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Abstract
Signalizing an intersection usually results in a reduction in right-angle and left-tum 

crashes, and an increase in rear-end crashes. This study used the conventional and 

Empirical Bayes (EB) before and after methods on 45 treated sites (converted fi'om stop 

to signal control) in California and Minnesota to estimate the safety effect o f having 

signals installed. The results confirm the belief that right-angle and left-tum crashes are 

reduced and rear-end crashes increase. However, these effects cannot be used to 

quantitatively assess the benefit gained from the reduction of right-angle and left-tum 

crashes against the increase in rear-end crashes, simply because crash types have 

different severities. By performing an economic examination of the safety effects, this 

study was able to show that by installing signals on 45 treated sites, there was a positive 

aggregate economic benefit of $155,883,978 which represents a 69 percent reduction in 

cost. This translated into $616,142 per site-year.
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Notation
The following notations are used in this report:

AADT

CURE

EB

GOF

HSIS

Maj

Min

MUTCD

NB

pdf

RTM

SPF

7C

K

K

a

Td

Ci,y

Ô

0

Annual average daily traffic 

Cumulative Residual 

Empirical Bayes 

Goodness-of-fit

Highway Safety Information System

The AADT on the major approach o f the intersection

The AADT on the minor approach of the intersection

Manual on Uniform Traffic Control Devices

Negative Binomial

Probability density function

Regression-to-mean

Safety Performance Functions

The expected accident frequency at an entity had a specific treatment NOT 

been implemented

The expected accident frequency in the after a specific treatment has been 

implemented

Accident count at some entity

The expected accident frequency at an some entity

The weighted average of the empirical Bayes approach

Ratio of duration, i.e. the ratio o f the after period to the before period.

The ratio o f model estimate for entity ‘i’ in year y to model estimate for 

entity ‘i ’ in year 1.

The expected reduction in accident frequency.

The index o f effectiveness, usually illustrated in percentages.
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CHAPTER 1: Introduction
At-grade highway intersections are inevitable due to conflicting traffic streams. This 

makes them a very critical component in a transportation system. Hence the need for 

safety is paramount, especially at high-speed intersections, such as those in a rural 

jurisdiction. In Ontario alone, 224,642 collisions were reported in the Ministry of 

Transposition 2002 annual road safety report (MTO 2002) inclusive of 48,116 and 60,618 

intersection and intersection-related accidents respectively; a staggering 48 percent o f 

reported collisions. In 2003, the U.S Department of Transportation reported that 9,213 

fatalities occurred due to intersection related collisions. Clearly there is a need for safer 

operating conditions at intersections. To this end, the National Cooperative Highway 

Research Program (NCHRP) is currently working on a research project titled “Crash 

reduction Factors for Traffic Engineering and ITS Countermeasures (NCHRP 17-25)”. 

The research in this thesis was performed as part of that project.

1.1 Statement of Problem

Installing traffic signals at intersections has been one of the many methods used in traffic 

engineers’ constant quest for more safety and better efficiency. The Manual on Uniform 

Traffic Control Devices (MUTCD 2003) is one of the main standards providing guidance 

to traffic engineers on the use of traffic control devices. In Part 4 o f the MUTCD, 

guidance on when one should consider installing a traffic signal is explained under 

“warrants”. Warrants alone are not the only criteria in determining if  a signal is 

necessary or not. Whether or not the warrants are met, the MUTCD (2003) suggests that
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an engineering study be performed to investigate whether the overall safety and efficient 

operation of the intersection will improve if a signal were to be installed.

Eight warrants are proposed in Part 4 of the MUTCD; they are based on eight-hour 

vehicular volume, four-hour vehicular volume, peak hour volume, pedestrian volume, 

school crossing needs, coordination of the signal system, crash experience, and the 

characteristics of the roadway network. The warrant that pertains to road safety, and 

particularly to this study, is warrant 7. The focus of this warrant is directly related to the 

crash experience sustained at an intersection.

The MUTCD does not actually propose a procedure for executing the suggested 

engineering study. However, work done by McGee et al. (2003) proposed a procedure 

for estimating the change in expected crash frequency and costs if  a traffic signal is 

installed at an intersection. This procedure was based on urban/suburban intersections. 

Rural intersections are different from urban and sub-urban intersections in several aspects 

with the main difference being the design speeds, which are higher than those in urban 

and sub-urban areas. Other factors are driver demography, traffic volumes, business 

activity, etc. To facilitate the development o f an engineering procedure for determining 

the need for a traffic signal at a rural stop controlled intersection, one must know what 

would be the safety benefit of installing a traffic signal in a rural environment. The 

methods adapted in this research for answering this question are discussed in the 

following section.
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1.2 Objective of Study

The main objective of this study is to evaluate the safety effect o f installing traffic signals 

at rural stop controlled intersections. The safety effect o f a treatment at an entity is 

evaluated by finding the difference between the accident frequency that would have 

occurred had the entity not been treated and the accident frequency that occurred on the 

entity afl;er treatment. In this study, four methods were compared for evaluating the 

effects o f a treatment (installing a traffic signal). These are:

•  The simple (Naive) before and after study,

• The Naive before and after study with correction for traffic flows,

• The Naive before and after with safety performance functions (SPFs), and

• The Empirical Bayes (EB) before and after method.

For all methods crash effects are estimated. For the EB method, an analysis o f the 

economic effects is performed to accommodate the differential impacts on different crash 

types and severities.

1.3 Structure of Report

This thesis is divided into 8 chapters. This Chapter (1) outlines the motives and 

objectives for this research; these are supported by an in-depth literature review covered 

in Chapter 2. The methodology used in estimating safety is reviewed in Chapter 3 with a 

discussion on the theoretical approaches to the EB and conventional procedures used. 

Chapter 3 also has a discussion on fitting a functional form in multivariate regression 

models that are fundamental to the EB methodology. Chapter 4 addresses the data used 

in this research, while a description of the accident prediction models fitted for use in the 

application o f the EB procedure is covered in Chapter 5. The economic analysis o f the

17



change in crashes of various types is in Chapter 7, while Chapter 8 has the conclusions 

derived from this study.

T.'-
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CHAPTER 2: Literature Review

Evaluating the safety effect o f the installation of traffic signals at rural stop controlled 

intersections is the main focus o f this research. Thus, a thorough literature review on the 

estimation o f the safety effect o f installing signals was conducted, along with a review of 

methods for estimating safety at both signal and stop controlled intersections. The latter is 

pertinent to the EB methodology used in this study.

2.1 Accident Pattern after Signalization

King and Goldblatt (1975) conducted a cross-sectional study to illustrate the relationship 

between accident types and intersection controls. They analyzed data obtained firom 250 

signal and stop controlled intersections across several states in the United States o f 

America. For each state, data were disaggregated at four main levels; geographic area 

(north, south, etc), type of area (central business district, rural etc), major and minor 

approach volumes, and control type. Three methods of analysis were applied to the 

disaggregated data; Analysis o f Variance, Multiple Linear Regression Analysis, and 

Hypothesis Testing. The following are findings pertinent to this research as concluded by 

the authors:

1. I f  a traffic signal were to be installed, a reduction in right-angle accidents and an 

increase in rear-end accidents will result,

2. No definitive answer could be given as to whether the installation o f a traffic 

signal will have an overall reduction o f accidents at intersections,

3. Right-angle accidents were not directly reduced after a signal was installed, and
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4. Accident rates, in number of accidents per million entering vehicles, are higher at 

signalized intersections but this is offset by the lower severity per accident. 

However, cross-sectional studies, such as this is, are not a reliable method for evaluating 

changes in safety because of its underlying assumptions. Cross-sectional studies facilitate 

safety comparison between two distinct sets of entities. For example, one set can 

comprise of signalized intersections and the other set contains stop controlled 

intersections. The difference in safety between these two distinct sets of entities is not 

entirely due to the difference in control type since it can also be due to differences in 

factors such as geometric configuration. Therefore, the findings of King and Goldblatt are 

questionable.

Rural intersections are characterized by their high design speeds which clearly has an 

effect on the severity of crashes. This distinct characteristic of rural intersections implies 

that one should expect differences in accident pattern by types and severity from urban 

intersections. A study performed by Hanna et al. (1976) attempted to quantify this 

difference using 232 rural intersections located in Virginia, United States of America. 

The authors used accident rates (number of accidents per million entering vehicles) at 

each intersection to compare the relationship of traffic control and intersection 

geometries to accident types. Based on the data, 36 percent of accidents were classified 

as rear-end and 43 percent of accidents as angle. More rear-end accidents occurred at 

signalized intersections while more angle accidents occurred at stop-controlled 

intersections. No substantive findings came to light regarding differences in safety 

between urban and rural intersections. The findings of this study by Hanna et al. (1976) 

are also questionable because they are based on a cross-seetional evaluation.
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Datta and Dutta (1990) focused on quantifying accident experience after traffic signals 

were installed. A simple before and after method was adopted using 102 intersections 

with signals installed during 1978 and 1983 in Miehigan, United States o f America. A 

paired t-test at 0.05 sigmficance level was also performed on the before and after mean 

crash rates to check if  they were statistically significant. The findings were:

1. After signals were installed, there was a 19.2 percent reduction in total accident,

2. Rear-end accident rates increased by 53 percent,

3. Right angle accident rates were 57 percent lower after signals were installed, and

4. Head-on and left-tum accident rates increased by 50 percent.

Datta (1991) carried out another study, using the same data set, on the safety effect o f 

left-tum lanes at intersections after the installation of signals. A similar approach was 

used, that is, a paired t-tests at 0.05 significance level for the before and after mean 

accident rates. The analysis was disaggregated into three groups; locations with left-tum 

lanes, locations without left-tum lanes, and locations where left-tum lanes were installed 

with signal installation. The researcher found that total accidents were reduced at 

intersections where a left tum lane was added at the same time a signal was installed. A 

similar finding was obtained for right-angle accidents. The number of rear-end crashes 

increased after signals were installed at these intersections.

The findings firom both Datta (1990) and Datta (1991) somewhat concur with the findings 

o f King (1975) and Hanna et al. (1976) in that there was a reduction in the total and right 

angle crashes, and an increase in rear-end crashes. However, the methodology adapted 

by Datta (1990 and 1991) is more favoured when the objective is to evaluate changes in
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safety following the signalizing of intersections. This is because Datta (1990 and 1991) 

used sites that were actually converted to signal in their before and after study while the 

other two studies used two distinct sets of sites used in a cross-sectional evaluation. Even 

so, the simple before and after methodology used by Datta and Dutta is also questionable 

because of the assumption that the before number of crashes at an entity is a good 

estimate of the number of crashes in the after period had the treatment not been 

implemented. The problem with this assumption is that had there been no treatment, 

accident frequency could have easily increased or decreased due to regression to the 

mean (RTM) (Persaud 2001; Hauer 1997; Hauer and Persaud 1983; etc)., AADT trends 

or changes in factors such as weather, driver demography etc. Indeed, if  an entity was 

selected to be treated because of its high crash counts alone, there is a good chance 

regression to the mean is at play (Hauer 1997). It is paramount, therefore, that when 

evaluating the safety effects of a particular treatment, one must be able to account for 

these changes in safety unrelated to the treatment. The Empirical Bayes (EB) procedure, 

developed by Hauer (1997), does just that.

2.2 The Empirical Bayes (EB) Procedure

Over the last decade, significant advancements were made towards estimating safety 

effect o f treatments. The groundbreaking Empirical Bayes before-and after procedure by 

Hauer (1997) help safety analysts account for more than just RTM in their safety 

analyses. It accounts for time trend in accident counts, and trends in AADT and other 

non-treatment factors that may cause changes in accidents. The EB procedure does this 

by the joining of two clues (Hauer 1997); the pre-treatment accident counts on the treated 

entity and the expected accident frequency at sites that share the same traits as the treated
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entity. The underlying theory o f the EB procedure is documented in Chapter 3. There are 

several studies done prior to this research that adapted the EB procedure (See e.g., Hauer 

et al. 2002; Persaud et al. 1997; Council et al. 2005; etc.).

One such study was by McGee et al. (2003) where the EB methodology was used to 

develop a procedure for the MUTCD, for estimating the likely change in safety when the 

installation of a traffic signal is contemplated. The study used data from several states in 

the United States of America and from Toronto, Canada. The treatment (installation of 

signals) sites comprised of 22 three-legged and 100 four-legged intersections. 

Corresponding reference populations were compiled and regression models were 

developed for applying the EB method. The study found the same pattern for right-angle 

and rear-end accidents as did King (1975), Hanna et al. (1976), and Datta (1990 and 

1991). However, the safety effects were lower simply because the EB method accounted 

for RTM, AADT trend and causal factors.

In the EB methodology the expected accident frequency at similar sites to the treated 

entity is estimated from a regression model (also known as a Safety Performance 

Function), that is calibrated from entities with similar traffic volumes and characteristics 

as the treated entity. Therefore, the need for reliable regression models is critical. A more 

detail discussion on safety performance functions can be found in Chapter 3.
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CHAPTER 3: Research Methodology

The safety of roadway segments and intersections is always a major concern. Therefore, 

the question of what is safety, and how it should be measured is important. Hauer (1997) 

defines safety as “the number of accidents by kind and severity, expected to occur on an 

entity during a specified period”. Relating this definition of safety to entities o f interest, 

road segments or intersections, the following expression is derived:

E{Accident Frequency at Entity) = E[Frequency o f Accidents at Entity / Unit o f  Time) 

Another measure of safety usually found in literature is the expected accident rate (Hauer 

1997) and is defined as:

.  ̂n . Accident FrequencyAccident Rate = ------------------   —  (3.1)
Exposure / Unit o f Time

where exposure is the traffic flow through an entity during a specified duration (usually 

per year since the exposure is usually measure in AADT).

However, this measure of safety is not theoretically sound because of the non-linear 

relationship between the number of accidents and traffic flow. Accident rate assumes 

that the number of accidents that occurred at an entity is proportional to its AADT. The 

problem with this assumption is that safety performance functions (SPFs) developed in 

numerous sources (Bauer 1997; Bauer 1998; Hauer 1988; Lord 2000 and 2005; etc) show 

that the relationship between accidents and AADT in not linear. A SPF developed by 

Persaud et al. (2001) for estimating total crashes per year for signalized intersections in 

Maryland will be used to illustrate this non-linear relationship. The SPF was developed
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with an AADT ranging from 365 - 3,133 for the minor approach and 8,625 - 52,144 for 

the major approach and is of the form:

Total Crashes / year = a  {total entering A A D T ^

where a  = 8.5706E-04 and P — 0.804 are regression coefficients

(3.2)

The SPF given in Equation 3.2 is depicted in Figure 3.1 using a range o f AADT (total 

entering) from 1,000 -  35,000.

SPF

I
I

I 2.5 -

Accident Frequency

^  ExposureI

0.5 -

0 5000 10000 15000 20000 25000 30000 35000 40000
Total Entering AADT

Figure 3.1 -  Safety Performance Function for signalized intersections in Maryland, US.

The nonlinear shape shown in Figure 3.1 supports the point that accident frequency 

indeed exhibits a non-linear relationship with traffic flow. In Figure 3.1, accident rate is 

the slope at any point on the SPF since the slope is simply the ratio o f the change in 

accident to the change in AADT. Therefore, if  one is to use accident rate as a measure o f
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safety, they are simply saying that at low AADT (point A) it is more hazardous than at 

higher AADT (point B) due to the difference in slope of the two dashed lines (red and 

green). This is a false estimate of safety since the slope at any point could be equal with 

different levels of AADT. Therefore, accident rate should not be used in estimating 

safety at an entity and one should use accident frequency instead.

Knowing what safety is quantitatively, safety analysts are able to measure the 

effectiveness o f treatments on various entities. The effectiveness of a particular treatment 

is usually estimated by taking the difference between the safety in the after period had 

the treatment not been applied, and what the safety o f  the treated entity in the after period 

was. So we are faced with two fundamental questions that need answers:

1. What would have been the safety of the entity in the after period had the treatment 

not been implemented, ti?

2. What is the safety after the treatment was implemented, 1?

Two methods are usually used to quantify the effectiveness of a treatment once X and n:

1. Reduction in Expected Number of Crashes, Ô

2. Index of Effectiveness, 0 

where

ô = 7T-X (3.3)

and
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e = -  < (3.4)

5 is simply the reduction in crashes after the treatment was implemented whereby, i f  Ô is 

positive it simply implies that the treatment was effective and if negative that the 

treatment is detrimental to safety. The estimate of 0 also informs safety analysts about 

how safe a treatment is, that is if  0 is less than 1, the treatment is considered to be 

effective since the number o f crashes after the treatment is lower than the estimated 

number o f crashes in the after period had the treatment not been implemented. 

Conversely, if  0 is larger than one, the treatment is considered to be harmful. 0 is also 

used to estimate the percent reduction or increase in crashes after a treatment is 

implemented as (1-0)* 100.

Hauer (1997) has shown that simply taking the ratio of A. to t i  will usually result in a 

biased estimate of 0 and proposed an unbiased estimate of 0 instead (Equation 3.5).

A

9  = JT (3.5)

The variances for 0 and 8 are computed by Equations 3.6 and 3.7 respectively:

VAR[ô} = VAR{7t)-VAR{X\ (3.6)

and
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VAR{e]=-

Ï  F A R { A y
+

f  V A R {k }'\

.V ^  J I J.
■ VARin]  
1 + ------

Tl

(3.7)

The variances are usually used to validate statistical significance for the estimates o f Ô 

and 0 at some specific confidence level. For instance, standard deviation is easily 

computed fi-om the variance (variance'’̂ ) and knowing that the one-sided 95% confidence 

interval is 1.96 of the standard deviation, the statistical significance of the estimates at the 

5% level is simply established if the estimate ± 1.96 standard deviations does not include 

zero. Other confidence levels can be used, such as 90%, but 95% seems most common. 

Equations 3.3 through 3.7 are the rudiments of quantifying the safety effectiveness of any 

implemented treatment.

In order to estimate the value of n one needs to account for the effects o f the regression to 

the mean phenomenon. This is discussed next.

3.1 Regression to the mean

If an entity is selected to be treated due to its high accident counts, the safety benefits 

after treatment will usually be overestimated (Hauer 1997). This is because accident 

counts on any entity oscillates around the true (long term) average of its accident count. 

Therefore, if  an entity experiences high accident count it will likely decrease 

subsequently even if  no treatment was implemented. This phenomenon is known as the 

regression-to-the-mean (RTM).
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Several sources (Hauer 1997; Hauer and Persaud 1983; Persaud 2001, etc.) have 

explained this phenomenon in detail. An illustration of this phenomenon was developed 

for this study using data from California, HSIS database. Data from 1993-1997 at 1,463 

rural intersections were used. The intersections were all rural four-legged, two-way-stop- 

controlled, with two-lane major and minor approaches.

Table 3.1 - Illustrating the Regression to the Mean Phenomenon

No. of 
Intersections 

with given 
No. of 

Accidents in 
1994-1996

Accidents/ 
Intersection 
in 1994-1996

Accidents/ 
Year/ 

Intersection 
in 1994-1996

Accidents/ 
Year in 1994- 

1996 for 
Group 

(rounded)

Accidents in 
1997 for 
Group

Accidents/ 
Intersection 

in 1997

Percent (%) 
Change

Column 1 Colunm 2 Column 3 Column 4 Column 5 Column 6 Colunm 7
468 0 0.00 0 86 0.18 LR*
315 1 0.33 105 136 0.43 30
183 2 0.67 122 135 0.74 11
135 3 1.00 135 131 0.97 -3
92 4 1.33 123 98 1.07 -20
58 5 1.67 97 83 1.43 -14
49 6 2.00 98 74 1.51 -24
35 7 2.33 82 71 2.03 -13
128 > 8 3.78 484 56 0.44 -88

Sam ple Calculations:
Columns 1,2 and 5 are inputs from the data.
Column 3 : For second row, accidents/year -  i/3 since we are using three years o f data. 
Column 4: For second row, accidents/year = 315 x 0.33 - 105 
Column 6: For second row, accidents /  intersections in 1997 = 136/315 = 0.43 
Column 7; Percent change (increase or decrease) between column 3 and 6.
* - LR = Large Reduction

The average accidents per intersection per year over the 3 years o f data were 

approximately constant at 0.85. Yet, as Table 1 shows, accidents in individual groups 

changed. For example, the 315 intersections that recorded 1 accident during 1994-1996 

(0.33 per year) averaged 0.43 accidents per intersection in 1997. Intersections that 

recorded 3 or more accidents in 1994 -  1996 experienced a reduction in accidents in
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1997. Conversely, intersections that recorded 2 or less accidents during 1994 - 1996 

experienced an increase in accident in 1997. These changes are nothing more than the 

effects o f the RTM phenomenon which must be accounted for in quantifying the safety 

effects o f a treatment. The ground breaking work by Hauer (1997) uses the Empirical 

Bayes (EB) procedure for doing so. The EB procedure is reviewed in the following 

section.

3.2 The Empirical Bayes (EB) Procedure

In section 3.1, it was made clear that two fundamental questions need to be answered to 

estimate the safety effect of a treatment at an entity. They are; what safety would have 

been had the treatment not been implemented, and what is safety after the treatment was 

implemented? The EB procedure was intentionally developed to estimate n by 

accounting for RTM. The second question is rather trivial -  what safety was after 

treatment; the accident frequency after treatment is an unbiased estimate of safety after 

the treatment was implemented (Hauer 1997).

Hauer (1997) has proven that the most efficient means of accounting for RTM in 

estimating safety is by joining of two clues. These two clues are:

1. Traits o f  the entity in question -  traits here are referring to roadway geometric 

elements such as number of lanes, median type (divided or undivided), rural or 

urban environment, etc. Safety is affected by the traits of an entity; for example, 

a rural signalized intersection will tend to have more severe accidents than urban 

signalized intersections because of their high design speeds. Hauer (1997) used 

the concept o f a reference population when referring to entities that share the
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same traits as the entity o f interest. Safety o f entities in the reference population, 

E{k}, is a very useful measure in understanding what safety is at the entity of 

interest.

2. Accident count (K) at the entity in question — the accidents that took place on the 

entity o f interest before the treatment was implemented.

The entire framework of the Empirical Bayes (EB) procedure is supported by the joining 

o f these two clues. The same notations used by Hauer (1997) are used here and joining 

o f the two clues resulted in Equation 3.8;

E {K \K }= aE {K ) + i^ -a } K  (3.8)

where E { k } = expected accident frequency in the reference population 

K = accident counts (history) at the entity o f interest 

a  = is a weight between 0 and 1 

I f  a  is close to 1 then the safety in the reference population is close to the safety at the 

entity o f interest. Conversely, if a  is close to 0, then the safety, k, of the entity o f interest 

is close to the count of accidents recorded on it. Clearly the weight, a, in Equation 3.8 

plays a pivotal role in the EB procedure and is calculated using Equation 3.9:

1
a (3.9)

where as the variance of the accident frequency, VAR{k}, is estunated using Equation 

3.10:
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VAR{K\K} = { \ - a ) E { K \ K }  :  ̂ - > v > (3.10)

Therefore, one must be able to estimate E {k } and V A R {k } before the EB procedure can 

be performed. Hauer (1997) assumed that the accident count at the entity of interest, K, 

obeys the Poisson distribution while the k’s in the reference population follow a gamma 

probability distribution. By knowing the probability distributions of accidents in the 

reference population and treated sites, Hauer (1997) was able to prove that the probability 

density function of the k’s in the reference population is indeed gamma distributed by 

using Bayes theorem. The derivation is not shown here, only the results. The gamma 

distribution of the k’s in the reference population, assuming that the distribution of the 

accidents at the entity of interest is Poisson distributed, is given by Equation 3.11 :

* r ( F r ï )

where the parameters ‘a’ and ‘b ’ are associated with the gamma distribution. From the 

properties o f gamma distribution:

• The mean is the ratio of the parameter b to parameter a; that is E{k) = —
a

• The variance is the ratio of the parameter b to the squared of parameter a, that is

VAR{k ) = \  
a

Therefore,

b 0
a = ----------  and b = a VAR{k}

E{k}

implying that
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-  a^VAR{K} ^  a _ VAR{k ) ^  1 _  VAR{k )
€?■ E {k )  ^  a ~  E{k)

resulting in

E{k }
^ VAR{k )

Thus substituting for parameter ‘a’ parameter we can find parameter ‘b ’

Therefore, i f  parameter ‘b ’ is known, we can then easily estimate E{k} and VAR{k}. 

The estimation o f ‘a’ and ‘b ’ hinges on the fact that E{k} and VAR{k} are known. Two 

methods are proposed (Hauer 1997) to calculate E{k} and VAR{k}. They are:

1. Method o f Sample Moments

2. Multivariate Regression Method

More emphasis will be placed on the multivariate regression method in this thesis 

because it’s the method that is widely accepted as being the better o f the two.

Before moving on, some clarification is worthwhile with respect to Equations 3.8 and 

3.9. Simplifying Equation 3.9 will result in the following:

a  = ---------------= ------------------   but we know what VAR{k} is equal to,
 ̂  ̂ VAR{k ) E{k } + VAR{k )

E {k }
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VAR{k } = , therefore substituting for VAR{k} will result in
b

E{k ) b
-  = a

b

Now 1 -  «  = 1----------   ; simplifying we have - \ - a
b ^ E { K )  ^  b+E{K)

Therefore, Equation 3.8 when simplified resulted in Equation 3.14:

(3.14)
b + E{K) b + E{K) b + E{K]

where E{k|K} estimates the number  of crashes

An important aspect of Equation 3.14 is the duration for which E{k} pertains to. E{k} 

must have the same duration as the before period accidents accounts, K. Usually E{k} is 

estimated in crashes per year, and that estimate is simply multiplied by the number of 

years for which we have before period accident counts, K.

3.2.1 Multivariate Regression Method

As the name suggest, this method is simply using a fitted regression equation to estimate 

E{k} and VAR{k}. The models use accident frequency as the dependent variable and 

traits such as AADT, lane widths, lighting etc. as the independent variables. Fitting such 

a regression model falls in the domain of statistics and is discussed in more detail in 

Section 3.4 since it is very crucial to the validity of the results for this research.

The estimate of a multivariate model that is fitted to accident counts is E{k}; this is the 

expected accident frequency in the reference population. The other estimate that is
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needed is the VAR{k}. Based on previous work (Persaud et al. 2001, Persaud et al. 2003, 

McGee et al. 2003, etc.) the VAR{k} is estimated by Equation 3.15

\2
VAR{k} = ^ £ ^ ^ (3.15)

The relationship is the same as Equation 3.13. Again, the parameter ‘b ’ is associated 

with the gamma distribution. This parameter is usually estimated during the fitting o f a 

multivariate regression model to the accident data. The method of maximum likelihood 

is usually used in the parameter estimation process. More details o f the modeling 

approach are discussed in Section 3.4. The relationship shown in Equation 3.15 was 

confirmed when the estimates of VAR(k} were plotted against the estimated E{k} for a 

specific entity (Hauer 1997).

Fitted Multivariate
Regression Model18 T

Accident Counts

Â 14 - -

E { k }10 - -

Residuals

600050004000300020001000
Covaiiate or Independent Variables (e.g. AADT) 

Figure 3.2 -  Plot of a typical SPF (Hauer 1997)
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Figure 3.2 illustrates the concept of the multivariate regression method and the estimate 

of VAR{k}. Hauer (1997) suggested that the estimate of VAR{k} for a single data point 

is as shown in equation 3.16

VAR{k ) = \^E{k} -K ) '' -  Estimate o f  E{k)^ (3.16)

Figure 3.2 depicts the residual for a single data point (accident count) on an entity of 

interest. The relationship of VAR{k} that is commonly adapted is not actually ‘always’ 

the case (Hauer 1997). This equation is usually dependent on the data on which the 

multivariate regression model was fitted. However, this relationship was adopted in 

several sources (Council et al. 2005, Persaud et al. 2003, McGee et al. 2003 etc.) and is 

also used in this thesis.

The discussions so far have been based on how safety is quantified for an entity during 

the before period. In summary, if one needs to estimate the safety of an entity, the 

following steps would be followed:

• Estimate E { k} and VAR{k} from either the multivariate regression method

• Find the weight, a, using Equation 3.9, and

• Use Equation 3.8 to estimate the expected accident frequency on the entity of 

interest.

The EB procedure (Hauer et al. 2002) explained so far has been referred to as the 

abridged version since it only uses the average traffic flow and a few (2-3) years of 

accident counts. However, Hauer et al. (2002) has shown that by using longer before and
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after years of traffic and accident counts, the safety estimate is much more precise than 

when estimated by the shorter version. The full EB procedure is explained next.

In road safety analysis, more than one year of before and after period of accident data are 

usually collected for an entity. That is, in the before period one could have data on an 

entity for several years as bi, b2 , ..., by, where by represents the last year o f before period 

data. The same applies to the after period, that is, one could have data on an entity for 

several years as ai, az, . . . ,az  where a% is the last year o f data in the after period. With 

yearly data on an entity ‘i ’, the expected accident frequency E{Kj} will be different each 

year. The estimate of E{xi} is usually derived from a multivariate regression model, thus 

one would have estimates o f Ki,bi, Kj,b2, • • •, Kj,by.

The multivariate regression model developed from the reference population is used to 

calculate E{Ki,bi}, E{Kj,b2 }, ... , E{Ki,by} using time (yearly) sensitive parameters. As will 

be explained in Section 3.4, a model is usually used to capture the systematic variations 

among the data (covariates) and link it to a dependent variable (expected accident 

frequency). Since each year will experience a different count o f accidents, the average 

model with its same intercept term or multiplier cannot be used to estimate the Efxj} for 

each year. The intercept is usually calibrated to capture the non-systematic variations in 

the data, such as driver’s age, demography, traffic volume trends, education, accident 

reporting etc. The procedure on how the intercept is calibrated for each year is illustrated 

in (Harwood et al. 2002 and McGee et al. 2003).
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The next question that must be answered is, how does the EB procedure account for the 

changes in expected accident frequency for each year? Hauer (1997) assumes that the 

change in the expected accident frequencies for each year can be used to capture the non- 

systematic variations in the data by using Equation 3.17:

C i , y = ^  (3.17)

where Ki,y = prediction in year ‘y’

Ki,bi = prediction in year ‘ 1 ’

The purpose of using Ci,y in Equation 3.17 is to capture the changes at an entity over 

time. These changes are non-systematic, and cannot be quantified by the regression 

model. The best estimate is given by Equation 3.17. The reason is that, in a model 

equation, the accident counts are a frmction of independent variables (AADT, lane widths 

etc.) and by definition of Equation 3.17, C,,y is in turn a function of the independent 

variables.

Therefore, under the full empirical Bayes (EB) framework, the safety at some entity ‘i ’ 

during the first year ‘b i’ is estimated using Equation 3.18 (Hauer 1997):

= — I  y  (3.18)

and
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\2

y=l

^/.l

'  + È C , ,

(3.19)

where 6 is a parameter estimated during the fitting of a regression model (the dispersion 

parameter). Just illustrated differently here for simplicity:

Y
Ki y = sum of accident counts on the entity of interest ‘i ’ during the before

y=l

years ‘bi,b2,...,bY’

} ~ fbe estimate o f the first year o f safety at entity ‘i” using the regression 

model.

The only difference between Equations 3.18 and 3.8 is the new parameter Ci,y. The 

concept o f weight explained in the shorten EB procedure applies here also. However, the 

weight in the full EB procedure uses different expected accident frequencies for each 

year whereas the shortened version uses the same for each year. Simplifying Equation 

3.18 will result in Equation 3.14 with the addition of the Ci,y parameter

-
y=l

+ y q ,  b + E i ' ^ , Æ c , ,
 1 y=t
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where

r .  ^  '

^ -  is exactly the same as Equation 3.8, only here we are

taking into account E{Ki,y} and not simply E{Ki}.

Knowing what the safety is in year ‘ 1’ is only part of what is needed. The safety at the 

entity in later years b^, ba, ... by and ai, az ..., a% is also needed. Manipulating Equation 

3.17, one can estimate the safety of an entity each year after year ‘ 1 ’ ; that is,

(3.20)

and

(3.21)

In essence. Equation 3.17 is simply normalizing the regression estimate of E{Ki} ft"om 

year 1 and thereby accounting for the non-systematic changes based on year 1 as the 

reference point. Therefore, using longer before and after periods does actually help to 

estimate safety more precisely since the shortened EB version does not account for these 

changes.

The first question posed earlier, that is, what would have been the safety of the entity in 

the after period had the treatment not been implemented, is now answered by the use of 

Equation 3.20.
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So far, there has been discussion of the EB procedure for estimating the safety at an 

entity i f  a treatment was implemented. Another common method is the Naive approach 

which is discussed next. The Naïve method is usually not favoured by safety analysts at 

present but they can serve as a guide if accident data are not available to perform the EB 

procedure.

3.3 The Naïve Before-After Procedure

As in the EB method, we need to answer the same two fundamental questions in the 

Naive approach:

1. What would have been the safety of the entity in the after period had the treatment 

not been implemented, tc?

2. What is the safety after the treatment was implemented, X?

The basis o f the naive method is that the before period accident counts, Kb, are used as an

estimate o f the expected accident in the after period, Ka, had the treatment not been

implemented (Hauer 1997). For this method, another parameter must first be defined,

namely the “ratio o f duration” rj:

_  Afier period duration at entity ^  22)
^  Before period duratio at entity

The following formulae outline the approach of the Naive procedure:

% = (3.23)
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VAR{À}=IC,  : * ; ; i - -i- r. (3.24)

^  = r̂ ATj (3.25)

= (3.26)

Accident counts are assumed to be Poisson distributed, implying that the mean and the 

variance are equal. With this assumption, K@ is equal to the mean and variance of the

after period accident counts. More detail derivations of these equations are found in

Hauer (1997).

Knowing X and tc of an entity, the safety effectiveness is found using either of the two 

methods discussed previously, namely;

1. Reduction in Expected Number of Crashes, Ô

2. Index of Effectiveness, 0

The naive procedure does not account for changes in several factors such as traffic and 

accident trend, weather, driver’s demography etc. So, in essence, the naive procedure 

simply assumes that had a treatment not been implemented, these factors will remain the 

same fi’om the before to the after period. Obviously this is not the case. Based on several 

previous findings (Lord 2000; Hauer 1988; Persaud 2001; etc) traffic flow seems to 

always have a direct relationship with accidents. Accordingly, Hauer (1997) proposed a 

modification of the simple naive procedure whereby changes in traffic flow between the 

before and after periods are accounted for.

There are two ways in which traffic flows are accounted for in the naive procedure:

1. iinear or proportional assumption - traffic flow and accident counts are 

considered to exhibit a proportional relationship with each other and
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2. Non-linear or non-proportional assumption - traffic flow and accident counts are 

considered to follow a non-proportional relationship.

The same set o f equations (Equations 3.22 through 3.26) is used in this modified naive 

approach. Traffic flow changes are accounted for by use of a variable introduced by 

Hauer (1997) referred to as the traffic flow correction factor, rtf, and is defined as the 

ratio o f the after period flow to the before period flow as shown in Equation 3.27:

-  f  flow) / / {^Before flow) (3.27)

where:

f(afler flow) = expected number of crashes with the after period flow (average after 

period if more than one year is used) 

f(before flow) = expected number of crashes with the before period flow (average before 

period if  more than one year is used).

Under the assumption that the traffic flow and expected accidents have a proportional 

relationship Equation 3.27 will result in Equation 3.28:

_ Average after traffic flow, Ag^grage ^ 3  2 g)
^  Average before traffic flow,

and

rA R {r,f}  = r /  p  +

where:
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V = the coefficient of variation defined as the standard deviation of a variable divided 

by its mean.

When the relationship is not proportional (not linear), Equation 3.30 is used to find rtf.

/  ( Average after traffic flow, A^^^age )

/  ( Average before traffic flow. Beverage )

The variance of rtf is given by

VAR\rtf]=rtffi^
c  jffiAR{^Açiyef-age^ average

f  (-^average) f  (^average)

where

(3.30)

(3.31)

ca= derivative of the SPF with respect to the traffic flow at Aaverage 

cb = derivative of the SPF with respect to the traffic flow at Baverage 

Knowing what rtf and VAR(rtf) are, the modified form of Equation 3.25 is given by:

(3.32)

3.4 Accident Prediction Models

Development of safety performance functions (SPFs) is a critical component in road 

safety analysis, especially in empirical Bayes estimation. SPFs are simply statistical 

multivariate models developed from the theory of multivariate regression analysis, in 

which the dependent variable is the accident count and the independent variables are the 

traits at the entity. Traits refer to geometric, traffic and operational composition of an 

entity (lane width, traffic control, number of lanes, speed limit, traffic volumes etc,). 

This component of safety estimation lies in the domain of statistics in which SPFs are
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usually calibrated using generalized linear modeling (GLM). The rudiments o f GLM are 

presented next.

The time honoured theory of linear multivariate regression analysis has been used 

extensively when one aims in developing some functional relationship, to relate a 

dependent variable to several independait variables or a single independent variable. 

The classic form of a multivariate model is given by Equation 3.33 :

E {y) = Po +  "I— ^Pk^k (3.33)

where y is the dependent (outcome or response) variable, xi,X2 , ... , Xk are a set o f 

independent (predictor or regressor) variables and Po, Pi,P2 , ... , Pk are unknown 

coefficients. However, there are situations where the relationship between the dependent 

and independent variables is not linear. The theory o f non-linear regression analysis is 

the alternative choice with a typical model taking the following form:

y  = (3.34)

The reason Equation 3.34 is referred to as a non-linear model is that the parameter Pz 

exhibits a non-linear form. Another approach in judging when a model is non-linear is 

when the partial derivatives are functions of the unknown parameters. Regardless o f the 

model form used in the linear and non-linear multivariate regression analysis, the errors 

are always assumed to follow the normal distribution (Raymond et al 2002). With any
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regression analysis that follows the normal distribution the assumption of 

homoscedasticity is made. This assumption is one in which the variance of the error term 

is constant for each value of the independent variables.

The method of least squares or maximum likelihood (ML) is usually used to estimate the 

unknown parameters in Equations 3.33 and 3.34. The least squares approach has been 

very popular due to its simplicity; where estimates of the unknown parameters are 

achieved when the residual sum of squares (Equation 3.35) is minimized:

(3-35)
/=1

where yi = observed dependent variable, j).= estimated dependent variable. The

maximum likelihood approach on the other hand is a tad more mathematically inclined 

but is the only way one can estimate the unknown parameters for an SPF that takes the 

form of a GLM.

The first step in performing the maximum likelihood estimation is to have a likelihood 

function with a known probability distribution. The likelihood function is then the joint 

probability distribution of the observations. The normal distribution is mathematically 

defined as:
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where fi = mean of the observation and = variance. From Equation 3,33, the mean |i 

= y  since the equation is simply finding the expected value of y, (E{y}). The component 

o f  (x-p) in Equation 3.36 is the error of the normal distribution (Raymond et al. 2002). 

Therefore Equation 3.33 will result in:

(3.37)

where i = 1 ,2 , . . . ,  n parameters and j = 1, 2 , . . . ,  k coefficients for observation y;. 

Knowing that 8 = (x-p) in Equation 3.37, we can substitute into Equation 3.36:

a
/ W = , (3.38)

The likelihood fimction is then the joint probability distribution of Equation 3.38, giving 

rise to:

From the likelihood function (Equation 3.39), values of p and cP" are iteratively 

substituted into the function until the maximum possible value attainable is achieved.

The value o f P that maximizes the likelihood function is in turn its estimate.

In the discussion so far, the assumption that the dependent variable follows the normal 

distribution was made. However, crashes do not follow the normal distribution, implying
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that the classic linear or non-linear regression, as commonly applied, cannot be used for 

developing SPFs. The distribution of crashes at an entity was found (Hauer 1997; Poch 

1996; Lord 2005; etc) to follow the negative binomial distribution instead. When the 

error structure does not follow the normal distribution, a unique form of regression 

technique known as generalized linear models (GLMs) is adopted instead.

The use o f GLM was developed so linear or non-linear regression models may be fitted 

by a very diverse set of distributions called the exponential family (Myers 2002, Dobson 

2002; Myers 1990; and McCullah 1989). The exponential distributions are normal, 

binomial. Poisson, geometric, negative binomial, exponential, gamma, and inverse 

normal distributions. The choice of using the negative binomial distribution in modeling 

accidents has been shown to be the preferred approach in several sources (Hauer 1997; 

Hauer et al 1988; Poch 1996 etc).

The negative binomial distribution (NB) is defined mathematically as:

[ ! - % ) ] "  (3.40)

where P(xi) = probability of x crashes at entity i; therefore 0 < P(x; )< 1

a = NB distribution parameter a >0; usually referred to as the dispersion parameter 

yi = number of accidents an entity is likely to experience; y; = 0, 1, 2 ...

The mean is given by Equation 3.41:
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= ' (3 .4 ,)

and the variance is given by Equation 3.42:

V ^ ( y i )  = JUi (3.42)
V oc J

where the probability, P{Xj}, is assumed to follow the gamma distribution (Hauer 1997;

Lord et al 2005; Miaou 1996 etc).

The GLM has three fundamental components (McCullah and Nelder 1989):

1. The random component -  this component consists o f the dependent variable with 

a specific error distribution. In our case the dependent variable is accident counts, 

E{accident} = |x, with the negative binomial error distribution

2. The systematic component — this component consists of the independent variables 

that will be used to develop a linear model. This model will serve as the 

predictor, q

3. The link component -  this is a very critical component in GLM methodology 

because it links the random component to the systematic component. The link 

between jx and q is usually in the form of a function that depends on the error 

structure. For the negative binomial distribution, the link function is

the log
A

The parameter estimation process in a GLM uses the maximum likelihood (ML) 

approach. In this study, since we know the distribution of the dependent variable, the ML 

method was adapted.
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The likelihood function for the negative binomial distribution (Equation 3.40) is given by 

Equation 3.43 and is solved by taking the log. Therefore the likelihood equation is

By taking the log of the likelihood function, Equation 3.43 is reduced in a much simpler 

form that can be easily solved. The log of the likelihood function is given by Equation 

3.44:

log(Z) = ̂ [log(v; +a- \ ) \ - Inx  -  log (a - 1) !+a log(f (%, )) + log ({l -  f  (z, )})] (3.44)
/=1

The model parameters are found by iteratively substituting values for yi, a  and P{xi} in 

Equation 3.44 until the function is maximized.

3.4.1 Models Functional Form and Goodness-of-Flt-Measures

The functional forms of the models were developed after conducting exploratory analyses 

of the data. Use of the Integrate-differentiate (ID) method, developed by Hauer and 

Bamfo (1997), was the initial step in selecting a functional form. The procedure 

consisted of developing an Empirical Integral Function (EIF) by placing each potential 

variable (for each site) into a series of bins. The bins are sorted in an increasing order. 

The left boundary of a bin for a single site is located halfway between the current site and 

the preceding site. The right boundary of the bin is located halfway between the current
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site and the succeeding site. The height o f the bin is the accident count on the site. The 

width o f the bin is the difference of the right and left boundary at a site. The area o f the 

bin (height x width) is the value o f the EIF at that site. The EIF is then plotted and 

compared to some pre-established functions (power, gamma, polynomial etc) as shown in 

Figure 3.3.

If  the EIF should have a similar shape to any of those in Figure 3.3, then the pertinent 

functional form is selected. This method has been applied in several studies (Lord 2000; 

Persaud et al. 2002) in selecting a functional form for their safety performance functions. 

Other functional forms (McGee et al. 2003; Lord 2002; Hauer 1988 etc) were also 

investigated in this project with the aim of using the best model form for the data.

The functional form is by no means a simple selection from already built ones, even 

though those are helpful. In engineering practice, common sense plays a vital role. The 

developed model with its estimated parameters must adhere to common knowledge. For 

example if  one were to develop an SPF for a roadway segment, the parameter estimated 

for the road length will have to be positive to adhere to common knowledge that a longer 

roadway segment is more likely to have more crashes than a shorter one. This type o f 

reasoning was adopted in developing SPFs for this thesis.

Once parameters were estimated using the maximum likelihood approach, their statistical 

significance was checked. A 5% significance level was used to validate the statistical 

significance o f each parameter in the models.
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Two other statistics were used to evaluate the goodness-fit (GOF) statistics for models:

1. The Deviance/(n-p) -  this measure is ratio of the deviance of the full model to 

the degrees of fireedom, n-p. The value of this ratio serves as a gauge of the 

dispersion of the data.

2. The Pearson Chi-Statistic -  this hieasure is the ratio of the Pearson Chi-Statistic 

to the degree of freedom.

The underlying theory for these two statistics was developed by McCullah and Nelder 

(1989). In theory, both measures should be close to 1 if  a model was to be considered 

adequate. However, safety analysts (Bauer and Harwood 1996) suggest that if  the 

Pearson Chi-Statistic is somewhere in the range of 0.8 to 1.2, the models should still be 

considered as a well fitted model to the data.
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p<o

p>o

X =  AADT

p<0

P>0

X =  AADT

Polynomial Function f 2(x)= ax+ fix^ Ploynomial Function F2(X ) = (^a/2) +(^/3/3)X^
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x= A A D T
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X =  AADT

Gamma Function (x)= axe^"" 
This Gamma Junction is also the

sameasax^e^^^

Gamma Function F  ̂(X ) = a

Figure 3.3 Plots of pre-established functions (Hauer and Bamfo, 1997)
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Another method used in this report to assess GOF is the CURE (cumulative residuals) 

plot developed by Hauer and Bamfo (1997). The method consists of three plots;

1. The plot of the cumulative residuals (difference of the actual and predicted 

accident for each entity) against each variable separately. The cumulative 

residual is sorted in increasing order.

2. The +2a and -2a plots. The parameter a  signifies the standard deviation

For a model to have a good fit under the CURE method, the plot in 1 (preceding point) 

should oscillate around the value of 0 and within the two standard deviation boundaries. 

For instance, Figures 3.4 and 3.5 illustrate the essence of the CURE plots. The cure plots 

developed in Figures 3.4 and 3.5 were from an SPF developed from California rural 

intersections (same data used in this thesis). The model form used for this illustration is 

E{K}=a(Major AADT)^^(Minor AADT)^^ . Figure 3.4 illustrate the plot of the major 

AADT variable while Figure 3.5 illustrates the plot of the minor AADT variable.

Both plots depict a constant oscillation of the cumulative residuals around zero which 

was also bounded within the 2 standard deviations limits. Since the plot was bounded 

within the 2a  limits, the functional form and its estimated parameters are judged as being 

from a well fitted model. The main advantage of the CURE plot against conventional 

GOF measures (level o f significance, Pearson Chi-Statistic etc) is that safety analysts can 

examine how well the model fits the independent variables along the entire range of its 

values. As in our case (Figure 3.4) it shows that the model does not estimate the 

expected accident frequency well when the major AADT is larger than 20,000. For the 

minor AADT variable, the model had the same problem of poor performance when the
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AADT range is greater than 7,000. For a more detailed description of the method, see 

Hauer and Bamfo (1997).
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Figure 3.4 -  Cumulative residuals for 4 leg with 2 lanes’ stop controlled intersections ^ a jo r  AADT
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Figure 3.5 - Cumulative residuals for ‘4 leg with 2 lanes’ stop controlled intersections (Minor AADT

as the parameter)
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CHAPTER 4: Database Used “
The ftmdamental objective of this study was to quantity the safety effects of installing a 

traffic signal at rural intersections using the Empirical Bayes (EB) and conventional 

methodologies. To achieve this, appropriate treated sites were retrieved firom the 

Highway Safety Information Systems (HSIS) database for two states, California and 

Minnesota.

4.1 California

There were 28 intersections with 10 years (1993 -  2002) of data, that were converted

fi'om stop to signal control in the California database and the treatment sites were

disaggregated into three categories:

1. Three-legged with 2 lanes on the major approach (4 sites),

2. Four-legged with 2 lanes on the major approach (12 sites), and

3. Four-legged with 4 lanes on the major approach (10 sites).

This data is summarized in Tables 4.1, 4.2 and 4.3.

C rash
Types

P eriods All Severity In ju ry  Severity PD O  S everity
Mean Min Max Mean Min Max Mean Min Max

Total
Before 22.3 3.0 71.0 9.5 1.0 31.0 12.8 2.0 40.0
A fter 22.8 3.0 65.0 7.0 0.0 21.0 15.5 2.0 44.0

Right
Angle

Before 0.3 0.0 1.0 0.3 0.0 1.0 0.0 0.0 0.0
After 0.0 0.0 0.0 0.0 J 0.0 0.0 0.0 0.0 0.0

Left Turn
Before 13.8 1.0 50.0 6.5 0.0 24.0 7.3 1.0 26.0
After 0.8 0.0 2.0 0.5 0.0 1.0 0.3 0.0 1.0

Rear End
Before 0.5 0.0 1.0 0.0 0.0 0.0 0.5 0.0 1.0
After 0.8 0.0 2.0 0.5 0.0 1.0 0.3 0.0 1.0

Mean Min Max
Avg. M ajor 
A ADT

Before 12,975 5,750 19,100
A fter 15,105 7,400 26,944

Avg. M inor 
AADT

Before 5,613 201 10,300
A fter 5,640 201 10,300

N um ber o f  
Years

Before 3.5 1.0 5.0
A fter 5.5 4.0 8.0
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Table 4.2 -1
C ra s h
T y p es P e rio d s All Severity In ju ry  S everity P D O  S ev erity

Mean Min Max Mean Min Max Mean Min Max
T otal B efore 15.2 1.0 51.0 8.6 1.0 28.0 6.5 0.0 29.0

A fter 13.2 2.0 34.0 4.2 1.0 9.0 9.0 1.0 26.0
R igh t
A ngle

B efore 3.8 0.0 11.0 2.5 0.0 7.0 1.2 0.0 4.0
A fter 0.9 0,0 3.0 0.3 0.0 2.0 0.6 0.0 3.0

L eft T urn B efore 4.3 0.0 26.0 2.3 0.0 13.0 2.0 0.0 13.0
A fter 3.1 0.0 10.0 0.8 0.0 5.0 2.3 0.0 8.0

R ear E nd B efore 0.9 0.0 3.0 0.3 0.0 2.0 0.6 0.0 3.0
A fter 0.6 0.0 2.0 0.2 0.0 1.0 0.5 0.0 2.0

Mean Min Max
A vg. M ajo r 
A A D T

B efore 10,344 7,400 18,738
A fter 11,204 7,763 21,700

A vg. M in o r 
A A D T

B efore 2,150 101 5,280
A fter 2,187 101 5,280

N um ber o f  
Y ears

B efore 4.0 1.0 8.0
A fter 5.0 1.0 8.0

T a b le  4.3 -  S u m m a ry  o f  T re a te d  In te rsec tio n s w ith  4 legs a n d  4 lanes o n  m a jo r  a p p ro a c h
C ra s h
T y p es

P e rio d s A ll S everity In ju ry  Severity P D O  S ev erity

Mean Min Max Mean Min Max Mean Min Max

T otal
B efore 18.2 4.0 38.0 9.0 2.0 20.0 9.2 2.0 28.0
A fter 27.2 11.0 75.0 12.9 3.0 37.0 14.3 4.0 38.0

R ight
A ngle

B efore 5.2 0.0 14.0 3.1 0.0 9.0 2.1 0.0 8.0
A fter 2.3 0.0 7.0 1.3 0.0 4.0 1.0 0.0 5.0

L eft T u rn
B efore 5.1 0.0 13.0 3.0 0.0 9.0 2.1 0.0 5.0
A fter 5.5 0.0 12.0 2.3 0.0 7.0 3.2 0.0 9.0

R ear E nd
B efore 0.7 0.0 3.0 0.3 0.0 2.0 0.0 0.0 2.0
A fter 2.1 0.0 8.0 1.4 0.0 5.0 1.0 0.0 3.0

Mean Min Max
A vg. M ajo r 
A A D T

B efore 15,958 7,018 25,666

A fter 18,235 7,155 29,750

A vg. M inor 
A A D T

B efore 2,716 600 9,700

A fter 2,791 600 9,646

N um ber o f  
Y ears

B efore 3.4 1.0 6.0

A fter 5.7 3.0 8.0

0 1
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4.2 Minnesota
The Minnesota database consisted of 17 treated intersections with 12 years (1991 -  2002) 

of data and the sites were disaggregated into two categories: 

1. Three legged intersections (2 sites), and

2. Four legged intersections (15 sites). 

This data is summarized in Tables 4.4 and 4.5.

C rash
Types P eriods

All Severity In ju ry  Severity PD O  S ev erity

Mean Min Max Mean Min Max Mean Min Max

Total Before 30.0 0.0 60.0 16.0 0.0 32.0 14.0 0.0 28.0
A fter 16.0 8.0 24.0 8.5 2.0 15.0 7.5 6.0 9.0

Right
Angle

Before 9.0 0.0 18.0 4.0 0.0 8.0 5.0 0.0 10.0
A fter 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Left Turn Before 5.0 0.0 10.0 4.0 0.0 8.0 1.0 0.0 2.0
A fter 1.0 0.0 2.0 1.0 0.0 2.0 0.0 0.0 0.0

R ear End Before 8.5 0.0 17.0 5.0 0.0 10.0 3.5 0.0 7.0
A fter 9.0 4.0 14.0 4.5 0.0 9.0 4.5 4.0 5.0

Mean Min Max
Avg. M ajor 
AADT

Before 18,361 18,223 18,498
After 17,278 17,065 17,491

Avg. M inor 
AADT

Before 2,068 602 3,535
After 3,666 1,077 6,255

Num ber o f  
Years

Before 6.5 6.0 7.0

After 4.5 4.0 5.0

T ab le  4.5  -  S um m ary  o f T rea ted  In tersec tions w ith  4 legs
C ra sh
Types P eriods

A ll Severity In ju ry  Severity P D O  Severity
Mean Min Max Mean Min Max Mean Min Max

Total
Before 53.1 6.0 142.0 23.5 0.0 46.0 29.7 4.0 96.0
After 60.7 6.0 202.0 24.7 0.0 88.0 36.1 6.0 114.0

Right
Angle

Before 28.5 2.0 66.0 14.5 0.0 34.0 14.1 2.0 43.0
After 16.2 2.0 62.0 8.5 0.0 30.0 7.7 0.0 32.0

Left Turn
Before 4.7 2.0 14.0 2.4 0.0 10.0 2.3 0.0 6.0
A fter 7.3 0.0 62.0 2.7 0.0 28.0 4.7 0.0 34.0

Rear End
Before 9.8 0.0 30.0 4.2 0.0 14.0 5.6 0.0 22.0
After 27.9 2.0 66.0 9.8 0.0 30.0 18.1 0.0 42.0

Mean Min Max
Avg. M ajor 
A ADT

Before 13,739 3,261 29,926
After 17,614 3,327 38,179

Avg. M inor 
A ADT

Before 2,659 986 5,210
A fter 5,324 1,759 18,165

N um ber o f  
Years

Before 4.5 1.0 8.0
A fter 6.5 3.0 10.0
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The different crash types considered in this research were:

1. Total,

2. Right angle,

3. Left-tum, and

4. Rear-end.

The definition o f the each crash types is illustrated in Figures 4.1 through 4.3. Other 

forms o f rear-end crash definitions used in this thesis are illustrated in Appendix A.

CO

2 Vehicle 1 - Straight 
Through__________

Figure 4.1 -  Typical Right-Angle Cashes - Vehicles 1 and 2 both continue straight through the 
intersection after they were traveling perpendicular to each other
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V ehicle  2 - S traight 
T hrough

m b - —

V ehicle 1 - Left 
Turn /

Figure 4.2 -  Typical Left Turn Crashes - Vehicle 2 traveling straight through intersection while
vehicle 1 turns left

Vehicle 1 - Straight 
Through

Vehicle 2 - Straight 
Through

Figure 4 3  - Typical Rear End Crashes (Other forms of rear-end crashes illustrated in Appendix A)
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The California and Minnesota database both followed the KABCO severity scale 

(Council et al. 2005). The KABCO severity scale is used by police officers at the scene 

o f a crash to categorise injury severity as either K (killed), A (disabling injury), B 

(evident injury), C (possible injury) or O (no apparent injury). In this study, K, A, B and 

C severity were aggregated and referred to as injury severity due to very sparse K and A 

level severities in both data sets which resulted in poorly fitted regression models for the 

disaggregated severities.

4.3 Reference Populations

4.3.1 California
The following three reference populations were compiled for the treated intersections in 

the California database:

1. Three-legged with 2 lanes on the major approach (1405 sites)^

2. Four-legged with 2 lanes on the major approach (726 sites), and

3. Four-legged with 4 lanes on the major approach (183 sites).

Tables 4.6, 4.7 and 4.8 summarize the basic information used in calibrating SPFs for the 

three reference groups.

C ra s h
T y p es

A ll S everity In ju ry  Severity P D O  S ev erity
Mean Min Max Sum Mean Min Max Sum Mean Min Max Sum

T otal 8.5 0 139 11,880 3.6 0 80 4,958 4.9 0 74 6,736
R igh t A ngle 0.2 0 6 258 0.1 0 5 146 0.1 0 2 108
L eft T u rn 1.7 0 87 2,401 0.9 0 57 1,217 0.8 0 30 1,155

R ear E nd 0.6 0 10 6,736 0.3 0 5 362 0.4 0 5 509
Mean Min Max

A vg. M aj. 
A A D T

9,019 2,950 31,450

A vg. M in. 
A A D T

554 100 10,001
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C rash
Types

All Severity In ju ry  Severity PD O  S everity
Mean Min Max Sum Mean Min Max Sum Mean Min Max Sum

Total 13.9 0 94 10,314 6.4 0 49 4,685 75 0 46 5,476

R ight Angle 3.3 0 47 2,428 2.0 0 29 1,427 1.3 0 19 976
Left Turn 2.3 0 31 1,719 1.2 0 21 895 1.1 0 17 809
Rear End 1.0 0 18 798 0.4 0 10 305 0.6 0 8 432

Mean Min Max
Avg. M aj. 
AADT 8,557 3,101 28,055

Avg. M in. 
A ADT

656 100 7,800

C rash
T ypes

All Severity In ju ry  Severity PD O  Severity
Mean Min Max Sum Mean Min Max Sum Mean Min Max Sum

Total 12.3 0 75 2,251 5.9 0 41 974 6.4 0 41 1,156
Right A ngle 2.8 0 35 513 1.6 0 22 273 1.1 0 13 193
Left Turn 2.5 0 23 449 1.4 2 15 227 1.0 0 10 187
Rear End 1.0 0 8 176 0.4 0 4 63 0.6 0 6 105

Mean Min Max
Avg. M aj. 
AADT

12,441
3,087 30,500

Avg. Min. 
AADT

12.3 0 75

4.3.2 Minnesota
The following two reference populations were compiled for the treated intersections in 

the Minnesota database:

1. Three-legged intersections (522 sites), and

2. Four-legged intersections (736 sites).

These reference groups were not disaggregated by number of lanes on the major 

approach because they resulted in very small sample sizes which generated poorly fitted 

regression models. Tables 4.9 and 4.10 summarize the basic information used in 

calibrating SPFs for these two reference groups.
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Table 4.!
C ra s h
T y p es

A ll S everity In ju ry  Severity P D O  S ev erity
Mean Min Max Sum Mean Min Max Sum Mean Mm Max Sum

T otal 485 409 601 5,822 220 189 279 2,640 265 206 322 3,182
R ight A ngle 134 93 170 1,609 74 54 96 889 60 31 82 720
L eft T urn 35 25 44 415 17 10 25 203 18 10 26 212
R ear E nd 136 109 200 1,633 60 38 73 723 76 59 134 910

Mean Min Max
A vg. M aj. 
A A D T 6,710 1,165 32,645

A vg. M in. 
A A D T 989 196 12,750

T a b le  4 .10  -  S u m m a ry  o f  U n converted  In te rsec tio n s w ith  4 legs
C ra s h
T y p es

A ll Severity In ju ry  S everity P D O  S ev erity
Mean Min Max Sum Mean Min Max Sum Mean Min Max Sum

T otal 1,445 1,196 1,630 17,335 708 582 828 8,492 737 614 850 8,843
R igh t A ngle 718 577 834 8,610 423 308 506 5,073 295 222 380 3,537
L eft T urn 92 64 120 1,104 47 20 60 563 45 34 70 541
R ear E nd 281 219 364 3,375 123 76 149 1,472 159 96 215 1,903

Mean Min Max
A vg. M aj. 
A A D T

5,538 1,173 31,074

A vg. M in. 
A A D T

902 194 18,774

4.4 Exploratory Analyses of the Data

The reference populations for both California and Minnesota data were examined to 

reveal frequency distributions and possible functional forms before any form of 

regression analysis was attempted. Frequency plots were developed for total crashes 

after which the shape of the plots was used to attest possible probability distributions 

(Bauer and Hardwood 1998).
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4.4.1 Frequency Distribution ..-g/" '

4.4.1.1 California
The frequency distributions for the California reference groups were developed by 

plotting total number o f crashes in the 10 year period against the number of 

corresponding intersections that experience such crashes. Resulting frequency 

distributions are shown in Figure 4.4,4.5 and 4.6.

9 100

s  60

% 40

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

Niuner of Crashes in 10 years

Figure 4.4 -  Total Accident Frequency Distributions for three-legged intersections with 2 lanes on
major approach
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Figure 4.5 -  Total Accident Frequency Distributions for four-legged intersections with 2 lanes on
major approach
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Figure 4.6- Total Accident Frequency Distributions for four-legged intersections with 4 lanes on
major approach
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4.4.1.2 Minnesota

The summary for the Minnesota frequency distributions using 12 years o f data is shown 

in Figures 4.7 and 4.8.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Number of Crashes in 12 years

Figure 4.7 -  Total Accident Frequency Distributions for 3 legged intersections

g y  A " '
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1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

Num ber of C rashes in  12 years

F ig u re  4.8 -  T o ta l A cciden t F req u en cy  D istrib u tio n s fo r  4 legged in te rsec tio n s

The shape of the frequency distributions in Figures 4.4 through 4.8 exhibits a left skewed 

distribution, indicative of a Poisson or negative binomial distribution, according to Bauer 

and Harwood (1998). Validating this assumption is only possible if  the probability 

distribution is fitted to the data (reference population). For instance, using California’s 

three-legged intersection reference group (Figure 4.4), it was assumed that the crashes 

follows both a Poisson and a negative binomial distribution and the probability 

distribution was estimated for illustration purposes.
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4.4.2 Probability distribution

4.4.2.1 Assuming the Poisson distribution
The Poisson distribution is expressed mathematically as:

/(>-„«) = (4.1)

where yj = number of crashes an entity is likely to experience; y, = 0 ,1 ,2 ,

Pi = expected number of crashes at entity ‘i’ in a given time interval 

The mean and variance of a Poisson distribution are same; that is E(yi) = Pd = VAR(yi). If 

the expected accident is computed, the probability y, of having a crash at entity ‘i’ can be 

estimated. Table 4.11 (Column 5) shows the distribution of the crashes in the reference 

population under the Poisson distribution. Column 6 of Table 4.11 gives the number of 

sites that would likely have the number of crashes specified in Column 2. If  the reference 

population followed the Poisson distribution, the quantities in Columns 1 and 6 should be 

similar (relatively close) and in this case it is not true. The difference between the actual 

number of sites (Column 1) and the estimated number of sites (Column 6) is quite large, 

which implies that the crash counts in this particular reference group did not follow a 

Poisson distribution.

Another means of judging if a specific probability distribution is adequate for the data is 

to compare the plot of the specified probability distribution against the plot of frequency 

distribution. Figure 4.9 shows the Poisson probability distribution of the crashes in the 

reference population for three-legged intersections with two lanes on the major approach. 

The shape of Figure 4.4 (fi-equency distribution of the reference group) is not even close 

to that in Figure 4.9 (Poisson probability distribution of crashes). Therefore it would be
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safe to assume that the Poisson distribution is not adequate in describing the outcomes 

(crashes) for this reference population.

4.4.2.2 Assuming the Negative Binomial distribution

The negative binomial distribution is defined mathematically according to Equation 3.40 

in Chapter 3. As in the preceding case, if  the expected accident and variance is 

computed, the probability y, o f having a crash at entity ‘i ’ can be estimated. Table 4.11 

illustrates the calculations based on the negative binomial distribution. Clearly one can 

see that the NB distribution is a more reliable probability distribution o f the accident 

counts since the calculated numbers of intersections (sites) in Column 3 are very close to 

the numbers in the actual data (Colunm 1). As with the Poisson case, comparing the 

frequency plot (Figure 4.4) to the probability distribution plot can also serve as an 

indicator o f adequacy for the assumed probability distribution.

Comparing the shape of Figures 4.4 and 4.10, a distinct similarity emerges. This implies 

that the NB distribution is quite reasonable for describing the probability o f a crash in this 

reference population.
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T ab le  4.11 - S u m m ary  o f Poisson an d  Ne gatlve B inom ial D istribu tion
1 2 3 4 5 6

No. o f  Sites
A ccident 
Counts, K

P(K), Under NB 
distribution

n(K) if  all 1266 sites have 
gamma distributed means

P(K) under Poison 
Distribution

n(K) i f  all 1266 sites 
have identical means

170 0 0.113 143 0.002 2
169 1 0.112 142 0.012 15
155 2 0.103 131 0.036 46
93 3 0.092 117 0.077 97
79 4 0.081 103 0.121 153
69 5 0.071 90 0.152 192
59 6 0.061 78 0.160 202
57 7 0.053 67 0.144 182
51 8 0.046 58 0.113 143
54 9 0.039 50 0.079 100
43 10 0.034 43 0.050 63
35 11 0.029 36 0.029 36
25 12 0.025 31 0.015 19
30 13 0.021 27 0.007 9
23 14 0.018 23 0.003 4
15 15 0.015 19 0.001 2
14 16 0.013 16 0.001 1
20 17 0.011 14 0.000 0
12 18 0.009 12 0.000 0
15 19 0.008 10 0.000 0
18 20 0.007 9 0.000 0
15 21 0.006 7 0.000 0
13 22 0.005 6 0.000 0
7 23 0.004 5 0.000 0
9 24 0.004 4 0.000 0
12 25 0.003 4 0.000 0
4 26 0.003 3 0.000 0

For the Negative Binomial Distribution
Giving /z =  6.250 and var iance, VAR = 39.90; equations 44 and 45 is equal to

6.250

6.250 =  and 39.90 = ^

V knowing w h a t i s  we have 39.90 = 6.250 1 +
a

5.385a = 6.250;.-. a  = 6.250/5.385 = 1.1606.

Thus, substituting a into equation 44 we can estimate the probability o f a success
1.1606(1- P / x , ; )

6.250   L  L jZ Z  => P{x^} =  1 /6 .6006  = 0.1515
P { Xi)

Therefore, the probability of having zero crashes (y  ̂ =0)a t  site'i ' is

/ ( 0 , 0 . 1515,1.1606) =
^0 + 1 .1 6 0 6 -1 1  

1 .1606-1
0 i5i5l.I606[i-o i5i5]- = fO. 16061 

0.1606
0.1515^-^®“  [l] =  0.1515^-^“ ® = 0 .1 1 2

For the Poisson Distribution
the mean and var iane = 6.250; therefore 

- 6.2 5 0 ^

/ r 0 ;6 .2 5 0 ;  =   ------^  = 0,00193
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The sample calculation in Table 4.11 illustrates the computation of Row 1 in Columns 3 

and 5 with the answers not being exactly the same as Row 1 due to rounding off errors.
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F ig u re  4 .10  -  P lo t o f  th e  NB d is tr ib u tio n  fo r  C a lifo rn ia ’s th ree-leg g ed  in te rsec tio n s.
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4.4.3 Possible Functional forms of Regression Models using the ID method

After determining the probability distribution of the accident counts for the reference 

population, the next step in the exploratory analyses was regression analysis using the 

GLM procedures. The SAS GENMOD (SAS V8) procedure was used to develop models 

with various functional forms and the Integrate Differentiate (ID) method developed by 

Hauer and Bamfo (1997) was used to explore potential functional forms. Also, models 

developed from previous research (McGee et al. 2003; Lord 2002; Hauer 1988 etc) were 

also considered during this stage. Using the ID method, the EIF plots for all five o f the 

reference groups (3 for California and 2 for Minnesota) were explored for various 

functional forms. For instance, using the California’s four-legged intersection with 2 

lanes on the major approach, the EIF plots were developed using major and minor AADT 

as the independent variables (Figures 4.11 and 4.12).
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250 1
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000
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F ig u re  4.12 -  E IF  p lo t fo r  M in o r  A A D T

After the EIF plots were developed, they were compared to pre-established plots for 

specific fimctional forms, such as those in Figure 3.3. Because o f the similarity o f  

Figures 4.11 and 4.12 to the power function (left hand side) o f Figure 3.3, the functional 

form selected is shown in Equation 4.2.

Accident /  year  = a  {^Major A A D T i ^ M i n o r  AAD T ) (4.2)

To summarize, the following two exploratory analyses were performed on each data set:

1. Frequency distributions were developed for each crash types, and

2. EIF plots on each data set were developed to select an initial functional form. 

After performing these two exploratory analyses, the SPFs can then be calibrated for each 

data set and this calibration process is presented in the next chapter.
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CHAPTER 5: Calibrated Safety Performance 
Functions

SPFs were developed using the SAS GENMOD (SAS V8) procedure for which the 

negative binomial error distribution was assumed. Explanatory variables considered 

included AADT, number o f lanes, lane width, turning lanes (left or right), lighting, etc. 

However, after several attempts with various logical variables, only the AADT set of 

variables (Major and Minor AADT) was found to be statistically significant, which 

resulted in SPFs consisting of only AADT variables. Even so, opting to use AADT alone 

was not a simple task because several functional forms (with AADT alone) were possible 

and CURD plots proposed by Hauer and Bamfo (1997), which were introduced in 

Chapter 3 , had to be used to decide on the best form.

5.1 California SPFs

SPFs were developed for all severity levels (Total, Injury and PDO) and for each crash 

type defined in Chapter 4. Therefore, with three severity levels and four crash types (all, 

right-angle, left turn and rear end) 12 models were calibrated for each reference group, 

resulting in 36 models developed for the three California reference groups. Tables 5.1, 

5.2, and 5.3 summarize the SPFs for the “3-legged intersections with 2 lanes on the major 

approach” reference group. Summaries for the SPFs of ”4-legged intersections with 2 

lanes on the major approach” are in Tables 5.4, 5.5 and 5.6, while Tables 5.7, 5.8 and 5.9 

summarize the SPFs for ”4-legged intersections with 4 lanes on the major approach”.
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AU R ig h t-A n g le L e f t-T u rn R e a r -E n d
M o d e l 2 2 2 1
L N ( a )
(s.e .)

-9.321
(0.408)

-10.660
(1.418)

-13.672
(0 .716)

-11 .446
(0 .776)

P>
(s.e .)

1.113
(0.046)

0.907
(0.156)

1.483
(0 .080)

0 .824
(0 .084)

Pz
(s.e .)

0.325
(0.023)

0.523
(0.071)

0.571
(0 .037)

0 .212
(0.040)

D is p e rs io n 1.771 0.455 0.839 1.253
gC^/DOF 1.096 1.272 1.665 1.060
D e v ./D O F 1.118 0.447 0.953 0 .872

M o d e n : £ ’{/r} = a(Af£7/)^(Mm)^ MoAtAli E{k) - a(M aj + 1
{M aJ + Min J

.2 -  I n ju r y  S P F s o r  C a lifo rn ia  T h ree -leg g ed  In te rse c tio n s  w ith  2 la n e s  o n  M a lo r  A n n n
AU R ig h t-A n g le L e f t-T u rn R e a r -E n d

M o d e l 2 2 2 1
L N ( a )
(s.e .)

-10.09
(0 .468)

-11.304
(1.860)

-14 .906
(0 .875)

-10 .748
(1 .079)

Pi
(s.e .)

1.108
(0 .053)

0.918
(0.206)

1.5450
(0 .0969)

0 .637
(0 .116)

Pz
(s.e .)

0.351
(0.025)

0.525
(0.092)

0 .589
(0 .042)

0 .228
(0 .056)

D is p e rs io n 1.749 0.297 0.772 0 .994

X^/DOF 1.104 0.31 0.813 0.635
D e v ./D O F 1.104 1.22 1.4920 0 .982

M odel 1: F(/c} = a (M a j)^  (M in )^  Model 2: E{k) = a(M aJ + M in )^  (-------------1
MaJ +  M in )

T a b le  5 .3  -  P D O  S P F s  fo r  C a lifo rn ia  T h ree -leg g ed  In te rse c tio n s  w ith  2 la n e s  o n  M a jo r  A p p r o a ch
— --------- ---- AU R ig h t-A n g le L e f t-T u rn R e a r -E n d

M o d e l 2 2 2 2

L N (a )
(s.e .)

-10 .027
(0.456)

-11.125 
(0 .782 )

-13.853
(0 .8679)

-13 .194
(0 .966)

P i
(s.e .)

1.122
(0.051)

0.8751
(0 .0 3 1 )

1.426
(0 .095)

1.119
(0 .106)

Pz
(s.e .)

0.305
(0.024)

0.5573 
(0.041 )

0.573
(0 .044)

0 .114
(0 .049)

D isp e rs io n 1.651 1.395 0.760 1.227

7 ^ /D O F 1.125 0.91 0.806 0.727

D e v ./D O F 1.117 1.12 1.4058 1.090

M odel 1: E {k )  = a(Afey)^ M odel 2: E {k} -  a{M aj + M m )^  ^  j
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T a b le  5.4 — T o ta l S P F s fo r  C a lifo rn ia  F o u r-leg g ed  In te rsec tio n s  w ith  2 lan es  o n  M a jo r  A p p ro a ch
A ll R ig h t-A ng le L e ft-T u rn R e a r-E n d

M odel 1 1 1 2

L N (a ) -9.148 -11.029 -13.290 -10.870
(s.e.) (0.554) (1.224) (0.918) (1.030)

P, 0.719 0.554 0.821 1.023
(s.e.) (0.060) (0.129) (0.095) (0.114)

fc 0.481 0.781 0.763 0.252
(s.e.) (0.028) (0.062) (0.046) (0.052)

D isp e rs io n 2.070 0.515 1.099 1.255

X ^/D O F 1.108 0.997 1.246 1.115

D ev ./D O F 1.067 0.998 1.036 0.984

Model 1: E{k} = a{M aJ)^ Model 2: E{ic} = a{MaJ + M in)^  (
\M a j + Min J

A

T a b le  5 .5  -  I n ju r y  S P F s fo r  C a lifo rn ia  F o u r-leg g ed  In te rse c tio n s  w ith  2 lan es  on  M a jo r  A p p ro ac h
___ A ll R igh t-A ng le Left-Turn R e a r-E n d

M o d el 1 1 2 2

L N (a ) -9.996 -11.696 -13.749 -11.336
(s.e.) (0.660) (1.389) (1.098) (1.458)

Pi 0.724 0.603 1.453 0.988
(s.e.) (0.070) (0.146) (0.123) (0.161)

Pz 0.480 0.738 0.572 0.285
(s.e.) (0.033) (0.070) (0.055) (0.161)

D isp e rs io n 1.723 0.453 0.995 0.921

X ^/D O F 1.143 0.905 0.940 0.745
D e v /D O F 1.053 1.026 0.055 1.020

Model 1: E{k) = a(,M aj)^ (M in )^ Model 2: E{ic} = a(M aJ+ M in)^ ( — — ----
[M aJ + Min

A

T a b le  5 .6  P D O  S P F s fo r  C a lifo rn ia  F o u r-leg g ed  In te rse c tio n s  w ith  2 lan es on M a jo r  A p p ro a c h
^ --------- ---- All R ig h t-A n g le L e f t-T u rn R e a r-E n d

M o d e l 2 1 1 1
L N (a ) -10.014 -11.119 -14.182 -11.565
(s.e.) (0.600) (1.333 ) (1.131) (1.178)

Pi 1.198 0.416 0.812 0.763
(s.e.) (0.067) (0 .1 4 0 ) (0.116) (0.06)

Pz 0.413 0.845 0.733 0.301
(s.e.) (0.030) ( 0.067) (0.055) (0.01)
D isp e rs io n 2.109 0.563 1.036 1.335
X ^/D O F 1.108 0.858 0.901 0.873
D ev ./D O F 1.066 1.024 1.124 1.060

Model 1: E{jc} = a{M aj)^ Model 2: E{k} -  a^M aj+ M in)^  {
{MaJ + Min J
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Table 5.7

T a b le  5.1

A il R ig h t-A n g le L e f t-T u rn R e a r - E n d
M o d e l I 2 2 1
L N ( a )
(s.e .)

-9 .650
(1.191)

-12.790
(2.146)

-16.669
(2.302)

-12 .758
(1 .970)

P i
(s.e .)

0.769
(0.116)

1.454
(0.247)

1.802
(0 .265)

0 .969
(0 .197)

Pz
(s.e .)

0.426
(0.069)

0.707
(0.120)

0 .559
(0 .125)

0.211
(0 .103)

D isp e rs io n 1.551 0.614 0.656 1.749
X ^/D O F 1.222 1.014 1.273 1.000
D e v ./D O F 1.136 1.019 0.996 0.989

/  .
M odel 1: E{/c) = a {M a j)^  (M in )^  Model 2: E{ic} = a (M aJ+ M in)^  ---- — ---- |

{M aJ + M inJ

.8 -  I n ju r y  S P F s o r  C a lifo rn ia  F o u r-le g g e d  In te rse c tio n s  w ith  4 la n e s  o n  M a jo r  A p p ro
A ll R ig h t-A n g le L e f t-T u rn R e a r -E n d

M o d e l 2 1 2 3
L N ( a )
(s.e .)

-12.648
(1.555)

-14.506
(2.356)

-18 .804
(3 .148)

-14 .250
(3 .147)

Pi
(s.e .)

1.413
(0 .179)

0.794
(0.223)

1.997
(0.365)

1.159
(0 .161)

Pz
(s.e .)

0.457
(0.090)

0.833
(0.140)

0.643
(0.172)

D isp e rs io n 1.100 0.602 0.415 0.878

X ^/D O F 1.150 0.918 0.809 0.697
D e v ,/D O F 1.187 1.047 1.157 0 .969

M odel 1; E{/c} = a(A faJ)^ {M in )^  Model 2; E { k }  = a{M aj + M in )^  f -------------1
\M aj-\rM in J

M odel 3: E{ic) = a(MaJ + MinŸ^

___ ___ ______ A ll R ig h t-A n g le L e f t-T u rn R e a r -E n d

M o d e l 2 1 1 1

L N ( a )
(s.e .)

-9.145
(1 .230)

-10.466 
(2.249 )

-13.655
(2 .226)

-12.803
(2 .268)

P.
(s.e .)

1.034
(0.140)

0.664
(0 .2 1 6 )

0.854
(0 .214)

0.908
(0 .225)

Pz
(s .e .)

0.325
(0.068)

0.433
(0 .1 3 1 )

0 .540
(0.124)

0 .230
(0 .111)

D isp e rs io n 1.850 0.713 1.023 2 .013

% ^/D O F 1.162 0.908 0.935 0 .900

D e v ./D O F 1.209 0.940 1.069 1.018

(  Min
modAli E{K}=a{Majf^iMm^ Model 2: f  W  -  « ( A # '+ ^  j
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5.2 Minnesota SPFs
The SPFs for Minnesota were developed using a similar approach as for the California 

SPFs in terms of severity levels (Total, Injury and PDO), and for each crash types defined 

in Chapter 4. Therefore, with three severity levels and four crash types (all, ri^ t-ang le , 

left turn and rear end) 12 models were calibrated for each reference group. However, the 

Minnesota dataset consists o f only 2 reference groups, implying that 24 models were 

developed in total. Tables 5.10, 5.11 and 5.12 summarize the SPFs for the "3-legged 

intersections” reference group, while Tables 5.13, 5.14 and 5.15 summarize the SPFs for 

the “4-legged intersections” reference group.

A ll R ig h t-A n g le L e ft-T u rn R e a r-E n d

M o d e l 1 1 1 1

L N (a ) -8.699 -13.249 -11.955 -11.482
(s.e.) (0.524) (0.891) (1.421) (0.976)

Pi 0.496 0.722 0.292 0.7602
(s.e.) (0.050) (0.083) (0.127) (0.092)

k 0.624 0.816 0.983 0.521
(s.e.) (0.050) (0.083) (0.127) (0.090)

D isp e rs io n 1.760 0.725 0.332 0.597

X ^/D O F 1.177 1.056 0.682 1.042

D ev ./D O F 0.889 0.873 0.876 0.949

Model 1: E{k ) =

T a b le  5 . n  -  In ju ry  S P F s fo r  M in n e so ta  T h ree -leg g ed  In te rse c tio n s
AU R ig h t-A n g le L e f t-T u rn R e a r-E n d

M o d e l 1 1 2 1

L N (a ) -8.841 -13.689 -12.557 -12.020
(s.e.) (0.626) (1.117) (1.927) (1.179)

Pi 0.488 0.779 1.247 0.742
(s.e.) (0.060) (0.106) (0.242) (0.111)

k 0.553 0.720 0.948 0.501
(s.e.) (0.061) (0.102) (0.190) (0.113)

D isp e rs io n 1.265 0.457 0.207 0.439

X ^/D O F 1.190 0.875 0.466 0.856
D ev.7D O F 0.901 0.844 0.880 0.962

Model 1: E{k )  = Model 2; E {k}  = a{M aJ+M in)^  {— — ---- 1
\^M aj+M in J
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Table 5.12 -  PDO SPFs
AU R ig h t-A n g le L e f t-T u rn R e a r -E n d

M o d e l 1 1 2 1
L N ( a ) -9.695 -14.223 -12.356 -12 .074
(s.e.) (0 .624) (1.183) (1 .966) (1 .146)
Pi 0.503 0.637 1.218 0.751
(s.e.) (0.058) (0.108) (0 .247) (0 .107)
k 0.687 0.949 0.901 0.535
(s.e.) (0.058) (0.112) (0 .195) (0 .101)
D isp e rs io n 1.437 0.489 0 .172 0.496
X ^/D O F 1.200 0.845 0 .444 0.919
D e v ./D O F 0.869 0.885 0.839 0.896

M odel 1: E {k ) = a{M ajŸ^ M odel 2: £{*-} = a{M aj + M in )^  {---- — ---- 1
\M a j + Min )

T a b le  5 . ^ — T O T A L  S P F s fo r  M in n e so ta  F o u r-le g g e d  In te rse c tio n s
____________ AU R ig h t-A n g le L e f t-T u rn R e a r -E n d

M o d e l 1 1 1 1
L N ( a ) -8 .850 -9.961 -13 .814 -12 .577
(s.e .) (0 .362) (0.518) (0 .886) (0 .616)

Pi 0.5661 0.462 0.725 0.909
(s.e .) (0 .039) (0.054) (0 .091) (0 .0671)

Pz 0.698 0.891 0.815 0 .559
(s.e .) (0.041) (0.060) (0 .096) (0 .065)

D isp e rs io n 2.040 1.021 0.481 0.852

X ^/D O F 1.140 1.186 0.839 1.103
D e v ./D O F 1.0695 0.935 1.360 1.300

Model 1: E { k )  =  { M i n ) ^

T a b le  5 .1 4  -  I n ju r y  S P F s  fo r  M in n e so ta  F o u r-le g g e d  In te rse c tio n s
AU R ig h t-A n g le L e f t-T u m R e a r -E n d

M o d e l 1 1 1 1

L N ( a ) -8.840 -9.811 -13.052 -12 .442

(s.e.) (0 .423) (0.575) (1 .149) (0 .799)

P i 0.484 0.414 0.563 0.889

(s.e.) (0 .045) (0.060) (0 .124) (0 .090)

P2 0.650 0.854 0.809 0.446

(s.e .) (0 .049) (0.068) (0 .128) (0 .086)

D isp e rs io n 1.536 0.841 0.263 0,519

X ^/D O F 1.183 1.160 0 .607 0.919

D e v ./D O F 1.005 0.932 1.017 0 .982

Model 1: E{/c) = a(M aJ)^  (M in )^
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.15 -  P D O  S P F s o r  M in n e so ta  F o u r-le e e e d  In te rsec tio n s
 ̂ _____ AU R igh t-A ng le L e f t-T u rn R e a r -E n d

M odel 1 1 1 1

L N (a )
(s.e.)

-10.189
(0.405)

-11.786
(0.627)

-16.140
(1.290)

-13.792
(0.732)

P i
(s.e.)

0.644
(0.043)

0.534
(0.064)

0.892
(0.124)

0.911
(0 .077)

Pz
(s.e.)

0.695
(0.045)

0.934
(0.070)

0.838
(0.135)

0 .647
(0.647)

D isp e rs io n 1.784 0.819 0.272 0.677

X ^/D O F 1.179 1.115 0.577 0.985

D e v /D O F 1.128 0.891 1.285 1.254

Model 1: E{k } = (M in )^

5.3 Goodness-of-Fit of the SPFs
During the calibration of the SPFs, the goodness-of-fit measures discussed in Chapter 3 

were all assessed to ensure the models’ adequacy. For most of the SPFs the Pearson Chi- 

Statistic divided by its degree of freedom (% /̂DOF) and the deviance divided its degree o f 

freedom (Dev/DOF) for each o f the models were close to 1, indicating good fit to their 

respective data (MaCullagh and Nelder 1989) or within the range of 0.8 - 1.2 deemed 

acceptable by Bauer and Harwood (1996). However, this ratio was not within the 

acceptable range for a few models simply because the sample sizes for those crash types 

were relatively small. Another method o f assessing the goodness-of-fit o f the SPFs is by 

the dispersion parameter. The variance o f the expected accident frequency at any 

particular site in a reference group is computed using the following equation:

\2
VAR{k} = ^ ^ ^ ^  

b
(5.1)

where parameter ‘b ’ is the inverse of the dispersion parameter from the SAS GENMOD 

procedure. Therefore, the larger the dispersion parameter is, the smaller will be the 

variance o f the expected accident frequency and hence a better model. Using this
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goodness o f  fit criterion, models with the largest possible dispersion parameter (equation 

5.1) were selected for this study.

The CURE plots for each model were also developed to supplement the decision in 

selecting the best ‘fitting’ SPF. Figures 5.1 to 5.6 are the CURE plots o f total crashes for 

all severitie for California. The complete set o f CURE plots developed for all SPFs is 

shown in Appendix B.
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Figure 5.1 -  California: CURE plot for ‘3-legged Intersections with 2 lanes on Major Approach*
(Major AADT as the parameter)
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Figure 5.2 -  California: CUKE plot for ‘3-legged Intersections with 2 lanes on Major Approach’
(Minor AADT as the parameter)
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Figure 5.3 -  California: CURE plot for ‘4-legged Intersections with 2 lanes on Major Approach’
(Major AADT as the parameter)
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Figure 5.4 - California: CURE plot for ‘4-legged Intersections with 2 lanes on Major Approach*
(Minor AADT as the parameter)
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Figure 5.5 -  California: CURE plot for ‘4-legged Intersections with 4 lanes on Major Approach’
(Major AADT as the parameter)
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F ig u re  5 .6  -  C a lifo rn ia : C U R E  p lo t fo r  ‘4-legged  In te rsec tio n s  w ith  4  lan es  o n  M a jo r  A p p ro a c h ’
(M in o r A A D T  as th e  p a ra m e te r)

The models for total crashes in the California reference populations seem to have a good

fit of the data. The CURE plots for each o f the independent variables (major and minor

AADT) seem to oscillate around zero (0) and finish around zero (0). This implies (Hauer

and Bamfo 1997) that the model using the major and minor AADT as independent

variables fit the data well. Cumulative residuals plots did cross the minus 2 standard

deviation boundaries in Figures 5.4 and 5.6, indicating some inadequacy in the model to

estimate at large major and minor AADTs. However, there could be a simpler

explanation than inadequacy of the model; there are only 8 sites out o f 743 with major

AADT larger than 20,000 and only 2 sites with minor AADT larger than 7000, and,

therefore, the problem may lie with the small sample size for these AADT ranges.

These calibrated SPFs were then used in the safety estimation procedures which are 

presented next.
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CHAPTER 6: Safety Effects Estimation

The safety effects o f installing traffic signals at rural intersections were quantified by 

using both the conventional and EB procedures with the treated intersections considered 

as a composite entity (Hauer 1997). The concept o f a composite entity is quite simple. 

In Chapter 3 two fundamental questions needed to be answered before one can quantify 

the safety effects o f a particular treatment:

1. W hat is the safety o f the entity in the after period had the treatment not been 

im plem ented, n? and

2. W hat is the safety after the treatment was implemented X?

The safety effect estimation methodologies introduced in Chapter 3 (conventional and 

EB) used n  and X to only quantifying safety effects at a single entity. However, more 

than one treated entity is usually used before inferences can be made on a particular 

treatment. Therefore, in the composite entity, k and X are aggregated over the entire set 

treated sites, that is:

where the number o f sites in the composite entity is n. The variances o f  and TCsum in 

the composite entity are estimated similarly:
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■ (6-3)

V A R {^ ^ )  =  '^VA R{n:,) ,V A R {^,) ,- ,V A R (n:,)  (6.4)

The rudiments o f both conventional the EB methodology remains unchanged when using 

a composite entity, because the composite entity uses the end products o f these methods, 

that is n  and X.

Therefore, using treated intersections from California and Minnesota as one composite 

entity, the following safety effects were quantified using both the conventional and EB 

methodology.

6.1 Results for the Conventional Methods

To recap, the conventional methods applied in this study were;

1. The simple Before-After Naive,

2. The Before-After Naive procedure with the correction for traffic flow, and

3. The Before-After Naive procedure using the SPFs.
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Simple before-After Naïve

The safety effects for all severity levels (Total, Injury, and PDO) for the simple before

and after Naïve method on the composite entity o f California and Minnesota are given in 

Table 6.1

T a b le  6 .1  —S im p le  B e fo re -A fte r  N aïve  fo r  A L L  S ev e rity  (N eg a tiv e  in d ic a te  in c re a se  in  c ra s h )  a t  
C a l i f o r n ia  a n d  M in n e s o ta  as a  C o m p o site  E n tity

T O T A L  S e v e rity
A ll R ight A ngle L eft T u rn R e a r  E n d

N a iv e  e s tim a te  o f  crashes expected  in  
the  a f te r  p e r io d  w ith o u t signals 
(s.e )

1974

(86.9)

847

(53.8)

456

(51.4)

238

(26 .6 )

A cc id en t C o u n ts  a fte r  trea tm en t was 1487 281 214 468
im p lem en ted  X (s.e) (38.6) (16.8) (14.6) (21 .6 )

E stim a te  o f  th e  ch an g e  in  crash 487 566 242 -230
freq u en cy , 5 (s.e) (95.1) (56.4) (53.5) (34 .2 )

In d ex  o f  E ffec tiv es  ,9  (s.e)
0.752
(0.04)

0.333
(0.06)

0.463
(0.11)

1.939
(0.14)

P e rc e n t C h an g e  in  crashes 24.8 67 53.7 -93.9
IN JU R Y  S e v e rity

N a iv e  e s tim a te  o f  c rash es expec ted  in  
th e  a f te r  p e r io d  w ith o u t signals ,k 
(s .e )

983

(61.4)

458

(38.7)

250

(38.5)

114

(18 .9)

A c c id e n t C o u n ts  a fte r  trea tm en t w as 601 145 78 174

im p le m e n te d  X (s.e) (24.5) (12.0) (8 .8) (13 .2)

E s tim a te  o f  th e  ch an g e  in  crash 382 313 172 -60

freq u en cy , Ô (s.e) (66.1) (40.6) (39.5) (23 .1)

In d ex  o f  E ffec tiv es  ,0  (s.e)
0.609
(0.06)

0.315
(0.09)

0.304
(0.15)

1.491
(0.19)

P e rc e n t C h an g e  in  c rashes 39.1 68.5 69.6 -49.1
P D O  S e v e rity

N a iv e  e s tim a te  o f  crashes expected  in 991 389 206 125
the  a f te r  p e r io d  w ith o u t s ignals  ,n 
(s.e) (61.5) (37.4) (34.1) (18 .6)

A c c id e n t C o u n ts  a f te r  trea tm en t w as 886 136 136 294

im p lem en ted  X (s.e) (29.8) (11.7) (11.7) (17 .1 )

E stim a te  o f  th e  ch an g e  in  crash 105 253 70 -169

freq u en cy , 5 (s.e) (68.3) (39.1) (36.1) (25 .3 )

In d ex  o f  E ffec tiv es  ,0  (s.e)
0.891
(0.07)

0.346
(0.10)

0.643
(0.17)

2.304
(0.20)

P e rc e n t C h an g e  in  crashes 10.9 65.4 35.7 -130.4

87



Naïve Before-After with Traffic Flow Correction -i ' ' ; ■ ^

The safety effects for all severity levels (Total, Injury, and PDO) for the “Naïve before- 

after with Traffic Flow Correction” method on the composite entity o f California and 

Minnesota are given in Table 6.2.

T a b le  6.2 —N aïv e  B e fo re -A fte r w ith  T ra ffic  F low  C o rre c tio n  fo r  A L L  S ev erity  (N egative  in d ic a te

T O T A L  S ev erity

All R ight A ngle L eft Turn R ear E nd

N aive estim ate o f  crashes expected in 
the after period  w ithout signals ,n 
(s.e)

2799

(147.9)

1217

(90.6)

687

(94.9)

355

(51.3)

A ccident C ounts after treatm ent was 1487 281 214 468

im plem ented X, (s.e) (38.6) (16.8) (14.6) (21.6)

Estim ate o f  the change in  crash 1312 936 473 -113

fi-equency, 5 (s.e) (152.8) (92.2) (96.0) (55.7)

Index o f  E ffectives ,0 (s.e)
0.530
(0.03)

0.230
(0.00)

0.306
(0.04)

1.290
(0.19)

P ercen t Change in  crashes 47 77 -29

IN JU R Y  S everity
N aive estim ate o f  crashes expected  in  
the after period  w ithout signals ,tc 
(s.e)

1430

(111.4)

659

(67.5)

406

(76.8)

171

(36.5)

A ccident C ounts after treatm ent was 601 145 78 174
im plem ented X (s.e) (24.5) (12.0) (8.8) (13.2)

E stim ate  o f  the change in  crash 829 514 328 -3
frequency, 5 (s.e) (114.0) (68.5) (77.3) (38.8)

Index o f  E ffectives ,0 (s.e)
0.418
(0.03)

0.218
(0.03)

0.186
(0.04)

0.974
( 0 .2 / ;

Percen t C hange in  crashes 58.2 81.4 2.6
P D O  S ev erity

N aive  estim ate o f  crashes expected in 
the  after period  w ithout signals ,Jt 
(s.e)

1369

(97.3)

558

(60.5)

281

(55.7)

185

(36.1)

A ccident C ounts after treatm ent was 886 136 136 294
im plem ented X (s.e) (29.8) (11.7) (11.7) (17.1)

E stim ate  o f  the change in  crash 483 422 145 -110
frequency, 5 (s.e) (101.7) (61.6) (56.9) (39.9)

Index  o f  E ffectives ,0  (s.e)
0.644
(0.05)

0.241
(0.03)

0.465
(0.09)

1.535
(0.30)

P ercen t C hange in  crashes 35.6 75.9 53.5 -53.5
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Naïve Before-After with SPF  . > s .

The safety effects for all severity levels (Total, Injury, and PDO) for the Naïve before and 

after with SPF method on the composite entity o f California and Minnesota are given in 

Table 6.3.

T a b le  6 .3  —N a ïv e  B e fo re -A fte r  w ith  S P F  fo r  A L L  S ev e rity  (N eg a tiv e  in d ic a te  in c re a se  in  c ra s h )  a t

T O T A L  S e v e rity
All R ight A ngle L eft T urn R e a r E nd

N a iv e  e s tim a te  o f  c rashes expected  in  
th e  a f te r  p e r io d  w ith o u t signals ,k 
(s.e)

3255

(303.8)

2033

(282.0)

1468

(281 .4)

4 8 4

(87 .2)

A c c id e n t C o u n ts  a fte r  trea tm en t w as 957 281 214 468
im p lem en ted  X (s.e) (30.9) (16.8) (14.6) (21 .6 )

E s tim a te  o f  th e  change in  crash 2298 1752 1254 16
freq u en cy , 5  (s.e) (305.4) (282.5) (281 .8) (89 .8)

In d ex  o f  E ffec tiv es  ,9  (s.e)
0.291
(0.03)

0.136
(0.00)

0.141
(0.03)

0.936
(0.17)

P e rc e n t C h an g e  in  crashes 70.9 86.4 85.9 6.4
IN JU R Y  S e v e rity

N a iv e  estim a te  o f  crash es expected  in  
the  a f te r  p e r io d  w ith o u t signals ,tz 
(s.e)

2111

(242.9)

1075

(198.7)

928

(229.9)

209

(48 .8)

A c c id e n t C o u n ts  a fte r trea tm en t w as 601 145 78 174

im p le m e n te d  X (s.e) (24.5) (12.0) (8 .8) (13 .2 )

E stim a te  o f  th e  ch an g e  in  crash 1510 930 850 35

freq u en cy , 5 (s.e) (244.1) (199.1) (230 .1) (50 .5 )

In d ex  o f  E ffec tiv es  ,0 (s.e)
0.281
(0.03)

0.13
(0.03)

0.079
(0.00)

0.789
(0.18)

P e rc e n t C h an g e  in  crashes 71.9 87 92.1 21.1
P D O  S e v e rity

N a iv e  e s tim a te  o f  c rashes expected  in 1812 945 533 272
th e  a f te r  p e r io d  w ith o u t signals ,n 
(s.e) (189.3) (199.4) (162 .9) (74 .4 )

A c c id e n t C o u n ts  a fte r  trea tm en t w as 886 136 136 294

im p le m e n te d  A, (s.e) (29.8) (11.7) (11.7) (17 .1)

E s tim a te  o f  the  change in  crash 926 809 397 -22

freq u en cy , ô (s.e) (191.7) (199.7) (163 .3) (76 .3)

0.484 0.138 0.233 1.005
In d ex  o f  E ffec tiv es  ,0  (s.e) (0.05) (0.03) (0.07) (0.26)

P e rc e n t C h an g e  in  c rashes 51.6 86.2 76.7 -0.5
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The conventional methods reveal that after a rural stop controlled intersection is 

converted to a signalized intersection, there will be a reduction in ‘all’, ‘right-angle’ and 

‘left-tum’ crash types for all severity levels (Total, Injury, and PDO). Rear-end crash 

effects on the other hand were mixed. For the simple Naïve procedure, rear-end crashes 

were estimated to increase for all severity levels and for the “Naïve with ‘trafSc flow’ 

correction procedure”, rear-end crashes only increased for ‘total’ and ‘PDO’ severity 

after a signal was installed. The direction of the safety estimate for rear-end crashes was 

also mixed when the Naïve with ‘SPF’ procedure was used; however, only the PDO’ 

severity level showed a very small increase.

Another noticeable trend in the results is visible if  the safety effects for each conventional 

method, for each crash type and severity level, are compared to each other. For ‘all’, 

‘right-angle’ and ‘left-tum’ crash types, the “Naive with SPF” gives the highest gain in 

estimating safety, followed by the “Naive with traffic correction” and the simple Naïve 

methods. The same trend is visible for rear-end crashes. This trend is attributable to the 

underlying assumptions for each methodology.

The simple Naïve procedure assumes that the before period crash counts is the expected 

crash count in the after period had a signal not been installed. The problem with this 

method is that one cannot attribute the change in the crash frequencies to the treatment 

alone. Other factors such as regression-to-the-mean, traffic volume changes and accident 

trend could have contributed to the change, since all o f these factors affect safety 

(Persaud 2001). Therefore, the estimated percent change in crashes given in Table 6.1
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cannot entirely be attributed to installing signals alone as implied in the simple Naïve 

procedure.

The Naïve with ‘traffic flow’ and ‘SPF’ is somewhat more precise (Hauer 1997) in that 

traffic flow during the before and after period is accounted for. However, the “Naïve 

with traffic flow correction” simply uses the ratio o f the average after period AADT to 

before period AADT in accounting for traffic flow in its estimate o f safety in after period 

had the signal not been installed. On the other hand, the “Naïve with SPF” uses the same 

ratio but here the ratio is the SPF estimate of the expected crashes in the after period to 

that for the before period, not necessarily assuming a linear crash-traffic relationship as 

the “Naïve with traffic flow correction” method does.

The trend in the safety effects among the Naïve procedures expressed previously can be 

attributed to the effect o f the AADT since the treated entities exhibits an increasing trend 

in AADT firom the before to the after period (Tables 4.1 through 4.5, Chapter 4). A 

higher AADT in the after period implies that the estimate o f expected crashes in the after 

period had the treatment not been implemented, n, will be larger. This is simply because 

the ratio o f  traffic flows is larger than 1 and since this ratio serves as a multiplicative 

correction for AADT (Hauer 1997), n  will in turn be larger than in the simple Naïve 

procedure. Therefore, with a larger value for n, the index o f effectiveness (Equation 3.5, 

Chapter 3) will be smaller than in the simple Naïve procedure.
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One other interesting aspect is the difference between the safety effects for the “Naïve 

with ‘traffic flow’ correction” and the “Naïve with ‘SPF’”. A larger safety gain was 

estimated using the Naïve with ‘SPF’ procedure simply because the ratio o f the expected 

crashes in the after to before period is quantified by a non-linear crash-traffic flow 

relationship, i.e., by a non-linear nature o f SPF (Figure 3.1, depicts a typical example.). 

Under this assumption, with larger AADTs in the after period with respect to the before 

period, the ratio o f expected crashes before to after will be larger than the ratio under the 

linear crash-traffic flow assumption of the “Naïve with traffic flow correction” method. 

However, because the relationship between crash frequency and AADT is non-linear, this 

ratio will in turn be larger than in the “Naïve with traffic correction”.

Assuming that the “Naïve with SPF” procedure gives a better estimate of the safety 

effects o f installing a signal, there are still several factors that are not considered such as 

regression-to-the-mean and trends in the crashes due to a variety o f factors. Therefore, 

the safety effects are still not without its bias under the three conventional approaches. 

However, with the aid of the empirical Bayes (EB) procedure (which accounts for all 

those factors), the bias in the safety effects would be eliminated. The EB results are 

presented next.

6.2 Results from the empirical Bayes method
> (Comparison with the results from the other methods)

The safety effects for all severity levels (Total, Injury, and PDO) using the Empirical

Bayes procedure on the composite entity o f California and Minnesota is given in Table

6.4. The results reveal that by installing a signal, ‘all’, ‘right-angle’, and ‘left-tum’
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crashes will be reduced, but there will be an increase in rear-end crashes for all severity 

levels. A  summary o f the percent change in crashes for each method is given in table 6.5. 

T a b le  6 .4  —E m p ir ic a l  B ay es A L L  S e v e rity  (N egative  in d ic a te  in c re a se  in  c ra s h )  a t  C a l i fo rn ia  a n d

T O T A L  S ev e rity

A ll R igh t A ngle L eft T urn R e a r E nd

E B  estim a te  o f  crash es expec ted  in 
th e  a f te r  p e r io d  w ith o u t signals ,k 
(s.e)

2386

(160.7)

1083

(132.0)

524

(106.6)

245

(42 .8 )

A c c id e n t C o im ts a fte r  trea tm en t w as 1487 281 214 468
im p le m e n te d  X (s.e) (38.6) (16.8) (14.6) (21 .6 )

E s tim a te  o f  th e  ch an g e  in  crash 899 802 310 -223
freq u en cy , 5 (s.e) (165.3) (133.1) (107.6) (47 .9)

In d ex  o f  E ffec tiv e s  ,6 (s.e)
0.620

(0.04)

0.256

(0.03)

0 .392

(0.08)

1.855

(0 .33)

P e rc e n t C h an g e  in  crashes 38 74.4 60.8 -85.5

IN JU R Y  S e v e rity

E B  estim a te  o f  c rash es  ex p ec ted  in  
th e  a fte r  p e r io d  w ith o u t signals ,n 
(s.e)

1195

(119.4)

644

(94.7)

304

(72.4)

100

(27 .3)

A c c id e n t C o u n ts  a fte r  trea tm en t w as 601 145 78 174

im p le m e n te d  X (s.e) (24.5) (12.0) (8 .8) (13 .2 )

E s tim a te  o f  th e  change in  crash 594 499 226 -74

freq u en cy , 6 (s.e) (121.9) (95.4) (72.9) (30 .3 )

In d ex  o f  E ffe c tiv e s  ,9  (s.e)
0.498

(0.05)

0.22

(0.03)

0.243

(0.06)

1.623

(0 .44)

P e rc e n t C h an g e  in  c rashes 50.2 78 75.7 -62.3

P D O  S e v e rity

E B  es tim a te  o f  c rash es expec ted  in 1043 409 217 169
the  a f te r  p e r io d  w ith o u t signals 
(s.e ) (76.7) (87.2) (50.1) (34 .9)

A c c id e n t C o u n ts  a fte r  trea tm en t w as 886 136 136 294

im p le m e n te d  X (s.e) (29.8) (11.7) (11.7) (17 .1)

E s tim a te  o f  th e  ch an g e  in  crash 157 273 81 -125

freq u en cy , 5  (s.e) (82.3) (88.0) (51 .4) (38 .9 )

0.845 0.318 0.596 1.669
In d e x  o f  E ffe c tiv e s  ,0  (s.e)

(0.07) (0.07) (0 .14) (0 .35)

P e rc e n t C h an g e  in  c rashes 15.5 68.2 40 .4 -66 .9
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■These directional effects are in complete agreement with those from the simple Naive 

procedure. However, the effects for the other two forms of the Naïve procedure and the 

EB are only in agreement for total, right-angle and left-tum crashes for all severity levels. 

For rear-end crash effects, the other two forms of the Naïve procedure show a reduction
b.

in rear-end crashes for injury crashes after a signal is installed, thus yielding mixed 

results when compared to the EB effects.

In terms o f percentage change in crashes the EB results showed a higher safety gain when 

compared to the simple Naïve estimate, but a smaller gain than the Naïve with 'traffic 

correction’ and ‘SPF’ procedures. These differences in percentage changes and patterns 

can be directly attributed to the assumptions governing each procedure.

Safety
M ethod

Percent c lange in crashes (negative im plies increase)
Total Injury PD O

A ll R A LT RE ALL RA LT RE ALL R A LT R E
Sim ple
N aïve

24.8 67 53.7 -93.9 39.1 68.5 69.6 -49.1 10.9 65.4 35.7 -130.4

N aïve -
traffic
flow

47 77 69.4 -29 58.2 78.2 81.4 2.6 35.6 75.9 53.5 -53.5

N aïve - 
SPF

70.9 86.4 85.9 6.4 71.9 87 92.1 21.1 51.6 86.2 76.7 -0.5

EB 38 74.4 60.8 -85.5 50.2 78 75.7 -62.3 15.5 68.2 40.4 -66.9

The larger safety effect for the EB compared to the simple Naïve can be attributed to the 

fact that the simple Naïve procedure fails to account for the safety impact o f increase in 

AADT in the after period compared to the before period, while the EB does. The other 

two forms o f the Naïve procedure (traffic flow and SPF) improved on this shortcoming o f 

the simple Naive procedure by accounting for AADT. The question is why these other
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tw o N aïve procedures estimated a larger safety gain than the EB procedure, since by 

accounting for AADT, one would have expected that the percentage change in crashes 

w ould have been in closer agreement to the EB estimate. This question can be answered 

by  the noting that the Naïve procedures, including these two, all fail to account for 

regression to the mean, which would cause them to overestimated safety gains.

6.3 Disaggregate EB estimates

The composite entity o f California and Minnesota consisted o f  45 treated intersections 

comprising o f  39 four-legged and 6 three-legged intersections. By evaluating groups o f 

sim ilar variables, useful inferences can be made about the safety effects after a signal is 

installed. Tables 6.6, 6.7 and 6.8 give the EB estimates o f  the safety effect by 

disaggregating the composite entity into smaller composite entities. Three legged- 

intersections were not disaggregated in smaller groups because o f  its small sample size. 

Based on the disaggregate results for the 4-legged intersections after a signal is installed, 

total crashes for right-angle and left-tum types for total severity (See Table 6.6) would be 

reduced while rear-end crashes increase. This pattern is similar to the aggregate EB 

effect. However, there was a mixture o f safety effects based on the different levels at 

which the variables were disaggregated. For example, under total severity for all ranges 

o f  AA DT tested, a reduction in the total crashes always existed, but for injury crashes 

w ith AADT < 10,000 and PDO crashes with AADT > 20,000, an increase in crashes was 

observed after a signal was installed. This increase in injury crashes for AADT < 10,000 

is in conformance with findings by Persaud et al. (1997) where traffic signals were 

rem oved at low ranges o f AADT to reverse this undesirable safety effect. Therefore
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signalizing intersections with AADT < 10,000 might have an adverse effect on injury 

accidents.

Sm aller C om posite 
E ntity  (# o f  intersections)

TO TA L RIG H T-TU RN LEFT-TU R N R E A R -E N D

0 VAR(0) 0 VAR(0) 0 V A R (0) 0 V A R (0)

A A D T  < 10000 (7) 0.66 0.01 0.51 0.02 0.64 0.05 0.92 0.13

10,000< A A D T < 15000 
(15)

0.50 0.00 0.22 0.00 0.33 0.01 1.72 0.41

15,000< A A D T <  12000 
(10)

0.59 0.00 0.18 0.00 0.52 0.02 1.49 0.07

A A D T  > 20000 (7) 0.95 0.01 0.41 0.01 0.52 0.02 2.87 0.69
Total (all severity) 
C rashes/year > 5 (22)

0.57 0.00 0.26 0.00 0.37 0.01 1.96 0.15

T otal (all severity) 
C rashes/year <  5 (17) 0.91 0.01 0.25 0.01 0.77 0.03 0.84 0.07

M ajor approach lanes =  2 
(21) 0.62 0.00 0.23 0.00 0.67 0.02 1.63 0.08

M ajor approach lanes =  4 
(18)

0.61 0.00 0.27 0.00 0.36 0.01 1.92 0.26

C alifornia (24) 0.79 0.00 0.21 0.00 0.65 0.01 1.27 0.10
M innesota (15) 0.55 0.00 0.27 0.00 0.32 0.01 1.92 0.15
All (M innesota and 
C alifornia) (39) 0.61 0.00 0.26 0.00 0.44 0.01 1.87 0.12

T a b le  6.7 -E m p ir ic a l  B ayes D isagg regate E stim ates  fo r  Safety  E ffects -  4 leg IN JU R Y  C R A S H E S
Sm aller C om posite 
E ntity  (#  o f  intersections

TOTAL RIG H T-TU RN LEFT-TU R N R E A R -E N D
0 V A R(0) 0 VAR(0) 0 V A R(0) 0 VAR{0)

A A D T  < 10000 (7) 1.09 0.08 0.94 0.11 0.45 0.08 0.82 0.22
10,000< A A D T <  15000 
(15)

0.34 0.00 0.15 0.00 0.20 0.01 1.17 0.40

15,000< A A D T <  12000 
(10)

0.43 0.00 0.12 0.00 0.26 0.01 1.23 0.11

A A D T  >  20000 (7) 0.88 0.02 0.42 0.01 0.29 0.01 2.64 1.86
Total (all severity) 
C rashes/year > 5 (22)

0.40 0.00 0.17 0.00 0.22 0.01 1.36 0.22

Total (all severity) 
C rashes/year < 5 (17) 0.68 0.01 0.35 0.00 0.30 0.01 2.21 0.78

Total In jury  C rashes/year 
> 5 ( 1 1 )

0.40 0.00 0.17 0.00 0.22 0.01 1.37 0.22

Total In jury  C rashes/year 
<  5 (28)

0.68 0.01 0.35 0.00 0.30 0.01 2.21 0.78

M ajor approach lanes = 2 
(21) 0.46 0.00 0.21 0.00 0.38 0.00 0.91 0.07

M ajor approach lanes = 4 
(18) 0.47 0.01 0.22 0.00 0.22 0.01 1.84 0.56

C alifornia (24) 0.62 0.01 0.16 0.00 0.40 0.01 1.74 0.34
M innesota  (15) 0.44 0.00 0.23 0.00 0.18 0.00 1.57 0.24
A ll (M innesota and 
C alifornia) (39) 0.49 0.00 0.22 0.00 0.25 0.00 1.60 0.21
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An interesting finding was observed in the safety effects between California and

M innesota when considering PDO crashes (See Table 6.8) from the disaggregate 

analysis. W hen taking California alone into consideration, the results revealed that there 

will be an increase in PDO crashes after a signal was installed while M innesota 

experienced a reduction for this crash severity type. This difference in safety effect could 

be related to how PDO crashes are considered by the two states. PDO crashes reports are 

usually based on dollar value o f  damages sustained and most likely California and 

M innesota could have been using different threshold values for reporting these crashes. 

This issue is also exhibited for rear-end PDO severity crashes for which California is 

estim ating a reduction in crashes in contrast to the increase for Minnesota.

S m alle r  C o m p o site  
E n tity  (#  o f  in te rsec tio n s

T O T A L R IG H T -T U R N L E F T -T U R N R E A R -E N D
0 V A R (0) 0 V A R (0) 0 V A R (0) 0 V A R (0 )

A A D T  <  10000  (7) 0 .62 0.02 0.24 0.01 0.75 0.08 0 .69 0.08
1 0 ,000<  A A D T <  15000 
(15) 0.81 0.02 0.30 0.01 0.54 0.05 1.62 0.49

1 5 ,000<  A A D T  <  12000 
(10)

0 .86 0.01 0.28 0.00 0.65 0 .04 1.66 0 .1 7

A A D T  >  2 0 0 0 0  (7) 1.08 0.03 0.38 0.02 1.31 0.25 1.90 0.33
T o ta l (a ll sev e rity ) 
C ra sh e s /y e a r  >  5 (22)

0 .80 0.01 0.27 0.01 0.47 0.04 1.76 0 .3 5

T o ta l (a ll sev e rity ) 
C ra sh e s /y e a r  <  5 (17)

0.93 0.01 0.39 0.01 0.88 0.00 1.52 0.11

T o ta l P D O  c ra sh es  /  y ea r 
> 5 ( 1 9 )

0 .80 0.01 0.27 0.01 0.46 0 .04 1.76 0 .35

T o ta l P D O  c ra sh es  /  y ea r 
<5 (30)

0.93 0.01 0.39 0.01 0.93 0.03 1.52 0.11

M a jo r  a p p ro a c h  lan es  =  2 
(21 )

0.86 0.01 0.28 0.00 0.78 0.03 2 .08 0 .1 7

M a jo r  a p p ro a c h  lan es  =  4  
(18)

0 .86 0.01 0.33 0.01 0.61 0 .06 1.55 0 .2 2

C a lifo rn ia  (2 4 ) 1.05 0.01 0.40 0.01 1.07 0 .05 0.91 0 .08

M in n e so ta  (15 ) 0 .79 0.01 0.31 0.01 0.50 0 .04 1.80 0 .1 9

A ll (M in n e so ta  an d  
C a lifo rn ia )  (3 9 )

0 .87 0.01 0 .32 0.01 0.70 0.04 1.73 0 .15
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6.4 Empirical Bayes with Proportional SPFs ; : v 3 ;

The need for and functionality of SPFs is a very important component in an EB study. 

However, SPFs are sometimes impossible to calibrate due to small sample sizes that 

usually lead to poorly fitted SPFs, or simply because it can be extremely time consuming. 

In such situations, another form of SPFs, referred to as proportional SPFs, is usually 

developed (Persaud et al. 2005). This method simply applies a factor (proportion) to the 

SPF for total accidents to estimate the accidents for a specific crash type. For instance, 

assuming that the total accident SPF for a particular intersection is of the form:

Total Accident / year = a  {Total Entering AADTY  (6.5)

To illustrate, suppose one needs to calibrate an SPF for left-turning accidents, but the 

actual dataset is insufficient for calibrating a statistically significant model; therefore 

under the proportional SPF approach, a factor (proportion of total accidents that are left- 

tum accidents) is applied to Equation 6.5:

Left — Turn Accident / year = {FACTOR) a  {Total Entering AADT Y  (6.6)

To assess the validity of this approximation to calibrating SPFs, this method was used to 

develop secondary Injury and PDO severity crash type SPFs for the California and 

Minnesota reference groups. The total severity SPFs were used, analogous to Equation

6.5. These SPFs were then applied to the EB procedure to test the difference between the 

results so obtained and the EB results with SAS directly calibrated SPFs for the specific 

crash type. Dispersion parameters for the proportion SPFs were estimated by using a 

maximum likelihood software procedure. A summary o f the California proportional
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SPFs for Injury and PDO severity is given in Tables 6,9, 6.10 and 6.11. Tables 6.12 and 

6.13 give the summary for the Minnesota proportion SPFs for Injury and PDO.

T a b le  6 .9  P r o p o r t io n  I n ju r y  a n d  P D O  S P F s  fo r  C a lifo rn ia  T h re e - le g g e d  w ith  2  la n e s  o n  M a jo r

■ — — — A ll R ig h t-A n g ie L e f t-T u rn R e a r -E n d
M o d e l 2 2 2 1
I n j u r y  L N ( a ) -10 .134 -11.206 -14 .345 -12 .460

P D O  L N ( a ) -9 .880 -11.528 -14.403 -1 2 .0 4 4

P i (s.e .)
1.112 0.907 1.482 0 .824

(0.046) (0.156) (0 .080) (0 .084)

Pz (s.e .)
0 .324 0.522 0.571 0 .212

(0.023) (0.071) (0 .037) (0 .040)
D is p e rs io n  I n ju r y 1.74 0.31 0.78 0.97
D is p e rs io n  P D O 1.65 1.54 0.77 1.22

M odel 1: E{ic) = a (M a j)^  {M in )^ M odel 2: E {k)  = a{M aj + (  Min ' j *  
yM a j + M in j

T a b le  6 .1 0 -  P r o p o r t io n  I n ju r y  a n d  P D O  S P F s fo r  C a lifo rn ia  F o u r- le g g e d  w ith  2 la n e s  o n  M a jo r

~ ---------  - ___ A ii R ig h t-A n g le  L e f t-T u rn R e a r - E n d

M o d e l 1 1 1 2

I n j u r y  L N ( a ) -9 .925 -11.541 -13 .949 -11 .761

P D O  L N ( a ) -9.781 -11.929 -14 .053 -11 .419

P i( s .e .)
0 .719

(0.060)
0 .554

(0 .129)
0.821

(0 .095)
1.023

(0 .114)

Pz (s .e .)
0.481

(0 .028)
0.781

(0 .062)
0 .763

(0 .046)
0 .252

(0 .052)

D is p e r s io n  I n ju r y 1.72 0 .45 0 .97 0.88

D is p e rs io n  P D O 2.1 0.56 1.03 1.33

M odel 1 : E {k}  = a (M a j)^  {M u if^  M odel 2: E {k} -  a{MaJ + M in )^  ^ ^  j

99



Table 6.11 -  Proportion Injury and PDO SPF for California Four-legged with 4 lanes on Major

— - — __________ All R igb t-A ngle L e ft-T u rn R e a r-E n d

M odel 1 2 2 1

In ju ry  L N (a ) -10.379 -13.268 -17.208 -13.720

P D O  L N (a ) -10.316 -13.768 -17.545 -13.286

Pi (s.e.) 0.769
(0.116)

1.454
(0.247)

1.802
(0.265)

0.969
(0.197)

Pz (s.e.) 0.426
(0.069)

0.707
(0.120)

0.559
(0.125)

0.211
(0.103)

D ispersio n  In ju ry 0.99 0.54 0.42 0.94

D ispersion  P D O 1.81 0.71 0.97 1.99
/ ■

M oùfM ; E{k} -  a{M aj)^ Model 2: E{ic}~a(MaJ + M in )^ \
yM aj +Min J

.12 -  P ro p o r tio n  In ju ry  an d  P D O  SPF  fo r  M in n eso ta  "fh ree-legged  In te rsec tio n s  (M inn
~~------------------- All R igb t-A ngle L e ft-T u rn R e a r-E n d

M odel 1 1 1 1

In ju ry  L N (a ) -9.3958 -13.844 -12.652 -12.296

P D O  L N (a ) -9.2107 -14.052 -12.646 -12.068

Pi (s.e.) 0.496
(0.050)

0.722
(0.083)

0.292
(0.127)

0.760
(0.092)

Pz(s.e.) 0.624
(0.050)

0.816
(0.083)

0.983
(0.127)

0.521
(0.090)

D isp ersio n  In ju ry 1.26 0.46 0.21 0.45
D isp ersio n  P D O 1.43 0.49 0.17 0.5
Model 1: E{k} = (M in)^

T a b ie  6.13 -  P ro p o r tio n  In ju ry  an d  P D O  S P F fo r  M in n eso ta  F our-legged  In te rsec tio n s  (M in n eso ta)
" ------- Ali R igb t-A ngle L e ft-T u rn R e a r-E n d
M odel 1 1 1 1

In ju ry  L N (o ) -9.562 -10.486 -14.479 -13.277

P D O  L N (a ) -9.525 -10.859 -14.537 -13.011

Pi (s.e.)
0.566

(0.039)
0.462

(0.054)
0.725

(0.091)
0.909

(0.067)

Pz (s.e.)
0.698

(0.041)
0.891

(0.060)
0.815

(0.096)
0.559

(0.065)
D isp ersio n  In ju ry 1.52 0.84 0.26 0.51
D isp ersio n  P D O 1.78 0.82 0.28 0.68
Model 1: £{«•} = a{Maj)  ̂(Min)^
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The results for the EB analysis using the proportional SPFs are given in Table 6.14. 

Com paring these result with those o f the EB study using SAS calibrated SPFs (Table 

6.4), small differences between the percent changes in crashes were observed in general. 

The only marked difference is for the PDO and Injury estimates for rear-end crashes. For 

this particular dataset, it can, therefore, be concluded that in general valid EB results can 

be obtained by using simpler proportional SPFs. This is a useful conclusion in the light o f 

the difficulties that are typical in obtaining sufficient reference group data for the direct 

calibration o f  SPFs.

T a b le  6 .1 4  — E m p ir ic a l  B ay es  sa fe ty  effec ts  fo r  In ju ry  a n d  P D O  c ra s h e s  u s in g  p r o p o r t io n a l  S P F s

IN JU R Y  S e v e rity

A ll R igh t A ngle L eft T u rn R e a r E n d
E B  e s tim a te  o f  c rash es  ex p ec ted  in  
th e  a f te r  p e r io d  w ith o u t signals  ,n 
(s .e )

1190

(119.1)

656

(99.6)

302

(71.4)

86

(3 7 .1 )

A c c id e n t C o u n ts  a f te r  trea tm en t w as 601 145 78 174
im p le m e n te d  X. (s.e) (24.5) (12.0) 8.8 13.2

E s tim a te  o f  th e  ch an g e  in  crash 589 511 224 -88

freq u en cy , 5  (s.e) (121.6) (100 .3) (71.9) (39 .4 )

In d e x  o f  E ffe c tiv e s  ,0  (s.e)
0.500

(0.05)

0 .216

(0.04)

0 .244

(0 .06)

1.702

(0 .68 )

P e rc e n t C h an g e  in  c rashes 50.0 78.4 75 .6 -70 .2

P D O  S e v e rity

E B  e s tim a te  o f  c rash es ex p ec ted  in 1150 412 218 149
th e  a f te r  p e r io d  w ith o u t signals  ,n 
(s .e ) (98.9) (82.4) (48.1) (39 .2 )

A c c id e n t C o u n ts  a f te r  trea tm en t w as 886 136 136 2 9 4

im p le m e n te d  X (s .e ) (29.8) (11.7) (11.7) (17 .1 )

E s tim a te  o f  the  ch an g e  in  c rash 264 276 82 -145

freq u en cy , 5 (s.e) (103.3) (83.2) (49 .5) (42 .8 )

In d e x  o f  E ffe c tiv e s  ,0  (s.e)
0.765

(0.07)

0.317

(0.07)

0 .596

(0.14)

1.840

(0 .48)

P e rc e n t C h an g e  in  c rash es 23.5 68.3 4 0 .4 -8 4 .0
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CHAPTER?: Economic Analysis
Based on the results o f the safety effects analysis, no definitive claim can be made about 

the overall safety effect for the implementation of traffic signals since the results show 

that this treatment will reduce right-angle accidents, but increase rear-end crashes. The 

question is whether the increase in rear-end crashes will negate the benefits gained from 

the reduction of the right-angle crashes. This question can be addressed by an 

examination o f the economic costs for the two crash types, base on severity levels (injury 

and non-injury). Council et al. (2005) did a similar economic analysis after they found 

that rear end crashes will tend to increase, and right angle accidents decrease, after red 

light cameras are installed at a signalized intersection. The same procedure was adopted 

in this study.

To apply the procedure, the economic cost per crash was needed for the right-angle, rear- 

end and “other” crash types. The crash type ‘other’ is simply the difference between the 

total crash and the sum of the right-angle and left-tum crashes. Crash costs were 

developed in the U.S. for each of the KABCO severity level (Council, Eduard, Miller and 

Persaud 2005) for rural and urban intersections by control type. The distinction between 

urban and rural crash cost was made solely on the posted speed. Intersections with main 

road posted speeds higher than 50mph (80 km/h) were considered rural whereas those 

with speed limits lower than 45 mph (72 km/h) were considered as urban.

Council et al. (2005) developed two types of crash cost - human capital costs and 

comprehensive costs. The human capital cost is simply the actual dollar value incurred 

for each severity, whereas the comprehensive costs is the sum of the human capital cost
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and cost for loss o f  quality o f  life for the two severities (K+A+B+C, and O). This study 

used the comprehensive cost for the economic analysis, following Council et al. Section

7.1 gives a synopsis o f the procedure.

7.1 Methodology for Economic Analysis

The EB calculations were done for each crash types (right-angle, rear-end and other). 

Crash types were further sub-divided into two severity groups, injury (K+A+B+C) AnH 

PD O (O). Then, following Council et al. (2005) the EB crash estimates were used with 

the following costs to perform the analysis:

^costA~ cost o f  crashes that occurred after the treatment was installed. This cost is

simply the count o f crashes in the after period multiplied by the corresponding 

unit comprehensive crash cost for the crash type and severity at rural signalized  

intersections.

VAR^AcostA)~ variance o f  the crash costs in the after period. Each unit crash cost

developed by Council et al. 2005) has a corresponding standard error. The 

variance is simply computed as the square o f the standard error multiplied by 

the count o f after period crashes.

^costA ^  cost o f  crashes in the after period had there been no treatment. The estimation

o f  this cost accounts for RTM, traffic volume trend and other factors. This 

parameter is the product o f EB estimate o f tc (the crashes expected in the after 

period without treatment) and the corresponding unit comprehensive cost for the 

crash type and severity at rural stop controlled intersections.
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' = variance o f the crashes in the after period had no signal been installed.

Similar to above, the standard error o f the unit crash cost was used to calculate 

the variance, which was then multiplied by EB estimate o f n (the crashes 

expected in the after period without treatment).

The parameters listed above were aggregated over the treatment sites for both severity 

groups, (K+A+B+C, and O or, simply, injury and PDO), giving an aggregated economic 

cost with the change in crash cost given by Equation 7.1 :

^ c o s l  ^ ^co s tA  ^ c o s tA

The variance of the change in crash cost is given by Equation 7.2:

The index o f effectiveness with respect to crash cost is given by Equation 7.3: 

A■‘ ^CostA

(7.1)

(7.2)

O CostA0  =''cost . .
1 ,

The variance of the index of effectiveness is given by Equation 7.4:

2

( ^ C w m )

(7.3)

(7.4)
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7.2 Estimates of Economic Effects of Installing Traffic Signals

Table 7.1 gives the estimate o f the unit comprehensive crash cost for each crash type and 

severity. Unit crash costs for “other” is the same as the crash cost for right-angle 

accidents due to recommendation made by Council et al. (2005).

T a b le  7 .1  — U n i t  c o m p re h e n s iv e  c ra s h  co s ts  u sed  in  th e  eco n o m ic  a n a ly s is

C o n tro l
T y p e

S e v e rity
L ev e l

R ig h t  A n g le  C o s t 
(s.e)

R e a r  E n d  C o s t 
(s.e.)

O th e r  C o s t 
(s.e.)

In jury $126,878 $52,276 $126,878

S ignal
(s.e) $9,619 $13,794 $9,619

PD O $8,544 $5,901 $8 ,544
(s.e) $1,294 $1,802 $1 ,294

In ju ry $199,788 $34,563 $199 ,788

S top (s.e) $27,768 $12,854 $27,768
S ign P D O $5,444 $3,788 $5,444

(s.e) $1,265 $978 $1,265

s.e. -  standard error

The EB estimates o f the economic effect o f crashes for each crash type are shown in 

Tables 7.2 and 7.3. As noted earlier, the objective for this economic assessment was to 

see i f  the increase in rear-end accidents after a signal was installed will offset the benefits 

gained fi-om the reduction o f right-angle accidents. If  all accidents are considered (injury 

and non-injury) the results (Table 7.2) show a positive aggregate economic benefit o f  

$155,883,978 which represents a 69 percent reduction in cost over the 45 treated sites. 

The results for the injury crashes only (Table 7.3) show a benefit o f  $157,280,562, 

representing a 71 percent reduction in cost. Note the benefit is aggregated over the 45 

sites w ith a total o f  253 years o f data in the after period. To get a better perspective on
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the reduction in crash cost it would be prudent to estimate the benefit per site-year. These 

results are:

1. If Injury and PDO accidents are considered together, the reduction in accident 

costs is (155,883,978)7(253) = $616,142 per site-year.

2. If PDO crashes are not considered, the reduction in accident costs is 

(157,280,562)7 (253) = $621,662 per site.

T ab le  7 .2 -  E B  econom ic effects fo r  com posite en tity  w ith  in ju ry  a n d  o n -in ju ry  (PD O ) c ra sh es

R ight A ngle Rear-End O ther A ll C rashes

EB  estim ate o f  crash costs w ithout $130,908,188 $4,446,765 $90,594,897 $225,949,850

Signals (s.e) $705,181 $12,935 $583,634 $915,465

C ost o f  crashes recorded after Signals $19,559,294 $10,830,918 $39,675,660 $70,065,872

w ere installed (s.e) $116,807 $182,899 $163,877 $271,940

0.149 2.436 0.438 0.310
Index o f  Effectives ,0 (s.e)

0.001 0.042 0.003 0.002

P ercen t reduction in  Crash Cost 
(N egative im plies an  increase)

85 -144 56 69

A ggregated  C rash C ost decrease $111,348,894 -$6,384,153 $50,919,237 $155,883,978

T a b le  7 .3 -  E B  econom ic effects fo r  com posite  en tity  w ith  in ju ry  c rash es  only

Right A ngle Rear-End O ther A ll C rashes

EB estim ate o f  crash  costs w ithout $128,679,455 $3,806,961 $88,067,076 $220,553,492
Signals (s.e) $704,717 $2,400 $582,997 $914,613

C ost o f  crashes recorded after Signals $18,397,310 $9,096,024 $35,779,596 $63,272,930
w ere installed (s.e) $115,828 $181,955 $161,530 $269,474

0.143 2.389 0.406 0.287
Index o f  E ffectives ,0 (s.e)

0.001 0.056 0.003 0.002

P ercen t reduction  in Crash Cost 
(N egative im plies an increase) 86 -139 59 71

A ggregated  C rash  C ost decrease $110,282,145 -$5,289,063 $52,287,480 $157,280,562
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The economic analysis shows a positive gain in cost even after considering the increase 

in rear end crashes after a signal was installed, so it was useful for this purpose alone. 

The aggregation o f  economic costs also allowed for an evaluation o f the change in crash 

costs for various disaggregated groups such as those based on before period AADT, on 

crash levels, and on intersection geometry. For instance, the disaggregated EB economic 

effects for the 4-legged intersections are shown in Tables 7.4. The results for the 3- 

Icgged intersections are based on a small sample size and were not disaggregated.

The disaggregated economic analysis for the 4-legged intersections revealed positive 

economic effects for all classes o f intersections with small standard errors. That is ‘0 ’ 

was less than 1 for all disaggregated levels implying a reduction in total crash cost for 

each level. Therefore, the following inferences were possible:

1. A  net gain in economic benefit was achieved for the entire range o f  AADT used 

after a signal is installed. However, there is an apparent pattern in the percent 

decrease in crash cost at various AADT levels. Intersections with AADT less 

than 10,000 experienced the smallest economic gain but an increase in the 

economic gain was observed for AADTs within a range o f 10,000 to 20,000. 

However, the economic gain then subsides for AADT greater than 20,000?

2. A  large economic gain was observed after signalization for total and injury 

severity crash frequencies larger than 5 per year during the before period. PDO 

crashes were not considered in this analysis because o f inconsistent reporting o f  

these crashes types.

107



3. Major approaches with 2 or 4 lanes experience approximately the same economic 

gain.

4. Intersections from California and Minnesota exhibited substantial economic gain 

as both separate entities and together (as one composite entity). An interesting 

observation is the difference between the percent decrease in crash cost for 

“injury and PDO” and injury alone; the difference for Minnesota is quite small 

compared to that for California. This anomaly can be attributed to the difference 

in reporting PDO crashes in each of the States. It is believed that California tends 

to severely underreport PDO crashes.

T a b le  7 .4 -D isaggrega te  EB  E conom ic E ffects fo r  C om posite  E n tity  w ith  4-legged In te rse c tio n s : 39 

Sites

In te rse c tio n  C lass 
(n u m b e r  o f  sites)

C om bined  In ju ry  a n d  PD O  Severity O n ly  In ju ry  S ev erity

8 V A R (0)
%  d ecrease  in  

c ra sh  cost
S td .

e r ro r 0 V A R (0)
%  d ec rease  in  

c ra s h  cost
S td .

e r r o r

A A D T  < 10000 (7) 0.74 2.65E-4 26 0.016 0.73 2.84E-4 27 0.017

10,000< A A D T < 15000 
(15)

0.21 3.30E-6 79 0.002 0.19 3.13E-5 81 0.006

15,000< A A D T <  12000 
(10)

0.26 1.13E-5 74 0.003 0.24 1.08E-5 76 0.003

A A D T >  20000 (7) 0.54 4.89E-5 46 0.007 0.51 4.75E-5 49 0.007
T otal (all severity) 
Crashes/year > 5 (22)

0.28 3.23E-6 72 0.002 0.26 3.12E-6 74 0.002

T otal (all severity) 
C rashes/year < 5 (17) 0.45 4.27E-5 55 0.007 0.41 3.95E-5 59 0.006

T otal In jury  C rashes/year 
> 5 ( 1 1 )

0.24 3.39E-6 76 0.002 0.22 3.26E-5 78 0.006

T otal In jury  C rashes/year 
<  5 (28)

0.43 1.61E-5 57 0.004 0.40 1.55E-5 60 0.004

M ajor approach lanes -  2 
(21) 0.31 1.02E-5 69 0.003 0.28 9.60E-6 72 0.003

M ajor approach lanes =  4 
(18)

0.30 4.39E-6 70 0.002 0.28 4.23E-6 72 0.002

C alifornia (24) 0.42 1.66E-5 58 0.004 0.39 1.59E-5 61 0.004
M innesota (15) 0.26 3.81E-6 74 0.002 0.24 3.68E-6 76 0.002
A ll (M innesota and 
C alifornia) (39)

0.30 3.07E-6 70 0.002 0.28 2.94E-6 72 0.002
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CHAPTERS: Conclusions

This study was primarily focused on estimating the safety effects after traffic signals are 

installed at stop controlled rural intersections. Use was made o f  both the conventional and 

the Empirical Bayes (EB) procedures. The conventional procedures consisted o f  the 

“sim ple before-after Naïve", “Naive with traffic flow correction”, and “Naive with safety 

perform ance functions” methods. Data from 45 treated intersections located in California 

and M innesota, in the US (28 from California and 17 from Minnesota) were used in this 

research to execute various analyses.

Both the conventional and the EB methods revealed a reduction in right-angle and left 

turn crashes and an increase in rear-end crashes after signals were installed. However, as 

expected the percent changes in crashes were quite different for each method, which is 

m ainly due differences in underlying assumptions. The results are generally 

substantiated by  similar findings revealed by a comprehensive literature review. Thus, it 

can be concluded that safety analysts should expect similar changes in crashes to those 

found whenever the implementation o f traffic signals at stop controlled rural intersections 

is contemplated.

Results obtained from the EB procedure showed that “all”, right angle and left turn 

crashes o f  all severities combined were reduced by 38%, 74% and 60% respectively, 

w hile an 85% increase was observed in rear-end crashes.
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Clearly the percent changes in crashes estimated using the EB method should not be used 

alone in justifying the need for a signal since the increase in rear-end crashes has the 

potential to offset benefits obtained from a reduction in right-angle and left-tum crashes 

after a signal was installed. An economic analysis performed on accident types and 

severities after treatment (See Chapter 7) addressed the issue of whether the increase in 

rear-end crashes will offset the safety gained from the reduction of right-angle accidents. 

The results obtained from this analysis (Tables 7.3 and 7.4) show that even allowing for 

the increase in rear-end crashes after signals were installed, the overall economic effect 

achieved was quite positive.

In terms o f dollar value, the economic analysis of the 45 treated sites shows that, after 

installation of the signals, the aggregated crash costs when considering both injury and 

non-injury crashes were reduced by $155,883,978 site year. This works out to an 

approximate reduction of $616,142 per site year. The reduction for injury crash costs 

alone amounted to about $157,280,562 per site year, which is an approximate reduction 

o f $621,662 per site-year. Therefore, it can be concluded that after signalizing stop 

controlled rural intersections a definite increase in the overall safety at these intersections 

could be expected. This benefit is likely to outweigh by far the capital and maintenance 

costs o f installing a traffic signal. It should be noted, however, that these benefits carmot 

be extrapolated to signalizing any intersection, since the installations evaluated in this 

study were most likely “warranted”.
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; s Appendices :
Appendix A -  Alternative Rear-End Crash Types

Vehicle 2 - 
Straight Through

Vehicle 1 - Right 
Turn Vehicle 1 turns right while 

vehicle 2 heads straight th ro n g  
the intersection

_ y
Vehicle 1 - Left 
Turn

Vehicle 2 - 
Straight Through

Vehicle 1 turns left while vehicle 2 
heads s tra i^ t through the intersection
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Appendix B - Cumulative Residual (CURE) plots for SPFs in Chapter 5
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CURE PLOTS for SPFs calibrated from the California Reference Groups 
Total SPFs -  3-legged intersections with 2 lanes on major approach
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Total SPFs -  4-legged intersections with 2 lanes on major approach
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Total SPFs -  4-legged intersections with 4 lanes on major approach
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CURE PLOTS for SPFs calibrated from the Minnesota Reference Groups 
Total SPFs -  3-legged intersections
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Total SPFs -  4-legged intersections
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