INC	.112	ALIG	CED (TT		DEC	ANI	CED	MAD	ADDI	MAY	UNE		UG.	CED	OCT	NEW	DEC	IAN	EED	MAD	ADDI	MAY	LINE		ALIG	
4	3714	12080	16126	6868	3456	11001	5317	3574	11009	8216	14020	8795	3206	13946	15499	10914	5626	5 9226	1782	5347	9851	2821	13004	13437	4060	15062	10349	6912	9161	4505	2027	11397	
5	4478	13705	14574	2462	4105	9005	1709	6079	10547	8694 11402	12299	11085	6279	13006	16410	8692	9246	9225	1774	11104	6931	1 8293	10667	9636	5878	12989	8275	10655	9237	2593 4193	6067 11298	7218	
7	15462	12491	13935	2834	6065	8227	3878	11539	7095	10846	10720	7574	13670	10298	11367	15052	8020	2291	11158	10748	2615	5 11911	5216	8445	15781	7689	8499	9834	5457	6264	9781	3968	
9	15112 15289	10580 6773	8593	9351	7035	4336	9010 13474	11677	3010	10394 9808	11671 7811	8550 15021	15096 14870	9164 9111	7304	15078 14247	4300	0 4604 5 9855	11106	3218 934	9326	10179	5731	12116	13240 8155	10163	9729	5628	4791	5326 6479	9405 3429	4435	
10	15247	8793	7166	8379	12664	10161	8464	3472	12060	12089	8121	14270	9822	15119	11974	13410	2945	9755	10276	3869	11504	4861	12218	12184	6532	15789	9369	5656	10374	6409	2775	10678	
11	7608	13772 16244	10513	11755	13147	12099	7511	5945 10574	11012	8232	13433 1437	15411	9473	17385	12837	10199	4592	2 7559	4487	10554	11209	8 5129 1 2890	12239	11345	11965	15271	8608	6488 12270	12062	3719	5319	11411	
13	9043	13760	10790	3226	12788	9253	3076	10688	7924	3431	12367	9396	16359	16793	12458	6964	4280	3902	4523	8918	2007	8448	8399	8578	15612	8958	6911	1 12550	12420	4700	12759	3153	
14	15632	10234	958	4812	7312	7053	5913	11071	6590	9170	14848	7971	16634	8831	9551	13238	4280	2085	10621	5700	6913	12077	5838	8991	14815	7561	7848	12887	7427	10365	10187	2635	
16	16047	8814	4866	12749	5299	3819	10335	6410	8173	12023	8662	13526	14726	10154	9293	12358	4280	10942	12351	1701	9601	1 10993	8707	14484	10313	15558	13570	6616	5309	11836	3045	10551	
17	14982	7236	8219	12911	8138	8317	10386	2606	9715	13245	9480	14928	11700	16842	14720	0	9584	11193	11614	2459	11315	9596	13322	13340	10421	16221	13009	6295 E496	6086	9397 E391	1960	11335	
19	4657	15315	14284	7943	7918	6333	6192	7252	9436	3400	12380	12666	11316	15412	0	5465	4088	8549	4386	8670	7912	7968	12459	8674	13109	14574	7025	9057	8597	3666	11439	9563	
20	6081	14655	9337	3817	7516	7971	4328	10278	7643	7490	12437	11069	13433	13391	13141	7966	2405	3087	5839	9922	7881	1 13115	8827	6142	12667	7596	6981	1 10896	8653	4973	9126	4101	
22	11525	10094	7485	10213	3646	1923	10727	10147	8301	10511	8933	10134	12629	6148	9730	13929	12290	5267	8995	5756	12674	11897	4935	12212	13367	4844	11655	5725	3727	7502	9906	6179	
23	11522	8568	5419	9434	2607	4818	10899	9329	7033	11904	7275	11869	11987	6325	8143	13351	11942	11217	6393	4331	11274	10864	7369	10932	7288	6521	11634	2638	2635	7849	3942	12500	
25	8185	15012	13157	8588	8467	10260	8991	6932	8794	9687	8102	10404	8926	13247	12220	3621		11469	3271	11022	9935	8534	11212	8455	8270	13516	7041	1 5407	11268	4090	5789	11746	
26	4935	16588	14141	3922	10169	10778	6814	10739	8937	7873	12997	6717	13587	12442	12253	2906		7883	1745	11520	8196	7074	9560	5834	15004	12150	4149	14126	11614	2759	10163	9181	
28	13584	15557	14079	4019	4754	6202	2040	11/32	1916	12631	13195	4575	16458	9274	10868	10164		2940	12483	10715	6390	12843	6472	4654	15733	8568	6551	1 12594	3689	11474	11558	2796	
29	15959	10816	12019	6668	2184	2180	9532	11184	3714	12659	13377	4317	15513	7799	6491	10246		4355	11666	6709	9751	1 13176	4071	4463	12956	7829	11707	11291	1556	11145	11109	6520	
30	15575	9291	7759	6623	4809	443/ 7767	9871	6274 3895	96/7	9408	9628	4183	16393	15616	9805	9790		8864	10348	7061	10544	7472	9219	8031	5914	11/51	12805	5 7950	10583	9705	2066	10181	
32	9489		12959	6280		8256	9979	8148	9405	10484	9887	4592	6562		14613	3803		9012	4725	10782	7931	3276	14812	5138	8831	11051	12040	6839	11798	2532	5861	9577	
33	6642 7042		13657	6542		6667	2691	10664	11/80	8311	9826	3705	8/90		14065	3075		4424	4554	10432	5132	13307	13610	1964	16238		6720	3626	100.96	1993	10776		
35																												_					
36 3	33177	329376	334443	216528	203494	221674	229167	266540	245621	302803	338379	287402	380095	329163	354878	268380	127586	214712	218275	234223	261463	293431	284636	276351	352621	325154	284489	253083	247223	193539	234931 218269.3	226338	
38	2010	-		1000		115						050	2011			100		115			050			000	2012			1000					
39 JAN	F	AA	MAH GF Cor	APHIL I	Sumr	JUNE mer Mo	nths	Regenssion	Model	Rei	nuv	n Analysi	an s Actua	FEB al Bill	MAR	APHIL	MAY	JUNE	JULY	UG :	SEP	ocr	NUV	DEC	JAN	FEB	MAR	APHIL	MAY .	JUNE	JULY	AUG	
DEADY		-	5. 601	-p	a di in				Juci	The state	9 33101		- retur		•			_	_	1									B	n – 1			- TOY
READY			-																													C	10%
	6	e		i i	1					9			w]	X			1											塑 ^ :	a № 1	∎ ⊿	US EN	G 12: 5 2015	51 AM 5-08-15

3. AASN

4. AACF

5. AAMP

6. AABN

7. AASPEC

8. AAWIL

X ∎ FiL	E HOME INSERT PAG	E LAYOUT	FORMULAS	DATA RE	VIEW VIEV	V DEVELO	PER	Wils	on Display - Excel								? Md Maniruz	E -	kan - 📑	×
Pasto V S18	Calibri B Copy - S Format Painter Cipboard S Corr & S S Corr &			• • • • = = • • • • = = • • • • •	B Wrap	Text 2 & Center * 12	General \$ - % • Numbe	* 0.00 * 0.00 r 5	onditional Format as prmatting * Table *	Normal Neutral	Bad Call Styles	l	Good Check Cell		rsert Delete F	∑ A ↓ Fi ormat	utoSum * A II * Z lear * Filb Editing	t & Find & er * Select	8x t *	^
	A	В	С	D	E	F	G	н	1		J	К	L	М	N	0	Р	0		
1		lan	Feb	Mar	Apr	May	Jun	Jul	Aug		Sen	Oct	Nov	Dec						П
2	Consumption Year-2011			38696	32390	19272	17113	18269		15144	18532	11875	14865	29209						
3	Consumption Year-2012	29968	36707	36560	21475	15963	13912	10906		12595	14833	17442	24008	28869						
4	Consumption Year-2013	24926	46025	38999	36724	22025	22645	7340		16019	17688	18232	24376	33812						
5	Consumption Year-2014	30158	55370																	
6	Average Consumption	28350.7	46034	38085	30196.3	19086.7	17890	12171.7		14586	17017.7	15849.7	21083	30630						
7																				
8																				
9		2011	2012	2013	2014						Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	1
10	Jan		29968	24926	30158				Monthly consump	otion			38696	32390	19272	17113	18269	1514	44	
11	Feb		36707	46025	55370				Process		14883	14883	14883	14883	14883	14883	14883	148	83	
12	Mar	38696	36560	38999					Seasonal Load		0	0	23813	17507	4389	2230	3386	2	61	
13	Apr	32390	21475	36724																
14	May	19272	15963	22025																
15	Jun	17113	13912	22645										Proces	s Load	178596				
16	Jul	18269	10906	7340										Season	al Load	118336				
17	Aug	15144	12595	16019	14882.6									То	tal	296932				
18	Sep	18532	14833	17688																
19	Oct	11875	17442	18232																
20	Nov	14865	24008	24376																
21	Dec	29209	28869	33812																
22																				
23																				Ŧ
4	Wilson Display Con	npany Reg	gression Mo	del Rege	rssion Mode	Actual Bill	+				1								Þ	
READ	Y 🛍																	1		
	l 🥭 📋 🖻			_	9	$\overline{\mathbf{O}}$	w] x					6				- 🖷 Pr 1	1 🔟 🌜	NG 1: US 201	:00 AM 15-08-1	5

9. D-78

10. D-225

FILE HOME INSER	T PAGE	E LAYOUT	FORMULAS DATA	REVIEW	r VIE	W DE	VELOPER			Deco 225	- Excel												Mc	? Maniruzi	📧 🗕 zaman Ak	₽ X an -
A Cut Paste Clipboard 5	Calibri B I <u>U</u>	• 11 • ⊞ • Font		≫ - EE #E Alignm	Wrap	o Text je & Centi	Gen s	eral • % • Number	v 00 0.0 .00 0.0	Condition Formatting	al Format g * Table	Norras Neu	mal tral	Bac Cal Styles	d culation	Good Check	Cell	- + V	Linsert v	Delet	te Form	Σ ∎at ℓ	AutoSur Fill * Clear *	m ~ A Z Sort Filte Editing	A Find &	
D13 · · · · · ·	 ✓ 	fx R T	eference emp																							^
A	В	С	D		E	F	G	н	1.1	J	K	L	м	Ν	0	Р	Q	R		s	Т		U	V	w	X 🔺
1	Jan	Feb	Mar	Apr	M	lay J	un Ji	ul I	Aug S	iep (Oct I	Nov	Dec			Temperatu	lan	Feb	Ma	r	Apr	Ma	()	in .	Jul	Aug
2 Consumption Year-2011			14	3459 (57662	44929	16957	12563	14775	18474	28749	76291	152954			2011				31		44	57	66	76	
3 Consumption Year-2012	230274	196303	9	8710	76760	31963	18594	8342	13591	23926	69419	163302	136293			2012		29	31	44		45	62	69	75	
4 Consumption Year-2013	177258	180683	18	3932 1	80122	87070	70162	58095	63361	71068	102767	187918	225099			2013	-	28	24	32		43	59	61	72	
5 Consumption Year-2014	293014	252606					25.000	26.000	00.575	27.022	66.070					2014		17	17	20			50		74	
7 Average consumption	255,515	209,804	142	,054 9	1,515	54,054	55,256	20,555	50,576	57,625	00,978	142,504	1/1,449			Average 1		25	24	30		30	31	30	74	
8																HDD Mode	ling (di	fferent re	of Temp) 31		30	51	50	51	
9																55	9	15	867	527		330	0	0	0	
10																										
11																						R	egre	sion I	Nodel	ling
12													R ² Va	lue									CPIC:		nouci	ь
13			Reference Temp	R2 \	/alue					0.005										250,000	1			v = 196.95	× ± 37079	
14				52	0.972					0.985										100 000				R ² = 0.	9793	
15				54 0	.9783					0.98					\wedge				- '	200,000						
16				55 0	9793					0.975					/ \					150,000	-				~	
18				58 0	9747					0.97	Vertical	(Value) A	xis Major G	iridlines										-		
19				60 0	9703					0.965						\			1	100,000	-		-			
20				62 0	.9676					0.96						\							_			
21				64 0	.9634					0.955						\				50,000	-					
22				66	0.957					0.95						1				~	T					
23				68 0	.9504					0.945							_			0	0	20	0	400	600	
24										0	10	20	30	40	50 60	70	80				-		-			
25																										
20									196.95		37020															
28 Reference Temp(oF)	55	R2 Value	0.	9812					1.50.55		37023															
29 HDD at Ref Temp(550F)	945	867		527	330	0	0	0	0	0	130	472	781													
30 Actual Consumption(m3)	223205	207871	14	0822 10	2023	37029	37029	37029	37029	37029	62590	130029	190805													
31 30 Years Temp Data	22	23		32	44	56	65	71	69	61	49	39	28													
32 Day of the month	31	28		31	30	31	30	31	31	30	31	30	31													
33 Normalized HDD	1018	889	errion Model Pearse	706	320	0 Ual Bill	0	0	0	0	187	489	830													T
 Deco 225 C 	lompany	Regr	Regres	SIGH MO	Jei Acti	uai bill	(+)							4												•
READY 🛗															AVERA	GE: 30.23458		NT: 22	SUM: 60-	4.6917			ฃ -			
🛋 🩋 🚞	1				9		w	X													•	•	10 🔺	I 🕼 I	NG 1: US 201	02 AM 15-08-15

11. AAACT

Appendix G

Price of Variable Frequency Drive

	My Account Order Histo	ry Lists Special Order Guotes				Sign Is Register Now	
l	GRAING		Gener	I Catalog Find /	Sign Up for Email Branch 1 Services	Feedback Help Español - Solutions - Worldwide	
	All Products ~	Enter keyword, item, mo	del or repair part number.	Searc	h Bulk Ord	er Pad 🗸 🐂 Cart (0)	
	Motors \ Motor Supplie View Product Family	s 1 Variable Frequency Drives 1	Variable Frequency Drive,50 H	IP,400-480V		Pret Ereal	Customers Also Viewed
	TRIPLEGUARD	-0	Variable Free SCHNEIDER ELE	CTRIC	re, 50 HP, 40	0-480V	
		1	\$4,907.00/each	Auto Recorder 1 Auto Auto Recorder 1 Auto Auto Auto List	wwy 1 Harth • 0	determine ovallability. ZP Code Sarve	Variable Frequency Drive, 20 HP, 400 -480V Hern # 6MVC6 SCHNEIDER ELECTRIC Price \$2052.00
	A How can we imp	rove our Product Images?	日 Add Repair & Replac	ement Coverage for S first to write a review	529.00 each.		1 Add to Cart
	🔛 Compare		item # 6MVD0 Catalog Page # N/A	Mfr. Mode Shipping	# ATV212HD37N4 Weight 80.0 lbs.	UNSPSC # 26111603	
			Country of Origin China Note: Product availability is n complete your order. More	Country of Origin is su al-time updated and adju	gect to change. ated continuously. The produ	ct will be reserved for you when you	Prezer Pop, Assorted, PK150 Rem = 1UFK7 SOWINCHER
	Technical Spe	cs					Price \$63.45
	Rem	Variable Frequency Drive		Height	21.85*		1 Add to Cart
	Max. HP	50		Width	9.45*		
	Enclosure	Open IP20, Type 1 with fie conduit kit	id installed	Depth	9.61*		
				Control Type	Keypad or Logic Inp	et.	

Source: http://www.grainger.com/product/SCHNEIDER-ELECTRIC-Variable-Frequency-Drive-6MVD0

This price is changing based on negotiation and service.

1. Price of insulation

Source: http://www.alibaba.com/showroom/high-heat-oven-insulation.html

This price is changing based on quantity, port of shipment and tax rate.

Appendix H

2. Wages of Electrical License Technician

А	В	С	D	E
Description	Estimated Qty	Unit Price	Extended Price	
Licensed Electrician Regular Hours	1800	\$65.00	\$117,000.00	
Apprentice Regular Hours	350	\$34.97	\$12,239.50	
Qualified Equipment Operator				
Regular Hours	180	\$65.00	\$11,700.00	
Licensed Electrician Non-Regular				
Hours	100	\$130.00	\$13,000.00	
Apprentice Non-Regular Hours	50	\$53.54	\$2,677.00	
Qualified Equipment Operator Non-				
Regular Hours	20	\$98.35	\$1,967.00	
Licensed Electrician Statutory				
Holiday Hours	180	\$130.00	\$23,400.00	
Apprentice Statutory Holiday Hours	40	\$53.54	\$2,141.60	
Qualified Equipment Operator				
Statutory Holiday Hours	20	\$98.35	\$1,967.00	
Bucket Truck in Hours	280	\$50.00	\$14,000.00	
Articulating Boom in Days	3	\$300.00	\$900.00	
Scissor Lift Rental in Days	7	\$100.00	\$700.00	
Material	65000		\$74,750.00	
			\$276,442.10	
			\$307,310.00	

Source:

 Frame
 Radminer, Alle

 Team
 Rest, Hours

 Team
 Rest, Hours

 Subject:
 RE: Need reference

 Horse is a rate chart submitted by Kudiac Baird (our electrical contractor) in 2013.

 Aling Radmins, Marking Contractor

 Aling Radmins, Marking Contractor

 Restrate

 Contractor

 Restrate

 Contractor

 Restrate

 Contractor

 Product For the 2015 Pan Am/Parapan Am Games

This wage rate is an approximate which is subject to changes by experience and craftsmanship.

Appendix I

2. HST

Candian Sale	s Tax R	ates Cl	hart (As	s at April	1, 2013)
Posted on April 1, 2013 by Cynder	e Todgham Chernla	ĸ			
Canadian Sales Tax R: As at March 1, 2013	ates Chart				🖾 Email This 🛄 Print
Province/Territory	Provincial Sales Tax	GST/HST Rate	GST Included in PST Tax Base	Combined Rate	Comments Trackbacks Share Link
British Columbia	7%	5%	No	12%	
Alberta	Ni1	5%	N/A	5%	
Saskatchewan	5%	5%	No	10%	
Manitoba	7%	5%	No	12%	
Ontario	N/A	13%	N/A	13%	
Quebec	N/A	14.975%	N/A	14.975%	
New Brunswick	N/A	13%	N/A	13%	
Nova Scotia	N/A	15%	N/A	15%	
Newfoundland/Labrador	N/A	13%	N/A	13%	
Prince Edward Island	N/A	14%	No	14%	
Northwest Territories	Nil	5%	N/A	5%	
Yukon	Nil	5%	N/A	5%	
Nunavut	Nil	5%	N/A	5%	

Source: <u>http://www.thehstblog.com/2013/04/articles/gst-general-1/candian-sales-tax-rates-chart-as-at-april-1-2013/</u>

HST rate shows 13%, which is subject to change by Provincial and Federal Government' policy

1. Natural gas billing rate by Enbridge as a flat rate considered @0.25/m³

Α	В	С	D	E	F
Location:	City of Markham-> 92 00 00 03346 4-> 910010762233 [910010762233]				
Time:	27/07/2015 14:19	Commodity:	Natural Gas	Created By:	City of Markham
Year	Unit Cost (\$/CUBICM)				
2012	0.18				
2013	0.193				
2014	0.244				
2015YTD	0.337				

This rate changes little bit depending on usages and negotiation. This is an sample rate for exhibit.

Source: City of Markham, Sustainability Department.

Appendix J

Code for Calculating Tools

```
Imports Microsoft.Office.Core
Public Class MainForm
   Dim objExcel As New Excel.Application
    Public data(,) As String 'Global variable for storing data
    Private Sub SaveFileToolStripMenuItem_Click(sender As Object, e As EventArgs) Handles
SaveFileToolStripMenuItem.Click
        'Show the open file dialog box.
        If ofdSelectExcel.ShowDialog = Windows.Forms.DialogResult.OK Then
            'Load the excelfile into the excel window
            'Dim objExcel As New Excel.Application
            objExcel.Visible = True
            ' Show the name of the file in the form's caption.
            objExcel.Workbooks.Open(ofdSelectExcel.FileName)
            tbShowFileName.Text = ofdSelectExcel.FileName
        End If
   End Sub
    Private Sub btnQuit_Click(sender As Object, e As EventArgs) Handles btnQuit.Click
        Me.Close()
    End Sub
    Private Sub ExitToolStripMenuItem1 Click(sender As Object, e As EventArgs) Handles
ExitToolStripMenuItem1.Click
        Me.Close()
   End Sub
    Private Sub Button1_Click_1(sender As Object, e As EventArgs) Handles Button1.Click
        Dim oSheet As Excel.Worksheet
        Dim oSheet2 As Excel.Worksheet
        Dim oSheet3 As Excel.Worksheet
        Dim oSheet4 As Excel.Worksheet
        'Variable declaration
        'Dynamic array variable declaration
        Dim comName() As String
                                   'Company name
        'Dynamic Row and column
        Dim LastRow As Long
        Dim LastColumn As Long
        Dim r As Integer
        'Hide excel window during calculation
        objExcel.Visible = False
        'Show the status
        MsgBox("Wait until Excel is visible", vbOKOnly, "Status of execution")
        ' Get a new workbook.
        'oWB = oXL.Workbooks.Add
        oSheet = objExcel.ActiveSheet 'Data input
        'Find no of row and column entry
        LastRow = oSheet.Range("A1").CurrentRegion.Rows.Count
```

```
LastColumn = oSheet.Range("A1").CurrentRegion.Columns.Count()
        'Write Company names
        ReDim comName(0 To LastRow - 2) 'Dynamic allocation of cell based no. of company
entry
        'Assign company name into company variable
        For r = 0 To LastRow - 2 Step 1
            comName(r) = oSheet.Cells(2 + r, 1).Text 'Company name start @cell(2,1)
        Next r
        'Add primary calculation worksheet
        'oSheet2 = objExcel.Sheets.Add(After:=oSheet)
        ' oSheet2.Name = "test"
        'Variables for Next three(3) sheets
        oSheet2 = objExcel.Sheets(2) 'Primary calculation
        oSheet3 = objExcel.Sheets(3) 'Result sheet
        oSheet4 = objExcel.Sheets(4) 'Oven analysis-1
        'Write all Company Names
        For r = 0 To (LastRow - 2) Step 1
            oSheet2.Cells(4 + r, 1).Value = comName(r)
                                                          'Company name start @cell(2,1)
       Next r
        'Calculate all data for sheet2 (Primary calculation)
        For r = 0 To (LastRow - 2) Step 1
            oSheet2.Cells(4 + r, 2).Value = 2 * oSheet.Cells(2 + r, 9).Value *
oSheet.Cells(2 + r, 10).Value + 2 * oSheet.Cells(2 + r, 10).Value * oSheet.Cells(2 + r,
11).Value + 2 * oSheet.Cells(2 + r, 9).Value * oSheet.Cells(2 + r, 11).Value
            oSheet2.Cells(4 + r, 3).Value = oSheet.Cells(2 + r, 9).Value * oSheet.Cells(2
+ r, 10).Value * oSheet.Cells(2 + r, 11).Value
            oSheet2.Cells(4 + r, 4).Value = oSheet.Cells(2 + r, 16).Value *
oSheet.Cells(2 + r, 20).Value
            oSheet2.Cells(4 + r, 5).Value = oSheet.Cells(2 + r, 28).Value *
oSheet2.Cells(4 + r, 10).Value * 60 * oSheet.Cells(2 + r, 21).Value * oSheet2.Cells(4 +
r, 11).Value
            oSheet2.Cells(4 + r, 6).Value = oSheet2.Cells(4 + r, 5).Value /
oSheet.Cells(2 + r, 28).Value
            oSheet2.Cells(4 + r, 7).Value = oSheet.Cells(2 + r, 14).Value -
oSheet.Cells(2 + r, 13).Value
            oSheet2.Cells(4 + r, 8).Value = oSheet.Cells(2 + r, 20).Value /
oSheet.Cells(2 + r, 23).Value
            oSheet2.Cells(4 + r, 9).Value = Int(oSheet2.Cells(4 + r, 8).Value / 60 + 0.5)
            oSheet2.Cells(4 + r, 10).Value = oSheet2.Cells(4 + r, 9).Value *
oSheet.Cells(2 + r, 22).Value / oSheet.Cells(2 + r, 21).Value
            oSheet2.Cells(4 + r, 11).Value = oSheet.Cells(2 + r, 24).Value *
oSheet.Cells(2 + r, 25).Value * oSheet.Cells(2 + r, 26).Value * oSheet.Cells(2 + r,
27).Value
            oSheet2.Cells(4 + r, 12).Value = oSheet2.Cells(4 + r, 3).Value / 4
            oSheet2.Cells(4 + r, 13).Value = (oSheet.Cells(2 + r, 14).Value + 460) /
(oSheet.Cells(2 + r, 13).Value + 460)
            oSheet2.Cells(4 + r, 14).Value = (oSheet2.Cells(4 + r, 12).Value * 1.08 *
oSheet2.Cells(4 + r, 7).Value * oSheet2.Cells(4 + r, 11).Value) / 35000
            oSheet2.Cells(4 + r, 15).Value = oSheet.Cells(2 + r, 15).Value * 183
            oSheet2.Cells(4 + r, 16).Value = oSheet2.Cells(4 + r, 15).Value *
oSheet2.Cells(4 + r, 13).Value
            oSheet2.Cells(4 + r, 17).Value = oSheet2.Cells(4 + r, 12).Value /
```

```
oSheet2.Cells(4 + r, 13).Value
            oSheet2.Cells(4 + r, 18).Value = oSheet2.Cells(4 + r, 12).Value -
oSheet2.Cells(4 + r, 15).Value
            oSheet2.Cells(4 + r, 19).Value = (oSheet2.Cells(4 + r, 18).Value *
oSheet2.Cells(4 + r, 13).Value * 1.08 * oSheet2.Cells(4 + r, 7).Value * oSheet2.Cells(4 +
r, 11).Value) / 35000
       Next r
        'Calculate all data for sheet3 (Result sheet)
        For r = 0 To (LastRow - 2) Step 1
            oSheet3.Cells(6 + r, 3).Value = oSheet.Cells(2 + r, 17).Value *
oSheet2.Cells(4 + r, 10).Value * 60 * oSheet.Cells(2 + r, 21).Value
            oSheet3.Cells(6 + r, 4).Value = oSheet3.Cells(6 + r, 3).Value *
oSheet2.Cells(4 + r, 11).Value
            oSheet3.Cells(6 + r, 5).Value = 0
            oSheet3.Cells(6 + r, 6).Value = oSheet3.Cells(6 + r, 4).Value -
oSheet3.Cells(6 + r, 5).Value
            oSheet3.Cells(6 + r, 7).Value = oSheet.Cells(2 + r, 17).Value *
oSheet.Cells(2 + r, 18).Value * oSheet2.Cells(4 + r, 7).Value
            oSheet3.Cells(6 + r, 8).Value = oSheet2.Cells(4 + r, 16).Value
            oSheet3.Cells(6 + r, 9).Value = oSheet2.Cells(4 + r, 17).Value
            oSheet3.Cells(6 + r, 10).Value = oSheet3.Cells(6 + r, 9).Value -
oSheet3.Cells(6 + r, 8).Value
            oSheet3.Cells(6 + r, 11).Value = oSheet2.Cells(4 + r, 19).Value
            oSheet3.Cells(6 + r, 12).Value = oSheet2.Cells(4 + r, 14).Value
            oSheet3.Cells(6 + r, 13).Value = (oSheet2.Cells(4 + r, 2).Value *
oSheet.Cells(2 + r, 12).Value * oSheet2.Cells(4 + r, 7).Value * oSheet2.Cells(4 + r,
11).Value) / 35000
            oSheet3.Cells(6 + r, 14).Value = 0.03 * oSheet3.Cells(6 + r, 19).Value
            oSheet3.Cells(6 + r, 15).Value = oSheet3.Cells(6 + r, 12).Value +
oSheet3.Cells(6 + r, 13).Value + oSheet3.Cells(6 + r, 14).Value
            oSheet3.Cells(6 + r, 16).Value = (oSheet2.Cells(4 + r, 5).Value *
oSheet.Cells(2 + r, 29).Value * oSheet2.Cells(4 + r, 7).Value) / 35000
            oSheet3.Cells(6 + r, 17).Value = oSheet3.Cells(6 + r, 19).Value -
oSheet3.Cells(6 + r, 18).Value
            oSheet3.Cells(6 + r, 18).Value = oSheet3.Cells(6 + r, 15).Value +
oSheet3.Cells(6 + r, 16).Value
            oSheet3.Cells(6 + r, 19).Value = oSheet.Cells(2 + r, 30).Value
            oSheet3.Cells(6 + r, 20).Value = oSheet3.Cells(6 + r, 11).Value
            oSheet3.Cells(6 + r, 21).Value = (oSheet3.Cells(6 + r, 12).Value * 35000) /
1000000 * (14.6 / 0.1)
            oSheet3.Cells(6 + r, 22).Value = (oSheet3.Cells(6 + r, 19).Value /
oSheet.Cells(2 + r, 4).Value)
            oSheet3.Cells(6 + r, 23).Value = (oSheet3.Cells(6 + r, 20).Value /
oSheet3.Cells(6 + r, 19).Value)
       Next r
        'Calculate all data for sheet4 (Oven Analysis-1)
        For r = 0 To (LastRow - 2) Step 1
            oSheet4.Cells(5 + r, 3).Value = oSheet.Cells(2 + r, 3).Value
            oSheet4.Cells(5 + r, 4).Value = oSheet.Cells(2 + r, 4).Value
            oSheet4.Cells(5 + r, 5).Value = oSheet3.Cells(6 + r, 12).Value
            oSheet4.Cells(5 + r, 6).Value = oSheet3.Cells(6 + r, 13).Value
            oSheet4.Cells(5 + r, 7).Value = oSheet3.Cells(6 + r, 14).Value
            oSheet4.Cells(5 + r, 8).Value = oSheet4.Cells(5 + r, 5).Value +
oSheet4.Cells(5 + r, 6).Value + oSheet4.Cells(5 + r, 7).Value
            oSheet4.Cells(5 + r, 9).Value = oSheet3.Cells(6 + r, 16).Value
```

```
oSheet4.Cells(5 + r, 10).Value = oSheet3.Cells(6 + r, 17).Value
            oSheet4.Cells(5 + r, 11).Value = oSheet4.Cells(5 + r, 8).Value +
oSheet4.Cells(5 + r, 9).Value + oSheet4.Cells(5 + r, 10).Value
            oSheet4.Cells(5 + r, 12).Value = oSheet3.Cells(6 + r, 19).Value
            oSheet4.Cells(5 + r, 13).Value = oSheet3.Cells(6 + r, 20).Value
            oSheet4.Cells(5 + r, 14).Value = oSheet3.Cells(6 + r, 21).Value
            oSheet4.Cells(5 + r, 15).Value = (oSheet4.Cells(5 + r, 13).Value /
oSheet4.Cells(5 + r, 12).Value)
            oSheet4.Cells(5 + r, 16).Value = (oSheet4.Cells(5 + r, 12).Value /
oSheet4.Cells(5 + r, 3).Value)
       Next r
        'Show excel window again
        objExcel.Visible = True
        'End of the procedure
        End Sub
End Class
```

Appendix K

1. Input screen

X ∎ FI	Excel-MAScProject - Excel 7 E - 5 X HOME INSERT PAGE LAVOUT FORMULAS DATA REVIEW VIEW DEVELOPER																									
Past	te dipboa	nat Painter	Calibri B I <u>U</u> ~	• 11 ·	- A A - <u>A</u> -		≫~ €E #E Aligr	Wrap Wrap	Text & Center *	Gener \$ ~	al % > 號	Cond Forma	≢ tional Form tting * Tab	at as N	lormal leutral	Ba Ca Styles	d Iculation	Goo	od ack Cell	+ + V	Insert De	elete Forma	Σ Au ↓ Fil ◆ Cle	toSum * * ear* Edi	ATT I Sort & Fi Filter * Set	nd & lect •
	αρτοποία − του − πρητικών − του παρατικών − πρητικών − του του − αρτόδια (του) Ελούη (− τ μ δημ δημ δημ δημ δημ δημ δημ δημ δημ δη																									
E2	$E2 i \xrightarrow{\times} f_r 590871$																									
	D	E F	G	н	1	J	К	L	M N	Form	nula Bar P	Q	R	s	т	U	v	w	x	Y	z	AA	AB	AC	AD	AE 🔺
	AC (m ¹) Process	AC Seasonal (m ¹)	io of Oven Yne of Oven	ype of Production	engh(L-ft)	teight (H-ft)	feidth(W-ft)	hermal Loss Factor	arts inlet temperature $(T_{\mu}{}^{0}F)$	iven Temperature (Tp2 ⁴ F)	urner Cupacity (MMBtu)	arts Weichtfmass (h)	peelfic Heat apacity of Parts(CP) Bu/b ⁴ F]	tanger Mass(b)	roduction Rate per hr usume/given from pecification)	ouding Per Iook Space(Loading/h,)	arrier Spacing(ft)	arrier Hold no of Parts	hift Hours	o of Shift	o of working days	o of workings week in a year	arts weight (lb)	pecific Heat apacity (A(Btu/b°F)	otal Oven Consumption n ³ /year)	
2	2781456	590871	Z E	Food	104	10	13	0.25	70	400	3	4	\$ 0.28	±	5 450	0.5	1	1	8	3	Z 5	50	4	0.28	325000	
3	483924	62908	1 Bake	Food	100	10	12	0.25	70	400	3	4	1 0.28	1.5	5 300	0.5	1	1	8	3	6	52	4	0.28	355280	
4	465608	119880	1 DO	Finishing	100	10	10	0.25	70	370	3.5 1	2 1	5 0.12	3	3 600	2	3	2	10	1	5	50	15	0.12	120184	
5	465608	119880	1 CO		110	10	12	0.25	70	370	4.5 1	2 1	5 0.12	3	3 600	2	3	2	10	1	5	50	15	0.12	150275	
7	251124	112852	100	Finishing	80	10	12	0.25	65	350	2.5 1	8 1	8 0.12	3	3 450	2	3	2	8	2	5	51	18	0.12	171134	
8	403590	34185	100	Finishing	50	10	8	0.25	70	355	1.5 1	7 1	7 0.12	1	3 300	2	3	2	10.25	2	5	50	17	0.12	108000	
9	403590	34185	1 CO		60	10	12	0.25	70	355	3 1	7 1	7 0.12	3	3 300	2	3	2	10.25	2	5	50	17	0.12	163000	
10	345588	168437	1 DO	Finishing	60	10	6	0.25	70	370	1 1	4 1	4 0.12	3	3 350	2	3	2	8	3	5	50	14	0.12	129000	
11	345588	168437	1 00	Finishing	60	10	10	0.25	70	370	3 1	4 1	4 0.12		3 350	2	3	2	8	3	5	50	14	0.12	168509	
13	134316	27684	100	Finishing	40	10	12	0.25	70	390	2 1	8 1	3 0.12		2 380	0.5	1	1	9	1	5	50	18	0.12	42303	
14	76736	292628	1 DO	Finishing	70	10	6	0.25	69	380	1.5 1	2 1	2 0.12		2 360	0.5	1	1	8	1	5	50	12	0.12	39500	
15	76736	292628	1 CO		60	10	8	0.25	69	345	2 1	2 1	2 0.12	2	2 360	0.5	1	1	8	1	5	50	12	0.12	37000	
16	187836	110973	1 DO	Finishing	108	10	6	0.25	65	320	2.5 1	8 1	8 0.12	2	2 400	0.5	1	1	8	1	5	50	18	0.12	68243	
17	187836	110973	1 00	Tinishin a	120	10	12	0.25	65	320	6 1	8 1	8 0.12		2 400	0.5	1	1	8	1	5	50	18	0.12	100394	
19	190896	761011	1 00	Finishing	84	10	12	0.25	65	360	1.5 1	4 1	0.12		2 720	1	1	1	8	1	5	50	14	0.12	90361	
20	448308	857813	1 00	Finishing	96	10	8	0.25	65	365	3 1	8 1	3 0.12		2 700	1	1	1	8	1	5	50	18	0.12	121134	
21	448308	857813	1 CO		96	12	16	0.25	65	365	6 1	8 1	8 0.12	2	2 700	1	1	1	8	1	5	50	18	0.12	140804	
22																										-
-	•	Data Inpu	t Primary	y Calculati	on Re	suit Sheet	Over	n Analysis-	1 Bake (Oven	DO Oven	Cure O	/en She	II Loss	(+) :	4										Þ
READ																							8 2			+ 82%
E	6		ŧ					9		w]	X	-									I	- 1	i P• 1	1 4 4	ENG US	1:05 AM 2015-08-15

Appendix L

2. Input screen

FILE	HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW D	EVELOPER	Excel-MAScProjec	t - Excel				? 📧 — 🗗 🗡 Md Maniruzzaman Akan -					
Paste	Cut Times New Ro \cdot 11 \cdot A^{*} A^{*} $=$ $=$ \Rightarrow \Rightarrow \Rightarrow Wrap Text Copy \cdot Format Painter B I $U \cdot \bigcirc \cdot \bigcirc \cdot \bigcirc \cdot \bigcirc \cdot \bigcirc \cdot \bigcirc =$ $=$ $=$ \Rightarrow	Number tter ~ \$ ~ % *	v 00 00 5 Conditional I Formatting v	Format as Table -	Bad Calculation	Good · · · · · · · · · · · · · · · · · ·	Insert Delete Format	∑ AutoSum * A T International AutoSum * A T International AutoSum * A T International AutoSum * A T					
ۍ 🖬													
$P4 \qquad \bullet \qquad \vdots \qquad \boxed{\times \checkmark f_x} = 04^*M4$													
A	B C D E F G H I J K L M	N O	P Q	R S	T U	V W	X Y Z	AA AB AC AD					
AAAGF 5 AASN 6 AAAL	A more of the company	NEW CONTRACT OF A CONTRACT OF	Control of the second s	0 Piperine Control of									
7 8 AABN	2680 4800 8100 49572000 2754000 285 225 4 6 4080 1200 1.57	43057 275	424 778	926 51235									
9	3760 9600 8100 49572000 2754000 285 225 4 6 4080 2400 1.54	86114 641	988 1556	1760 97404									
10 AACF	1960 4000 5100 39206250 2306250 285 150 3 4 5125 1000 1.54	45071 275	422 650	726 50282									
11	2880 7200 5100 39206250 2306250 285 150 3 4 5125 1800 1.54	81127 549	844 1171	1251 86703									
12 AAMP	2640 3600 4900 44100000 3150000 360 175 3 4 6000 500 1.57	83314 549	860 958	951 82720									
14 AAACT	1400 2400 6840 15390000 855000 326 380 6 13 2250 600 1.62	13580 183	296 371	417 15244									
15	2000 4800 6840 15390000 855000 326 380 6 13 2250 1200 1.62	27160 366	591 743	834 30487									
16 AASPEC	2360 4200 4320 8640000 720000 311 360 6 12 2000 928 1.59	17811 275	436 584	654 19917									
18 AAWII	2520 4800 4520 8840000 720000 278 580 6 12 2000 950 1.52 3576 6480 7200 14400000 800000 255 400 7 13 2000 1620 1.49	25494 458	680 1090	1163 27180									
19	5520 14400 7200 14400000 800000 255 400 7 13 2000 3600 1.49	56654 1098	1631 2423	2502 58499									
20 D-78	2808 5040 10080 20160000 1440000 295 720 12 12 2000 1260 1.56	22939 183	286 807	1077 30625									
21	3936 10080 10080 20160000 1440000 295 720 12 12 2000 2520 1.56	45878 275	429 1613	2246 63852									
22 D-225	4032 9216 12600 25200000 1400000 300 700 12 12 2000 2304 1.57	42657 549	863 1466	1755 51060									
23	5700 18432 12000 25200000 1400000 300 700 12 12 2000 4608 1.57	85314 1098	1725 2932	3510 102120									
24	Data Japant Drimany Calculation Desult Sheet Oyen Analysis 1 R	aka Ouan DO Ou		Shall Lass									
$ \rightarrow $	Data input Frimary Calculation Result Sheet Oven Analysis-1 E	DO OW	cure Oven	stiell ross (+) : (•					
READY 🔛								▦ ᅖ ー──-+ 82%					
	Ә 🧮 🖬 🏫 📴 🚍 🗖 🙋							ENG 1:06 AM US 2015-08-15					

Appendix M

1. Result screen

FILE HO	OME INSERT PAGE	E LAYOUT FO	RMULAS DA	ATA REVIEW	VIEW	DEVELOPER	Excel	MAScProject	- Excel								? Id Maniruzz	困 — zaman Aka	an -
Paste Clipboar	Times New mat Painter d 5	Ro • 12 • 7 • - • - • 2 Font		₩ • E	Wrap Text	nter - \$ - 1	fic * % * 50 50 50 50 Fi Number 5	onditional Fe ormatting * 1	ormat as Table *	al Bad Calculation Styles	Good	k Cell	* * *	Insert Dele	te Format	∑ AutoS ↓ Fill *	um AZ Sort Filter Editing	& Find & r * Select *	×
□ 5 . ⊄																			
U6	$J_{6} \rightarrow f_{r} = (\text{Result Sheet'} L_{6}^{*3} 3000/1000000)^{*} (14.6/0.1)$																		
A	N	0	Р	Q	R	S	т	U	v	w	х	Y	Z	AA	AB	AC	AD	AE	AF 🔺
4 Name of the Company	Material Handling Loss (2-3% of toal as per KLLC (m ³ year)	Energy Loss From Oven Il Losses (m ³ /y	Product energy consumption	Misc Consumption (m ³ /year)	Total Aggregated	Total Oven Consumption (m ³ /year)	Savings from operating ventilation (m ³ /year)	GHG Emission (kg)	Percentage consumed by Oven over NAC Process	Savings Percentage of total Oven Consumption									
6 AAGF	9750	287595	28512	8893	316107	325000	280662	1.06E+06	11.68%	86.369	6 3 Oven								
7 AASN	10658	321303	23722	10255	345025	355280	303250	1.17E+06	73.42%	85.36%	6								
8 AAAL	3000	2 102094	34/14	7467	142808	120184	0/393	2.96E+05 3.90E+05	25.81%	50.07%	6								
10 AARN	4308	A0222	48430	1982	117335	119317	51235	2 20E+05	47 51%	42.04%	6								
11	5134	122477	48439	218	170916	171134	97404	4.40E+05	68.15%	56.92%	6								
12 AACE	3240	68759	38310	930	107070	108000	50282	2 30E+05	26 76%	46 569	6								
13	4890	116064	38310	8625	154375	163000	86703	4.15E+05	40.39%	53.199	6								
14 AAMP	3870	80087	45360	3553	125447	129000	62366	2.55E+05	37.33%	48.35%	6								
15	5055	5 121798	45360	1351	167158	168509	82720	4.26E+05	48.76%	49.09%	6								
16 AAACT	1277	22192	17202	3171	39394	42565	15244	6.94E+04	31.69%	35.819	6								
17	1734	39373	17202	1234	56575	57809	30487	1.39E+05	43.04%	52.749	6								
18 AASPEC	1185	5 29481	9213	806	38694	39500	19917	9.10E+04	51.48%	50.42%	6								
19	1110	26439	8176	2385	34615	37000	15137	8.27E+04	48.22%	40.91%	6								
20 AAWIL	2047	40568	12590	15085	53158	68243	27180	1.30E+05	36.33%	39.839	ó								
21	3012	2 79774	12590	8030	92364	100394	58499	2.90E+05	53.45%	58.27%	6								
22 D-78	1761	36534	20390	1789	56925	58714	30625	1.17E+05	30.76%	52.16%	6								
23	2711	65177	20390	4794	85567	90361	63852	2.34E+05	47.34%	70.66%	6								
24 D225	3634	63571	25920	31643	89491	121134	51060	2.18E+05	27.02%	42.159	0								
25	4224	114224	25920	660	140144	140804	102120	4.36E+05	31.41%	72.53%	0								
26																			
21	Data Input	n. Calculation	Decult Ch		nalusia 1	Pales Ouer	DO Ouen	- Ouen 5	hall Loss										¥
< >	Data Input Prima	ry calculation	Result She	Oven A	uralysis- i	bake Oven	Do Oven Cui	e Oven S	inen Loss (+ •									
																			+ 82%
1	۱ 📔	•	🧧 💻		🧿 🚺	s with	X									P• fill.	🛋 🌜 🖁	NG 1:0 JS 201	06 AM 5-08-15

Appendix N

Summary result

Appendix O

Calculated data for analyis

Company Name	Type of Company	Hour of Operation	No of Working Weeks in a Year	Shift Per Day	Yearly Operation Hour	Total Consumption (m ³)	Yearly NAC Process (m ³)	Facility Area (ft ²)	Energy Consumption Per Hour (m ³)	Consumption Per Unit Area (m ³)	Percentile Natural Gas consumption of productive hours
AAGF	Food	24/5	50	3	6000	3372327	2781456	188290	464	18	82%
AASN	Food	24/6	52	3	7488	546832	483924	188045	65	3	88%
AASU	Food	18/6	52	2	5616	671714	558858	60,000	100	11	83%
AAWR*	Food	24/5	50	3	6000	1057007	902748	186026	150	6	85%
AAKIK-10	Packaging	24/6	52	3	6000	1008872	571752	140438	95	7	57%
AAKIK-13	Packaging	24/7*	50	3	8400	734063	485700	83367	58	9	66%
AAAL	Finishing	05-Oct	50	1	2500	584907	465608	66142	186	9	80%
AACF	Finishing	20.5/5	50	2	5125	437383	403590	46786	79	9	92%
AAMP	Finishing	24/5	50	3	6000	514025	345588	67604	58	8	67%
AABN	Finishing	16/5	51	2	4000	363976	251124	10327	63	35	69%
AASPEC	Finishing	05-Dec	50	1	3000	369364	76736	71722	26	5	21%
AAWIL	Finishing	05-Aug	50	1	2000	298809	187836	110270	94	3	63%
AADEC-78	Finishing	05-Aug	50	1	2000	951907	190896	230453	95	4	20%
AADEC-22	Finishing	05-Aug	50	1	2000	1306121	448308	213668	224	6	34%
AAACT	Finishing	05-Sep	50	1	2250	161682	134316	10327	60	16	83%

Serial Number	Company Name	Type of Company	Hour of Operation	Yearly Operation Hour	Total NAC (m ³)	Yearly NAC Process (m ³)	Yearly Non-process Consumption (m ³)	Statuary Holidays Consumption (9 Days) (m ³)	Total Non-process Consumption Oven NAC (m ³)	Percentile Non-process Consumption	Yearly Non-Operatinal Hours	Percentile Non-process
1	AAGF	Food	24/5	6000	3372327	2781456	633043	43229	676272	20.05%	1,200	0.20
2	AASN	Food	24/6	7488	546832	483924	59841	8663	68504	12.53%	973	0.13
3	AAKIK-10	Packaging	24/6	6000	1008872	571752	120760	12987	133747	13.26%	809	0.13
4	AAKIK-13	Packaging	24/7	8400	734063	485700	0	13014	13014	1.77%	173	0.02
5	AAAL	Finishing	"10/5"	2500	584907	465608	77617	13663	91280	15.61%	394	0.16
6	AACF	Finishing	20.5/5	5125	437383	403590	52919	4567	57486	13.14%	663	0.13
7	AAMP	Finishing	24/5	6000	514025	345588	50389	5017	55406	10.78%	676	0.11
8	AABN	Finishing	16/5	4000	363976	251124	26714	3389	30103	8.27%	320	0.08
9	AADEC-225	Finishing	"8/5"	2000	1306121	448308	248520	24590	273110	20.91%	420	0.21
10	AASPEC	Finishing	"12/5"	3000	369364	76736	72851	8785	81636	22.10%	660	0.22

Appendix P

Acronym of	Company Name	Type of Company	Type of Oven
Company			
AAGF-B	Griffith Laboratories	Food Processing	Bake oven
AASN-B	Son Bakery	Food Processing	Bake oven
AAAL-D	ACL Auto Coating Ltd.	Finishing Process Company	Dry-off oven
AAAL-C	ACL Auto Coating Ltd.	Finishing Process Company	Cure oven
AABN-D	Broan-NuTon	Finishing Process Company	Dry-off oven
AABN-C	Broan-NuTon	Finishing Process Company	Cure oven
AACF-D	Calorific Inc.	Finishing Process Company	Dry-off oven
AACF-C	Calorific Inc.	Finishing Process Company	Cure oven
AAMP-D	M&P Co	Finishing Process Company	Dry-off oven
AAMP-C	M&P Co	Finishing Process Company	Cure oven
AAACT-D	Active Metal Inc.	Finishing Process Company	Dry-off oven
AAMP-C	Active Metal Inc.	Finishing Process Company	Cure oven
AASPEC-D	Spec Furniture Inc.	Finishing Process Company	Dry-off oven
AASPEC-D	Spec Furniture Inc.	Finishing Process Company	Cure oven
AAWIL-D	Wilson Display Inc.	Finishing Process Company	Dry-off oven
AAWIL-C	Wilson Display Inc.	Finishing Process Company	Cure oven
D-78-D	Deco Automotive-Brampton	Finishing Process Company	Dry-off oven
D-78-C	Deco Automotive-Brampton	Finishing Process Company	Cure oven
D 225 D	Deco Automotive-	Finishing Process Company	Dry-off oven
D-223-D	Etobicoke		
D 225 C	Deco Automotive-	Finishing Process Company	Cure oven
D-223-C	Etobicoke		

List of Audited Company and their Acronym

References

[1] Seens, D.L. (March 2013). "Small and Medium-Sized Enterprises Growth Study: Actual vs. Sustainable Growth." Small Business Branch Research and Analysis Directorate.

[2] Mandil, C. (2007). Tracking Industrial Energy Efficiency and CO₂ Emissions. 75739 Paris Cedex 15, France.: IEA.

[3] Industry Canada. (2013). Retrieved August 25, 2014, from Industry Canada website: Key Small Business Statistics – August 2013; How do we define and categorize business? http://www.ic.gc.ca/eic/site/061.nsf/eng/02803.html

[4] Axsen, J., Nyboer, J., & Bataille, B. C. (2005). Goods-Producing Small to Medium-Sized Enterprises: Energy end use and efficiency potentials. Burnaby, BC: Canadian Industrial Energy End-use Data and Analysis Centre; Simon Fraser University

[5] Natural Resources Canada. (2013). Industrial Consumption of Energy (ICE) Survey: Summary report of energy use in the Canadian manufacturing sector 1995-2011, 1165 Kenaston street, PO Box 9809, StnT, Ottowa, ON, K1G GS1

[6] Trombley, D. (2014). One Small Step for Energy Efficiency: Targeting small and mediumsized manufacturers. American council for an energy-efficient economy. 529 14th Street NW, Suite 600, Washington, DC, 20045

[7] Kostka, G., Moslener, U. & Andreas, J. (n.d.). Barriers to Energy Efficiency Improvement: Empirical evidence from small-and –medium-sized enterprises in China. Frankfurt school of finance and management, Sonnemann St, 9-11 Frankfurt am Main 60314

[8] Baig, A.A. (2014). Analysis of natural gas consumption and energy savings measures for small and medium-sized industries in the Greater Toronto Area. Ryerson University, Toronto, Canada

[9] Investopedia. (n.d.). Investopedia online dictionary. Retrieved from http://www.investopedia.com/sustainablegrowthrate.asp

[10] Ontario Power Authority. (n.d.). Save on energy. Retrieved from https://www.saveonenergy.ca/Business/Program-Overviews/Audit-Funding.aspx

[11] Institute of Electrical and Electronics Engineers (IEEE). (n.d.). Dictionary.com. Retrieved September 14, 2014, from Dictionary.com Unabridged.: http://dictionary.reference.com/browse/energy audit

[12] Canadian Industry Program for Energy Conservation. (n.d.). Energy Savings Toolbox – An Energy Audit Manual and Tool. Retrieved from National Resources Canada:

http://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/oee/pdf/publications/infosource/pub/cipec/en ergy-audit-manual-and-tool.pdf

[13] Jamaludin, A., M, N. (2013). Energy Audit and Prospective Energy Conservation. Energy Audit and Conservation , 31, 158-172.

[14] Sharma., R.A. (2006). Electrical India (Vol. 46). Secunderabad, Andhra Pradesh, India: Master Consultancy & Productivity Pvt. Ltd.

[15] Natural Resources Canada. (n.d.). Energy conservation vs. energy efficiency. Retrieved from http://www.nrcan.gc.ca/enrgy/efficiency/buildings/eeb/key/3969

[16] An ISGAN glossary definition. (n.d.). Definition: demand side management. Retrieved from http://www.en.openei.org/wiki/definition_demand_side_managemnt

[17] Bazari, Z., (2007). Ship energy performance benchmarking: methodology and application. Journal of Marine Engineering and Technology, No. A9 2007.

[18] Capehart, B., et al. (2011). Comprehensive Five Days Training Program for Certified Energy Managers, Association of energy engineers, 4024 Pleasantdale road, Suite 420, Atlanta, Georgia USA.

[19] Agrawal, S. (2005). Heat and Mass Transfer. Anshan limited, Tunbridge wells, Kent, UK

[20] InfraSource Inc. (n.d.). Powder coating process. Retrieved from http://www.infrasourceus.com

[21] Society of Manufacturing Engineers. (n.d.). Painting & Powder Coating. www.sme.org. Retrieved from http://manufacturing.stanford.edu/processes/Painting&PowderCoating.pdf

[22] Auto Coat Engineering (India) P. Ltd. (n.d.). Industrial Oven [Brochure]. Retrieved from http://www.autocoatindia.com/industrial-oven.htm

[23] Fawer, B. (n.d.). Powder coating magazine: Cure dynamics of powder coatings. CSCpublishing,powdercoating.Retrievedhttp://www.pcoating.com/Content/getArticle.aspx?ItemID=540d403c-4dd2-49cc-8362-a2db44b6a913&Subject=Powder+coatings

[24] Aquini, R. (n.d.). Powder coating magazine: Reducing energy use in powder coating systems. CSC publishing, powder coating. Retrieved from http://www.pcoating.com/Content/getArticle.aspx?ItemID=af0cc7d8-9cc4-4545-98bc-54401cddebf6

[25] Aquino, R. (n.d). Reducing energy use in powder coating system. Energy reduction technical article. CSC publishing, Powder coating

[26] Kraft, K.N. (1996). Curing oven basics. Modern machine shop. Garner business media Inc. 2015. Retrieved from http:// www.pfonline.com/article/curing-oven-baseline

[27] Fels, M. & Reynolds, C. (1994) "Three-Point HO/CO PRISM in Advanced Version of PRISM," Report for Advanced PRISM Project, Center for Energy and Environmental Studies, Princeton University, Princeton,

[28] http://www.graphpad.com/scientific-software/prism/#7 (Inc., 2014)

[29] Kulkarni, J. (2006). Energy, Economic and Environmental Impacts of the Delaware Low-Income Weatherization Assistance Program. Newark, DE 19716, United States: Center for Energy and Environmental Policy, University of Delaware.

[30] Fels, M. ed. (1986) "Measuring Energy Savings: The Scorekeeping Approach," Special PRISM Issue of Energy and Buildings, 9, #1-2, 180 pages

[31] Fels, M. (1986) "PRISM: An Introduction," Energy and Buildings 9, #1-2, pp. 5-18

[32] Reynolds, C. (1987) "PRISM: A Tool for Tracking Retrofit Savings," Energy Auditor and Retrofitter, Nov/Dec, pp. 27-36

[33] Ghajarkhosravi, M. (2010). "Utility Benchmarking and Potential Savings of Multi-Unit Residential Buildings (MURBs) in Toronto," Ryerson University

[34] BizEE, Energy Lens: Degree Days – Handle With Care! (2014). Retrieved July 18, 2014, from Energy Lens: http://www.energylens.com

[35] Day, T. (2006). Degree days: theory and application. London: Jacquiline Balich. ISBN -13:

987-1-3287-76-7

[36] Cho, H., & K, G. (2010). Energy Saving Impact of ASHRAE 90.1 Vestibule Requirements: Modeling of Air Infiltration through Door Openings. Richland, Washington 99352: Pacific Northwest National Laboratory.

[37] Thornton. B.A., Rosenberg. M.I., Richman, E.E., Wang, W., Xie, Y., Zhang. J., Cho, H., Mendon, V.V., Athalye, R.A., & Liu, B. (2011). Achieving the 30% Goal: Energy and Cost Savings Analysis of ASHRAE Standard 90.1-2010. Washington 99352: Pacific Northwest National Laboratory. Retrieved from http://www.energycodes.gov/sites/default/files/documents/BECP_Energy_Cost_Savings_STD20 10_May2011_v00.pdf

[38] Weimin Wang, Weimin.(2006). Floor shape optimization for green building design. Advanced Engineering Informatics, 363-378.
[39] Weimin, W., Hugues, R., & Radu, Z. (2006). A Comparative Study of Representation and Encodings for Building Shape Optimization With Genetic Algorithms. Joint International Conference on Computing and Decision Making in Civil and Building Engineering, (p. 2417). Montréal, Canada. Retrieved from http://irandanesh.febpco.com/FileEssay/civil-86-1-3-b-sy%28270%29.pdf

[40] Michael Overcash, K. B. (2012). Estimating nonprocess energy from building energy consumption. Energy Efficiency, 6:21–33.

[41] Mohamad, N., & Said, F. (2011). Business Management Dynamics: Solving single machine scheduling problem with common due date, Vol.1, No. 4, pp. 63-72

[42] Shabtay, D., & G, S. (2007). Single machine batch scheduling to minimize total completion time and resource consumption costs. Journal of Scheduling, Vol-4, 255-261.

[43] Moore, J. (1986). An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs. Management Science, Vol. 15 No. 1. pp 102

[44] Guner, E., Erol, S., & Tani, K., One machine scheduling to minimize the maximum earliness with minimum number of tardy jobs. International Journal of Production Economics. doi; PII S 0925-5273(98) 00062-0

[45] Kusiak, A, & M, L. (2006). Modeling and optimization of HVAC energy consumption. Energy and Buildings, 220-231.

[46] Fung, A. (2012). HVAC Demand Management and Control System. Toronto, Canada: Centre for Urban Energy.

[47] ASHRAE Handbook Fundamentals 2013. (2013). N.E. Atlanta, GA 30329 : ASHRAE.

[48] Brager.S.G, & D, d. (2001, April). Climate, Comfort & Natural Ventilation: A new adaptive comfort standard for ASHRAE Standard 55. (W. U. Oxford Brookes University, Ed.) Moving Thermal Comfort Standards Into the 21st Century. Retrieved from http://web.stanford.edu/group/narratives/classes

[49] Moss, K. J. (2006). Energy Management in Buildings. New York: Taylor & Francis.

[50] ASHRAE. Ventilation for Acceptable Indoor Air Quality. ASHRAE Handbook, 62.1-2013.

[51] Canadian Manufacturers & Exporters. (2010). Advancing opportunity in Ontario industrial and manufacturing sector. Mississauga, Canada: Canada Manufacturers & Exporters.

[52] Davis, G. Gray. (2002, July). California Standard Practice Manual: Economic Analysis of Demand-Side Programs and Projects. California, USA.

[53] Eclipse Combustion. (n.d.). Curing Powder Coatings with Gas-Fired Equipment [Brochure]. Retrieved from http://www.genesyscombustion.com/whitepages-421.pdf

[54] Richard J. Reed. North American Combustion Handbook, 3rd ed. Vol I, Cleveland: North American Manufacturing Co., 1968.

[55] Morroson, P., & Naden, D. (2013). Process oven. Retrieved October 22, 2014, from https://www.enbridgegas.com/businesses/assets/docs

[56] McLean, G. (2005). Direct-gas-fired air heating system. Hastings HVAC, Inc. Retrieved from http://www.hastingshvac.com/file/Direct%20gas-Fired%20Heating%20System.pdf

[57] Talbert, R. (1994). Convection Curing Equipment: Understanding gas-fired convection curing equipment for powder coating. Powder Coating. Retrieved from http://infohouse.p2ric.org/ref/39/38957.pdf

[58] Goetzman, J. (n.d). Fundamental of Pressure and Temperature Measurement. Center Point Energy. 1111 Louisiana, Texas 77002.

[59] Canada, N. R. (2008). Improving energy performance in Canada. Office of Energy Efficiency. Ottawa ON K1G 6S1: Natural Resources Canada. Retrieved from http://www.oee.nrcan.gc.ca/publications. ISBN 978-1-100-11432-3

[60] Thollan, P., & D, E. (2010). An energy efficiency program for Swedish industrial small-and medium-sized enterprises. Linkoping, Sweden: Elsevier Science B.V., Amsterdam. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-58532

[61] Banyard, C. (1983). Energy audits, property management. Emerald Insight. Vol.1, Iss 1 pp. 26-29. Retrieved from http://www.emeraldinsight.com/doi/abs/10.1108/eb006544

[62] Standard for Ovens and Furnaces (NFPA 86). (2007). National Fire Protection Association. Retrieved from http://www.nfpa.org/codes-and-standards/document-informationpages?mode=code&code=86

[63] Public safety first. (n.d.). Technical standard and safety authority. Retrieved from http://www.tssa.org

[64] Oxford Dictionary. (n.d.). Oxford online dictionary. Retrieved from http://www.oxforddictionaries.com/definition/english/summer

[65] Government of Canada. (2015). Before you arrived: get to know Canada, typical featuture of seasons. Retrieved from http://www.cic.gc.ca/english/newcomers/before-seasons-typical. asap, August 14, 2015.

[66] Ontario Energy Board. (n.d.). Weather Normalization for Total Utility Load. Retrieved from http://www.ontarioenergyboard.ca/documents/cases/EB-2005-0317.

[67] Avina, J. (2012). An Introduction to Utility Bill Weather Normalization for Energy Contractors. Retrieved from http://www.abraxasenergy.com/articles/intro-weather-normalization-contractors/

[68] Fels, M. F., Kissock, K., A, Michelle., Marean., & R, Cathey. (1995). PRISM (Advance Version 1.0) User Guide. Princeton University: Centre for Energy and Environmental Studies. New Jersey.

[69] Environment Canada. (n.d.). Ontario-weather condition and forecast by location. Retrieved from http://www.weather.gc.ca/city/pages/on-143_metric_e

[70] Fels, M. F., Rachlin, J., & Socolow, R. H. (1986). Seasonality of non-heating consumption and its effect on PRISM results. Energy and Buildings. Pages 139-148.

[71] Finch, G., Burnett, E., & Knowles, W. (2010). Energy Consumption in Mid and High Rise Residential Buildings in British Columbia, Portland.

[72] Paulus, M.T., Claridge, D.E., & Culp, C. (2014). Algorithms for automating the selection of a temperature dependent change point model. Energy and Buildings. 87(2015)95-104.

[73] Eto, H. J. (n.d.). A comparison of weather normalization technique for commercial buildings energy use. Retrieved from http://www.ornl.gov/sci/buildings/2012.

[74] ASHRAE, Guideline 14-2002, Measurement of energy and demand savings, 2002.

[75] Fels, M. F. (1086). PRISM: an introduction. Energy Build. 5-18.

[76] 2009 ASHRAE Handbook- Fundamental. (n.d.). Climatic design information. Retrieved from http://www.ecop.rpi.edu/hartford/

[77] Tapia, S., & J.A. Rio, J.A., (2011). One temperature model for effective ovens, Classical physics, Cornel university library. Retrieved from http://www.arxiv.org/abs/1109.0664

[78] Hong, S., Wen, C., He, J., Gan, F., & Yuh, H., (2009). Adsorption thermodynamics of Methylene Blue onto bentonite. Journal of Hazardous Materials, doi: 10.1016/j.jhazmat.2009.01.014.

[79] Apraci, V. (2001). Thermal Deformation: From Thermodynamics to Heat Transfer. JournalofHeatTransfer,Retrievedfromhttp://heattransfer.asmedigitalcollection.asme.org.ezproxy.lib.ryerson.ca/article.aspx?articleid=1445148, doi: 10:1115/1.1379953

[80] Eclipse guide to infra-red heating. (1992). Curing powder coating with gas-fired equipment. Published SP-421, Eclipse combustion, Rockford, IL.

[81] Hangzhou color powder coating Equipment Co., Ltd. (n.d) Retrieved from http://www.powder-coatingline.com/china-

lpg_tank_powder_coating_line_industrial_spray_painting_equipment_1_6_m_min_custom-1180042.html

[82] Bierma, T.J., & Marsch, D. (2008). Material and Energy Efficiency in SMEs. University of Illinois, Normal, Illinois.

[83] Acomi, N., Acomi, O. C., & Ghita, S., (2008). The Energy Efficiency Operational Index – An instrument for the Marine Pollution Control. Recent Advances in Energy, Environment, Economics and Technological Innovation, ISBN: 978-960-474-343-8.

[84] IMO, Interim guidelines for voluntary ship CO₂ emission indexing for use in trials,

MEPC.1/Circ.471.CO 2, 2005.

[85] IEA, (2013). IEA statistics. CO₂ emissions from fuel combustion highlights. Retrieved from http://www.iea.org/publications/freepublications/publication/co2emissionsfromfuelcombustionhi ghlights2013.pdf

[86] City of Toronto, Environment and Energy division. (2014). Annual energy consumption and greenhouse gas emission report. Retrieved from http://www.toronto.ca/city%20%of 20Toronto/Environment%20%20Energy/action%20Plans, 20%Policies%20&Research?PDFs/2012_energy_consumption_HGH_emission%20report.pdf

[87] Putman Media. (2015). Sustainable operations area efficiency. Retrieved from www.sustainableplant.com/topic/efficient

[88] Mazda (n.d). Reduced total CO₂ emissions from Mazda's four principal domestic plants by 42.6% compared with FY March 1991 levels. Retrieved from http://www2.mazda.com/en/csr/download/pdf/2012/2012_s_p48.pdf

[89] Ontario. Ministry of Labour (n.d.), Public holiday; Retrieved from http://www.labour.gov.on.ca/english/es/pubs/guide/publicholidays.php

[90] Statutory Holidays Canada, (n.d.): Canadian statutory holidays. Dates and information about holidays in Canada. Retrieved from http://www.statutoryholidays.com/ontario.php

[91] Calendar for year 2013 (n.d.): Timeanddate.com: Retrieved from http://www.timeanddate.com/calendar/?country

[92] Gray, D. (2002). California Standard Practice Manual: Economic Analysis of Demand-Side Programs and Projects. Published by governor's office of planning and research, state of California.

[93] Gray, W., & Tatiana, K. (2009). Applying the total resource cost test to conservation and demand management initiatives of local electricity distribution companies in Ontario: Assessment and recommendations for reform. Faculty of Environmental Studies, York University, Canada

[94] Investopedia. (n.d.). Investopedia online dictionary. Retrieved from http://www.investopedia.com/terms/n/npv.asp

[95] The financial-dictionary. (n.d.). Retrieved from http://financialdictionary.thefreedictionary.com/Cost-Benefit+Ratio

[96] Mind Tools Ltd. (n.d.). Cost-Benefit Analysis: Deciding, Quantitatively, Whether to go Ahead. Retrieved from http://www.mindtools.com/pages/article/newTED_08.htm

[97] Ontario Energy Board. (2014). Natural Gas Demand Side Management Summary Report – 2012 Results. Toronto: Ontario Energy Board.

[98] Benchmarking. (n.d.). In Education Portal's online dictionary. Retrieved from http://education-portal.com/academy/lesson/what-is-benchmarking-definition

[99] Ribeiro, L., & Cabral, J.A. (2006). A Benchmarking Methodology for Metalcasting Industry. Benchmarking: An International Journal, 13, 23-35. doi: 10.1108/14635770610644556

[100] Morroson, P., & Naden, D. (2013). Process oven. Retrieved October 22, 2014, from https://www.enbridgegas.com/businesses/assets/docs

[101] Turner, Wayne C. (2006). Energy Managemnt Handbook. The Fairmon Press, Inc, 700 Indiana Trail, Liburn, GA 30047: TJ163.2.T87 2006

[102] City of Toronto, Environment and Energy division. (2014). Annual energy consumption and greenhouse gas emission report. Retrieved from http://www.toronto.ca/city%20%of 20Toronto/Environment%20%20Energy/action%20Plans, 20%Policies%20&Research?PDFs/2012_energy_consumption_HGH_emission%20report.pdf

[103] Putman Media. (2015). Sustainable operations area efficiency. Retrieved from www.sustainableplant.com/topic/efficient dated March 13' 2015].

[104] Mazda (n.d). Reduced total CO2 emissions from Mazda's four principle domestic plants by 42.6% compared with FY March 1991 levels. Retrieved from http://www2.mazda.com/en/csr/download/pdf/2012/2012_s_p48.pdf dated March 13' 2015].

[105] Kasinoff, H. (2002). Oven exhaust gas oxygen sending arrangement and related control circuit and methods. CA2352648 A1, Retrieved from https://www.google.com/patient/CA2352648A1?cl = en

[106] Ontario. Ministry of Labour (n.d.), Public holiday; Retrieved from http://www.labour.gov.on.ca/english/es/pubs/guide/publicholidays.php

[107] Statutory Holidays Canada, (n.d.): Canadian statutory holidays. Dates and information about holidays in Canada. Retrieved from http://www.statutoryholidays.com/ontario.php

[108] Calendar for year 2013 (n.d.): Timeanddate.com: Retrieved from http://www.timeanddate.com/calendar/?country

[109] Carpenter, k. and K, Kissoack. (n.d.). Energy efficiency process heating: Insulation and thermal mass. University of Dayton, 300 College Park, Dayton, OH 45469-02210. Retrieved fromhttps://www.udayton.edu/engineering/centers/industrial_assessment/resources/docs/pdf/Insu IThermMass_SAE2005_draft_.pdf

[110] U.S. Department of Energy. (2002). Process heat tip sheet # 2. Office of Industrial Technologies Energy Efficiency and Renewable Energy, Washington DC, 20585-0121

[111] Kaynakli, O. (2011). Parametric investigation of optimum thermal insulation thickness for external wall. Energies, 913-927; doi: 10.3390/en4060913

[112] Bolatturk, A. (2006). Determination of optimum insulation thickness for building walls with respect to various fuels and climate zones in Turkey. Applied thermal engineering, 26, 1301-1309, ISSN-1333-1124

[113] Aytac, A., & Aksoy, U.T. (2006). The relation between optimum insulation thickness and heating cost on external walls for energy savings. Journal of faculty of engineering and architecture, Gazi University, 21, 753-758

[114] Johnson Controls Company. (2006). Solution-energy series reducing AHU energy consumption. P.O. Box 1592, York, Pennsylvania USA 17405-1692